Sample records for quantum finance formulation

  1. Interest rates in quantum finance: the Wilson expansion and Hamiltonian.

    PubMed

    Baaquie, Belal E

    2009-10-01

    Interest rate instruments form a major component of the capital markets. The Libor market model (LMM) is the finance industry standard interest rate model for both Libor and Euribor, which are the most important interest rates. The quantum finance formulation of the Libor market model is given in this paper and leads to a key generalization: all the Libors, for different future times, are imperfectly correlated. A key difference between a forward interest rate model and the LMM lies in the fact that the LMM is calibrated directly from the observed market interest rates. The short distance Wilson expansion [Phys. Rev. 179, 1499 (1969)] of a Gaussian quantum field is shown to provide the generalization of Ito calculus; in particular, the Wilson expansion of the Gaussian quantum field A(t,x) driving the Libors yields a derivation of the Libor drift term that incorporates imperfect correlations of the different Libors. The logarithm of Libor phi(t,x) is defined and provides an efficient and compact representation of the quantum field theory of the Libor market model. The Lagrangian and Feynman path integrals of the Libor market model of interest rates are obtained, as well as a derivation given by its Hamiltonian. The Hamiltonian formulation of the martingale condition provides an exact solution for the nonlinear drift of the Libor market model. The quantum finance formulation of the LMM is shown to reduce to the industry standard Bruce-Gatarek-Musiela-Jamshidian model when the forward interest rates are taken to be exactly correlated.

  2. Interest rates in quantum finance: Caps, swaptions and bond options

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2010-01-01

    The prices of the main interest rate options in the financial markets, derived from the Libor (London Interbank Overnight Rate), are studied in the quantum finance model of interest rates. The option prices show new features for the Libor Market Model arising from the fact that, in the quantum finance formulation, all the different Libor payments are coupled and (imperfectly) correlated. Black’s caplet formula for quantum finance is given an exact path integral derivation. The coupon and zero coupon bond options as well as the Libor European and Asian swaptions are derived in the framework of quantum finance. The approximate Libor option prices are derived using the volatility expansion. The BGM-Jamshidian (Gatarek et al. (1996) [1], Jamshidian (1997) [2]) result for the Libor swaption prices is obtained as the limiting case when all the Libors are exactly correlated. A path integral derivation is given of the approximate BGM-Jamshidian approximate price.

  3. Risky forward interest rates and swaptions: Quantum finance model and empirical results

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal Ehsan; Yu, Miao; Bhanap, Jitendra

    2018-02-01

    Risk free forward interest rates (Diebold and Li, 2006 [1]; Jamshidian, 1991 [2 ]) - and their realization by US Treasury bonds as the leading exemplar - have been studied extensively. In Baaquie (2010), models of risk free bonds and their forward interest rates based on the quantum field theoretic formulation of the risk free forward interest rates have been discussed, including the empirical evidence supporting these models. The quantum finance formulation of risk free forward interest rates is extended to the case of risky forward interest rates. The examples of the Singapore and Malaysian forward interest rates are used as specific cases. The main feature of the quantum finance model is that the risky forward interest rates are modeled both a) as a stand-alone case as well as b) being driven by the US forward interest rates plus a spread - having its own term structure -above the US forward interest rates. Both the US forward interest rates and the term structure for the spread are modeled by a two dimensional Euclidean quantum field. As a precursor to the evaluation of put option of the Singapore coupon bond, the quantum finance model for swaptions is tested using empirical study of swaptions for the US Dollar -showing that the model is quite accurate. A prediction for the market price of the put option for the Singapore coupon bonds is obtained. The quantum finance model is generalized to study the Malaysian case and the Malaysian forward interest rates are shown to have anomalies absent for the US and Singapore case. The model's prediction for a Malaysian interest rate swap is obtained.

  4. Quantum finance Hamiltonian for coupon bond European and barrier options.

    PubMed

    Baaquie, Belal E

    2008-03-01

    Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is "knocked out" (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates' Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can -- to a good approximation -- be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function.

  5. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. II. Empirical

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Liang, Cui

    2007-01-01

    The quantum finance pricing formulas for coupon bond options and swaptions derived by Baaquie [Phys. Rev. E 75, 016703 (2006)] are reviewed. We empirically study the swaption market and propose an efficient computational procedure for analyzing the data. Empirical results of the swaption price, volatility, and swaption correlation are compared with the predictions of quantum finance. The quantum finance model generates the market swaption price to over 90% accuracy.

  6. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. II. Empirical.

    PubMed

    Baaquie, Belal E; Liang, Cui

    2007-01-01

    The quantum finance pricing formulas for coupon bond options and swaptions derived by Baaquie [Phys. Rev. E 75, 016703 (2006)] are reviewed. We empirically study the swaption market and propose an efficient computational procedure for analyzing the data. Empirical results of the swaption price, volatility, and swaption correlation are compared with the predictions of quantum finance. The quantum finance model generates the market swaption price to over 90% accuracy.

  7. Mukhabarah as Sharia Financing Model in Beef Cattle Farm Entrepise

    NASA Astrophysics Data System (ADS)

    Asnawi, A.; Amrawaty, A. A.; Nirwana

    2018-02-01

    Financing constraints on beef cattle farm nowadays have received attention by the government through distributed various assistance programs and program loans through implementing banks. The existing financing schemes are all still conventional yet sharia-based. The purpose of this research is to formulate financing pattern for sharia beef cattle farm. A qualitative and descriptive approach is used to formulate the pattern by considering the profit-sharing practices of the beef cattle farmers. The results of this study have formulated a financing pattern that integrates government, implementing banks, beef cattle farmers group and cooperative as well as breeders as its members. This pattern of financing is very accommodating of local culture that develops in rural communities. It is expected to be an input, especially in formulating a business financing policy Sharia-based beef cattle breeding.

  8. Quantum Mechanics, Path Integrals and Option Pricing:. Reducing the Complexity of Finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani

    2003-04-01

    Quantum Finance represents the synthesis of the techniques of quantum theory (quantum mechanics and quantum field theory) to theoretical and applied finance. After a brief overview of the connection between these fields, we illustrate some of the methods of lattice simulations of path integrals for the pricing of options. The ideas are sketched out for simple models, such as the Black-Scholes model, where analytical and numerical results are compared. Application of the method to nonlinear systems is also briefly overviewed. More general models, for exotic or path-dependent options are discussed.

  9. Quantum Finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2007-09-01

    Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.

  10. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  11. Taxpayer Equity in School Finance Reform: The School Finance and the Public Finance Perspectives.

    ERIC Educational Resources Information Center

    Berne, Robert; Stiefel, Leanna

    1979-01-01

    Elaborates on distinctions between different formulations of taxpayer equity. First, taxpayer equity is examined from the school finance perspective, then notions of taxpayer equity that are more consistent with public finance views, but that can and have been applied to education, are introduced. (Author/IRT)

  12. Bonds with index-linked stochastic coupons in quantum finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal Ehsan

    2018-06-01

    An index-linked coupon bond is defined that pays coupons whose values are stochastic, depending on a market defined index. This is an asset class distinct from the existing coupon bonds. The index-linked coupon bond is an example of a sukuk, which is an instrument that implements one of the cornerstones of Islamic finance (Askari et al., 2012): that an investor must share in the risk of the issuer in order to earn profits from the investment. The index-linked coupon bond is defined using the mathematical framework of quantum finance (Baaquie, 2004, 2010). The coupons are stochastic, with the quantum of coupon payments depending on a publicly traded index that is chosen to reflect the primary drivers of the revenues of the issuer of the bond. The index ensures there is information symmetry - regarding the quantum of coupon being paid - between issuer and investor. The dependence of the coupon on the index is designed so that the variation of the index mirrors the changing fortunes of the issuer, with the coupon's quantum increasing for increasing values of the index and conversely, decreasing with a fall of the index.

  13. Can quantum probes satisfy the weak equivalence principle?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seveso, Luigi, E-mail: luigi.seveso@unimi.it; Paris, Matteo G.A.; INFN, Sezione di Milano, I-20133 Milano

    We address the question whether quantum probes in a gravitational field can be considered as test particles obeying the weak equivalence principle (WEP). A formulation of the WEP is proposed which applies also in the quantum regime, while maintaining the physical content of its classical counterpart. Such formulation requires the introduction of a gravitational field not to modify the Fisher information about the mass of a freely-falling probe, extractable through measurements of its position. We discover that, while in a uniform field quantum probes satisfy our formulation of the WEP exactly, gravity gradients can encode nontrivial information about the particle’smore » mass in its wavefunction, leading to violations of the WEP. - Highlights: • Can quantum probes under gravity be approximated as test-bodies? • A formulation of the weak equivalence principle for quantum probes is proposed. • Quantum probes are found to violate it as a matter of principle.« less

  14. H-theorem in quantum physics.

    PubMed

    Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.

  15. H-theorem in quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less

  16. H-theorem in quantum physics

    PubMed Central

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.

    2016-01-01

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy. PMID:27616571

  17. H-theorem in quantum physics

    DOE PAGES

    Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; ...

    2016-09-12

    Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less

  18. Nine formulations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Styer, Daniel F.; Balkin, Miranda S.; Becker, Kathryn M.; Burns, Matthew R.; Dudley, Christopher E.; Forth, Scott T.; Gaumer, Jeremy S.; Kramer, Mark A.; Oertel, David C.; Park, Leonard H.; Rinkoski, Marie T.; Smith, Clait T.; Wotherspoon, Timothy D.

    2002-03-01

    Nine formulations of nonrelativistic quantum mechanics are reviewed. These are the wavefunction, matrix, path integral, phase space, density matrix, second quantization, variational, pilot wave, and Hamilton-Jacobi formulations. Also mentioned are the many-worlds and transactional interpretations. The various formulations differ dramatically in mathematical and conceptual overview, yet each one makes identical predictions for all experimental results.

  19. Nonequilibrium quantum mechanics: A "hot quantum soup" of paramagnons

    NASA Astrophysics Data System (ADS)

    Scammell, H. D.; Sushkov, O. P.

    2017-01-01

    Motivated by recent measurements of the lifetime (decay width) of paramagnons in quantum antiferromagnet TlCuCl3, we investigate paramagnon decay in a heat bath and formulate an appropriate quantum theory. Our formulation can be split into two regimes: (i) a nonperturbative, "hot quantum soup" regime where the paramagnon width is comparable to its energy; (ii) a usual perturbative regime where the paramagnon width is significantly lower than its energy. Close to the Neel temperature, the paramagnon width becomes comparable to its energy and falls into the hot quantum soup regime. To describe this regime, we develop a new finite frequency, finite temperature technique for a nonlinear quantum field theory; the "golden rule of quantum kinetics." The formulation is generic and applicable to any three-dimensional quantum antiferromagnet in the vicinity of a quantum critical point. Specifically, we apply our results to TlCuCl3 and find agreement with experimental data. Additionally, we show that logarithmic running of the coupling constant in the upper critical dimension changes the commonly accepted picture of the quantum disordered and quantum critical regimes.

  20. Application of quantum master equation for long-term prognosis of asset-prices

    NASA Astrophysics Data System (ADS)

    Khrennikova, Polina

    2016-05-01

    This study combines the disciplines of behavioral finance and an extension of econophysics, namely the concepts and mathematical structure of quantum physics. We apply the formalism of quantum theory to model the dynamics of some correlated financial assets, where the proposed model can be potentially applied for developing a long-term prognosis of asset price formation. At the informational level, the asset price states interact with each other by the means of a ;financial bath;. The latter is composed of agents' expectations about the future developments of asset prices on the finance market, as well as financially important information from mass-media, society, and politicians. One of the essential behavioral factors leading to the quantum-like dynamics of asset prices is the irrationality of agents' expectations operating on the finance market. These expectations lead to a deeper type of uncertainty concerning the future price dynamics of the assets, than given by a classical probability theory, e.g., in the framework of the classical financial mathematics, which is based on the theory of stochastic processes. The quantum dimension of the uncertainty in price dynamics is expressed in the form of the price-states superposition and entanglement between the prices of the different financial assets. In our model, the resolution of this deep quantum uncertainty is mathematically captured with the aid of the quantum master equation (its quantum Markov approximation). We illustrate our model of preparation of a future asset price prognosis by a numerical simulation, involving two correlated assets. Their returns interact more intensively, than understood by a classical statistical correlation. The model predictions can be extended to more complex models to obtain price configuration for multiple assets and portfolios.

  1. Financing the construction of transport infrastructure as the basis for sustainable development of the regional economy

    NASA Astrophysics Data System (ADS)

    Nidziy, Elena

    2017-10-01

    Dependence of the regional economic development from efficiency of financing of the construction of transport infrastructure is analyzed and proved in this article. Effective mechanism for infrastructure projects financing, public and private partnership, is revealed and its concrete forms are formulated. Here is proposed an optimal scenario for financing for the transport infrastructure, which can lead to positive transformations in the economy. Paper considers the advantages and risks of public and private partnership for subjects of contractual relations. At that, components for the assessment of economic effect of the implementation of infrastructure projects were proposed simultaneously with formulation of conditions for minimization risks. Results of the research could be used for solution of persistent problems in the development of transport infrastructure, issues of financial assurance of construction of infrastructure projects at the regional level.

  2. What is Quantum Mechanics? A Minimal Formulation

    NASA Astrophysics Data System (ADS)

    Friedberg, R.; Hohenberg, P. C.

    2018-03-01

    This paper presents a minimal formulation of nonrelativistic quantum mechanics, by which is meant a formulation which describes the theory in a succinct, self-contained, clear, unambiguous and of course correct manner. The bulk of the presentation is the so-called "microscopic theory", applicable to any closed system S of arbitrary size N, using concepts referring to S alone, without resort to external apparatus or external agents. An example of a similar minimal microscopic theory is the standard formulation of classical mechanics, which serves as the template for a minimal quantum theory. The only substantive assumption required is the replacement of the classical Euclidean phase space by Hilbert space in the quantum case, with the attendant all-important phenomenon of quantum incompatibility. Two fundamental theorems of Hilbert space, the Kochen-Specker-Bell theorem and Gleason's theorem, then lead inevitably to the well-known Born probability rule. For both classical and quantum mechanics, questions of physical implementation and experimental verification of the predictions of the theories are the domain of the macroscopic theory, which is argued to be a special case or application of the more general microscopic theory.

  3. Open quantum systems and error correction

    NASA Astrophysics Data System (ADS)

    Shabani Barzegar, Alireza

    Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC) that applies to any linear map, in particular maps that are not completely positive (CP). This is a complementary to the second chapter which is published in [Shabani and Lidar, 2007]. In the last chapter 7 before the conclusion, a formulation for evaluating the performance of quantum error correcting codes for a general error model is presented, also published in [Shabani, 2005]. In this formulation, the correlation between errors is quantified by a Hamiltonian description of the noise process. In particular, we consider Calderbank-Shor-Steane codes and observe a better performance in the presence of correlated errors depending on the timing of the error recovery.

  4. Tensor network states in time-bin quantum optics

    NASA Astrophysics Data System (ADS)

    Lubasch, Michael; Valido, Antonio A.; Renema, Jelmer J.; Kolthammer, W. Steven; Jaksch, Dieter; Kim, M. S.; Walmsley, Ian; García-Patrón, Raúl

    2018-06-01

    The current shift in the quantum optics community towards experiments with many modes and photons necessitates new classical simulation techniques that efficiently encode many-body quantum correlations and go beyond the usual phase-space formulation. To address this pressing demand we formulate linear quantum optics in the language of tensor network states. We extensively analyze the quantum and classical correlations of time-bin interference in a single fiber loop. We then generalize our results to more complex time-bin quantum setups and identify different classes of architectures for high-complexity and low-overhead boson sampling experiments.

  5. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  6. Generalized Weyl-Wigner map and Vey quantum mechanics

    NASA Astrophysics Data System (ADS)

    Dias, Nuno Costa; Prata, João Nuno

    2001-12-01

    The Weyl-Wigner map yields the entire structure of Moyal quantum mechanics directly from the standard operator formulation. The covariant generalization of Moyal theory, also known as Vey quantum mechanics, was presented in the literature many years ago. However, a derivation of the formalism directly from standard operator quantum mechanics, clarifying the relation between the two formulations, is still missing. In this article we present a covariant generalization of the Weyl order prescription and of the Weyl-Wigner map and use them to derive Vey quantum mechanics directly from the standard operator formulation. The procedure displays some interesting features: it yields all the key ingredients and provides a more straightforward interpretation of the Vey theory including a direct implementation of unitary operator transformations as phase space coordinate transformations in the Vey idiom. These features are illustrated through a simple example.

  7. The Stratonovich formulation of quantum feedback network rules

    NASA Astrophysics Data System (ADS)

    Gough, John E.

    2016-12-01

    We express the rules for forming quantum feedback networks using the Stratonovich form of quantum stochastic calculus rather than the Itō or SLH (J. E. Gough and M. R. James, "Quantum feedback networks: Hamiltonian formulation," Commun. Math. Phys. 287, 1109 (2009), J. E. Gough and M. R. James, "The Series product and its application to quantum feedforward and feedback networks," IEEE Trans. Autom. Control 54, 2530 (2009)) form. Remarkably the feedback reduction rule implies that we obtain the Schur complement of the matrix of Stratonovich coupling operators where we short out the internal input/output coefficients.

  8. Loop quantum cosmology and singularities.

    PubMed

    Struyve, Ward

    2017-08-15

    Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.

  9. Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Williams Colin P.

    1999-01-01

    Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.

  10. The geometrical structure of quantum theory as a natural generalization of information geometry

    NASA Astrophysics Data System (ADS)

    Reginatto, Marcel

    2015-01-01

    Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed using geometrical quantities. This suggests that quantum theory has its roots in information geometry.

  11. Research on the Development of Green Finance in Shenzhen to Boost the Carbon Trading Market

    NASA Astrophysics Data System (ADS)

    Zhou, Jiping; Xiong, Siqin; Zhou, Yucheng; Zou, Zijian; Ma, Xiaoming

    2017-08-01

    This paper analyses the current development situations of Shenzhen carbon trading market and China’s green finance, and makes the policy recommendations for promoting the carbon trading market by developing green finance in Shenzhen. Shenzhen should take the lead in driving the localized application of green principle, and formulate Shenzhen green bond guidelines ASAP, to promote carbon trading associated enterprises to finance by using green bonds; it shall work to lower the threshold for financial institutions to participate in carbon trading market, and explore development of carbon derivatives.

  12. A Gleason-Type Theorem for Any Dimension Based on a Gambling Formulation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2017-07-01

    Based on a gambling formulation of quantum mechanics, we derive a Gleason-type theorem that holds for any dimension n of a quantum system, and in particular for n=2. The theorem states that the only logically consistent probability assignments are exactly the ones that are definable as the trace of the product of a projector and a density matrix operator. In addition, we detail the reason why dispersion-free probabilities are actually not valid, or rational, probabilities for quantum mechanics, and hence should be excluded from consideration.

  13. Open Quantum Walks and Dissipative Quantum Computing

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco

    2012-02-01

    Open Quantum Walks (OQWs) have been recently introduced as quantum Markov chains on graphs [S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy, E-print: http://hal.archives-ouvertes.fr/hal-00581553/fr/]. The formulation of the OQWs is exclusively based upon the non-unitary dynamics induced by the environment. It will be shown that OQWs are a very useful tool for the formulation of dissipative quantum computing and quantum state preparation. In particular, it will be shown how to implement single qubit gates and the CNOT gate as OQWs on fully connected graphs. Also, OQWS make possible the dissipative quantum state preparation of arbitrary single qubit states and of all two-qubit Bell states. Finally, it will be shown how to reformulate efficiently a discrete time version of dissipative quantum computing in the language of OQWs.

  14. Portfolios of quantum algorithms.

    PubMed

    Maurer, S M; Hogg, T; Huberman, B A

    2001-12-17

    Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can find the solution of hard problems only probabilistically. Thus the efficiency of the algorithms has to be characterized by both the expected time to completion and the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-satisfiability.

  15. The geometrical structure of quantum theory as a natural generalization of information geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reginatto, Marcel

    2015-01-13

    Quantum mechanics has a rich geometrical structure which allows for a geometrical formulation of the theory. This formalism was introduced by Kibble and later developed by a number of other authors. The usual approach has been to start from the standard description of quantum mechanics and identify the relevant geometrical features that can be used for the reformulation of the theory. Here this procedure is inverted: the geometrical structure of quantum theory is derived from information geometry, a geometrical structure that may be considered more fundamental, and the Hilbert space of the standard formulation of quantum mechanics is constructed usingmore » geometrical quantities. This suggests that quantum theory has its roots in information geometry.« less

  16. Exploring the propagation of relativistic quantum wavepackets in the trajectory-based formulation

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Ming; Poirier, Bill

    2016-03-01

    In the context of nonrelativistic quantum mechanics, Gaussian wavepacket solutions of the time-dependent Schrödinger equation provide useful physical insight. This is not the case for relativistic quantum mechanics, however, for which both the Klein-Gordon and Dirac wave equations result in strange and counterintuitive wavepacket behaviors, even for free-particle Gaussians. These behaviors include zitterbewegung and other interference effects. As a potential remedy, this paper explores a new trajectory-based formulation of quantum mechanics, in which the wavefunction plays no role [Phys. Rev. X, 4, 040002 (2014)]. Quantum states are represented as ensembles of trajectories, whose mutual interaction is the source of all quantum effects observed in nature—suggesting a “many interacting worlds” interpretation. It is shown that the relativistic generalization of the trajectory-based formulation results in well-behaved free-particle Gaussian wavepacket solutions. In particular, probability density is positive and well-localized everywhere, and its spatial integral is conserved over time—in any inertial frame. Finally, the ensemble-averaged wavepacket motion is along a straight line path through spacetime. In this manner, the pathologies of the wave-based relativistic quantum theory, as applied to wavepacket propagation, are avoided.

  17. Quantum kinetic expansion in the spin-boson model: Matrix formulation and system-bath factorized initial state.

    PubMed

    Gong, Zhihao; Tang, Zhoufei; Wang, Haobin; Wu, Jianlan

    2017-12-28

    Within the framework of the hierarchy equation of motion (HEOM), the quantum kinetic expansion (QKE) method of the spin-boson model is reformulated in the matrix representation. The equivalence between the two formulations (HEOM matrices and quantum operators) is numerically verified from the calculation of the time-integrated QKE rates. The matrix formulation of the QKE is extended to the system-bath factorized initial state. Following a one-to-one mapping between HEOM matrices and quantum operators, a quantum kinetic equation is rederived. The rate kernel is modified by an extra term following a systematic expansion over the site-site coupling. This modified QKE is numerically tested for its reliability by calculating the time-integrated rate and non-Markovian population kinetics. For an intermediate-to-strong dissipation strength and a large site-site coupling, the population transfer is found to be significantly different when the initial condition is changed from the local equilibrium to system-bath factorized state.

  18. A signed particle formulation of non-relativistic quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg

    2015-09-15

    A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussedmore » and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.« less

  19. Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benatti, Fabio, E-mail: benatti@ts.infn.it; Oskouei, Samad Khabbazi, E-mail: kh.oskuei@ut.ac.ir; Deh Abad, Ahmad Shafiei, E-mail: shafiei@khayam.ut.ac.ir

    We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.

  20. Quantum machine learning for quantum anomaly detection

    NASA Astrophysics Data System (ADS)

    Liu, Nana; Rebentrost, Patrick

    2018-04-01

    Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.

  1. [Sources of finance for provincial occupational health services. Theory and practice].

    PubMed

    Rydlewska-Liszkowska, I; Jugo, B

    1999-01-01

    The financing of occupational health services (OHS) at the provincial level is an important issue in view of the transformation process going on not only in OHS but also in the overall health care system in Poland. New principles of financing must be now based on the cost and effects analyses. Thus, the question arises on how to provide financial means adequate to needs of health care institutions resulting from their tasks and responsibilities. The gaps existing in the information system have encouraged us to examine the situation in regard to the structure of financing and internal allocation of financial means. The objectives were formulated as follows: to characterise the sources of financial means received by provincial OHS centres; to analyse the structure of financial means derived from various sources, taking into account forms of financial administration, using the data provided by selected centres; to define the relation between the financial means being at the disposal of OHS centres and the scope of their activities; The information on the financing system was collected using a questionnaire mailed to directors of selected OHS centres. The information collected proved to be a valuable source of knowledge on the above mentioned issues as well as on how far the new system of financing associated with a new form of financial administration--an independent public health institution--has already been implemented. The studies indicated that at the present stage of the OHS system transformation it is very difficult to formulate conclusions on the financing administration in provincial OHS centres.

  2. Quantum estimation of parameters of classical spacetimes

    NASA Astrophysics Data System (ADS)

    Downes, T. G.; van Meter, J. R.; Knill, E.; Milburn, G. J.; Caves, C. M.

    2017-11-01

    We describe a quantum limit to the measurement of classical spacetimes. Specifically, we formulate a quantum Cramér-Rao lower bound for estimating the single parameter in any one-parameter family of spacetime metrics. We employ the locally covariant formulation of quantum field theory in curved spacetime, which allows for a manifestly background-independent derivation. The result is an uncertainty relation that applies to all globally hyperbolic spacetimes. Among other examples, we apply our method to the detection of gravitational waves with the electromagnetic field as a probe, as in laser-interferometric gravitational-wave detectors. Other applications are discussed, from terrestrial gravimetry to cosmology.

  3. A Formulation of Quantum Field Theory Realizing a Sea of Interacting Dirac Particles

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2011-08-01

    In this survey article, we explain a few ideas behind the fermionic projector approach and summarize recent results which clarify the connection to quantum field theory. The fermionic projector is introduced, which describes the physical system by a collection of Dirac states, including the states of the Dirac sea. Formulating the interaction by an action principle for the fermionic projector, we obtain a consistent description of interacting quantum fields which reproduces the results of perturbative quantum field theory. We find a new mechanism for the generation of boson masses and obtain small corrections to the field equations which violate causality.

  4. Equity Measurements in School Finance: Indiana, Iowa and Illinois.

    ERIC Educational Resources Information Center

    Hickrod, G. Alan; And Others

    Empirical studies of the school finance reforms of the 1970s have not indicated that equity has been satisfactorily achieved in all cases. The methods of equity analysis used and the data bases analyzed in those studies have differed enough to prevent ready comparison or the formulation of overall assessments of the effects of school finance…

  5. Systems Division Report. The New Jersey Education Data System. SDR.76.45.

    ERIC Educational Resources Information Center

    Jargowsky, Peter P.; Moskowitz, Jay

    This data system was formulated to analyze school finance issues in New Jersey. It is intended for simulation and analysis of the effects of school finance reform. The system has three components. The first is the data base containing such information as district enrollment, property valuation, or financial information. The second is the aid…

  6. Quantum histories without contrary inferences

    NASA Astrophysics Data System (ADS)

    Losada, Marcelo; Laura, Roberto

    2014-12-01

    In the consistent histories formulation of quantum theory it was shown that it is possible to retrodict contrary properties. We show that this problem do not appear in our formalism of generalized contexts for quantum histories.

  7. Quantum Foundations of Quantum Information

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert

    2009-03-01

    The main foundational issue for quantum information is: What is quantum information about? What does it refer to? Classical information typically refers to physical properties, and since classical is a subset of quantum information (assuming the world is quantum mechanical), quantum information should--and, it will be argued, does--refer to quantum physical properties represented by projectors on appropriate subspaces of a quantum Hilbert space. All sorts of microscopic and macroscopic properties, not just measurement outcomes, can be represented in this way, and are thus a proper subject of quantum information. The Stern-Gerlach experiment illustrates this. When properties are compatible, which is to say their projectors commute, Shannon's classical information theory based on statistical correlations extends without difficulty or change to the quantum case. When projectors do not commute, giving rise to characteristic quantum effects, a foundation for the subject can still be constructed by replacing the ``measurement and wave-function collapse'' found in textbooks--an efficient calculational tool, but one giving rise to numerous conceptual difficulties--with a fully consistent and paradox free stochastic formulation of standard quantum mechanics. This formulation is particularly helpful in that it contains no nonlocal superluminal influences; the reason the latter carry no information is that they do not exist.

  8. On the geometrization of quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavernelli, Ivano, E-mail: ita@zurich.ibm.com

    Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave–particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie–Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is inducedmore » by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space–time, as it is the case for gravitation in the general relativity.« less

  9. Formulation of the relativistic quantum Hall effect and parity anomaly

    NASA Astrophysics Data System (ADS)

    Yonaga, Kouki; Hasebe, Kazuki; Shibata, Naokazu

    2016-06-01

    We present a relativistic formulation of the quantum Hall effect on Haldane sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term. We clarify particular features of the relativistic quantum Hall states with the use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to the relativistic quantum Hall states are investigated in detail. The mass term acts as an interpolating parameter between the relativistic and nonrelativistic quantum Hall effects. It is pointed out that the mass term unevenly affects the many-body physics of the positive and negative Landau levels as a manifestation of the "parity anomaly." In particular, we explicitly demonstrate the instability of the Laughlin state of the positive first relativistic Landau level with the reduction of the charge gap.

  10. The Pedagogy of Education Policy Formulation: Working from Policy Assets

    ERIC Educational Resources Information Center

    Sack, Richard; Marope, Mmantsetsa

    2007-01-01

    This article explores a "pedagogical" approach to education policy formulation in developing countries. This constitutes a process that shows promise in promoting the "ownership" necessary for sustainable policies and programs, especially when they rely on external financing. Based on case studies from 26 countries focused on "what works," the…

  11. Econophysics: from Game Theory and Information Theory to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Jimenez, Edward; Moya, Douglas

    2005-03-01

    Rationality is the universal invariant among human behavior, universe physical laws and ordered and complex biological systems. Econophysics isboth the use of physical concepts in Finance and Economics, and the use of Information Economics in Physics. In special, we will show that it is possible to obtain the Quantum Mechanics principles using Information and Game Theory.

  12. Qubit models of weak continuous measurements: markovian conditional and open-system dynamics

    NASA Astrophysics Data System (ADS)

    Gross, Jonathan A.; Caves, Carlton M.; Milburn, Gerard J.; Combes, Joshua

    2018-04-01

    In this paper we approach the theory of continuous measurements and the associated unconditional and conditional (stochastic) master equations from the perspective of quantum information and quantum computing. We do so by showing how the continuous-time evolution of these master equations arises from discretizing in time the interaction between a system and a probe field and by formulating quantum-circuit diagrams for the discretized evolution. We then reformulate this interaction by replacing the probe field with a bath of qubits, one for each discretized time segment, reproducing all of the standard quantum-optical master equations. This provides an economical formulation of the theory, highlighting its fundamental underlying assumptions.

  13. Fritz London and the scale of quantum mechanisms

    NASA Astrophysics Data System (ADS)

    Monaldi, Daniela

    2017-11-01

    Fritz London's seminal idea of ;quantum mechanisms of macroscopic scale;, first articulated in 1946, was the unanticipated result of two decades of research, during which London pursued quantum-mechanical explanations of various kinds of systems of particles at different scales. He started at the microphysical scale with the hydrogen molecule, generalized his approach to chemical bonds and intermolecular forces, then turned to macrophysical systems like superconductors and superfluid helium. Along this path, he formulated a set of concepts-the quantum mechanism of exchange, the rigidity of the wave function, the role of quantum statistics in multi-particle systems, the possibility of order in momentum space-that eventually coalesced into a new conception of systems of equal particles. In particular, it was London's clarification of Bose-Einstein condensation that enabled him to formulate the notion of superfluids, and led him to the recognition that quantum mechanics was not, as it was commonly assumed, relevant exclusively as a micromechanics.

  14. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-02-01

    Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.

  15. A cellular automaton for the signed particle formulation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sellier, J. M.; Kapanova, K. G.; Dimov, I.

    2017-02-01

    Recently, a new formulation of quantum mechanics, based on the concept of signed particles, has been suggested. In this paper, we introduce a cellular automaton which mimics the dynamics of quantum objects in the phase-space in a time-dependent fashion. This is twofold: it provides a simplified and accessible language to non-physicists who wants to simulate quantum mechanical systems, at the same time it enables a different way to explore the laws of Physics. Moreover, it opens the way towards hybrid simulations of quantum systems by combining full quantum models with cellular automata when the former fail. In order to show the validity of the suggested cellular automaton and its combination with the signed particle formalism, several numerical experiments are performed, showing very promising results. Being this article a preliminary study on quantum simulations in phase-space by means of cellular automata, some conclusions are drawn about the encouraging results obtained so far and the possible future developments.

  16. Operator Formulation of Classical Mechanics.

    ERIC Educational Resources Information Center

    Cohn, Jack

    1980-01-01

    Discusses the construction of an operator formulation of classical mechanics which is directly concerned with wave packets in configuration space and is more similar to that of convential quantum theory than other extant operator formulations of classical mechanics. (Author/HM)

  17. Compatible quantum theory

    NASA Astrophysics Data System (ADS)

    Friedberg, R.; Hohenberg, P. C.

    2014-09-01

    Formulations of quantum mechanics (QM) can be characterized as realistic, operationalist, or a combination of the two. In this paper a realistic theory is defined as describing a closed system entirely by means of entities and concepts pertaining to the system. An operationalist theory, on the other hand, requires in addition entities external to the system. A realistic formulation comprises an ontology, the set of (mathematical) entities that describe the system, and assertions, the set of correct statements (predictions) the theory makes about the objects in the ontology. Classical mechanics is the prime example of a realistic physical theory. A straightforward generalization of classical mechanics to QM is hampered by the inconsistency of quantum properties with classical logic, a circumstance that was noted many years ago by Birkhoff and von Neumann. The present realistic formulation of the histories approach originally introduced by Griffiths, which we call ‘compatible quantum theory (CQT)’, consists of a ‘microscopic’ part (MIQM), which applies to a closed quantum system of any size, and a ‘macroscopic’ part (MAQM), which requires the participation of a large (ideally, an infinite) system. The first (MIQM) can be fully formulated based solely on the assumption of a Hilbert space ontology and the noncontextuality of probability values, relying in an essential way on Gleason's theorem and on an application to dynamics due in large part to Nistico. Thus, the present formulation, in contrast to earlier ones, derives the Born probability formulas and the consistency (decoherence) conditions for frameworks. The microscopic theory does not, however, possess a unique corpus of assertions, but rather a multiplicity of contextual truths (‘c-truths’), each one associated with a different framework. This circumstance leads us to consider the microscopic theory to be physically indeterminate and therefore incomplete, though logically coherent. The completion of the theory requires a macroscopic mechanism for selecting a physical framework, which is part of the macroscopic theory (MAQM). The selection of a physical framework involves the breaking of the microscopic ‘framework symmetry’, which can proceed either phenomenologically as in the standard quantum measurement theory, or more fundamentally by considering the quantum system under study to be a subsystem of a macroscopic quantum system. The decoherent histories formulation of Gell-Mann and Hartle, as well as that of Omnès, are theories of this fundamental type, where the physical framework is selected by a coarse-graining procedure in which the physical phenomenon of decoherence plays an essential role. Various well-known interpretations of QM are described from the perspective of CQT. Detailed definitions and proofs are presented in the appendices.

  18. Correlations in quantum thermodynamics: Heat, work, and entropy production

    PubMed Central

    Alipour, S.; Benatti, F.; Bakhshinezhad, F.; Afsary, M.; Marcantoni, S.; Rezakhani, A. T.

    2016-01-01

    We provide a characterization of energy in the form of exchanged heat and work between two interacting constituents of a closed, bipartite, correlated quantum system. By defining a binding energy we derive a consistent quantum formulation of the first law of thermodynamics, in which the role of correlations becomes evident, and this formulation reduces to the standard classical picture in relevant systems. We next discuss the emergence of the second law of thermodynamics under certain—but fairly general—conditions such as the Markovian assumption. We illustrate the role of correlations and interactions in thermodynamics through two examples. PMID:27767124

  19. The action uncertainty principle and quantum gravity

    NASA Astrophysics Data System (ADS)

    Mensky, Michael B.

    1992-02-01

    Results of the path-integral approach to the quantum theory of continuous measurements have been formulated in a preceding paper in the form of an inequality of the type of the uncertainty principle. The new inequality was called the action uncertainty principle, AUP. It was shown that the AUP allows one to find in a simple what outputs of the continuous measurements will occur with high probability. Here a more simple form of the AUP will be formulated, δ S≳ħ. When applied to quantum gravity, it leads in a very simple way to the Rosenfeld inequality for measurability of the average curvature.

  20. Quantum electronic stress: density-functional-theory formulation and physical manifestation.

    PubMed

    Hu, Hao; Liu, Miao; Wang, Z F; Zhu, Junyi; Wu, Dangxin; Ding, Hepeng; Liu, Zheng; Liu, Feng

    2012-08-03

    The concept of quantum electronic stress (QES) is introduced and formulated within density functional theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. A formal expression of QES (σ(QE)) is derived in relation to deformation potential of electronic states (Ξ) and variation of electron density (Δn), σ(QE) = ΞΔn as a quantum analog of classical Hooke's law. Two distinct QES manifestations are demonstrated quantitatively by density functional theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed to underlie its importance.

  1. [Contribution of Chilean research to the formulation of national clinical guidelines].

    PubMed

    Núñez, Paulina F; Torres, Adrián C; Armas, Rodolfo M

    2014-12-01

    In Chile, 80 diseases were included in a health care system called Health Care Guarantees (GES) and clinical guidelines were elaborated for their management. To assess the scientific background of guidelines and if they were based on research financed by the Chilean National Commission for Science and Technology. The references of the 82 guidelines developed for 80 diseases were reviewed, registering their number, authors, country of origin and funding source. The guidelines had a total of 6,604 references. Of these, only 185 were Chilean (2.8%) and five (0.08%) originated from research financed by the National Commission for Science and Technology. The contribution of research funded by national agencies to the formulation of clinical guidelines is minimal.

  2. Efficiency and formalism of quantum games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C.F.; Johnson, Neil F.

    We show that quantum games are more efficient than classical games and provide a saturated upper bound for this efficiency. We also demonstrate that the set of finite classical games is a strict subset of the set of finite quantum games. Our analysis is based on a rigorous formulation of quantum games, from which quantum versions of the minimax theorem and the Nash equilibrium theorem can be deduced.

  3. Quantum mechanics in non-inertial reference frames: Time-dependent rotations and loop prolongations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H., E-mail: william-klink@uiowa.edu; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2013-09-15

    This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle asmore » well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is presented. •The Galilei group is generalized to infinite dimensional Galilean line group. •Loop prolongations of Galilean line group contain central extensions of Galilei group. •Unitary representations of the loops are constructed. •These representations lead to terms in the Hamiltonian corresponding to fictitious forces, including centrifugal and Coriolis forces.« less

  4. Super-Group Field Cosmology in Batalin-Vilkovisky Formulation

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker

    2016-09-01

    In this paper we study the third quantized super-group field cosmology, a model in multiverse scenario, in Batalin-Vilkovisky (BV) formulation. Further, we propose the superfield/super-antifield dependent BRST symmetry transformations. Within this formulation we establish connection between the two different solutions of the quantum master equation within the BV formulation.

  5. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  6. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. II. Thermal correlation functions.

    PubMed

    Liu, Jian; Miller, William H

    2011-03-14

    We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.

  7. Quantum Jarzynski equality of measurement-based work extraction

    NASA Astrophysics Data System (ADS)

    Morikuni, Yohei; Tajima, Hiroyasu; Hatano, Naomichi

    2017-03-01

    Many studies of quantum-size heat engines assume that the dynamics of an internal system is unitary and that the extracted work is equal to the energy loss of the internal system. Both assumptions, however, should be under scrutiny. In the present paper, we analyze quantum-scale heat engines, employing the measurement-based formulation of the work extraction recently introduced by Hayashi and Tajima [M. Hayashi and H. Tajima, arXiv:1504.06150]. We first demonstrate the inappropriateness of the unitary time evolution of the internal system (namely, the first assumption above) using a simple two-level system; we show that the variance of the energy transferred to an external system diverges when the dynamics of the internal system is approximated to a unitary time evolution. Second, we derive the quantum Jarzynski equality based on the formulation of Hayashi and Tajima as a relation for the work measured by an external macroscopic apparatus. The right-hand side of the equality reduces to unity for "natural" cyclic processes but fluctuates wildly for noncyclic ones, exceeding unity often. This fluctuation should be detectable in experiments and provide evidence for the present formulation.

  8. Quantum Jarzynski equality of measurement-based work extraction.

    PubMed

    Morikuni, Yohei; Tajima, Hiroyasu; Hatano, Naomichi

    2017-03-01

    Many studies of quantum-size heat engines assume that the dynamics of an internal system is unitary and that the extracted work is equal to the energy loss of the internal system. Both assumptions, however, should be under scrutiny. In the present paper, we analyze quantum-scale heat engines, employing the measurement-based formulation of the work extraction recently introduced by Hayashi and Tajima [M. Hayashi and H. Tajima, arXiv:1504.06150]. We first demonstrate the inappropriateness of the unitary time evolution of the internal system (namely, the first assumption above) using a simple two-level system; we show that the variance of the energy transferred to an external system diverges when the dynamics of the internal system is approximated to a unitary time evolution. Second, we derive the quantum Jarzynski equality based on the formulation of Hayashi and Tajima as a relation for the work measured by an external macroscopic apparatus. The right-hand side of the equality reduces to unity for "natural" cyclic processes but fluctuates wildly for noncyclic ones, exceeding unity often. This fluctuation should be detectable in experiments and provide evidence for the present formulation.

  9. On the role of self-adjointness in the continuum formulation of topological quantum phases

    NASA Astrophysics Data System (ADS)

    Tanhayi Ahari, Mostafa; Ortiz, Gerardo; Seradjeh, Babak

    2016-11-01

    Topological quantum phases of matter are characterized by an intimate relationship between the Hamiltonian dynamics away from the edges and the appearance of bound states localized at the edges of the system. Elucidating this correspondence in the continuum formulation of topological phases, even in the simplest case of a one-dimensional system, touches upon fundamental concepts and methods in quantum mechanics that are not commonly discussed in textbooks, in particular the self-adjoint extensions of a Hermitian operator. We show how such topological bound states can be derived in a prototypical one-dimensional system. Along the way, we provide a pedagogical exposition of the self-adjoint extension method as well as the role of symmetries in correctly formulating the continuum, field-theory description of topological matter with boundaries. Moreover, we show that self-adjoint extensions can be characterized generally in terms of a conserved local current associated with the self-adjoint operator.

  10. Quantum mechanics without potential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alhaidari, A. D., E-mail: haidari@sctp.org.sa; Ismail, M. E. H.

    2015-07-15

    In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which ismore » written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.« less

  11. Quantum electron-vibrational dynamics at finite temperature: Thermo field dynamics approach

    NASA Astrophysics Data System (ADS)

    Borrelli, Raffaele; Gelin, Maxim F.

    2016-12-01

    Quantum electron-vibrational dynamics in molecular systems at finite temperature is described using an approach based on the thermo field dynamics theory. This formulation treats temperature effects in the Hilbert space without introducing the Liouville space. A comparison with the theoretically equivalent density matrix formulation shows the key numerical advantages of the present approach. The solution of thermo field dynamics equations with a novel technique for the propagation of tensor trains (matrix product states) is discussed. Numerical applications to model spin-boson systems show that the present approach is a promising tool for the description of quantum dynamics of complex molecular systems at finite temperature.

  12. Quantum Stress: Density Functional Theory Formulation and Physical Manifestation

    NASA Astrophysics Data System (ADS)

    Hu, Hao; Liu, Feng

    2012-02-01

    The concept of ``quantum stress (QS)'' is introduced and formulated within density functional theory (DFT), to underlie extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. An explicit expression of QS (σ^Q) is derived in relation to the deformation potential of electronic states (ξ) and the variation of electron density (δn), σ^Q=ξ(δn), as a quantum analog of classical Hook's law. Two distinct QS manifestations are demonstrated quantitatively by DFT calculations: (1) in the form of bulk stress induced by charge carriers; and (2) in the form of surface stress induced by quantum confinement. QS has broad implications in physical phenomena and technological applications that are based on coupling of electronic structure with lattice strain.

  13. Quantum Computing and Second Quantization

    DOE PAGES

    Makaruk, Hanna Ewa

    2017-02-10

    Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.

  14. Quantum Computing and Second Quantization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makaruk, Hanna Ewa

    Quantum computers are by their nature many particle quantum systems. Both the many-particle arrangement and being quantum are necessary for the existence of the entangled states, which are responsible for the parallelism of the quantum computers. Second quantization is a very important approximate method of describing such systems. This lecture will present the general idea of the second quantization, and discuss shortly some of the most important formulations of second quantization.

  15. Quantum mechanics in noninertial reference frames: Violations of the nonrelativistic equivalence principle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klink, W.H.; Wickramasekara, S., E-mail: wickrama@grinnell.edu; Department of Physics, Grinnell College, Grinnell, IA 50112

    2014-01-15

    In previous work we have developed a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group that includes transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as is the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. A special feature of these previously constructed representations is that they all respect the non-relativistic equivalence principle, wherein the fictitious forces associated with linear acceleration canmore » equivalently be described by gravitational forces. In this paper we exhibit a large class of cocycle representations of the Galilean line group that violate the equivalence principle. Nevertheless the classical mechanics analogue of these cocycle representations all respect the equivalence principle. -- Highlights: •A formulation of Galilean quantum mechanics in non-inertial reference frames is given. •The key concept is the Galilean line group, an infinite dimensional group. •A large class of general cocycle representations of the Galilean line group is constructed. •These representations show violations of the equivalence principle at the quantum level. •At the classical limit, no violations of the equivalence principle are detected.« less

  16. Special Relativity at the Quantum Scale

    PubMed Central

    Lam, Pui K.

    2014-01-01

    It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry). Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's “checker-board” trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1) the quantum version of the postulates of special relativity and (2) the appropriate quantum “coordinates”. This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point. PMID:25531675

  17. Special relativity at the quantum scale.

    PubMed

    Lam, Pui K

    2014-01-01

    It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry). Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's "checker-board" trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1) the quantum version of the postulates of special relativity and (2) the appropriate quantum "coordinates". This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point.

  18. Probing various formulations of macrorealism for unsharp quantum measurements

    NASA Astrophysics Data System (ADS)

    Kumari, Swati; Pan, A. K.

    2017-10-01

    Standard Leggett-Garg inequalities (SLGIs) were formulated for testing incompatibility between the classical world view of macrorealism and quantum mechanics. In recent times, various other formulations such as the Wigner form of Leggett-Garg inequalities (WLGIs), entropic Leggett-Garg inequalities (ELGIs), and the no-signaling-in-time (NSIT) condition have also been proposed. It was also recently argued that n o set of SLGIs can provide the necessary and sufficient conditions for macrorealism, but a suitable conjunction of NSIT conditions provides the same. In this paper, we first provide a comparative study of the various formulations of Leggett-Garg inequalities (LGIs) for testing macrorealism pertaining to the two different unsharp measurements. While the violations of WLGIs are more robust than SLGIs and ELGIs for spin positive operator-valued measures (POVMs), here we demonstrate that for the case of biased POVMs the quantum violations of both SLGIs and ELGIs provide the same robustness as WLGIs. Importantly, the violations of all formulations of LGIs can be achieved for any nonzero value of unsharpness parameter. We have also studied the connection between LGIs and NSIT conditions. Further, we investigate the role of the joint measurability of the POVMs in the violation of LGIs and find that there is n o generic connection.

  19. Relating quantum coherence and correlations with entropy-based measures.

    PubMed

    Wang, Xiao-Li; Yue, Qiu-Ling; Yu, Chao-Hua; Gao, Fei; Qin, Su-Juan

    2017-09-21

    Quantum coherence and quantum correlations are important quantum resources for quantum computation and quantum information. In this paper, using entropy-based measures, we investigate the relationships between quantum correlated coherence, which is the coherence between subsystems, and two main kinds of quantum correlations as defined by quantum discord as well as quantum entanglement. In particular, we show that quantum discord and quantum entanglement can be well characterized by quantum correlated coherence. Moreover, we prove that the entanglement measure formulated by quantum correlated coherence is lower and upper bounded by the relative entropy of entanglement and the entanglement of formation, respectively, and equal to the relative entropy of entanglement for all the maximally correlated states.

  20. Advanced Concepts in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George

    2014-11-01

    Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.

  1. Quantum optics. Gravity meets quantum physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Bernhard W.

    2015-02-27

    Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.

  2. Quantum paradoxes, entanglement and their explanation on the basis of quantization of fields

    NASA Astrophysics Data System (ADS)

    Melkikh, A. V.

    2017-01-01

    Quantum entanglement is discussed as a consequence of the quantization of fields. The inclusion of quantum fields self-consistently explains some quantum paradoxes (EPR and Hardy’s paradox). The definition of entanglement was introduced, which depends on the maximum energy of the interaction of particles. The destruction of entanglement is caused by the creation and annihilation of particles. On this basis, an algorithm for quantum particle evolution was formulated.

  3. Operational formulation of time reversal in quantum theory

    NASA Astrophysics Data System (ADS)

    Oreshkov, Ognyan; Cerf, Nicolas J.

    2015-10-01

    The symmetry of quantum theory under time reversal has long been a subject of controversy because the transition probabilities given by Born’s rule do not apply backward in time. Here, we resolve this problem within a rigorous operational probabilistic framework. We argue that reconciling time reversal with the probabilistic rules of the theory requires a notion of operation that permits realizations through both pre- and post-selection. We develop the generalized formulation of quantum theory that stems from this approach and give a precise definition of time-reversal symmetry, emphasizing a previously overlooked distinction between states and effects. We prove an analogue of Wigner’s theorem, which characterizes all allowed symmetry transformations in this operationally time-symmetric quantum theory. Remarkably, we find larger classes of symmetry transformations than previously assumed, suggesting a possible direction in the search for extensions of known physics.

  4. Quantum probability and quantum decision-making.

    PubMed

    Yukalov, V I; Sornette, D

    2016-01-13

    A rigorous general definition of quantum probability is given, which is valid not only for elementary events but also for composite events, for operationally testable measurements as well as for inconclusive measurements, and also for non-commuting observables in addition to commutative observables. Our proposed definition of quantum probability makes it possible to describe quantum measurements and quantum decision-making on the same common mathematical footing. Conditions are formulated for the case when quantum decision theory reduces to its classical counterpart and for the situation where the use of quantum decision theory is necessary. © 2015 The Author(s).

  5. QIPS: quantum information and quantum physics in space

    NASA Astrophysics Data System (ADS)

    Schmitt-Manderbach, Tobias; Scheidl, Thomas; Ursin, Rupert; Tiefenbacher, Felix; Weier, Henning; Fürst, Martin; Jennewein, T.; Perdigues, J.; Sodnik, Z.; Rarity, J.; Zeilinger, Anton; Weinfurter, Harald

    2017-11-01

    The aim of the QIPS project (financed by ESA) is to explore quantum phenomena and to demonstrate quantum communication over long distances. Based on the current state-of-the-art a first study investigating the feasibility of space based quantum communication has to establish goals for mid-term and long-term missions, but also has to test the feasibility of key issues in a long distance ground-to-ground experiment. We have therefore designed a proof-of-concept demonstration for establishing single photon links over a distance of 144 km between the Canary Islands of La Palma and Tenerife to evaluate main limitations for future space experiments. Here we report on the progress of this project and present first measurements of crucial parameters of the optical free space link.

  6. The criterion for time symmetry of probabilistic theories and the reversibility of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Holster, A. T.

    2003-10-01

    Physicists routinely claim that the fundamental laws of physics are 'time symmetric' or 'time reversal invariant' or 'reversible'. In particular, it is claimed that the theory of quantum mechanics is time symmetric. But it is shown in this paper that the orthodox analysis suffers from a fatal conceptual error, because the logical criterion for judging the time symmetry of probabilistic theories has been incorrectly formulated. The correct criterion requires symmetry between future-directed laws and past-directed laws. This criterion is formulated and proved in detail. The orthodox claim that quantum mechanics is reversible is re-evaluated. The property demonstrated in the orthodox analysis is shown to be quite distinct from time reversal invariance. The view of Satosi Watanabe that quantum mechanics is time asymmetric is verified, as well as his view that this feature does not merely show a de facto or 'contingent' asymmetry, as commonly supposed, but implies a genuine failure of time reversal invariance of the laws of quantum mechanics. The laws of quantum mechanics would be incompatible with a time-reversed version of our universe.

  7. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations.

    PubMed

    Galán-Freyle, Nataly J; Pacheco-Londoño, Leonardo C; Román-Ospino, Andrés D; Hernandez-Rivera, Samuel P

    2016-09-01

    Quantum cascade laser spectroscopy was used to quantify active pharmaceutical ingredient content in a model formulation. The analyses were conducted in non-contact mode by mid-infrared diffuse reflectance. Measurements were carried out at a distance of 15 cm, covering the spectral range 1000-1600 cm(-1) Calibrations were generated by applying multivariate analysis using partial least squares models. Among the figures of merit of the proposed methodology are the high analytical sensitivity equivalent to 0.05% active pharmaceutical ingredient in the formulation, high repeatability (2.7%), high reproducibility (5.4%), and low limit of detection (1%). The relatively high power of the quantum-cascade-laser-based spectroscopic system resulted in the design of detection and quantification methodologies for pharmaceutical applications with high accuracy and precision that are comparable to those of methodologies based on near-infrared spectroscopy, attenuated total reflection mid-infrared Fourier transform infrared spectroscopy, and Raman spectroscopy. © The Author(s) 2016.

  8. Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2; Point form relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Klink, William H.; Schweiger, Wolfgang

    2018-03-01

    This book covers relativistic quantum theory from the point of view of a particle theory, based on the irreducible representations of the Poincaré group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; this book develops what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A chapter is devoted to applications of point form quantum mechanics to nuclear physics.

  9. Simulation of quantum dynamics based on the quantum stochastic differential equation.

    PubMed

    Li, Ming

    2013-01-01

    The quantum stochastic differential equation derived from the Lindblad form quantum master equation is investigated. The general formulation in terms of environment operators representing the quantum state diffusion is given. The numerical simulation algorithm of stochastic process of direct photodetection of a driven two-level system for the predictions of the dynamical behavior is proposed. The effectiveness and superiority of the algorithm are verified by the performance analysis of the accuracy and the computational cost in comparison with the classical Runge-Kutta algorithm.

  10. Conditions for quantum interference in cognitive sciences.

    PubMed

    Yukalov, Vyacheslav I; Sornette, Didier

    2014-01-01

    We present a general classification of the conditions under which cognitive science, concerned, e.g. with decision making, requires the use of quantum theoretical notions. The analysis is done in the frame of the mathematical approach based on the theory of quantum measurements. We stress that quantum effects in cognition can arise only when decisions are made under uncertainty. Conditions for the appearance of quantum interference in cognitive sciences and the conditions when interference cannot arise are formulated. Copyright © 2013 Cognitive Science Society, Inc.

  11. Quantum Theory of Jaynes' Principle, Bayes' Theorem, and Information

    NASA Astrophysics Data System (ADS)

    Haken, Hermann

    2014-12-01

    After a reminder of Jaynes' maximum entropy principle and of my quantum theoretical extension, I consider two coupled quantum systems A,B and formulate a quantum version of Bayes' theorem. The application of Feynman's disentangling theorem allows me to calculate the conditional density matrix ρ (A|B) , if system A is an oscillator (or a set of them), linearly coupled to an arbitrary quantum system B. Expectation values can simply be calculated by means of the normalization factor of ρ (A|B) that is derived.

  12. The Double-Well Potential in Quantum Mechanics: A Simple, Numerically Exact Formulation

    ERIC Educational Resources Information Center

    Jelic, V.; Marsiglio, F.

    2012-01-01

    The double-well potential is arguably one of the most important potentials in quantum mechanics, because the solution contains the notion of a state as a linear superposition of "classical" states, a concept which has become very important in quantum information theory. It is therefore desirable to have solutions to simple double-well potentials…

  13. A quantum Samaritan’s dilemma cellular automaton

    PubMed Central

    Situ, Haozhen

    2017-01-01

    The dynamics of a spatial quantum formulation of the iterated Samaritan’s dilemma game with variable entangling is studied in this work. The game is played in the cellular automata manner, i.e. with local and synchronous interaction. The game is assessed in fair and unfair contests, in noiseless scenarios and with disrupting quantum noise. PMID:28680654

  14. On the effect of quantum noise in a quantum prisoner's dilemma cellular automaton

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón

    2017-06-01

    The disrupting effect of quantum noise on the dynamics of a spatial quantum formulation of the iterated prisoner's dilemma game with variable entangling is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. It is concluded in this article that quantum noise induces in fair games the need for higher entanglement in order to make possible the emergence of the strategy pair ( Q, Q), which produces the same payoff of mutual cooperation. In unfair quantum versus classic player games, quantum noise delays the prevalence of the quantum player.

  15. Perturbative Out of Equilibrium Quantum Field Theory beyond the Gradient Approximation and Generalized Boltzmann Equation

    NASA Astrophysics Data System (ADS)

    Ozaki, H.

    2004-01-01

    Using the closed-time-path formalism, we construct perturbative frameworks, in terms of quasiparticle picture, for studying quasiuniform relativistic quantum field systems near equilibrium and non-equilibrium quasistationary systems. We employ the derivative expansion and take in up to the second-order term, i.e., one-order higher than the gradient approximation. After constructing self-energy resummed propagator, we formulated two kinds of mutually equivalent perturbative frameworks: The first one is formulated on the basis of the ``bare'' number density function, and the second one is formulated on the basis of ``physical'' number density function. In the course of construction of the second framework, the generalized Boltzmann equations directly come out, which describe the evolution of the system.

  16. Boundary conditions in tunneling via quantum hydrodynamics

    NASA Technical Reports Server (NTRS)

    Nassar, Antonio B.

    1993-01-01

    Via the hydrodynamical formulation of quantum mechanics, an approach to the problem of tunneling through sharp-edged potential barriers is developed. Above all, it is shown how more general boundary conditions follow from the continuity of mass, momentum, and energy.

  17. Quantum identities for the action

    NASA Astrophysics Data System (ADS)

    Gozzi, E.

    2018-04-01

    In this paper we derive various identities involving the action functional which enters the path-integral formulation of quantum mechanics. They provide some kind of generalisations of the Ehrenfest theorem giving correlations between powers of the action and its functional derivatives.

  18. Can quantum approaches benefit biology of decision making?

    PubMed

    Takahashi, Taiki

    2017-11-01

    Human decision making has recently been focused in the emerging fields of quantum decision theory and neuroeconomics. The former discipline utilizes mathematical formulations developed in quantum theory, while the latter combines behavioral economics and neurobiology. In this paper, the author speculates on possible future directions unifying the two approaches, by contrasting the roles of quantum theory in the birth of molecular biology of the gene. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Information flow and quantum cryptography using statistical fluctuations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Home, D.; Whitaker, M.A.B.

    2003-02-01

    A procedure is formulated, using the quantum teleportation arrangement, that communicates knowledge of an apparatus setting between the wings of the experiment, using statistical fluctuations in a sequence of measurement results. It requires an entangled state, and transmission of classical information totally unrelated to the apparatus setting actually communicated. Our procedure has conceptual interest, and has applications to quantum cryptography.

  20. Relativistic (2,3)-threshold quantum secret sharing

    NASA Astrophysics Data System (ADS)

    Ahmadi, Mehdi; Wu, Ya-Dong; Sanders, Barry C.

    2017-09-01

    In quantum secret sharing protocols, the usual presumption is that the distribution of quantum shares and players' collaboration are both performed inertially. Here we develop a quantum secret sharing protocol that relaxes these assumptions wherein we consider the effects due to the accelerating motion of the shares. Specifically, we solve the (2,3)-threshold continuous-variable quantum secret sharing in noninertial frames. To this aim, we formulate the effect of relativistic motion on the quantum field inside a cavity as a bosonic quantum Gaussian channel. We investigate how the fidelity of quantum secret sharing is affected by nonuniform motion of the quantum shares. Furthermore, we fully characterize the canonical form of the Gaussian channel, which can be utilized in quantum-information-processing protocols to include relativistic effects.

  1. Phenomenological implications of an alternative Hamiltonian constraint for quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Mikhail

    2005-11-15

    In this paper we review a model based on loop quantum cosmology that arises from a symmetry reduction of the self-dual Plebanski action. In this formulation the symmetry reduction leads to a very simple Hamiltonian constraint that can be quantized explicitly in the framework of loop quantum cosmology. We investigate the phenomenological implications of this model in the semiclassical regime and compare those with the known results of the standard Loop Quantum Cosmology.

  2. Disappearing Q operator

    NASA Astrophysics Data System (ADS)

    Jones, H. F.; Rivers, R. J.

    2007-01-01

    In the Schrödinger formulation of non-Hermitian quantum theories a positive-definite metric operator η≡e-Q must be introduced in order to ensure their probabilistic interpretation. This operator also gives an equivalent Hermitian theory, by means of a similarity transformation. If, however, quantum mechanics is formulated in terms of functional integrals, we show that the Q operator makes only a subliminal appearance and is not needed for the calculation of expectation values. Instead, the relation to the Hermitian theory is encoded via the external source j(t). These points are illustrated and amplified for two non-Hermitian quantum theories: the Swanson model, a non-Hermitian transform of the simple harmonic oscillator, and the wrong-sign quartic oscillator, which has been shown to be equivalent to a conventional asymmetric quartic oscillator.

  3. Disappearing Q operator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. F.; Rivers, R. J.

    In the Schroedinger formulation of non-Hermitian quantum theories a positive-definite metric operator {eta}{identical_to}e{sup -Q} must be introduced in order to ensure their probabilistic interpretation. This operator also gives an equivalent Hermitian theory, by means of a similarity transformation. If, however, quantum mechanics is formulated in terms of functional integrals, we show that the Q operator makes only a subliminal appearance and is not needed for the calculation of expectation values. Instead, the relation to the Hermitian theory is encoded via the external source j(t). These points are illustrated and amplified for two non-Hermitian quantum theories: the Swanson model, a non-Hermitianmore » transform of the simple harmonic oscillator, and the wrong-sign quartic oscillator, which has been shown to be equivalent to a conventional asymmetric quartic oscillator.« less

  4. Innovative financing instruments for global health 2002-15: a systematic analysis.

    PubMed

    Atun, Rifat; Silva, Sachin; Knaul, Felicia M

    2017-07-01

    Development assistance for health (DAH), the value of which peaked in 2013 and fell in 2015, is unlikely to rise substantially in the near future, increasing reliance on domestic and innovative financing sources to sustain health programmes in low-income and middle-income countries. We examined innovative financing instruments (IFIs)-financing schemes that generate and mobilise funds-to estimate the quantum of financing mobilised from 2002 to 2015. We identified ten IFIs, which mobilised US$8·9 billion (2·3% of overall DAH) in 2002-15. The funds generated by IFIs were channelled mostly through GAVI and the Global Fund, and used for programmes for new and underused vaccines, HIV/AIDS, malaria, tuberculosis, and maternal and child health. Vaccination programmes received the largest amount of funding ($2·6 billion), followed by HIV/AIDS ($1080·7 million) and malaria ($1028·9 million), with no discernible funding targeted to non-communicable diseases. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  5. Foundations of Quantum Mechanics: Derivation of a dissipative Schrödinger equation from first principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com

    Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension ofmore » a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.« less

  6. Niels Bohr's discussions with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger: the origins of the principles of uncertainty and complementarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehra, J.

    1987-05-01

    In this paper, the main outlines of the discussions between Niels Bohr with Albert Einstein, Werner Heisenberg, and Erwin Schroedinger during 1920-1927 are treated. From the formulation of quantum mechanics in 1925-1926 and wave mechanics in 1926, there emerged Born's statistical interpretation of the wave function in summer 1926, and on the basis of the quantum mechanical transformation theory - formulated in fall 1926 by Dirac, London, and Jordan - Heisenberg formulated the uncertainty principle in early 1927. At the Volta Conference in Como in September 1927 and at the fifth Solvay Conference in Brussels the following month, Bohr publiclymore » enunciated his complementarity principle, which had been developing in his mind for several years. The Bohr-Einstein discussions about the consistency and completeness of quantum mechanics and of physical theory as such - formally begun in October 1927 at the fifth Solvay Conference and carried on at the sixth Solvay Conference in October 1930 - were continued during the next decades. All these aspects are briefly summarized.« less

  7. 7 CFR 2.17 - Under Secretary for Rural Development.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... economic, social, and environmental research and analysis, statistical programs, and associated service...; rural population and manpower; local government finance; income development strategies; housing; social... activities. (12) Assist other Federal agencies in formulating manpower development and training policies. (13...

  8. 7 CFR 2.17 - Under Secretary for Rural Development.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... economic, social, and environmental research and analysis, statistical programs, and associated service...; rural population and manpower; local government finance; income development strategies; housing; social... activities. (12) Assist other Federal agencies in formulating manpower development and training policies. (13...

  9. On the effect of memory in a quantum prisoner's dilemma cellular automaton

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Revuelta, Fabio

    2018-03-01

    The disrupting effect of quantum memory on the dynamics of a spatial quantum formulation of the iterated prisoner's dilemma game with variable entangling is studied. The game is played within a cellular automata framework, i.e., with local and synchronous interactions. The main findings of this work refer to the shrinking effect of memory on the disruption induced by noise.

  10. On the correspondence between quantum and classical variational principles

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2015-06-10

    Here, classical variational principles can be deduced from quantum variational principles via formal reparameterization of the latter. It is shown that such reparameterization is possible without invoking any assumptions other than classicality and without appealing to dynamical equations. As examples, first principle variational formulations of classical point-particle and cold-fluid motion are derived from their quantum counterparts for Schrodinger, Pauli, and Klein-Gordon particles.

  11. Algebraic theory of molecules

    NASA Technical Reports Server (NTRS)

    Iachello, Franco

    1995-01-01

    An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.

  12. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    NASA Astrophysics Data System (ADS)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical approaches based on an approximate, yet systematically improved account of quantum correlations.

  13. Einstein's equivalence principle in quantum mechanics revisited

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    2016-11-01

    The gravitational equivalence principle in quantum mechanics is of considerable importance, but it is generally not included in physics textbooks. In this note, we present a precise quantum formulation of this principle and comment on its verification in a neutron diffraction experiment. The solution of the time dependent Schrödinger equation for this problem also gives the wave function for the motion of a charged particle in a homogeneous electric field, which is also usually ignored in textbooks on quantum mechanics.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Yu, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Miao, Zibo, E-mail: yu.pan@anu.edu.au, E-mail: zibo.miao@anu.edu.au; Amini, Hadis, E-mail: nhamini@stanford.edu

    Quantum Markovian systems, modeled as unitary dilations in the quantum stochastic calculus of Hudson and Parthasarathy, have become standard in current quantum technological applications. This paper investigates the stability theory of such systems. Lyapunov-type conditions in the Heisenberg picture are derived in order to stabilize the evolution of system operators as well as the underlying dynamics of the quantum states. In particular, using the quantum Markov semigroup associated with this quantum stochastic differential equation, we derive sufficient conditions for the existence and stability of a unique and faithful invariant quantum state. Furthermore, this paper proves the quantum invariance principle, whichmore » extends the LaSalle invariance principle to quantum systems in the Heisenberg picture. These results are formulated in terms of algebraic constraints suitable for engineering quantum systems that are used in coherent feedback networks.« less

  15. Hardship financing of healthcare among rural poor in Orissa, India

    PubMed Central

    2012-01-01

    Background This study examines health-related "hardship financing" in order to get better insights on how poor households finance their out-of-pocket healthcare costs. We define hardship financing as having to borrow money with interest or to sell assets to pay out-of-pocket healthcare costs. Methods Using survey data of 5,383 low-income households in Orissa, one of the poorest states of India, we investigate factors influencing the risk of hardship financing with the use of a logistic regression. Results Overall, about 25% of the households (that had any healthcare cost) reported hardship financing during the year preceding the survey. Among households that experienced a hospitalization, this percentage was nearly 40%, but even among households with outpatient or maternity-related care around 25% experienced hardship financing. Hardship financing is explained not merely by the wealth of the household (measured by assets) or how much is spent out-of-pocket on healthcare costs, but also by when the payment occurs, its frequency and its duration (e.g. more severe in cases of chronic illnesses). The location where a household resides remains a major predictor of the likelihood to have hardship financing despite all other household features included in the model. Conclusions Rural poor households are subjected to considerable and protracted financial hardship due to the indirect and longer-term deleterious effects of how they cope with out-of-pocket healthcare costs. The social network that households can access influences exposure to hardship financing. Our findings point to the need to develop a policy solution that would limit that exposure both in quantum and in time. We therefore conclude that policy interventions aiming to ensure health-related financial protection would have to demonstrate that they have reduced the frequency and the volume of hardship financing. PMID:22284934

  16. Hardship financing of healthcare among rural poor in Orissa, India.

    PubMed

    Binnendijk, Erika; Koren, Ruth; Dror, David M

    2012-01-27

    This study examines health-related "hardship financing" in order to get better insights on how poor households finance their out-of-pocket healthcare costs. We define hardship financing as having to borrow money with interest or to sell assets to pay out-of-pocket healthcare costs. Using survey data of 5,383 low-income households in Orissa, one of the poorest states of India, we investigate factors influencing the risk of hardship financing with the use of a logistic regression. Overall, about 25% of the households (that had any healthcare cost) reported hardship financing during the year preceding the survey. Among households that experienced a hospitalization, this percentage was nearly 40%, but even among households with outpatient or maternity-related care around 25% experienced hardship financing.Hardship financing is explained not merely by the wealth of the household (measured by assets) or how much is spent out-of-pocket on healthcare costs, but also by when the payment occurs, its frequency and its duration (e.g. more severe in cases of chronic illnesses). The location where a household resides remains a major predictor of the likelihood to have hardship financing despite all other household features included in the model. Rural poor households are subjected to considerable and protracted financial hardship due to the indirect and longer-term deleterious effects of how they cope with out-of-pocket healthcare costs. The social network that households can access influences exposure to hardship financing. Our findings point to the need to develop a policy solution that would limit that exposure both in quantum and in time. We therefore conclude that policy interventions aiming to ensure health-related financial protection would have to demonstrate that they have reduced the frequency and the volume of hardship financing.

  17. Stochastic description of quantum Brownian dynamics

    NASA Astrophysics Data System (ADS)

    Yan, Yun-An; Shao, Jiushu

    2016-08-01

    Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems such as the dynamical description of quantum phase transition (local- ization) and the numerical stability of the trace-conserving, nonlinear stochastic Liouville equation are outlined.

  18. H-theorem and Maxwell demon in quantum physics

    NASA Astrophysics Data System (ADS)

    Kirsanov, N. S.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.; Blatter, G.; Lesovik, G. B.

    2018-02-01

    The Second Law of Thermodynamics states that temporal evolution of an isolated system occurs with non-diminishing entropy. In quantum realm, this holds for energy-isolated systems the evolution of which is described by the so-called unital quantum channel. The entropy of a system evolving in a non-unital quantum channel can, in principle, decrease. We formulate a general criterion of unitality for the evolution of a quantum system, enabling a simple and rigorous approach for finding and identifying the processes accompanied by decreasing entropy in energy-isolated systems. We discuss two examples illustrating our findings, the quantum Maxwell demon and heating-cooling process within a two-qubit system.

  19. Spintronic characteristics of self-assembled neurotransmitter acetylcholine molecular complexes enable quantum information processing in neural networks and brain

    NASA Astrophysics Data System (ADS)

    Tamulis, Arvydas; Majauskaite, Kristina; Kairys, Visvaldas; Zborowski, Krzysztof; Adhikari, Kapil; Krisciukaitis, Sarunas

    2016-09-01

    Implementation of liquid state quantum information processing based on spatially localized electronic spin in the neurotransmitter stable acetylcholine (ACh) neutral molecular radical is discussed. Using DFT quantum calculations we proved that this molecule possesses stable localized electron spin, which may represent a qubit in quantum information processing. The necessary operating conditions for ACh molecule are formulated in self-assembled dimer and more complex systems. The main quantum mechanical research result of this paper is that the neurotransmitter ACh systems, which were proposed, include the use of quantum molecular spintronics arrays to control the neurotransmission in neural networks.

  20. Fundamental theories of waves and particles formulated without classical mass

    NASA Astrophysics Data System (ADS)

    Fry, J. L.; Musielak, Z. E.

    2010-12-01

    Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called 'wave mass', which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.

  1. Morphological Cues for Lexical Semantics

    DTIC Science & Technology

    1996-06-01

    decompositions) exist for some intensional verbs, they are very difficult to contrive for ones like resemble (as in the one-horned goat resembled a unicorn ...TELIC re- fine NEWDERSTEM TELICre- finance NEWDERSTEM TELICre- fold NEWDERSTEM TELICre- form INLEX TELICre- formulate NEWDERSTEM TELICre- fuel INLEX

  2. Quantum Bayesian networks with application to games displaying Parrondo's paradox

    NASA Astrophysics Data System (ADS)

    Pejic, Michael

    Bayesian networks and their accompanying graphical models are widely used for prediction and analysis across many disciplines. We will reformulate these in terms of linear maps. This reformulation will suggest a natural extension, which we will show is equivalent to standard textbook quantum mechanics. Therefore, this extension will be termed quantum. However, the term quantum should not be taken to imply this extension is necessarily only of utility in situations traditionally thought of as in the domain of quantum mechanics. In principle, it may be employed in any modelling situation, say forecasting the weather or the stock market---it is up to experiment to determine if this extension is useful in practice. Even restricting to the domain of quantum mechanics, with this new formulation the advantages of Bayesian networks can be maintained for models incorporating quantum and mixed classical-quantum behavior. The use of these will be illustrated by various basic examples. Parrondo's paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probabilitygreater than one-half. Using the extended Bayesian networks, we will formulate and analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox, finding bounds for the discrepancy from naive expectations for the occurrence of the paradox. A quantum paradox inspired by Parrondo's paradox will also be analyzed. We will prove a bound for the discrepancy from naive expectations for this paradox as well. Games involving quantum walks that achieve this bound will be presented.

  3. In the Beginning Was Quantum Gravity.

    ERIC Educational Resources Information Center

    Thomsen, Dietrick E.

    1983-01-01

    Cosmology is the theory by which the structure and history of the universe is described. Discusses the relationship between cosmology, gravity, and quantum mechanics, and whether the relationship can be formulated through Einstein's theory or a modification of it. Also discusses progress made in these scientific areas. (JN)

  4. Zero-point angular momentum of supersymmetric Penning trap

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-zu; Xu, Qiang

    2000-10-01

    The quantum behavior of supersymmetric Penning trap, specially the superpartner of its angular momentum, is investigated in the formulation of multi-dimensional semiunitary transformation of supersymmetric quantum mechanics. In the limit case of vanishing kinetic energy it is found that its lowest angular momentum is 3ℏ/2, which provides a possibility of directly checking the idea of supersymmetric quantum mechanics and thus suggests a possible experimental verification about this prediction.

  5. From quantum mechanics to finance: Microfoundations for jumps, spikes and high volatility phases in diffusion price processes

    NASA Astrophysics Data System (ADS)

    Henkel, Christof

    2017-03-01

    We present an agent behavior based microscopic model that induces jumps, spikes and high volatility phases in the price process of a traded asset. We transfer dynamics of thermally activated jumps of an unexcited/excited two state system discussed in the context of quantum mechanics to agent socio-economic behavior and provide microfoundations. After we link the endogenous agent behavior to price dynamics we establish the circumstances under which the dynamics converge to an Itô-diffusion price processes in the large market limit.

  6. Quantum theory in real Hilbert space: How the complex Hilbert space structure emerges from Poincaré symmetry

    NASA Astrophysics Data System (ADS)

    Moretti, Valter; Oppio, Marco

    As earlier conjectured by several authors and much later established by Solèr (relying on partial results by Piron, Maeda-Maeda and other authors), from the lattice theory point of view, Quantum Mechanics may be formulated in real, complex or quaternionic Hilbert spaces only. Stückelberg provided some physical, but not mathematically rigorous, reasons for ruling out the real Hilbert space formulation, assuming that any formulation should encompass a statement of Heisenberg principle. Focusing on this issue from another — in our opinion, deeper — viewpoint, we argue that there is a general fundamental reason why elementary quantum systems are not described in real Hilbert spaces. It is their basic symmetry group. In the first part of the paper, we consider an elementary relativistic system within Wigner’s approach defined as a locally-faithful irreducible strongly-continuous unitary representation of the Poincaré group in a real Hilbert space. We prove that, if the squared-mass operator is non-negative, the system admits a natural, Poincaré invariant and unique up to sign, complex structure which commutes with the whole algebra of observables generated by the representation itself. This complex structure leads to a physically equivalent reformulation of the theory in a complex Hilbert space. Within this complex formulation, differently from what happens in the real one, all selfadjoint operators represent observables in accordance with Solèr’s thesis, and the standard quantum version of Noether theorem may be formulated. In the second part of this work, we focus on the physical hypotheses adopted to define a quantum elementary relativistic system relaxing them on the one hand, and making our model physically more general on the other hand. We use a physically more accurate notion of irreducibility regarding the algebra of observables only, we describe the symmetries in terms of automorphisms of the restricted lattice of elementary propositions of the quantum system and we adopt a notion of continuity referred to the states viewed as probability measures on the elementary propositions. Also in this case, the final result proves that there exists a unique (up to sign) Poincaré invariant complex structure making the theory complex and completely fitting into Solèr’s picture. This complex structure reveals a nice interplay of Poincaré symmetry and the classification of the commutant of irreducible real von Neumann algebras.

  7. Quantum I/f noise in infrared detectors and scanning tunneling microscopes

    NASA Astrophysics Data System (ADS)

    Truong, Amanda Marie

    Noise is, by definition, any random and persistent disturbance, which interferes with the clarity of a signal. Modern electronic devices are designed to limit noise, and in most cases the classical forms of noise have been eliminated or greatly reduced through careful design. However, there is a fundamental, quite unavoidable type of noise, called quantum l/f noise, which occurs at low frequencies and is a fundamental consequence of the discrete nature of the charge carriers themselves. This quantum l/f noise is present in any physical cross section or process rate, such as carrier mobility, diffusion rates and scattering processes. Although quantum l/f noise has been observed for nearly a century, there has been much debate over its origin and formulation. But as modern electronic devices require greater levels of performance and detection, the l/f noise phenomenon has moved to the forefront, becoming the subject of intense research. Here, for the first time, the quantum l/f fluctuations present in both the dark current of the Quantum Well Intersubband Photodetector and the tunneling current of the Scanning Tunneling Microscope are investigated. Using the quantum l/f theory, the quantum l/f noise occurring in each of these devices is formulated. The theoretical noise results are then compared with the experimental findings of various authors with very good agreement. This important work provides a foundation for understanding quantum l/f noise and its causes in the QWIP and STM devices, and could ultimately lead to improved technology and noise reduction in these devices and others.

  8. Threshold resummation S factor in QCD: The case of unequal masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovtsova, O. P., E-mail: olsol@theor.jinr.r; Chernichenko, Yu. D., E-mail: chern@gstu.gomel.b

    A new relativistic Coulomb-like threshold resummation S factor in quantum chromodynamics is obtained. The analysis in question is performed within the quantum-field-theory quasipotential approach formulated in the relativistic configuration representation for the case of interaction between two relativistic particles that have unequal masses.

  9. Why physics needs mathematics

    NASA Astrophysics Data System (ADS)

    Rohrlich, Fritz

    2011-12-01

    Classical and the quantum mechanical sciences are in essential need of mathematics. Only thus can the laws of nature be formulated quantitatively permitting quantitative predictions. Mathematics also facilitates extrapolations. But classical and quantum sciences differ in essential ways: they follow different laws of logic, Aristotelian and non-Aristotelian logics, respectively. These are explicated.

  10. The actual content of quantum theoretical kinematics and mechanics

    NASA Technical Reports Server (NTRS)

    Heisenberg, W.

    1983-01-01

    First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.

  11. Path integrals and the WKB approximation in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Campiglia, Miguel; Henderson, Adam

    2010-12-01

    We follow the Feynman procedure to obtain a path integral formulation of loop quantum cosmology starting from the Hilbert space framework. Quantum geometry effects modify the weight associated with each path so that the effective measure on the space of paths is different from that used in the Wheeler-DeWitt theory. These differences introduce some conceptual subtleties in arriving at the WKB approximation. But the approximation is well defined and provides intuition for the differences between loop quantum cosmology and the Wheeler-DeWitt theory from a path integral perspective.

  12. Positive spaces, generalized semi-densities, and quantum interactions

    NASA Astrophysics Data System (ADS)

    Canarutto, Daniel

    2012-03-01

    The basics of quantum particle physics on a curved Lorentzian background are expressed in a formulation which has original aspects and exploits some non-standard mathematical notions. In particular, positive spaces and generalized semi-densities (in a distributional sense) are shown to link, in a natural way, discrete multi-particle spaces to distributional bundles of quantum states. The treatment of spinor and boson fields is partly original also from an algebraic point of view and suggests a non-standard approach to quantum interactions. The case of electroweak interactions provides examples.

  13. Quantum thermodynamics of general quantum processes.

    PubMed

    Binder, Felix; Vinjanampathy, Sai; Modi, Kavan; Goold, John

    2015-03-01

    Accurately describing work extraction from a quantum system is a central objective for the extension of thermodynamics to individual quantum systems. The concepts of work and heat are surprisingly subtle when generalizations are made to arbitrary quantum states. We formulate an operational thermodynamics suitable for application to an open quantum system undergoing quantum evolution under a general quantum process by which we mean a completely positive and trace-preserving map. We derive an operational first law of thermodynamics for such processes and show consistency with the second law. We show that heat, from the first law, is positive when the input state of the map majorizes the output state. Moreover, the change in entropy is also positive for the same majorization condition. This makes a strong connection between the two operational laws of thermodynamics.

  14. Quantum Optics Initiative

    DTIC Science & Technology

    2007-06-30

    the choice for the specificity parameter (S), which is the area around the 51(±3) cm 1 frequency in the Fourier plane (right in Fig...1). The HOMO is believed to be entirely of phthalocyanine character in Alu symmetry of the D4h group [6]. The full-width-at- half - maximum (FWHM) of...quantum Lyapunov exponents or by examining the corresponding Poincare sections in this limit. Since the Bohmian formulation of quantum theory is based

  15. Ballistic pulse propagation in quantum wire waveguides: Toward localization and control of electron wave packets in space and time

    NASA Astrophysics Data System (ADS)

    Hayata, K.; Tsuji, Y.; Koshiba, M.

    1992-10-01

    A theoretical formulation of electron pulse propagation in quantum wire structures with mesoscopic scale cross sections is presented, assuming quantum ballistic transport of electron wave packets over a certain characteristic length. As typical mesoscopic structures for realizing coherent electron transmission, two traveling-wave configurations are considered: straight quantum wire waveguides and quantum wire bend structures (quantum whispering galleries). To estimate temporal features of the pulse during propagation, the walk off, the dispersion, and the pulse coherence lengths are defined as useful characteristic lengths. Numerical results are shown for ultrashort pulse propagation through rectangular wire waveguides. Effects due to an external electric field are discussed as well.

  16. Cosmology from group field theory formalism for quantum gravity.

    PubMed

    Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo

    2013-07-19

    We identify a class of condensate states in the group field theory (GFT) formulation of quantum gravity that can be interpreted as macroscopic homogeneous spatial geometries. We then extract the dynamics of such condensate states directly from the fundamental quantum GFT dynamics, following the procedure used in ordinary quantum fluids. The effective dynamics is a nonlinear and nonlocal extension of quantum cosmology. We also show that any GFT model with a kinetic term of Laplacian type gives rise, in a semiclassical (WKB) approximation and in the isotropic case, to a modified Friedmann equation. This is the first concrete, general procedure for extracting an effective cosmological dynamics directly from a fundamental theory of quantum geometry.

  17. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  18. Effective Field Theory on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  19. Searching for Supersolidity in Ultracold Atomic Bose Condensates with Rashba Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Liao, Renyuan

    2018-04-01

    We developed a functional integral formulation for the stripe phase of spinor Bose-Einstein condensates with Rashba spin-orbit coupling. The excitation spectrum is found to exhibit double gapless band structures, identified to be two Goldstone modes resulting from spontaneously broken internal gauge symmetry and translational invariance symmetry. The sound velocities display anisotropic behavior with the lower branch vanishing in the direction perpendicular to the stripe in the x -y plane. At the transition point between the plane-wave phase and the stripe phase, physical quantities such as fluctuation correction to the ground-state energy and quantum depletion of the condensates exhibit discontinuity, characteristic of the first-order phase transition. Despite strong quantum fluctuations induced by Rashba spin-orbit coupling, we show that the supersolid phase is stable against quantum depletion. Finally, we extend our formulation to finite temperatures to account for interactions between excitations.

  20. Continuous-time quantum search on balanced trees

    NASA Astrophysics Data System (ADS)

    Philipp, Pascal; Tarrataca, Luís; Boettcher, Stefan

    2016-03-01

    We examine the effect of network heterogeneity on the performance of quantum search algorithms. To this end, we study quantum search on a tree for the oracle Hamiltonian formulation employed by continuous-time quantum walks. We use analytical and numerical arguments to show that the exponent of the asymptotic running time ˜Nβ changes uniformly from β =0.5 to β =1 as the searched-for site is moved from the root of the tree towards the leaves. These results imply that the time complexity of the quantum search algorithm on a balanced tree is closely correlated with certain path-based centrality measures of the searched-for site.

  1. Koopman-von Neumann formulation of classical Yang-Mills theories: I

    NASA Astrophysics Data System (ADS)

    Carta, P.; Gozzi, E.; Mauro, D.

    2006-03-01

    In this paper we present the Koopman-von Neumann (KvN) formulation of classical non-Abelian gauge field theories. In particular we shall explore the functional (or classical path integral) counterpart of the KvN method. In the quantum path integral quantization of Yang-Mills theories concepts like gauge-fixing and Faddeev-Popov determinant appear in a quite natural way. We will prove that these same objects are needed also in this classical path integral formulation for Yang-Mills theories. We shall also explore the classical path integral counterpart of the BFV formalism and build all the associated universal and gauge charges. These last are quite different from the analog quantum ones and we shall show the relation between the two. This paper lays the foundation of this formalism which, due to the many auxiliary fields present, is rather heavy. Applications to specific topics outlined in the paper will appear in later publications.

  2. Particle in a Box: An Experiential Environment for Learning Introductory Quantum Mechanics

    ERIC Educational Resources Information Center

    Anupam, Aditya; Gupta, Ridhima; Naeemi, Azad; JafariNaimi, Nassim

    2018-01-01

    Quantum mechanics (QMs) is a foundational subject in many science and engineering fields. It is difficult to teach, however, as it requires a fundamental revision of the assumptions and laws of classical physics and probability. Furthermore, introductory QM courses and texts predominantly focus on the mathematical formulations of the subject and…

  3. The QUANTGRID Project (RO)—Quantum Security in GRID Computing Applications

    NASA Astrophysics Data System (ADS)

    Dima, M.; Dulea, M.; Petre, M.; Petre, C.; Mitrica, B.; Stoica, M.; Udrea, M.; Sterian, R.; Sterian, P.

    2010-01-01

    The QUANTGRID Project, financed through the National Center for Programme Management (CNMP-Romania), is the first attempt at using Quantum Crypted Communications (QCC) in large scale operations, such as GRID Computing, and conceivably in the years ahead in the banking sector and other security tight communications. In relation with the GRID activities of the Center for Computing & Communications (Nat.'l Inst. Nucl. Phys.—IFIN-HH), the Quantum Optics Lab. (Nat.'l Inst. Plasma and Lasers—INFLPR) and the Physics Dept. (University Polytechnica—UPB) the project will build a demonstrator infrastructure for this technology. The status of the project in its incipient phase is reported, featuring tests for communications in classical security mode: socket level communications under AES (Advanced Encryption Std.), both proprietary code in C++ technology. An outline of the planned undertaking of the project is communicated, highlighting its impact in quantum physics, coherent optics and information technology.

  4. Geometrizing adiabatic quantum computation

    NASA Astrophysics Data System (ADS)

    Rezakhani, Ali; Kuo, Wan-Jung; Hamma, Alioscia; Lidar, Daniel; Zanardi, Paolo

    2010-03-01

    A time-optimal approach to adiabatic quantum computation (AQC) is formulated. The corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. We demonstrate this geometrization through some examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance. The underlying connection with quantum phase transitions is also explored.

  5. New method in muon-hadron absorption on Thx DUO2 nano material structure at 561 MHz quantum gyro-magnetic

    NASA Astrophysics Data System (ADS)

    Hardiyanto, M.; Ermawaty, I. R.

    2018-01-01

    We present an experimental of muan-hadron tunneling chain investigation with new methods of Thx DUO2 nano structure based on Josephson’s tunneling and Abrikosov-Balseiro-Russel (ABR) formulation with quantum quadrupole interacting with a strongly localized high gyro-magnetic optical field as encountered in high-resolution near-field optical microscopy for 1.2 nano meter lambda-function. The strong gradients of these localized gyro-magnetic fields suggest that higher-order multipolar interactions will affect the standard magnetic quadrupole transition rates in 1.8 x 103 currie/mm fuel energy in nuclear moderator pool and selection rules with quatum dot. For muan-hadron absorption in Josephson’s tunnelling quantum quadrupole in the strong confinement limit we calculated the inter band of gyro-magnetic quadrupole absorption rate and the associated selection rules. Founded that the magnetic quadrupole absorption rate is comparable with the absorption rate calculated in the gyro-magneticdipole approximation of ThxDUO2 nano material structure. This implies that near-field optical techniques can extend the range of spectroscopic measurements for 545 MHz at quantum gyro-magnetic field until 561 MHz deployment quantum field at B around 455-485 tesla beyond the standard dipole approximation. However, we also show that spatial resolution could be improved by the selective excitation of ABR formulation in quantum quadrupole transitions.

  6. From classical to quantum mechanics: ``How to translate physical ideas into mathematical language''

    NASA Astrophysics Data System (ADS)

    Bergeron, H.

    2001-09-01

    Following previous works by E. Prugovečki [Physica A 91A, 202 (1978) and Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)] on common features of classical and quantum mechanics, we develop a unified mathematical framework for classical and quantum mechanics (based on L2-spaces over classical phase space), in order to investigate to what extent quantum mechanics can be obtained as a simple modification of classical mechanics (on both logical and analytical levels). To obtain this unified framework, we split quantum theory in two parts: (i) general quantum axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoints operators, and so on) and (ii) quantum mechanics proper that specifies the Hilbert space as L2(Rn); the Heisenberg rule [pi,qj]=-iℏδij with p=-iℏ∇, the free Hamiltonian H=-ℏ2Δ/2m and so on. We show that general quantum axiomatics (up to a supplementary "axiom of classicity") can be used as a nonstandard mathematical ground to formulate physical ideas and equations of ordinary classical statistical mechanics. So, the question of a "true quantization" with "ℏ" must be seen as an independent physical problem not directly related with quantum formalism. At this stage, we show that this nonstandard formulation of classical mechanics exhibits a new kind of operation that has no classical counterpart: this operation is related to the "quantization process," and we show why quantization physically depends on group theory (the Galilei group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows us to map classical mechanics into quantum mechanics, giving all operators of quantum dynamics and the Schrödinger equation. The great advantage of this point of view is that quantization is based on concrete physical arguments and not derived from some "pure algebraic rule" (we exhibit also some limit of the correspondence principle). Moreover spins for particles are naturally generated, including an approximation of their interaction with magnetic fields. We also recover by this approach the semi-classical formalism developed by E. Prugovečki [Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)].

  7. Parameter Estimation of Fractional-Order Chaotic Systems by Using Quantum Parallel Particle Swarm Optimization Algorithm

    PubMed Central

    Huang, Yu; Guo, Feng; Li, Yongling; Liu, Yufeng

    2015-01-01

    Parameter estimation for fractional-order chaotic systems is an important issue in fractional-order chaotic control and synchronization and could be essentially formulated as a multidimensional optimization problem. A novel algorithm called quantum parallel particle swarm optimization (QPPSO) is proposed to solve the parameter estimation for fractional-order chaotic systems. The parallel characteristic of quantum computing is used in QPPSO. This characteristic increases the calculation of each generation exponentially. The behavior of particles in quantum space is restrained by the quantum evolution equation, which consists of the current rotation angle, individual optimal quantum rotation angle, and global optimal quantum rotation angle. Numerical simulation based on several typical fractional-order systems and comparisons with some typical existing algorithms show the effectiveness and efficiency of the proposed algorithm. PMID:25603158

  8. Reply to "Comment on 'Fractional quantum mechanics' and 'Fractional Schrödinger equation' ".

    PubMed

    Laskin, Nick

    2016-06-01

    The fractional uncertainty relation is a mathematical formulation of Heisenberg's uncertainty principle in the framework of fractional quantum mechanics. Two mistaken statements presented in the Comment have been revealed. The origin of each mistaken statement has been clarified and corrected statements have been made. A map between standard quantum mechanics and fractional quantum mechanics has been presented to emphasize the features of fractional quantum mechanics and to avoid misinterpretations of the fractional uncertainty relation. It has been shown that the fractional probability current equation is correct in the area of its applicability. Further studies have to be done to find meaningful quantum physics problems with involvement of the fractional probability current density vector and the extra term emerging in the framework of fractional quantum mechanics.

  9. Individuation in Quantum Mechanics and Space-Time

    NASA Astrophysics Data System (ADS)

    Jaeger, Gregg

    2010-10-01

    Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.

  10. Response to ``Comment on `Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics' '' [J. Chem. Phys. 127, 197101 (2007)

    NASA Astrophysics Data System (ADS)

    Goldfarb, Yair; Degani, Ilan; Tannor, David J.

    2007-11-01

    In their comment, Sanz and Miret-Artés (SMA) describe previous trajectory-based formalisms based on the quantum Hamilton-Jacobi (QHJ) formalism. In this reply, we highlight our unique contributions: the identification of the smallness of the quantum force in the complex QHJ and its solution using complex trajectories. SMA also raise the question of how the term locality should be used in quantum mechanics. We suggest that at least certain aspects of nonlocality can depend on the method used to solve the problem.

  11. Rotational quenching of H2O by He: mixed quantum/classical theory and comparison with quantum results.

    PubMed

    Ivanov, Mikhail; Dubernet, Marie-Lise; Babikov, Dmitri

    2014-04-07

    The mixed quantum/classical theory (MQCT) formulated in the space-fixed reference frame is used to compute quenching cross sections of several rotationally excited states of water molecule by impact of He atom in a broad range of collision energies, and is tested against the full-quantum calculations on the same potential energy surface. In current implementation of MQCT method, there are two major sources of errors: one affects results at energies below 10 cm(-1), while the other shows up at energies above 500 cm(-1). Namely, when the collision energy E is below the state-to-state transition energy ΔE the MQCT method becomes less accurate due to its intrinsic classical approximation, although employment of the average-velocity principle (scaling of collision energy in order to satisfy microscopic reversibility) helps dramatically. At higher energies, MQCT is expected to be accurate but in current implementation, in order to make calculations computationally affordable, we had to cut off the basis set size. This can be avoided by using a more efficient body-fixed formulation of MQCT. Overall, the errors of MQCT method are within 20% of the full-quantum results almost everywhere through four-orders-of-magnitude range of collision energies, except near resonances, where the errors are somewhat larger.

  12. From the necessary to the possible: the genesis of the spin-statistics theorem

    NASA Astrophysics Data System (ADS)

    Blum, Alexander

    2014-12-01

    The spin-statistics theorem, which relates the intrinsic angular momentum of a single particle to the type of quantum statistics obeyed by a system of many such particles, is one of the central theorems in quantum field theory and the physics of elementary particles. It was first formulated in 1939/40 by Wolfgang Pauli and his assistant Markus Fierz. This paper discusses the developments that led up to this first formulation, starting from early attempts in the late 1920s to explain why charged matter particles obey Fermi-Dirac statistics, while photons obey Bose-Einstein statistics. It is demonstrated how several important developments paved the way from such general philosophical musings to a general (and provable) theorem, most notably the use of quantum field theory, the discovery of new elementary particles, and the generalization of the notion of spin. It is also discussed how the attempts to prove a spin-statistics connection were driven by Pauli from formal to more physical arguments, culminating in Pauli's 1940 proof. This proof was a major success for the beleaguered theory of quantum field theory and the methods Pauli employed proved essential for the renaissance of quantum field theory and the development of renormalization techniques in the late 1940s.

  13. A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.

    NASA Astrophysics Data System (ADS)

    Tate, Ranjeet Shekhar

    1992-01-01

    General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact) general relativity, the Hamiltonian is constrained to vanish. I present various approaches one can take to obtain an interpretation of the quantum theory of such "dynamically constrained" systems. I apply some of these ideas to the Bianchi I cosmology, and analyze the issue of the initial singularity in quantum theory.

  14. Formulation of D-brane Dynamics

    NASA Astrophysics Data System (ADS)

    Evans, Thomas

    2012-03-01

    It is the purpose of this paper (within the context of STS rules & guidelines ``research report'') to formulate a statistical-mechanical form of D-brane dynamics. We consider first the path integral formulation of quantum mechanics, and extend this to a path-integral formulation of D-brane mechanics, summing over all the possible path integral sectors of R-R, NS charged states. We then investigate this generalization utilizing a path-integral formulation summing over all the possible path integral sectors of R-R charged states, calculated from the mean probability tree-level amplitude of type I, IIA, and IIB strings, serving as a generalization of all strings described by D-branes. We utilize this generalization to study black holes in regimes where the initial D-brane system is legitimate, and further this generalization to look at information loss near regions of nonlocality on a non-ordinary event horizon. We see here that in these specific regimes, we can calculate a path integral formulation, as describing D0-brane mechanics, tracing the dissipation of entropy throughout the event horizon. This is used to study the information paradox, and to propose a resolution between the phenomena and the correct and expected quantum mechanical description. This is done as our path integral throughout entropy entering the event horizon effectively and correctly encodes the initial state in subtle correlations in the Hawking radiation.

  15. From quantum coherence to quantum correlations

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Mao, Yuanyuan; Luo, Shunlong

    2017-06-01

    In quantum mechanics, quantum coherence of a state relative to a quantum measurement can be identified with the quantumness that has to be destroyed by the measurement. In particular, quantum coherence of a bipartite state relative to a local quantum measurement encodes quantum correlations in the state. If one takes minimization with respect to the local measurements, then one is led to quantifiers which capture quantum correlations from the perspective of coherence. In this vein, quantum discord, which quantifies the minimal correlations that have to be destroyed by quantum measurements, can be identified as the minimal coherence, with the coherence measured by the relative entropy of coherence. To advocate and formulate this idea in a general context, we first review coherence relative to Lüders measurements which extends the notion of coherence relative to von Neumann measurements (or equivalently, orthonomal bases), and highlight the observation that quantum discord arises as minimal coherence through two prototypical examples. Then, we introduce some novel measures of quantum correlations in terms of coherence, illustrate them through examples, investigate their fundamental properties and implications, and indicate their applications to quantum metrology.

  16. Many-body formulation of carriers capture time in quantum dots applicable in device simulation codes

    NASA Astrophysics Data System (ADS)

    Vallone, Marco

    2010-03-01

    We present an application of Green's functions formalism to calculate in a simplified but rigorous way electrons and holes capture time in quantum dots in closed form as function of carrier density, levels confinement potential, and temperature. Carrier-carrier (Auger) scattering and single LO-phonon emission are both addressed accounting for dynamic effects of the potential screening in the single plasmon pole approximation of the dielectric function. Regarding the LO-phonons interaction, the formulation evidences the role of the dynamic screening from wetting-layer carriers in comparison with its static limit, describes the interplay between screening and Fermi band filling, and offers simple expressions for capture time, suitable for modeling implementation.

  17. Wilson-Racah quantum system

    NASA Astrophysics Data System (ADS)

    Alhaidari, A. D.; Taiwo, T. J.

    2017-02-01

    Using a recent formulation of quantum mechanics without a potential function, we present a four-parameter system associated with the Wilson and Racah polynomials. The continuum scattering states are written in terms of the Wilson polynomials whose asymptotics give the scattering amplitude and phase shift. On the other hand, the finite number of discrete bound states are associated with the Racah polynomials.

  18. RSV-free formulation of quantum mondemolition theory

    NASA Astrophysics Data System (ADS)

    Lynch, Robert

    1982-10-01

    The entire validity of the “quantum nondemolition” (QND) concept has been called into question because of its deep reliance on “reduction of the state vector” (RSV) in the detailed development of the theory. In this letter QND theory is reformulated without use of RSV, except as found in the overall interpretation of the wave function.

  19. On total noncommutativity in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Lahti, Pekka J.; Ylinen, Kari

    1987-11-01

    It is shown within the Hilbert space formulation of quantum mechanics that the total noncommutativity of any two physical quantities is necessary for their satisfying the uncertainty relation or for their being complementary. The importance of these results is illustrated with the canonically conjugate position and momentum of a free particle and of a particle closed in a box.

  20. Quantum neural networks: Current status and prospects for development

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  1. A quantum relativistic battle of the sexes cellular automaton

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Situ, Haozhen

    2017-02-01

    The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated battle of the sexes game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests. Despite the full range of quantum parameters initially accessible, they promptly converge into fairly stable configurations, that often show rich spatial structures in simulations with no negligible entanglement.

  2. A General No-Cloning Theorem for an infinite Multiverse

    NASA Astrophysics Data System (ADS)

    Gauthier, Yvon

    2013-10-01

    In this paper, I formulate a general no-cloning theorem which covers the quantum-mechanical and the theoretical quantum information cases as well as the cosmological multiverse theory. However, the main argument is topological and does not involve the peculiar copier devices of the quantum-mechanical and information-theoretic approaches to the no-cloning thesis. It is shown that a combinatorial set-theoretic treatment of the mathematical and physical spacetime continuum in cosmological or quantum-mechanical terms forbids an infinite (countable or uncountable) number of exact copies of finite elements (states) in the uncountable multiverse cosmology. The historical background draws on ideas from Weyl to Conway and Kochen on the free will theorem in quantum mechanics.

  3. Universality of the Unruh effect

    NASA Astrophysics Data System (ADS)

    Modesto, Leonardo; Myung, Yun Soo; Yi, Sang-Heon

    2018-02-01

    In this paper we prove the universal nature of the Unruh effect in a general class of weakly nonlocal field theories. At the same time we solve the tension between two conflicting claims published in literature. Our universality statement is based on two independent computations based on the canonical formulation as well as path integral formulation of the quantum theory.

  4. Probing finite coarse-grained virtual Feynman histories with sequential weak values

    NASA Astrophysics Data System (ADS)

    Georgiev, Danko; Cohen, Eliahu

    2018-05-01

    Feynman's sum-over-histories formulation of quantum mechanics has been considered a useful calculational tool in which virtual Feynman histories entering into a coherent quantum superposition cannot be individually measured. Here we show that sequential weak values, inferred by consecutive weak measurements of projectors, allow direct experimental probing of individual virtual Feynman histories, thereby revealing the exact nature of quantum interference of coherently superposed histories. Because the total sum of sequential weak values of multitime projection operators for a complete set of orthogonal quantum histories is unity, complete sets of weak values could be interpreted in agreement with the standard quantum mechanical picture. We also elucidate the relationship between sequential weak values of quantum histories with different coarse graining in time and establish the incompatibility of weak values for nonorthogonal quantum histories in history Hilbert space. Bridging theory and experiment, the presented results may enhance our understanding of both weak values and quantum histories.

  5. Quasi-local holographic dualities in non-perturbative 3D quantum gravity

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Goeller, Christophe; Livine, Etera R.; Riello, Aldo

    2018-07-01

    We present a line of research aimed at investigating holographic dualities in the context of three dimensional quantum gravity within finite bounded regions. The bulk quantum geometrodynamics is provided by the Ponzano–Regge state-sum model, which defines 3D quantum gravity as a discrete topological quantum field theory (TQFT). This formulation provides an explicit and detailed definition of the quantum boundary states, which allows a rich correspondence between quantum boundary conditions and boundary theories, thereby leading to holographic dualities between 3D quantum gravity and 2D statistical models as used in condensed matter. After presenting the general framework, we focus on the concrete example of the coherent twisted torus boundary, which allows for a direct comparison with other approaches to 3D/2D holography at asymptotic infinity. We conclude with the most interesting questions to pursue in this framework.

  6. Quantum Locality in Game Strategy

    NASA Astrophysics Data System (ADS)

    Melo-Luna, Carlos A.; Susa, Cristian E.; Ducuara, Andrés F.; Barreiro, Astrid; Reina, John H.

    2017-03-01

    Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players’ input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.

  7. Thermal quantum time-correlation functions from classical-like dynamics

    NASA Astrophysics Data System (ADS)

    Hele, Timothy J. H.

    2017-07-01

    Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.

  8. Quantum Locality in Game Strategy

    PubMed Central

    Melo-Luna, Carlos A.; Susa, Cristian E.; Ducuara, Andrés F.; Barreiro, Astrid; Reina, John H.

    2017-01-01

    Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players’ input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage. PMID:28327567

  9. Quantum discord with weak measurement operators of quasi-Werner states based on bipartite entangled coherent states

    NASA Astrophysics Data System (ADS)

    Castro, E.; Gómez, R.; Ladera, C. L.; Zambrano, A.

    2013-11-01

    Among many applications quantum weak measurements have been shown to be important in exploring fundamental physics issues, such as the experimental violation of the Heisenberg uncertainty relation and the Hardy paradox, and have also technological implications in quantum optics, quantum metrology and quantum communications, where the precision of the measurement is as important as the precision of quantum state preparation. The theory of weak measurement can be formulated using the pre-and post-selected quantum systems, as well as using the weak measurement operator formalism. In this work, we study the quantum discord (QD) of quasi-Werner mixed states based on bipartite entangled coherent states using the weak measurements operator, instead of the projective measurement operators. We then compare the quantum discord for both kinds of measurement operators, in terms of the entanglement quality, the latter being measured using the concept of concurrence. It's found greater quantum correlations using the weak measurement operators.

  10. From the GKLS Equation to the Theory of Solar and Fuel Cells

    NASA Astrophysics Data System (ADS)

    Alicki, R.

    The mathematically sound theory of quantum open systems, formulated in the ’70s and highlighted by the discovery of Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation, found a wide range of applications in various branches of physics and chemistry, notably in the field of quantum information and quantum thermodynamics. However, it took 40 years before this formalism has been applied to explain correctly the operation principles of long existing energy transducers like photovoltaic, thermoelectric and fuel cells. This long path is briefly reviewed from the author’s perspective. Finally, the new, fully quantum model of chemical engine based on GKLS equation and applicable to fuel cells or replicators is outlined. The model illustrates the difficulty with an entirely quantum operational definition of work, comparable to the problem of quantum measurement.

  11. Challenges in systematic reviews: synthesis of topics related to the delivery, organization, and financing of health care.

    PubMed

    Bravata, Dena M; McDonald, Kathryn M; Shojania, Kaveh G; Sundaram, Vandana; Owens, Douglas K

    2005-06-21

    Some important health policy topics, such as those related to the delivery, organization, and financing of health care, present substantial challenges to established methods for evidence synthesis. For example, such reviews may ask: What is the effect of for-profit versus not-for-profit delivery of care on patient outcomes? Or, which strategies are the most effective for promoting preventive care? This paper describes innovative methods for synthesizing evidence related to the delivery, organization, and financing of health care. We found 13 systematic reviews on these topics that described novel methodologic approaches. Several of these syntheses used 3 approaches: conceptual frameworks to inform problem formulation, systematic searches that included nontraditional literature sources, and hybrid synthesis methods that included simulations to address key gaps in the literature. As the primary literature on these topics expands, so will opportunities to develop additional novel methods for performing high-quality comprehensive syntheses.

  12. Generalized Entropic Uncertainty Relations with Tsallis' Entropy

    NASA Technical Reports Server (NTRS)

    Portesi, M.; Plastino, A.

    1996-01-01

    A generalization of the entropic formulation of the Uncertainty Principle of Quantum Mechanics is considered with the introduction of the q-entropies recently proposed by Tsallis. The concomitant generalized measure is illustrated for the case of phase and number operators in quantum optics. Interesting results are obtained when making use of q-entropies as the basis for constructing generalized entropic uncertainty measures.

  13. A cellular automaton implementation of a quantum battle of the sexes game with imperfect information

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón

    2015-10-01

    The dynamics of a spatial quantum formulation of the iterated battle of the sexes game with imperfect information is studied in this work. The game is played with variable entangling in a cellular automata manner, i.e. with local and synchronous interaction. The effect of spatial structure is assessed in fair and unfair scenarios.

  14. New Quantum Diffusion Monte Carlo Method for strong field time dependent problems

    NASA Astrophysics Data System (ADS)

    Kalinski, Matt

    2017-04-01

    We have recently formulated the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schrödinger equation when it is equivalent to the reaction-diffusion system coupled by the highly nonlinear potentials of the type of Shay. Here we formulate a new Time Dependent QDMC method free of the nonlinearities described by the constant stochastic process of the coupled diffusion with transmutation. As before two kinds of diffusing particles (color walkers) are considered but which can further also transmute one into the other. Each of the species undergoes the hypothetical Einstein random walk progression with transmutation. The progressed particles transmute into the particles of the other kind before contributing to or annihilating the other particles density. This fully emulates the Time Dependent Schrödinger equation for any number of quantum particles. The negative sign of the real and the imaginary parts of the wave function is handled by the ``spinor'' densities carrying the sign as the degree of freedom. We apply the method for the exact time-dependent observation of our discovered two-electron Langmuir configurations in the magnetic and circularly polarized fields.

  15. Open Group Transformations

    NASA Astrophysics Data System (ADS)

    Batalin, Igor; Marnelius, Robert

    Open groups whose generators are in arbitrary involutions may be quantized within a ghost extended framework in terms of a nilpotent BFV-BRST charge operator. Previously we have shown that generalized quantum Maurer-Cartan equations for arbitrary open groups may be extracted from the quantum connection operators and that they also follow from a simple quantum master equation involving an extended nilpotent BFV-BRST charge and a master charge. Here we give further details of these results. In addition we establish the general structure of the solutions of the quantum master equation. We also construct an extended formulation whose properties are determined by the extended BRST charge in the master equation.

  16. Entanglement in Self-Supervised Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    A new type of correlation has been developed similar to quantum entanglement in self-supervised dynamics (SSD). SSDs have been introduced as a quantum-classical hybrid based upon the Madelung equation in which the quantum potential is replaced by an information potential. As a result, SSD preserves the quantum topology along with superposition, entanglement, and wave-particle duality. At the same time, it can be implemented in any scale including the Newtonian scale. The main properties of SSD associated with simulating intelligence have been formulated. The attention with this innovation is focused on intelligent agents interaction based upon the new fundamental non-New tonian effect; namely, entanglement.

  17. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation.

    PubMed

    Di Remigio, Roberto; Beerepoot, Maarten T P; Cornaton, Yann; Ringholm, Magnus; Steindal, Arnfinn Hykkerud; Ruud, Kenneth; Frediani, Luca

    2016-12-21

    The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.

  18. Business Plan for the Southwest Regional Spaceport: Executive Summary

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A proposal for a commercial, full-service launch, tracking, and recovery complex for Reusable Launch Vehicles in New Mexico is presented. Vision, mission, business definition, competitive advantages, and business approach are formulated. Management plan and team structure are detailed, and anticipated market is described. Finance and marketing plans are presented. Financial analysis is performed.

  19. What Legislators Need to Know about Long-Term Care Insurance.

    ERIC Educational Resources Information Center

    Landes, David

    This booklet discusses the potential importance to states of long-term care insurance, describes general policy characteristics, and summarizes state actions to both regulate and promote long-term care insurance. It is intended as a resource for legislators and others involved in long-term care financing and public policy formulation. Long-term…

  20. The Asymptotic Safety Scenario in Quantum Gravity.

    PubMed

    Niedermaier, Max; Reuter, Martin

    2006-01-01

    The asymptotic safety scenario in quantum gravity is reviewed, according to which a renormalizable quantum theory of the gravitational field is feasible which reconciles asymptotically safe couplings with unitarity. The evidence from symmetry truncations and from the truncated flow of the effective average action is presented in detail. A dimensional reduction phenomenon for the residual interactions in the extreme ultraviolet links both results. For practical reasons the background effective action is used as the central object in the quantum theory. In terms of it criteria for a continuum limit are formulated and the notion of a background geometry self-consistently determined by the quantum dynamics is presented. Self-contained appendices provide prerequisites on the background effective action, the effective average action, and their respective renormalization flows.

  1. Mixed quantum/classical theory of rotationally and vibrationally inelastic scattering in space-fixed and body-fixed reference frames

    NASA Astrophysics Data System (ADS)

    Semenov, Alexander; Babikov, Dmitri

    2013-11-01

    We formulated the mixed quantum/classical theory for rotationally and vibrationally inelastic scattering process in the diatomic molecule + atom system. Two versions of theory are presented, first in the space-fixed and second in the body-fixed reference frame. First version is easy to derive and the resultant equations of motion are transparent, but the state-to-state transition matrix is complex-valued and dense. Such calculations may be computationally demanding for heavier molecules and/or higher temperatures, when the number of accessible channels becomes large. In contrast, the second version of theory requires some tedious derivations and the final equations of motion are rather complicated (not particularly intuitive). However, the state-to-state transitions are driven by real-valued sparse matrixes of much smaller size. Thus, this formulation is the method of choice from the computational point of view, while the space-fixed formulation can serve as a test of the body-fixed equations of motion, and the code. Rigorous numerical tests were carried out for a model system to ensure that all equations, matrixes, and computer codes in both formulations are correct.

  2. Quantum Field Theory Approach to Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Marino, Eduardo C.

    2017-09-01

    Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.

  3. Transition probability spaces in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Kan

    2018-03-01

    We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is exemplified by first checking such structures in covariant quantum mechanics and then identifying the transition probability spaces in spin foam models via a simplified version of general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the discrete analog of the Hilbert space of the canonical theory and the relevant quantum logical structures. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize in spin foam models two proposals by Crane about the mathematical structures of quantum gravity, namely, the quantum topos and causal sites. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.

  4. Frobenius-norm-based measures of quantum coherence and asymmetry

    PubMed Central

    Yao, Yao; Dong, G. H.; Xiao, Xing; Sun, C. P.

    2016-01-01

    We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory while the group theoretical approach is employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit physical meanings, we observe that these quantities are intimately related to the purity (or linear entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which can also be viewed as a normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of N-qubit quantum systems is considered under local independent and collective transformations. In- triguingly, it is illustrated that the collective effect has a significant impact on the asymmetry measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance. PMID:27558009

  5. Algorithmes et architectures pour ordinateurs quantiques supraconducteurs

    NASA Astrophysics Data System (ADS)

    Blais, A.

    2003-09-01

    Algorithms and architectures for superconducting quantum computers Since its formulation, information theory was based, implicitly, on the laws of classical physics. Such a formulation is however incomplete because it does not take into account quantum reality. During the last twenty years, expansion of theory information to include quantum effects has known growing interest. The practical realization of a system for quantum data processing system, a quantum computer, presents however many challenges. In this book, we are interested in various aspects of these challenges. We start by presenting algorithmic concepts like optimization of quantum computations and geometric quantum computation. We then consider various designs and aspects of qubits based on Josephson junctions. In particular, an original approach to the interaction between superconducting qubits is presented. This approach is very general since it can be applied to various designs of qubits. Finally, we are interested in read-out of the superconductic flux qubits. The detector suggested here has the advantage that it is possible to uncouple it from the qubit when no measurement is in progress. Depuis sa formulation, la théorie de l'information a été basée, implicitement, sur les lois de la physique classique. Une telle formulation est toutefois incomplète puisqu'elle ne tient pas compte de la réalité quantique. Au cours des vingt dernières années, l'expansion de la théorie de l'information, de façon à englober les effets purement quantiques, a connu un intérêt grandissant. La réalisation d'un système de traitement de l'information quantique, un ordinateur quantique, présente toutefois de nombreux défis. Dans cet ouvrage, on s'intéresse à différents aspects concernant ces défis. On commence par présenter des concepts algorithmiques comme l'optimisation de calculs quantiques et le calcul quantique géométrique. Par la suite, on s'intéresse à différents designs et aspects de l'utilisation de qubits basés sur les jonctions Josephson. On présente entre autres une approche originale pour l'interaction entre qubits. Cette approche est très générale puisqu'elle peut être appliquée à différents designs de qubits. Finalement, on s'intéresse à la lecture des qubits supraconducteurs de flux. Le détecteur suggéré ici a l'avantage de pouvoir être découplé du qubit lorsqu'il n'y a pas de mesure en cours.

  6. Quantum stochastic thermodynamic on harmonic networks

    DOE PAGES

    Deffner, Sebastian

    2016-01-04

    Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Furthermore, their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.

  7. Schrödinger equation revisited

    PubMed Central

    Schleich, Wolfgang P.; Greenberger, Daniel M.; Kobe, Donald H.; Scully, Marlan O.

    2013-01-01

    The time-dependent Schrödinger equation is a cornerstone of quantum physics and governs all phenomena of the microscopic world. However, despite its importance, its origin is still not widely appreciated and properly understood. We obtain the Schrödinger equation from a mathematical identity by a slight generalization of the formulation of classical statistical mechanics based on the Hamilton–Jacobi equation. This approach brings out most clearly the fact that the linearity of quantum mechanics is intimately connected to the strong coupling between the amplitude and phase of a quantum wave. PMID:23509260

  8. Quantum stochastic thermodynamic on harmonic networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deffner, Sebastian

    Fluctuation theorems are symmetry relations for the probability to observe an amount of entropy production in a finite-time process. In a recent paper Pigeon et al (2016 New. J. Phys. 18 013009) derived fluctuation theorems for harmonic networks by means of the large deviation theory. Furthermore, their novel approach is illustrated with various examples of experimentally relevant systems. As a main result, however, Pigeon et al provide new insight how to consistently formulate quantum stochastic thermodynamics, and provide new and robust tools for the study of the thermodynamics of quantum harmonic networks.

  9. A note on the Poisson bracket of 2d smeared fluxes in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Cattaneo, Alberto S.; Perez, Alejandro

    2017-05-01

    We show that the non-Abelian nature of geometric fluxes—the corner-stone in the definition of quantum geometry in the framework of loop quantum gravity (LQG)—follows directly form the continuum canonical commutations relations of gravity in connection variables and the validity of the Gauss law. The present treatment simplifies previous formulations and thus identifies more clearly the root of the discreteness of geometric operators in LQG. Our statement generalizes to arbitrary gauge theories and relies only on the validity of the Gauss law.

  10. Non-equilibrium many-body dynamics following a quantum quench

    NASA Astrophysics Data System (ADS)

    Vyas, Manan

    2017-12-01

    We study analytically and numerically the non-equilibrium dynamics of an isolated interacting many-body quantum system following a random quench. We model the system Hamiltonian by Embedded Gaussian Orthogonal Ensemble (EGOE) of random matrices with one plus few-body interactions for fermions. EGOE are paradigmatic models to study the crossover from integrability to chaos in interacting many-body quantum systems. We obtain a generic formulation, based on spectral variances, for describing relaxation dynamics of survival probabilities as a function of rank of interactions. Our analytical results are in good agreement with numerics.

  11. A discussion on the origin of quantum probabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holik, Federico, E-mail: olentiev2@gmail.com; Departamento de Matemática - Ciclo Básico Común, Universidad de Buenos Aires - Pabellón III, Ciudad Universitaria, Buenos Aires; Sáenz, Manuel

    We study the origin of quantum probabilities as arising from non-Boolean propositional-operational structures. We apply the method developed by Cox to non distributive lattices and develop an alternative formulation of non-Kolmogorovian probability measures for quantum mechanics. By generalizing the method presented in previous works, we outline a general framework for the deduction of probabilities in general propositional structures represented by lattices (including the non-distributive case). -- Highlights: •Several recent works use a derivation similar to that of R.T. Cox to obtain quantum probabilities. •We apply Cox’s method to the lattice of subspaces of the Hilbert space. •We obtain a derivationmore » of quantum probabilities which includes mixed states. •The method presented in this work is susceptible to generalization. •It includes quantum mechanics and classical mechanics as particular cases.« less

  12. Rapid Communication: Quasi-gedanken experiment challenging the no-signalling theorem

    NASA Astrophysics Data System (ADS)

    Kalamidas, Demetrios A.

    2018-01-01

    Kennedy ( Philos. Sci. 62, 4 (1995)) has argued that the various quantum mechanical no-signalling proofs formulated thus far share a common mathematical framework, are circular in nature, and do not preclude the construction of empirically testable schemes wherein superluminal exchange of information can occur. In light of this thesis, we present a potentially feasible quantum-optical scheme that purports to enable superluminal signalling.

  13. New variables for classical and quantum gravity

    NASA Technical Reports Server (NTRS)

    Ashtekar, Abhay

    1986-01-01

    A Hamiltonian formulation of general relativity based on certain spinorial variables is introduced. These variables simplify the constraints of general relativity considerably and enable one to imbed the constraint surface in the phase space of Einstein's theory into that of Yang-Mills theory. The imbedding suggests new ways of attacking a number of problems in both classical and quantum gravity. Some illustrative applications are discussed.

  14. Phototoxicity free quantum dot-based niosome formulation for controlled drug release and its monitoring

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Kang, T. W.; Bala, Suman; Kamboj, Sunil; Jeon, H. C.

    2018-04-01

    A novel niosomes-based system composed of Hypromellose (HPMC) functionalized fluorescent, biocompatible ZnS:Mn quantum dots (QDs), and anti-HIV drug Tenofovir disoproxil fumarate (TDF) was designed. An appropriate ratio of surfactant Sorbitan Monostearate (SPAN-60) and cholesterol was used to obtain an optimal entrapment efficiency. Initially, after observing the successful interaction of HPMC with SPAN-60, the noisome formulation including (QDs + drug) and HPMC-coated QDs was synthesized by a wet chemical route and characterized by X-ray diffraction (XRD), Transmission electron microscope (TEM) and Selected Electron Diffraction (SAED). Secondly, (QDs + drug) loaded niosome formulations were studied by varying the ratio of SPAN-60 and cholesterol. Multiple studies were done to characterize the shape, size, viscosity, colloidal stability, and entrapment efficiency of (QDs + drug) loaded niosomes. Lastly, pH-dependent (QDs + drug) release profiles were studied by a spectroscopic technique considering the pH of the human gastrointestinal region to obtain the formulation stability of (QDs + drug) release from the niosome vesicles. These studies also include pH-dependent photo-stability measurements based on laser-induced multiphoton excitation technique in the Infrared region. The multiphoton time-resolved studies were completed to avoid the UV induced phototoxicity in the drug delivery modules. Current studies on the formulation of niosomes-based (QDs + drug) system laid a foundation to make a complete phototoxicity free system for tracking controlled drug release and its imaging.

  15. Acoustic Purcell Effect for Enhanced Emission

    NASA Astrophysics Data System (ADS)

    Landi, Maryam; Zhao, Jiajun; Prather, Wayne E.; Wu, Ying; Zhang, Likun

    2018-03-01

    We observe that our experimentally measured emission power enhancement of a speaker inside a previously proposed metacavity agrees with our numerically calculated enhancement of the density of states (DOS) of the source-cavity system. We interpret the agreement by formulating a relation between the emitted sound power and the acoustic DOS. The formulation is an analog to Fermi's golden rule in quantum emission. The formulation complements the radiation impedance theory in traditional acoustics for describing sound emission. Our study bridges the gap between acoustic DOS and the acoustic Purcell effect for sound emission enhancement.

  16. Quantum Mechanics and the Principle of Least Radix Economy

    NASA Astrophysics Data System (ADS)

    Garcia-Morales, Vladimir

    2015-03-01

    A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and it is used to derive the Schrödinger and Dirac equations and the breaking of the commutativity of spacetime geometry. The formulation provides an explanation of how determinism and random statistical behavior coexist in spacetime and a framework is developed that allows dynamical processes to be formulated in terms of chains of digits. These methods lead to a new (pre-geometrical) foundation for Lorentz transformations and special relativity. The Parker-Rhodes combinatorial hierarchy is encompassed within our approach and this leads to an estimate of the interaction strength of the electromagnetic and gravitational forces that agrees with the experimental values to an error of less than one thousandth. Finally, it is shown how the principle of least-radix economy naturally gives rise to Boltzmann's principle of classical statistical thermodynamics. A new expression for a general (path-dependent) nonequilibrium entropy is proposed satisfying the Second Law of Thermodynamics.

  17. Inconclusive quantum measurements and decisions under uncertainty

    NASA Astrophysics Data System (ADS)

    Yukalov, Vyacheslav; Sornette, Didier

    2016-04-01

    We give a mathematical definition for the notion of inconclusive quantum measurements. In physics, such measurements occur at intermediate stages of a complex measurement procedure, with the final measurement result being operationally testable. Since the mathematical structure of Quantum Decision Theory has been developed in analogy with the theory of quantum measurements, the inconclusive quantum measurements correspond, in Quantum Decision Theory, to intermediate stages of decision making in the process of taking decisions under uncertainty. The general form of the quantum probability for a composite event is the sum of a utility factor, describing a rational evaluation of the considered prospect, and of an attraction factor, characterizing irrational, subconscious attitudes of the decision maker. Despite the involved irrationality, the probability of prospects can be evaluated. This is equivalent to the possibility of calculating quantum probabilities without specifying hidden variables. We formulate a general way of evaluation, based on the use of non-informative priors. As an example, we suggest the explanation of the decoy effect. Our quantitative predictions are in very good agreement with experimental data.

  18. Fully device-independent quantum key distribution.

    PubMed

    Vazirani, Umesh; Vidick, Thomas

    2014-10-03

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  19. Fully Device-Independent Quantum Key Distribution

    NASA Astrophysics Data System (ADS)

    Vazirani, Umesh; Vidick, Thomas

    2014-10-01

    Quantum cryptography promises levels of security that are impossible to replicate in a classical world. Can this security be guaranteed even when the quantum devices on which the protocol relies are untrusted? This central question dates back to the early 1990s when the challenge of achieving device-independent quantum key distribution was first formulated. We answer this challenge by rigorously proving the device-independent security of a slight variant of Ekert's original entanglement-based protocol against the most general (coherent) attacks. The resulting protocol is robust: While assuming only that the devices can be modeled by the laws of quantum mechanics and are spatially isolated from each other and from any adversary's laboratory, it achieves a linear key rate and tolerates a constant noise rate in the devices. In particular, the devices may have quantum memory and share arbitrary quantum correlations with the eavesdropper. The proof of security is based on a new quantitative understanding of the monogamous nature of quantum correlations in the context of a multiparty protocol.

  20. Probability and Quantum Paradigms: the Interplay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kracklauer, A. F.

    Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a fewmore » details, this variant is appealing in its reliance on well tested concepts and technology.« less

  1. Deterministic quantum annealing expectation-maximization algorithm

    NASA Astrophysics Data System (ADS)

    Miyahara, Hideyuki; Tsumura, Koji; Sughiyama, Yuki

    2017-11-01

    Maximum likelihood estimation (MLE) is one of the most important methods in machine learning, and the expectation-maximization (EM) algorithm is often used to obtain maximum likelihood estimates. However, EM heavily depends on initial configurations and fails to find the global optimum. On the other hand, in the field of physics, quantum annealing (QA) was proposed as a novel optimization approach. Motivated by QA, we propose a quantum annealing extension of EM, which we call the deterministic quantum annealing expectation-maximization (DQAEM) algorithm. We also discuss its advantage in terms of the path integral formulation. Furthermore, by employing numerical simulations, we illustrate how DQAEM works in MLE and show that DQAEM moderate the problem of local optima in EM.

  2. Potential Functions and the Characterization of Economics-Based Information

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel

    2015-10-01

    The formulation of quantum mechanics as a diffusion process by Nelson (Phys Rev 150:1079-1085, 1966) provides for an interesting approach on how we may transit from classical mechanics into quantum mechanics. Besides the presence of the real potential function, another type of potential function (often denoted as `quantum potential') forms an intrinsic part of this theory. In this paper we attempt to show how both types of potential functions can have a use in a resolutely macroscopic context like financial asset pricing. We are particularly interested in uncovering how the `quantum potential' can add to the economics-based relevant information which is already supplied by the real potential function.

  3. Probability and Quantum Paradigms: the Interplay

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2007-12-01

    Since the introduction of Born's interpretation of quantum wave functions as yielding the probability density of presence, Quantum Theory and Probability have lived in a troubled symbiosis. Problems arise with this interpretation because quantum probabilities exhibit features alien to usual probabilities, namely non Boolean structure and non positive-definite phase space probability densities. This has inspired research into both elaborate formulations of Probability Theory and alternate interpretations for wave functions. Herein the latter tactic is taken and a suggested variant interpretation of wave functions based on photo detection physics proposed, and some empirical consequences are considered. Although incomplete in a few details, this variant is appealing in its reliance on well tested concepts and technology.

  4. A Plan of Organization, Administration, and Elements of Finance for Vocational-Technical Adult Education, Birmingham City School System.

    ERIC Educational Resources Information Center

    Shelton, John Alton

    Designed to help formulate a plan of organization and administration for vocational and technical education and adult education in the Birmingham, Alabama, city schools, this study entailed an extensive literature review on vocational education and administrative matters; a historical review of several Birmingham schools (Paul Hayne School,…

  5. Equity for Rural School Districts: The Final Report of the Countryside Council's School Finance Task Force.

    ERIC Educational Resources Information Center

    Wiener, Steve

    Soaring values of agricultural land have created inequities in funding between urban and rural school districts in Minnesota. The state's Foundation Aid to school districts is formulated so that districts of high property valuation receive less Foundation Aid than those districts with low property valuation. In recent years inflation has had…

  6. WEALTH, EXPENDITURES AND DECISION-MAKING FOR EDUCATION.

    ERIC Educational Resources Information Center

    JAMES, H. THOMAS; AND OTHERS

    THE SECOND IN A SERIES OF STUDIES OF THE PROCESSES BY WHICH RESOURCES IN THE UNITED STATES ARE ALLOCATED TO THE SUPPORT OF PUBLIC EDUCATION IS PRESENTED. A RATIONALE FOR THE STUDY OF SCHOOL FINANCE WAS FORMULATED AND APPLIED TO EXPLAIN VARIATIONS IN EXPENDITURES ASSOCIATED WITH STATE EFFORTS TO EQUALIZE BOTH EDUCATIONAL BENEFITS AND TAX LOADS.…

  7. Non Locality Proofs in Quantum Mechanics Analyzed by Ordinary Mathematical Logic

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe

    2014-10-01

    The so-called non-locality theorems aim to show that Quantum Mechanics is not consistent with the Locality Principle. Their proofs require, besides the standard postulates of Quantum Theory, further conditions, as for instance the Criterion of Reality, which cannot be formulated in the language of Standard Quantum Theory; this difficulty makes the proofs not verifiable according to usual logico-mathematical methods, and therefore it is a source of the controversial debate about the real implications of these theorems. The present work addresses this difficulty for Bell-type and Stapp's arguments of non-locality. We supplement the formalism of Quantum Mechanics with formal statements inferred from the further conditions in the two different cases. Then an analysis of the two arguments is performed according to ordinary mathematical logic.

  8. Effects of Noise-Induced Coherence on the Performance of Quantum Absorption Refrigerators

    NASA Astrophysics Data System (ADS)

    Holubec, Viktor; Novotný, Tomáš

    2018-05-01

    We study two models of quantum absorption refrigerators with the main focus on discerning the role of noise-induced coherence on their thermodynamic performance. Analogously to the previous studies on quantum heat engines, we find the increase in the cooling power due to the mechanism of noise-induced coherence. We formulate conditions imposed on the microscopic parameters of the models under which they can be equivalently described by classical stochastic processes and compare the performance of the two classes of fridges (effectively classical vs. truly quantum). We find that the enhanced performance is observed already for the effectively classical systems, with no significant qualitative change in the quantum cases, which suggests that the noise-induced-coherence-enhancement mechanism is caused by static interference phenomena.

  9. Interferometric Computation Beyond Quantum Theory

    NASA Astrophysics Data System (ADS)

    Garner, Andrew J. P.

    2018-03-01

    There are quantum solutions for computational problems that make use of interference at some stage in the algorithm. These stages can be mapped into the physical setting of a single particle travelling through a many-armed interferometer. There has been recent foundational interest in theories beyond quantum theory. Here, we present a generalized formulation of computation in the context of a many-armed interferometer, and explore how theories can differ from quantum theory and still perform distributed calculations in this set-up. We shall see that quaternionic quantum theory proves a suitable candidate, whereas box-world does not. We also find that a classical hidden variable model first presented by Spekkens (Phys Rev A 75(3): 32100, 2007) can also be used for this type of computation due to the epistemic restriction placed on the hidden variable.

  10. Quantum computers: Definition and implementations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Delgado, Carlos A.; Kok, Pieter

    The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria:more » Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.« less

  11. Quantum Adiabatic Brachistochrone

    NASA Astrophysics Data System (ADS)

    Rezakhani, A. T.; Kuo, W.-J.; Hamma, A.; Lidar, D. A.; Zanardi, P.

    2009-08-01

    We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.

  12. Quantum adiabatic brachistochrone.

    PubMed

    Rezakhani, A T; Kuo, W-J; Hamma, A; Lidar, D A; Zanardi, P

    2009-08-21

    We formulate a time-optimal approach to adiabatic quantum computation (AQC). A corresponding natural Riemannian metric is also derived, through which AQC can be understood as the problem of finding a geodesic on the manifold of control parameters. This geometrization of AQC is demonstrated through two examples, where we show that it leads to improved performance of AQC, and sheds light on the roles of entanglement and curvature of the control manifold in algorithmic performance.

  13. Quantum Engineering of Dynamical Gauge Fields on Optical Lattices

    DTIC Science & Technology

    2016-07-08

    opens the door for exciting new research directions, such as quantum simulation of the Schwinger model and of non-Abelian models. (a) Papers...exact blocking formulas from the TRG formulation of the transfer matrix. The second is a worm algorithm. The particle number distributions obtained...a fact that can be explained by an approximate particle- hole symmetry. We have also developed a computer code suite for simulating the Abelian

  14. Towards loop quantum gravity without the time gauge.

    PubMed

    Cianfrani, Francesco; Montani, Giovanni

    2009-03-06

    The Hamiltonian formulation of the Holst action is reviewed and it provides a solution of second-class constraints corresponding to a generic local Lorentz frame. Within this scheme the form of rotation constraints can be reduced to a Gauss-like one by a proper generalization of Ashtekar-Barbero-Immirzi connections. This result emphasizes that the loop quantum gravity quantization procedure can be applied when the time-gauge condition does not stand.

  15. The principle of finiteness - a guideline for physical laws

    NASA Astrophysics Data System (ADS)

    Sternlieb, Abraham

    2013-04-01

    I propose a new principle in physics-the principle of finiteness (FP). It stems from the definition of physics as a science that deals with measurable dimensional physical quantities. Since measurement results including their errors, are always finite, FP postulates that the mathematical formulation of legitimate laws in physics should prevent exactly zero or infinite solutions. I propose finiteness as a postulate, as opposed to a statement whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories or principles. Some consequences of FP are discussed, first in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The corrected Lorentz transformations include an additional translation term depending on the minimum length epsilon. The relativistic gamma is replaced by a corrected gamma, that is finite for v=c. To comply with FP, physical laws should include the relevant extremum finite values in their mathematical formulation. An important prediction of FP is that there is a maximum attainable relativistic mass/energy which is the same for all subatomic particles, meaning that there is a maximum theoretical value for cosmic rays energy. The Generalized Uncertainty Principle required by Quantum Gravity is actually a necessary consequence of FP at Planck's scale. Therefore, FP may possibly contribute to the axiomatic foundation of Quantum Gravity.

  16. Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottmeister, Alexander, E-mail: alexander.stottmeister@gravity.fau.de; Thiemann, Thomas, E-mail: thomas.thiemann@gravity.fau.de

    2016-06-15

    This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems,more » which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).« less

  17. Historical remarks on exponential product and quantum analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Masuo

    2015-03-10

    The exponential product formula [1, 2] was substantially introduced in physics by the present author [2]. Its systematic applications to quantum Monte Carlo Methods [3] were preformed [4, 5] first in 1977. Many interesting applications [6] of the quantum-classical correspondence (namely S-T transformation) have been reported. Systematic higher-order decomposition formulae were also discovered by the present author [7-11], using the recursion scheme [7, 9]. Physically speaking, these exponential product formulae play a conceptual role of separation of procedures [3,14]. Mathematical aspects of these formulae have been integrated in quantum analysis [15], in which non-commutative differential calculus is formulated and amore » general quantum Taylor expansion formula is given. This yields many useful operator expansion formulae such as the Feynman expansion formula and the resolvent expansion. Irreversibility and entropy production are also studied using quantum analysis [15].« less

  18. Hurwitz Algebras and the Octonion Algebra

    NASA Astrophysics Data System (ADS)

    Burdik, Čestmir; Catto, Sultan

    2018-02-01

    We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.

  19. Quantum equivalence of f (R) gravity and scalar-tensor theories in the Jordan and Einstein frames

    NASA Astrophysics Data System (ADS)

    Ohta, Nobuyoshi

    2018-03-01

    The f(R) gravity and scalar-tensor theory are known to be equivalent at the classical level. We study if this equivalence is valid at the quantum level. There are two descriptions of the scalar-tensor theory in the Jordan and Einstein frames. It is shown that these three formulations of the theories give the same determinant or effective action on shell, and thus they are equivalent at the quantum one-loop level on shell in arbitrary dimensions. We also compute the one-loop divergence in f(R) gravity on an Einstein space.

  20. The quantum N-body problem in the mean-field and semiclassical regime

    NASA Astrophysics Data System (ADS)

    Golse, François

    2018-04-01

    The present work discusses the mean-field limit for the quantum N-body problem in the semiclassical regime. More precisely, we establish a convergence rate for the mean-field limit which is uniform as the ratio of Planck constant to the action of the typical single particle tends to zero. This convergence rate is formulated in terms of a quantum analogue of the quadratic Monge-Kantorovich or Wasserstein distance. This paper is an account of some recent collaboration with C. Mouhot, T. Paul and M. Pulvirenti. This article is part of the themed issue `Hilbert's sixth problem'.

  1. Variational method for nonconservative field theories: Formulation and two PT-symmetric case examples

    NASA Astrophysics Data System (ADS)

    Restrepo, Juan; Ciuti, Cristiano; Favero, Ivan

    2014-01-01

    This Letter investigates a hybrid quantum system combining cavity quantum electrodynamics and optomechanics. The Hamiltonian problem of a photon mode coupled to a two-level atom via a Jaynes-Cummings coupling and to a mechanical mode via radiation pressure coupling is solved analytically. The atom-cavity polariton number operator commutes with the total Hamiltonian leading to an exact description in terms of tripartite atom-cavity-mechanics polarons. We demonstrate the possibility to obtain cooling of mechanical motion at the single-polariton level and describe the peculiar quantum statistics of phonons in such an unconventional regime.

  2. Vector-mean-field theory of the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Rejaei, B.; Beenakker, C. W. J.

    1992-12-01

    A mean-field theory of the fractional quantum Hall effect is formulated based on the adiabatic principle of Greiter and Wilczek. The theory is tested on known bulk properties (excitation gap, fractional charge, and statistics), and then applied to a confined region in a two-dimensional electron gas (quantum dot). For a small number N of electrons in the dot, the exact ground-state energy has cusps at the same angular momentum values as the mean-field theory. For large N, Wen's algebraic decay of the probability for resonant tunneling through the dot is reproduced, albeit with a different exponent.

  3. Irreconcilable difference between quantum walks and adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.; Meyer, David A.

    2016-06-01

    Continuous-time quantum walks and adiabatic quantum evolution are two general techniques for quantum computing, both of which are described by Hamiltonians that govern their evolutions by Schrödinger's equation. In the former, the Hamiltonian is fixed, while in the latter, the Hamiltonian varies with time. As a result, their formulations of Grover's algorithm evolve differently through Hilbert space. We show that this difference is fundamental; they cannot be made to evolve along each other's path without introducing structure more powerful than the standard oracle for unstructured search. For an adiabatic quantum evolution to evolve like the quantum walk search algorithm, it must interpolate between three fixed Hamiltonians, one of which is complex and introduces structure that is stronger than the oracle for unstructured search. Conversely, for a quantum walk to evolve along the path of the adiabatic search algorithm, it must be a chiral quantum walk on a weighted, directed star graph with structure that is also stronger than the oracle for unstructured search. Thus, the two techniques, although similar in being described by Hamiltonians that govern their evolution, compute by fundamentally irreconcilable means.

  4. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  5. Quantum gravity from noncommutative spacetime

    NASA Astrophysics Data System (ADS)

    Lee, Jungjai; Yang, Hyun Seok

    2014-12-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative ★-algebra) of quantum gravity.

  6. Quantum Rényi relative entropies affirm universality of thermodynamics.

    PubMed

    Misra, Avijit; Singh, Uttam; Bera, Manabendra Nath; Rajagopal, A K

    2015-10-01

    We formulate a complete theory of quantum thermodynamics in the Rényi entropic formalism exploiting the Rényi relative entropies, starting from the maximum entropy principle. In establishing the first and second laws of quantum thermodynamics, we have correctly identified accessible work and heat exchange in both equilibrium and nonequilibrium cases. The free energy (internal energy minus temperature times entropy) remains unaltered, when all the entities entering this relation are suitably defined. Exploiting Rényi relative entropies we have shown that this "form invariance" holds even beyond equilibrium and has profound operational significance in isothermal process. These results reduce to the Gibbs-von Neumann results when the Rényi entropic parameter α approaches 1. Moreover, it is shown that the universality of the Carnot statement of the second law is the consequence of the form invariance of the free energy, which is in turn the consequence of maximum entropy principle. Further, the Clausius inequality, which is the precursor to the Carnot statement, is also shown to hold based on the data processing inequalities for the traditional and sandwiched Rényi relative entropies. Thus, we find that the thermodynamics of nonequilibrium state and its deviation from equilibrium together determine the thermodynamic laws. This is another important manifestation of the concepts of information theory in thermodynamics when they are extended to the quantum realm. Our work is a substantial step towards formulating a complete theory of quantum thermodynamics and corresponding resource theory.

  7. Functional Renormalization Group Flows on Friedman-Lemaître-Robertson-Walker backgrounds

    NASA Astrophysics Data System (ADS)

    Platania, Alessia; Saueressig, Frank

    2018-06-01

    We revisit the construction of the gravitational functional renormalization group equation tailored to the Arnowitt-Deser-Misner formulation emphasizing its connection to the covariant formulation. The results obtained from projecting the renormalization group flow onto the Einstein-Hilbert action are reviewed in detail and we provide a novel example illustrating how the formalism may be connected to the causal dynamical triangulations approach to quantum gravity.

  8. Coherence and measurement in quantum thermodynamics

    PubMed Central

    Kammerlander, P.; Anders, J.

    2016-01-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503

  9. Coherence and measurement in quantum thermodynamics.

    PubMed

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  10. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min

    1990-12-01

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  11. Coherence and measurement in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Kammerlander, P.; Anders, J.

    2016-02-01

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  12. Control Improvement for Jump-Diffusion Processes with Applications to Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baeuerle, Nicole, E-mail: nicole.baeuerle@kit.edu; Rieder, Ulrich, E-mail: ulrich.rieder@uni-ulm.de

    2012-02-15

    We consider stochastic control problems with jump-diffusion processes and formulate an algorithm which produces, starting from a given admissible control {pi}, a new control with a better value. If no improvement is possible, then {pi} is optimal. Such an algorithm is well-known for discrete-time Markov Decision Problems under the name Howard's policy improvement algorithm. The idea can be traced back to Bellman. Here we show with the help of martingale techniques that such an algorithm can also be formulated for stochastic control problems with jump-diffusion processes. As an application we derive some interesting results in financial portfolio optimization.

  13. On the self-interference in electron scattering: Copenhagen, Bohmian and geometrical interpretations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Tavernelli, Ivano

    2018-06-01

    Self-interference embodies the essence of the particle-wave formulation of quantum mechanics (QM). According to the Copenhagen interpretation of QM, self-interference by a double-slit requires a large transverse coherence of the incident wavepacket such that it covers the separation between the slits. Bohmian dynamics provides a first step in the separation of the particle-wave character of matter by introducing deterministic trajectories guided by a pilot wave that follows the time-dependent Schrödinger equation. In this work, I present a new description of the phenomenon of self-interference using the geometrical formulation of QM introduced in Tavernelli (2016). In particular, this formalism removes the need for the concept of wavefunction collapse in the interpretation of the act of measurement i.e., the emergence of the classical world. The three QM formulations (Schrödinger, Bohmian, and geometrical) are applied to the description of the scattering of a free electron by a hydrogen atom and a double-slit. The corresponding interpretations of self-interference are compared and discussed.

  14. Creating New Economic Incentives for Repurposing Generic Drugs for Unsolved Diseases Using Social Finance.

    PubMed

    Bloom, Bruce E

    2015-12-01

    Repurposing research improves patient lives by taking drugs approved for one disease and clinically testing them to create a treatment for a different disease. Repurposing drugs that are generic, inexpensive, and widely available and that can be taken in their current dosage and formulation in the new indication provide a quick, affordable, and effective way to create "new" treatments. However, generic drug repurposing often provides no profit potential, and so there is no economic incentive for industry to pursue this, and philanthropy and government funds are often insufficient. One way to create new economic incentive for the repurposing of generic drugs is through social finance. This perspective describes how social finance can create a new economic incentive by using a social impact bond, or similar financial structure, to repay for-profit investors who fund the repurposing research from the proceeds of healthcare cost reductions generated when these affordable, effective, and widely available repurposed therapies improve healthcare outcomes.

  15. Bulk locality and quantum error correction in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Almheiri, Ahmed; Dong, Xi; Harlow, Daniel

    2015-04-01

    We point out a connection between the emergence of bulk locality in AdS/CFT and the theory of quantum error correction. Bulk notions such as Bogoliubov transformations, location in the radial direction, and the holographic entropy bound all have natural CFT interpretations in the language of quantum error correction. We also show that the question of whether bulk operator reconstruction works only in the causal wedge or all the way to the extremal surface is related to the question of whether or not the quantum error correcting code realized by AdS/CFT is also a "quantum secret sharing scheme", and suggest a tensor network calculation that may settle the issue. Interestingly, the version of quantum error correction which is best suited to our analysis is the somewhat nonstandard "operator algebra quantum error correction" of Beny, Kempf, and Kribs. Our proposal gives a precise formulation of the idea of "subregion-subregion" duality in AdS/CFT, and clarifies the limits of its validity.

  16. Contextual Advantage for State Discrimination

    NASA Astrophysics Data System (ADS)

    Schmid, David; Spekkens, Robert W.

    2018-02-01

    Finding quantitative aspects of quantum phenomena which cannot be explained by any classical model has foundational importance for understanding the boundary between classical and quantum theory. It also has practical significance for identifying information processing tasks for which those phenomena provide a quantum advantage. Using the framework of generalized noncontextuality as our notion of classicality, we find one such nonclassical feature within the phenomenology of quantum minimum-error state discrimination. Namely, we identify quantitative limits on the success probability for minimum-error state discrimination in any experiment described by a noncontextual ontological model. These constraints constitute noncontextuality inequalities that are violated by quantum theory, and this violation implies a quantum advantage for state discrimination relative to noncontextual models. Furthermore, our noncontextuality inequalities are robust to noise and are operationally formulated, so that any experimental violation of the inequalities is a witness of contextuality, independently of the validity of quantum theory. Along the way, we introduce new methods for analyzing noncontextuality scenarios and demonstrate a tight connection between our minimum-error state discrimination scenario and a Bell scenario.

  17. No Quantum Realization of Extremal No-Signaling Boxes

    NASA Astrophysics Data System (ADS)

    Ramanathan, Ravishankar; Tuziemski, Jan; Horodecki, Michał; Horodecki, Paweł

    2016-07-01

    The study of quantum correlations is important for fundamental reasons as well as for quantum communication and information processing tasks. On the one hand, it is of tremendous interest to derive the correlations produced by measurements on separated composite quantum systems from within the set of all correlations obeying the no-signaling principle of relativity, by means of information-theoretic principles. On the other hand, an important ongoing research program concerns the formulation of device-independent cryptographic protocols based on quantum nonlocal correlations for the generation of secure keys, and the amplification and expansion of random bits against general no-signaling adversaries. In both these research programs, a fundamental question arises: Can any measurements on quantum states realize the correlations present in pure extremal no-signaling boxes? Here, we answer this question in full generality showing that no nontrivial (not local realistic) extremal boxes of general no-signaling theories can be realized in quantum theory. We then explore some important consequences of this fact.

  18. Optimum testing of multiple hypotheses in quantum detection theory

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Kennedy, R. S.; Lax, M.

    1975-01-01

    The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.

  19. Quantum mechanical streamlines. I - Square potential barrier

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  20. Can the United States afford a lunar base

    NASA Technical Reports Server (NTRS)

    Keaton, Paul W.

    1988-01-01

    Establishing a lunar base will require steady funding for a decade or two. The question addressed is whether such a large space project is affordable at this time. The relevant facts and methodology are presented so that the reader may formulate independent answers. It is shown that a permanent lunar base can be financed without increasing NASA's historical budgetary trend.

  1. A Comparative Analysis of the Minuteman Education Programs as Currently Offered at Six SAC Bases.

    DTIC Science & Technology

    1980-06-01

    Principles of Marketing 3 Business Statistics 3 Business Law 3 Management Total... Principles of Marketing 3 Mathematics Methods I Total prerequisite hours 26 Required Graduate Courses Policy Formulation and Administration 3 Management...Business and Economic Statistics 3 Intermediate Business and Economic Statistics 3 Principles of Management 3 Corporation Finance 3 Principles of Marketing

  2. Non-hermitian quantum thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  3. Non-hermitian quantum thermodynamics

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  4. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States

    NASA Astrophysics Data System (ADS)

    Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas

    2017-11-01

    Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.

  5. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States.

    PubMed

    Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas

    2017-11-03

    Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.

  6. On the theory of quantum measurement

    NASA Technical Reports Server (NTRS)

    Haus, Hermann A.; Kaertner, Franz X.

    1994-01-01

    Many so called paradoxes of quantum mechanics are clarified when the measurement equipment is treated as a quantized system. Every measurement involves nonlinear processes. Self consistent formulations of nonlinear quantum optics are relatively simple. Hence optical measurements, such as the quantum nondemolition (QND) measurement of photon number, are particularly well suited for such a treatment. It shows that the so called 'collapse of the wave function' is not needed for the interpretation of the measurement process. Coherence of the density matrix of the signal is progressively reduced with increasing accuracy of the photon number determination. If the QND measurement is incorporated into the double slit experiment, the contrast ratio of the fringes is found to decrease with increasing information on the photon number in one of the two paths.

  7. Ensemble Teleportation

    NASA Astrophysics Data System (ADS)

    Krüger, Thomas

    2006-05-01

    The possibility of teleportation is by sure the most interesting consequence of quantum non-separability. So far, however, teleportation schemes have been formulated by use of state vectors and considering individual entities only. In the present article the feasibility of teleportation is examined on the basis of the rigorous ensemble interpretation of quantum mechanics (not to be confused with a mere treatment of noisy EPR pairs) leading to results which are unexpected from the usual point of view.

  8. Historical sources about diseases, death and embalming regarding the family of Jean Antoine Michel Agar, Minister of Finance of Gioacchino Murat.

    PubMed

    Marinozzi, S; Gazzaniga, V; Giuffra, V; Fornaciari, G

    2011-06-01

    Among the mummies preserved in the Basilica of San Domenico Maggiore in Naples, there are the bodies of the wife and three children of Jean Antoine Michel Agar, Minister of Finance of Naple's Kingdom during the Monarchy of Joachim Murat (1808-1815). Between 1983 and 1987 paleopathological analyses were performed; in particular, X-ray examination allowed investigation of the health status of the Agar family members and reconstruction of the embalming processes used to preserve the bodies. In addition, an analysis of the historical and archival documents was carried out, to formulate hypotheses about the causes of death, demonstrating how these sources could become important instruments to obtain diagnoses and pathological histories.

  9. Computation and analysis for a constrained entropy optimization problem in finance

    NASA Astrophysics Data System (ADS)

    He, Changhong; Coleman, Thomas F.; Li, Yuying

    2008-12-01

    In [T. Coleman, C. He, Y. Li, Calibrating volatility function bounds for an uncertain volatility model, Journal of Computational Finance (2006) (submitted for publication)], an entropy minimization formulation has been proposed to calibrate an uncertain volatility option pricing model (UVM) from market bid and ask prices. To avoid potential infeasibility due to numerical error, a quadratic penalty function approach is applied. In this paper, we show that the solution to the quadratic penalty problem can be obtained by minimizing an objective function which can be evaluated via solving a Hamilton-Jacobian-Bellman (HJB) equation. We prove that the implicit finite difference solution of this HJB equation converges to its viscosity solution. In addition, we provide computational examples illustrating accuracy of calibration.

  10. Connes distance function on fuzzy sphere and the connection between geometry and statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devi, Yendrembam Chaoba, E-mail: chaoba@bose.res.in; Chakraborty, Biswajit, E-mail: biswajit@bose.res.in; Prajapat, Shivraj, E-mail: shraprajapat@gmail.com

    An algorithm to compute Connes spectral distance, adaptable to the Hilbert-Schmidt operatorial formulation of non-commutative quantum mechanics, was developed earlier by introducing the appropriate spectral triple and used to compute infinitesimal distances in the Moyal plane, revealing a deep connection between geometry and statistics. In this paper, using the same algorithm, the Connes spectral distance has been calculated in the Hilbert-Schmidt operatorial formulation for the fuzzy sphere whose spatial coordinates satisfy the su(2) algebra. This has been computed for both the discrete and the Perelemov’s SU(2) coherent state. Here also, we get a connection between geometry and statistics which ismore » shown by computing the infinitesimal distance between mixed states on the quantum Hilbert space of a particular fuzzy sphere, indexed by n ∈ ℤ/2.« less

  11. A comparison of approaches for finding minimum identifying codes on graphs

    NASA Astrophysics Data System (ADS)

    Horan, Victoria; Adachi, Steve; Bak, Stanley

    2016-05-01

    In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However, many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using MATLAB, an adiabatic quantum optimization approach using a D-Wave quantum annealing processor, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers. Each of these methods requires the problem to be formulated in a unique manner. In this paper, we address the challenges of computing solutions to this NP-hard problem with respect to each of these methods.

  12. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  13. Probability distributions for Markov chain based quantum walks

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Liu, Chaobin; Venegas-Andraca, Salvador E.

    2018-01-01

    We analyze the probability distributions of the quantum walks induced from Markov chains by Szegedy (2004). The first part of this paper is devoted to the quantum walks induced from finite state Markov chains. It is shown that the probability distribution on the states of the underlying Markov chain is always convergent in the Cesaro sense. In particular, we deduce that the limiting distribution is uniform if the transition matrix is symmetric. In the case of a non-symmetric Markov chain, we exemplify that the limiting distribution of the quantum walk is not necessarily identical with the stationary distribution of the underlying irreducible Markov chain. The Szegedy scheme can be extended to infinite state Markov chains (random walks). In the second part, we formulate the quantum walk induced from a lazy random walk on the line. We then obtain the weak limit of the quantum walk. It is noted that the current quantum walk appears to spread faster than its counterpart-quantum walk on the line driven by the Grover coin discussed in literature. The paper closes with an outlook on possible future directions.

  14. Private health insurance in South Korea: an international comparison.

    PubMed

    Shin, Jaeun

    2012-11-01

    The goal of this study is to present the historical and policy background of the expansion of private health insurance in South Korea in the context of the National Health Insurance (NHI) system, and to provide empirical evidence on whether the increased role of private health insurance may counterbalance government financing, social security contributions, out-of-pocket payments, and help stabilize total health care spending. Using OECD Health Data 2011, we used a fixed effects model estimation. In this model, we allow error terms to be serially correlated over time in order to capture the association of private health insurance financing with three other components of health care financing and total health care spending. The descriptive observation of the South Korean health care financing shows that social security contributions are relatively limited in South Korea, implying that high out-of-pocket payments may be alleviated through the enhancement of NHI benefit coverage and an increase in social security contributions. Estimation results confirm that private health insurance financing is unlikely to reduce government spending on health care and social security contributions. We find evidence that out-of-pocket payments may be offset by private health insurance financing, but to a limited degree. Private health insurance financing is found to have a statistically significant positive association with total spending on health care. This indicates that the duplicated coverage effect on service demand may cancel out the potential efficiency gain from market initiatives driven by the active involvement of private health insurance. This study finds little evidence for the benefit of private insurance initiatives in coping with the fiscal challenges of the South Korean NHI program. Further studies on the managerial interplay among public and private insurers and on behavioral responses of providers and patients to a given structure of private-public financing are warranted to formulate the adequate balance between private health insurance and publicly funded universal coverage. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. On emissions trading, toxic debt and the Australian power market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simshauser, Paul

    2009-03-15

    Implementation of emissions trading will have profound effects on the financial stability of coal generators. While the impact on equity capital is well understood, the potential fallout in the market for project finance is not. During the current global financial crisis, the form and quantum of transitional assistance to coal generators will be crucial to ensure ongoing participation of domestic and foreign project banks in the power markets. (author)

  16. A pyrene formulation for fluorometric visualization of latent fingermarks

    NASA Astrophysics Data System (ADS)

    Kumari Sharma, Kirti; Harsha Kannikanti, Gavash; Ramachandra Rao Baggi, Tulsidas; Rao Vaidya, Jayathirtha

    2018-07-01

    Present work is conducted to demonstrate the use of pyrene for the development of latent fingermarks. Pyrene formulation with binders can be efficiently used for developing latent fingermarks on porous, non-porous and semi-porous surfaces. The effectiveness of pyrene formulation for the detection of latent fingermarks present on a large variety of objects was systematically and comparatively carried out. To optimize the working formulation, studies were carried out using different pyrene concentrations followed by various substrate study, time dependent study, temperature study, depleted fingermark development and the stability of the proposed formulation. When illuminated at 366 nm, the developed fingermarks showed clear, high contrast primary, secondary and tertiary level ridge details. This work reveals that the fluorescent molecules having high quantum yield are a versatile fluorescent label and can find their applications in forensic latent fingermark development.

  17. Interdisciplinary and physics challenges of network theory

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra

    2015-09-01

    Network theory has unveiled the underlying structure of complex systems such as the Internet or the biological networks in the cell. It has identified universal properties of complex networks, and the interplay between their structure and dynamics. After almost twenty years of the field, new challenges lie ahead. These challenges concern the multilayer structure of most of the networks, the formulation of a network geometry and topology, and the development of a quantum theory of networks. Making progress on these aspects of network theory can open new venues to address interdisciplinary and physics challenges including progress on brain dynamics, new insights into quantum technologies, and quantum gravity.

  18. EPR, Bell, and quantum locality

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2011-09-01

    Maudlin has claimed that no local theory can reproduce the predictions of standard quantum mechanics that violate Bell's inequality for Bohm's version (two spin-half particles in a singlet state) of the Einstein-Podolsky-Rosen problem. It is argued that, on the contrary, standard quantum mechanics itself is a counterexample to Maudlin's claim, because it is local in the appropriate sense (measurements at one place do not influence what occurs elsewhere there) when formulated using consistent principles in place of the inconsistent appeals to "measurement" found in current textbooks. This argument sheds light on the claim of Blaylock that counterfactual definiteness is an essential ingredient in derivations of Bell's inequality.

  19. Quantum Field Theories Coupled to Supergravity: AdS/CFT and Local Couplings

    NASA Astrophysics Data System (ADS)

    Große, Johannes

    2007-11-01

    This article is based on my PhD thesis and covers the following topics: Holographic meson spectra in a dilaton flow background, the mixed Coulomb-Higgs branch in terms of instantons on D7 branes, and a dual description of heavy-light mesons. Moreover, in a second part the conformal anomaly of four dimensional supersymmetric quantum field theories coupled to classical N=1 supergravity is explored in a superfield formulation. The complete basis for the anomaly and consistency conditions, which arise from cohomological considerations, are given. Possible implications for an extension of Zamolodchikov's c-theorem to four dimensional supersymmetric quantum field theories are discussed.

  20. Cosmic Strings Stabilized by Quantum Fluctuations

    NASA Astrophysics Data System (ADS)

    Weigel, H.

    2017-03-01

    Fermion quantum corrections to the energy of cosmic strings are computed. A number of rather technical tools are needed to formulate this correction, and isospin and gauge invariance are employed to verify consistency of these tools. These corrections must also be included when computing the energy of strings that are charged by populating fermion bound states in its background. It is found that charged strings are dynamically stabilized in theories similar to the standard model of particle physics.

  1. Quantum mechanics on space with SU(2) fuzziness

    NASA Astrophysics Data System (ADS)

    Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad

    2009-04-01

    Quantum mechanics of models is considered which are constructed in spaces with Lie algebra type commutation relations between spatial coordinates. The case is specialized to that of the group SU(2), for which the formulation of the problem via the Euler parameterization is also presented. SU(2)-invariant systems are discussed, and the corresponding eigenvalue problem for the Hamiltonian is reduced to an ordinary differential equation, as is the case with such models on commutative spaces.

  2. Consistent Discretization and Canonical, Classical and Quantum Regge Calculus

    NASA Astrophysics Data System (ADS)

    Gambini, Rodolfo; Pullin, Jorge

    We apply the "consistent discretization" technique to the Regge action for (Euclidean and Lorentzian) general relativity in arbitrary number of dimensions. The result is a well-defined canonical theory that is free of constraints and where the dynamics is implemented as a canonical transformation. In the Lorentzian case, the framework appears to be naturally free of the "spikes" that plague traditional formulations. It also provides a well-defined recipe for determining the integration measure for quantum Regge calculus.

  3. Relations between nonlinear Riccati equations and other equations in fundamental physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-10-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.

  4. Towards conformal loop quantum gravity

    NASA Astrophysics Data System (ADS)

    H-T Wang, Charles

    2006-03-01

    A discussion is given of recent developments in canonical gravity that assimilates the conformal analysis of gravitational degrees of freedom. The work is motivated by the problem of time in quantum gravity and is carried out at the metric and the triad levels. At the metric level, it is shown that by extending the Arnowitt-Deser-Misner (ADM) phase space of general relativity (GR), a conformal form of geometrodynamics can be constructed. In addition to the Hamiltonian and Diffeomorphism constraints, an extra first class constraint is introduced to generate conformal transformations. This phase space consists of York's mean extrinsic curvature time, conformal three-metric and their momenta. At the triad level, the phase space of GR is further enlarged by incorporating spin-gauge as well as conformal symmetries. This leads to a canonical formulation of GR using a new set of real spin connection variables. The resulting gravitational constraints are first class, consisting of the Hamiltonian constraint and the canonical generators for spin-gauge and conformorphism transformations. The formulation has a remarkable feature of being parameter-free. Indeed, it is shown that a conformal parameter of the Barbero-Immirzi type can be absorbed by the conformal symmetry of the extended phase space. This gives rise to an alternative approach to loop quantum gravity that addresses both the conceptual problem of time and the technical problem of functional calculus in quantum gravity.

  5. Quantum mechanics of conformally and minimally coupled Friedmann-Robertson-Walker cosmology

    NASA Astrophysics Data System (ADS)

    Kim, Sang Pyo

    1992-10-01

    The expansion method by a time-dependent basis of the eigenfunctions for the space-coordinate-dependent sub-Hamiltonian is one of the most natural frameworks for quantum systems, relativistic as well as nonrelativistic. The complete set of wave functions is found in the product integral formulation, whose constants of integration are fixed by Cauchy initial data. The wave functions for the Friedmann-Robertson-Walker (FRW) cosmology conformally and minimally coupled to a scalar field with a power-law potential or a polynomial potential are expanded in terms of the eigenfunctions of the scalar field sub-Hamiltonian part. The resultant gravitational field part which is an ``intrinsic'' timelike variable-dependent matrix-valued differential equation is solved again in the product integral formulation. There are classically allowed regions for the ``intrinsic'' timelike variable depending on the scalar field quantum numbers and these regions increase accordingly as the quantum numbers increase. For a fixed large three-geometry the wave functions corresponding to the low excited (small quantum number) states of the scalar field are exponentially damped or diverging and the wave functions corresponding to the high excited (large quantum number) states are still oscillatory but become eventually exponential as the three-geometry becomes larger. Furthermore, a proposal is advanced that the wave functions exponentially damped for a large three-geometry may be interpreted as ``tunneling out'' wave functions into, and the wave functions exponentially diverging as ``tunneling in'' from, different universes with the same or different topologies, the former being interpreted as the recently proposed Hawking-Page wormhole wave functions. It is observed that there are complex as well as Euclidean actions depending on the quantum numbers of the scalar field part outside the classically allowed region both of the gravitational and scalar fields, suggesting the usefulness of complex geometry and complex trajectories. From the most general wave functions for the FRW cosmology conformally coupled to scalar field, the boundary conditions for the wormhole wave functions are modified so that the modulus of wave functions, instead of the wave functions themselves, should be exponentially damped for a large three-geometry and be regular up to some negative power of the three-geometry as the three-geometry collapses. The wave functions for the FRW cosmology minimally coupled to an inhomogeneous scalar field are similarly found in the product integral formulation. The role of a large number of the inhomogeneous modes of the scalar field is not only to increase the classically allowed regions for the gravitational part but also to provide a mechanism of the decoherence of quantum interferences between the different sizes of the universe.

  6. Entanglement-assisted quantum feedback control

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  7. Quantum theory for 1D X-ray free electron laser

    DOE PAGES

    Anisimov, Petr Mikhaylovich

    2017-09-19

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classicalmore » theory, which allows for immediate transfer of knowledge between the two regimes. In conclusion, we exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.« less

  8. Quantum theory for 1D X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Anisimov, Petr M.

    2018-06-01

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classical theory, which allows for immediate transfer of knowledge between the two regimes. We exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.

  9. Coherent states for quantum compact groups

    NASA Astrophysics Data System (ADS)

    Jurĉo, B.; Ŝťovíĉek, P.

    1996-12-01

    Coherent states are introduced and their properties are discussed for simple quantum compact groups A l, Bl, Cl and D l. The multiplicative form of the canonical element for the quantum double is used to introduce the holomorphic coordinates on a general quantum dressing orbit. The coherent state is interpreted as a holomorphic function on this orbit with values in the carrier Hilbert space of an irreducible representation of the corresponding quantized enveloping algebra. Using Gauss decomposition, the commutation relations for the holomorphic coordinates on the dressing orbit are derived explicitly and given in a compact R-matrix formulation (generalizing this way the q-deformed Grassmann and flag manifolds). The antiholomorphic realization of the irreducible representations of a compact quantum group (the analogue of the Borel-Weil construction) is described using the concept of coherent state. The relation between representation theory and non-commutative differential geometry is suggested.

  10. Experimental ladder proof of Hardy's nonlocality for high-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Chen, Lixiang; Zhang, Wuhong; Wu, Ziwen; Wang, Jikang; Fickler, Robert; Karimi, Ebrahim

    2017-08-01

    Recent years have witnessed a rapidly growing interest in high-dimensional quantum entanglement for fundamental studies as well as towards novel applications. Therefore, the ability to verify entanglement between physical qudits, d -dimensional quantum systems, is of crucial importance. To show nonclassicality, Hardy's paradox represents "the best version of Bell's theorem" without using inequalities. However, so far it has only been tested experimentally for bidimensional vector spaces. Here, we formulate a theoretical framework to demonstrate the ladder proof of Hardy's paradox for arbitrary high-dimensional systems. Furthermore, we experimentally demonstrate the ladder proof by taking advantage of the orbital angular momentum of high-dimensionally entangled photon pairs. We perform the ladder proof of Hardy's paradox for dimensions 3 and 4, both with the ladder up to the third step. Our paper paves the way towards a deeper understanding of the nature of high-dimensionally entangled quantum states and may find applications in quantum information science.

  11. Padé spectrum decompositions of quantum distribution functions and optimal hierarchical equations of motion construction for quantum open systems

    NASA Astrophysics Data System (ADS)

    Hu, Jie; Luo, Meng; Jiang, Feng; Xu, Rui-Xue; Yan, YiJing

    2011-06-01

    Padé spectrum decomposition is an optimal sum-over-poles expansion scheme of Fermi function and Bose function [J. Hu, R. X. Xu, and Y. J. Yan, J. Chem. Phys. 133, 101106 (2010)], 10.1063/1.3484491. In this work, we report two additional members to this family, from which the best among all sum-over-poles methods could be chosen for different cases of application. Methods are developed for determining these three Padé spectrum decomposition expansions at machine precision via simple algorithms. We exemplify the applications of present development with optimal construction of hierarchical equations-of-motion formulations for nonperturbative quantum dissipation and quantum transport dynamics. Numerical demonstrations are given for two systems. One is the transient transport current to an interacting quantum-dots system, together with the involved high-order co-tunneling dynamics. Another is the non-Markovian dynamics of a spin-boson system.

  12. Cyber Adversary Dynamics

    DTIC Science & Technology

    2013-02-01

    that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation ...preparation. Berk , V. H., Cybenko, G., Souza, I. G. D., & Murphy, J. P. (2012, January). “Managing Malicious Insider Risk through BANDIT.” In System... finances , human resources for example; • Tactics – Short term goals and techniques to achieve those goals; • Strategy – Long term outcomes and

  13. Interest Rates and Coupon Bonds in Quantum Finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2009-09-01

    1. Synopsis; 2. Interest rates and coupon bonds; 3. Options and option theory; 4. Interest rate and coupon bond options; 5. Quantum field theory of bond forward interest rates; 6. Libor Market Model of interest rates; 7. Empirical analysis of forward interest rates; 8. Libor Market Model of interest rate options; 9. Numeraires for bond forward interest rates; 10. Empirical analysis of interest rate caps; 11. Coupon bond European and Asian options; 12. Empirical analysis of interest rate swaptions; 13. Correlation of coupon bond options; 14. Hedging interest rate options; 15. Interest rate Hamiltonian and option theory; 16. American options for coupon bonds and interest rates; 17. Hamiltonian derivation of coupon bond options; Appendixes; Glossaries; List of symbols; Reference; Index.

  14. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. I. Theory

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2007-01-01

    European options on coupon bonds are studied in a quantum field theory model of forward interest rates. Swaptions are briefly reviewed. An approximation scheme for the coupon bond option price is developed based on the fact that the volatility of the forward interest rates is a small quantity. The field theory for the forward interest rates is Gaussian, but when the payoff function for the coupon bond option is included it makes the field theory nonlocal and nonlinear. A perturbation expansion using Feynman diagrams gives a closed form approximation for the price of coupon bond option. A special case of the approximate bond option is shown to yield the industry standard one-factor HJM formula with exponential volatility.

  15. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. I. Theory.

    PubMed

    Baaquie, Belal E

    2007-01-01

    European options on coupon bonds are studied in a quantum field theory model of forward interest rates. Swaptions are briefly reviewed. An approximation scheme for the coupon bond option price is developed based on the fact that the volatility of the forward interest rates is a small quantity. The field theory for the forward interest rates is Gaussian, but when the payoff function for the coupon bond option is included it makes the field theory nonlocal and nonlinear. A perturbation expansion using Feynman diagrams gives a closed form approximation for the price of coupon bond option. A special case of the approximate bond option is shown to yield the industry standard one-factor HJM formula with exponential volatility.

  16. Path-integral simulation of solids.

    PubMed

    Herrero, C P; Ramírez, R

    2014-06-11

    The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity.

  17. Reliability of analog quantum simulation

    DOE PAGES

    Sarovar, Mohan; Zhang, Jun; Zeng, Lishan

    2017-01-03

    Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these twomore » points of view is a critical step in making the most of this promising technology. In this paper we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. Finally, to demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.« less

  18. Quantum geometric phase in Majorana's stellar representation: mapping onto a many-body Aharonov-Bohm phase.

    PubMed

    Bruno, Patrick

    2012-06-15

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.

  19. Quantum Geometric Phase in Majorana's Stellar Representation: Mapping onto a Many-Body Aharonov-Bohm Phase

    NASA Astrophysics Data System (ADS)

    Bruno, Patrick

    2012-06-01

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.

  20. Quantum corrections to Bekenstein-Hawking black hole entropy and gravity partition functions

    NASA Astrophysics Data System (ADS)

    Bytsenko, A. A.; Tureanu, A.

    2013-08-01

    Algebraic aspects of the computation of partition functions for quantum gravity and black holes in AdS3 are discussed. We compute the sub-leading quantum corrections to the Bekenstein-Hawking entropy. It is shown that the quantum corrections to the classical result can be included systematically by making use of the comparison with conformal field theory partition functions, via the AdS3/CFT2 correspondence. This leads to a better understanding of the role of modular and spectral functions, from the point of view of the representation theory of infinite-dimensional Lie algebras. Besides, the sum of known quantum contributions to the partition function can be presented in a closed form, involving the Patterson-Selberg spectral function. These contributions can be reproduced in a holomorphically factorized theory whose partition functions are associated with the formal characters of the Virasoro modules. We propose a spectral function formulation for quantum corrections to the elliptic genus from supergravity states.

  1. Analogue of the quantum Hanle effect and polarization conversion in non-Hermitian plasmonic metamaterials.

    PubMed

    Ginzburg, Pavel; Rodríguez-Fortuño, Francisco J; Martínez, Alejandro; Zayats, Anatoly V

    2012-12-12

    The Hanle effect, one of the first manifestations of quantum theory introducing the concept of coherent superposition between pure states, plays a key role in numerous aspects of science varying from applicative spectroscopy to fundamental astrophysical investigations. Optical analogues of quantum effects help to achieve deeper understanding of quantum phenomena and, in turn, to develop cross-disciplinary approaches to realizations of new applications in photonics. Here we show that metallic nanostructures can be designed to exhibit a plasmonic analogue of the quantum Hanle effect and the associated polarization rotation. In the original Hanle effect, time-reversal symmetry is broken by a static magnetic field. We achieve this by introducing dissipative level crossing of localized surface plasmons due to nonuniform losses, designed using a non-Hermitian formulation of quantum mechanics. Such artificial plasmonic "atoms" have been shown to exhibit strong circular birefringence and circular dichroism which depends on the value of loss or gain in the metal-dielectric nanostructure.

  2. Coherence, quantum Fisher information, superradiance, and entanglement as interconvertible resources

    NASA Astrophysics Data System (ADS)

    Tan, Kok Chuan; Choi, Seongjeon; Kwon, Hyukjoon; Jeong, Hyunseok

    2018-05-01

    We demonstrate that quantum Fisher information and superradiance can be formulated as coherence measures in accordance with the resource theory of coherence, thus establishing a direct link between metrological resources, superradiance, and coherence. The arguments are generalized to show that coherence may be considered as the underlying fundamental resource for any functional of state that is first of all faithful, and second, concave or linear. It is also shown that quantum Fisher information and the superradiant quantity are in fact antithetical resources in the sense that if coherence were directed to saturate one quantity, then it must come at the expense of the other. Finally, a key result of the paper is to demonstrate that coherence, quantum Fisher information, superradiant quantity, and entanglement are mutually interconvertible resources under incoherent operations.

  3. Quantum-mechanical transport equation for atomic systems.

    NASA Technical Reports Server (NTRS)

    Berman, P. R.

    1972-01-01

    A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.

  4. Gaussian-based techniques for quantum propagation from the time-dependent variational principle: Formulation in terms of trajectories of coupled classical and quantum variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalashilin, Dmitrii V.; Burghardt, Irene

    2008-08-28

    In this article, two coherent-state based methods of quantum propagation, namely, coupled coherent states (CCS) and Gaussian-based multiconfiguration time-dependent Hartree (G-MCTDH), are put on the same formal footing, using a derivation from a variational principle in Lagrangian form. By this approach, oscillations of the classical-like Gaussian parameters and oscillations of the quantum amplitudes are formally treated in an identical fashion. We also suggest a new approach denoted here as coupled coherent states trajectories (CCST), which completes the family of Gaussian-based methods. Using the same formalism for all related techniques allows their systematization and a straightforward comparison of their mathematical structuremore » and cost.« less

  5. Quantum cosmology: a review.

    PubMed

    Bojowald, Martin

    2015-02-01

    In quantum cosmology, one applies quantum physics to the whole universe. While no unique version and no completely well-defined theory is available yet, the framework gives rise to interesting conceptual, mathematical and physical questions. This review presents quantum cosmology in a new picture that tries to incorporate the importance of inhomogeneity. De-emphasizing the traditional minisuperspace view, the dynamics is rather formulated in terms of the interplay of many interacting 'microscopic' degrees of freedom that describe the space-time geometry. There is thus a close relationship with more-established systems in condensed-matter and particle physics even while the large set of space-time symmetries (general covariance) requires some adaptations and new developments. These extensions of standard methods are needed both at the fundamental level and at the stage of evaluating the theory by effective descriptions.

  6. Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes.

    PubMed

    Wang, Rulin; Zhang, Yu; Bi, Fuzhen; Frauenheim, Thomas; Chen, GuanHua; Yam, ChiYung

    2016-07-21

    Understanding of the electroluminescence (EL) mechanism in optoelectronic devices is imperative for further optimization of their efficiency and effectiveness. Here, a quantum mechanical approach is formulated for modeling the EL processes in nanoscale light emitting diodes (LED). Based on non-equilibrium Green's function quantum transport equations, interactions with the electromagnetic vacuum environment are included to describe electrically driven light emission in the devices. The presented framework is illustrated by numerical simulations of a silicon nanowire LED device. EL spectra of the nanowire device under different bias voltages are obtained and, more importantly, the radiation pattern and polarization of optical emission can be determined using the current approach. This work is an important step forward towards atomistic quantum mechanical modeling of the electrically induced optical response in nanoscale systems.

  7. Book Review:

    NASA Astrophysics Data System (ADS)

    Das, Ashok

    2007-01-01

    It is not usual for someone to write a book on someone else's Ph.D. thesis, but then Feynman was not a usual physicist. He was without doubt one of the most original physicists of the twentieth century, who has strongly influenced the developments in quantum field theory through his many ingenious contributions. Path integral approach to quantum theories is one such contribution which pervades almost all areas of physics. What is astonishing is that he developed this idea as a graduate student for his Ph.D. thesis which has been printed, for the first time, in the present book along with two other related articles. The early developments in quantum theory, by Heisenberg and Schrödinger, were based on the Hamiltonian formulation, where one starts with the Hamiltonian description of a classical system and then promotes the classical observables to noncommuting quantum operators. However, Dirac had already stressed in an article in 1932 (this article is also reproduced in the present book) that the Lagrangian is more fundamental than the Hamiltonian, at least from the point of view of relativistic invariance and he wondered how the Lagrangian may enter into the quantum description. He had developed this idea through his 'transformation matrix' theory and had even hinted on how the action of the classical theory may enter such a description. However, although the brief paper by Dirac contained the basic essential ideas, it did not fully develop the idea of a Lagrangian description in detail in the functional language. Feynman, on the other hand, was interested in the electromagnetic interactions of the electron from a completely different point of view rooted in a theory involving action-at-a-distance. His theory (along with John Wheeler) did not have a Hamiltonian description and, in order to quantize such a theory, he needed an alternative formulation of quantum mechanics. When the article by Dirac was brought to his attention, he immediately realized what he was looking for and developed fully what is known today as the path integral approach to quantum theories. Although his main motivation was in the study of theories involving the concept of action-at-a-distance, as he emphasizes in his thesis, his formulation of quantum theories applies to any theory in general. The thesis develops quite systematically and in detail all the concepts of functionals necessary for this formulation. The motivation and the physical insights are described in the brilliant 'Feynman' style. It is incredible that even at that young age, the signs of his legendary teaching style were evident in his presentation of the material in the thesis. The path integral approach is now something that every graduate student in theoretical physics is supposed to know. There are several books on the subject, even one by Feynman himself (and Hibbs). Nonetheless, the thesis provides a very good background for the way these ideas came about. The two companion articles, although available in print, also gives a complete picture of the development of this line of thinking. The helpful introductory remarks by the editor also puts things in the proper historical perspective. This book would be very helpful to anyone interested in the development of modern ideas in physics.

  8. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Cui, Ping

    The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO) systems, and its closely related solvation mode transformation of system-bath coupling Hamiltonian in general. The exact QDT of DBO systems is also used to clarify the validity of conventional QDT formulations that involve Markovian approximation. In Chapter 3, we develop three nonequivalent but all complete second-order QDT (CS-QDT) formulations. Two of them are of the conventional prescriptions in terms of time-local dissipation and memory kernel, respectively. The third one is called the correlated driving-dissipation equations of motion (CODDE). This novel CS-QDT combines the merits of the former two for its advantages in both the application and numerical implementation aspects. Also highlighted is the importance of correlated driving-dissipation effects on the dynamics of the reduced system. In Chapter 4, we construct an exact QDT formalism via the calculus on path integrals. The new theory aims at the efficient evaluation of non-Markovian dissipation beyond the weak system-bath interaction regime in the presence of time-dependent external field. By adopting exponential-like expansions for bath correlation function, hierarchical equations of motion formalism and continued fraction Liouville-space Green's function formalism are established. The latter will soon be used together with the Dyson equation technique for an efficient evaluation of non-perturbative reduced density matrix dynamics. The interplay between system-bath interaction strength, non-Markovian property, and the required level of hierarchy is also studied with the aid of simple spin-boson systems, together with the three proposed schemes to truncate the infinite hierarchy. In Chapter 5, we develop a nonperturbative theory of electron transfer (ET) in Debye solvents. The resulting exact and analytical rate expression is constructed on the basis of the aforementioned continued fraction Liouville-space Green's function formalism, together with the Dyson equation technique. Not only does it recover the celebrated Marcus' inversion and Kramers' turnover behaviors, the new theory also shows some distinct quantum solvation effects that can alter the ET mechanism. Moreover, the present theory predicts further for the ET reaction thermodynamics, such as equilibrium Gibbs free-energy and entropy, some interesting solvent-dependent features that are calling for experimental verification. In Chapter 6, we discuss the constructed QDTs, in terms of their unified mathematical structure that supports a linear dynamics space, and thus facilitates their applications to various physical problems. The involving details are exemplified with the CODDE form of QDT. As the linear space is concerned, we identify the Schrodinger versus Heisenberg picture and the forward versus backward propagation of the reduced, dissipative Liouville dynamics. For applications we discuss the reduced linear response theory and the optimal control problems, in which the correlated effects of non-Markovian dissipation and field driving are shown to be important. In Chapter 7, we turn to quantum transport, i.e., electric current through molecular or mesoscopic systems under finite applied voltage. By viewing the nonequilibrium transport setup as a quantum open system, we develop a reduced-density-matrix approach to quantum transport. The resulting current is explicitly expressed in terms of the molecular reduced density matrix by tracing out the degrees of freedom of the electrodes at finite bias and temperature. We propose a conditional quantum master equation theory, which is an extension of the conventional (or unconditional) QDT by tracing out the well-defined bath subsets individually, instead of the entire bath degrees of freedom. Both the current and the noise spectrum can be conveniently analyzed in terms of the conditional reduced density matrix dynamics. By far, the QDT (including the conditional one) has only been exploited in second-order form. A self-consistent Born approximation for the system-electrode coupling is further proposed to recover all existing nonlinear current-voltage behaviors including the nonequilibrium Kondo effect. Transport theory based on the exact QDT formalism will be developed in future. In Chapter 8, we study the quantum measurement of a qubit with a quantum-point-contact detector. On the basis of a unified quantum master equation (a form of QDT), we study the measurement-induced relaxation and dephasing of the qubit. Our treatment pays particular attention on the detailed-balance relation, which is a consequence of properly accounting for the energy exchange between the qubit and detector during the measurement process. We also derive a conditional quantum master equation for quantum measurement in general, and study the readout characteristics of the qubit measurement. Our theory is applicable to the quantum measurement at arbitrary voltage and temperature. A number of remarkable new features are found and highlighted in concern with their possible relevance to future experiments. In Chapter 9, we discuss the further development of QDT, aiming at an efficient evaluation of many-electron systems. This will be carried out by reducing the many-particle (Fermion or Boson) QDT to a single-particle one by exploring, e.g. the Wick's contraction theorem. It also results in a time-dependent density functional theory (TDDFT) for transport through complex large-scale (e.g. molecules) systems. Primary results of the TDDFT-QDT are reported. In Chapter 10, we summary the thesis, and comment and remark on the future work on both the theoretical and application aspects of QDT.

  9. Richard P. Feynman and the Feynman Diagrams

    Science.gov Websites

    available in full-text and on the Web. Documents: A Theorem and Its Application to Finite Tampers, DOE Fermi-Thomas Theory; DOE Technical Report, April 28, 1947 Mathematical Formulation of the Quantum Theory

  10. On the no-signaling approach to quantum nonlocality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Méndez, J. M., E-mail: manolo@ifisica.uaslp.mx; Urías, Jesús, E-mail: jurias@ifisica.uaslp.mx

    2015-03-15

    The no-signaling approach to nonlocality deals with separable and inseparable multiparty correlations in the same set of probability states without conflicting causality. The set of half-spaces describing the polytope of no-signaling probability states that are admitted by the most general class of Bell scenarios is formulated in full detail. An algorithm for determining the skeleton that solves the no-signaling description is developed upon a new strategy that is partially pivoting and partially incremental. The algorithm is formulated rigorously and its implementation is shown to be effective to deal with the highly degenerate no-signaling descriptions. Several applications of the algorithm asmore » a tool for the study of quantum nonlocality are mentioned. Applied to a large set of bipartite Bell scenarios, we found that the corresponding no-signaling polytopes have a striking high degeneracy that grows up exponentially with the size of the Bell scenario.« less

  11. John S. Bell's concept of local causality

    NASA Astrophysics Data System (ADS)

    Norsen, Travis

    2011-12-01

    John Stewart Bell's famous theorem is widely regarded as one of the most important developments in the foundations of physics. Yet even as we approach the 50th anniversary of Bell's discovery, its meaning and implications remain controversial. Many workers assert that Bell's theorem refutes the possibility suggested by Einstein, Podolsky, and Rosen (EPR) of supplementing ordinary quantum theory with ``hidden'' variables that might restore determinism and/or some notion of an observer-independent reality. But Bell himself interpreted the theorem very differently--as establishing an ``essential conflict'' between the well-tested empirical predictions of quantum theory and relativistic local causality. Our goal is to make Bell's own views more widely known and to explain Bell's little-known formulation of the concept of relativistic local causality on which his theorem rests. We also show precisely how Bell's formulation of local causality can be used to derive an empirically testable Bell-type inequality and to recapitulate the EPR argument.

  12. John S. Bell's concept of local causality

    NASA Astrophysics Data System (ADS)

    Norsen, Travis

    2011-12-01

    John Stewart Bell's famous theorem is widely regarded as one of the most important developments in the foundations of physics. Yet even as we approach the 50th anniversary of Bell's discovery, its meaning and implications remain controversial. Many workers assert that Bell's theorem refutes the possibility suggested by Einstein, Podolsky, and Rosen (EPR) of supplementing ordinary quantum theory with "hidden" variables that might restore determinism and/or some notion of an observer-independent reality. But Bell himself interpreted the theorem very differently—as establishing an "essential conflict" between the well-tested empirical predictions of quantum theory and relativistic local causality. Our goal is to make Bell's own views more widely known and to explain Bell's little-known formulation of the concept of relativistic local causality on which his theorem rests. We also show precisely how Bell's formulation of local causality can be used to derive an empirically testable Bell-type inequality and to recapitulate the EPR argument.

  13. Misleading inferences from discretization of empty spacetime: Snyder-noncommutativity case study

    NASA Astrophysics Data System (ADS)

    Amelino-Camelia, Giovanni; Astuti, Valerio

    2015-06-01

    Alternative approaches to the study of the quantum gravity problem are handling the role of spacetime very differently. Some are focusing on the analysis of one or another novel formulation of "empty spacetime", postponing to later stages the introduction of particles and fields, while other approaches assume that spacetime should only be an emergent entity. We here argue that recent progress in the covariant formulation of quantum mechanics, suggests that empty spacetime is not physically meaningful. We illustrate our general thesis in the specific context of the noncommutative Snyder spacetime, which is also of some intrinsic interest, since hundreds of studies were devoted to its analysis. We show that empty Snyder spacetime, described in terms of a suitable kinematical Hilbert space, is discrete, but this is only a formal artifact: the discreteness leaves no trace on the observable properties of particles on the physical Hilbert space.

  14. Stückelberg formulation of holography

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gomez, Cesar; Wintergerst, Nico

    2016-10-01

    We suggest that holography can be formulated in terms of the information capacity of the Stückelberg degrees of freedom that maintain gauge invariance of the theory in the presence of an information boundary. These Stückelbergs act as qubits that account for a certain fraction of quantum information. Their information capacity is measured by the ratio of the inverse Stückelberg energy gap to the size of the system. Systems with the smallest gap are maximally holographic. For massless gauge systems this information measure is universally equal to the inverse coupling evaluated at the systems' length scale. In this language it becomes very transparent why the Stückelberg information capacity of black holes saturates the Bekenstein bound and accounts for the entire information of the system. The physical reason is that the strength of quantum interaction is bounded from below by the gravitational coupling, which scales as area. Observing the striking similarity between the scalings of the energy gap of the boundary Stückelberg modes and the Bogoliubov modes of critical many-body systems, we establish a connection between holography and quantum criticality through the correspondence between these modes.

  15. Final Technical Report for Quantum Embedding for Correlated Electronic Structure in Large Systems and the Condensed Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Garnet Kin-Lic

    2017-04-30

    This is the final technical report. We briefly describe some selected results below. Developments in density matrix embedding. DMET is a quantum embedding theory that we introduced at the beginning of the last funding period, around 2012-2013. Since the first DMET papers, which demonstrated proof-of- principle calculations on the Hubbard model and hydrogen rings, we have carried out a number of different developments, including: Extending the DMET technology to compute broken symmetry phases, including magnetic phases and super- conductivity (Pub. 13); Calibrating the accuracy of DMET and its cluster size convergence against other methods, and formulation of a dynamical clustermore » analog (Pubs. 4, 10) (see Fig. 1); Implementing DMET for ab-initio molecular calculations, and exploring different self-consistency criteria (Pubs. 9, 14); Using embedding to defi ne quantum classical interfaces Pub. 2; Formulating DMET for spectral functions (Pub. 7) (see Fig. 1); Extending DMET to coupled fermion-boson problems (Pub. 12). Together with these embedding developments, we have also implemented a wide variety of impurity solvers within our DMET framework, including DMRG (Pub. 3), AFQMC (Pub. 10), and coupled cluster theory (CC) (Pub. 9).« less

  16. New type of quantum criticality in the pyrochlore iridates

    DOE PAGES

    Savary, Lucile; Moon, Eun -Gook; Balents, Leon

    2014-11-13

    Magnetic fluctuations and electrons couple in intriguing ways in the vicinity of zero-temperature phase transitions—quantum critical points—in conducting materials. Quantum criticality is implicated in non-Fermi liquid behavior of diverse materials and in the formation of unconventional superconductors. Here, we uncover an entirely new type of quantum critical point describing the onset of antiferromagnetism in a nodal semimetal engendered by the combination of strong spin-orbit coupling and electron correlations, and which is predicted to occur in the iridium oxide pyrochlores. We formulate and solve a field theory for this quantum critical point by renormalization group techniques and show that electrons andmore » antiferromagnetic fluctuations are strongly coupled and that both these excitations are modified in an essential way. This quantum critical point has many novel features, including strong emergent spatial anisotropy, a vital role for Coulomb interactions, and highly unconventional critical exponents. Our theory motivates and informs experiments on pyrochlore iridates and constitutes a singular realistic example of a nontrivial quantum critical point with gapless fermions in three dimensions.« less

  17. Error regions in quantum state tomography: computational complexity caused by geometry of quantum states

    NASA Astrophysics Data System (ADS)

    Suess, Daniel; Rudnicki, Łukasz; maciel, Thiago O.; Gross, David

    2017-09-01

    The outcomes of quantum mechanical measurements are inherently random. It is therefore necessary to develop stringent methods for quantifying the degree of statistical uncertainty about the results of quantum experiments. For the particularly relevant task of quantum state tomography, it has been shown that a significant reduction in uncertainty can be achieved by taking the positivity of quantum states into account. However—the large number of partial results and heuristics notwithstanding—no efficient general algorithm is known that produces an optimal uncertainty region from experimental data, while making use of the prior constraint of positivity. Here, we provide a precise formulation of this problem and show that the general case is NP-hard. Our result leaves room for the existence of efficient approximate solutions, and therefore does not in itself imply that the practical task of quantum uncertainty quantification is intractable. However, it does show that there exists a non-trivial trade-off between optimality and computational efficiency for error regions. We prove two versions of the result: one for frequentist and one for Bayesian statistics.

  18. A formulation of a matrix sparsity approach for the quantum ordered search algorithm

    NASA Astrophysics Data System (ADS)

    Parmar, Jupinder; Rahman, Saarim; Thiara, Jaskaran

    One specific subset of quantum algorithms is Grovers Ordered Search Problem (OSP), the quantum counterpart of the classical binary search algorithm, which utilizes oracle functions to produce a specified value within an ordered database. Classically, the optimal algorithm is known to have a log2N complexity; however, Grovers algorithm has been found to have an optimal complexity between the lower bound of ((lnN-1)/π≈0.221log2N) and the upper bound of 0.433log2N. We sought to lower the known upper bound of the OSP. With Farhi et al. MITCTP 2815 (1999), arXiv:quant-ph/9901059], we see that the OSP can be resolved into a translational invariant algorithm to create quantum query algorithm restraints. With these restraints, one can find Laurent polynomials for various k — queries — and N — database sizes — thus finding larger recursive sets to solve the OSP and effectively reducing the upper bound. These polynomials are found to be convex functions, allowing one to make use of convex optimization to find an improvement on the known bounds. According to Childs et al. [Phys. Rev. A 75 (2007) 032335], semidefinite programming, a subset of convex optimization, can solve the particular problem represented by the constraints. We were able to implement a program abiding to their formulation of a semidefinite program (SDP), leading us to find that it takes an immense amount of storage and time to compute. To combat this setback, we then formulated an approach to improve results of the SDP using matrix sparsity. Through the development of this approach, along with an implementation of a rudimentary solver, we demonstrate how matrix sparsity reduces the amount of time and storage required to compute the SDP — overall ensuring further improvements will likely be made to reach the theorized lower bound.

  19. Measurement and control of a Coulomb-blockaded parafermion box

    NASA Astrophysics Data System (ADS)

    Snizhko, Kyrylo; Egger, Reinhold; Gefen, Yuval

    2018-02-01

    Parafermionic zero modes are fractional topologically protected quasiparticles expected to arise in various platforms. We show that Coulomb charging effects define a parafermion box with unique access options via fractional edge states and/or quantum antidots. Basic protocols for the detection, manipulation, and control of parafermionic quantum states are formulated. With those tools, one may directly observe the dimension of the zero-mode Hilbert space, prove the degeneracy of this space, and perform on-demand digital operations satisfying a parafermionic algebra.

  20. The boundary is mixed

    NASA Astrophysics Data System (ADS)

    Bianchi, Eugenio; Haggard, Hal M.; Rovelli, Carlo

    2017-08-01

    We show that in Oeckl's boundary formalism the boundary vectors that do not have a tensor form represent, in a precise sense, statistical states. Therefore the formalism incorporates quantum statistical mechanics naturally. We formulate general-covariant quantum statistical mechanics in this language. We illustrate the formalism by showing how it accounts for the Unruh effect. We observe that the distinction between pure and mixed states weakens in the general covariant context, suggesting that local gravitational processes are naturally statistical without a sharp quantal versus probabilistic distinction.

  1. Integrable Time-Dependent Quantum Hamiltonians

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen

    2018-05-01

    We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.

  2. Spin and Magnetism: Two Transfer Matrix Formulations of a Classical Heisenberg Ring in a Magnetic Field.

    DTIC Science & Technology

    1998-06-01

    determination of the partition function could be attempted. According to Gatteschi et al, however, [Ref. 15] when commenting on the quantum mechanical...1995 15. Gatteschi , D. et al, "Large Clusters of Metal Ions: The Transition from Molecular to Bulk Magnets" Science vol. 265, pp. 1054-1058, August... Gatteschi , D. et al, "Spin Dynamics in Mesoscopic Size Magnetic Systems... ", Phys. Rev. B, vol. 55, no. 21, 01 June, 1997 18. Tejeda, J. etal, "Quantum

  3. Physical concepts in the development of constitutive equations

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1985-01-01

    Proposed viscoplastic material models include in their formulation observed material response but do not generally incorporate principles from thermodynamics, statistical mechanics, and quantum mechanics. Numerous hypotheses were made for material response based on first principles. Many of these hypotheses were tested experimentally. The proposed viscoplastic theories and the experimental basis of these hypotheses must be checked against the hypotheses. The physics of thermodynamics, statistical mechanics and quantum mechanics, and the effects of defects, are reviewed for their application to the development of constitutive laws.

  4. Influences of temperature on asymmetric quantum dot qubit in Coulombic impunity potential

    NASA Astrophysics Data System (ADS)

    Chen, Y.-J.; Song, H.-T.; Xiao, J.-L.

    2018-05-01

    Using the variational method of the Pekar-type, we study the influences of the temperature on the asymmetric quantum dot (QD) qubit in the Coulombic impunity potential. Then we derive the numerical results and formulate the derivative relationships of the electron probability density and the electron oscillation period in the superposition state of the ground state and the first-excited state with the electron-phonon coupling constant, the Coulombic impurity potential, the transverse and longitudinal confinement strengths at different temperatures, respectively.

  5. Kinetic Rate Kernels via Hierarchical Liouville-Space Projection Operator Approach.

    PubMed

    Zhang, Hou-Dao; Yan, YiJing

    2016-05-19

    Kinetic rate kernels in general multisite systems are formulated on the basis of a nonperturbative quantum dissipation theory, the hierarchical equations of motion (HEOM) formalism, together with the Nakajima-Zwanzig projection operator technique. The present approach exploits the HEOM-space linear algebra. The quantum non-Markovian site-to-site transfer rate can be faithfully evaluated via projected HEOM dynamics. The developed method is exact, as evident by the comparison to the direct HEOM evaluation results on the population evolution.

  6. Noncommutative Valuation of Options

    NASA Astrophysics Data System (ADS)

    Herscovich, Estanislao

    2016-12-01

    The aim of this note is to show that the classical results in finance theory for pricing of derivatives, given by making use of the replication principle, can be extended to the noncommutative world. We believe that this could be of interest in quantum probability. The main result called the First fundamental theorem of asset pricing, states that a noncommutative stock market admits no-arbitrage if and only if it admits a noncommutative equivalent martingale probability.

  7. Non-traditional Aharonov-Bohm effects in condensed matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krive, I.V.; Rozhavsky, A.S.

    1992-05-10

    In 1959, Aharonov and Bohm proposed an elegant experiment demonstrating observability of electromagnetic potentials (or, which is the same, the non-locality of the wave function of charged particles) in quantum mechanics. This paper discusses the Aharonov-Bohm effect, based on the fundamental principles of quantum theory, as the superposition principles, the quantum character of motion of particles and locality of the interaction of a charge with an electromagnetic potential L{sub int} = j{sub {mu}}A{sup {mu}}. It is thus no wonder that the Aharonov-Bohm's paper aroused much dispute which is still ongoing. Originally, the Aharonov-Bohm effect (ABE) means the dependence of themore » interference pattern on the magnetic fluid flux {phi} in a Gendaken experiment on a coherent electron beam in the field of an infinitely thin solenoid. Later, however, it became common to refer to the Aharonov-Bohm phenomenon wherever the characteristics of systems under study appear to depend on the flux {phi} in the absence of electric and magnetic fields. In this sense, it was highly interesting to analyze the ABE in condensed media (the many-particle Aharonov-Bohm effect), in particular to study the dependence of the thermodynamic and kinetic characteristics, e.g., of metal on the flux. Such a problem was first discussed by Byers and Yang who formulated the general theorems related to the ABE in conducting condensed media. The next important step was the work of Kulik who formulated a concrete model and calculated the flux-dependent contribution to the metal free energy and provided a first clear formulation of the requirements to reveal.« less

  8. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics

    NASA Astrophysics Data System (ADS)

    Kretchmer, Joshua S.; Chan, Garnet Kin-Lic

    2018-02-01

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  9. A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics.

    PubMed

    Kretchmer, Joshua S; Chan, Garnet Kin-Lic

    2018-02-07

    We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.

  10. True random numbers from amplified quantum vacuum.

    PubMed

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  11. The effect of finite Larmor radius corrections on Jeans instability of quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prerana; Chhajlani, R. K.

    2013-09-15

    The influence of finite Larmor radius (FLR) effects on the Jeans instability of infinitely conducting homogeneous quantum plasma is investigated. The quantum magnetohydrodynamic (QMHD) model is used to formulate the problem. The contribution of FLR is incorporated to the QMHD set of equations in the present analysis. The general dispersion relation is obtained analytically using the normal mode analysis technique which is modified due to the contribution of FLR corrections. From general dispersion relation, the condition of instability is obtained and it is found that Jeans condition is modified due to quantum effect. The general dispersion relation is reduced formore » both transverse and longitudinal mode of propagations. The condition of gravitational instability is modified due to the presence of both FLR and quantum corrections in the transverse mode of propagation. In longitudinal case, it is found to be unaffected by the FLR effects but modified due to the quantum corrections. The growth rate of Jeans instability is discussed numerically for various values of quantum and FLR corrections of the medium. It is found that the quantum parameter and FLR effects have stabilizing influence on the growth rate of instability of the system.« less

  12. Jeans self gravitational instability of strongly coupled quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Prerana, E-mail: preranaiitd@rediffmail.com; Chhajlani, R. K.

    2014-07-15

    The Jeans self-gravitational instability is studied for quantum plasma composed of weakly coupled degenerate electron fluid and non-degenerate strongly coupled ion fluid. The formulation for such system is done on the basis of two fluid theory. The dynamics of weakly coupled degenerate electron fluid is governed by inertialess momentum equation. The quantum forces associated with the quantum diffraction effects and the quantum statistical effects act on the degenerate electron fluid. The strong correlation effects of ion are embedded in generalized viscoelastic momentum equation including the viscoelasticity and shear viscosities of ion fluid. The general dispersion relation is obtained using themore » normal mode analysis technique for the two regimes of propagation, i.e., hydrodynamic and kinetic regimes. The Jeans condition of self-gravitational instability is also obtained for both regimes, in the hydrodynamic regime it is observed to be affected by the ion plasma oscillations and quantum parameter while in the kinetic regime in addition to ion plasma oscillations and quantum parameter, it is also affected by the ion velocity which is modified by the viscosity generated compressional effects. The Jeans critical wave number and corresponding critical mass are also obtained for strongly coupled quantum plasma for both regimes.« less

  13. Finance organizations, decisions and emotions.

    PubMed

    Pixley, Jocelyn

    2002-03-01

    Analyses of global financial markets are dominated by atomized models of decision-making and behavioural psychology ('exuberance' or 'panic'). In contrast, this paper argues that overwhelmingly, finance organizations rather than 'individuals' make decisions, and routinely use emotions in formulating expectations. Keynes introduced emotion (business confidence and animal spirits) but in economics, emotion remains individualistic and irrational. Luhmann's system theory lies at the other extreme, where emotions like trust and confidence are central variables, functional in the reduction of complexity in sub-systems like the economy. The gap between irrational emotions aggregated to 'herd' behaviour in economics, and 'system trust' applied to finance and money as a 'medium of communication' in sociology, remains largely unfilled. This paper argues that while organizations cannot be said to 'think' or 'feel', they are rational and emotional, because impersonal trust, confidence and their contrary emotions are unavoidable in decision-making due to fundamental uncertainty. These future-oriented emotions are prevalent within and between organizations in the financial sector, primarily in generating expectations. The dynamic of corporate activities of tense and ruthless struggle is a more plausible level of analysis than either financial 'manias' in aggregate or 'system trust'.

  14. Quantum Impurity Models as Reference Systems for Strongly Correlated Materials: The Road from the Kondo Impurity Model to First Principles Electronic Structure Calculations with Dynamical Mean-Field Theory

    NASA Astrophysics Data System (ADS)

    Kotliar, Gabriel

    2005-01-01

    Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.

  15. Quantum spectral curve of the N=6 supersymmetric Chern-Simons theory.

    PubMed

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-11

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N=6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.

  16. Optimizing Research to Speed Up Availability of Pediatric Antiretroviral Drugs and Formulations.

    PubMed

    Penazzato, Martina; Gnanashanmugam, Devasena; Rojo, Pablo; Lallemant, Marc; Lewis, Linda L; Rocchi, Francesca; Saint Raymond, Agnes; Ford, Nathan; Hazra, Rohan; Giaquinto, Carlo; Belew, Yodit; Gibb, Diana M; Abrams, Elaine J

    2017-06-01

    Globally 1.8 million children are living with human immunodeficiency virus (HIV), yet only 51% of those eligible actually start treatment. Research and development (R&D) for pediatric antiretrovirals (ARVs) is a lengthy process and lags considerably behind drug development in adults. Providing safe, effective, and well-tolerated drugs for children remains critical to ensuring scale-up globally. We review current approaches to R&D for pediatric ARVs and suggest innovations to enable simplified, faster, and more comprehensive strategies to develop optimal formulations. Several approaches could be adopted, including focusing on a limited number of prioritized formulations and strengthening existing partnerships to ensure that pediatric investigation plans are developed early in the drug development process. Simplified and more efficient mechanisms to undertake R&D need to be put in place, and financing mechanisms must be made more sustainable. Lessons learned from HIV should be shared to support progress in developing pediatric formulations for other diseases, including tuberculosis and viral hepatitis. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  17. Dielectric response of periodic systems from quantum Monte Carlo calculations.

    PubMed

    Umari, P; Willamson, A J; Galli, Giulia; Marzari, Nicola

    2005-11-11

    We present a novel approach that allows us to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric-enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wave function, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence, sampled via forward walking. This approach has been validated for the case of an isolated hydrogen atom and then applied to a periodic system, to calculate the dielectric susceptibility of molecular-hydrogen chains. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.

  18. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  19. Quantum Sets and Clifford Algebras

    NASA Astrophysics Data System (ADS)

    Finkelstein, David

    1982-06-01

    The mathematical language presently used for quantum physics is a high-level language. As a lowest-level or basic language I construct a quantum set theory in three stages: (1) Classical set theory, formulated as a Clifford algebra of “ S numbers” generated by a single monadic operation, “bracing,” Br = {…}. (2) Indefinite set theory, a modification of set theory dealing with the modal logical concept of possibility. (3) Quantum set theory. The quantum set is constructed from the null set by the familiar quantum techniques of tensor product and antisymmetrization. There are both a Clifford and a Grassmann algebra with sets as basis elements. Rank and cardinality operators are analogous to Schroedinger coordinates of the theory, in that they are multiplication or “ Q-type” operators. “ P-type” operators analogous to Schroedinger momenta, in that they transform the Q-type quantities, are bracing (Br), Clifford multiplication by a set X, and the creator of X, represented by Grassmann multiplication c( X) by the set X. Br and its adjoint Br* form a Bose-Einstein canonical pair, and c( X) and its adjoint c( X)* form a Fermi-Dirac or anticanonical pair. Many coefficient number systems can be employed in this quantization. I use the integers for a discrete quantum theory, with the usual complex quantum theory as limit. Quantum set theory may be applied to a quantum time space and a quantum automaton.

  20. Health financing policies in Sub-Saharan Africa: government ownership or donors' influence? A scoping review of policymaking processes.

    PubMed

    Gautier, Lara; Ridde, Valéry

    2017-01-01

    The rise on the international scene of advocacy for universal health coverage (UHC) was accompanied by the promotion of a variety of health financing policies. Major donors presented health insurance, user fee exemption, and results-based financing policies as relevant instruments for achieving UHC in Sub-Saharan Africa. The "donor-driven" push for policies aiming at UHC raises concerns about governments' effective buy-in of such policies. Because the latter has implications on the success of such policies, we searched for evidence of government ownership of the policymaking process. We conducted a scoping review of the English and French literature from January 2001 to December 2015 on government ownership of decision-making on policies aiming at UHC in Sub-Saharan Africa. Thirty-five (35) results were retrieved. We extracted, synthesized and analyzed data in order to provide insights on ownership at five stages of the policymaking process: emergence, formulation, funding, implementation, and evaluation. The majority of articles (24/35) showed mixed results (i.e. ownership was identified at one or more levels of policymaking process but not all) in terms of government ownership. Authors of only five papers provided evidence of ownership at all reviewed policymaking stages. When results demonstrated some lack of government ownership at any of the five stages, we noticed that donors did not necessarily play a role: other actors' involvement was contributing to undermining government-owned decision-making, such as the private sector. We also found evidence that both government ownership and donors' influence can successfully coexist. Future research should look beyond indicators of government ownership, by analyzing historical factors behind the imbalance of power between the different actors during policy negotiations. There is a need to investigate how some national actors become policy champions and thereby influence policy formulation. In order to effectively achieve government ownership of financing policies aiming at UHC, we recommend strengthening the State's coordination and domestic funding mobilization roles, together with securing a higher involvement of governmental (both political and technical) actors by donors.

  1. Advances in Quantum Trajectory Approaches to Dynamics

    NASA Astrophysics Data System (ADS)

    Askar, Attila

    2001-03-01

    The quantum fluid dynamics (QFD) formulation is based on the separation of the amplitude and phase of the complex wave function in Schrodinger's equation. The approach leads to conservation laws for an equivalent "gas continuum". The Lagrangian [1] representation corresponds to following the particles of the fluid continuum, i. e. calculating "quantum trajectories". The Eulerian [2] representation on the other hand, amounts to observing the dynamics of the gas continuum at the points of a fixed coordinate frame. The combination of several factors leads to a most encouraging computational efficiency. QFD enables the numerical analysis to deal with near monotonic amplitude and phase functions. The Lagrangian description concentrates the computation effort to regions of highest probability as an optimal adaptive grid. The Eulerian representation allows the study of multi-coordinate problems as a set of one-dimensional problems within an alternating direction methodology. An explicit time integrator limits the increase in computational effort with the number of discrete points to linear. Discretization of the space via local finite elements [1,2] and global radial functions [3] will be discussed. Applications include wave packets in four-dimensional quadratic potentials and two coordinate photo-dissociation problems for NOCl and NO2. [1] "Quantum fluid dynamics (QFD) in the Lagrangian representation with applications to photo-dissociation problems", F. Sales, A. Askar and H. A. Rabitz, J. Chem. Phys. 11, 2423 (1999) [2] "Multidimensional wave-packet dynamics within the fluid dynamical formulation of the Schrodinger equation", B. Dey, A. Askar and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998) [3] "Solution of the quantum fluid dynamics equations with radial basis function interpolation", Xu-Guang Hu, Tak-San Ho, H. A. Rabitz and A. Askar, Phys. Rev. E. 61, 5967 (2000)

  2. Fixed-topology Lorentzian triangulations: Quantum Regge Calculus in the Lorentzian domain

    NASA Astrophysics Data System (ADS)

    Tate, Kyle; Visser, Matt

    2011-11-01

    A key insight used in developing the theory of Causal Dynamical Triangu-lations (CDTs) is to use the causal (or light-cone) structure of Lorentzian manifolds to restrict the class of geometries appearing in the Quantum Gravity (QG) path integral. By exploiting this structure the models developed in CDTs differ from the analogous models developed in the Euclidean domain, models of (Euclidean) Dynamical Triangulations (DT), and the corresponding Lorentzian results are in many ways more "physical". In this paper we use this insight to formulate a Lorentzian signature model that is anal-ogous to the Quantum Regge Calculus (QRC) approach to Euclidean Quantum Gravity. We exploit another crucial fact about the structure of Lorentzian manifolds, namely that certain simplices are not constrained by the triangle inequalities present in Euclidean signa-ture. We show that this model is not related to QRC by a naive Wick rotation; this serves as another demonstration that the sum over Lorentzian geometries is not simply related to the sum over Euclidean geometries. By removing the triangle inequality constraints, there is more freedom to perform analytical calculations, and in addition numerical simulations are more computationally efficient. We first formulate the model in 1 + 1 dimensions, and derive scaling relations for the pure gravity path integral on the torus using two different measures. It appears relatively easy to generate "large" universes, both in spatial and temporal extent. In addition, loopto-loop amplitudes are discussed, and a transfer matrix is derived. We then also discuss the model in higher dimensions.

  3. Gauge Invariant Formulation of the Interaction of Electromagnetic Radiation and Matter

    ERIC Educational Resources Information Center

    Kobe, Donald H.; Smirl, Arthur L.

    1978-01-01

    Presents a discussion in Perturbation theory in quantum mechanics for the interaction of electromagnetic radiation with matter. Advocates the use of electric dipole interaction whenever it can be used as compared to the vector potential interaction. (GA)

  4. A counterexample and a modification to the adiabatic approximation theorem in quantum mechanics

    NASA Technical Reports Server (NTRS)

    Gingold, H.

    1991-01-01

    A counterexample to the adiabatic approximation theorem is given when degeneracies are present. A formulation of an alternative version is proposed. A complete asymptotic decomposition for n dimensional self-adjoint Hamiltonian systems is restated and used.

  5. Displaced path integral formulation for the momentum distribution of quantum particles.

    PubMed

    Lin, Lin; Morrone, Joseph A; Car, Roberto; Parrinello, Michele

    2010-09-10

    The proton momentum distribution, accessible by deep inelastic neutron scattering, is a very sensitive probe of the potential of mean force experienced by the protons in hydrogen-bonded systems. In this work we introduce a novel estimator for the end-to-end distribution of the Feynman paths, i.e., the Fourier transform of the momentum distribution. In this formulation, free particle and environmental contributions factorize. Moreover, the environmental contribution has a natural analogy to a free energy surface in statistical mechanics, facilitating the interpretation of experiments. The new formulation is not only conceptually but also computationally advantageous. We illustrate the method with applications to an empirical water model, ab initio ice, and one dimensional model systems.

  6. Symmetry and conservation laws in semiclassical wave packet dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsawa, Tomoki, E-mail: tomoki@utdallas.edu

    2015-03-15

    We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum asmore » well as naturally corresponds to the quantum picture.« less

  7. Path probability of stochastic motion: A functional approach

    NASA Astrophysics Data System (ADS)

    Hattori, Masayuki; Abe, Sumiyoshi

    2016-06-01

    The path probability of a particle undergoing stochastic motion is studied by the use of functional technique, and the general formula is derived for the path probability distribution functional. The probability of finding paths inside a tube/band, the center of which is stipulated by a given path, is analytically evaluated in a way analogous to continuous measurements in quantum mechanics. Then, the formalism developed here is applied to the stochastic dynamics of stock price in finance.

  8. Loop Quantum Gravity and the Meaning of Diffeomorphism Invariance

    NASA Astrophysics Data System (ADS)

    Rovelli, Carlo; Gaul, Marcus

    This series of lectures gives an introduction to the non-perturbative and background-independent formulation for a quantum theory of gravitation which is called loop quantum gravity . The Hilbert space of kinematical quantum states is constructed and a complete basis of spin network states is introduced. Afterwards an application of the formalism is provided by the spectral analysis of the area operator, which is the quantum analogue of the classical area function. This leads to one of the key results of loop quantum gravity obtained in the last few years: the derivation of the discreteness of the geometry and the computation of the quanta of area. Special importance is attached to the role played by the diffeomorphism group in order to clarify the notion of observability in general relativity - a concept far from being trivial. Finally an outlock onto a possible dynamical extension of the theory is given, leading to a "sum over histories" approach, namely a so-called spin foam model . Throughout the whole lecture great significance is attached to conceptual and interpretational issues.

  9. From classical to quantum and back: Hamiltonian adaptive resolution path integral, ring polymer, and centroid molecular dynamics

    NASA Astrophysics Data System (ADS)

    Kreis, Karsten; Kremer, Kurt; Potestio, Raffaello; Tuckerman, Mark E.

    2017-12-01

    Path integral-based methodologies play a crucial role for the investigation of nuclear quantum effects by means of computer simulations. However, these techniques are significantly more demanding than corresponding classical simulations. To reduce this numerical effort, we recently proposed a method, based on a rigorous Hamiltonian formulation, which restricts the quantum modeling to a small but relevant spatial region within a larger reservoir where particles are treated classically. In this work, we extend this idea and show how it can be implemented along with state-of-the-art path integral simulation techniques, including path-integral molecular dynamics, which allows for the calculation of quantum statistical properties, and ring-polymer and centroid molecular dynamics, which allow the calculation of approximate quantum dynamical properties. To this end, we derive a new integration algorithm that also makes use of multiple time-stepping. The scheme is validated via adaptive classical-path-integral simulations of liquid water. Potential applications of the proposed multiresolution method are diverse and include efficient quantum simulations of interfaces as well as complex biomolecular systems such as membranes and proteins.

  10. Dynamics of streaming instability with quantum correction

    NASA Astrophysics Data System (ADS)

    Goutam, H. P.; Karmakar, P. K.

    2017-05-01

    A modified quantum hydrodynamic model (m-QHD) is herein proposed on the basis of the Thomas-Fermi (TF) theory of many fermionic quantum systems to investigate the dynamics of electrostatic streaming instability modes in a complex (dusty) quantum plasma system. The newly formulated m-QHD, as an amelioration over the existing usual QHD, employs a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D-2)/3D], in the electron quantum dynamics, where D symbolizing the problem dimensionality under consideration. The normal mode analysis of the coupled structure equations reveals the excitation of two distinct streaming modes associated with the flowing ions (against electrons and dust) and the flowing dust particulates (against the electrons and ions). It is mainly shown that the γ-factor introduces a new source of stability and dispersive effects to the ion-streaming instability solely; but not to the dust counterparts. A non-trivial application of our investigation in electrostatic beam-plasma (flow-driven) coupled dynamics leading to the development of self-sustained intense electric current, and hence, of strong magnetic field in compact astrophysical objects (in dwarf-family stars) is summarily indicated.

  11. Cosmological evolution as squeezing: a toy model for group field cosmology

    NASA Astrophysics Data System (ADS)

    Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang

    2018-05-01

    We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.

  12. Quantum collapse of dust shells in 2 + 1 gravity

    NASA Astrophysics Data System (ADS)

    Ortíz, L.; Ryan, M. P.

    2007-08-01

    This paper considers the quantum collapse of infinitesimally thin dust shells in 2 + 1 gravity. In 2 + 1 gravity a shell is no longer a sphere, but a ring of matter. The classical equation of motion of such shells in terms of variables defined on the shell has been considered by Peleg and Steif (Phys Rev D 51:3992, 1995), using the 2 + 1 version of the original formulation of Israel (Nuovo Cimento B 44:1, 1966), and Crisóstomo and Olea (Phys Rev D 69:104023, 2004), using canonical methods. The minisuperspace quantum problem can be reduced to that of a harmonic oscillator in terms of the curvature radius of the shell, which allows us to use well-known methods to find the motion of coherent wave packets that give the quantum collapse of the shell. Classically, as the radius of the shell falls below a certain point, a horizon forms. In the quantum problem one can define various quantities that give “indications” of horizon formation. Without a proper definition of a “horizon” in quantum gravity, these can be nothing but indications.

  13. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarovar, Mohan; Zhang, Jun; Zeng, Lishan

    Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these twomore » points of view is a critical step in making the most of this promising technology. In this paper we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. Finally, to demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.« less

  15. Theory of a peristaltic pump for fermionic quantum fluids

    NASA Astrophysics Data System (ADS)

    Romeo, F.; Citro, R.

    2018-05-01

    Motivated by the recent developments in fermionic cold atoms and in nanostructured systems, we propose the model of a peristaltic quantum pump. Differently from the Thouless paradigm, a peristaltic pump is a quantum device that generates a particle flux as the effect of a sliding finite-size microlattice. A one-dimensional tight-binding Hamiltonian model of this quantum machine is formulated and analyzed within a lattice Green's function formalism on the Keldysh contour. The pump observables, as, e.g., the pumped particles per cycle, are studied as a function of the pumping frequency, the width of the pumping potential, the particles mean free path, and system temperature. The proposed analysis applies to arbitrary peristaltic potentials acting on fermionic quantum fluids confined to one dimension. These confinement conditions can be realized in nanostructured systems or, in a more controllable way, in cold atoms experiments. In view of the validation of the theoretical results, we describe the outcomes of the model considering a fermionic cold atoms system as a paradigmatic example.

  16. General response formula and application to topological insulator in quantum open system.

    PubMed

    Shen, H Z; Qin, M; Shao, X Q; Yi, X X

    2015-11-01

    It is well-known that the quantum linear response theory is based on the first-order perturbation theory for a system in thermal equilibrium. Hence, this theory breaks down when the system is in a steady state far from thermal equilibrium and the response up to higher order in perturbation is not negligible. In this paper, we develop a nonlinear response theory for such quantum open system. We first formulate this theory in terms of general susceptibility, after which we apply it to the derivation of Hall conductance for open system at finite temperature. As an example, the Hall conductance of the two-band model is derived. Then we calculate the Hall conductance for a two-dimensional ferromagnetic electron gas and a two-dimensional lattice model. The calculations show that the transition points of topological phase are robust against the environment. Our results provide a promising platform for the coherent manipulation of the nonlinear response in quantum open system, which has potential applications for quantum information processing and statistical physics.

  17. Locality for quantum systems on graphs depends on the number field

    NASA Astrophysics Data System (ADS)

    Hall, H. Tracy; Severini, Simone

    2013-07-01

    Adapting a definition of Aaronson and Ambainis (2005 Theory Comput. 1 47-79), we call a quantum dynamics on a digraph saturated Z-local if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.

  18. Fermionic topological quantum states as tensor networks

    NASA Astrophysics Data System (ADS)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  19. A new class of ensemble conserving algorithms for approximate quantum dynamics: Theoretical formulation and model problems.

    PubMed

    Smith, Kyle K G; Poulsen, Jens Aage; Nyman, Gunnar; Rossky, Peter J

    2015-06-28

    We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in combination with the Feynman-Kleinert approximation of the density operator. These dynamics are used to improve the Feynman-Kleinert implementation of the classical Wigner approximation for the evaluation of quantum time correlation functions known as Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics is made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that these dynamics provide a great improvement over the classical Wigner approximation, in which purely classical dynamics are used. In a special case, our first method becomes identical to centroid molecular dynamics.

  20. Implications of quantum metabolism and natural selection for the origin of cancer cells and tumor progression

    NASA Astrophysics Data System (ADS)

    Davies, Paul; Demetrius, Lloyd A.; Tuszynski, Jack A.

    2012-03-01

    Empirical studies give increased support for the hypothesis that the sporadic form of cancer is an age-related metabolic disease characterized by: (a) metabolic dysregulation with random abnormalities in mitochondrial DNA, and (b) metabolic alteration - the compensatory upregulation of glycolysis to offset mitochondrial impairments. This paper appeals to the theory of Quantum Metabolism and the principles of natural selection to formulate a conceptual framework for a quantitative analysis of the origin and proliferation of the disease. Quantum Metabolism, an analytical theory of energy transduction in cells inspired by the methodology of the quantum theory of solids, elucidates the molecular basis for differences in metabolic rate between normal cells, utilizing predominantly oxidative phosphorylation, and cancer cells utilizing predominantly glycolysis. The principles of natural selection account for the outcome of competition between the two classes of cells. Quantum Metabolism and the principles of natural selection give an ontogenic and evolutionary rationale for cancer proliferation and furnish a framework for effective therapeutic strategies to impede the spread of the disease.

  1. Periodic thermodynamics of open quantum systems.

    PubMed

    Brandner, Kay; Seifert, Udo

    2016-06-01

    The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.

  2. Periodic thermodynamics of open quantum systems

    NASA Astrophysics Data System (ADS)

    Brandner, Kay; Seifert, Udo

    2016-06-01

    The thermodynamics of quantum systems coupled to periodically modulated heat baths and work reservoirs is developed. By identifying affinities and fluxes, the first and the second law are formulated consistently. In the linear response regime, entropy production becomes a quadratic form in the affinities. Specializing to Lindblad dynamics, we identify the corresponding kinetic coefficients in terms of correlation functions of the unperturbed dynamics. Reciprocity relations follow from symmetries with respect to time reversal. The kinetic coefficients can be split into a classical and a quantum contribution subject to an additional constraint, which follows from a natural detailed balance condition. This constraint implies universal bounds on efficiency and power of quantum heat engines. In particular, we show that Carnot efficiency cannot be reached whenever quantum coherence effects are present, i.e., when the Hamiltonian used for work extraction does not commute with the bare system Hamiltonian. For illustration, we specialize our universal results to a driven two-level system in contact with a heat bath of sinusoidally modulated temperature.

  3. The Madelung Picture as a Foundation of Geometric Quantum Theory

    NASA Astrophysics Data System (ADS)

    Reddiger, Maik

    2017-10-01

    Despite its age, quantum theory still suffers from serious conceptual difficulties. To create clarity, mathematical physicists have been attempting to formulate quantum theory geometrically and to find a rigorous method of quantization, but this has not resolved the problem. In this article we argue that a quantum theory recursing to quantization algorithms is necessarily incomplete. To provide an alternative approach, we show that the Schrödinger equation is a consequence of three partial differential equations governing the time evolution of a given probability density. These equations, discovered by Madelung, naturally ground the Schrödinger theory in Newtonian mechanics and Kolmogorovian probability theory. A variety of far-reaching consequences for the projection postulate, the correspondence principle, the measurement problem, the uncertainty principle, and the modeling of particle creation and annihilation are immediate. We also give a speculative interpretation of the equations following Bohm, Vigier and Tsekov, by claiming that quantum mechanical behavior is possibly caused by gravitational background noise.

  4. Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control

    NASA Astrophysics Data System (ADS)

    Deffner, Sebastian; Campbell, Steve

    2017-11-01

    One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.

  5. Interference Lithography for Optical Devices and Coatings

    DTIC Science & Technology

    2010-01-01

    semiconductor quantum dots. J. Chem. Phys. 2004, 121, 7421. 100. Jeon, S.; Braun, P. V., Hydrothermal Synthesis of Er-Doped Luminescent TiO2 Nanoparticles ...Silica Nanoparticle Synthesis .....................................................................23 2.2.2 Polymer Matrix Formulation...41 CHAPTER 3: NANOPARTICLE SYNTHESIS , FUNCTIONALIZATION, AND INCORPORATION INTO

  6. Resource Theory of Quantum Memories and Their Faithful Verification with Minimal Assumptions

    NASA Astrophysics Data System (ADS)

    Rosset, Denis; Buscemi, Francesco; Liang, Yeong-Cherng

    2018-04-01

    We provide a complete set of game-theoretic conditions equivalent to the existence of a transformation from one quantum channel into another one, by means of classically correlated preprocessing and postprocessing maps only. Such conditions naturally induce tests to certify that a quantum memory is capable of storing quantum information, as opposed to memories that can be simulated by measurement and state preparation (corresponding to entanglement-breaking channels). These results are formulated as a resource theory of genuine quantum memories (correlated in time), mirroring the resource theory of entanglement in quantum states (correlated spatially). As the set of conditions is complete, the corresponding tests are faithful, in the sense that any non-entanglement-breaking channel can be certified. Moreover, they only require the assumption of trusted inputs, known to be unavoidable for quantum channel verification. As such, the tests we propose are intrinsically different from the usual process tomography, for which the probes of both the input and the output of the channel must be trusted. An explicit construction is provided and shown to be experimentally realizable, even in the presence of arbitrarily strong losses in the memory or detectors.

  7. Symmetries of relativistic world lines

    NASA Astrophysics Data System (ADS)

    Koch, Benjamin; Muñoz, Enrique; Reyes, Ignacio A.

    2017-10-01

    Symmetries are essential for a consistent formulation of many quantum systems. In this paper we discuss a fundamental symmetry, which is present for any Lagrangian term that involves x˙2. As a basic model that incorporates the fundamental symmetries of quantum gravity and string theory, we consider the Lagrangian action of the relativistic point particle. A path integral quantization for this seemingly simple system has long presented notorious problems. Here we show that those problems are overcome by taking into account the additional symmetry, leading directly to the exact Klein-Gordon propagator.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottmeister, Alexander, E-mail: alexander.stottmeister@gravity.fau.de; Thiemann, Thomas, E-mail: thomas.thiemann@gravity.fau.de

    In this article, the third of three, we analyse how the Weyl quantisation for compact Lie groups presented in the second article of this series fits with the projective-phase space structure of loop quantum gravity-type models. Thus, the proposed Weyl quantisation may serve as the main mathematical tool to implement the program of space adiabatic perturbation theory in such models. As we already argued in our first article, space adiabatic perturbation theory offers an ideal framework to overcome the obstacles that hinder the direct implementation of the conventional Born-Oppenheimer approach in the canonical formulation of loop quantum gravity.

  9. Multiconfigurational quantum propagation with trajectory-guided generalized coherent states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grigolo, Adriano, E-mail: agrigolo@ifi.unicamp.br; Aguiar, Marcus A. M. de, E-mail: aguiar@ifi.unicamp.br; Viscondi, Thiago F., E-mail: viscondi@if.usp.br

    2016-03-07

    A generalized version of the coupled coherent states method for coherent states of arbitrary Lie groups is developed. In contrast to the original formulation, which is restricted to frozen-Gaussian basis sets, the extended method is suitable for propagating quantum states of systems featuring diversified physical properties, such as spin degrees of freedom or particle indistinguishability. The approach is illustrated with simple models for interacting bosons trapped in double- and triple-well potentials, most adequately described in terms of SU(2) and SU(3) bosonic coherent states, respectively.

  10. Enhancement of cell internalization and photostability of red and green emitter quantum dots upon entrapment in novel cationic nanoliposomes.

    PubMed

    Samadikhah, Hamid Reza; Nikkhah, Maryam; Hosseinkhani, Saman

    2017-06-01

    Two quantum dots (QDs), a green emitter, CdSe and a red emitter, CdSe with ZnS shell are encapsulated into novel liposomes in two different formulations including cationic liposomes. Quantum dots have proven themselves as powerful inorganic fluorescent probes, especially for long-term, multiplexed imaging and detection. Upon delivery into a cell, in endocytic vesicles such as endosomes, their fluorescence is quenched. We have investigated the potential toxic effects, photophysical properties and cell internalization of QDs in new formulation of liposomes as an in vitro vesicle model. Entrapment of QDs into liposomes is brought about with a decrease in their intrinsic fluorescence and toxicities and an increase in their photostability and lifetime. The biomimetic lipid bilayer of liposomes provides high biocompatibility, thereby enhancing the effectiveness of fluorescent nanoparticles for biological recognition in vitro and in vivo. The prepared lipodots could effectively prevent QDs from photo-oxidation during storage and when exposed to ultraviolet (UV) light. Moreover, the flow cytometry of HEK 293 T cells showed that the cell internalization of encapsulated QDs in (DSPC/CHO/DOPE/DOAB) liposome is enhanced 10 times compared with non-encapsulated QD (bare QDs). Copyright © 2016 John Wiley & Sons, Ltd.

  11. Six-dimensional formulation of the quantum theory of superluminal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patty, C.E. Jr.

    By operating in a six dimensional spacetime, transformations which relate superluminal to subluminal observers and do not introduce imaginary numbers are developed. These transformations preserve the Lorentz invariance of physical quantities. A six dimensional quantum theory is built upon this spacetime. All formal properties and the operators of the four dimensional Dirac quantum theory are duplicated. In addition, the extended quantum theory predicts the known behavior of subliminal matter and permits the calculation of the behavior of superluminal matter. The most distinctive characteristics of superluminal matter are found to be a spatial polarization during interactions with subluminal matter and anmore » intrensic multi-temporal nature. The theory is applied to the Rutherford scattering problem for an incident beam of electrons. The results of the calculation indicate that the behavior of superluminal matter differs in an unambigious way from that of subluminal matter. The superluminal state is detectable.« less

  12. The quantum holonomy-diffeomorphism algebra and quantum gravity

    NASA Astrophysics Data System (ADS)

    Aastrup, Johannes; Grimstrup, Jesper Møller

    2016-03-01

    We introduce the quantum holonomy-diffeomorphism ∗-algebra, which is generated by holonomy-diffeomorphisms on a three-dimensional manifold and translations on a space of SU(2)-connections. We show that this algebra encodes the canonical commutation relations of canonical quantum gravity formulated in terms of Ashtekar variables. Furthermore, we show that semiclassical states exist on the holonomy-diffeomorphism part of the algebra but that these states cannot be extended to the full algebra. Via a Dirac-type operator we derive a certain class of unbounded operators that act in the GNS construction of the semiclassical states. These unbounded operators are the type of operators, which we have previously shown to entail the spatial three-dimensional Dirac operator and Dirac-Hamiltonian in a semiclassical limit. Finally, we show that the structure of the Hamilton constraint emerges from a Yang-Mills-type operator over the space of SU(2)-connections.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anisimov, Petr Mikhaylovich

    Classical 1D X-ray Free Electron Laser (X-ray FEL) theory has stood the test of time by guiding FEL design and development prior to any full-scale analysis. Future X-ray FELs and inverse-Compton sources, where photon recoil approaches an electron energy spread value, push the classical theory to its limits of applicability. After substantial efforts by the community to find what those limits are, there is no universally agreed upon quantum approach to design and development of future X-ray sources. We offer a new approach to formulate the quantum theory for 1D X-ray FELs that has an obvious connection to the classicalmore » theory, which allows for immediate transfer of knowledge between the two regimes. In conclusion, we exploit this connection in order to draw quantum mechanical conclusions about the quantum nature of electrons and generated radiation in terms of FEL variables.« less

  14. Comparative analysis of quantum cascade laser modeling based on density matrices and non-equilibrium Green's functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindskog, M., E-mail: martin.lindskog@teorfys.lu.se; Wacker, A.; Wolf, J. M.

    2014-09-08

    We study the operation of an 8.5 μm quantum cascade laser based on GaInAs/AlInAs lattice matched to InP using three different simulation models based on density matrix (DM) and non-equilibrium Green's function (NEGF) formulations. The latter advanced scheme serves as a validation for the simpler DM schemes and, at the same time, provides additional insight, such as the temperatures of the sub-band carrier distributions. We find that for the particular quantum cascade laser studied here, the behavior is well described by simple quantum mechanical estimates based on Fermi's golden rule. As a consequence, the DM model, which includes second order currents,more » agrees well with the NEGF results. Both these simulations are in accordance with previously reported data and a second regrown device.« less

  15. Path integrals, supersymmetric quantum mechanics, and the Atiyah-Singer index theorem for twisted Dirac

    NASA Astrophysics Data System (ADS)

    Fine, Dana S.; Sawin, Stephen

    2017-01-01

    Feynman's time-slicing construction approximates the path integral by a product, determined by a partition of a finite time interval, of approximate propagators. This paper formulates general conditions to impose on a short-time approximation to the propagator in a general class of imaginary-time quantum mechanics on a Riemannian manifold which ensure that these products converge. The limit defines a path integral which agrees pointwise with the heat kernel for a generalized Laplacian. The result is a rigorous construction of the propagator for supersymmetric quantum mechanics, with potential, as a path integral. Further, the class of Laplacians includes the square of the twisted Dirac operator, which corresponds to an extension of N = 1/2 supersymmetric quantum mechanics. General results on the rate of convergence of the approximate path integrals suffice in this case to derive the local version of the Atiyah-Singer index theorem.

  16. Notes on a Continuous-Variable Quantum Key Distribution Scheme

    NASA Astrophysics Data System (ADS)

    Ichikawa, Tsubasa; Hirano, Takuya; Matsubara, Takuto; Ono, Motoharu; Namiki, Ryo

    2017-09-01

    We develop a physical model to describe the signal transmission for a continuous-variable quantum key distribution scheme and investigate its security against a couple of eavesdropping attacks assuming that the eavesdropper's power is partly restricted owing to today's technological limitations. We consider an eavesdropper performing quantum optical homodyne measurement on the signal obtained by a type of beamsplitting attack. We also consider the case in which the eavesdropper Eve is unable to access a quantum memory and she performs heterodyne measurement on her signal without performing a delayed measurement. Our formulation includes a model in which the receiver's loss and noise are unaccessible by the eavesdropper. This setup enables us to investigate the condition that Eve uses a practical fiber differently from the usual beamsplitting attack where she can deploy a lossless transmission channel. The secret key rates are calculated in both the direct and reverse reconciliation scenarios.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiaoyao; Hall, Randall W.; Löffler, Frank

    The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H2O, N2, and F2 molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of other quantum chemical methodsmore » and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.« less

  18. Canonical Drude Weight for Non-integrable Quantum Spin Chains

    NASA Astrophysics Data System (ADS)

    Mastropietro, Vieri; Porta, Marcello

    2018-03-01

    The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.

  19. Violation of the second law of thermodynamics in the quantum microworld

    NASA Astrophysics Data System (ADS)

    Čápek, V.; Bok, J.

    2001-02-01

    One of the previously reported linear models of open quantum systems (interacting with a single thermal bath but otherwise not aided from outside) endowed with the faculty of spontaneous self-organization challenging standard thermodynamics is reconstructed here. It is then able to produce, in a cyclic manner, a useful (this time mechanical) work at the cost of just thermal energy in the bath whose quanta get properly in-phased. This means perpetuum mobile of the second kind explicitly violating the second law in its Thomson formulation. No approximations can be made responsible for the effect as a special scaling procedure is used that makes the chosen kinetic theory exact. The effect is purely quantum and disappears in the classical limit.

  20. Macrorealism from entropic Leggett-Garg inequalities

    NASA Astrophysics Data System (ADS)

    Devi, A. R. Usha; Karthik, H. S.; Sudha; Rajagopal, A. K.

    2013-05-01

    We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical outcomes of temporal correlations of observables. The information theoretic inequalities are satisfied if macrorealism holds. We show that the quantum statistics underlying correlations between time-separated spin component of a quantum rotor mimics that of spin correlations in two spatially separated spin-s particles sharing a state of zero total spin. This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quantum spin-s system in a similar manner as does the entropic Bell inequality [S. L. Braunstein and C. M. Caves, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.61.662 61, 662 (1988)] by a pair of spin-s particles forming a composite spin singlet state.

  1. Stochastic mechanics of reciprocal diffusions

    NASA Astrophysics Data System (ADS)

    Levy, Bernard C.; Krener, Arthur J.

    1996-02-01

    The dynamics and kinematics of reciprocal diffusions were examined in a previous paper [J. Math. Phys. 34, 1846 (1993)], where it was shown that reciprocal diffusions admit a chain of conservation laws, which close after the first two laws for two disjoint subclasses of reciprocal diffusions, the Markov and quantum diffusions. For the case of quantum diffusions, the conservation laws are equivalent to Schrödinger's equation. The Markov diffusions were employed by Schrödinger [Sitzungsber. Preuss. Akad. Wiss. Phys. Math Kl. 144 (1931); Ann. Inst. H. Poincaré 2, 269 (1932)], Nelson [Dynamical Theories of Brownian Motion (Princeton University, Princeton, NJ, 1967); Quantum Fluctuations (Princeton University, Princeton, NJ, 1985)], and other researchers to develop stochastic formulations of quantum mechanics, called stochastic mechanics. We propose here an alternative version of stochastic mechanics based on quantum diffusions. A procedure is presented for constructing the quantum diffusion associated to a given wave function. It is shown that quantum diffusions satisfy the uncertainty principle, and have a locality property, whereby given two dynamically uncoupled but statistically correlated particles, the marginal statistics of each particle depend only on the local fields to which the particle is subjected. However, like Wigner's joint probability distribution for the position and momentum of a particle, the finite joint probability densities of quantum diffusions may take negative values.

  2. Transient Evolutional Dynamics of Quantum-Dot Molecular Phase Coherence for Sensitive Optical Switching

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi; Gu, Jing

    2018-04-01

    Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.

  3. New universal attractor in nonminimally coupled gravity: Linear inflation

    NASA Astrophysics Data System (ADS)

    Racioppi, Antonio

    2018-06-01

    Once quantum corrections are taken into account, the strong coupling limit of the ξ -attractor models (in metric gravity) might depart from the usual Starobinsky solution and move into linear inflation. Furthermore, it is well known that the metric and Palatini formulations of gravity lead to different inflationary predictions in presence of nonminimally couplings between gravity and the inflaton. In this paper, we show that for a certain class of nonminimally coupled models, loop corrections will lead to a linear inflation attractor regardless of the adopted gravity formulation.

  4. Wave theory of turbulence in compressible media

    NASA Technical Reports Server (NTRS)

    Kentzer, C. P.

    1975-01-01

    An acoustical theory of turbulence was developed to aid in the study of the generation of sound in turbulent flows. The statistical framework adopted is a quantum-like wave dynamical formulation in terms of complex distribution functions. This formulation results in nonlinear diffusion-type transport equations for the probability densities of the five modes of wave propagation: two vorticity modes, one entropy mode, and two acoustic modes. This system of nonlinear equations is closed and complete. The technique of analysis was chosen such that direct applications to practical problems can be obtained with relative ease.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malashko, Ya I; Khabibulin, V M

    We have derived analytical expressions, verified by the methods of numerical simulation, to evaluate the angular divergence of nondiffractive laser beams containing smooth aberrations, i.e., spherical defocusing, astigmatism and toroid. Using these expressions we have formulated the criteria for admissible values of smooth aberrations. (laser applications and other topics in quantum electronics)

  6. Continuum modes of nonlocal field theories

    NASA Astrophysics Data System (ADS)

    Saravani, Mehdi

    2018-04-01

    We study a class of nonlocal Lorentzian quantum field theories, where the d’Alembertian operator \\Box is replaced by a non-analytic function of the d’Alembertian, f(\\Box) . This is inspired by the causal set program where such an evolution arises as the continuum limit of a wave equation on causal sets. The spectrum of these theories contains a continuum of massive excitations. This is perhaps the most important feature which leads to distinct/interesting phenomenology. In this paper, we study properties of the continuum massive modes in depth. We derive the path integral formulation of these theories. Meanwhile, this derivation introduces a dual picture in terms of local fields which clearly shows how continuum massive modes of the nonlocal field interact. As an example, we calculate the leading order modification to the Casimir force of a pair of parallel planes. The dual picture formulation opens the way for future developments in the study of nonlocal field theories using tools already available in local quantum field theories.

  7. Discretization of 3d gravity in different polarizations

    NASA Astrophysics Data System (ADS)

    Dupuis, Maïté; Freidel, Laurent; Girelli, Florian

    2017-10-01

    We study the discretization of three-dimensional gravity with Λ =0 following the loop quantum gravity framework. In the process, we realize that different choices of polarization are possible. This allows us to introduce a new discretization based on the triad as opposed to the connection as in the standard loop quantum gravity framework. We also identify the classical nontrivial symmetries of discrete gravity, namely the Drinfeld double, given in terms of momentum maps. Another choice of polarization is given by the Chern-Simons formulation of gravity. Our framework also provides a new discretization scheme of Chern-Simons, which keeps track of the link between the continuum variables and the discrete ones. We show how the Poisson bracket we recover between the Chern-Simons holonomies allows us to recover the Goldman bracket. There is also a transparent link between the discrete Chern-Simons formulation and the discretization of gravity based on the connection (loop gravity) or triad variables (dual loop gravity).

  8. Matrix quantum mechanics on S1 /Z2

    NASA Astrophysics Data System (ADS)

    Betzios, P.; Gürsoy, U.; Papadoulaki, O.

    2018-03-01

    We study Matrix Quantum Mechanics on the Euclidean time orbifold S1 /Z2. Upon Wick rotation to Lorentzian time and taking the double-scaling limit this theory provides a toy model for a big-bang/big crunch universe in two dimensional non-critical string theory where the orbifold fixed points become cosmological singularities. We derive the MQM partition function both in the canonical and grand canonical ensemble in two different formulations and demonstrate agreement between them. We pinpoint the contribution of twisted states in both of these formulations either in terms of bi-local operators acting at the end-points of time or branch-cuts on the complex plane. We calculate, in the matrix model, the contribution of the twisted states to the torus level partition function explicitly and show that it precisely matches the world-sheet result, providing a non-trivial test of the proposed duality. Finally we discuss some interesting features of the partition function and the possibility of realising it as a τ-function of an integrable hierarchy.

  9. Book Review:

    NASA Astrophysics Data System (ADS)

    Beenakker, C. W. J.

    2005-08-01

    Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schrödinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The development of the topic is precise and well-organized. The derivations are written out in sufficient detail, without frustrating comments like `it can be shown that'. The book is not quite self-contained, because it relies on the Handbook of Stochastic Methods for some background material (notably the issue of Ito versus Stratonovich). Still, one could very well use this book as a text for a course, supplying the background material to the students in some other form. Quantum Noise is now in its third edition. The second edition was a major expansion, including applications to laser cooling and quantum information processing. The third edition is a relatively minor upgrade, consisting mainly of pointers to recent literature. If you own the second edition, you might well skip this upgrade. If you do not yet own the book, or are still at edition 1, then I would enthusiastically recommend acquiring this handbook, regardless of whether you work in quantum optics or in another field of quantum physics. As I did, you might well find a new tool to attack your favourite problem.

  10. Efficient Basis Formulation for (1 +1 )-Dimensional SU(2) Lattice Gauge Theory: Spectral Calculations with Matrix Product States

    NASA Astrophysics Data System (ADS)

    Bañuls, Mari Carmen; Cichy, Krzysztof; Cirac, J. Ignacio; Jansen, Karl; Kühn, Stefan

    2017-10-01

    We propose an explicit formulation of the physical subspace for a (1 +1 )-dimensional SU(2) lattice gauge theory, where the gauge degrees of freedom are integrated out. Our formulation is completely general, and might be potentially suited for the design of future quantum simulators. Additionally, it allows for addressing the theory numerically with matrix product states. We apply this technique to explore the spectral properties of the model and the effect of truncating the gauge degrees of freedom to a small finite dimension. In particular, we determine the scaling exponents for the vector mass. Furthermore, we also compute the entanglement entropy in the ground state and study its scaling towards the continuum limit.

  11. Modeling stock return distributions with a quantum harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Choi, M. Y.; Dai, B.; Sohn, S.; Yang, B.

    2017-11-01

    We propose a quantum harmonic oscillator as a model for the market force which draws a stock return from short-run fluctuations to the long-run equilibrium. The stochastic equation governing our model is transformed into a Schrödinger equation, the solution of which features “quantized” eigenfunctions. Consequently, stock returns follow a mixed χ distribution, which describes Gaussian and non-Gaussian features. Analyzing the Financial Times Stock Exchange (FTSE) All Share Index, we demonstrate that our model outperforms traditional stochastic process models, e.g., the geometric Brownian motion and the Heston model, with smaller fitting errors and better goodness-of-fit statistics. In addition, making use of analogy, we provide an economic rationale of the physics concepts such as the eigenstate, eigenenergy, and angular frequency, which sheds light on the relationship between finance and econophysics literature.

  12. [From the design of use study to the assessment of the benefit: with or without pharmaceutical industry?].

    PubMed

    Porzsolt, Franz

    2010-12-01

    The financing of clinical studies by the pharmaceutical industry is a controversial topic both internationally and in here in Germany. The well-known unacceptable shortcomings require no further confirmation. It is, however, indisputable that the pharmaceutical industry and medical science are co-dependent. Neither the marketing of industrial products nor the research and education of clinical scientists could function without this cooperation. Therefore, all partners need suggestions concerning goal orientation and consensus. The aim of this discussion is to formulate just such suggestions. To structure this discussion, we have raised the following questions: Must we always be suspicious of the results of studies financed by the pharmaceutical industry? We have to keep in mind that in Germany all clinical trials leading to approval of a drug were supported by the industry. What, exactly, do we want to achieve with our explicit and often justified criticism of these studies? What should be done to achieve a higher validity of the published data if we avoid answering the decisive question of whether we accept the challenge of continuing to let research and teaching be financed by the pharmaceutical industry or reject this kind of cooperation and support altogether.

  13. Quantum Engineering of Dynamical Gauge Fields on Optical Lattices

    DTIC Science & Technology

    2016-07-08

    exact blocking formulas from the TRG formulation of the transfer matrix. The second is a worm algorithm. The particle number distributions obtained...a fact that can be explained by an approximate particle- hole symmetry. We have also developed a computer code suite for simulating the Abelian

  14. EDITORIAL: Focus section on quantum gravity - 25 years of quantum gravity Focus section on quantum gravity - 25 years of quantum gravity

    NASA Astrophysics Data System (ADS)

    Samuel, Joseph

    2011-08-01

    The problem of quantum gravity has been with us for over 80 years. After quantum theory was established in the 1920s, it was successfully applied to the electromagnetic field. Over the years there have been many attempts to bring gravity into the fold. There has been work on the Hamiltonian formulation of general relativity, perturbative approaches to quantum gravity and more. Much intellectual effort went into understanding conceptual and technical problems stemming from the general covariance of the theory. However, in earlier decades, the subject of quantum gravity was relatively on the fringes of theoretical physics research, pursued by a small and diverse community of people. In the mid 1980s the situation changed dramatically. The subject of quantum gravity came to the forefront of fundamental physics research, no longer a backwater but the mainstream. Quantum gravity was widely acknowledged as the last frontier of fundamental physics and attracted the brightest young people. Unlike in previous decades, workers in this area were no longer isolated groups or individuals ploughing lonely furrows, but organised into coherent `programmes' for a concerted attack on the problem. The main programmes coincidentally were all formulated in the mid 1980s. The two `programmes' covered in this section are string theory and loop quantum gravity. String theory was born an offshoot of Hadronic models in particle physics and reflects the particle physicists view that gravity is just one more interaction to be encompassed by a unified theory. Loop quantum gravity reflects the general relativist's conviction that gravity is different and should not be treated as a perturbation about Minkowski spacetime. Each of these approaches has its proponents, adherents and critics. It is now about a quarter of a century since these programmes started. It is perhaps a good time to take stock and assess where we are now and where each of these programmes is headed. The idea in this focus section is to get a comparative perspective on these programmes, by asking our reviewers to critically evaluate progress in their programmes over the last 25 years (1986-2011). This section features invited review articles from physicists who have been associated with these programmes from their inception. They were invited to write a retrospective review: what were the initial hopes? To what extent have these hopes been realised? What were the major successes, surprises, and disappointments? The emphasis is on what has come out of the programme rather than technical developments internal to the programme. We hope that the reader, whatever his/her persuasion, will be able to form a panoramic view of quantum gravity research today within these two programmes. We hope to complement this view with a topical review of causal sets in the future.

  15. Amortization does not enhance the max-Rains information of a quantum channel

    NASA Astrophysics Data System (ADS)

    Berta, Mario; Wilde, Mark M.

    2018-05-01

    Given an entanglement measure E, the entanglement of a quantum channel is defined as the largest amount of entanglement E that can be generated from the channel, if the sender and receiver are not allowed to share a quantum state before using the channel. The amortized entanglement of a quantum channel is defined as the largest net amount of entanglement E that can be generated from the channel, if the sender and receiver are allowed to share an arbitrary state before using the channel. Our main technical result is that amortization does not enhance the entanglement of an arbitrary quantum channel, when entanglement is quantified by the max-Rains relative entropy. We prove this statement by employing semi-definite programming (SDP) duality and SDP formulations for the max-Rains relative entropy and a channel’s max-Rains information, found recently in Wang et al (arXiv:1709.00200). The main application of our result is a single-letter, strong converse, and efficiently computable upper bound on the capacity of a quantum channel for transmitting qubits when assisted by positive-partial-transpose preserving (PPT-P) channels between every use of the channel. As the class of local operations and classical communication (LOCC) is contained in PPT-P, our result establishes a benchmark for the LOCC-assisted quantum capacity of an arbitrary quantum channel, which is relevant in the context of distributed quantum computation and quantum key distribution.

  16. Capacity Building and Financing Oral Health in the African and Middle East Region.

    PubMed

    Mumghamba, E G; Joury, E; Fatusi, O; Ober-Oluoch, J; Onigbanjo, R J; Honkala, S

    2015-07-01

    Many low- and middle-income countries do not yet have policies to implement effective oral health programs. A reason is lack of human and financial resources. Gaps between resource needs and available health funding are widening. By building capacity, countries aim to improve oral health through actions by oral health care personnel and oral health care organizations and their communities. Capacity building involves achieving measurable and sustainable results in training, research, and provision of care. Actions include advancement of knowledge, attitudes and skills, expansion of support, and development of cohesiveness and partnerships. The aim of this critical review is to review existing knowledge and identify gaps and variations between and within different income levels in relation to the capacity building and financing oral health in the African and Middle East region (AMER). A second aim is to formulate research priorities and outline a research agenda for capacity building and financing to improve oral health and reduce oral health inequalities in the AMER. The article focuses on capacity building for oral health and oral health financing in the AMER of the IADR. In many communities in the AMER, there are clear and widening gaps between the dental needs and the existing capacity to meet these needs in terms of financial and human resources. Concerted efforts are required to improve access to oral health care through appropriate financing mechanisms, innovative health insurance schemes, and donor support and move toward universal oral health care coverage to reduce social inequality in the region. It is necessary to build capacity and incentivize the workforce to render evidence-based services as well as accessing funds to conduct research on equity and social determinants of oral health while promoting community engagement and a multidisciplinary approach. © International & American Associations for Dental Research 2015.

  17. Quantum non-Abelian hydrodynamics: Anyonic or spin-orbital entangled liquids, nonunitarity of scattering matrix and charge fractionalization

    NASA Astrophysics Data System (ADS)

    Pareek, Tribhuvan Prasad

    2015-09-01

    In this article, we develop an exact (nonadiabatic, nonperturbative) density matrix scattering theory for a two component quantum liquid which interacts or scatters off from a generic spin-dependent quantum potential. The generic spin dependent quantum potential [Eq. (1)] is a matrix potential, hence, adiabaticity criterion is ill-defined. Therefore the full matrix potential should be treated nonadiabatically. We succeed in doing so using the notion of vectorial matrices which allows us to obtain an exact analytical expression for the scattered density matrix (SDM), ϱsc [Eq. (30)]. We find that the number or charge density in scattered fluid, Tr(ϱsc), expressions in Eqs. (32) depends on nontrivial quantum interference coefficients, Qα β 0ijk, which arises due to quantum interference between spin-independent and spin-dependent scattering amplitudes and among spin-dependent scattering amplitudes. Further it is shown that Tr(ϱsc) can be expressed in a compact form [Eq. (39)] where the effect of quantum interference coefficients can be included using a vector Qαβ, which allows us to define a vector order parameterQ. Since the number density is obtained using an exact scattered density matrix, therefore, we do not need to prove that Q is non-zero. However, for sake of completeness, we make detailed mathematical analysis for the conditions under which the vector order parameterQ would be zero or nonzero. We find that in presence of spin-dependent interaction the vector order parameterQ is necessarily nonzero and is related to the commutator and anti-commutator of scattering matrix S with its dagger S† [Eq. (78)]. It is further shown that Q≠0, implies four physically equivalent conditions,i.e., spin-orbital entanglement is nonzero, non-Abelian scattering phase, i.e., matrices, scattering matrix is nonunitary and the broken time reversal symmetry for SDM. This also implies that quasi particle excitation are anyonic in nature, hence, charge fractionalization is a natural consequence. This aspect has also been discussed from the perspective of number or charge density conservation, which implies i.e., Tr(ϱ} sc) = Tr(ϱin). On the other hand Q = 0 turns out to be a mathematically forced unphysical solution in presence of spin-dependent potential or scattering which is equivalent to Abelian hydrodynamics, unitary scattering matrix, absence of spin-space entanglement and preserved time reversal symmetry. We have formulated the theory using mesoscopic language, specifically, we have considered two terminal systems connected to spin-dependent scattering region, which is equivalent to having two potential wells separated by a generic spin-dependent potential barrier. The formulation using mesoscopic language is practically useful because it leads directly to the measured quantities such as conductance and spin-polarization density in the leads, however, the presented formulation is not limited to the mesoscopic system only, its generality has been stressed at various places in this article.

  18. Karl Popper's Quantum Ghost

    NASA Astrophysics Data System (ADS)

    Shields, William

    2004-05-01

    Karl Popper, though not trained as a physicist and embarrassed early in his career by a physics error pointed out by Einstein and Bohr, ultimately made substantial contributions to the interpretation of quantum mechanics. As was often the case, Popper initially formulated his position by criticizing the views of others - in this case Niels Bohr and Werner Heisenberg. Underlying Popper's criticism was his belief that, first, the "standard interpretation" of quantum mechanics, sometimes called the Copenhagen interpretation, abandoned scientific realism and second, the assertion that quantum theory was "complete" (an assertion rejected by Einstein among others) amounted to an unfalsifiable claim. Popper insisted that the most basic predictions of quantum mechanics should continue to be tested, with an eye towards falsification rather than mere adding of decimal places to confirmatory experiments. His persistent attacks on the Copenhagen interpretation were aimed not at the uncertainty principle itself and the formalism from which it was derived, but at the acceptance by physicists of an unclear epistemology and ontology that left critical questions unanswered. In 1999, physicists at the University of Maryland conducted a version of Popper's Experiment, re-igniting the debate over quantum predictions and the role of locality in physics.

  19. Finding Maximum Cliques on the D-Wave Quantum Annealer

    DOE PAGES

    Chapuis, Guillaume; Djidjev, Hristo; Hahn, Georg; ...

    2018-05-03

    This work assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising model) acceptable by the machine, andmore » compare several quantum implementations to current classical algorithms such as simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we observe substantial speed-ups in computing time over classical approaches.« less

  20. Deterministic generation of remote entanglement with active quantum feedback

    DOE PAGES

    Martin, Leigh; Motzoi, Felix; Li, Hanhan; ...

    2015-12-10

    We develop and study protocols for deterministic remote entanglement generation using quantum feedback, without relying on an entangling Hamiltonian. In order to formulate the most effective experimentally feasible protocol, we introduce the notion of average-sense locally optimal feedback protocols, which do not require real-time quantum state estimation, a difficult component of real-time quantum feedback control. We use this notion of optimality to construct two protocols that can deterministically create maximal entanglement: a semiclassical feedback protocol for low-efficiency measurements and a quantum feedback protocol for high-efficiency measurements. The latter reduces to direct feedback in the continuous-time limit, whose dynamics can bemore » modeled by a Wiseman-Milburn feedback master equation, which yields an analytic solution in the limit of unit measurement efficiency. Our formalism can smoothly interpolate between continuous-time and discrete-time descriptions of feedback dynamics and we exploit this feature to derive a superior hybrid protocol for arbitrary nonunit measurement efficiency that switches between quantum and semiclassical protocols. Lastly, we show using simulations incorporating experimental imperfections that deterministic entanglement of remote superconducting qubits may be achieved with current technology using the continuous-time feedback protocol alone.« less

  1. Finding Maximum Cliques on the D-Wave Quantum Annealer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapuis, Guillaume; Djidjev, Hristo; Hahn, Georg

    This work assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising model) acceptable by the machine, andmore » compare several quantum implementations to current classical algorithms such as simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we observe substantial speed-ups in computing time over classical approaches.« less

  2. Efficient free energy calculations of quantum systems through computer simulations

    NASA Astrophysics Data System (ADS)

    Antonelli, Alex; Ramirez, Rafael; Herrero, Carlos; Hernandez, Eduardo

    2009-03-01

    In general, the classical limit is assumed in computer simulation calculations of free energy. This approximation, however, is not justifiable for a class of systems in which quantum contributions for the free energy cannot be neglected. The inclusion of quantum effects is important for the determination of reliable phase diagrams of these systems. In this work, we present a new methodology to compute the free energy of many-body quantum systems [1]. This methodology results from the combination of the path integral formulation of statistical mechanics and efficient non-equilibrium methods to estimate free energy, namely, the adiabatic switching and reversible scaling methods. A quantum Einstein crystal is used as a model to show the accuracy and reliability the methodology. This new method is applied to the calculation of solid-liquid coexistence properties of neon. Our findings indicate that quantum contributions to properties such as, melting point, latent heat of fusion, entropy of fusion, and slope of melting line can be up to 10% of the calculated values using the classical approximation. [1] R. M. Ramirez, C. P. Herrero, A. Antonelli, and E. R. Hernández, Journal of Chemical Physics 129, 064110 (2008)

  3. Quantum hydrodynamics: capturing a reactive scattering resonance.

    PubMed

    Derrickson, Sean W; Bittner, Eric R; Kendrick, Brian K

    2005-08-01

    The hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a meshless method based upon a moving least-squares approach. An arbitrary Lagrangian-Eulerian frame of reference and a regridding algorithm which adds and deletes computational points are used to maintain a uniform and nearly constant interparticle spacing. The methodology also uses averaged fields to maintain unitary time evolution. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. A new and more robust artificial viscosity algorithm is presented which gives accurate scattering results and is capable of capturing quantum resonances. The methodology is applied to a one-dimensional model chemical reaction that is known to exhibit a quantum resonance. The correlation function approach is used to compute the reactive scattering matrix, reaction probability, and time delay as a function of energy. Excellent agreement is obtained between the scattering results based upon the quantum hydrodynamic approach and those based upon standard quantum mechanics. This is the first clear demonstration of the ability of moving grid approaches to accurately and robustly reproduce resonance structures in a scattering system.

  4. The series product for gaussian quantum input processes

    NASA Astrophysics Data System (ADS)

    Gough, John E.; James, Matthew R.

    2017-02-01

    We present a theory for connecting quantum Markov components into a network with quantum input processes in a Gaussian state (including thermal and squeezed). One would expect on physical grounds that the connection rules should be independent of the state of the input to the network. To compute statistical properties, we use a version of Wicks' theorem involving fictitious vacuum fields (Fock space based representation of the fields) and while this aids computation, and gives a rigorous formulation, the various representations need not be unitarily equivalent. In particular, a naive application of the connection rules would lead to the wrong answer. We establish the correct interconnection rules, and show that while the quantum stochastic differential equations of motion display explicitly the covariances (thermal and squeezing parameters) of the Gaussian input fields we introduce the Wick-Stratonovich form which leads to a way of writing these equations that does not depend on these covariances and so corresponds to the universal equations written in terms of formal quantum input processes. We show that a wholly consistent theory of quantum open systems in series can be developed in this way, and as required physically, is universal and in particular representation-free.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiaoyao; Hall, Randall W.; Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803

    The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H{sub 2}O, N{sub 2}, and F{sub 2} molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of othermore » quantum chemical methods and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.« less

  6. Influence of polarization and self-polarization charges on impurity binding energy in spherical quantum dot with parabolic confinement

    NASA Astrophysics Data System (ADS)

    Sarkar, Supratik; Sarkar, Samrat; Bose, Chayanika

    2018-07-01

    We present a general formulation of the ground state binding energy of a shallow hydrogenic impurity in spherical quantum dot with parabolic confinement, considering the effects of polarization and self energy. The variational approach within the effective mass approximation is employed here. The binding energy of an on-center impurity is computed for a GaAs/AlxGa1-xAs quantum dot as a function of the dot size with the dot barrier as parameter. The influence of polarization and self energy are also treated separately. Results indicate that the binding energy increases due to the presence of polarization charge, while decreases due to the self energy of the carrier. An overall enhancement in impurity binding energy, especially for small dots is noted.

  7. The evolution of consciousness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, H.P.

    1996-08-16

    It is argued that the principles of classical physics are inimical to the development of an adequate science of consciousness. The problem is that insofar as the classical principles are valid consciousness can have no effect on the behavior, and hence on the survival prospects, of the organisms in which it inheres. Thus within the classical framework it is not possible to explain in natural terms the development of consciousness to the high-level form found in human beings. In quantum theory, on the other hand, consciousness can be dynamically efficacious: quantum theory does allow consciousness to influence behavior, and thencemore » to evolve in accordance with the principles of natural selection. However, this evolutionary requirement places important constraints upon the details of the formulation of the quantum dynamical principles.« less

  8. Using Wavelet Bases to Separate Scales in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Michlin, Tracie L.

    This thesis investigates the use of Daubechies wavelets to separate scales in local quantum field theory. Field theories have an infinite number of degrees of freedom on all distance scales. Quantum field theories are believed to describe the physics of subatomic particles. These theories have no known mathematically convergent approximation methods. Daubechies wavelet bases can be used separate degrees of freedom on different distance scales. Volume and resolution truncations lead to mathematically well-defined truncated theories that can be treated using established methods. This work demonstrates that flow equation methods can be used to block diagonalize truncated field theoretic Hamiltonians by scale. This eliminates the fine scale degrees of freedom. This may lead to approximation methods and provide an understanding of how to formulate well-defined fine resolution limits.

  9. The eigenvalue problem in phase space.

    PubMed

    Cohen, Leon

    2018-06-30

    We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models

    NASA Astrophysics Data System (ADS)

    Sato, Toshihiro; Assaad, Fakher F.; Grover, Tarun

    2018-03-01

    The absence of the negative sign problem in quantum Monte Carlo simulations of spin and fermion systems has different origins. World-line based algorithms for spins require positivity of matrix elements whereas auxiliary field approaches for fermions depend on symmetries such as particle-hole symmetry. For negative-sign-free spin and fermionic systems, we show that one can formulate a negative-sign-free auxiliary field quantum Monte Carlo algorithm that allows Kondo coupling of fermions with the spins. Using this general approach, we study a half-filled Kondo lattice model on the honeycomb lattice with geometric frustration. In addition to the conventional Kondo insulator and antiferromagnetically ordered phases, we find a partial Kondo screened state where spins are selectively screened so as to alleviate frustration, and the lattice rotation symmetry is broken nematically.

  11. ENVIRONMENTAL TRANSPORT, BIODEGRADATION, AND BIOACCUMULATION OF QUANTUM DOTS AND OXIDE NANOPARTICLES

    EPA Science Inventory

    The proposed work will provide, for the first time, data on the environmental stability and mobility of QD and MO as a function of their formulation. The unique application of capillary electrophoresis in measuring binding constants of nanoparticles with NOM could provide a pr...

  12. Exploring quantum computing application to satellite data assimilation

    NASA Astrophysics Data System (ADS)

    Cheung, S.; Zhang, S. Q.

    2015-12-01

    This is an exploring work on potential application of quantum computing to a scientific data optimization problem. On classical computational platforms, the physical domain of a satellite data assimilation problem is represented by a discrete variable transform, and classical minimization algorithms are employed to find optimal solution of the analysis cost function. The computation becomes intensive and time-consuming when the problem involves large number of variables and data. The new quantum computer opens a very different approach both in conceptual programming and in hardware architecture for solving optimization problem. In order to explore if we can utilize the quantum computing machine architecture, we formulate a satellite data assimilation experimental case in the form of quadratic programming optimization problem. We find a transformation of the problem to map it into Quadratic Unconstrained Binary Optimization (QUBO) framework. Binary Wavelet Transform (BWT) will be applied to the data assimilation variables for its invertible decomposition and all calculations in BWT are performed by Boolean operations. The transformed problem will be experimented as to solve for a solution of QUBO instances defined on Chimera graphs of the quantum computer.

  13. Quantum formulation for nanoscale optical and material chirality: symmetry issues, space and time parity, and observables

    NASA Astrophysics Data System (ADS)

    Andrews, D. L.

    2018-03-01

    To properly represent the interplay and coupling of optical and material chirality at the photon-molecule or photon-nanoparticle level invites a recognition of quantum facets in the fundamental aspects and mechanisms of light-matter interaction. It is therefore appropriate to cast theory in a general quantum form, one that is applicable to both linear and nonlinear optics as well as various forms of chiroptical interaction including chiral optomechanics. Such a framework, fully accounting for both radiation and matter in quantum terms, facilitates the scrutiny and identification of key issues concerning spatial and temporal parity, scale, dissipation and measurement. Furthermore it fully provides for describing the interactions of structured or twisted light beams with a vortex character, and it leads to the complete identification of symmetry conditions for materials to provide for chiral discrimination. Quantum considerations also lend a distinctive perspective to the very different senses in which other aspects of chirality are recognized in metamaterials. Duly attending to the symmetry principles governing allowed or disallowed forms of chiral discrimination supports an objective appraisal of the experimental possibilities and developing applications.

  14. Quantum Bath Refrigeration towards Absolute Zero: Challenging the Unattainability Principle

    NASA Astrophysics Data System (ADS)

    Kolář, M.; Gelbwaser-Klimovsky, D.; Alicki, R.; Kurizki, G.

    2012-08-01

    A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst’s third-law formulation known as the unattainability principle.

  15. Work cost of thermal operations in quantum thermodynamics

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.

    2014-07-01

    Adopting a resource theory framework of thermodynamics for quantum and nano systems pioneered by Janzing et al. (Int. J. Th. Phys. 39, 2717 (2000)), we formulate the cost in the useful work of transforming one resource state into another as a linear program of convex optimization. This approach is based on the characterization of thermal quasiorder given by Janzing et al. and later by Horodecki and Oppenheim (Nat. Comm. 4, 2059 (2013)). Both characterizations are related to an extended version of majorization studied by Ruch, Schranner and Seligman under the name mixing distance (J. Chem. Phys. 69, 386 (1978)).

  16. Nonlinear Entanglement and its Application to Generating Cat States

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Assad, S. M.; Grosse, N. B.; Li, X. Y.; Reid, M. D.; Lam, P. K.

    2015-03-01

    The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.

  17. Nonlinear entanglement and its application to generating cat States.

    PubMed

    Shen, Y; Assad, S M; Grosse, N B; Li, X Y; Reid, M D; Lam, P K

    2015-03-13

    The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR entanglement describes the strength of linear correlations between two objects in terms of a pair of conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective measurement on one of the oscillators, collapses the other into a cat state of tunable size.

  18. Generalized mutual information and Tsirelson's bound

    NASA Astrophysics Data System (ADS)

    Wakakuwa, Eyuri; Murao, Mio

    2014-12-01

    We introduce a generalization of the quantum mutual information between a classical system and a quantum system into the mutual information between a classical system and a system described by general probabilistic theories. We apply this generalized mutual information (GMI) to a derivation of Tsirelson's bound from information causality, and prove that Tsirelson's bound can be derived from the chain rule of the GMI. By using the GMI, we formulate the "no-supersignalling condition" (NSS), that the assistance of correlations does not enhance the capability of classical communication. We prove that NSS is never violated in any no-signalling theory.

  19. Generalized mutual information and Tsirelson's bound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakakuwa, Eyuri; Murao, Mio

    2014-12-04

    We introduce a generalization of the quantum mutual information between a classical system and a quantum system into the mutual information between a classical system and a system described by general probabilistic theories. We apply this generalized mutual information (GMI) to a derivation of Tsirelson's bound from information causality, and prove that Tsirelson's bound can be derived from the chain rule of the GMI. By using the GMI, we formulate the 'no-supersignalling condition' (NSS), that the assistance of correlations does not enhance the capability of classical communication. We prove that NSS is never violated in any no-signalling theory.

  20. Analytical recursive method to ascertain multisite entanglement in doped quantum spin ladders

    NASA Astrophysics Data System (ADS)

    Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal

    2017-08-01

    We formulate an analytical recursive method to generate the wave function of doped short-range resonating valence bond (RVB) states as a tool to efficiently estimate multisite entanglement as well as other physical quantities in doped quantum spin ladders. We prove that doped RVB ladder states are always genuine multipartite entangled. Importantly, our results show that within specific doping concentration and model parameter regimes, the doped RVB state essentially characterizes the trends of genuine multiparty entanglement in the exact ground states of the Hubbard model with large on-site interactions, in the limit that yields the t -J Hamiltonian.

  1. The Spin-Foam Approach to Quantum Gravity.

    PubMed

    Perez, Alejandro

    2013-01-01

    This article reviews the present status of the spin-foam approach to the quantization of gravity. Special attention is payed to the pedagogical presentation of the recently-introduced new models for four-dimensional quantum gravity. The models are motivated by a suitable implementation of the path integral quantization of the Plebanski formulation of gravity on a simplicial regularization. The article also includes a self-contained treatment of 2+1 gravity. The simple nature of the latter provides the basis and a perspective for the analysis of both conceptual and technical issues that remain open in four dimensions.

  2. Quantum bath refrigeration towards absolute zero: challenging the unattainability principle.

    PubMed

    Kolář, M; Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G

    2012-08-31

    A minimal model of a quantum refrigerator, i.e., a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T→0 for certain realistic quantized baths, e.g., phonons in strongly disordered media (fractons) or quantized spin waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle.

  3. Quantum formalism for classical statistics

    NASA Astrophysics Data System (ADS)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  4. Consistent resolution of some relativistic quantum paradoxes

    NASA Astrophysics Data System (ADS)

    Griffiths, Robert B.

    2002-12-01

    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics.

  5. Catalysing the development and introduction of paediatric drug formulations for children living with HIV: a new global collaborative framework for action.

    PubMed

    Penazzato, Martina; Watkins, Melynda; Morin, Sébastien; Lewis, Linda; Pascual, Fernando; Vicari, Marissa; Lee, Janice; Hargreaves, Sally; Doherty, Meg; Siberry, George K

    2018-05-01

    Progress in the development and introduction of paediatric formulations for key infectious diseases is poor in low-income and middle-income countries (LMICs). Although major steps have been made in the scale-up of antiretroviral medicines in LMICs, the development and deployment of formulations for infants and children is suboptimal. Of the children living with HIV globally (most in Africa), only 43% are receiving antiretroviral therapy (ART), many with suboptimal formulations. These shortfalls pose a series of challenges to meeting global treatment targets of 1·6 million children (aged 0-14 years) on ART by the end of 2018 (95% coverage) and to ensuring that 95% of those on ART are virologically suppressed. The Global Accelerator for Paediatric Formulations (GAP-f) has been developed to accelerate research, development, regulatory filing, introduction, and uptake of prioritised paediatric antiretrovirals in age-appropriate formulations by 2020, with innovative, strategic, and sustainable financing. The GAP-f will build on existing efforts to maximise coordination and alignment of policy makers, research networks, regulatory agencies, funding organisations, and manufacturers in paediatric HIV and other paediatric diseases, including tuberculosis, viral hepatitis, and other infectious diseases. Paediatric drug development and scale-up will require special efforts to bring greater visibility and new solutions to ensure that children in LMICs have access to effective and appropriate treatment options. Copyright © 2018 World Health Organization. Published by Elsevier Ltd/Inc/BV. All rights reserved. Published by Elsevier Ltd.. All rights reserved.

  6. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction. The many-particle quantum walk can be viewed as a single quantum walk undergoing perfect state transfer on a larger weighted graph, obtained via equitable partitioning. I extend this formalism to non-simple graphs. Examples of the application of equitable partitioning to the analysis of quantum walks and many-particle quantum systems are discussed.

  7. The Effect of the Immigration of Soviet Jews to Israel on Israel’s Economy and Human Resources

    DTIC Science & Technology

    1993-06-01

    S 𔃺 0,"• The basic method will be a SWOT (strengths, weaknesses, opportunities I and threats) analysis followed by strategy formulation S suggestion...Middle east. 00 This thesis investigates the expected effects of the immigrants on the Israeli economy and society. The purpose of this analysis is...consistent source of external financing. This aid , which is especially responsive to emergencies, provides a safety net. Large funding drives were of

  8. Formulation of US international energy policies

    NASA Astrophysics Data System (ADS)

    1980-09-01

    To find out how the United States develops international energy policy, GAO reviewed five major energy issues covering the period from early 1977 through 1979. The issues are: vulnerabilities to petroleum supply interruptions; long term national security strategy on imported oil prices; export of U.S. oil and gas production equipment and technology to the Soviety Union; World Bank initiatives to assist in financing oil and gas exploration and development in oil-importing developing countries; and the role of gas imports relative to the nation's future sources of gas.

  9. Security of practical private randomness generation

    NASA Astrophysics Data System (ADS)

    Pironio, Stefano; Massar, Serge

    2013-01-01

    Measurements on entangled quantum systems necessarily yield outcomes that are intrinsically unpredictable if they violate a Bell inequality. This property can be used to generate certified randomness in a device-independent way, i.e., without making detailed assumptions about the internal working of the quantum devices used to generate the random numbers. Furthermore these numbers are also private; i.e., they appear random not only to the user but also to any adversary that might possess a perfect description of the devices. Since this process requires a small initial random seed to sample the behavior of the quantum devices and to extract uniform randomness from the raw outputs of the devices, one usually speaks of device-independent randomness expansion. The purpose of this paper is twofold. First, we point out that in most real, practical situations, where the concept of device independence is used as a protection against unintentional flaws or failures of the quantum apparatuses, it is sufficient to show that the generated string is random with respect to an adversary that holds only classical side information; i.e., proving randomness against quantum side information is not necessary. Furthermore, the initial random seed does not need to be private with respect to the adversary, provided that it is generated in a way that is independent from the measured systems. The devices, however, will generate cryptographically secure randomness that cannot be predicted by the adversary, and thus one can, given access to free public randomness, talk about private randomness generation. The theoretical tools to quantify the generated randomness according to these criteria were already introduced in S. Pironio [Nature (London)NATUAS0028-083610.1038/nature09008 464, 1021 (2010)], but the final results were improperly formulated. The second aim of this paper is to correct this inaccurate formulation and therefore lay out a precise theoretical framework for practical device-independent randomness generation.

  10. Bosonic anomalies, induced fractional quantum numbers, and degenerate zero modes: The anomalous edge physics of symmetry-protected topological states

    NASA Astrophysics Data System (ADS)

    Wang, Juven C.; Santos, Luiz H.; Wen, Xiao-Gang

    2015-05-01

    The boundary of symmetry-protected topological states (SPTs) can harbor new quantum anomaly phenomena. In this work, we characterize the bosonic anomalies introduced by the 1+1D non-onsite-symmetric gapless edge modes of (2+1)D bulk bosonic SPTs with a generic finite Abelian group symmetry (isomorphic to G =∏iZNi=ZN1×ZN2×ZN3×⋯ ). We demonstrate that some classes of SPTs (termed "Type II") trap fractional quantum numbers (such as fractional ZN charges) at the 0D kink of the symmetry-breaking domain walls, while some classes of SPTs (termed "Type III") have degenerate zero energy modes (carrying the projective representation protected by the unbroken part of the symmetry), either near the 0D kink of a symmetry-breaking domain wall, or on a symmetry-preserving 1D system dimensionally reduced from a thin 2D tube with a monodromy defect 1D line embedded. More generally, the energy spectrum and conformal dimensions of gapless edge modes under an external gauge flux insertion (or twisted by a branch cut, i.e., a monodromy defect line) through the 1D ring can distinguish many SPT classes. We provide a manifest correspondence from the physical phenomena, the induced fractional quantum number, and the zero energy mode degeneracy to the mathematical concept of cocycles that appears in the group cohomology classification of SPTs, thus achieving a concrete physical materialization of the cocycles. The aforementioned edge properties are formulated in terms of a long wavelength continuum field theory involving scalar chiral bosons, as well as in terms of matrix product operators and discrete quantum lattice models. Our lattice approach yields a regularization with anomalous non-onsite symmetry for the field theory description. We also formulate some bosonic anomalies in terms of the Goldstone-Wilczek formula.

  11. Differentiable representations of finite dimensional Lie groups in rigged Hilbert spaces

    NASA Astrophysics Data System (ADS)

    Wickramasekara, Sujeewa

    The inceptive motivation for introducing rigged Hilbert spaces (RHS) in quantum physics in the mid 1960's was to provide the already well established Dirac formalism with a proper mathematical context. It has since become clear, however, that this mathematical framework is lissome enough to accommodate a class of solutions to the dynamical equations of quantum physics that includes some which are not possible in the normative Hilbert space theory. Among the additional solutions, in particular, are those which describe aspects of scattering and decay phenomena that have eluded the orthodox quantum physics. In this light, the RHS formulation seems to provide a mathematical rubric under which various phenomenological observations and calculational techniques, commonly known in the study of resonance scattering and decay as ``effective theories'' (e.g., the Wigner- Weisskopf method), receive a unified theoretical foundation. These observations lead to the inference that a theory founded upon the RHS mathematics may prove to be of better utility and value in understanding quantum physical phenomena. This dissertation primarily aims to contribute to the general formalism of the RHS theory of quantum mechanics by undertaking a study of differentiable representations of finite dimensional Lie groups. In particular, it is shown that a finite dimensional operator Lie algebra G in a rigged Hilbert space can be always integrated, provided one parameter integrability holds true for the elements of any basis for G . This result differs from and extends the well known integration theorem of E. Nelson and the subsequent works of others on unitary representations in that it does not require any assumptions on the existence of analytic vectors. Also presented here is a construction of a particular rigged Hilbert space of Hardy class functions that appears useful in formulating a relativistic version of the RHS theory of resonances and decay. As a contexture for the construction, a synopsis of the new relativistic theory is presented.

  12. Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures

    NASA Astrophysics Data System (ADS)

    Cancès, Eric; Cazeaux, Paul; Luskin, Mitchell

    2017-06-01

    We give an exact formulation for the transport coefficients of incommensurate two-dimensional atomic multilayer systems in the tight-binding approximation. This formulation is based upon the C* algebra framework introduced by Bellissard and collaborators [Coherent and Dissipative Transport in Aperiodic Solids, Lecture Notes in Physics (Springer, 2003), Vol. 597, pp. 413-486 and J. Math. Phys. 35(10), 5373-5451 (1994)] to study aperiodic solids (disordered crystals, quasicrystals, and amorphous materials), notably in the presence of magnetic fields (quantum Hall effect). We also present numerical approximations and test our methods on a one-dimensional incommensurate bilayer system.

  13. Analyses of Third Order Bose-Einstein Correlation by Means of Coulomb Wave Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biyajima, Minoru; Mizoguchi, Takuya; Suzuki, Naomichi

    2006-04-11

    In order to include a correction by the Coulomb interaction in Bose-Einstein correlation (BEC), the wave function for the Coulomb scattering were introduced in the quantum optical approach to BEC in the previous work. If we formulate the amplitude written by Coulomb wave functions according to the diagram for BEC in the plane wave formulation, the formula for 3{pi} -BEC becomes simpler than that of our previous work. We re-analyze the raw data of 3{pi} -BEC by NA44 and STAR Collaborations by this formula. Results are compared with the previous ones.

  14. High aspect ratio patterning of photosensitive polyimide with low thermal expansion coefficient and low dielectric constant

    NASA Astrophysics Data System (ADS)

    Dick, Andrew R.; Bell, William K.; Luke, Brendan; Maines, Erin; Mueller, Brennen; Rawlings, Brandon; Kohl, Paul A.; Grant Willson, C.

    2016-07-01

    A photosensitive polyimide system based on amine catalyzed imidization of a precursor poly(amic ester) is described. The material is based on the meta ethyl ester of pyromellitic dianhydride and 2,2' bis(trifluoromethyl)benzidine. It acts as a negative tone resist when formulated with a photobase generator. The material exhibits a dielectric constant of 3.0 in the gigahertz range, a coefficient of thermal expansion of 6±2 ppm/K, and can be patterned to aspect ratios of >2 when formulated with a highly quantum efficient cinnamide type photobase generator.

  15. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    NASA Technical Reports Server (NTRS)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  16. Per-Olov Löwdin - father of quantum chemistry

    NASA Astrophysics Data System (ADS)

    Brändas, Erkki J.

    2017-09-01

    During 2016, we celebrate the 100th anniversary of the birth of Per-Olov Löwdin. He was appointed to the first Lehrstuhl in quantum chemistry at Uppsala University in 1960. Löwdin introduced quantum chemistry as a field in its own right by formulating its goals, establishing fundamental concepts, like the correlation energy, the method of configuration interaction, reduced density matrices, natural spin orbitals, charge and bond order matrices, symmetric orthogonalisation, and generalised self-consistent fields. His exposition of partitioning technique and perturbation theory, wave and reaction operators and associated non-linear summation techniques, introduced mathematical rigour and deductive order in the interpretative organisation of the new field. He brought the first computer to Uppsala University and pioneered the initiation of 'electronic brains' and anticipated their significance for quantum chemistry. Perhaps his single most influential contribution to the field was his education of two generations of future faculty in quantum chemistry through Summer Schools in the Scandinavian Mountains, Winter Institutes at Sanibel Island in the Gulf of Mexico. Per-Olov Löwdin founded the book series Advances in Quantum Chemistry and the International Journal of Quantum Chemistry. The evolution of quantum chemistry is appraised, starting from a collection of cross-disciplinary applications of quantum mechanics to the technologically advanced and predominant field of today, virtually used in all branches of chemistry. The scientific work of Per-Olov Löwdin has been crucial for the development of this new important province of science.

  17. Steepest entropy ascent model for far-nonequilibrium thermodynamics: Unified implementation of the maximum entropy production principle

    NASA Astrophysics Data System (ADS)

    Beretta, Gian Paolo

    2014-10-01

    By suitable reformulations, we cast the mathematical frameworks of several well-known different approaches to the description of nonequilibrium dynamics into a unified formulation valid in all these contexts, which extends to such frameworks the concept of steepest entropy ascent (SEA) dynamics introduced by the present author in previous works on quantum thermodynamics. Actually, the present formulation constitutes a generalization also for the quantum thermodynamics framework. The analysis emphasizes that in the SEA modeling principle a key role is played by the geometrical metric with respect to which to measure the length of a trajectory in state space. In the near-thermodynamic-equilibrium limit, the metric tensor is directly related to the Onsager's generalized resistivity tensor. Therefore, through the identification of a suitable metric field which generalizes the Onsager generalized resistance to the arbitrarily far-nonequilibrium domain, most of the existing theories of nonequilibrium thermodynamics can be cast in such a way that the state exhibits the spontaneous tendency to evolve in state space along the path of SEA compatible with the conservation constraints and the boundary conditions. The resulting unified family of SEA dynamical models is intrinsically and strongly consistent with the second law of thermodynamics. The non-negativity of the entropy production is a general and readily proved feature of SEA dynamics. In several of the different approaches to nonequilibrium description we consider here, the SEA concept has not been investigated before. We believe it defines the precise meaning and the domain of general validity of the so-called maximum entropy production principle. Therefore, it is hoped that the present unifying approach may prove useful in providing a fresh basis for effective, thermodynamically consistent, numerical models and theoretical treatments of irreversible conservative relaxation towards equilibrium from far nonequilibrium states. The mathematical frameworks we consider are the following: (A) statistical or information-theoretic models of relaxation; (B) small-scale and rarefied gas dynamics (i.e., kinetic models for the Boltzmann equation); (C) rational extended thermodynamics, macroscopic nonequilibrium thermodynamics, and chemical kinetics; (D) mesoscopic nonequilibrium thermodynamics, continuum mechanics with fluctuations; and (E) quantum statistical mechanics, quantum thermodynamics, mesoscopic nonequilibrium quantum thermodynamics, and intrinsic quantum thermodynamics.

  18. Electric-field-induced interferometric resonance of a one-dimensional spin-orbit-coupled electron

    PubMed Central

    Fan, Jingtao; Chen, Yuansen; Chen, Gang; Xiao, Liantuan; Jia, Suotang; Nori, Franco

    2016-01-01

    The efficient control of electron spins is of crucial importance for spintronics, quantum metrology, and quantum information processing. We theoretically formulate an electric mechanism to probe the electron spin dynamics, by focusing on a one-dimensional spin-orbit-coupled nanowire quantum dot. Owing to the existence of spin-orbit coupling and a pulsed electric field, different spin-orbit states are shown to interfere with each other, generating intriguing interference-resonant patterns. We also reveal that an in-plane magnetic field does not affect the interval of any neighboring resonant peaks, but contributes a weak shift of each peak, which is sensitive to the direction of the magnetic field. We find that this proposed external-field-controlled scheme should be regarded as a new type of quantum-dot-based interferometry. This interferometry has potential applications in precise measurements of relevant experimental parameters, such as the Rashba and Dresselhaus spin-orbit-coupling strengths, as well as the Landé factor. PMID:27966598

  19. Absorbers in the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Boisvert, Jean-Sébastien; Marchildon, Louis

    2013-03-01

    The transactional interpretation of quantum mechanics, following the time-symmetric formulation of electrodynamics, uses retarded and advanced solutions of the Schrödinger equation and its complex conjugate to understand quantum phenomena by means of transactions. A transaction occurs between an emitter and a specific absorber when the emitter has received advanced waves from all possible absorbers. Advanced causation always raises the specter of paradoxes, and it must be addressed carefully. In particular, different devices involving contingent absorbers or various types of interaction-free measurements have been proposed as threatening the original version of the transactional interpretation. These proposals will be analyzed by examining in each case the configuration of absorbers and, in the special case of the so-called quantum liar experiment, by carefully following the development of retarded and advanced waves through the Mach-Zehnder interferometer. We will show that there is no need to resort to the hierarchy of transactions that some have proposed, and will argue that the transactional interpretation is consistent with the block-universe picture of time.

  20. Position-momentum uncertainty relations in the presence of quantum memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp; Berta, Mario; Institute for Theoretical Physics, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich

    2014-12-15

    A prominent formulation of the uncertainty principle identifies the fundamental quantum feature that no particle may be prepared with certain outcomes for both position and momentum measurements. Often the statistical uncertainties are thereby measured in terms of entropies providing a clear operational interpretation in information theory and cryptography. Recently, entropic uncertainty relations have been used to show that the uncertainty can be reduced in the presence of entanglement and to prove security of quantum cryptographic tasks. However, much of this recent progress has been focused on observables with only a finite number of outcomes not including Heisenberg’s original setting ofmore » position and momentum observables. Here, we show entropic uncertainty relations for general observables with discrete but infinite or continuous spectrum that take into account the power of an entangled observer. As an illustration, we evaluate the uncertainty relations for position and momentum measurements, which is operationally significant in that it implies security of a quantum key distribution scheme based on homodyne detection of squeezed Gaussian states.« less

  1. Quantum Yang-Mills Dark Energy

    NASA Astrophysics Data System (ADS)

    Pasechnik, Roman

    2016-02-01

    In this short review, I discuss basic qualitative characteristics of quantum non-Abelian gauge dynamics in the non-stationary background of the expanding Universe in the framework of the standard Einstein--Yang--Mills formulation. A brief outlook of existing studies of cosmological Yang--Mills fields and their properties will be given. Quantum effects have a profound impact on the gauge field-driven cosmological evolution. In particular, a dynamical formation of the spatially-homogeneous and isotropic gauge field condensate may be responsible for both early and late-time acceleration, as well as for dynamical compensation of non-perturbative quantum vacua contributions to the ground state of the Universe. The main properties of such a condensate in the effective QCD theory at the flat Friedmann--Lema\\'itre--Robertson--Walker (FLRW) background will be discussed within and beyond perturbation theory. Finally, a phenomenologically consistent dark energy can be induced dynamically as a remnant of the QCD vacua compensation arising from leading-order graviton-mediated corrections to the QCD ground state.

  2. Group field theories for all loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Ryan, James P.; Thürigen, Johannes

    2015-02-01

    Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.

  3. A quantum theoretical approach to information processing in neural networks

    NASA Astrophysics Data System (ADS)

    Barahona da Fonseca, José; Barahona da Fonseca, Isabel; Suarez Araujo, Carmen Paz; Simões da Fonseca, José

    2000-05-01

    A reinterpretation of experimental data on learning was used to formulate a law on data acquisition similar to the Hamiltonian of a mechanical system. A matrix of costs in decision making specifies values attributable to a barrier that opposed to hypothesis formation about decision making. The interpretation of the encoding costs as frequencies of oscillatory phenomena leads to a quantum paradigm based in the models of photoelectric effect as well as of a particle against a potential barrier. Cognitive processes are envisaged as complex phenomena represented by structures linked by valence bounds. This metaphor is used to find some prerequisites to certain types of conscious experience as well as to find an explanation for some pathological distortions of cognitive operations as they are represented in the context of the isolobal model. Those quantum phenomena are understood as representing an analogue programming for specific special purpose computations. The formation of complex chemical structures within the context of isolobal theory is understood as an analog quantum paradigm for complex cognitive computations.

  4. Non-Abelian strategies in quantum penny flip game

    NASA Astrophysics Data System (ADS)

    Mishima, Hiroaki

    2018-01-01

    In this paper, we formulate and analyze generalizations of the quantum penny flip game. In the penny flip game, one coin has two states, heads or tails, and two players apply alternating operations on the coin. In the original Meyer game, the first player is allowed to use quantum (i.e., non-commutative) operations, but the second player is still only allowed to use classical (i.e., commutative) operations. In our generalized games, both players are allowed to use non-commutative operations, with the second player being partially restricted in what operators they use. We show that even if the second player is allowed to use "phase-variable" operations, which are non-Abelian in general, the first player still has winning strategies. Furthermore, we show that even when the second player is allowed to choose one from two or more elements of the group U(2), the second player has winning strategies under certain conditions. These results suggest that there is often a method for restoring the quantum state disturbed by another agent.

  5. The action uncertainty principle for continuous measurements

    NASA Astrophysics Data System (ADS)

    Mensky, Michael B.

    1996-02-01

    The action uncertainty principle (AUP) for the specification of the most probable readouts of continuous quantum measurements is proved, formulated in different forms and analyzed (for nonlinear as well as linear systems). Continuous monitoring of an observable A(p,q,t) with resolution Δa( t) is considered. The influence of the measurement process on the evolution of the measured system (quantum measurement noise) is presented by an additional term δ F(t)A(p,q,t) in the Hamiltonian where the function δ F (generalized fictitious force) is restricted by the AUP ∫|δ F(t)| Δa( t) d t ≲ and arbitrary otherwise. Quantum-nondemolition (QND) measurements are analyzed with the help of the AUP. A simple uncertainty relation for continuous quantum measurements is derived. It states that the area of a certain band in the phase space should be of the order of. The width of the band depends on the measurement resolution while its length is determined by the deviation of the system, due to the measurement, from classical behavior.

  6. An efficient matrix product operator representation of the quantum chemical Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch; Dolfi, Michele, E-mail: dolfim@phys.ethz.ch

    We describe how to efficiently construct the quantum chemical Hamiltonian operator in matrix product form. We present its implementation as a density matrix renormalization group (DMRG) algorithm for quantum chemical applications. Existing implementations of DMRG for quantum chemistry are based on the traditional formulation of the method, which was developed from the point of view of Hilbert space decimation and attained higher performance compared to straightforward implementations of matrix product based DMRG. The latter variationally optimizes a class of ansatz states known as matrix product states, where operators are correspondingly represented as matrix product operators (MPOs). The MPO construction schememore » presented here eliminates the previous performance disadvantages while retaining the additional flexibility provided by a matrix product approach, for example, the specification of expectation values becomes an input parameter. In this way, MPOs for different symmetries — abelian and non-abelian — and different relativistic and non-relativistic models may be solved by an otherwise unmodified program.« less

  7. Periodic Toda lattice in quantum mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, A.

    The quantum mechanical periodic Toda lattice is studied by the direct diagonalization of the Hamiltonian. The eigenstates are classified according to the irreducible representations of the dihedral group D[sub N]. It is shown that Gutzwiller's quantization conditions are satisfied and they have a one-to-one correspondence to the irreducible representation of the D[sub N] group. The authors have also carried out the semiclassical quantization of the periodic Toda lattice by the EBK formulation. The eigenvalues of the semiclassical quantization have a one-to-one correspondence to the integer quantum numbers, and those quantum numbers also have a close relationship to the symmetry ofmore » the state. Numerical calculations have been done for N = 3, 4, 5, and 6 particle periodic Toda lattices. The distributions of the eigenvalues are systematic and distinguished by the symmetry of the state. As illustrative examples, amplitudes of the wave functions and density distributions are shown. 14 refs., 8 figs., 11 tabs.« less

  8. Topological quantum computation of the Dold-Thom functor

    NASA Astrophysics Data System (ADS)

    Ospina, Juan

    2014-05-01

    A possible topological quantum computation of the Dold-Thom functor is presented. The method that will be used is the following: a) Certain 1+1-topological quantum field theories valued in symmetric bimonoidal categories are converted into stable homotopical data, using a machinery recently introduced by Elmendorf and Mandell; b) we exploit, in this framework, two recent results (independent of each other) on refinements of Khovanov homology: our refinement into a module over the connective k-theory spectrum and a stronger result by Lipshitz and Sarkar refining Khovanov homology into a stable homotopy type; c) starting from the Khovanov homotopy the Dold-Thom functor is constructed; d) the full construction is formulated as a topological quantum algorithm. It is conjectured that the Jones polynomial can be described as the analytical index of certain Dirac operator defined in the context of the Khovanov homotopy using the Dold-Thom functor. As a line for future research is interesting to study the corresponding supersymmetric model for which the Khovanov-Dirac operator plays the role of a supercharge.

  9. John Wheeler, 1952 - 1976: Black Holes and Geometrodynamics

    NASA Astrophysics Data System (ADS)

    Thorne, Kip S.

    2009-05-01

    In 1952 John Wheeler turned his attention from nuclear physics and national defense to a backwater of physics: general relativity. Over the next 25 years, with students and postdocs he led a ``revolution'' that made relativity a major subfield of fundamental physics and a tool for astrophysics. Wheeler viewed curved spacetime as a nonlinear dynamical entity, to be studied via tools of geometrodynamics (by analogy with electrodynamics) -- including numerical relativity, for which his students laid the earliest foundations. With Joseph Weber (his postdoc), he did theoretical work on gravitational waves that helped launch Weber on a career of laying foundations for modern gravitational-wave detectors. Wheeler and his students showed compellingly that massive stars must form black holes; and he gave black holes their name, formulated the theory of their pulsations and stability (with Tullio Regge), and mentored several generations of students in seminal black-hole research (including Jacob Bekenstein's black-hole entropy). Before the discovery of pulsars, Wheeler identified magnetized, spinning neutron stars as the likely power sources for supernova remnants including the Crab nebula. He identified the Planck length and time as the characteristic scales for the laws of quantum gravity, and formulated the concept of quantum fluctuations of spacetime geometry and quantum foam. With Bryce DeWitt, he defined a quantum wave function on the space of 3-geometries and derived the Wheeler-DeWitt equation that governs it, and its a sum-over-histories action principle. Wheeler was a great inspiration to his colleagues and students, pointing the directions toward fruitful research problems and making intuitive-leap speculations about what lies beyond the frontiers of knowledge. Many of his ideas that sounded crazy at the time were ``just crazy enough to be right''.

  10. Ising formulation of associative memory models and quantum annealing recall

    NASA Astrophysics Data System (ADS)

    Santra, Siddhartha; Shehab, Omar; Balu, Radhakrishnan

    2017-12-01

    Associative memory models, in theoretical neuro- and computer sciences, can generally store at most a linear number of memories. Recalling memories in these models can be understood as retrieval of the energy minimizing configuration of classical Ising spins, closest in Hamming distance to an imperfect input memory, where the energy landscape is determined by the set of stored memories. We present an Ising formulation for associative memory models and consider the problem of memory recall using quantum annealing. We show that allowing for input-dependent energy landscapes allows storage of up to an exponential number of memories (in terms of the number of neurons). Further, we show how quantum annealing may naturally be used for recall tasks in such input-dependent energy landscapes, although the recall time may increase with the number of stored memories. Theoretically, we obtain the radius of attractor basins R (N ) and the capacity C (N ) of such a scheme and their tradeoffs. Our calculations establish that for randomly chosen memories the capacity of our model using the Hebbian learning rule as a function of problem size can be expressed as C (N ) =O (eC1N) , C1≥0 , and succeeds on randomly chosen memory sets with a probability of (1 -e-C2N) , C2≥0 with C1+C2=(0.5-f ) 2/(1 -f ) , where f =R (N )/N , 0 ≤f ≤0.5 , is the radius of attraction in terms of the Hamming distance of an input probe from a stored memory as a fraction of the problem size. We demonstrate the application of this scheme on a programmable quantum annealing device, the D-wave processor.

  11. The Holst spin foam model via cubulations

    NASA Astrophysics Data System (ADS)

    Baratin, Aristide; Flori, Cecilia; Thiemann, Thomas

    2012-10-01

    Spin foam models are an attempt at a covariant or path integral formulation of canonical loop quantum gravity. The construction of such models usually relies on the Plebanski formulation of general relativity as a constrained BF theory and is based on the discretization of the action on a simplicial triangulation, which may be viewed as an ultraviolet regulator. The triangulation dependence can be removed by means of group field theory techniques, which allows one to sum over all triangulations. The main tasks for these models are the correct quantum implementation of the Plebanski constraints, the existence of a semiclassical sector implementing additional ‘Regge-like’ constraints arising from simplicial triangulations and the definition of the physical inner product of loop quantum gravity via group field theory. Here we propose a new approach to tackle these issues stemming directly from the Holst action for general relativity, which is also a proper starting point for canonical loop quantum gravity. The discretization is performed by means of a ‘cubulation’ of the manifold rather than a triangulation. We give a direct interpretation of the resulting spin foam model as a generating functional for the n-point functions on the physical Hilbert space at finite regulator. This paper focuses on ideas and tasks to be performed before the model can be taken seriously. However, our analysis reveals some interesting features of this model: firstly, the structure of its amplitudes differs from the standard spin foam models. Secondly, the tetrad n-point functions admit a ‘Wick-like’ structure. Thirdly, the restriction to simple representations does not automatically occur—unless one makes use of the time gauge, just as in the classical theory.

  12. Studies in the Theory of Quantum Games

    NASA Astrophysics Data System (ADS)

    Iqbal, Azhar

    2005-03-01

    Theory of quantum games is a new area of investigation that has gone through rapid development during the last few years. Initial motivation for playing games, in the quantum world, comes from the possibility of re-formulating quantum communication protocols, and algorithms, in terms of games between quantum and classical players. The possibility led to the view that quantum games have a potential to provide helpful insight into working of quantum algorithms, and even in finding new ones. This thesis analyzes and compares some interesting games when played classically and quantum mechanically. A large part of the thesis concerns investigations into a refinement notion of the Nash equilibrium concept. The refinement, called an evolutionarily stable strategy (ESS), was originally introduced in 1970s by mathematical biologists to model an evolving population using techniques borrowed from game theory. Analysis is developed around a situation when quantization changes ESSs without affecting corresponding Nash equilibria. Effects of quantization on solution-concepts other than Nash equilibrium are presented and discussed. For this purpose the notions of value of coalition, backwards-induction outcome, and subgame-perfect outcome are selected. Repeated games are known to have different information structure than one-shot games. Investigation is presented into a possible way where quantization changes the outcome of a repeated game. Lastly, two new suggestions are put forward to play quantum versions of classical matrix games. The first one uses the association of De Broglie's waves, with travelling material objects, as a resource for playing a quantum game. The second suggestion concerns an EPR type setting exploiting directly the correlations in Bell's inequalities to play a bi-matrix game.

  13. Flying over decades

    NASA Astrophysics Data System (ADS)

    Hoeller, Judith; Issler, Mena; Imamoglu, Atac

    Levy flights haven been extensively used in the past three decades to describe non-Brownian motion of particles. In this presentation I give an overview on how Levy flights have been used across several disciplines, ranging from biology to finance to physics. In our publication we describe how a single electron spin 'flies' when captured in quantum dot using the central spin model. At last I motivate the use of Levy flights for the description of anomalous diffusion in modern experiments, concretely to describe the lifetimes of quasi-particles in Josephson junctions. Finished PhD at ETH in Spring 2015.

  14. Generalized Bloch theorem for complex periodic potentials: A powerful application to quantum transport calculations

    NASA Astrophysics Data System (ADS)

    Zhang, X.-G.; Varga, Kalman; Pantelides, Sokrates T.

    2007-07-01

    Band-theoretic methods with periodically repeated supercells have been a powerful approach for ground-state electronic structure calculations but have not so far been adapted for quantum transport problems with open boundary conditions. Here, we introduce a generalized Bloch theorem for complex periodic potentials and use a transfer-matrix formulation to cast the transmission probability in a scattering problem with open boundary conditions in terms of the complex wave vectors of a periodic system with absorbing layers, allowing a band technique for quantum transport calculations. The accuracy and utility of the method are demonstrated by the model problems of the transmission of an electron over a square barrier and the scattering of a phonon in an inhomogeneous nanowire. Application to the resistance of a twin boundary in nanocrystalline copper yields excellent agreement with recent experimental data.

  15. Quantum mechanics on phase space and the Coulomb potential

    NASA Astrophysics Data System (ADS)

    Campos, P.; Martins, M. G. R.; Vianna, J. D. M.

    2017-04-01

    Symplectic quantum mechanics (SMQ) makes possible to derive the Wigner function without the use of the Liouville-von Neumann equation. In this formulation of the quantum theory the Galilei Lie algebra is constructed using the Weyl (or star) product with Q ˆ = q ⋆ = q +iħ/2∂p , P ˆ = p ⋆ = p -iħ/2∂q, and the Schrödinger equation is rewritten in phase space; in consequence physical applications involving the Coulomb potential present some specific difficulties. Within this context, in order to treat the Schrödinger equation in phase space, a procedure based on the Levi-Civita (or Bohlin) transformation is presented and applied to two-dimensional (2D) hydrogen atom. Amplitudes of probability in phase space and the correspondent Wigner quasi-distribution functions are derived and discussed.

  16. OPTICS. Quantum spin Hall effect of light.

    PubMed

    Bliokh, Konstantin Y; Smirnova, Daria; Nori, Franco

    2015-06-26

    Maxwell's equations, formulated 150 years ago, ultimately describe properties of light, from classical electromagnetism to quantum and relativistic aspects. The latter ones result in remarkable geometric and topological phenomena related to the spin-1 massless nature of photons. By analyzing fundamental spin properties of Maxwell waves, we show that free-space light exhibits an intrinsic quantum spin Hall effect—surface modes with strong spin-momentum locking. These modes are evanescent waves that form, for example, surface plasmon-polaritons at vacuum-metal interfaces. Our findings illuminate the unusual transverse spin in evanescent waves and explain recent experiments that have demonstrated the transverse spin-direction locking in the excitation of surface optical modes. This deepens our understanding of Maxwell's theory, reveals analogies with topological insulators for electrons, and offers applications for robust spin-directional optical interfaces. Copyright © 2015, American Association for the Advancement of Science.

  17. Composite quantum collision models

    NASA Astrophysics Data System (ADS)

    Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo

    2017-09-01

    A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.

  18. Quantum Structure in Cognition and the Foundations of Human Reasoning

    NASA Astrophysics Data System (ADS)

    Aerts, Diederik; Sozzo, Sandro; Veloz, Tomas

    2015-12-01

    Traditional cognitive science rests on a foundation of classical logic and probability theory. This foundation has been seriously challenged by several findings in experimental psychology on human decision making. Meanwhile, the formalism of quantum theory has provided an efficient resource for modeling these classically problematical situations. In this paper, we start from our successful quantum-theoretic approach to the modeling of concept combinations to formulate a unifying explanatory hypothesis. In it, human reasoning is the superposition of two processes - a conceptual reasoning, whose nature is emergence of new conceptuality, and a logical reasoning, founded on an algebraic calculus of the logical type. In most cognitive processes however, the former reasoning prevails over the latter. In this perspective, the observed deviations from classical logical reasoning should not be interpreted as biases but, rather, as natural expressions of emergence in its deepest form.

  19. Quantum Parameter Estimation: From Experimental Design to Constructive Algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Le; Chen, Xi; Zhang, Ming; Dai, Hong-Yi

    2017-11-01

    In this paper we design the following two-step scheme to estimate the model parameter ω 0 of the quantum system: first we utilize the Fisher information with respect to an intermediate variable v=\\cos ({ω }0t) to determine an optimal initial state and to seek optimal parameters of the POVM measurement operators; second we explore how to estimate ω 0 from v by choosing t when a priori information knowledge of ω 0 is available. Our optimal initial state can achieve the maximum quantum Fisher information. The formulation of the optimal time t is obtained and the complete algorithm for parameter estimation is presented. We further explore how the lower bound of the estimation deviation depends on the a priori information of the model. Supported by the National Natural Science Foundation of China under Grant Nos. 61273202, 61673389, and 61134008

  20. Scattering Amplitudes from Intersection Theory

    NASA Astrophysics Data System (ADS)

    Mizera, Sebastian

    2018-04-01

    We use Picard-Lefschetz theory to prove a new formula for intersection numbers of twisted cocycles associated with a given arrangement of hyperplanes. In a special case when this arrangement produces the moduli space of punctured Riemann spheres, intersection numbers become tree-level scattering amplitudes of quantum field theories in the Cachazo-He-Yuan formulation.

  1. Spin-adapted matrix product states and operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Sebastian, E-mail: sebastian.keller@phys.chem.ethz.ch; Reiher, Markus, E-mail: markus.reiher@phys.chem.ethz.ch

    Matrix product states (MPSs) and matrix product operators (MPOs) allow an alternative formulation of the density matrix renormalization group algorithm introduced by White. Here, we describe how non-abelian spin symmetry can be exploited in MPSs and MPOs by virtue of the Wigner–Eckart theorem at the example of the spin-adapted quantum chemical Hamiltonian operator.

  2. Fundamental Studies Connected with Electrochemical Energy Storage

    NASA Technical Reports Server (NTRS)

    Buck, E.; Sen, R.

    1974-01-01

    Papers are presented which deal with electrochemical research activities. Emphasis is placed on electrochemical energy storage devices. Topics discussed include: adsorption of dendrite inhibitors on zinc; proton discharge process; electron and protron transfer; quantum mechanical formulation of electron transfer rates; and theory of electrochemical kinetics in terms of two models of activation; thermal and electrostatic.

  3. Devising and Attaining National Health Objectives: A Case Study in Policy Formulation Using Asthma Targets in Healthy People 2000

    DTIC Science & Technology

    1991-05-06

    Phys- (loosely) Quantum Chaos Theory entific Paradigm ics - atomistic move- ments Value Claims transmutes values value isolated into Values incorporat...infant care 3. immunizations 4. sexually transmissible disease services 5. high blood pressure control 6. toxic agent control 7. occupational safety and

  4. Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling

    NASA Astrophysics Data System (ADS)

    Oguri, Akira; Hewson, A. C.

    2018-03-01

    We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017), 10.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γσ σ';σ'σ(ω ,ω';ω',ω ), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω' using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.

  5. Sensitive determination of enoxacin in pharmaceutical formulations by its quench effect on the fluorescence of glutathione-capped CdTe quantum dots.

    PubMed

    Yang, Qiong; Tan, Xuanping; Yang, Jidong

    2016-02-01

    A sensitive and simple method for the determination of enoxacin (ENX) was developed based on the fluorescence quenching effect of ENX for glutathione (GSH)-capped CdTe quantum dots (QDs). Under optimum conditions, a good linear relationship was obtained from 4.333 × 10(-9)  mol⋅L(-1) to 1.4 × 10(-5)  mol⋅L(-1) with a correlation coefficient (R) of 0.9987, and the detection limit (3σ/K) was 1.313 × 10(-9)  mol⋅L(-1). The corresponding mechanism has been proposed on the basis of electron transfer supported by ultraviolet-visible (UV) light absorption, fluorescence spectroscopy, and the measurement of fluorescence lifetime. The method has been applied to the determination of ENX in pharmaceutical formulations (enoxacin gluconate injections and commercial tablets) with satisfactory results. The proposed method manifested several advantages such as high sensitivity, short analysis time, low cost and ease of operation. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Large-amplitude nuclear motion formulated in terms of dissipation of quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Kuzyakin, R. A.; Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.

    2017-01-01

    The potential-barrier penetrability and quasi-stationary thermal-decay rate of a metastable state are formulated in terms of microscopic quantum diffusion. Apart from linear coupling in momentum between the collective and internal subsystems, the formalism embraces the more general case of linear couplings in both the momentum and the coordinates. The developed formalism is then used for describing the process of projectile-nucleus capture by a target nucleus at incident energies near and below the Coulomb barrier. The capture partial probability, which determines the cross section for formation of a dinuclear system, is derived in analytical form. The total and partial capture cross sections, mean and root-mean-square angular momenta of the formed dinuclear system, astrophysical -factors, logarithmic derivatives, and barrier distributions are derived for various reactions. Also investigated are the effects of nuclear static deformation and neutron transfer between the interacting nuclei on the capture cross section and its isotopic dependence, and the entrance-channel effects on the capture process. The results of calculations for reactions involving both spherical and deformed nuclei are in good agreement with available experimental data.

  7. Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling.

    PubMed

    Oguri, Akira; Hewson, A C

    2018-03-23

    We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017)PRBMDO2469-995010.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γ_{σσ^{'};σ^{'}σ}(ω,ω^{'};ω^{'},ω), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω^{'} using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.

  8. Dreams of a quantum pioneer

    NASA Astrophysics Data System (ADS)

    Segré, Gino

    2009-09-01

    Born in 1900, Wolfgang Pauli's debut as a physicist came in 1921 with the publication of a review paper on relativity so thorough and incisive that Einstein wrote of it "No-one studying this mature, grandly conceived work would believe the author is a man of twenty-one". Three years later, Pauli formulated the exclusion principle that bears his name, and that forms the basis of atomic and molecular structure; this work earned him the 1945 Nobel Prize for Physics. In 1930 he introduced the concept of the neutrino, which is central to modern elementary particle physics. By then, he had already become the key arbiter in the year-long discussions held in Copenhagen between Werner Heisenberg and Niels Bohr that had led to the modern formulation of quantum mechanics. He was also the holder of a prestigious professorship in Zurich, Switzerland, where young physicists from around the world - including Felix Bloch, Max Delbruck, Lev Landau, J Robert Oppenheimer, Rudolf Peierls and Victor Weisskopf - were flocking to work with him. Hence, by the age of just 30, Pauli had already established himself as one of the 20th century's great physicists.

  9. Cytotoxicity assessment of functionalized CdSe, CdTe and InP quantum dots in two human cancer cell models.

    PubMed

    Liu, Jing; Hu, Rui; Liu, Jianwei; Zhang, Butian; Wang, Yucheng; Liu, Xin; Law, Wing-Cheung; Liu, Liwei; Ye, Ling; Yong, Ken-Tye

    2015-12-01

    The toxicity of quantum dots (QDs) has been extensively studied over the past decade. Some common factors that originate the QD toxicity include releasing of heavy metal ions from degraded QDs and the generation of reactive oxygen species on the QD surface. In addition to these factors, we should also carefully examine other potential QD toxicity causes that will play crucial roles in impacting the overall biological system. In this contribution, we have performed cytotoxicity assessment of four types of QD formulations in two different human cancer cell models. The four types of QD formulations, namely, mercaptopropionic acid modified CdSe/CdS/ZnS QDs (CdSe-MPA), PEGylated phospholipid encapsulated CdSe/CdS/ZnS QDs (CdSe-Phos), PEGylated phospholipid encapsulated InP/ZnS QDs (InP-Phos) and Pluronic F127 encapsulated CdTe/ZnS QDs (CdTe-F127), are representatives for the commonly used QD formulations in biomedical applications. Both the core materials and the surface modifications have been taken into consideration as the key factors for the cytotoxicity assessment. Through side-by-side comparison and careful evaluations, we have found that the toxicity of QDs does not solely depend on a single factor in initiating the toxicity in biological system but rather it depends on a combination of elements from the particle formulations. More importantly, our toxicity assessment shows different cytotoxicity trend for all the prepared formulations tested on gastric adenocarcinoma (BGC-823) and neuroblastoma (SH-SY5Y) cell lines. We have further proposed that the cellular uptake of these nanocrystals plays an important role in determining the final faith of the toxicity impact of the formulation. The result here suggests that the toxicity of QDs is rather complex and it cannot be generalized under a few assumptions reported previously. We suggest that one have to evaluate the QD toxicity on a case to case basis and this indicates that standard procedures and comprehensive protocols are urgently needed to be developed and employed for fully assessing and understanding the origins of the toxicity arising from different QD formulations. Copyright © 2015. Published by Elsevier B.V.

  10. Quantum Dynamics in Continuum for Proton Transport I: Basic Formulation.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2013-01-01

    Proton transport is one of the most important and interesting phenomena in living cells. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins. We describe proton dynamics quantum mechanically via a density functional approach while implicitly model other solvent ions as a dielectric continuum to reduce the number of degrees of freedom. The densities of all other ions in the solvent are assumed to obey the Boltzmann distribution. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic level. We formulate a total free energy functional to put proton kinetic and potential energies as well as electrostatic energy of all ions on an equal footing. The variational principle is employed to derive nonlinear governing equations for the proton transport system. Generalized Poisson-Boltzmann equation and Kohn-Sham equation are obtained from the variational framework. Theoretical formulations for the proton density and proton conductance are constructed based on fundamental principles. The molecular surface of the channel protein is utilized to split the discrete protein domain and the continuum solvent domain, and facilitate the multiscale discrete/continuum/quantum descriptions. A number of mathematical algorithms, including the Dirichlet to Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov space techniques are utilized to implement the proposed model in a computationally efficient manner. The Gramicidin A (GA) channel is used to demonstrate the performance of the proposed proton transport model and validate the efficiency of proposed mathematical algorithms. The electrostatic characteristics of the GA channel is analyzed with a wide range of model parameters. The proton conductances are studied over a number of applied voltages and reference concentrations. A comparison with experimental data verifies the present model predictions and validates the proposed model.

  11. Quantum mechanics from Newton's second law and the canonical commutation relation [X, P] = i

    NASA Astrophysics Data System (ADS)

    Palenik, Mark C.

    2014-07-01

    Despite the fact that it has been known since the time of Heisenberg that quantum operators obey a quantum version of Newton's laws, students are often told that derivations of quantum mechanics must necessarily follow from the Hamiltonian or Lagrangian formulations of mechanics. Here, we first derive the existing Heisenberg equations of motion from Newton's laws and the uncertainty principle using only the equations F=\\frac{dP}{dt}, P=m\\frac{dV}{dt}, and [X, P] = i. Then, a new expression for the propagator is derived that makes a connection between time evolution in quantum mechanics and the motion of a classical particle under Newton's laws. The propagator is solved for three cases where an exact solution is possible: (1) the free particle; (2) the harmonic oscillator; and (3) a constant force, or linear potential in the standard interpretation. We then show that for a general for a general force F(X), by Taylor expanding X(t) in time, we can use this methodology to reproduce the Feynman path integral formula for the propagator. Such a picture may be useful for students as they make the transition from classical to quantum mechanics and help solidify the equivalence of the Hamiltonian, Lagrangian, and Newtonian pictures of physics in their minds.

  12. General Relativity without paradigm of space-time covariance, and resolution of the problem of time

    NASA Astrophysics Data System (ADS)

    Soo, Chopin; Yu, Hoi-Lai

    2014-01-01

    The framework of a theory of gravity from the quantum to the classical regime is presented. The paradigm shift from full space-time covariance to spatial diffeomorphism invariance, together with clean decomposition of the canonical structure, yield transparent physical dynamics and a resolution of the problem of time. The deep divide between quantum mechanics and conventional canonical formulations of quantum gravity is overcome with a Schrödinger equation for quantum geometrodynamics that describes evolution in intrinsic time. Unitary time development with gauge-invariant temporal ordering is also viable. All Kuchar observables become physical; and classical space-time, with direct correlation between its proper times and intrinsic time intervals, emerges from constructive interference. The framework not only yields a physical Hamiltonian for Einstein's theory, but also prompts natural extensions and improvements towards a well behaved quantum theory of gravity. It is a consistent canonical scheme to discuss Horava-Lifshitz theories with intrinsic time evolution, and of the many possible alternatives that respect 3-covariance (rather than the more restrictive 4-covariance of Einstein's theory), Horava's "detailed balance" form of the Hamiltonian constraint is essentially pinned down by this framework. Issues in quantum gravity that depend on radiative corrections and the rigorous definition and regularization of the Hamiltonian operator are not addressed in this work.

  13. Time Asymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bohm, Arno R.; Gadella, Manuel; Kielanowski, Piotr

    2011-09-01

    The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1) for states or the Heisenberg equation (6a) for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space) of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus) and observables (defined by a registration apparatus (detector)). If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence) one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.

  14. Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix

    NASA Astrophysics Data System (ADS)

    Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.

  15. Relativistic hydrodynamics from quantum field theory on the basis of the generalized Gibbs ensemble method

    NASA Astrophysics Data System (ADS)

    Hayata, Tomoya; Hidaka, Yoshimasa; Noumi, Toshifumi; Hongo, Masaru

    2015-09-01

    We derive relativistic hydrodynamics from quantum field theories by assuming that the density operator is given by a local Gibbs distribution at initial time. We decompose the energy-momentum tensor and particle current into nondissipative and dissipative parts, and analyze their time evolution in detail. Performing the path-integral formulation of the local Gibbs distribution, we microscopically derive the generating functional for the nondissipative hydrodynamics. We also construct a basis to study dissipative corrections. In particular, we derive the first-order dissipative hydrodynamic equations without a choice of frame such as the Landau-Lifshitz or Eckart frame.

  16. Wigner distribution functions for complex dynamical systems: the emergence of the Wigner-Boltzmann equation.

    PubMed

    Sels, Dries; Brosens, Fons

    2013-10-01

    The equation of motion for the reduced Wigner function of a system coupled to an external quantum system is presented for the specific case when the external quantum system can be modeled as a set of harmonic oscillators. The result is derived from the Wigner function formulation of the Feynman-Vernon influence functional theory. It is shown how the true self-energy for the equation of motion is connected with the influence functional for the path integral. Explicit expressions are derived in terms of the bare Wigner propagator. Finally, we show under which approximations the resulting equation of motion reduces to the Wigner-Boltzmann equation.

  17. Path-integral approach to the Wigner-Kirkwood expansion.

    PubMed

    Jizba, Petr; Zatloukal, Václav

    2014-01-01

    We study the high-temperature behavior of quantum-mechanical path integrals. Starting from the Feynman-Kac formula, we derive a functional representation of the Wigner-Kirkwood perturbation expansion for quantum Boltzmann densities. As shown by its applications to different potentials, the presented expansion turns out to be quite efficient in generating analytic form of the higher-order expansion coefficients. To put some flesh on the bare bones, we apply the expansion to obtain basic thermodynamic functions of the one-dimensional anharmonic oscillator. Further salient issues, such as generalization to the Bloch density matrix and comparison with the more customary world-line formulation, are discussed.

  18. Thermodynamics and statistical mechanics. [thermodynamic properties of gases

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The basic thermodynamic properties of gases are reviewed and the relations between them are derived from the first and second laws. The elements of statistical mechanics are then formulated and the partition function is derived. The classical form of the partition function is used to obtain the Maxwell-Boltzmann distribution of kinetic energies in the gas phase and the equipartition of energy theorem is given in its most general form. The thermodynamic properties are all derived as functions of the partition function. Quantum statistics are reviewed briefly and the differences between the Boltzmann distribution function for classical particles and the Fermi-Dirac and Bose-Einstein distributions for quantum particles are discussed.

  19. Exact Path Integral for 3D Quantum Gravity.

    PubMed

    Iizuka, Norihiro; Tanaka, Akinori; Terashima, Seiji

    2015-10-16

    Three-dimensional Euclidean pure gravity with a negative cosmological constant can be formulated in terms of the Chern-Simons theory, classically. This theory can be written in a supersymmetric way by introducing auxiliary gauginos and scalars. We calculate the exact partition function of this Chern-Simons theory by using the localization technique. Thus, we obtain the quantum gravity partition function, assuming that it can be obtained nonperturbatively by summing over partition functions of the Chern-Simons theory on topologically different manifolds. The resultant partition function is modular invariant, and, in the case in which the central charge is expected to be 24, it is the J function, predicted by Witten.

  20. Thermodynamic properties of fullerite C70

    NASA Astrophysics Data System (ADS)

    Rekhviashvili, S. Sh.

    2017-08-01

    A new expression for the isochoric heat capacity and the equation of state of fullerite C70 are obtained in the framework of a quantum-statistical method. Analogs of the Debye law and Dulong-Petit law for this fullerite are formulated. Fullerene C70 molecules are modeled by isotropic quantum oscillators under the assumption that their nonsphericity weakly influences the thermodynamic properties of the condensed phase. The intramolecular oscillations of carbon atoms are described using the Debye theory and the cold contribution to the free energy of fullerite is calculated using the Lennard-Jones pair potential for fullerene molecules. A comparison of the proposed theory to experiment shows good agreement.

  1. Combinatorial quantisation of the Euclidean torus universe

    NASA Astrophysics Data System (ADS)

    Meusburger, C.; Noui, K.

    2010-12-01

    We quantise the Euclidean torus universe via a combinatorial quantisation formalism based on its formulation as a Chern-Simons gauge theory and on the representation theory of the Drinfel'd double DSU(2). The resulting quantum algebra of observables is given by two commuting copies of the Heisenberg algebra, and the associated Hilbert space can be identified with the space of square integrable functions on the torus. We show that this Hilbert space carries a unitary representation of the modular group and discuss the role of modular invariance in the theory. We derive the classical limit of the theory and relate the quantum observables to the geometry of the torus universe.

  2. Stronger steerability criterion for more uncertain continuous-variable systems

    NASA Astrophysics Data System (ADS)

    Chowdhury, Priyanka; Pramanik, Tanumoy; Majumdar, A. S.

    2015-10-01

    We derive a fine-grained uncertainty relation for the measurement of two incompatible observables on a single quantum system of continuous variables, and show that continuous-variable systems are more uncertain than discrete-variable systems. Using the derived fine-grained uncertainty relation, we formulate a stronger steering criterion that is able to reveal the steerability of NOON states that has hitherto not been possible using other criteria. We further obtain a monogamy relation for our steering inequality which leads to an, in principle, improved lower bound on the secret key rate of a one-sided device independent quantum key distribution protocol for continuous variables.

  3. Momentum Distribution as a Fingerprint of Quantum Delocalization in Enzymatic Reactions: Open-Chain Path-Integral Simulations of Model Systems and the Hydride Transfer in Dihydrofolate Reductase.

    PubMed

    Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas

    2012-04-10

    The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.

  4. Light, the universe and everything - 12 Herculean tasks for quantum cowboys and black diamond skiers

    NASA Astrophysics Data System (ADS)

    Agarwal, Girish; Allen, Roland E.; Bezděková, Iva; Boyd, Robert W.; Chen, Goong; Hanson, Ronald; Hawthorne, Dean L.; Hemmer, Philip; Kim, Moochan B.; Kocharovskaya, Olga; Lee, David M.; Lidström, Sebastian K.; Lidström, Suzy; Losert, Harald; Maier, Helmut; Neuberger, John W.; Padgett, Miles J.; Raizen, Mark; Rajendran, Surjeet; Rasel, Ernst; Schleich, Wolfgang P.; Scully, Marlan O.; Shchedrin, Gavriil; Shvets, Gennady; Sokolov, Alexei V.; Svidzinsky, Anatoly; Walsworth, Ronald L.; Weiss, Rainer; Wilczek, Frank; Willner, Alan E.; Yablonovitch, Eli; Zheludev, Nikolay

    2018-06-01

    The Winter Colloquium on the Physics of Quantum Electronics (PQE) has been a seminal force in quantum optics and related areas since 1971. It is rather mind-boggling to recognize how the concepts presented at these conferences have transformed scientific understanding and human society. In January 2017, the participants of PQE were asked to consider the equally important prospects for the future, and to formulate a set of questions representing some of the greatest aspirations in this broad field. The result is this multi-authored paper, in which many of the world's leading experts address the following fundamental questions: (1) What is the future of gravitational wave astronomy? (2) Are there new quantum phases of matter away from equilibrium that can be found and exploited - such as the time crystal? (3) Quantum theory in uncharted territory: What can we learn? (4) What are the ultimate limits for laser photon energies? (5) What are the ultimate limits to temporal, spatial and optical resolution? (6) What novel roles will atoms play in technology? (7) What applications lie ahead for nitrogen-vacancy centres in diamond? (8) What is the future of quantum coherence, squeezing and entanglement for enhanced super-resolution and sensing? (9) How can we solve (some of) humanity's biggest problems through new quantum technologies? (10) What new understanding of materials and biological molecules will result from their dynamical characterization with free-electron lasers? (11) What new technologies and fundamental discoveries might quantum optics achieve by the end of this century? (12) What novel topological structures can be created and employed in quantum optics?

  5. Dissipation and entropy production in open quantum systems

    NASA Astrophysics Data System (ADS)

    Majima, H.; Suzuki, A.

    2010-11-01

    A microscopic description of an open system is generally expressed by the Hamiltonian of the form: Htot = Hsys + Henviron + Hsys-environ. We developed a microscopic theory of entropy and derived a general formula, so-called "entropy-Hamiltonian relation" (EHR), that connects the entropy of the system to the interaction Hamiltonian represented by Hsys-environ for a nonequilibrium open quantum system. To derive the EHR formula, we mapped the open quantum system to the representation space of the Liouville-space formulation or thermo field dynamics (TFD), and thus worked on the representation space Script L := Script H otimes , where Script H denotes the ordinary Hilbert space while the tilde Hilbert space conjugates to Script H. We show that the natural transformation (mapping) of nonequilibrium open quantum systems is accomplished within the theoretical structure of TFD. By using the obtained EHR formula, we also derived the equation of motion for the distribution function of the system. We demonstrated that by knowing the microscopic description of the interaction, namely, the specific form of Hsys-environ on the representation space Script L, the EHR formulas enable us to evaluate the entropy of the system and to gain some information about entropy for nonequilibrium open quantum systems.

  6. Primordial gravitational waves in a quantum model of big bounce

    NASA Astrophysics Data System (ADS)

    Bergeron, Hervé; Gazeau, Jean Pierre; Małkiewicz, Przemysław

    2018-05-01

    We quantise and solve the dynamics of gravitational waves in a quantum Friedmann-Lemaitre-Robertson-Walker spacetime filled with perfect fluid. The classical model is formulated canonically. The Hamiltonian constraint is de-parametrised by setting a fluid variable as the internal clock. The obtained reduced (i.e. physical) phase space is then quantised. Our quantisation procedure is implemented in accordance with two different phase space symmetries, namely, the Weyl-Heisenberg symmetry for the perturbation variables, and the affine symmetry for the background variables. As an appealing outcome, the initial singularity is removed and replaced with a quantum bounce. The quantum model depends on a free parameter that is naturally induced from quantisation and determines the scale of the bounce. We study the dynamics of the quantised gravitational waves across the bounce through three different methods ("thin-horizon", analytical and numerical) which give consistent results and we determine the primordial power spectrum for the case of radiation-dominated universe. Next, we use the instantaneous radiation-matter transition transfer function to make approximate predictions for late universe and constrain our model with LIGO and Planck data. We also give an estimate of the quantum uncertainties in the present-day universe.

  7. Spin foam models for quantum gravity

    NASA Astrophysics Data System (ADS)

    Perez, Alejandro

    The definition of a quantum theory of gravity is explored following Feynman's path-integral approach. The aim is to construct a well defined version of the Wheeler-Misner- Hawking ``sum over four geometries'' formulation of quantum general relativity (GR). This is done by means of exploiting the similarities between the formulation of GR in terms of tetrad-connection variables (Palatini formulation) and a simpler theory called BF theory. One can go from BF theory to GR by imposing certain constraints on the BF-theory configurations. BF theory contains only global degrees of freedom (topological theory) and it can be exactly quantized á la Feynman introducing a discretization of the manifold. Using the path integral for BF theory we define a path integration for GR imposing the BF-to-GR constraints on the BF measure. The infinite degrees of freedom of gravity are restored in the process, and the restriction to a single discretization introduces a cut- off in the summed-over configurations. In order to capture all the degrees of freedom a sum over discretization is implemented. Both the implementation of the BF-to-GR constraints and the sum over discretizations are obtained by means of the introduction of an auxiliary field theory (AFT). 4-geometries in the path integral for GR are given by the Feynman diagrams of the AFT which is in this sense dual to GR. Feynman diagrams correspond to 2-complexes labeled by unitary irreducible representations of the internal gauge group (corresponding to tetrad rotation in the connection to GR). A model for 4-dimensional Euclidean quantum gravity (QG) is defined which corresponds to a different normalization of the Barrett-Crane model. The model is perturbatively finite; divergences appearing in the Barrett-Crane model are cured by the new normalization. We extend our techniques to the Lorentzian sector, where we define two models for four-dimensional QG. The first one contains only time-like representations and is shown to be perturbatively finite. The second model contains both time-like and space-like representations. The spectrum of geometrical operators coincide with the prediction of the canonical approach of loop QG. At the moment, the convergence properties of the model are less understood and remain for future investigation.

  8. Functional integral for non-Lagrangian systems

    NASA Astrophysics Data System (ADS)

    Kochan, Denis

    2010-02-01

    A functional integral formulation of quantum mechanics for non-Lagrangian systems is presented. The approach, which we call “stringy quantization,” is based solely on classical equations of motion and is free of any ambiguity arising from Lagrangian and/or Hamiltonian formulation of the theory. The functionality of the proposed method is demonstrated on several examples. Special attention is paid to the stringy quantization of systems with a general A-power friction force -κq˙A. Results for A=1 are compared with those obtained in the approaches by Caldirola-Kanai, Bateman, and Kostin. Relations to the Caldeira-Leggett model and to the Feynman-Vernon approach are discussed as well.

  9. Quantum break-time of de Sitter

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gómez, César; Zell, Sebastian

    2017-06-01

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.

  10. A Blueprint for Demonstrating Quantum Supremacy with Superconducting Qubits

    NASA Technical Reports Server (NTRS)

    Kechedzhi, Kostyantyn

    2018-01-01

    Long coherence times and high fidelity control recently achieved in scalable superconducting circuits paved the way for the growing number of experimental studies of many-qubit quantum coherent phenomena in these devices. Albeit full implementation of quantum error correction and fault tolerant quantum computation remains a challenge the near term pre-error correction devices could allow new fundamental experiments despite inevitable accumulation of errors. One such open question foundational for quantum computing is achieving the so called quantum supremacy, an experimental demonstration of a computational task that takes polynomial time on the quantum computer whereas the best classical algorithm would require exponential time and/or resources. It is possible to formulate such a task for a quantum computer consisting of less than a 100 qubits. The computational task we consider is to provide approximate samples from a non-trivial quantum distribution. This is a generalization for the case of superconducting circuits of ideas behind boson sampling protocol for quantum optics introduced by Arkhipov and Aaronson. In this presentation we discuss a proof-of-principle demonstration of such a sampling task on a 9-qubit chain of superconducting gmon qubits developed by Google. We discuss theoretical analysis of the driven evolution of the device resulting in output approximating samples from a uniform distribution in the Hilbert space, a quantum chaotic state. We analyze quantum chaotic characteristics of the output of the circuit and the time required to generate a sufficiently complex quantum distribution. We demonstrate that the classical simulation of the sampling output requires exponential resources by connecting the task of calculating the output amplitudes to the sign problem of the Quantum Monte Carlo method. We also discuss the detailed theoretical modeling required to achieve high fidelity control and calibration of the multi-qubit unitary evolution in the device. We use a novel cross-entropy statistical metric as a figure of merit to verify the output and calibrate the device controls. Finally, we demonstrate the statistics of the wave function amplitudes generated on the 9-gmon chain and verify the quantum chaotic nature of the generated quantum distribution. This verifies the implementation of the quantum supremacy protocol.

  11. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    NASA Astrophysics Data System (ADS)

    Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran

    2015-12-01

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  12. Direct Quantum Mechanical Simulations of Shocked Energetic Materials

    DTIC Science & Technology

    2008-12-01

    dynamics (QMD) simulations of shocked pentaerythritol tetranitrate (PETN), a conventional high explosive , and the polymeric cubic gauche phase of...nitrogen (cg-N), proposed as an environmentally acceptable energetic alternative to conventional explosive formulations. These simulations, made...stored structural potential energy can be liberated quickly enough, it is possible that explosion can occur with energies several orders of magnitude

  13. A study of atmosphere-ionosphere-magnetosphere coupling

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Paris, J. L.

    1982-01-01

    The properties of low energy plasma in the magnetosphere were predicted. The effects of wave particle interactions involving the concept of plasmons are studied, and quantum mechanical formulations are used for the processes occurring and bulk energization of the low energy plasma are investigated through the concept of the energy momentum tensor for the plasma and its electromagnetic environment.

  14. Metallic phases from disordered (2+1)-dimensional quantum electrodynamics

    DOE PAGES

    Goswami, Pallab; Goldman, Hart; Raghu, S.

    2017-06-15

    Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED 3) with a large, even number of fermion flavors remains metallic in the presence of weakmore » scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. In conclusion, we also show that QED 3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.« less

  15. Quantum field theory of interacting dark matter and dark energy: Dark monodromies

    DOE PAGES

    D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    2016-11-28

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less

  16. Optimal GHZ Paradox for Three Qubits

    NASA Astrophysics Data System (ADS)

    Ren, Changliang; Su, Hong-Yi; Xu, Zhen-Peng; Wu, Chunfeng; Chen, Jing-Ling

    2015-08-01

    Quatum nonlocality as a valuable resource is of vital importance in quantum information processing. The characterization of the resource has been extensively investigated mainly for pure states, while relatively less is know for mixed states. Here we prove the existence of the optimal GHZ paradox by using a novel and simple method to extract an optimal state that can saturate the tradeoff relation between quantum nonlocality and the state purity. In this paradox, the logical inequality which is formulated by the GHZ-typed event probabilities can be violated maximally by the optimal state for any fixed amount of purity (or mixedness). Moreover, the optimal state can be described as a standard GHZ state suffering flipped color noise. The maximal amount of noise that the optimal state can resist is 50%. We suggest our result to be a step toward deeper understanding of the role played by the AVN proof of quantum nonlocality as a useful physical resource.

  17. From Feynman rules to conserved quantum numbers, I

    NASA Astrophysics Data System (ADS)

    Nogueira, P.

    2017-05-01

    In the context of Quantum Field Theory (QFT) there is often the need to find sets of graph-like diagrams (the so-called Feynman diagrams) for a given physical model. If negative, the answer to the related problem 'Are there any diagrams with this set of external fields?' may settle certain physical questions at once. Here the latter problem is formulated in terms of a system of linear diophantine equations derived from the Lagrangian density, from which necessary conditions for the existence of the required diagrams may be obtained. Those conditions are equalities that look like either linear diophantine equations or linear modular (i.e. congruence) equations, and may be found by means of fairly simple algorithms that involve integer computations. The diophantine equations so obtained represent (particle) number conservation rules, and are related to the conserved (additive) quantum numbers that may be assigned to the fields of the model.

  18. Chaotic vortex filaments in a Bose–Einstein condensate and in superfluid helium

    NASA Astrophysics Data System (ADS)

    Nemirovskii, S. K.

    2018-05-01

    A statement of the quantum turbulence problem in both a Bose–Einstein condensate (BEC) and superfluid helium is formulated. In superfluid helium use is made of a so-called vortex filament method, in which quantum vortices are represented by stringlike objects, i.e. vortex lines. The dynamics of the vortex lines is determined by deterministic equations of motion, supplemented by random reconnections. Unlike He II, the laws of the dynamics of quantum vortices in BEC are based on the nonlinear Schrödinger equation. This makes it possible to obtain a microscopic description of the collision of vortices, the structure of a vortex filament, etc. A comparative analysis of these complementary approaches is carried out. It is shown that there are some features that do not automatically transfer the results obtained for BEC to vortices in He II and vice versa.

  19. Image Registration and Data Assimilation as a QUBO on the D-Wave Quantum Annealer

    NASA Astrophysics Data System (ADS)

    Pelissier, C.; LeMoigne, J.; Halem, M.; Simpson, D. G.; Clune, T.

    2016-12-01

    The advent of the commercially available D-Wave quantum annealer has for the first time allowed investigations of the potential of quantum effects to efficiently carry out certain numerical tasks. The D-Wave computer was initially promoted as a tool to solve Quadratic Unconstrained Binary Optimization problems (QUBOs), but currently, it is also being used to generate the Boltzmann statistics required to train Restricted Boltzmann machines (RBMs). We consider the potential of this new architecture in performing numerical computations required to estimate terrestrial carbon fluxes from OCO-2 observations using the LIS model. The use of RBMs is being investigated in this work, but here we focus on the D-Wave as a QUBO solver, and it's potential to carry out image registration and data assimilation. QUBOs are formulated for both problems and results generated using the D-Wave 2Xtm at the NAS supercomputing facility are presented.

  20. Comment on 'Nonlocality, Counterfactuals and Quantum Mechanics'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, H.P.

    A recent proof [H. P. Stapp, Am. J. Phys. 65, 300 (1997)], formulated in the symbolic language of modal logic, claims to show that contemporary quantum theory, viewed as a set of rules that allow us to calculate statistical predictions among certain kinds of observations, cannot be imbedded in any rational framework that conforms to the principles that (1) the experimenters' choices of which experiments they will perform can be considered to be free choices, (2) outcomes of measurements are unique, and (3) the free choices just mentioned have no backward-in-time effects of any kind. This claim is similar tomore » Bell's theorem, but much stronger, because no reality assumption alien to quantum philosophy is used. The paper being commented on [W. Unruh, Phys. Rev. A 59, 126 (1999)] argues that some such reality assumption has been ''smuggled'' in. That argument is examined here and shown, I believe, to be defective.« less

  1. Quantum error-correcting code for ternary logic

    NASA Astrophysics Data System (ADS)

    Majumdar, Ritajit; Basu, Saikat; Ghosh, Shibashis; Sur-Kolay, Susmita

    2018-05-01

    Ternary quantum systems are being studied because they provide more computational state space per unit of information, known as qutrit. A qutrit has three basis states, thus a qubit may be considered as a special case of a qutrit where the coefficient of one of the basis states is zero. Hence both (2 ×2 ) -dimensional and (3 ×3 ) -dimensional Pauli errors can occur on qutrits. In this paper, we (i) explore the possible (2 ×2 ) -dimensional as well as (3 ×3 ) -dimensional Pauli errors in qutrits and show that any pairwise bit swap error can be expressed as a linear combination of shift errors and phase errors, (ii) propose a special type of error called a quantum superposition error and show its equivalence to arbitrary rotation, (iii) formulate a nine-qutrit code which can correct a single error in a qutrit, and (iv) provide its stabilizer and circuit realization.

  2. Finite temperature static charge screening in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Akbari-Moghanjoughi, M.

    2016-07-01

    The shielding potential around a test charge is calculated, using the linearized quantum hydrodynamic formulation with the statistical pressure and Bohm potential derived from finite temperature kinetic theory, and the temperature effects on the force between ions is assessed. The derived screening potential covers the full range of electron degeneracy in the equation of state of the plasma electrons. An attractive force between shielded ions in an arbitrary degenerate plasma exists below a critical temperature and density. The effect of the temperature on the screening potential profile qualitatively describes the ion-ion bound interaction strength and length variations. This may be used to investigate physical properties of plasmas and in molecular-dynamics simulations of fermion plasma. It is further shown that the Bohm potential including the kinetic corrections has a profound effect on the Thomson scattering cross section in quantum plasmas with arbitrary degeneracy.

  3. Microscopic theory of energy dissipation and decoherence in open systems: A quantum Fermi's golden rule

    NASA Astrophysics Data System (ADS)

    Taj, D.; Iotti, R. C.; Rossi, F.

    2009-11-01

    We shall revisit the conventional adiabatic or Markov approximation, which — contrary to the semiclassical case- does not preserve the positive-definite character of the corresponding density matrix, thus leading to highly non-physical results. To overcome this serious limitation, originally addressed by Davies and co-workers almost three decades ago, we shall propose an alternative more general adiabatic procedure, able to provide a reliable/robust treatment of energy-dissipation and dephasing processes in electronic quantum devices. Unlike standard master-equation formulations, our procedure guarantees a positive evolution for a variety of physical subsystem (including the common partial trace), and quantum scattering rates are well defined even for subsystems with internal structure/ continuous energy spectrum. We shall compare the proposed Markov dissipation model with the conventional one also through basic simulations of energy-relaxation versus decoherence channels in prototypical semiconductor nanodevices.

  4. Epigenetics: Biology's Quantum Mechanics

    PubMed Central

    Jorgensen, Richard A.

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene – the molecular biological view and the epigenetic view – are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577

  5. Metallic phases from disordered (2+1)-dimensional quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Goswami, Pallab; Goldman, Hart; Raghu, S.

    2017-06-01

    Metallic phases have been observed in several disordered two-dimensional (2D) systems, including thin films near superconductor-insulator transitions and quantum Hall systems near plateau transitions. The existence of 2D metallic phases at zero temperature generally requires an interplay of disorder and interaction effects. Consequently, experimental observations of 2D metallic behavior have largely defied explanation. We formulate a general stability criterion for strongly interacting, massless Dirac fermions against disorder, which describe metallic ground states with vanishing density of states. We show that (2+1)-dimensional quantum electrodynamics (QED3) with a large, even number of fermion flavors remains metallic in the presence of weak scalar potential disorder due to the dynamic screening of disorder by gauge fluctuations. We also show that QED3 with weak mass disorder exhibits a stable, dirty metallic phase in which both interactions and disorder play important roles.

  6. Reliability of analog quantum simulation

    NASA Astrophysics Data System (ADS)

    Sarovar, Mohan; Zhang, Jun; Zeng, Lishan

    Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. We formalize the notion of AQS reliability to calibration errors by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach connects to the notion of parameter space compression in statistical physics and naturally reveals the importance of model symmetries in dictating the robust properties. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

  7. Number-theoretic nature of communication in quantum spin systems.

    PubMed

    Godsil, Chris; Kirkland, Stephen; Severini, Simone; Smith, Jamie

    2012-08-03

    The last decade has witnessed substantial interest in protocols for transferring information on networks of quantum mechanical objects. A variety of control methods and network topologies have been proposed, on the basis that transfer with perfect fidelity-i.e., deterministic and without information loss-is impossible through unmodulated spin chains with more than a few particles. Solving the original problem formulated by Bose [Phys. Rev. Lett. 91, 207901 (2003)], we determine the exact number of qubits in unmodulated chains (with an XY Hamiltonian) that permit transfer with a fidelity arbitrarily close to 1, a phenomenon called pretty good state transfer. We prove that this happens if and only if the number of nodes is n = p - 1, 2p - 1, where p is a prime, or n = 2(m) - 1. The result highlights the potential of quantum spin system dynamics for reinterpreting questions about the arithmetic structure of integers and, in this case, primality.

  8. Some solutions for one of the cosmological constant problems

    NASA Astrophysics Data System (ADS)

    Nojiri, Shin'Ichi

    2016-11-01

    We propose several covariant models which may solve one of the problems in the cosmological constant. One of the models can be regarded as an extension of sequestering model. Other models could be regarded as extensions of the covariant formulation of the unimodular gravity. The contributions to the vacuum energy from the quantum corrections from the matters are absorbed into a redefinition of a scalar field and the quantum corrections become irrelevant to the dynamics. In a class of the extended unimodular gravity models, we also consider models which are regarded as topological field theories. The models can be extended and not only the vacuum energy but also any quantum corrections to the gravitational action could become irrelevant for the dynamics. We find, however, that the BRS symmetry in the topological field theories is broken spontaneously and therefore, the models might not be consistent.

  9. Realistic clocks, universal decoherence, and the black hole information paradox.

    PubMed

    Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge

    2004-12-10

    Ordinary quantum mechanics is formulated on the basis of the existence of an ideal classical clock external to the system under study. This is clearly an idealization. As emphasized originally by Salecker and Wigner and more recently by others, there exist limits in nature to how "classical" even the best possible clock can be. With realistic clocks, quantum mechanics ceases to be unitary and a fundamental mechanism of decoherence of quantum states arises. We estimate the rate of the universal loss of unitarity using optimal realistic clocks. In particular, we observe that the rate is rapid enough to eliminate the black hole information puzzle: all information is lost through the fundamental decoherence before the black hole can evaporate. This improves on a previous calculation we presented with a suboptimal clock in which only part of the information was lost by the time of evaporation.

  10. Ponderomotive dynamics of waves in quasiperiodically modulated media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz, D. E.; Dodin, I. Y.

    Similarly to how charged particles experience time-averaged ponderomotive forces in high-frequency fields, linear waves also experience time-averaged refraction in modulated media. We propose a covariant variational theory of this ponderomotive effect on waves for a general nondissipative linear medium. Using the Weyl calculus, our formulation accommodates waves with temporal and spatial period comparable to that of the modulation (provided that parametric resonances are avoided). This theory also shows that any wave is, in fact, a polarizable object that contributes to the linear dielectric tensor of the ambient medium. Furthermore, the dynamics of quantum particles is subsumed as a special case.more » As an illustration, ponderomotive Hamiltonians of quantum particles and photons are calculated within a number of models. We also explain a fundamental connection between these results and the well-known electrostatic dielectric tensor of quantum plasmas.« less

  11. Nonclassicality of Temporal Correlations.

    PubMed

    Brierley, Stephen; Kosowski, Adrian; Markiewicz, Marcin; Paterek, Tomasz; Przysiężna, Anna

    2015-09-18

    The results of spacelike separated measurements are independent of distant measurement settings, a property one might call two-way no-signaling. In contrast, timelike separated measurements are only one-way no-signaling since the past is independent of the future but not vice versa. For this reason some temporal correlations that are formally identical to nonclassical spatial correlations can still be modeled classically. We propose a new formulation of Bell's theorem for temporal correlations; namely, we define nonclassical temporal correlations as the ones which cannot be simulated by propagating in time the classical information content of a quantum system given by the Holevo bound. We first show that temporal correlations between results of any projective quantum measurements on a qubit can be simulated classically. Then we present a sequence of general measurements on a single m-level quantum system that cannot be explained by propagating in time an m-level classical system and using classical computers with unlimited memory.

  12. Quantum field theory of interacting dark matter and dark energy: Dark monodromies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Amico, Guido; Hamill, Teresa; Kaloper, Nemanja

    We discuss how to formulate a quantum field theory of dark energy interacting with dark matter. We show that the proposals based on the assumption that dark matter is made up of heavy particles with masses which are very sensitive to the value of dark energy are strongly constrained. Quintessence-generated long-range forces and radiative stability of the quintessence potential require that such dark matter and dark energy are completely decoupled. However, if dark energy and a fraction of dark matter are very light axions, they can have significant mixings which are radiatively stable and perfectly consistent with quantum field theory.more » Such models can naturally occur in multi-axion realizations of monodromies. The mixings yield interesting signatures which are observable and are within current cosmological limits but could be constrained further by future observations« less

  13. Ponderomotive dynamics of waves in quasiperiodically modulated media

    DOE PAGES

    Ruiz, D. E.; Dodin, I. Y.

    2017-03-14

    Similarly to how charged particles experience time-averaged ponderomotive forces in high-frequency fields, linear waves also experience time-averaged refraction in modulated media. We propose a covariant variational theory of this ponderomotive effect on waves for a general nondissipative linear medium. Using the Weyl calculus, our formulation accommodates waves with temporal and spatial period comparable to that of the modulation (provided that parametric resonances are avoided). This theory also shows that any wave is, in fact, a polarizable object that contributes to the linear dielectric tensor of the ambient medium. Furthermore, the dynamics of quantum particles is subsumed as a special case.more » As an illustration, ponderomotive Hamiltonians of quantum particles and photons are calculated within a number of models. We also explain a fundamental connection between these results and the well-known electrostatic dielectric tensor of quantum plasmas.« less

  14. Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.

    PubMed

    Althorpe, Stuart C

    2004-07-15

    We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics

  15. Development and optimization of buspirone oral osmotic pump tablet

    PubMed Central

    Derakhshandeh, K.; berenji, M. Ghasemnejad

    2014-01-01

    The aim of the current study was to design a porous osmotic pump–based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance. PMID:25657794

  16. Development and optimization of buspirone oral osmotic pump tablet.

    PubMed

    Derakhshandeh, K; Berenji, M Ghasemnejad

    2014-01-01

    The aim of the current study was to design a porous osmotic pump-based drug delivery system for controlling the release of buspirone from the delivery system. The osmotic pump was successfully developed using symmetric membrane coating. The core of the tablets was prepared by direct compression technique and coated using dip-coating technique. Drug release from the osmotic system was studied using USP paddle type apparatus. The effect of various processing variables such as the amount of osmotic agent, the amount of swellable polymer, concentration of the core former, concentration of the plasticizer, membrane thickness, quantum of orifice on drug release from osmotic pump were evaluated. Different kinetic models (zero order, first order and Higuchi model) were applied to drug release data in order to establish the kinetics of drug release. It was found that the drug release was mostly affected by the amount of NaCl as osmotic agent, the swellable polymer; hydroxy propyl methyl cellulose (HPMC), the amount of PEG-400 and cellulose acetate in the coating solution and thickness of the semipermeable membrane. The optimized formulation released buspirone independent of pH and orifice quantum at the osmogen amount of 42%, hydrophilic polymer of 13% and pore size of 0.8 mm on the tablet surface. The drug release of osmotic formulation during 24 h showed zero order kinetics and could be suggested that this formulation as a once-daily regimen improves pharmacokinetic parameters of the drug and enhances patient compliance.

  17. Cost of Equity Estimation in Fuel and Energy Sector Companies Based on CAPM

    NASA Astrophysics Data System (ADS)

    Kozieł, Diana; Pawłowski, Stanisław; Kustra, Arkadiusz

    2018-03-01

    The article presents cost of equity estimation of capital groups from the fuel and energy sector, listed at the Warsaw Stock Exchange, based on the Capital Asset Pricing Model (CAPM). The objective of the article was to perform a valuation of equity with the application of CAPM, based on actual financial data and stock exchange data and to carry out a sensitivity analysis of such cost, depending on the financing structure of the entity. The objective of the article formulated in this manner has determined its' structure. It focuses on presentation of substantive analyses related to the core of equity and methods of estimating its' costs, with special attention given to the CAPM. In the practical section, estimation of cost was performed according to the CAPM methodology, based on the example of leading fuel and energy companies, such as Tauron GE and PGE. Simultaneously, sensitivity analysis of such cost was performed depending on the structure of financing the company's operation.

  18. Oral health in Kenya.

    PubMed

    Kaimenyi, Jacob T

    2004-12-01

    This paper gives general information on the location of Kenya, its demography, economy, organisation of health services, general health policy, health financing, oral health infrastructure, problems that hamper health financing and proposals on how to solve these problems. Further, a summary of health status of the Kenyan people is given based on the results of studies. The mean DMFT for the rural and urban populations is low and there is no evidence of an increase or decrease. Similarly, the prevalence of periodontitis is low (1-10%), with no increase. Ulcerative lesions are rare (0.12%). The most common birth defects are cleft lip and palate. Oral cancer is very low, accounting for 2% of all malignancies. Comparative studies have not demonstrated any dramatic change in the frequency of oral cancer for the last 25 years. Oral candidiasis is the most prevalent oral lesion amongst HIV/AIDS patients. In June 2003, Kenya formulated a National Oral Health Policy, which gives direction on how to improve the oral health status of the citizens.

  19. National health accounts: Lessons from the U.S. experience

    PubMed Central

    Lazenby, Helen C.; Levit, Katharine R.; Waldo, Daniel R.; Adler, Gerald S.; Letsch, Suzanne W.; Cowan, Cathy A.

    1992-01-01

    The national health accounts (NHA) are the framework within which type of services and sources of funding for health care expenditures are measured. NHA, devised to portray the structure of health care delivery and financing in the United States, provide essential information necessary for the formulation of public health policy and for international comparison. In this article, the authors describe the importance of the NHA nationally and internationally, and provide a blueprint of the definitions, sources, and methods used to create this system of NHA in the United States. PMID:10122006

  20. Linear and Non-Linear Dielectric Response of Periodic Systems from Quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Umari, Paolo

    2006-03-01

    We present a novel approach that allows to calculate the dielectric response of periodic systems in the quantum Monte Carlo formalism. We employ a many-body generalization for the electric enthalpy functional, where the coupling with the field is expressed via the Berry-phase formulation for the macroscopic polarization. A self-consistent local Hamiltonian then determines the ground-state wavefunction, allowing for accurate diffusion quantum Monte Carlo calculations where the polarization's fixed point is estimated from the average on an iterative sequence. The polarization is sampled through forward-walking. This approach has been validated for the case of the polarizability of an isolated hydrogen atom, and then applied to a periodic system. We then calculate the linear susceptibility and second-order hyper-susceptibility of molecular-hydrogen chains whith different bond-length alternations, and assess the quality of nodal surfaces derived from density-functional theory or from Hartree-Fock. The results found are in excellent agreement with the best estimates obtained from the extrapolation of quantum-chemistry calculations.P. Umari, A.J. Williamson, G. Galli, and N. MarzariPhys. Rev. Lett. 95, 207602 (2005).

Top