Sample records for quantum finance model

  1. Quantum Mechanics, Path Integrals and Option Pricing:. Reducing the Complexity of Finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani

    2003-04-01

    Quantum Finance represents the synthesis of the techniques of quantum theory (quantum mechanics and quantum field theory) to theoretical and applied finance. After a brief overview of the connection between these fields, we illustrate some of the methods of lattice simulations of path integrals for the pricing of options. The ideas are sketched out for simple models, such as the Black-Scholes model, where analytical and numerical results are compared. Application of the method to nonlinear systems is also briefly overviewed. More general models, for exotic or path-dependent options are discussed.

  2. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. II. Empirical

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.; Liang, Cui

    2007-01-01

    The quantum finance pricing formulas for coupon bond options and swaptions derived by Baaquie [Phys. Rev. E 75, 016703 (2006)] are reviewed. We empirically study the swaption market and propose an efficient computational procedure for analyzing the data. Empirical results of the swaption price, volatility, and swaption correlation are compared with the predictions of quantum finance. The quantum finance model generates the market swaption price to over 90% accuracy.

  3. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. II. Empirical.

    PubMed

    Baaquie, Belal E; Liang, Cui

    2007-01-01

    The quantum finance pricing formulas for coupon bond options and swaptions derived by Baaquie [Phys. Rev. E 75, 016703 (2006)] are reviewed. We empirically study the swaption market and propose an efficient computational procedure for analyzing the data. Empirical results of the swaption price, volatility, and swaption correlation are compared with the predictions of quantum finance. The quantum finance model generates the market swaption price to over 90% accuracy.

  4. Interest rates in quantum finance: Caps, swaptions and bond options

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2010-01-01

    The prices of the main interest rate options in the financial markets, derived from the Libor (London Interbank Overnight Rate), are studied in the quantum finance model of interest rates. The option prices show new features for the Libor Market Model arising from the fact that, in the quantum finance formulation, all the different Libor payments are coupled and (imperfectly) correlated. Black’s caplet formula for quantum finance is given an exact path integral derivation. The coupon and zero coupon bond options as well as the Libor European and Asian swaptions are derived in the framework of quantum finance. The approximate Libor option prices are derived using the volatility expansion. The BGM-Jamshidian (Gatarek et al. (1996) [1], Jamshidian (1997) [2]) result for the Libor swaption prices is obtained as the limiting case when all the Libors are exactly correlated. A path integral derivation is given of the approximate BGM-Jamshidian approximate price.

  5. Risky forward interest rates and swaptions: Quantum finance model and empirical results

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal Ehsan; Yu, Miao; Bhanap, Jitendra

    2018-02-01

    Risk free forward interest rates (Diebold and Li, 2006 [1]; Jamshidian, 1991 [2 ]) - and their realization by US Treasury bonds as the leading exemplar - have been studied extensively. In Baaquie (2010), models of risk free bonds and their forward interest rates based on the quantum field theoretic formulation of the risk free forward interest rates have been discussed, including the empirical evidence supporting these models. The quantum finance formulation of risk free forward interest rates is extended to the case of risky forward interest rates. The examples of the Singapore and Malaysian forward interest rates are used as specific cases. The main feature of the quantum finance model is that the risky forward interest rates are modeled both a) as a stand-alone case as well as b) being driven by the US forward interest rates plus a spread - having its own term structure -above the US forward interest rates. Both the US forward interest rates and the term structure for the spread are modeled by a two dimensional Euclidean quantum field. As a precursor to the evaluation of put option of the Singapore coupon bond, the quantum finance model for swaptions is tested using empirical study of swaptions for the US Dollar -showing that the model is quite accurate. A prediction for the market price of the put option for the Singapore coupon bonds is obtained. The quantum finance model is generalized to study the Malaysian case and the Malaysian forward interest rates are shown to have anomalies absent for the US and Singapore case. The model's prediction for a Malaysian interest rate swap is obtained.

  6. Interest rates in quantum finance: the Wilson expansion and Hamiltonian.

    PubMed

    Baaquie, Belal E

    2009-10-01

    Interest rate instruments form a major component of the capital markets. The Libor market model (LMM) is the finance industry standard interest rate model for both Libor and Euribor, which are the most important interest rates. The quantum finance formulation of the Libor market model is given in this paper and leads to a key generalization: all the Libors, for different future times, are imperfectly correlated. A key difference between a forward interest rate model and the LMM lies in the fact that the LMM is calibrated directly from the observed market interest rates. The short distance Wilson expansion [Phys. Rev. 179, 1499 (1969)] of a Gaussian quantum field is shown to provide the generalization of Ito calculus; in particular, the Wilson expansion of the Gaussian quantum field A(t,x) driving the Libors yields a derivation of the Libor drift term that incorporates imperfect correlations of the different Libors. The logarithm of Libor phi(t,x) is defined and provides an efficient and compact representation of the quantum field theory of the Libor market model. The Lagrangian and Feynman path integrals of the Libor market model of interest rates are obtained, as well as a derivation given by its Hamiltonian. The Hamiltonian formulation of the martingale condition provides an exact solution for the nonlinear drift of the Libor market model. The quantum finance formulation of the LMM is shown to reduce to the industry standard Bruce-Gatarek-Musiela-Jamshidian model when the forward interest rates are taken to be exactly correlated.

  7. Quantum Finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2007-09-01

    Foreword; Preface; Acknowledgements; 1. Synopsis; Part I. Fundamental Concepts of Finance: 2. Introduction to finance; 3. Derivative securities; Part II. Systems with Finite Number of Degrees of Freedom: 4. Hamiltonians and stock options; 5. Path integrals and stock options; 6. Stochastic interest rates' Hamiltonians and path integrals; Part III. Quantum Field Theory of Interest Rates Models: 7. Quantum field theory of forward interest rates; 8. Empirical forward interest rates and field theory models; 9. Field theory of Treasury Bonds' derivatives and hedging; 10. Field theory Hamiltonian of forward interest rates; 11. Conclusions; Appendix A: mathematical background; Brief glossary of financial terms; Brief glossary of physics terms; List of main symbols; References; Index.

  8. Quantum Social Science

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel; Khrennikov, Andrei

    2013-01-01

    Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.

  9. Application of quantum master equation for long-term prognosis of asset-prices

    NASA Astrophysics Data System (ADS)

    Khrennikova, Polina

    2016-05-01

    This study combines the disciplines of behavioral finance and an extension of econophysics, namely the concepts and mathematical structure of quantum physics. We apply the formalism of quantum theory to model the dynamics of some correlated financial assets, where the proposed model can be potentially applied for developing a long-term prognosis of asset price formation. At the informational level, the asset price states interact with each other by the means of a ;financial bath;. The latter is composed of agents' expectations about the future developments of asset prices on the finance market, as well as financially important information from mass-media, society, and politicians. One of the essential behavioral factors leading to the quantum-like dynamics of asset prices is the irrationality of agents' expectations operating on the finance market. These expectations lead to a deeper type of uncertainty concerning the future price dynamics of the assets, than given by a classical probability theory, e.g., in the framework of the classical financial mathematics, which is based on the theory of stochastic processes. The quantum dimension of the uncertainty in price dynamics is expressed in the form of the price-states superposition and entanglement between the prices of the different financial assets. In our model, the resolution of this deep quantum uncertainty is mathematically captured with the aid of the quantum master equation (its quantum Markov approximation). We illustrate our model of preparation of a future asset price prognosis by a numerical simulation, involving two correlated assets. Their returns interact more intensively, than understood by a classical statistical correlation. The model predictions can be extended to more complex models to obtain price configuration for multiple assets and portfolios.

  10. Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes

    NASA Technical Reports Server (NTRS)

    Williams Colin P.

    1999-01-01

    Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.

  11. Bonds with index-linked stochastic coupons in quantum finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal Ehsan

    2018-06-01

    An index-linked coupon bond is defined that pays coupons whose values are stochastic, depending on a market defined index. This is an asset class distinct from the existing coupon bonds. The index-linked coupon bond is an example of a sukuk, which is an instrument that implements one of the cornerstones of Islamic finance (Askari et al., 2012): that an investor must share in the risk of the issuer in order to earn profits from the investment. The index-linked coupon bond is defined using the mathematical framework of quantum finance (Baaquie, 2004, 2010). The coupons are stochastic, with the quantum of coupon payments depending on a publicly traded index that is chosen to reflect the primary drivers of the revenues of the issuer of the bond. The index ensures there is information symmetry - regarding the quantum of coupon being paid - between issuer and investor. The dependence of the coupon on the index is designed so that the variation of the index mirrors the changing fortunes of the issuer, with the coupon's quantum increasing for increasing values of the index and conversely, decreasing with a fall of the index.

  12. Quantum finance Hamiltonian for coupon bond European and barrier options.

    PubMed

    Baaquie, Belal E

    2008-03-01

    Coupon bond European and barrier options are financial derivatives that can be analyzed in the Hamiltonian formulation of quantum finance. Forward interest rates are modeled as a two-dimensional quantum field theory and its Hamiltonian and state space is defined. European and barrier options are realized as transition amplitudes of the time integrated Hamiltonian operator. The double barrier option for a financial instrument is "knocked out" (terminated with zero value) if the price of the underlying instrument exceeds or falls below preset limits; the barrier option is realized by imposing boundary conditions on the eigenfunctions of the forward interest rates' Hamiltonian. The price of the European coupon bond option and the zero coupon bond barrier option are calculated. It is shown that, is general, the constraint function for a coupon bond barrier option can -- to a good approximation -- be linearized. A calculation using an overcomplete set of eigenfunctions yields an approximate price for the coupon bond barrier option, which is given in the form of an integral of a factor that results from the barrier condition times another factor that arises from the payoff function.

  13. From quantum mechanics to finance: Microfoundations for jumps, spikes and high volatility phases in diffusion price processes

    NASA Astrophysics Data System (ADS)

    Henkel, Christof

    2017-03-01

    We present an agent behavior based microscopic model that induces jumps, spikes and high volatility phases in the price process of a traded asset. We transfer dynamics of thermally activated jumps of an unexcited/excited two state system discussed in the context of quantum mechanics to agent socio-economic behavior and provide microfoundations. After we link the endogenous agent behavior to price dynamics we establish the circumstances under which the dynamics converge to an Itô-diffusion price processes in the large market limit.

  14. Modeling stock return distributions with a quantum harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Choi, M. Y.; Dai, B.; Sohn, S.; Yang, B.

    2017-11-01

    We propose a quantum harmonic oscillator as a model for the market force which draws a stock return from short-run fluctuations to the long-run equilibrium. The stochastic equation governing our model is transformed into a Schrödinger equation, the solution of which features “quantized” eigenfunctions. Consequently, stock returns follow a mixed χ distribution, which describes Gaussian and non-Gaussian features. Analyzing the Financial Times Stock Exchange (FTSE) All Share Index, we demonstrate that our model outperforms traditional stochastic process models, e.g., the geometric Brownian motion and the Heston model, with smaller fitting errors and better goodness-of-fit statistics. In addition, making use of analogy, we provide an economic rationale of the physics concepts such as the eigenstate, eigenenergy, and angular frequency, which sheds light on the relationship between finance and econophysics literature.

  15. Interest Rates and Coupon Bonds in Quantum Finance

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2009-09-01

    1. Synopsis; 2. Interest rates and coupon bonds; 3. Options and option theory; 4. Interest rate and coupon bond options; 5. Quantum field theory of bond forward interest rates; 6. Libor Market Model of interest rates; 7. Empirical analysis of forward interest rates; 8. Libor Market Model of interest rate options; 9. Numeraires for bond forward interest rates; 10. Empirical analysis of interest rate caps; 11. Coupon bond European and Asian options; 12. Empirical analysis of interest rate swaptions; 13. Correlation of coupon bond options; 14. Hedging interest rate options; 15. Interest rate Hamiltonian and option theory; 16. American options for coupon bonds and interest rates; 17. Hamiltonian derivation of coupon bond options; Appendixes; Glossaries; List of symbols; Reference; Index.

  16. Hardship financing of healthcare among rural poor in Orissa, India

    PubMed Central

    2012-01-01

    Background This study examines health-related "hardship financing" in order to get better insights on how poor households finance their out-of-pocket healthcare costs. We define hardship financing as having to borrow money with interest or to sell assets to pay out-of-pocket healthcare costs. Methods Using survey data of 5,383 low-income households in Orissa, one of the poorest states of India, we investigate factors influencing the risk of hardship financing with the use of a logistic regression. Results Overall, about 25% of the households (that had any healthcare cost) reported hardship financing during the year preceding the survey. Among households that experienced a hospitalization, this percentage was nearly 40%, but even among households with outpatient or maternity-related care around 25% experienced hardship financing. Hardship financing is explained not merely by the wealth of the household (measured by assets) or how much is spent out-of-pocket on healthcare costs, but also by when the payment occurs, its frequency and its duration (e.g. more severe in cases of chronic illnesses). The location where a household resides remains a major predictor of the likelihood to have hardship financing despite all other household features included in the model. Conclusions Rural poor households are subjected to considerable and protracted financial hardship due to the indirect and longer-term deleterious effects of how they cope with out-of-pocket healthcare costs. The social network that households can access influences exposure to hardship financing. Our findings point to the need to develop a policy solution that would limit that exposure both in quantum and in time. We therefore conclude that policy interventions aiming to ensure health-related financial protection would have to demonstrate that they have reduced the frequency and the volume of hardship financing. PMID:22284934

  17. Hardship financing of healthcare among rural poor in Orissa, India.

    PubMed

    Binnendijk, Erika; Koren, Ruth; Dror, David M

    2012-01-27

    This study examines health-related "hardship financing" in order to get better insights on how poor households finance their out-of-pocket healthcare costs. We define hardship financing as having to borrow money with interest or to sell assets to pay out-of-pocket healthcare costs. Using survey data of 5,383 low-income households in Orissa, one of the poorest states of India, we investigate factors influencing the risk of hardship financing with the use of a logistic regression. Overall, about 25% of the households (that had any healthcare cost) reported hardship financing during the year preceding the survey. Among households that experienced a hospitalization, this percentage was nearly 40%, but even among households with outpatient or maternity-related care around 25% experienced hardship financing.Hardship financing is explained not merely by the wealth of the household (measured by assets) or how much is spent out-of-pocket on healthcare costs, but also by when the payment occurs, its frequency and its duration (e.g. more severe in cases of chronic illnesses). The location where a household resides remains a major predictor of the likelihood to have hardship financing despite all other household features included in the model. Rural poor households are subjected to considerable and protracted financial hardship due to the indirect and longer-term deleterious effects of how they cope with out-of-pocket healthcare costs. The social network that households can access influences exposure to hardship financing. Our findings point to the need to develop a policy solution that would limit that exposure both in quantum and in time. We therefore conclude that policy interventions aiming to ensure health-related financial protection would have to demonstrate that they have reduced the frequency and the volume of hardship financing.

  18. Portfolios of quantum algorithms.

    PubMed

    Maurer, S M; Hogg, T; Huberman, B A

    2001-12-17

    Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can find the solution of hard problems only probabilistically. Thus the efficiency of the algorithms has to be characterized by both the expected time to completion and the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-satisfiability.

  19. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. I. Theory

    NASA Astrophysics Data System (ADS)

    Baaquie, Belal E.

    2007-01-01

    European options on coupon bonds are studied in a quantum field theory model of forward interest rates. Swaptions are briefly reviewed. An approximation scheme for the coupon bond option price is developed based on the fact that the volatility of the forward interest rates is a small quantity. The field theory for the forward interest rates is Gaussian, but when the payoff function for the coupon bond option is included it makes the field theory nonlocal and nonlinear. A perturbation expansion using Feynman diagrams gives a closed form approximation for the price of coupon bond option. A special case of the approximate bond option is shown to yield the industry standard one-factor HJM formula with exponential volatility.

  20. Feynman perturbation expansion for the price of coupon bond options and swaptions in quantum finance. I. Theory.

    PubMed

    Baaquie, Belal E

    2007-01-01

    European options on coupon bonds are studied in a quantum field theory model of forward interest rates. Swaptions are briefly reviewed. An approximation scheme for the coupon bond option price is developed based on the fact that the volatility of the forward interest rates is a small quantity. The field theory for the forward interest rates is Gaussian, but when the payoff function for the coupon bond option is included it makes the field theory nonlocal and nonlinear. A perturbation expansion using Feynman diagrams gives a closed form approximation for the price of coupon bond option. A special case of the approximate bond option is shown to yield the industry standard one-factor HJM formula with exponential volatility.

  1. Quantum machine learning for quantum anomaly detection

    NASA Astrophysics Data System (ADS)

    Liu, Nana; Rebentrost, Patrick

    2018-04-01

    Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.

  2. Econophysics: from Game Theory and Information Theory to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Jimenez, Edward; Moya, Douglas

    2005-03-01

    Rationality is the universal invariant among human behavior, universe physical laws and ordered and complex biological systems. Econophysics isboth the use of physical concepts in Finance and Economics, and the use of Information Economics in Physics. In special, we will show that it is possible to obtain the Quantum Mechanics principles using Information and Game Theory.

  3. Quantum Information Biology: From Theory of Open Quantum Systems to Adaptive Dynamics

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    This chapter reviews quantum(-like) information biology (QIB). Here biology is treated widely as even covering cognition and its derivatives: psychology and decision making, sociology, and behavioral economics and finances. QIB provides an integrative description of information processing by bio-systems at all scales of life: from proteins and cells to cognition, ecological and social systems. Mathematically QIB is based on the theory of adaptive quantum systems (which covers also open quantum systems). Ideologically QIB is based on the quantum-like (QL) paradigm: complex bio-systems process information in accordance with the laws of quantum information and probability. This paradigm is supported by plenty of statistical bio-data collected at all bio-scales. QIB re ects the two fundamental principles: a) adaptivity; and, b) openness (bio-systems are fundamentally open). In addition, quantum adaptive dynamics provides the most generally possible mathematical representation of these principles.

  4. Flying over decades

    NASA Astrophysics Data System (ADS)

    Hoeller, Judith; Issler, Mena; Imamoglu, Atac

    Levy flights haven been extensively used in the past three decades to describe non-Brownian motion of particles. In this presentation I give an overview on how Levy flights have been used across several disciplines, ranging from biology to finance to physics. In our publication we describe how a single electron spin 'flies' when captured in quantum dot using the central spin model. At last I motivate the use of Levy flights for the description of anomalous diffusion in modern experiments, concretely to describe the lifetimes of quasi-particles in Josephson junctions. Finished PhD at ETH in Spring 2015.

  5. Quantum finance

    NASA Astrophysics Data System (ADS)

    Schaden, Martin

    2002-12-01

    Quantum theory is used to model secondary financial markets. Contrary to stochastic descriptions, the formalism emphasizes the importance of trading in determining the value of a security. All possible realizations of investors holding securities and cash is taken as the basis of the Hilbert space of market states. The temporal evolution of an isolated market is unitary in this space. Linear operators representing basic financial transactions such as cash transfer and the buying or selling of securities are constructed and simple model Hamiltonians that generate the temporal evolution due to cash flows and the trading of securities are proposed. The Hamiltonian describing financial transactions becomes local when the profit/loss from trading is small compared to the turnover. This approximation may describe a highly liquid and efficient stock market. The lognormal probability distribution for the price of a stock with a variance that is proportional to the elapsed time is reproduced for an equilibrium market. The asymptotic volatility of a stock in this case is related to the long-term probability that it is traded.

  6. QIPS: quantum information and quantum physics in space

    NASA Astrophysics Data System (ADS)

    Schmitt-Manderbach, Tobias; Scheidl, Thomas; Ursin, Rupert; Tiefenbacher, Felix; Weier, Henning; Fürst, Martin; Jennewein, T.; Perdigues, J.; Sodnik, Z.; Rarity, J.; Zeilinger, Anton; Weinfurter, Harald

    2017-11-01

    The aim of the QIPS project (financed by ESA) is to explore quantum phenomena and to demonstrate quantum communication over long distances. Based on the current state-of-the-art a first study investigating the feasibility of space based quantum communication has to establish goals for mid-term and long-term missions, but also has to test the feasibility of key issues in a long distance ground-to-ground experiment. We have therefore designed a proof-of-concept demonstration for establishing single photon links over a distance of 144 km between the Canary Islands of La Palma and Tenerife to evaluate main limitations for future space experiments. Here we report on the progress of this project and present first measurements of crucial parameters of the optical free space link.

  7. Quantization and Quantum-Like Phenomena: A Number Amplitude Approach

    NASA Astrophysics Data System (ADS)

    Robinson, T. R.; Haven, E.

    2015-12-01

    Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.

  8. Innovative financing instruments for global health 2002-15: a systematic analysis.

    PubMed

    Atun, Rifat; Silva, Sachin; Knaul, Felicia M

    2017-07-01

    Development assistance for health (DAH), the value of which peaked in 2013 and fell in 2015, is unlikely to rise substantially in the near future, increasing reliance on domestic and innovative financing sources to sustain health programmes in low-income and middle-income countries. We examined innovative financing instruments (IFIs)-financing schemes that generate and mobilise funds-to estimate the quantum of financing mobilised from 2002 to 2015. We identified ten IFIs, which mobilised US$8·9 billion (2·3% of overall DAH) in 2002-15. The funds generated by IFIs were channelled mostly through GAVI and the Global Fund, and used for programmes for new and underused vaccines, HIV/AIDS, malaria, tuberculosis, and maternal and child health. Vaccination programmes received the largest amount of funding ($2·6 billion), followed by HIV/AIDS ($1080·7 million) and malaria ($1028·9 million), with no discernible funding targeted to non-communicable diseases. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  9. A Comparison of Financing Illinois Unit School Districts for the School Year 1974-75 with the Alternative Financing Models Developed by the National Educational Finance Project.

    ERIC Educational Resources Information Center

    Conti, Dennis R.

    This study compares the present method of financing Illinois public schools for the school year 1973-74 with six alternative financing models developed by the National Educational Finance Project (NEFP). The NEFP models were as follows: complete local support, flat grant with local leeway limit of 12 mills of equalized assessed valuation,…

  10. The QUANTGRID Project (RO)—Quantum Security in GRID Computing Applications

    NASA Astrophysics Data System (ADS)

    Dima, M.; Dulea, M.; Petre, M.; Petre, C.; Mitrica, B.; Stoica, M.; Udrea, M.; Sterian, R.; Sterian, P.

    2010-01-01

    The QUANTGRID Project, financed through the National Center for Programme Management (CNMP-Romania), is the first attempt at using Quantum Crypted Communications (QCC) in large scale operations, such as GRID Computing, and conceivably in the years ahead in the banking sector and other security tight communications. In relation with the GRID activities of the Center for Computing & Communications (Nat.'l Inst. Nucl. Phys.—IFIN-HH), the Quantum Optics Lab. (Nat.'l Inst. Plasma and Lasers—INFLPR) and the Physics Dept. (University Polytechnica—UPB) the project will build a demonstrator infrastructure for this technology. The status of the project in its incipient phase is reported, featuring tests for communications in classical security mode: socket level communications under AES (Advanced Encryption Std.), both proprietary code in C++ technology. An outline of the planned undertaking of the project is communicated, highlighting its impact in quantum physics, coherent optics and information technology.

  11. Application of Percolation Theory to Complex Interconnected Networks in Advanced Functional Composites

    NASA Astrophysics Data System (ADS)

    Hing, P.

    2011-11-01

    Percolation theory deals with the behaviour of connected clusters in a system. Originally developed for studying the flow of liquid in a porous body, the percolation theory has been extended to quantum computation and communication, entanglement percolation in quantum networks, cosmology, chaotic situations, properties of disordered solids, pandemics, petroleum industry, finance, control of traffic and so on. In this paper, the application of various models of the percolation theory to predict and explain the properties of a specially developed family of dense sintered and highly refractory Al2O3-W composites for potential application in high intensity discharge light sources such as high pressure sodium lamps and ceramic metal halide lamps are presented and discussed. The low cost, core-shell concept can be extended to develop functional composite materials with unusual dielectric, electrical, magnetic, superconducting, and piezoelectric properties starting from a classical insulator. The core shell concept can also be applied to develop catalysts with high specific surface areas with minimal amount of expensive platinium, palladium or rare earth nano structured materials for light harvesting, replicating natural photosynthesis, in synthetic zeolite composites for the cracking and separation of crude oil. There is also possibility of developing micron and nanosize Faraday cages for quantum devices, nano electronics and spintronics. The possibilities are limitless.

  12. Non-Power Purchase Agreement (PPA) Options for Financing Solar Deployment at Universities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Financing solar using power purchase agreements (PPAs) has facilitated solar deployment of more than 100 megawatts (MW) at universities--as compared to 50 MW facilitated by financing models not using PPAs. This brochure, which overviews existing financing models and funding mechanisms available for solar procurement, focuses on non-PPA financing models. For more information on solar deployment at universities using PPAs, refer to Using Power Purchase Agreements for Solar Deployment at Universities.

  13. Model application of Murabahah financing acknowledgement statement of Sharia accounting standard No 59 Year 2002

    NASA Astrophysics Data System (ADS)

    Muda, Iskandar; Panjaitan, Rohdearni; Erlina; Ginting, Syafruddin; Maksum, Azhar; Abubakar

    2018-03-01

    The purpose of this research is to observe murabahah financing implantation model. Observations were made on one of the sharia banks going public in Indonesia. Form of implementation of such implementation in the form of financing given the exact facilities and maximum financing, then the provision of financing should be adjusted to the type, business conditions and business plans prospective mudharib. If the financing provided is too low with the mudharib requirement not reaching the target and the financing is not refundable.

  14. A New Approach to Special Education Finance: The Resource Cost Model.

    ERIC Educational Resources Information Center

    Geske, Terry G.; Johnston, Mary Jo

    1985-01-01

    Describes current practices in Illinois where a personnel reimbursement formula is used to finance special education. Summarizes the basic components of the Resource Cost Model (RCM), a complex school finance formula, and compares and contrasts RCM with Illinois' current method of financing special education. (MLF)

  15. Individual Learning Accounts and Other Models of Financing Lifelong Learning

    ERIC Educational Resources Information Center

    Schuetze, Hans G.

    2007-01-01

    To answer the question "Financing what?" this article distinguishes several models of lifelong learning as well as a variety of lifelong learning activities. Several financing methods are briefly reviewed, however the principal focus is on Individual Learning Accounts (ILAs) which were seen by some analysts as a promising model for…

  16. On emissions trading, toxic debt and the Australian power market

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simshauser, Paul

    2009-03-15

    Implementation of emissions trading will have profound effects on the financial stability of coal generators. While the impact on equity capital is well understood, the potential fallout in the market for project finance is not. During the current global financial crisis, the form and quantum of transitional assistance to coal generators will be crucial to ensure ongoing participation of domestic and foreign project banks in the power markets. (author)

  17. A new perspective on Quantum Finance using the Black-Scholes pricing model

    NASA Astrophysics Data System (ADS)

    Dieng, Lamine

    2007-03-01

    Options are known to be divided into two types, the first type is called a call option and the second type is called a put option and these options are offered to stock holders in order to hedge their positions against risky fluctuations of the stock price. It is important to mention that due to fluctuations of the stock price, options can be found sometimes deep in the money, at the money and out of the money. A deep in the money option is described when the option's holder has a positive expected payoff, at the money option is when the option's holder has a zero expected payoff and an out of the money option is when the payoff is negative. In this work, we will assume the stock price to be described by the well known Black-Scholes model or sometimes called the multiplicative model. Using Ito calculus, Martingale and supermartingale theories, we investigated the Black-Scholes pricing equation at the money (X(stock price)= K (strike price)) when the expected payoff of the options holder is zero. We also hedged the Black-Scholes pricing equation in the limit when delta is zero to obtain the non-relativistic time independent Schroedinger equation in quantum mechanics. We compared the two equations and found the diffusion constant to be a function of the stock price in contrast to the Bachelier model we have worked on earlier. We solved the Schroedinger equation and found a dependence between interest rate, volatility and strike price at the money.

  18. Exploring Higher Education Financing Options

    ERIC Educational Resources Information Center

    Nkrumah-Young, Kofi K.; Powell, Philip

    2011-01-01

    Higher education can be financed privately, financed by governments, or shared. Given that the benefits of education accrue to the individual and the state, many governments opt for shared financing. This article examines the underpinnings of different options for financing higher education and develops a model to compare conditions to choices and…

  19. NEFP Decision Process: "A Computer Simulation for Planning School Finance Programs." User Manual.

    ERIC Educational Resources Information Center

    Boardman, Gerald R.; And Others

    The National Educational Finance Project has developed a computerized model designed to simulate the consequences of alternative decisions in regard to the financing of public elementary and secondary education. This manual describes a users orientation to that model. The model was designed as an operational prototype for States to use in a…

  20. Modelling household finances: A Bayesian approach to a multivariate two-part model

    PubMed Central

    Brown, Sarah; Ghosh, Pulak; Su, Li; Taylor, Karl

    2016-01-01

    We contribute to the empirical literature on household finances by introducing a Bayesian multivariate two-part model, which has been developed to further our understanding of household finances. Our flexible approach allows for the potential interdependence between the holding of assets and liabilities at the household level and also encompasses a two-part process to allow for differences in the influences on asset or liability holding and on the respective amounts held. Furthermore, the framework is dynamic in order to allow for persistence in household finances over time. Our findings endorse the joint modelling approach and provide evidence supporting the importance of dynamics. In addition, we find that certain independent variables exert different influences on the binary and continuous parts of the model thereby highlighting the flexibility of our framework and revealing a detailed picture of the nature of household finances. PMID:27212801

  1. Modeling and assessing international climate financing

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Tang, Lichun; Mohamed, Rayman; Zhu, Qianting; Wang, Zheng

    2016-06-01

    Climate financing is a key issue in current negotiations on climate protection. This study establishes a climate financing model based on a mechanism in which donor countries set up funds for climate financing and recipient countries use the funds exclusively for carbon emission reduction. The burden-sharing principles are based on GDP, historical emissions, and consumptionbased emissions. Using this model, we develop and analyze a series of scenario simulations, including a financing program negotiated at the Cancun Climate Change Conference (2010) and several subsequent programs. Results show that sustained climate financing can help to combat global climate change. However, the Cancun Agreements are projected to result in a reduction of only 0.01°C in global warming by 2100 compared to the scenario without climate financing. Longer-term climate financing programs should be established to achieve more significant benefits. Our model and simulations also show that climate financing has economic benefits for developing countries. Developed countries will suffer a slight GDP loss in the early stages of climate financing, but the longterm economic growth and the eventual benefits of climate mitigation will compensate for this slight loss. Different burden-sharing principles have very similar effects on global temperature change and economic growth of recipient countries, but they do result in differences in GDP changes for Japan and the FSU. The GDP-based principle results in a larger share of financial burden for Japan, while the historical emissions-based principle results in a larger share of financial burden for the FSU. A larger burden share leads to a greater GDP loss.

  2. [Payment mechanisms and financial resources management for consolidation of Ecuador's health system].

    PubMed

    Villacrés, Tatiana; Mena, Ana Cristina

    2017-06-08

    Analyze the proposal by the Ministry of Public Health to reform the public financing model in Ecuador with regard to pooling of funds and payment mechanisms. A literature review was done of the financing model, the current legal framework, and the budgetary bases in Pubmed, SciELO, LILACS Ecuador, and regional LILACS using the key words health financing, health financing systems, capitation, pooling of funds, health system reform Ecuador, health system Ecuador, and health payment mechanisms. Books and other documents suggested by health systems experts were also included. Review of the financing model enabled identifying the historical segmentation of Ecuador's health system; out of this, the Ministry of Public Health conceived its proposal to reform the financing model. The Ministry's proposed solutions are pooling of funds and payment of services at the first level of care through payment per capita adjusted for socioeconomic and demographic risks. Progress made in reforming the financing model includes design of the proposals and their implementation mechanisms, and discussions with stakeholders. Implementation of these changes may produce improvements for the health system in efficiency, spreading of risks, incentives for meeting health objectives, as well as contribute to its sustainability and advance toward universal health coverage. Nevertheless, legal, political, and operational constraints are hampering their implementation.

  3. Noncommutative Valuation of Options

    NASA Astrophysics Data System (ADS)

    Herscovich, Estanislao

    2016-12-01

    The aim of this note is to show that the classical results in finance theory for pricing of derivatives, given by making use of the replication principle, can be extended to the noncommutative world. We believe that this could be of interest in quantum probability. The main result called the First fundamental theorem of asset pricing, states that a noncommutative stock market admits no-arbitrage if and only if it admits a noncommutative equivalent martingale probability.

  4. True random numbers from amplified quantum vacuum.

    PubMed

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  5. Threshold concepts in finance: conceptualizing the curriculum

    NASA Astrophysics Data System (ADS)

    Hoadley, Susan; Tickle, Leonie; Wood, Leigh N.; Kyng, Tim

    2015-08-01

    Graduates with well-developed capabilities in finance are invaluable to our society and in increasing demand. Universities face the challenge of designing finance programmes to develop these capabilities and the essential knowledge that underpins them. Our research responds to this challenge by identifying threshold concepts that are central to the mastery of finance and by exploring their potential for informing curriculum design and pedagogical practices to improve student outcomes. In this paper, we report the results of an online survey of finance academics at multiple institutions in Australia, Canada, New Zealand, South Africa and the United Kingdom. The outcomes of our research are recommendations for threshold concepts in finance endorsed by quantitative evidence, as well as a model of the finance curriculum incorporating finance, modelling and statistics threshold concepts. In addition, we draw conclusions about the application of threshold concept theory supported by both quantitative and qualitative evidence. Our methodology and findings have general relevance to the application of threshold concept theory as a means to investigate and inform curriculum design and delivery in higher education.

  6. Can health care financing policy be emulated? The Singaporean medical savings accounts model and its Shanghai replica.

    PubMed

    Dong, Weizhen

    2006-09-01

    Each nation's government is searching for a cost-effective health care system. Some nations are developing their health care financing methods through gradual evolution of the existing ones, and others are trying to adopt other nations' successful schemes as their own financing strategies. The Singaporean government seems able to finance its nation's health care with a very low gross domestic product (GDP) input. Since the implementation of the medical savings accounts schemes (MSAs) in 1984, Singaporean government's share of the nation's total health care expenditure dropped from about 50% to 20%. Inspired by Singapore's success, the Chinese government adopted the Singaporean MSAs model as its health care financing schemes for urban areas. Shanghai was the first large urban centre to implement the MSAs in China. Through the study of the Singapore and Shanghai experiences, this article examines whether it is rational to borrow another nation's health care financing model, especially when the two societies have very different socioeconomic characteristics. However, the MSAs' success in Singapore did not guarantee its Shanghai success, because health care systems do not work alone. Through study of the MSAs' experiences in Singapore and Shanghai, this paper examines whether it is rational to borrow another nation's health care financing model, especially when the two societies have very different socioeconomic characteristics.

  7. Tuition Tax Credits and Vouchers: Political Finance Alternatives Rather than Rational Alternatives to Education Finance.

    ERIC Educational Resources Information Center

    Thomas, Robert G.

    This paper describes the use of tuition tax credits and vouchers as political alternatives of choice and competition in a progressive society. School and public administration theorists identify two distinct finance models: the rational and the political. The first part of this paper examines and describes these two models. The next part…

  8. Path probability of stochastic motion: A functional approach

    NASA Astrophysics Data System (ADS)

    Hattori, Masayuki; Abe, Sumiyoshi

    2016-06-01

    The path probability of a particle undergoing stochastic motion is studied by the use of functional technique, and the general formula is derived for the path probability distribution functional. The probability of finding paths inside a tube/band, the center of which is stipulated by a given path, is analytically evaluated in a way analogous to continuous measurements in quantum mechanics. Then, the formalism developed here is applied to the stochastic dynamics of stock price in finance.

  9. Human Rights and the Political Economy of Universal Health Care: Designing Equitable Financing.

    PubMed

    Rudiger, Anja

    2016-12-01

    Health system financing is a critical factor in securing universal health care and achieving equity in access and payment. The human rights framework offers valuable guidance for designing a financing strategy that meets these goals. This article presents a rights-based approach to health care financing developed by the human right to health care movement in the United States. Grounded in a human rights analysis of private, market-based health insurance, advocates make the case for public financing through progressive taxation. Financing mechanisms are measured against the twin goals of guaranteeing access to care and advancing economic equity. The added focus on the redistributive potential of health care financing recasts health reform as an economic policy intervention that can help fulfill broader economic and social rights obligations. Based on a review of recent universal health care reform efforts in the state of Vermont, this article reports on a rights-based public financing plan and model, which includes a new business tax directed against wage disparities. The modeling results suggest that a health system financed through equitable taxation could produce significant redistributive effects, thus increasing economic equity while generating sufficient funds to provide comprehensive health care as a universal public good.

  10. How does private finance affect public health care systems? Marshaling the evidence from OECD nations.

    PubMed

    Tuohy, Carolyn Hughes; Flood, Colleen M; Stabile, Mark

    2004-06-01

    The impact of private finance on publicly funded health care systems depends on how the relationship between public and private finance is structured. This essay first reviews the experience in five nations that exemplify different ways of drawing the public/private boundary to address the particular questions raised by each model. This review is then used to interpret aggregate empirical analyses of the dynamic effects between public and private finance in OECD nations over time. Our findings suggest that while increases in the private share of health spending substitute in part for public finance (and vice versa), this is the result of a complex mix of factors having as much to do with cross-sectoral shifts as with deliberate policy decisions within sectors and that these effects are mediated by the different dynamics of distinctive national models. On balance, we argue that a resort to private finance is more likely to harm than to help publicly financed systems, although the effects will vary depending on the form of private finance.

  11. 31 CFR Appendix A to Part 212 - Model Notice to Account Holder

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 2 2011-07-01 2011-07-01 false Model Notice to Account Holder A Appendix A to Part 212 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... to satisfy a debt that you have not paid. In other words, if you owe money to a person or company...

  12. 31 CFR Appendix A to Part 212 - Model Notice to Account Holder

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 2 2014-07-01 2014-07-01 false Model Notice to Account Holder A Appendix A to Part 212 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... to satisfy a debt that you have not paid. In other words, if you owe money to a person or company...

  13. 31 CFR Appendix A to Part 212 - Model Notice to Account Holder

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 2 2012-07-01 2012-07-01 false Model Notice to Account Holder A Appendix A to Part 212 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... to satisfy a debt that you have not paid. In other words, if you owe money to a person or company...

  14. 31 CFR Appendix A to Part 212 - Model Notice to Account Holder

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 2 2013-07-01 2013-07-01 false Model Notice to Account Holder A Appendix A to Part 212 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... to satisfy a debt that you have not paid. In other words, if you owe money to a person or company...

  15. A Resource Cost Model: Implications for Local School District Planning in Comprehensive School Finance Reform Efforts.

    ERIC Educational Resources Information Center

    Lows, Raymond L.

    This paper describes the current and proposed systems for state and local financing of public education in Illinois and discusses the ramifications for local educational planners of a change from a foundation level program to a resource cost model approach. The paper begins with a brief historical overview of the finance reform effort that began…

  16. Impact of Federal Tax Policy on Utility-Scale Solar Deployment Given Financing Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Cole, Wesley; Krishnan, Venkat

    In this study, the authors conducted a literature review of approaches and assumptions used by other modeling teams and consultants with respect to solar project financing; developed and incorporated an ability to model the likely financing shift away from more expensive sources of capital and toward cheaper sources as the investment tax credit declines in the ReEDS model; and used the 'before and after' versions of the ReEDS model to isolate and analyze the deployment impact of the financing shift under a range of conditions. Using ReEDS scenarios with this improved capability, we find that this 'financing' shift would softenmore » the blow of the ITC reversion; however, the overall impacts of such a shift in capital structure are estimated to be small and near-term utility-scale PV deployment is found to be much more sensitive to other factors that might drive down utility-scale PV prices.« less

  17. The study on stage financing model of IT project investment.

    PubMed

    Chen, Si-hua; Xu, Sheng-hua; Lee, Changhoon; Xiong, Neal N; He, Wei

    2014-01-01

    Stage financing is the basic operation of venture capital investment. In investment, usually venture capitalists use different strategies to obtain the maximum returns. Due to its advantages to reduce the information asymmetry and agency cost, stage financing is widely used by venture capitalists. Although considerable attentions are devoted to stage financing, very little is known about the risk aversion strategies of IT projects. This paper mainly addresses the problem of risk aversion of venture capital investment in IT projects. Based on the analysis of characteristics of venture capital investment of IT projects, this paper introduces a real option pricing model to measure the value brought by the stage financing strategy and design a risk aversion model for IT projects. Because real option pricing method regards investment activity as contingent decision, it helps to make judgment on the management flexibility of IT projects and then make a more reasonable evaluation about the IT programs. Lastly by being applied to a real case, it further illustrates the effectiveness and feasibility of the model.

  18. The Study on Stage Financing Model of IT Project Investment

    PubMed Central

    Xu, Sheng-hua; Xiong, Neal N.

    2014-01-01

    Stage financing is the basic operation of venture capital investment. In investment, usually venture capitalists use different strategies to obtain the maximum returns. Due to its advantages to reduce the information asymmetry and agency cost, stage financing is widely used by venture capitalists. Although considerable attentions are devoted to stage financing, very little is known about the risk aversion strategies of IT projects. This paper mainly addresses the problem of risk aversion of venture capital investment in IT projects. Based on the analysis of characteristics of venture capital investment of IT projects, this paper introduces a real option pricing model to measure the value brought by the stage financing strategy and design a risk aversion model for IT projects. Because real option pricing method regards investment activity as contingent decision, it helps to make judgment on the management flexibility of IT projects and then make a more reasonable evaluation about the IT programs. Lastly by being applied to a real case, it further illustrates the effectiveness and feasibility of the model. PMID:25147845

  19. Research on the influencing factors of financing efficiency of big data industry based on panel data model--Empirical evidence from Guizhou province

    NASA Astrophysics Data System (ADS)

    Li, Chenggang; Feng, Yujia

    2018-03-01

    This paper mainly studies the influence factors of financing efficiency of Guizhou big data industry, and selects the financial and macro data of 20 Guizhou big data enterprises from 2010 to 2016. Using the DEA model to obtain the financing efficiency of Guizhou big data enterprises. A panel data model is constructed to select the six macro and micro influencing factors for panel data analysis. The results show that the external economic environment, the turnover rate of the total assets of the enterprises, the increase of operating income, the increase of the revenue per share of each share of the business income have positive impact on the financing efficiency of of the big data industry in Guizhou. The key to improve the financing efficiency of Guizhou big data enterprises is to improve.

  20. [25 years of the DRG-based health-financing system in Hungary].

    PubMed

    Babarczy, Balázs; Gyenes, Péter; Imre, László

    2015-07-19

    After a thourough development phase, a new system of health financing was introduced in Hungary in 1993. One of the cornerstones of the system was the financing of acute hospital care through Diagnosis-Related Groups (DRGs). This method was part of a comprehensive healthcare model, elaborated and published around 1990 by experts of Gyógyinfok, a public institute. The health financing system that was finally introduced reflcted in large part this theoretical model, while the current Hungarian system differs from it in some important respects. The objective of this article is to identify these points of divergence.

  1. Human Rights and the Political Economy of Universal Health Care

    PubMed Central

    2016-01-01

    Abstract Health system financing is a critical factor in securing universal health care and achieving equity in access and payment. The human rights framework offers valuable guidance for designing a financing strategy that meets these goals. This article presents a rights-based approach to health care financing developed by the human right to health care movement in the United States. Grounded in a human rights analysis of private, market-based health insurance, advocates make the case for public financing through progressive taxation. Financing mechanisms are measured against the twin goals of guaranteeing access to care and advancing economic equity. The added focus on the redistributive potential of health care financing recasts health reform as an economic policy intervention that can help fulfill broader economic and social rights obligations. Based on a review of recent universal health care reform efforts in the state of Vermont, this article reports on a rights-based public financing plan and model, which includes a new business tax directed against wage disparities. The modeling results suggest that a health system financed through equitable taxation could produce significant redistributive effects, thus increasing economic equity while generating sufficient funds to provide comprehensive health care as a universal public good. PMID:28559677

  2. JSF: JOINT STRIKE FIGHTER OR JUST SIMPLE FAILURE ANALYZING THE F-35S JOINT ACQUISITION MODEL

    DTIC Science & Technology

    2016-02-01

    41 Rosen, Armin and Macias, Amanda, This is What Regret Looks Like for the Pentagon, Yahoo ! Finance, 1 Feb 2016. http://finance.yahoo.com/news/regret...Like for the Pentagon, Yahoo ! Finance, 1 Feb 2016. http://finance.yahoo.com/news/regret-looks-pentagon-032341164.html 45 Government Accountability...City, New York: Doubleday & Company, Inc. 1971. Rosen, Armin and Macias, Amanda, This is What Regret Looks Like for the Pentagon, Yahoo ! Finance, 1

  3. Quantum random oracle model for quantum digital signature

    NASA Astrophysics Data System (ADS)

    Shang, Tao; Lei, Qi; Liu, Jianwei

    2016-10-01

    The goal of this work is to provide a general security analysis tool, namely, the quantum random oracle (QRO), for facilitating the security analysis of quantum cryptographic protocols, especially protocols based on quantum one-way function. QRO is used to model quantum one-way function and different queries to QRO are used to model quantum attacks. A typical application of quantum one-way function is the quantum digital signature, whose progress has been hampered by the slow pace of the experimental realization. Alternatively, we use the QRO model to analyze the provable security of a quantum digital signature scheme and elaborate the analysis procedure. The QRO model differs from the prior quantum-accessible random oracle in that it can output quantum states as public keys and give responses to different queries. This tool can be a test bed for the cryptanalysis of more quantum cryptographic protocols based on the quantum one-way function.

  4. A School Finance Computer Simulation Model

    ERIC Educational Resources Information Center

    Boardman, Gerald R.

    1974-01-01

    Presents a description of the computer simulation model developed by the National Educational Finance Project for use by States in planning and evaluating alternative approaches for State support programs. Provides a general introduction to the model, a program operation overview, a sample run, and some conclusions. (Author/WM)

  5. Quantitative Finance

    NASA Astrophysics Data System (ADS)

    James, Jessica

    2017-01-01

    Quantitative finance is a field that has risen to prominence over the last few decades. It encompasses the complex models and calculations that value financial contracts, particularly those which reference events in the future, and apply probabilities to these events. While adding greatly to the flexibility of the market available to corporations and investors, it has also been blamed for worsening the impact of financial crises. But what exactly does quantitative finance encompass, and where did these ideas and models originate? We show that the mathematics behind finance and behind games of chance have tracked each other closely over the centuries and that many well-known physicists and mathematicians have contributed to the field.

  6. Models for financing the regulation of pharmaceutical promotion.

    PubMed

    Lexchin, Joel

    2012-07-11

    Pharmaceutical companies spend huge sums promoting their products whereas regulation of promotional activities is typically underfinanced. Any option for financing the monitoring and regulation of promotion should adhere to three basic principles: stability, predictability and lack of (perverse) ties between the level of financing and performance. This paper explores the strengths and weaknesses of six different models. All these six models considered here have positive and negative features and none may necessarily be ideal in any particular country. Different countries may choose to utilize a combination of two or more of these models in order to raise sufficient revenue. Financing of regulation of drug promotion should more than pay for itself through the prevention of unnecessary drug costs and the avoidance of adverse health effects due to inappropriate prescribing. However, it involves an initial outlay of money that is currently not being spent and many national governments, in both rich and poor countries, are unwilling to incur extra costs.

  7. On the quantum-channel capacity for orbital angular momentum-based free-space optical communications.

    PubMed

    Zhang, Yequn; Djordjevic, Ivan B; Gao, Xin

    2012-08-01

    Inspired by recent demonstrations of orbital angular momentum-(OAM)-based single-photon communications, we propose two quantum-channel models: (i) the multidimensional quantum-key distribution model and (ii) the quantum teleportation model. Both models employ operator-sum representation for Kraus operators derived from OAM eigenkets transition probabilities. These models are highly important for future development of quantum-error correction schemes to extend the transmission distance and improve date rates of OAM quantum communications. By using these models, we calculate corresponding quantum-channel capacities in the presence of atmospheric turbulence.

  8. A Generalized Information Theoretical Model for Quantum Secret Sharing

    NASA Astrophysics Data System (ADS)

    Bai, Chen-Ming; Li, Zhi-Hui; Xu, Ting-Ting; Li, Yong-Ming

    2016-11-01

    An information theoretical model for quantum secret sharing was introduced by H. Imai et al. (Quantum Inf. Comput. 5(1), 69-80 2005), which was analyzed by quantum information theory. In this paper, we analyze this information theoretical model using the properties of the quantum access structure. By the analysis we propose a generalized model definition for the quantum secret sharing schemes. In our model, there are more quantum access structures which can be realized by our generalized quantum secret sharing schemes than those of the previous one. In addition, we also analyse two kinds of important quantum access structures to illustrate the existence and rationality for the generalized quantum secret sharing schemes and consider the security of the scheme by simple examples.

  9. School Library Acquisitions: A Model for Calculating Costs

    ERIC Educational Resources Information Center

    Lauterman, Alfred; Lazarescu, Sandu

    1977-01-01

    Romanian research findings offer a theoretical model with which financing of the annual acquisition of books per pupil at a given educational level can be objectively ascertained. Methods of financing and acquisitions policy decisions are discussed. (Author/JAB)

  10. Nonlinear optimal control for the synchronization of chaotic and hyperchaotic finance systems

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Loia, V.; Ademi, S.; Ghosh, T.

    2017-11-01

    It is possible to make specific finance systems get synchronized to other finance systems exhibiting chaotic and hyperchaotic dynamics, by applying nonlinear optimal (H-infinity) control. This signifies that chaotic behavior can be generated in finance systems by exerting a suitable control input. Actually, a lead financial system is considered which exhibits inherently chaotic dynamics. Moreover, a follower finance system is introduced having parameters in its model that inherently prohibit the appearance of chaotic dynamics. Through the application of a suitable nonlinear optimal (H-infinity) control input it is proven that the follower finance system can replicate the chaotic dynamics of the lead finance system. By applying Lyapunov analysis it is proven that asymptotically the follower finance system gets synchronized with the lead system and that the tracking error between the state variables of the two systems vanishes.

  11. Quantum Transmemetic Intelligence

    NASA Astrophysics Data System (ADS)

    Piotrowski, Edward W.; Sładkowski, Jan

    The following sections are included: * Introduction * A Quantum Model of Free Will * Quantum Acquisition of Knowledge * Thinking as a Quantum Algorithm * Counterfactual Measurement as a Model of Intuition * Quantum Modification of Freud's Model of Consciousness * Conclusion * Acknowledgements * References

  12. Campus Housing with a Financial Twist.

    ERIC Educational Resources Information Center

    White, Lee; Hanna, John P.

    2000-01-01

    Describes how San Francisco State University (California) used off-balance-sheet financing to build high-quality student living units with little or no risk to university finances. Discusses financing models, the investment banker's role, partnership with a nonprofit foundation which issued the housing bonds, the foundation's credit enhancement,…

  13. The potential of using quantum theory to build models of cognition.

    PubMed

    Wang, Zheng; Busemeyer, Jerome R; Atmanspacher, Harald; Pothos, Emmanuel M

    2013-10-01

    Quantum cognition research applies abstract, mathematical principles of quantum theory to inquiries in cognitive science. It differs fundamentally from alternative speculations about quantum brain processes. This topic presents new developments within this research program. In the introduction to this topic, we try to answer three questions: Why apply quantum concepts to human cognition? How is quantum cognitive modeling different from traditional cognitive modeling? What cognitive processes have been modeled using a quantum account? In addition, a brief introduction to quantum probability theory and a concrete example is provided to illustrate how a quantum cognitive model can be developed to explain paradoxical empirical findings in psychological literature. © 2013 Cognitive Science Society, Inc.

  14. A Comparison of the Audit and Accreditation Tools Used By The Health Care Financing Administration, The Texas Department of Insurance, and The National Committee on Quality Assurance: The Cost of Multi-Agency Oversight on Medicare+Choice Plans in Texas

    DTIC Science & Technology

    2001-04-12

    Comparison of Oversight Models in Managed Care 1 Running Head: Comparison of Oversight Models in Managed Care A Comparison of the Audit and...TITLE AND SUBTITLE A Comparison of the Audit and Accreditation Tools Used By The Health Care Financing Administration, The Texas Department of...Comparison of Oversight Models in Managed Care 5 A Comparison of the Audit and Accreditation Tools Used By The Health Care Financing

  15. Integrating Photovoltaic Systems into Low-Income Housing Developments: A Case Study on the Creation of a New Residential Financing Model and Low-Income Resident Job Training Program, September 2011 (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, J.; Smith-Dreier, C.; Mekonnen, G.

    2011-09-01

    This case study covers the process of successfully integrating photovoltaic (PV) systems into a low-income housing development in northeast Denver, Colorado, focusing specifically on a new financing model and job training. The Northeast Denver Housing Center (NDHC), working in cooperation with Del Norte Neighborhood Development Corporation, Groundwork Denver, and the National Renewable Energy Laboratory (NREL), was able to finance the PV system installations by blending private equity funding with utility rebates, federal tax credits, and public sector funding. A grant provided by the Governor's Energy Office allowed for the creation of the new financing model. In addition, the program incorporatedmore » an innovative low-income job training program and an energy conservation incentive program.« less

  16. [Financing, organization, costs and services performance of the Argentinean health sub-systems.

    PubMed

    Yavich, Natalia; Báscolo, Ernesto Pablo; Haggerty, Jeannie

    2016-01-01

    To analyze the relationship between health system financing and services organization models with costs and health services performance in each of Rosario's health sub-systems. The financing and organization models were characterized using secondary data. Costs were calculated using the WHO/SHA methodology. Healthcare quality was measured by a household survey (n=822). Public subsystem:Vertically integrated funding and primary healthcare as a leading strategy to provide services produced low costs and individual-oriented healthcare but with weak accessibility conditions and comprehensiveness. Private subsystem: Contractual integration and weak regulatory and coordination mechanisms produced effects opposed to those of the public sub-system. Social security: Contractual integration and strong regulatory and coordination mechanisms contributed to intermediate costs and overall high performance. Each subsystem financing and services organization model had a strong and heterogeneous influence on costs and health services performance.

  17. A fuzzy logic approach toward solving the analytic enigma of health system financing.

    PubMed

    Chernichovsky, Dov; Bolotin, Arkady; de Leeuw, David

    2003-09-01

    Improved health, equity, macroeconomic efficiency, efficient provision of care, and client satisfaction are the common goals of any health system. The relative significance of these goals varies, however, across nations, communities and with time. As for health care finance, the attainment of these goals under varying circumstances involves alternative policy options for each of the following elements: sources of finance, allocation of finance, payment to providers, and public-private mix. The intricate set of multiple goals, elements and policy options defies human reasoning, and, hence, hinders effective policymaking. Indeed, "health system finance" is not amenable to a clear set of structural relationships. Neither is there a universe that can be subject to statistical scrutiny: each health system is unique. "Fuzzy logic" models human reasoning by managing "expert knowledge" close to the way it is handled by human language. It is used here for guiding policy making by a systematic analysis of health system finance. Assuming equal welfare weights for alternative goals and mutually exclusive policy options under each health-financing element, the exploratory model we present here suggests that a German-type health system is best. Other solutions depend on the welfare weights for system goals and mixes of policy options.

  18. A quantum probability account of order effects in inference.

    PubMed

    Trueblood, Jennifer S; Busemeyer, Jerome R

    2011-01-01

    Order of information plays a crucial role in the process of updating beliefs across time. In fact, the presence of order effects makes a classical or Bayesian approach to inference difficult. As a result, the existing models of inference, such as the belief-adjustment model, merely provide an ad hoc explanation for these effects. We postulate a quantum inference model for order effects based on the axiomatic principles of quantum probability theory. The quantum inference model explains order effects by transforming a state vector with different sequences of operators for different orderings of information. We demonstrate this process by fitting the quantum model to data collected in a medical diagnostic task and a jury decision-making task. To further test the quantum inference model, a new jury decision-making experiment is developed. Using the results of this experiment, we compare the quantum inference model with two versions of the belief-adjustment model, the adding model and the averaging model. We show that both the quantum model and the adding model provide good fits to the data. To distinguish the quantum model from the adding model, we develop a new experiment involving extreme evidence. The results from this new experiment suggest that the adding model faces limitations when accounting for tasks involving extreme evidence, whereas the quantum inference model does not. Ultimately, we argue that the quantum model provides a more coherent account for order effects that was not possible before. Copyright © 2011 Cognitive Science Society, Inc.

  19. Financing the Electronic Library: Models and Options.

    ERIC Educational Resources Information Center

    Waters, Richard L.; Kralisz, Victor Frank

    1981-01-01

    Places the cost considerations associated with public library automation in a framework of public finance comfortable to most administrators, discusses the importance of experience with use patterns in the electronic library in opening up new and innovative financing methods, and stresses the role of the library in the information industry. (JL)

  20. Financing Higher Education in the Nordic Countries.

    ERIC Educational Resources Information Center

    Strom, Geir

    1996-01-01

    The higher education systems and financing mechanisms in Norway, Denmark, Sweden, and Finland are described. In each, enrollment and productivity, in terms of student flow, are important financing factors. A new budget model developed for Norway is outlined, and efforts to create a cooperative community for higher education in the Nordic countries…

  1. The Madrid Train Bombings: A Decision-Making Model Analysis

    DTIC Science & Technology

    2009-12-11

    train bombing terrorist attack AML Anti Money Laundering CFT Combating the Financing of Terrorism ETA Euzkadi Ta Azkatasuna otherwise known as the...Fund board of executives have ―adopted action plans to enhance efforts for AML / CFT [anti money laundering and combating the financing of terrorism...Anti-Money Laundering ( AML ) and Combating the Financing of Terrorism ( CFT ), X-2, http://www1.worldbank.org/finance/html/amlcft /docs/Ref_Guide_EN/v2/10

  2. 31 CFR 50.17 - Use of model forms.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance: Treasury 1 2011-07-01 2011-07-01 false Use of model forms. 50.17 Section 50.17 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM Disclosures as Conditions for Federal Payment § 50.17 Use of model forms. (a) Policies in force on...

  3. 31 CFR 50.17 - Use of model forms.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance: Treasury 1 2014-07-01 2014-07-01 false Use of model forms. 50.17 Section 50.17 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM Disclosures as Conditions for Federal Payment § 50.17 Use of model forms. (a) Policies in force on...

  4. 31 CFR 50.17 - Use of model forms.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance: Treasury 1 2012-07-01 2012-07-01 false Use of model forms. 50.17 Section 50.17 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM Disclosures as Conditions for Federal Payment § 50.17 Use of model forms. (a) Policies in force on...

  5. 31 CFR 50.17 - Use of model forms.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance: Treasury 1 2013-07-01 2013-07-01 false Use of model forms. 50.17 Section 50.17 Money and Finance: Treasury Office of the Secretary of the Treasury TERRORISM RISK INSURANCE PROGRAM Disclosures as Conditions for Federal Payment § 50.17 Use of model forms. (a) Policies in force on...

  6. Undergraduate Research: Mathematical Modeling of Mortgages

    ERIC Educational Resources Information Center

    Choi, Youngna; Spero, Steven

    2010-01-01

    In this article, we study financing in the real estate market and show how various types of mortgages can be modeled and analyzed. With only an introductory level of interest theory, finance, and calculus, we model and analyze three types of popular mortgages with real life examples that explain the background and inevitable outcome of the current…

  7. Research Challenges in Financial Data Modeling and Analysis.

    PubMed

    Alexander, Lewis; Das, Sanjiv R; Ives, Zachary; Jagadish, H V; Monteleoni, Claire

    2017-09-01

    Significant research challenges must be addressed in the cleaning, transformation, integration, modeling, and analytics of Big Data sources for finance. This article surveys the progress made so far in this direction and obstacles yet to be overcome. These are issues that are of interest to data-driven financial institutions in both corporate finance and consumer finance. These challenges are also of interest to the legal profession as well as to regulators. The discussion is relevant to technology firms that support the growing field of FinTech.

  8. Quantum biological channel modeling and capacity calculation.

    PubMed

    Djordjevic, Ivan B

    2012-12-10

    Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general.

  9. [Financing problems of capital goods: part 1: leasing as a solution?].

    PubMed

    Clausen, C C; Bauer, M; Saleh, A; Picker, O

    2008-06-01

    The provision of financial support of hospitals by States for buying capital goods is becoming increasingly more limited. In order to still make investments, alternative forms of financing such as leasing must be considered in hospitals. However, the change from the classical form of dual financing and the decision to opt for a leasing model involves much more than just a question of costs. Leasing results in easily manageable expenditure, flexibility and adaptability for the choice of model but the leasing installments must be directly financed by the turnover from diagnosis-related groups and so lead to a reduction in the annual profit. In this article the authors try to give the reader an overview of the complex and sometimes counter-productive effect of financial instruments for investments in hospitals using leasing financing as an example. In the follow-up article the decision-making procedure using dynamic investment calculations will be demonstrated using a concrete example.

  10. Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) using Complex Quantum Neuron (CQN): Applications to time series prediction.

    PubMed

    Cui, Yiqian; Shi, Junyou; Wang, Zili

    2015-11-01

    Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Wind Technology Modeling Within the System Advisor Model (SAM) (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blair, N.; Dobos, A.; Ferguson, T.

    This poster provides detail for implementation and the underlying methodology for modeling wind power generation performance in the National Renewable Energy Laboratory's (NREL's) System Advisor Model (SAM). SAM's wind power model allows users to assess projects involving one or more large or small wind turbines with any of the detailed options for residential, commercial, or utility financing. The model requires information about the wind resource, wind turbine specifications, wind farm layout (if applicable), and costs, and provides analysis to compare the absolute or relative impact of these inputs. SAM is a system performance and economic model designed to facilitate analysismore » and decision-making for project developers, financers, policymakers, and energy researchers. The user pairs a generation technology with a financing option (residential, commercial, or utility) to calculate the cost of energy over the multi-year project period. Specifically, SAM calculates the value of projects which buy and sell power at retail rates for residential and commercial systems, and also for larger-scale projects which operate through a power purchase agreement (PPA) with a utility. The financial model captures complex financing and rate structures, taxes, and incentives.« less

  12. A model of the demand for Islamic banks debt-based financing instrument

    NASA Astrophysics Data System (ADS)

    Jusoh, Mansor; Khalid, Norlin

    2013-04-01

    This paper presents a theoretical analysis of the demand for debt-based financing instruments of the Islamic banks. Debt-based financing, such as through baibithamanajil and al-murabahah, is by far the most prominent of the Islamic bank financing and yet it has been largely ignored in Islamic economics literature. Most studies instead have been focusing on equity-based financing of al-mudharabah and al-musyarakah. Islamic bank offers debt-based financing through various instruments derived under the principle of exchange (ukud al-mu'awadhat) or more specifically, the contract of deferred sale. Under such arrangement, Islamic debt is created when goods are purchased and the payments are deferred. Thus, unlike debt of the conventional bank which is a form of financial loan contract to facilitate demand for liquid assets, this Islamic debt is created in response to the demand to purchase goods by deferred payment. In this paper we set an analytical framework that is based on an infinitely lived representative agent model (ILRA model) to analyze the demand for goods to be purchased by deferred payment. The resulting demand will then be used to derive the demand for Islamic debt. We also investigate theoretically, factors that may have an impact on the demand for Islamic debt.

  13. Quantum crystallographic charge density of urea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Michael E.

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  14. Quantum crystallographic charge density of urea

    DOE PAGES

    Wall, Michael E.

    2016-06-08

    Standard X-ray crystallography methods use free-atom models to calculate mean unit-cell charge densities. Real molecules, however, have shared charge that is not captured accurately using free-atom models. To address this limitation, a charge density model of crystalline urea was calculated using high-level quantum theory and was refined against publicly available ultra-high-resolution experimental Bragg data, including the effects of atomic displacement parameters. The resulting quantum crystallographic model was compared with models obtained using spherical atom or multipole methods. Despite using only the same number of free parameters as the spherical atom model, the agreement of the quantum model with the datamore » is comparable to the multipole model. The static, theoretical crystalline charge density of the quantum model is distinct from the multipole model, indicating the quantum model provides substantially new information. Hydrogen thermal ellipsoids in the quantum model were very similar to those obtained using neutron crystallography, indicating that quantum crystallography can increase the accuracy of the X-ray crystallographic atomic displacement parameters. Lastly, the results demonstrate the feasibility and benefits of integrating fully periodic quantum charge density calculations into ultra-high-resolution X-ray crystallographic model building and refinement.« less

  15. Finance Project. Status Report and Preliminary Working Papers.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    This status report outlines the progress of the California Community College Finance Project. Working papers, models, and alternative proposals are reviewed in four areas: mission and function, finance, governance, and management. Priorities in mission and function are stated in terms of the characteristics and educational needs of the nearly 1.3…

  16. The Three Rs of Education Finance Reform: Re-Thinking, Re-Tooling, and Re-Evaluating School-Site Information.

    ERIC Educational Resources Information Center

    Speakman, Sheree T.; And Others

    1997-01-01

    Examines the need for new financial reporting and analysis, starting with rethinking the school finance field, retooling the management information systems for school finance, and re-evaluating knowledge about school-site management, accounting, and reporting. Demonstrates a new reporting methodology, the Financial Analysis Model, that traces…

  17. Financing Community Services for Persons with Disabilities: State Agency and Community Provider Perspectives.

    ERIC Educational Resources Information Center

    Hemp, Richard

    1992-01-01

    This serial issue summarizes findings from a survey of 20 state mental retardation and developmental disabilities agencies and 93 community based providers on developing and financing community services. The survey queried respondents concerning: (1) which models or strategies for financing community services have been most effective; (2) what…

  18. Models for financing the regulation of pharmaceutical promotion

    PubMed Central

    2012-01-01

    Pharmaceutical companies spend huge sums promoting their products whereas regulation of promotional activities is typically underfinanced. Any option for financing the monitoring and regulation of promotion should adhere to three basic principles: stability, predictability and lack of (perverse) ties between the level of financing and performance. This paper explores the strengths and weaknesses of six different models. All these six models considered here have positive and negative features and none may necessarily be ideal in any particular country. Different countries may choose to utilize a combination of two or more of these models in order to raise sufficient revenue. Financing of regulation of drug promotion should more than pay for itself through the prevention of unnecessary drug costs and the avoidance of adverse health effects due to inappropriate prescribing. However, it involves an initial outlay of money that is currently not being spent and many national governments, in both rich and poor countries, are unwilling to incur extra costs. PMID:22784944

  19. Global quantum discord and quantum phase transition in XY model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Si-Yuan; Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190; Zhang, Yu-Ran, E-mail: yrzhang@iphy.ac.cn

    We study the relationship between the behavior of global quantum correlations and quantum phase transitions in XY model. We find that the two kinds of phase transitions in the studied model can be characterized by the features of global quantum discord (GQD) and the corresponding quantum correlations. We demonstrate that the maximum of the sum of all the nearest neighbor bipartite GQDs is effective and accurate for signaling the Ising quantum phase transition, in contrast, the sudden change of GQD is very suitable for characterizing another phase transition in the XY model. This may shed lights on the study ofmore » properties of quantum correlations in different quantum phases.« less

  20. One-Way Deficit and Quantum Phase Transitions in XX Model

    NASA Astrophysics Data System (ADS)

    Wang, Yao-Kun; Zhang, Yu-Ran

    2018-02-01

    Quantum correlations including entanglement and quantum discord have drawn much attention in characterizing quantum phase transitions. Quantum deficit originates in questions regarding work extraction from quantum systems coupled to a heat bath (Oppenheim et al. Phys. Rev. Lett. 89, 180402, 2002). It links quantum thermodynamics with quantum correlations and provides a new standpoint for understanding quantum non-locality. In this paper, we evaluate the one-way deficit of two adjacent spins in the bulk for the XX model. In the thermodynamic limit, the XX model undergoes a first order transition from fully polarized to a critical phase with quasi-long-range order with decrease of quantum parameter. We find that the one-way deficit becomes nonzero after the critical point. Therefore, the one-way deficit characterizes the quantum phase transition in the XX model.

  1. Mukhabarah as Sharia Financing Model in Beef Cattle Farm Entrepise

    NASA Astrophysics Data System (ADS)

    Asnawi, A.; Amrawaty, A. A.; Nirwana

    2018-02-01

    Financing constraints on beef cattle farm nowadays have received attention by the government through distributed various assistance programs and program loans through implementing banks. The existing financing schemes are all still conventional yet sharia-based. The purpose of this research is to formulate financing pattern for sharia beef cattle farm. A qualitative and descriptive approach is used to formulate the pattern by considering the profit-sharing practices of the beef cattle farmers. The results of this study have formulated a financing pattern that integrates government, implementing banks, beef cattle farmers group and cooperative as well as breeders as its members. This pattern of financing is very accommodating of local culture that develops in rural communities. It is expected to be an input, especially in formulating a business financing policy Sharia-based beef cattle breeding.

  2. Complex systems and health behavior change: insights from cognitive science.

    PubMed

    Orr, Mark G; Plaut, David C

    2014-05-01

    To provide proof-of-concept that quantum health behavior can be instantiated as a computational model that is informed by cognitive science, the Theory of Reasoned Action, and quantum health behavior theory. We conducted a synthetic review of the intersection of quantum health behavior change and cognitive science. We conducted simulations, using a computational model of quantum health behavior (a constraint satisfaction artificial neural network) and tested whether the model exhibited quantum-like behavior. The model exhibited clear signs of quantum-like behavior. Quantum health behavior can be conceptualized as constraint satisfaction: a mitigation between current behavioral state and the social contexts in which it operates. We outlined implications for moving forward with computational models of both quantum health behavior and health behavior in general.

  3. On quantum models of the human mind.

    PubMed

    Wang, Hongbin; Sun, Yanlong

    2014-01-01

    Recent years have witnessed rapidly increasing interests in developing quantum theoretical models of human cognition. Quantum mechanisms have been taken seriously to describe how the mind reasons and decides. Papers in this special issue report the newest results in the field. Here we discuss why the two levels of commitment, treating the human brain as a quantum computer and merely adopting abstract quantum probability principles to model human cognition, should be integrated. We speculate that quantum cognition models gain greater modeling power due to a richer representation scheme. Copyright © 2013 Cognitive Science Society, Inc.

  4. Quantum ratchet effect in a time non-uniform double-kicked model

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang

    2017-07-01

    The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.

  5. Examining the Effects of School-Level Variables on Elementary School Students' Academic Achievement: The Use of Structural Equation Modeling

    ERIC Educational Resources Information Center

    Della Sala, Matthew Robert

    2014-01-01

    School finance scholars have called for the alignment of accountability policies with state finance formulae to allocate resources toward student learning goals (Adams, 2008; Ryan, 2008; Superfine, 2009; Verstegen, 2002). With the presence of accountability policies that focus on improving students' academic achievement, state finance systems must…

  6. A Constrained Bureaucratic Model of Behavioral Responses to School Finance Reform

    ERIC Educational Resources Information Center

    Ullrich, Laura D.; Murray, Matthew N.

    2017-01-01

    "Tennessee Small School Systems v. McWherter" case led to a significant reform of the state's school finance system during 1992-1993 with the phased-in implementation of the Basic Education Program. This paper examines the impact of Tennessee's school finance reform on education spending using a complete panel of school districts from…

  7. The Complex Economic System of Supply Chain Financing

    NASA Astrophysics Data System (ADS)

    Zhang, Lili; Yan, Guangle

    Supply Chain Financing (SCF) refers to a series of innovative and complicated financial services based on supply chain. The SCF set-up is a complex system, where the supply chain management and Small and Medium Enterprises (SMEs) financing services interpenetrate systematically. This paper establishes the organization structure of SCF System, and presents two financing models respectively, with or without the participation of the third-party logistic provider (3PL). Using Information Economics and Game Theory, the interrelationship among diverse economic sectors is analyzed, and the economic mechanism of development and existent for SCF system is demonstrated. New thoughts and approaches to solve SMEs financing problem are given.

  8. Financing institutional long-term care for the elderly in China: a policy evaluation of new models.

    PubMed

    Yang, Wei; Jingwei He, Alex; Fang, Lijie; Mossialos, Elias

    2016-12-01

    A rapid ageing population coupled with changes in family structure has brought about profound implications to social policy in China. Although the past decade has seen a steady increase in public funding to long-term care (LTC), the narrow financing base and vast population have created significant unmet demand, calling for reforms in financing. This paper focuses on the financing of institutional LTC care by examining new models that have emerged from local policy experiments against two policy goals: equity and efficiency. Three emerging models are explored: Social Health Insurance (SHI) in Shanghai, LTC Nursing Insurance (LTCNI) in Qingdao and a means-tested model in Nanjing. A focused systematic narrative review of academic and grey literature is conducted to identify and assess these models, supplemented with qualitative interviews with government officials from relevant departments, care home staff and service users. This paper argues that, although SHI appears to be a convenient solution to fund LTC, this model has led to systematic bias in affordable access among participants of different insurance schemes, and has created a powerful incentive for the over-provision of unnecessary services. The means-tested method has been remarkably constrained by narrow eligibility and insufficiency of funding resources. The LTCNI model is by far the most desirable policy option among the three studied here, but the narrow definition of eligibility has substantively excluded a large proportion of elders in need from access to care, which needs to be addressed in future reforms. This paper proposes three lines of LTC financing reforms for policy-makers: (1) the establishment of a prepaid financing mechanism pooled specifically for LTC costs; (2) the incorporation of more stringent eligibility rules and needs assessment; and (3) reforming the dominant fee-for-service methods in paying LTC service providers. © The Author 2016. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    NASA Astrophysics Data System (ADS)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  10. Paul Schwabe | NREL

    Science.gov Websites

    modeling and data analysis Education M.S. in applied economics and finance, University of California at . Arent, 2012. Mobilizing Public Markets to Finance Renewable Energy Projects: Insights from Expert

  11. Ethics and geographical equity in health care

    PubMed Central

    Rice, N.; Smith, P.

    2001-01-01

    Important variations in access to health care and health outcomes are associated with geography, giving rise to profound ethical concerns. This paper discusses the consequences of such concerns for the allocation of health care finance to geographical regions. Specifically, it examines the ethical drivers underlying capitation systems, which have become the principal method of allocating health care finance to regions in most countries. Although most capitation systems are based on empirical models of health care expenditure, there is much debate about which needs factors to include in (or exclude from) such models. This concern with legitimate and illegitimate drivers of health care expenditure reflects the ethical concerns underlying the geographical distribution of health care finance. Key Words: Health economics • resource allocation • ethics of regional health care finance • capitation systems PMID:11479357

  12. Quantum Simulation of the Quantum Rabi Model in a Trapped Ion

    NASA Astrophysics Data System (ADS)

    Lv, Dingshun; An, Shuoming; Liu, Zhenyu; Zhang, Jing-Ning; Pedernales, Julen S.; Lamata, Lucas; Solano, Enrique; Kim, Kihwan

    2018-04-01

    The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong-coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong-coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong-coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong-coupling regime.

  13. Financing Higher Education in Sub-Saharan Africa: Some Reflections and Implications for Sustainable Development

    ERIC Educational Resources Information Center

    Oketch, Moses

    2016-01-01

    The purpose of this article is to discuss how best to finance higher education in low-income countries of sub-Saharan Africa, drawing on benefits and drawbacks of the prevalent models of higher education finance, and lessons to be learned from countries which have seen greater expansion of their higher education systems in recent decades. Two main…

  14. Constructing New Finance Models That Balance Equity, Adequacy and Efficiency with Responsiveness. Education Finance in the States: Its Past, Present and Future. ECS Issue Paper.

    ERIC Educational Resources Information Center

    Guthrie, James W.

    Policymakers continue to face major challenges in education finance, despite a history of reforms. Today's challenges include ensuring financial adequacy, maintaining gains in distributional equality, coping with the increasing need for teachers, satisfying public preference for diversity in schools and programs, and devising performance…

  15. Assistive Financing for Assistive Devices: Loan Guarantees for Purchase of Products by Persons with Disabilities. EIF/REC Review Paper.

    ERIC Educational Resources Information Center

    Reeb, Kenneth G., Jr.

    This paper introduces the concept of assistive financing for assistive devices for persons with disabilities, and describes model programs that have pioneered implementation of the concept in the assistive device marketplace. The assistive financing or loan guarantee concept is presented as a partnership between a private financial institution and…

  16. PFI redux? Assessing a new model for financing hospitals.

    PubMed

    Hellowell, Mark

    2013-11-01

    There is a growing need for investments in hospital facilities to improve the efficiency and quality of health services. In recent years, publicly financed hospital organisations in many countries have utilised private finance arrangements, variously called private finance initiatives (PFIs), public-private partnerships (PPPs) or P3s, to address their capital requirements. However, such projects have become more difficult to implement since the onset of the global financial crisis, which has led to a reduction in the supply of debt capital and an increase in its price. In December 2012, the government of the United Kingdom outlined a comprehensive set of reforms to the private finance model in order to revive this important source of capital for hospital investments. This article provides a critical assessment of the 'Private Finance 2' reforms, focusing on their likely impact on the supply and cost of capital. It concludes that constraints in supply are likely to continue, in part due to regulatory constraints facing both commercial banks and institutional investors, while the cost of capital is likely to increase, at least in the short term. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution.

    PubMed

    Djordjevic, Ivan B

    2015-08-24

    Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually coupled.

  18. Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution

    PubMed Central

    Djordjevic, Ivan B.

    2015-01-01

    Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually coupled. PMID:26305258

  19. Comment on 'All quantum observables in a hidden-variable model must commute simultaneously'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagata, Koji

    Malley discussed [Phys. Rev. A 69, 022118 (2004)] that all quantum observables in a hidden-variable model for quantum events must commute simultaneously. In this comment, we discuss that Malley's theorem is indeed valid for the hidden-variable theoretical assumptions, which were introduced by Kochen and Specker. However, we give an example that the local hidden-variable (LHV) model for quantum events preserves noncommutativity of quantum observables. It turns out that Malley's theorem is not related to the LHV model for quantum events, in general.

  20. A quantum-implementable neural network model

    NASA Astrophysics Data System (ADS)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  1. Educational Resource Multipliers for Use in Local Public Finance: An Input-Output Approach.

    ERIC Educational Resources Information Center

    Boardman, A. E.; Schinnar, A. P.

    1982-01-01

    Develops an input-output model, with related multipliers, showing how changes in earmarked and discretionary educational funds (whether local, state, or federal) affect all of a state's districts and educational programs. Illustrates the model with Pennsylvania data and relates it to the usual educational finance approach, which uses demand…

  2. 77 FR 4638 - Defense Federal Acquisition Regulation Supplement; Performance-Based Payments (DFARS Case 2011-D045)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-30

    ... tool. The PBP analysis tool is a cash-flow model for evaluating alternative financing arrangements, and... PBP analysis tool is a cash-flow model for evaluating alternative financing arrangements, and is... that reflects adequate consideration to the Government for the improved contractor cash flow...

  3. Reflections from the GPE Financing Conference in Dakar: A Model of Education Diplomacy

    ERIC Educational Resources Information Center

    Golden, April Michelle

    2018-01-01

    Providing inclusive and equitable quality education for all children will require sustained cooperation and investment from donor and partner nations worldwide. As a multi-stakeholder funding mechanism, the Global Partnership for Education (GPE) is an important Education Diplomacy model. The 2018 Dakar Financing Conference is a vibrant…

  4. The New Community College Business and Finance Model

    ERIC Educational Resources Information Center

    Myran, Gunder

    2013-01-01

    The term "community college business and finance model" is unlikely to evoke a positive response from educators who resist labeling students as "customers," do not want to call the college's offerings "products," and don't like to hear the college referred to as a "business." Faculty and staff tend…

  5. Defense Financial and Investment Review. Appendix 4. Part 1. Survey of Defense Procurement Personnel Results and Findings,

    DTIC Science & Technology

    1984-12-01

    133 Flexible Progress Payment Model ...................... 146 Flow Down of Financing Provisions .................... 155 Use of...34 . . .. . -- .. . .. * "." . .. . . .. .. .. ". .’ . . Flexible Progress Payment Model A plurality (45%) of all respondents agreed that the flexible progress payment model is too...would result in higher prices to DoD. -; Flexible Progress Payment Model In addition to the standard progress payment approach to contract financing, DoD

  6. Hyperbolic and semi-parametric models in finance

    NASA Astrophysics Data System (ADS)

    Bingham, N. H.; Kiesel, Rüdiger

    2001-02-01

    The benchmark Black-Scholes-Merton model of mathematical finance is parametric, based on the normal/Gaussian distribution. Its principal parametric competitor, the hyperbolic model of Barndorff-Nielsen, Eberlein and others, is briefly discussed. Our main theme is the use of semi-parametric models, incorporating the mean vector and covariance matrix as in the Markowitz approach, plus a non-parametric part, a scalar function incorporating features such as tail-decay. Implementation is also briefly discussed.

  7. To Own or Lease Solar: Understanding Commercial Retailers' Decisions to Use Alternative Financing Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, David; Margolis, Robert

    This report examines the tradeoffs among financing methods for businesses installing onsite photovoltaics (PV). We present case studies of PV financing strategies used by two large commercial retailers that have deployed substantial U.S. PV capacity: IKEA, which owns its PV, and Staples, which purchases power generated from onsite PV systems through power purchase agreements (PPAs). We also analyze the financial considerations that influence any company's choice of PV financing strategy. Our goal in this report is to clarify the financial and institutional costs and benefits of financing strategies and to inform other companies that are considering launching or expanding similarmore » PV programs.« less

  8. Thermal Quantum Discord and Super Quantum Discord Teleportation Via a Two-Qubit Spin-Squeezing Model

    NASA Astrophysics Data System (ADS)

    Ahadpour, S.; Mirmasoudi, F.

    2018-04-01

    We study thermal quantum correlations (quantum discord and super quantum discord) in a two-spin model in an external magnetic field and obtain relations between them and entanglement. We study their dependence on the magnetic field, the strength of the spin squeezing, and the temperature in detail. One interesting result is that when the entanglement suddenly disappears, quantum correlations still survive. We study thermal quantum teleportation in the framework of this model. The main goal is investigating the possibility of increasing the thermal quantum correlations of a teleported state in the presence of a magnetic field, strength of the spin squeezing, and temperature. We note that teleportation of quantum discord and super quantum discord can be realized over a larger temperature range than teleportation of entanglement. Our results show that quantum discord and super quantum discord can be a suitable measure for controlling quantum teleportation with fidelity. Moreover, the presence of entangled states is unnecessary for the exchange of quantum information.

  9. Artifact-Based Transformation of IBM Global Financing

    NASA Astrophysics Data System (ADS)

    Chao, Tian; Cohn, David; Flatgard, Adrian; Hahn, Sandy; Linehan, Mark; Nandi, Prabir; Nigam, Anil; Pinel, Florian; Vergo, John; Wu, Frederick Y.

    IBM Global Financing (IGF) is transforming its business using the Business Artifact Method, an innovative business process modeling technique that identifies key business artifacts and traces their life cycles as they are processed by the business. IGF is a complex, global business operation with many business design challenges. The Business Artifact Method is a fundamental shift in how to conceptualize, design and implement business operations. The Business Artifact Method was extended to solve the problem of designing a global standard for a complex, end-to-end process while supporting local geographic variations. Prior to employing the Business Artifact method, process decomposition, Lean and Six Sigma methods were each employed on different parts of the financing operation. Although they provided critical input to the final operational model, they proved insufficient for designing a complete, integrated, standard operation. The artifact method resulted in a business operations model that was at the right level of granularity for the problem at hand. A fully functional rapid prototype was created early in the engagement, which facilitated an improved understanding of the redesigned operations model. The resulting business operations model is being used as the basis for all aspects of business transformation in IBM Global Financing.

  10. Single-server blind quantum computation with quantum circuit model

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqian; Weng, Jian; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing; Song, Tingting

    2018-06-01

    Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client's quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.

  11. School Finance Reform: Decoding the Simulation Maze

    ERIC Educational Resources Information Center

    Jargowsky, Peter; And Others

    1977-01-01

    Demonstrates the mathematical equivalence of various school finance equalization formulas, describes the elements that complicate the preparation of a generalized simulation capability, and briefly presents a conceptualization of a generalized simulation model. (JG)

  12. "Electronium": A Quantum Atomic Teaching Model.

    ERIC Educational Resources Information Center

    Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John

    2002-01-01

    Outlines an alternative atomic model to the probability model, the descriptive quantum atomic model Electronium. Discusses the way in which it is intended to support students in learning quantum-mechanical concepts. (Author/MM)

  13. Threshold concepts in finance: student perspectives

    NASA Astrophysics Data System (ADS)

    Hoadley, Susan; Kyng, Tim; Tickle, Leonie; Wood, Leigh N.

    2015-10-01

    Finance threshold concepts are the essential conceptual knowledge that underpin well-developed financial capabilities and are central to the mastery of finance. In this paper we investigate threshold concepts in finance from the point of view of students, by establishing the extent to which students are aware of threshold concepts identified by finance academics. In addition, we investigate the potential of a framework of different types of knowledge to differentiate the delivery of the finance curriculum and the role of modelling in finance. Our purpose is to identify ways to improve curriculum design and delivery, leading to better student outcomes. Whilst we find that there is significant overlap between what students identify as important in finance and the threshold concepts identified by academics, much of this overlap is expressed by indirect reference to the concepts. Further, whilst different types of knowledge are apparent in the student data, there is evidence that students do not necessarily distinguish conceptual from other types of knowledge. As well as investigating the finance curriculum, the research demonstrates the use of threshold concepts to compare and contrast student and academic perceptions of a discipline and, as such, is of interest to researchers in education and other disciplines.

  14. Carbon Emission Reduction with Capital Constraint under Greening Financing and Cost Sharing Contract.

    PubMed

    Qin, Juanjuan; Zhao, Yuhui; Xia, Liangjie

    2018-04-13

    Motivated by the industrial practices, this work explores the carbon emission reductions for the manufacturer, while taking into account the capital constraint and the cap-and-trade regulation. To alleviate the capital constraint, two contracts are analyzed: greening financing and cost sharing. We use the Stackelberg game to model four cases as follows: (1) in Case A1, the manufacturer has no greening financing and no cost sharing; (2) in Case A2, the manufacturer has greening financing, but no cost sharing; (3) in Case B1, the manufacturer has no greening financing but has cost sharing; and, (4) in Case B2, the manufacturer has greening financing and cost sharing. Then, using the backward induction method, we derive and compare the equilibrium decisions and profits of the participants in the four cases. We find that the interest rate of green finance does not always negatively affect the carbon emission reduction of the manufacturer. Meanwhile, the cost sharing from the retailer does not always positively affect the carbon emission reduction of the manufacturer. When the cost sharing is low, both of the participants' profits in Case B1 (under no greening finance) are not less than that in Case B2 (under greening finance). When the cost sharing is high, both of the participants' profits in Case B1 (under no greening finance) are less than that in Case B2 (under greening finance).

  15. Quantum Field Theory in (0 + 1) Dimensions

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  16. Entanglement and quantum superposition induced by a single photon

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Zhu, Gui-Lei; Zheng, Li-Li; Wu, Ying

    2018-03-01

    We predict the occurrence of single-photon-induced entanglement and quantum superposition in a hybrid quantum model, introducing an optomechanical coupling into the Rabi model. Originally, it comes from the photon-dependent quantum property of the ground state featured by the proposed hybrid model. It is associated with a single-photon-induced quantum phase transition, and is immune to the A2 term of the spin-field interaction. Moreover, the obtained quantum superposition state is actually a squeezed cat state, which can significantly enhance precision in quantum metrology. This work offers an approach to manipulate entanglement and quantum superposition with a single photon, which might have potential applications in the engineering of new single-photon quantum devices, and also fundamentally broaden the regime of cavity QED.

  17. Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction

    DTIC Science & Technology

    2016-02-25

    Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  18. Stabilization of business cycles of finance agents using nonlinear optimal control

    NASA Astrophysics Data System (ADS)

    Rigatos, G.; Siano, P.; Ghosh, T.; Sarno, D.

    2017-11-01

    Stabilization of the business cycles of interconnected finance agents is performed with the use of a new nonlinear optimal control method. First, the dynamics of the interacting finance agents and of the associated business cycles is described by a modeled of coupled nonlinear oscillators. Next, this dynamic model undergoes approximate linearization round a temporary operating point which is defined by the present value of the system's state vector and the last value of the control inputs vector that was exerted on it. The linearization procedure is based on Taylor series expansion of the dynamic model and on the computation of Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms in the Taylor series expansion is considered as a disturbance which is compensated by the robustness of the control loop. Next, for the linearized model of the interacting finance agents, an H-infinity feedback controller is designed. The computation of the feedback control gain requires the solution of an algebraic Riccati equation at each iteration of the control algorithm. Through Lyapunov stability analysis it is proven that the control scheme satisfies an H-infinity tracking performance criterion, which signifies elevated robustness against modelling uncertainty and external perturbations. Moreover, under moderate conditions the global asymptotic stability features of the control loop are proven.

  19. Noninformative prior in the quantum statistical model of pure states

    NASA Astrophysics Data System (ADS)

    Tanaka, Fuyuhiko

    2012-06-01

    In the present paper, we consider a suitable definition of a noninformative prior on the quantum statistical model of pure states. While the full pure-states model is invariant under unitary rotation and admits the Haar measure, restricted models, which we often see in quantum channel estimation and quantum process tomography, have less symmetry and no compelling rationale for any choice. We adopt a game-theoretic approach that is applicable to classical Bayesian statistics and yields a noninformative prior for a general class of probability distributions. We define the quantum detection game and show that there exist noninformative priors for a general class of a pure-states model. Theoretically, it gives one of the ways that we represent ignorance on the given quantum system with partial information. Practically, our method proposes a default distribution on the model in order to use the Bayesian technique in the quantum-state tomography with a small sample.

  20. Report on Spending Trends Highlights Inequities in Model for Financing Colleges

    ERIC Educational Resources Information Center

    Blumenstyk, Goldie

    2009-01-01

    An analysis of spending trends that is designed to discourage policy makers' focus on finding new revenue rather than reining in spending suggests that the model for financing colleges has reinforced educational inequities and failed to increase the rate at which students graduate. According to the analysis, "serious fault lines" in the current…

  1. 78 FR 76410 - Request for Information on Strategies To Accelerate the Testing and Adoption of Pay for Success...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... To Accelerate the Testing and Adoption of Pay for Success (PFS) Financing Models AGENCY: Office of... Strategies to Accelerate the Testing and Adoption of Pay for Success (PFS) Financing Models. The President's... Camacho, Attention: Pay for Success Incentive Fund RFI, U.S. Department of the Treasury, 1500 Pennsylvania...

  2. An Experimental Model for Analyzing Strategies for Financing Higher Education in New York State.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Office of Postsecondary Research, Information Systems, and Institutional Aid.

    Described is an experimental, quantitative model developed by the New York State Education Department to evaluate state-level financing strategies for higher education. It can be used to address a variety of questions and takes into account a host of direct and indirect relationships. It uses computer software and optimization algorithms developed…

  3. Nonlinear quantum Rabi model in trapped ions

    NASA Astrophysics Data System (ADS)

    Cheng, Xiao-Hang; Arrazola, Iñigo; Pedernales, Julen S.; Lamata, Lucas; Chen, Xi; Solano, Enrique

    2018-02-01

    We study the nonlinear dynamics of trapped-ion models far away from the Lamb-Dicke regime. This nonlinearity induces a blockade on the propagation of quantum information along the Hilbert space of the Jaynes-Cummings and quantum Rabi models. We propose to use this blockade as a resource for the dissipative generation of high-number Fock states. Also, we compare the linear and nonlinear cases of the quantum Rabi model in the ultrastrong and deep strong-coupling regimes. Moreover, we propose a scheme to simulate the nonlinear quantum Rabi model in all coupling regimes. This can be done via off-resonant nonlinear red- and blue-sideband interactions in a single trapped ion, yielding applications as a dynamical quantum filter.

  4. A compact quantum correction model for symmetric double gate metal-oxide-semiconductor field-effect transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Edward Namkyu; Shin, Yong Hyeon; Yun, Ilgu, E-mail: iyun@yonsei.ac.kr

    2014-11-07

    A compact quantum correction model for a symmetric double gate (DG) metal-oxide-semiconductor field-effect transistor (MOSFET) is investigated. The compact quantum correction model is proposed from the concepts of the threshold voltage shift (ΔV{sub TH}{sup QM}) and the gate capacitance (C{sub g}) degradation. First of all, ΔV{sub TH}{sup QM} induced by quantum mechanical (QM) effects is modeled. The C{sub g} degradation is then modeled by introducing the inversion layer centroid. With ΔV{sub TH}{sup QM} and the C{sub g} degradation, the QM effects are implemented in previously reported classical model and a comparison between the proposed quantum correction model and numerical simulationmore » results is presented. Based on the results, the proposed quantum correction model can be applicable to the compact model of DG MOSFET.« less

  5. Stochastic analysis of surface roughness models in quantum wires

    NASA Astrophysics Data System (ADS)

    Nedjalkov, Mihail; Ellinghaus, Paul; Weinbub, Josef; Sadi, Toufik; Asenov, Asen; Dimov, Ivan; Selberherr, Siegfried

    2018-07-01

    We present a signed particle computational approach for the Wigner transport model and use it to analyze the electron state dynamics in quantum wires focusing on the effect of surface roughness. Usually surface roughness is considered as a scattering model, accounted for by the Fermi Golden Rule, which relies on approximations like statistical averaging and in the case of quantum wires incorporates quantum corrections based on the mode space approach. We provide a novel computational approach to enable physical analysis of these assumptions in terms of phase space and particles. Utilized is the signed particles model of Wigner evolution, which, besides providing a full quantum description of the electron dynamics, enables intuitive insights into the processes of tunneling, which govern the physical evolution. It is shown that the basic assumptions of the quantum-corrected scattering model correspond to the quantum behavior of the electron system. Of particular importance is the distribution of the density: Due to the quantum confinement, electrons are kept away from the walls, which is in contrast to the classical scattering model. Further quantum effects are retardation of the electron dynamics and quantum reflection. Far from equilibrium the assumption of homogeneous conditions along the wire breaks even in the case of ideal wire walls.

  6. Quantum-Like Bayesian Networks for Modeling Decision Making

    PubMed Central

    Moreira, Catarina; Wichert, Andreas

    2016-01-01

    In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios. PMID:26858669

  7. Quantum simulation of transverse Ising models with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Schauss, Peter

    2018-04-01

    Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.

  8. Quantum state engineering in hybrid open quantum systems

    NASA Astrophysics Data System (ADS)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  9. A Semi-quantum Version of the Game of Life

    NASA Astrophysics Data System (ADS)

    Flitney, Adrian P.; Abbott, Derek

    The following sections are included: * Background and Motivation * Classical cellular automata * Conway's game of life * Quantum cellular automata * Semi-quantum Life * The idea * A first model * A semi-quantum model * Discussion * Summary * References

  10. Variation in outpatient mental health service utilization under capitation.

    PubMed

    Chou, Ann F; Wallace, Neal; Bloom, Joan R; Hu, Teh-Wei

    2005-03-01

    To improve the financing of Colorado's public mental health system, the state designed, implemented, and evaluated a pilot program that consisted of three reimbursement models for the provision of outpatient services. Community mental health centers (CMHCs), the primary providers of comprehensive mental health services to Medicaid recipients in Colorado, had to search for innovative ways to provide cost-effective services. This study assessed outpatient service delivery to Medicaid-eligible consumers under this program. This paper is among the first to study variations in the delivery of specific types of outpatient mental health services under capitated financing systems. This study uses claims data (1994-1997) from Colorado's Medicaid and Mental Health Services Agency. The fee-for-service (FFS) model served as the comparison model. Two capitated models under evaluation are: (i) direct capitation (DC), where the state contracts with a non-profit entity to provide both the services and administers the capitated financing, and (ii) managed behavioral health organization (MBHO), which is a joint venture between a for-profit company who manages the capitated financing and a number of non-profit entities who deliver the services. A sample of severely mentally ill patients who reported at least one inpatient visit was included in the analysis. Types of outpatient services of interest are: day-treatment visits, group therapy, individual therapy, medication monitoring, case management, testing, and all other services. Comparisons were set up to examine differences in service utilization and cost between FFS and each of the two capitated models, using a two-part model across three time periods. Results showed differences in service delivery among reimbursement models over time. Capitated providers had higher initial utilization in most outpatient service categories than their FFS counterparts and as a result of capitation, outpatient services delivered under these providers decreased to converge to the FFS pattern. Findings also suggest substitution between group therapy and individual psychotherapy. Overall, more service integration was observed and less complex service packages were provided post capitation. IMPLICATION FOR HEALTH CARE PROVISION AND POLICIES: Financing models and organizational arrangements have an impact on mental health service delivery. Changes in utilization and costs of specific types of outpatient services reflect the effects of capitation. Understanding the mechanism for these changes may lead to more streamlined service delivery allowing extra funding for expanding the range of cost-effective treatment alternatives. These changes pose implications for improving the financing of public mental health systems, coordination of mental health services with other healthcare and human services, and provision of services through a more efficient financing system.

  11. Quantum-like model of unconscious–conscious dynamics

    PubMed Central

    Khrennikov, Andrei

    2015-01-01

    We present a quantum-like model of sensation–perception dynamics (originated in Helmholtz theory of unconscious inference) based on the theory of quantum apparatuses and instruments. We illustrate our approach with the model of bistable perception of a particular ambiguous figure, the Schröder stair. This is a concrete model for unconscious and conscious processing of information and their interaction. The starting point of our quantum-like journey was the observation that perception dynamics is essentially contextual which implies impossibility of (straightforward) embedding of experimental statistical data in the classical (Kolmogorov, 1933) framework of probability theory. This motivates application of nonclassical probabilistic schemes. And the quantum formalism provides a variety of the well-approved and mathematically elegant probabilistic schemes to handle results of measurements. The theory of quantum apparatuses and instruments is the most general quantum scheme describing measurements and it is natural to explore it to model the sensation–perception dynamics. In particular, this theory provides the scheme of indirect quantum measurements which we apply to model unconscious inference leading to transition from sensations to perceptions. PMID:26283979

  12. Rough set classification based on quantum logic

    NASA Astrophysics Data System (ADS)

    Hassan, Yasser F.

    2017-11-01

    By combining the advantages of quantum computing and soft computing, the paper shows that rough sets can be used with quantum logic for classification and recognition systems. We suggest the new definition of rough set theory as quantum logic theory. Rough approximations are essential elements in rough set theory, the quantum rough set model for set-valued data directly construct set approximation based on a kind of quantum similarity relation which is presented here. Theoretical analyses demonstrate that the new model for quantum rough sets has new type of decision rule with less redundancy which can be used to give accurate classification using principles of quantum superposition and non-linear quantum relations. To our knowledge, this is the first attempt aiming to define rough sets in representation of a quantum rather than logic or sets. The experiments on data-sets have demonstrated that the proposed model is more accuracy than the traditional rough sets in terms of finding optimal classifications.

  13. Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Yu, Zhiping; Dutton, Robert W.; Ancona, Mario G.; Saini, Subhash (Technical Monitor)

    1998-01-01

    We describe an electronic transport model and an implementation approach that respond to the challenges of device modeling for gigascale integration. We use the density-gradient (DG) transport model, which adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We present the current implementation of the DG model in PROPHET, a partial differential equation solver developed by Lucent Technologies. This implementation approach permits rapid development and enhancement of models, as well as run-time modifications and model switching. We show that even in typical bulk transport devices such as P-N diodes and BJTs, DG quantum effects can significantly modify the I-V characteristics. Quantum effects are shown to be even more significant in small, surface transport devices, such as sub-0.1 micron MOSFETs. In thin-oxide MOS capacitors, we find that quantum effects may reduce gate capacitance by 25% or more. The inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements. Significant quantum corrections also occur in the I-V characteristics of short-channel MOSFETs due to the gate capacitance correction.

  14. A note on the roles of quantum and mechanical models in social biophysics.

    PubMed

    Takahashi, Taiki; Kim, Song-Ju; Naruse, Makoto

    2017-11-01

    Recent advances in the applications of quantum models into various disciplines such as cognitive science, social sciences, economics, and biology witnessed enormous achievements and possible future progress. In this paper, we propose one of the most promising directions in the applications of quantum models: the combination of quantum and mechanical models in social biophysics. The possible resulting discipline may be called as experimental quantum social biophysics and could foster our understandings of the relationships between the society and individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Single Channel Quantum Color Image Encryption Algorithm Based on HSI Model and Quantum Fourier Transform

    NASA Astrophysics Data System (ADS)

    Gong, Li-Hua; He, Xiang-Tao; Tan, Ru-Chao; Zhou, Zhi-Hong

    2018-01-01

    In order to obtain high-quality color images, it is important to keep the hue component unchanged while emphasize the intensity or saturation component. As a public color model, Hue-Saturation Intensity (HSI) model is commonly used in image processing. A new single channel quantum color image encryption algorithm based on HSI model and quantum Fourier transform (QFT) is investigated, where the color components of the original color image are converted to HSI and the logistic map is employed to diffuse the relationship of pixels in color components. Subsequently, quantum Fourier transform is exploited to fulfill the encryption. The cipher-text is a combination of a gray image and a phase matrix. Simulations and theoretical analyses demonstrate that the proposed single channel quantum color image encryption scheme based on the HSI model and quantum Fourier transform is secure and effective.

  16. Sharing the burden of TB/HIV? Costs and financing of public-private partnerships for tuberculosis treatment in South Africa.

    PubMed

    Sinanovic, Edina; Kumaranayake, Lilani

    2006-09-01

    To explore the economic costs and sources of financing for different public-private partnership (PPP) arrangements to tuberculosis (TB) provision involving both workplace and non-profit private providers in South Africa. The financing required for the different models from the perspective of the provincial TB programme, provider, and the patient are considered. Two models of TB provider partnerships were evaluated, relative to sole public provision: public-private workplace (PWP) and public-private non-government (PNP). The cost analysis was undertaken from a societal perspective. Costs were collected retrospectively to consider both the financial and economic costs. Patient costs were estimated using a retrospective structured patient interview. Expansion of PPPs could potentially lead to reduced government sector financing requirements for new patients: government financing would require $609-690 per new patient treated in the purely public model, in contrast to PNP sites which would only need to $130-139 per patient and $36-46 with the PWP model. Moreover, there are no patient costs associated with the treatment in the employer-based facilities and the cost to the patient supervised in the community is, on average, three times lower than in public sector facilities. The results suggest that there is a strong economic case for expanding PPP involvement in TB treatment in the process of scaling up. The cost to the government per new patient treated could be reduced by enhanced partnership between the private and public sectors.

  17. Carbon Emission Reduction with Capital Constraint under Greening Financing and Cost Sharing Contract

    PubMed Central

    Qin, Juanjuan; Zhao, Yuhui; Xia, Liangjie

    2018-01-01

    Motivated by the industrial practices, this work explores the carbon emission reductions for the manufacturer, while taking into account the capital constraint and the cap-and-trade regulation. To alleviate the capital constraint, two contracts are analyzed: greening financing and cost sharing. We use the Stackelberg game to model four cases as follows: (1) in Case A1, the manufacturer has no greening financing and no cost sharing; (2) in Case A2, the manufacturer has greening financing, but no cost sharing; (3) in Case B1, the manufacturer has no greening financing but has cost sharing; and, (4) in Case B2, the manufacturer has greening financing and cost sharing. Then, using the backward induction method, we derive and compare the equilibrium decisions and profits of the participants in the four cases. We find that the interest rate of green finance does not always negatively affect the carbon emission reduction of the manufacturer. Meanwhile, the cost sharing from the retailer does not always positively affect the carbon emission reduction of the manufacturer. When the cost sharing is low, both of the participants’ profits in Case B1 (under no greening finance) are not less than that in Case B2 (under greening finance). When the cost sharing is high, both of the participants’ profits in Case B1 (under no greening finance) are less than that in Case B2 (under greening finance). PMID:29652859

  18. Quantum Bose-Hubbard model with an evolving graph as a toy model for emergent spacetime

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Markopoulou, Fotini; Lloyd, Seth; Caravelli, Francesco; Severini, Simone; Markström, Klas

    2010-05-01

    We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties; instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard model where the graph of the interactions is a set of quantum evolving variables. We show entanglement between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss analogues of trapped surfaces and gravitational attraction in this simple model.

  19. Quantum information processing by a continuous Maxwell demon

    NASA Astrophysics Data System (ADS)

    Stevens, Josey; Deffner, Sebastian

    Quantum computing is believed to be fundamentally superior to classical computing; however quantifying the specific thermodynamic advantage has been elusive. Experimentally motivated, we generalize previous minimal models of discrete demons to continuous state space. Analyzing our model allows one to quantify the thermodynamic resources necessary to process quantum information. By further invoking the semi-classical limit we compare the quantum demon with its classical analogue. Finally, this model also serves as a starting point to study open quantum systems.

  20. A Review Of Innovative International Financing Mechanisms To Address Noncommunicable Diseases.

    PubMed

    Meghani, Ankita; Basu, Sanjay

    2015-09-01

    Noncommunicable diseases have become prevalent in low- and middle-income countries. A key question that remains unresolved is how to support the development of systems to prevent and treat noncommunicable disease through international financing mechanisms. We conducted a review of articles and grey literature published from 2000 through 2014 on innovative financing models proposed or used for other disease control efforts. We found that the greatest available evidence supported pooled funding models, where funding from multiple groups is combined for a specific investment, with such models previously deployed in vaccine and infectious disease funding areas. Robust evidence also supported the viability of international transactions taxes or levies placed on specific transactions to fund investments in drug procurement and supply, and of the front-loading of development aid through bond sales, particularly to stabilize funding and subsidize drug procurement. Far less compelling evidence was available to support diaspora bonds or debt reduction programs as mechanisms to aid low- and middle-income countries' health systems in financing noncommunicable disease prevention and care services. Project HOPE—The People-to-People Health Foundation, Inc.

  1. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.

    PubMed

    Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V

    2017-10-03

    The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.

  2. The Real and the Mathematical in Quantum Modeling: From Principles to Models and from Models to Principles

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2017-06-01

    The history of mathematical modeling outside physics has been dominated by the use of classical mathematical models, C-models, primarily those of a probabilistic or statistical nature. More recently, however, quantum mathematical models, Q-models, based in the mathematical formalism of quantum theory have become more prominent in psychology, economics, and decision science. The use of Q-models in these fields remains controversial, in part because it is not entirely clear whether Q-models are necessary for dealing with the phenomena in question or whether C-models would still suffice. My aim, however, is not to assess the necessity of Q-models in these fields, but instead to reflect on what the possible applicability of Q-models may tell us about the corresponding phenomena there, vis-à-vis quantum phenomena in physics. In order to do so, I shall first discuss the key reasons for the use of Q-models in physics. In particular, I shall examine the fundamental principles that led to the development of quantum mechanics. Then I shall consider a possible role of similar principles in using Q-models outside physics. Psychology, economics, and decision science borrow already available Q-models from quantum theory, rather than derive them from their own internal principles, while quantum mechanics was derived from such principles, because there was no readily available mathematical model to handle quantum phenomena, although the mathematics ultimately used in quantum did in fact exist then. I shall argue, however, that the principle perspective on mathematical modeling outside physics might help us to understand better the role of Q-models in these fields and possibly to envision new models, conceptually analogous to but mathematically different from those of quantum theory, helpful or even necessary there or in physics itself. I shall suggest one possible type of such models, singularized probabilistic, SP, models, some of which are time-dependent, TDSP-models. The necessity of using such models may change the nature of mathematical modeling in science and, thus, the nature of science, as it happened in the case of Q-models, which not only led to a revolutionary transformation of physics but also opened new possibilities for scientific thinking and mathematical modeling beyond physics.

  3. Fate of classical solitons in one-dimensional quantum systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pustilnik, M.; Matveev, K. A.

    We study one-dimensional quantum systems near the classical limit described by the Korteweg-de Vries (KdV) equation. The excitations near this limit are the well-known solitons and phonons. The classical description breaks down at long wavelengths, where quantum effects become dominant. Focusing on the spectra of the elementary excitations, we describe analytically the entire classical-to-quantum crossover. We show that the ultimate quantum fate of the classical KdV excitations is to become fermionic quasiparticles and quasiholes. We discuss in detail two exactly solvable models exhibiting such crossover, the Lieb-Liniger model of bosons with weak contact repulsion and the quantum Toda model, andmore » argue that the results obtained for these models are universally applicable to all quantum one-dimensional systems with a well-defined classical limit described by the KdV equation.« less

  4. Models of Financing the Continuing Vocational Training of Employees and Unemployed. Documentation of a LEONARDO-Project in Cooperation with Denmark, Germany, the Netherlands and Norway.

    ERIC Educational Resources Information Center

    Grunewald, Uwe, Ed.; Moraal, Dick, Ed.

    This document contains papers from an international project in which models of financing the continuing vocational training (CVT) in Denmark, Germany, the Netherlands, and Norway were identified and examined. The following are among the papers included: "Important Results of the LEONARDO-Project (contributions by all project-partners)";…

  5. Designing and Financing an Integrated Program of College Study: Lessons from the California Academy of Liberal Studies

    ERIC Educational Resources Information Center

    Goldberger, Susan; Haynes, Leslie

    2005-01-01

    This document represents the first in a series of design briefs on models for early college high schools. The briefs focus on the academic and organizational design of the college component and tie those key features to a sustainable financing model. By engaging students in up to two years of demanding college-level work while still in high…

  6. Funding Higher Education and Wage Uncertainty: Income Contingent Loan versus Mortgage Loan

    ERIC Educational Resources Information Center

    Migali, Giuseppe

    2012-01-01

    We propose a simple theoretical model which shows how the combined effect of wage uncertainty and risk aversion can modify the individual willingness to pay for a HE system financed by an ICL or a ML. We calibrate our model using real data from the 1970 British Cohort Survey together with the features of the English HE financing system. We allow…

  7. Foreword to the Special Issue on "Dynamic Models in Economics and Finance"

    NASA Astrophysics Data System (ADS)

    Gardini, Laura; Kubin, Ingrid; Tramontana, Fabio; Wagener, Florian

    2018-05-01

    International workshops on Dynamic Models in Economics and Finance (MDEF) take place every two years in Urbino (Italy); since the inception of the series in 2000, there have been nine editions. The subject has become a central topic for scholars working on economic dynamics. In 2016 the workshop was held under the auspices of University of Urbino "Carlo Bo" , DESP1

  8. Feynman propagator for spin foam quantum gravity.

    PubMed

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  9. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  10. Quantum probability and cognitive modeling: some cautions and a promising direction in modeling physics learning.

    PubMed

    Franceschetti, Donald R; Gire, Elizabeth

    2013-06-01

    Quantum probability theory offers a viable alternative to classical probability, although there are some ambiguities inherent in transferring the quantum formalism to a less determined realm. A number of physicists are now looking at the applicability of quantum ideas to the assessment of physics learning, an area particularly suited to quantum probability ideas.

  11. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  12. Remarriage Beliefs as Predictors of Marital Quality and Positive Interaction in Stepcouples: An Actor-Partner Interdependence Model.

    PubMed

    Garneau, Chelsea L; Higginbotham, Brian; Adler-Baeder, Francesca

    2015-12-01

    Using an Actor-Partner Interdependence Model, we examined remarriage beliefs as predictors of marital quality and positive interaction in a sample of 179 stepcouples. Three beliefs were measured using subscales from the Remarriage Belief Inventory (RMBI) including success is slim, children are the priority, and finances should be pooled. Several significant actor and partner effects were found for both wives' and husbands' beliefs. Wives' marital quality was positively associated with their own beliefs that finances should be pooled and negatively associated with their own beliefs that success is slim. Wives' reports of their own and spouses' positive interaction were both positively associated with their beliefs that finances should be pooled. Their reports of spouses' positive interaction were also negatively associated with husbands' beliefs that success is slim. Husbands' marital quality was positively associated with wives' beliefs that children are the priority, positively associated with their own beliefs that finances should be pooled, and negatively with success is slim. Positive interaction for husbands was positively associated with wives' beliefs that finances should be pooled and negatively associated with their own beliefs that success is slim. Finally, husbands' reports of positive interaction for their spouses were positively associated with wives' beliefs that finances should be pooled. Implications for future research utilizing dyadic data analysis with stepcouples are addressed. © 2015 Family Process Institute.

  13. Developing Islamic Financial Products for Financing Solar Energy with a Special Reference to Qatar and Algeria

    NASA Astrophysics Data System (ADS)

    Tabet, Imene Nouar

    Renewable energy has become an important part of the international energy mix. This thesis aims at developing Islamic financial schemes for financing photovoltaic solar energy roof-tops and solar farms. Being an evolving technology based sector with high capital expenditures imposed a challenge for this alternative source of energy to grow especially in countries where electricity costs are low and prices are heavily subsidised. The first two chapters provide a comprehensive overview of solar energy industry with the various policies and financing models that were developed and adopted in various countries. It is found that most of its growth was dependent on government support even in financing. Ijarah Sukuk were developed for financing roof-tops in Qatar, such that the house owners do not have to pay any amount and would get the solar panels at maturity where they would be entitled to their benefit. The cost would be borne by the investors who receive stable rental payments along with their capital throughout the financing period, while electric company would be provided with the electricity at a rate lower than its production cost, hence offering it subsidy savings; the lessee who lives in house would be provided with incentives in the form of electricity-pay break. Although the electricity sector in the country remains highly dependent on government support, the model, in its hypothetical example, provides investors with 8% Internal Rate of Return. On the other hand, Output-sharing Sukuk model is developed for financing solar farms in the context of Algeria, based on the known Islamic financial contract of Muzara'ah. The state-owned electric company contributes the land, the Sukuk holders own the panels, and the developer provides management of the farm. A hypothetical example is also given with calculation of cash flow and investors' Internal Rate of Return which comes to be 7.1029% per annum.

  14. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction. The many-particle quantum walk can be viewed as a single quantum walk undergoing perfect state transfer on a larger weighted graph, obtained via equitable partitioning. I extend this formalism to non-simple graphs. Examples of the application of equitable partitioning to the analysis of quantum walks and many-particle quantum systems are discussed.

  15. Quantum decoration transformation for spin models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de

    2016-09-15

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models.more » To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.« less

  16. Quantum decoration transformation for spin models

    NASA Astrophysics Data System (ADS)

    Braz, F. F.; Rodrigues, F. C.; de Souza, S. M.; Rojas, Onofre

    2016-09-01

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the "classical" limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising-Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.

  17. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    NASA Astrophysics Data System (ADS)

    Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    2017-10-01

    Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  18. Are Quantum Models for Order Effects Quantum?

    NASA Astrophysics Data System (ADS)

    Moreira, Catarina; Wichert, Andreas

    2017-12-01

    The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.

  19. Model of a programmable quantum processing unit based on a quantum transistor effect

    NASA Astrophysics Data System (ADS)

    Ablayev, Farid; Andrianov, Sergey; Fetisov, Danila; Moiseev, Sergey; Terentyev, Alexandr; Urmanchev, Andrey; Vasiliev, Alexander

    2018-02-01

    In this paper we propose a model of a programmable quantum processing device realizable with existing nano-photonic technologies. It can be viewed as a basis for new high performance hardware architectures. Protocols for physical implementation of device on the controlled photon transfer and atomic transitions are presented. These protocols are designed for executing basic single-qubit and multi-qubit gates forming a universal set. We analyze the possible operation of this quantum computer scheme. Then we formalize the physical architecture by a mathematical model of a Quantum Processing Unit (QPU), which we use as a basis for the Quantum Programming Framework. This framework makes it possible to perform universal quantum computations in a multitasking environment.

  20. Hybrid quantum-classical modeling of quantum dot devices

    NASA Astrophysics Data System (ADS)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  1. A quantum causal discovery algorithm

    NASA Astrophysics Data System (ADS)

    Giarmatzi, Christina; Costa, Fabio

    2018-03-01

    Finding a causal model for a set of classical variables is now a well-established task—but what about the quantum equivalent? Even the notion of a quantum causal model is controversial. Here, we present a causal discovery algorithm for quantum systems. The input to the algorithm is a process matrix describing correlations between quantum events. Its output consists of different levels of information about the underlying causal model. Our algorithm determines whether the process is causally ordered by grouping the events into causally ordered non-signaling sets. It detects if all relevant common causes are included in the process, which we label Markovian, or alternatively if some causal relations are mediated through some external memory. For a Markovian process, it outputs a causal model, namely the causal relations and the corresponding mechanisms, represented as quantum states and channels. Our algorithm opens the route to more general quantum causal discovery methods.

  2. Efficient energy transfer in light-harvesting systems: Quantum-classical comparison, flux network, and robustness analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Jianlan; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139; Liu Fan

    2012-11-07

    Following the calculation of optimal energy transfer in thermal environment in our first paper [J. L. Wu, F. Liu, Y. Shen, J. S. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010)], full quantum dynamics and leading-order 'classical' hopping kinetics are compared in the seven-site Fenna-Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-Strobl-Reineker (HSR) model) and quantum Debye model, are considered. In the seven-site FMO model, we observe that higher-order corrections lead to negligible changes in the trapping time ormore » in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of integrated flux, we can identify significant differences in branching probabilities of the energy transfer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum coherence can significantly change the distribution of energy transfer pathways in the flux network with the efficiency nearly the same. The quantum-classical comparison of the average trapping time with the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy transfer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO model which is also investigated in the third paper [J. Moix, J. L. Wu, P. F. Huo, D. F. Coker, and J. S. Cao, J. Phys. Chem. Lett. 2, 3045 (2011)], the quantum-classical comparison with the flux network analysis is summarized in Appendix C. The eight-site FMO model yields similar trapping time and network structure as the seven-site FMO model but leads to a more disperse distribution of energy transfer pathways.« less

  3. Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing

    NASA Astrophysics Data System (ADS)

    Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias

    2017-10-01

    Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.

  4. Creativity and Quantum Physics: a New World View Unifying Current Theories of Creativity and Pointing Toward New Research Methodologies.

    NASA Astrophysics Data System (ADS)

    McCarthy, Kimberly Ann

    1990-01-01

    Divisions in definitions of creativity have centered primarily on the working definition of discontinuity and the inclusion of intrinsic features such as unconscious processing and intrinsic motivation and reinforcement. These differences generally result from Cohen's two world views underlying theories of creativity: Organismic, oriented toward holism; or mechanistic, oriented toward cause-effect reductionism. The quantum world view is proposed which theoretically and empirically unifies organismic and mechanistic elements of creativity. Based on Goswami's Idealistic Interpretation of quantum physics, the quantum view postulates the mind -brain as consisting of both classical and quantum structures and functions. The quantum domain accesses the transcendent order through coherent superpositions (a state of potentialities), while the classical domain performs the function of measuring apparatus through amplifying and recording the result of the collapse of the pure mental state. A theoretical experiment, based on the 1980 Marcel study of conscious and unconscious word-sense disambiguation, is conducted which compares the predictions of the quantum model with those of the 1975 Posner and Snyder Facilitation and Inhibition model. Each model agrees that while conscious access to information is limited, unconscious access is unlimited. However, each model differently defines the connection between these states: The Posner model postulates a central processing mechanism while the quantum model postulates a self-referential consciousness. Consequently, the two models predict differently. The strength of the quantum model lies in its ability to distinguish between classical and quantum definitions of discontinuity, as well as clarifying the function of consciousness, without added assumptions or ad-hoc analysis: Consciousness is an essential, valid feature of quantum mechanisms independent of the field of cognitive psychology. According to the quantum model, through a cycle of conscious and unconscious processing, various contexts are accessed, specifically, coherent superposition states and the removal of the subject-object dichotomy in unconscious processing. Coupled with a high tolerance for ambiguity, the individual has access not only to an increased quantity of information, but is exposed to this information in the absence of a self-referential or biased context, the result of which is an increase in creative behavior.

  5. Modern Quantum Field Theory II - Proceeeings of the International Colloquium

    NASA Astrophysics Data System (ADS)

    Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.

    1995-08-01

    The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory * Finite Quantum Physics and Noncommutative Geometry * Higgs as Gauge Field and the Standard Model * Canonical Quantisation of an Off-Conformal Theory * Deterministic Quantum Mechanics in One Dimension * Spin-Statistics Relations for Topological Geons in 2+1 Quantum Gravity * Generalized Fock Spaces * Geometrical Expression for Short Distance Singularities in Field Theory * 5. Mathematics and Quantum Field Theory * Knot Invariants from Quantum Field Theories * Infinite Grassmannians and Moduli Spaces of G-Bundles * A Review of an Algebraic Geometry Approach to a Model Quantum Field Theory on a Curve (Abstract) * 6. Integrable Models * Spectral Representation of Correlation Functions in Two-Dimensional Quantum Field Theories * On Various Avatars of the Pasquier Algebra * Supersymmetric Integrable Field Theories and Eight Vertex Free Fermion Models (Abstract) * 7. Lattice Field Theory * From Kondo Model and Strong Coupling Lattice QCD to the Isgur-Wise Function * Effective Confinement from a Logarithmically Running Coupling (Abstract)

  6. Financing, Overhead, and Profit: An In-Depth Discussion of Costs Associated with Third-Party Financing of Residential and Commercial Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, D.; Friedman, B.; Margolis, R.

    Previous work quantifying the non-hardware balance-of-system costs -- or soft costs -- associated with building a residential or commercial photovoltaic (PV) system has left a significant portion unsegmented in an 'other soft costs' category. This report attempts to better quantify the 'other soft costs' by focusing on the financing, overhead, and profit of residential and commercial PV installations for a specific business model. This report presents results from a bottom-up data-collection and analysis of the upfront costs associated with developing, constructing, and arranging third-party-financed residential and commercial PV systems. It quantifies the indirect corporate costs required to install distributed PVmore » systems as well as the transactional costs associated with arranging third-party financing.« less

  7. Digital Quantum Simulation of Minimal AdS/CFT.

    PubMed

    García-Álvarez, L; Egusquiza, I L; Lamata, L; Del Campo, A; Sonner, J; Solano, E

    2017-07-28

    We propose the digital quantum simulation of a minimal AdS/CFT model in controllable quantum platforms. We consider the Sachdev-Ye-Kitaev model describing interacting Majorana fermions with randomly distributed all-to-all couplings, encoding nonlocal fermionic operators onto qubits to efficiently implement their dynamics via digital techniques. Moreover, we also give a method for probing nonequilibrium dynamics and the scrambling of information. Finally, our approach serves as a protocol for reproducing a simplified low-dimensional model of quantum gravity in advanced quantum platforms as trapped ions and superconducting circuits.

  8. Digital Quantum Simulation of Minimal AdS /CFT

    NASA Astrophysics Data System (ADS)

    García-Álvarez, L.; Egusquiza, I. L.; Lamata, L.; del Campo, A.; Sonner, J.; Solano, E.

    2017-07-01

    We propose the digital quantum simulation of a minimal AdS /CFT model in controllable quantum platforms. We consider the Sachdev-Ye-Kitaev model describing interacting Majorana fermions with randomly distributed all-to-all couplings, encoding nonlocal fermionic operators onto qubits to efficiently implement their dynamics via digital techniques. Moreover, we also give a method for probing nonequilibrium dynamics and the scrambling of information. Finally, our approach serves as a protocol for reproducing a simplified low-dimensional model of quantum gravity in advanced quantum platforms as trapped ions and superconducting circuits.

  9. Spekkens’ toy model in all dimensions and its relationship with stabiliser quantum mechanics

    NASA Astrophysics Data System (ADS)

    Catani, Lorenzo; E Browne, Dan

    2017-07-01

    Spekkens’ toy model is a non-contextual hidden variable model with an epistemic restriction, a constraint on what an observer can know about reality. The aim of the model, developed for continuous and discrete prime degrees of freedom, is to advocate the epistemic view of quantum theory, where quantum states are states of incomplete knowledge about a deeper underlying reality. Many aspects of quantum mechanics and protocols from quantum information can be reproduced in the model. In spite of its significance, a number of aspects of Spekkens’ model remained incomplete. Formal rules for the update of states after measurement had not been written down, and the theory had only been constructed for prime-dimensional and infinite dimensional systems. In this work, we remedy this, by deriving measurement update rules and extending the framework to derive models in all dimensions, both prime and non-prime. Stabiliser quantum mechanics (SQM) is a sub-theory of quantum mechanics with restricted states, transformations and measurements. First derived for the purpose of constructing error correcting codes, it now plays a role in many areas of quantum information theory. Previously, it had been shown that Spekkens’ model was operationally equivalent to SQM in the case of odd prime dimensions. Here, exploiting known results on Wigner functions, we extend this to show that Spekkens’ model is equivalent to SQM in all odd dimensions, prime and non-prime. This equivalence provides new technical tools for the study of technically difficult compound-dimensional SQM.

  10. Quantum simulation of disordered systems with cold atoms

    NASA Astrophysics Data System (ADS)

    Garreau, Jean-Claude

    2017-01-01

    This paper reviews the physics of quantum disorder in relation with a series of experiments using laser-cooled atoms exposed to "kicks" of a standing wave, realizing a paradigmatic model of quantum chaos, the kicked rotor. This dynamical system can be mapped onto a tight-binding Hamiltonian with pseudo-disorder, formally equivalent to the Anderson model of quantum disorder, with quantum chaos playing the role of disorder. This provides a very good quantum simulator for the Anderson physics. xml:lang="fr"

  11. Collision models in quantum optics

    NASA Astrophysics Data System (ADS)

    Ciccarello, Francesco

    2017-12-01

    Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.

  12. Innovative quantum technologies for microgravity fundamental physics and biological research

    NASA Technical Reports Server (NTRS)

    Kierk, I. K.

    2002-01-01

    This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.

  13. Multi-party Semi-quantum Key Agreement with Delegating Quantum Computation

    NASA Astrophysics Data System (ADS)

    Liu, Wen-Jie; Chen, Zhen-Yu; Ji, Sai; Wang, Hai-Bin; Zhang, Jun

    2017-10-01

    A multi-party semi-quantum key agreement (SQKA) protocol based on delegating quantum computation (DQC) model is proposed by taking Bell states as quantum resources. In the proposed protocol, the participants only need the ability of accessing quantum channel and preparing single photons {|0〉, |1〉, |+〉, |-〉}, while the complicated quantum operations, such as the unitary operations and Bell measurement, will be delegated to the remote quantum center. Compared with previous quantum key agreement protocols, this client-server model is more feasible in the early days of the emergence of quantum computers. In order to prevent the attacks from outside eavesdroppers, inner participants and quantum center, two single photon sequences are randomly inserted into Bell states: the first sequence is used to perform the quantum channel detection, while the second is applied to disorder the positions of message qubits, which guarantees the security of the protocol.

  14. Tomography and generative training with quantum Boltzmann machines

    NASA Astrophysics Data System (ADS)

    Kieferová, Mária; Wiebe, Nathan

    2017-12-01

    The promise of quantum neural nets, which utilize quantum effects to model complex data sets, has made their development an aspirational goal for quantum machine learning and quantum computing in general. Here we provide methods of training quantum Boltzmann machines. Our work generalizes existing methods and provides additional approaches for training quantum neural networks that compare favorably to existing methods. We further demonstrate that quantum Boltzmann machines enable a form of partial quantum state tomography that further provides a generative model for the input quantum state. Classical Boltzmann machines are incapable of this. This verifies the long-conjectured connection between tomography and quantum machine learning. Finally, we prove that classical computers cannot simulate our training process in general unless BQP=BPP , provide lower bounds on the complexity of the training procedures and numerically investigate training for small nonstoquastic Hamiltonians.

  15. Experimental demonstration of nonbilocal quantum correlations.

    PubMed

    Saunders, Dylan J; Bennet, Adam J; Branciard, Cyril; Pryde, Geoff J

    2017-04-01

    Quantum mechanics admits correlations that cannot be explained by local realistic models. The most studied models are the standard local hidden variable models, which satisfy the well-known Bell inequalities. To date, most works have focused on bipartite entangled systems. We consider correlations between three parties connected via two independent entangled states. We investigate the new type of so-called "bilocal" models, which correspondingly involve two independent hidden variables. These models describe scenarios that naturally arise in quantum networks, where several independent entanglement sources are used. Using photonic qubits, we build such a linear three-node quantum network and demonstrate nonbilocal correlations by violating a Bell-like inequality tailored for bilocal models. Furthermore, we show that the demonstration of nonbilocality is more noise-tolerant than that of standard Bell nonlocality in our three-party quantum network.

  16. Russian Ural and Siberian Media Education Centers

    ERIC Educational Resources Information Center

    Fedorov, Alexander

    2014-01-01

    The comparative analysis of the models and functions of the media education centres showed that despite having some definite differences and peculiarities, they have the following common features: differentiated financing resources (public financing, grants, business organizations, etc.) and regional media information support; presence of famous…

  17. Textbooks in Management, Marketing and Finance: An Analysis of Readability.

    ERIC Educational Resources Information Center

    Gallagher, Daniel J.; Thompson, G. Rodney

    1982-01-01

    Examines the readability of texts in basic junior level college courses in the fields of management, marketing, and finance. The readability model is described, along with its application and results. Specific texts and how they fared are listed in accompanying tables. (CT)

  18. Topical Interface between Managerial Finance and Managerial Accounting.

    ERIC Educational Resources Information Center

    Williams, Norman C.; Swanson, G. A.

    1988-01-01

    The authors present a method to examine the interfaces between business courses for redundancy. The method is demonstrated by examining the content in managerial finance and managerial accounting courses. A decision model application of analysis, expert judgment, and synthesis are incorporated in this method. (CH)

  19. Can one trust quantum simulators?

    PubMed

    Hauke, Philipp; Cucchietti, Fernando M; Tagliacozzo, Luca; Deutsch, Ivan; Lewenstein, Maciej

    2012-08-01

    Various fundamental phenomena of strongly correlated quantum systems such as high-T(c) superconductivity, the fractional quantum-Hall effect and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models which are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper (Feynman 1982 Int. J. Theor. Phys. 21 467), Richard Feynman suggested that such models might be solved by 'simulation' with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a 'quantum simulator,' would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question 'Can we trust quantum simulators?' is … to some extent.

  20. Can one trust quantum simulators?

    NASA Astrophysics Data System (ADS)

    Hauke, Philipp; Cucchietti, Fernando M.; Tagliacozzo, Luca; Deutsch, Ivan; Lewenstein, Maciej

    2012-08-01

    Various fundamental phenomena of strongly correlated quantum systems such as high-Tc superconductivity, the fractional quantum-Hall effect and quark confinement are still awaiting a universally accepted explanation. The main obstacle is the computational complexity of solving even the most simplified theoretical models which are designed to capture the relevant quantum correlations of the many-body system of interest. In his seminal 1982 paper (Feynman 1982 Int. J. Theor. Phys. 21 467), Richard Feynman suggested that such models might be solved by ‘simulation’ with a new type of computer whose constituent parts are effectively governed by a desired quantum many-body dynamics. Measurements on this engineered machine, now known as a ‘quantum simulator,’ would reveal some unknown or difficult to compute properties of a model of interest. We argue that a useful quantum simulator must satisfy four conditions: relevance, controllability, reliability and efficiency. We review the current state of the art of digital and analog quantum simulators. Whereas so far the majority of the focus, both theoretically and experimentally, has been on controllability of relevant models, we emphasize here the need for a careful analysis of reliability and efficiency in the presence of imperfections. We discuss how disorder and noise can impact these conditions, and illustrate our concerns with novel numerical simulations of a paradigmatic example: a disordered quantum spin chain governed by the Ising model in a transverse magnetic field. We find that disorder can decrease the reliability of an analog quantum simulator of this model, although large errors in local observables are introduced only for strong levels of disorder. We conclude that the answer to the question ‘Can we trust quantum simulators?’ is … to some extent.

  1. Quantum autoencoders for efficient compression of quantum data

    NASA Astrophysics Data System (ADS)

    Romero, Jonathan; Olson, Jonathan P.; Aspuru-Guzik, Alan

    2017-12-01

    Classical autoencoders are neural networks that can learn efficient low-dimensional representations of data in higher-dimensional space. The task of an autoencoder is, given an input x, to map x to a lower dimensional point y such that x can likely be recovered from y. The structure of the underlying autoencoder network can be chosen to represent the data on a smaller dimension, effectively compressing the input. Inspired by this idea, we introduce the model of a quantum autoencoder to perform similar tasks on quantum data. The quantum autoencoder is trained to compress a particular data set of quantum states, where a classical compression algorithm cannot be employed. The parameters of the quantum autoencoder are trained using classical optimization algorithms. We show an example of a simple programmable circuit that can be trained as an efficient autoencoder. We apply our model in the context of quantum simulation to compress ground states of the Hubbard model and molecular Hamiltonians.

  2. Quantum Brownian motion model for the stock market

    NASA Astrophysics Data System (ADS)

    Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong

    2016-06-01

    It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.

  3. On quantum integrable models related to nonlinear quantum optics. An algebraic Bethe ansatz approach

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1989-08-01

    A unified approach based on Bethe ansatz in a large variety of integrable models in quantum optics is given. Second harmonics generation, three-boson interaction, the Dicke model, and some cases of four-boson interaction as special cases of su(2)⊕su(1,1)-Gaudin models are included.

  4. Analysis of financing efficiency of big data industry in Guizhou province based on DEA models

    NASA Astrophysics Data System (ADS)

    Li, Chenggang; Pan, Kang; Luo, Cong

    2018-03-01

    Taking 20 listed enterprises of big data industry in Guizhou province as samples, this paper uses DEA method to evaluate the financing efficiency of big data industry in Guizhou province. The results show that the pure technical efficiency of big data enterprise in Guizhou province is high, whose mean value reaches to 0.925. The mean value of scale efficiency reaches to 0.749. The average value of comprehensive efficiency reaches 0.693. The comprehensive financing efficiency is low. According to the results of the study, this paper puts forward some policy and recommendations to improve the financing efficiency of the big data industry in Guizhou.

  5. Experimental recovery of quantum correlations in absence of system-environment back-action

    PubMed Central

    Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe

    2013-01-01

    Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties. PMID:24287554

  6. Transition probability spaces in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Guo, Xiao-Kan

    2018-03-01

    We study the (generalized) transition probability spaces, in the sense of Mielnik and Cantoni, for spacetime quantum states in loop quantum gravity. First, we show that loop quantum gravity admits the structures of transition probability spaces. This is exemplified by first checking such structures in covariant quantum mechanics and then identifying the transition probability spaces in spin foam models via a simplified version of general boundary formulation. The transition probability space thus defined gives a simple way to reconstruct the discrete analog of the Hilbert space of the canonical theory and the relevant quantum logical structures. Second, we show that the transition probability space and in particular the spin foam model are 2-categories. Then we discuss how to realize in spin foam models two proposals by Crane about the mathematical structures of quantum gravity, namely, the quantum topos and causal sites. We conclude that transition probability spaces provide us with an alternative framework to understand various foundational questions of loop quantum gravity.

  7. Experimental recovery of quantum correlations in absence of system-environment back-action.

    PubMed

    Xu, Jin-Shi; Sun, Kai; Li, Chuan-Feng; Xu, Xiao-Ye; Guo, Guang-Can; Andersson, Erika; Lo Franco, Rosario; Compagno, Giuseppe

    2013-01-01

    Revivals of quantum correlations in composite open quantum systems are a useful dynamical feature against detrimental effects of the environment. Their occurrence is attributed to flows of quantum information back and forth from systems to quantum environments. However, revivals also show up in models where the environment is classical, thus unable to store quantum correlations, and forbids system-environment back-action. This phenomenon opens basic issues about its interpretation involving the role of classical environments, memory effects, collective effects and system-environment correlations. Moreover, an experimental realization of back-action-free quantum revivals has applicative relevance as it leads to recover quantum resources without resorting to more demanding structured environments and correction procedures. Here we introduce a simple two-qubit model suitable to address these issues. We then report an all-optical experiment which simulates the model and permits us to recover and control, against decoherence, quantum correlations without back-action. We finally give an interpretation of the phenomenon by establishing the roles of the involved parties.

  8. Innovative quantum technologies for microgravity fundamental physics and biological research

    NASA Technical Reports Server (NTRS)

    Kierk, I.; Israelsson, U.; Lee, M.

    2001-01-01

    This paper presents a new technology program, within the fundamental physics research program, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum fluid based sensor and modeling technology.

  9. Contagious error sources would need time travel to prevent quantum computation

    NASA Astrophysics Data System (ADS)

    Kalai, Gil; Kuperberg, Greg

    2015-08-01

    We consider an error model for quantum computing that consists of "contagious quantum germs" that can infect every output qubit when at least one input qubit is infected. Once a germ actively causes error, it continues to cause error indefinitely for every qubit it infects, with arbitrary quantum entanglement and correlation. Although this error model looks much worse than quasi-independent error, we show that it reduces to quasi-independent error with the technique of quantum teleportation. The construction, which was previously described by Knill, is that every quantum circuit can be converted to a mixed circuit with bounded quantum depth. We also consider the restriction of bounded quantum depth from the point of view of quantum complexity classes.

  10. Understanding quantum tunneling using diffusion Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.

    2018-03-01

    In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.

  11. Quantum games of opinion formation based on the Marinatto-Weber quantum game scheme

    NASA Astrophysics Data System (ADS)

    Deng, Xinyang; Deng, Yong; Liu, Qi; Shi, Lei; Wang, Zhen

    2016-06-01

    Quantization has become a new way to investigate classical game theory since quantum strategies and quantum games were proposed. In the existing studies, many typical game models, such as the prisoner's dilemma, battle of the sexes, Hawk-Dove game, have been extensively explored by using quantization approach. Along a similar method, here several game models of opinion formations will be quantized on the basis of the Marinatto-Weber quantum game scheme, a frequently used scheme of converting classical games to quantum versions. Our results show that the quantization can fascinatingly change the properties of some classical opinion formation game models so as to generate win-win outcomes.

  12. Modeling techniques for quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-01

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  13. Modeling techniques for quantum cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation ofmore » quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.« less

  14. Quantum-assisted Helmholtz machines: A quantum–classical deep learning framework for industrial datasets in near-term devices

    NASA Astrophysics Data System (ADS)

    Benedetti, Marcello; Realpe-Gómez, John; Perdomo-Ortiz, Alejandro

    2018-07-01

    Machine learning has been presented as one of the key applications for near-term quantum technologies, given its high commercial value and wide range of applicability. In this work, we introduce the quantum-assisted Helmholtz machine:a hybrid quantum–classical framework with the potential of tackling high-dimensional real-world machine learning datasets on continuous variables. Instead of using quantum computers only to assist deep learning, as previous approaches have suggested, we use deep learning to extract a low-dimensional binary representation of data, suitable for processing on relatively small quantum computers. Then, the quantum hardware and deep learning architecture work together to train an unsupervised generative model. We demonstrate this concept using 1644 quantum bits of a D-Wave 2000Q quantum device to model a sub-sampled version of the MNIST handwritten digit dataset with 16 × 16 continuous valued pixels. Although we illustrate this concept on a quantum annealer, adaptations to other quantum platforms, such as ion-trap technologies or superconducting gate-model architectures, could be explored within this flexible framework.

  15. Thermal quantum coherence and correlation in the extended XY spin chain

    NASA Astrophysics Data System (ADS)

    Sha, Ya-Ting; Wang, Yue; Sun, Zheng-Hang; Hou, Xi-Wen

    2018-05-01

    Quantum coherence and correlation of thermal states in the extended XY spin chain are studied in terms of the recently proposed l1 norm, skew information, and Bures distance of geometry discord (BGD), respectively. The entanglement measured via concurrence is calculated for reference. A two-dimensional susceptibility is introduced to explore their capability in highlighting the critical lines associated with quantum phase transitions in the model. It is shown that the susceptibility of the skew information and BGD is a genuine indicator of quantum phase transitions, and characterizes the factorization. However, the l1 norm is trivial for the factorization. An explicit scaling law of BGD is captured at low temperature in the XY model. In contrast to the entanglement, quantum coherence reveals a kind of long-range nonclassical correlation. Moreover, the obvious relation among model parameters is extracted for the factorized line in the extended model. Those are instructive for the understanding of quantum coherence and correlation in the theory of quantum information, and quantum phase transitions and factorization in condensed-matter physics.

  16. The Politics of Reforming School Finance in Wisconsin.

    ERIC Educational Resources Information Center

    Geske, Terry G.

    This paper is primarily concerned with identifying and explicating the environmental forces and political factors responsible for legislative enactment of major school finance changes in Wisconsin in 1973. Easton's political systems theory serves as a conceptual framework for the study. In addition, Lindblom's leadership model, Truman's interest…

  17. Community College Finance Resource Development. UCLA Community College Bibliography

    ERIC Educational Resources Information Center

    Carducci, Rozana

    2006-01-01

    The references in this bibliography provide an overview of recent scholarship on community college finance and resource development. In addition to documents that present a national portrait and comparative analysis of community college funding models and resource management practices, this bibliography also includes recent publications that…

  18. Model for quantum effects in stellar collapse

    NASA Astrophysics Data System (ADS)

    Arderucio-Costa, Bruno; Unruh, William G.

    2018-01-01

    We present a simple model for stellar collapse and evaluate the quantum mechanical stress-energy tensor to argue that quantum effects do not play an important role for the collapse of astrophysical objects.

  19. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamenshchik, A. Yu.; Manti, S.

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bangmore » and Big Crunch singularities are not traversable.« less

  20. Quantum Computation Using Optically Coupled Quantum Dot Arrays

    NASA Technical Reports Server (NTRS)

    Pradhan, Prabhakar; Anantram, M. P.; Wang, K. L.; Roychowhury, V. P.; Saini, Subhash (Technical Monitor)

    1998-01-01

    A solid state model for quantum computation has potential advantages in terms of the ease of fabrication, characterization, and integration. The fundamental requirements for a quantum computer involve the realization of basic processing units (qubits), and a scheme for controlled switching and coupling among the qubits, which enables one to perform controlled operations on qubits. We propose a model for quantum computation based on optically coupled quantum dot arrays, which is computationally similar to the atomic model proposed by Cirac and Zoller. In this model, individual qubits are comprised of two coupled quantum dots, and an array of these basic units is placed in an optical cavity. Switching among the states of the individual units is done by controlled laser pulses via near field interaction using the NSOM technology. Controlled rotations involving two or more qubits are performed via common cavity mode photon. We have calculated critical times, including the spontaneous emission and switching times, and show that they are comparable to the best times projected for other proposed models of quantum computation. We have also shown the feasibility of accessing individual quantum dots using the NSOM technology by calculating the photon density at the tip, and estimating the power necessary to perform the basic controlled operations. We are currently in the process of estimating the decoherence times for this system; however, we have formulated initial arguments which seem to indicate that the decoherence times will be comparable, if not longer, than many other proposed models.

  1. General Revenue Financing of Medicare: Who Will Bear the Burden?

    PubMed Central

    Johnson, Janet L.; Long, Stephen H.

    1982-01-01

    Two recent national advisory committees on Social Security recommended major shifts in Medicare financing to preserve the financial viability of the Social Security trust funds. This paper estimates the income redistribution consequences of the two proposals, in contrast to current law, using a micro-simulation model of taxes and premiums. These estimates show that while the current Medicare financing package is mildly progressive, the new proposals would substantially increase income redistribution under the program. Two insights provided by separate estimates, for families headed by the elderly (persons age 65 or over) versus those headed by the non-elderly, are: 1) the surprisingly large Medicare tax burdens on families headed by the elderly under the current financing package of payroll taxes, general revenues, and enrollee premiums; and 2) the substantial increases in these burdens under proposed shifts toward increased general revenue financing. PMID:10309601

  2. Derivative Trade Optimizing Model Utilizing GP Based on Behavioral Finance Theory

    NASA Astrophysics Data System (ADS)

    Matsumura, Koki; Kawamoto, Masaru

    This paper proposed a new technique which makes the strategy trees for the derivative (option) trading investment decision based on the behavioral finance theory and optimizes it using evolutionary computation, in order to achieve high profitability. The strategy tree uses a technical analysis based on a statistical, experienced technique for the investment decision. The trading model is represented by various technical indexes, and the strategy tree is optimized by the genetic programming(GP) which is one of the evolutionary computations. Moreover, this paper proposed a method using the prospect theory based on the behavioral finance theory to set psychological bias for profit and deficit and attempted to select the appropriate strike price of option for the higher investment efficiency. As a result, this technique produced a good result and found the effectiveness of this trading model by the optimized dealings strategy.

  3. Quantum teleportation of nonclassical wave packets: An effective multimode theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki

    2011-07-15

    We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.

  4. Quantum synchronization of quantum van der Pol oscillators with trapped ions.

    PubMed

    Lee, Tony E; Sadeghpour, H R

    2013-12-06

    The van der Pol oscillator is the prototypical self-sustained oscillator and has been used to model nonlinear behavior in biological and other classical processes. We investigate how quantum fluctuations affect phase locking of one or many van der Pol oscillators. We find that phase locking is much more robust in the quantum model than in the equivalent classical model. Trapped-ion experiments are ideally suited to simulate van der Pol oscillators in the quantum regime via sideband heating and cooling of motional modes. We provide realistic experimental parameters for 171Yb+ achievable with current technology.

  5. Models of optical quantum computing

    NASA Astrophysics Data System (ADS)

    Krovi, Hari

    2017-03-01

    I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  6. Private health insurance in South Korea: an international comparison.

    PubMed

    Shin, Jaeun

    2012-11-01

    The goal of this study is to present the historical and policy background of the expansion of private health insurance in South Korea in the context of the National Health Insurance (NHI) system, and to provide empirical evidence on whether the increased role of private health insurance may counterbalance government financing, social security contributions, out-of-pocket payments, and help stabilize total health care spending. Using OECD Health Data 2011, we used a fixed effects model estimation. In this model, we allow error terms to be serially correlated over time in order to capture the association of private health insurance financing with three other components of health care financing and total health care spending. The descriptive observation of the South Korean health care financing shows that social security contributions are relatively limited in South Korea, implying that high out-of-pocket payments may be alleviated through the enhancement of NHI benefit coverage and an increase in social security contributions. Estimation results confirm that private health insurance financing is unlikely to reduce government spending on health care and social security contributions. We find evidence that out-of-pocket payments may be offset by private health insurance financing, but to a limited degree. Private health insurance financing is found to have a statistically significant positive association with total spending on health care. This indicates that the duplicated coverage effect on service demand may cancel out the potential efficiency gain from market initiatives driven by the active involvement of private health insurance. This study finds little evidence for the benefit of private insurance initiatives in coping with the fiscal challenges of the South Korean NHI program. Further studies on the managerial interplay among public and private insurers and on behavioral responses of providers and patients to a given structure of private-public financing are warranted to formulate the adequate balance between private health insurance and publicly funded universal coverage. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Quantum-like Probabilistic Models Outside Physics

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    We present a quantum-like (QL) model in that contexts (complexes of e.g. mental, social, biological, economic or even political conditions) are represented by complex probability amplitudes. This approach gives the possibility to apply the mathematical quantum formalism to probabilities induced in any domain of science. In our model quantum randomness appears not as irreducible randomness (as it is commonly accepted in conventional quantum mechanics, e.g. by von Neumann and Dirac), but as a consequence of obtaining incomplete information about a system. We pay main attention to the QL description of processing of incomplete information. Our QL model can be useful in cognitive, social and political sciences as well as economics and artificial intelligence. In this paper we consider in a more detail one special application — QL modeling of brain's functioning. The brain is modeled as a QL-computer.

  8. Performance Models for Split-execution Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; McCaskey, Alex; Schrock, Jonathan

    Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardwaremore » limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.« less

  9. Experimental demonstration of nonbilocal quantum correlations

    PubMed Central

    Saunders, Dylan J.; Bennet, Adam J.; Branciard, Cyril; Pryde, Geoff J.

    2017-01-01

    Quantum mechanics admits correlations that cannot be explained by local realistic models. The most studied models are the standard local hidden variable models, which satisfy the well-known Bell inequalities. To date, most works have focused on bipartite entangled systems. We consider correlations between three parties connected via two independent entangled states. We investigate the new type of so-called “bilocal” models, which correspondingly involve two independent hidden variables. These models describe scenarios that naturally arise in quantum networks, where several independent entanglement sources are used. Using photonic qubits, we build such a linear three-node quantum network and demonstrate nonbilocal correlations by violating a Bell-like inequality tailored for bilocal models. Furthermore, we show that the demonstration of nonbilocality is more noise-tolerant than that of standard Bell nonlocality in our three-party quantum network. PMID:28508045

  10. An Analytical Quantum Model to Calculate Fluorescence Enhancement of a Molecule in Vicinity of a Sub-10 nm Metal Nanoparticle.

    PubMed

    Bagheri, Zahra; Massudi, Reza

    2017-05-01

    An analytical quantum model is used to calculate electrical permittivity of a metal nanoparticle located in an adjacent molecule. Different parameters, such as radiative and non-radiative decay rates, quantum yield, electrical field enhancement factor, and fluorescence enhancement are calculated by such a model and they are compared with those obtained by using the classical Drude model. It is observed that using an analytical quantum model presents a higher enhancement factor, up to 30%, as compared to classical model for nanoparticles smaller than 10 nm. Furthermore, the results are in better agreement with those experimentally realized.

  11. Multi-Dimensional Quantum Tunneling and Transport Using the Density-Gradient Model

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Yu, Zhi-Ping; Ancona, Mario; Rafferty, Conor; Saini, Subhash (Technical Monitor)

    1999-01-01

    We show that quantum effects are likely to significantly degrade the performance of MOSFETs (metal oxide semiconductor field effect transistor) as these devices are scaled below 100 nm channel length and 2 nm oxide thickness over the next decade. A general and computationally efficient electronic device model including quantum effects would allow us to monitor and mitigate these effects. Full quantum models are too expensive in multi-dimensions. Using a general but efficient PDE solver called PROPHET, we implemented the density-gradient (DG) quantum correction to the industry-dominant classical drift-diffusion (DD) model. The DG model efficiently includes quantum carrier profile smoothing and tunneling in multi-dimensions and for any electronic device structure. We show that the DG model reduces DD model error from as much as 50% down to a few percent in comparison to thin oxide MOS capacitance measurements. We also show the first DG simulations of gate oxide tunneling and transverse current flow in ultra-scaled MOSFETs. The advantages of rapid model implementation using the PDE solver approach will be demonstrated, as well as the applicability of the DG model to any electronic device structure.

  12. Deep Neural Network Detects Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  13. A Toy Model of Quantum Electrodynamics in (1 + 1) Dimensions

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2008-01-01

    We present a toy model of quantum electrodynamics (QED) in (1 + 1) dimensions. The QED model is much simpler than QED in (3 + 1) dimensions but exhibits many of the same physical phenomena, and serves as a pedagogical introduction to both QED and quantum field theory in general. We show how the QED model can be derived by quantizing a toy model of…

  14. A fluctuating quantum model of the CO vibration in carboxyhemoglobin.

    PubMed

    Falvo, Cyril; Meier, Christoph

    2011-06-07

    In this paper, we present a theoretical approach to construct a fluctuating quantum model of the CO vibration in heme-CO proteins and its interaction with external laser fields. The methodology consists of mixed quantum-classical calculations for a restricted number of snapshots, which are then used to construct a parametrized quantum model. As an example, we calculate the infrared absorption spectrum of carboxy-hemoglobin, based on a simplified protein model, and found the absorption linewidth in good agreement with the experimental results. © 2011 American Institute of Physics

  15. Colorado Business Commission on Child Care Financing, Report.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Human Services, Denver. Div. of Child Care.

    This report examines child care from a business perspective and proposes methods to help finance affordable, accessible, and high-quality child care in Colorado. The Commission's procedures are described, and data summaries are included. The following 12 recommendations are made: (1) establish model planning and zoning programs to increase and…

  16. Magnetic Bianchi type II string cosmological model in loop quantum cosmology

    NASA Astrophysics Data System (ADS)

    Rikhvitsky, Victor; Saha, Bijan; Visinescu, Mihai

    2014-07-01

    The loop quantum cosmology of the Bianchi type II string cosmological model in the presence of a homogeneous magnetic field is studied. We present the effective equations which provide modifications to the classical equations of motion due to quantum effects. The numerical simulations confirm that the big bang singularity is resolved by quantum gravity effects.

  17. Catastrophe risk data scoping for disaster risk finance in Asia

    NASA Astrophysics Data System (ADS)

    Millinship, Ian; Revilla-Romero, Beatriz

    2017-04-01

    Developing countries across Latin America, Africa, and Asia are some of the most exposed to natural catastrophes in the world. Over the last 20 years, Asia has borne almost half the estimated global economic cost of natural disasters - around 53billion annually. Losses from natural disasters can damage growth and hamper economic development and unlike in developed countries where risk is reallocated through re/insurance, typically these countries rely on budget reallocations and donor assistance in order to attempt to meet financing needs. There is currently an active international dialogue on the need to increase access to disaster risk financing solutions in Asia. The World Bank-GFDRR Disaster Risk Financing and Insurance Program with financial support from the Rockefeller Foundation, is currently working to develop regional options for disaster risk financing for developing countries in Asia. The first stage of this process has been to evaluate available catastrophe data suitable to support the design and implementation of disaster risk financing mechanisms in selected Asian countries. This project was carried out by a consortium of JBA Risk Management, JBA Consulting, ImageCat and Cat Risk Intelligence. The project focuses on investigating potential data sources for fourteen selected countries in Asia, for flood, tropical cyclone, earthquake and drought perils. The project was carried out under four stages. The first phase focused to identify and catalogue live/dynamic hazard data sources such as hazard gauging networks, or earth observations datasets which could be used to inform a parametric trigger. Live data sources were identified that provide credibility, transparency, independence, frequent reporting, consistency and stability. Data were catalogued at regional level, and prioritised at local level for five countries: Bangladesh, Indonesia, Pakistan, Sri Lanka and Viet Nam. The second phase was to identify, catalogue and evaluate catastrophe risk models that could quantify risk and provide a view of risk to support design and pricing of parametric disaster risk financing mechanisms. The third stage was to evaluate the usability of data sources and catastrophe models, and to develop index prototypes to outline how data and catastrophe models could be combined using local, regional and global data sources. Finally, the project identified priorities for investment to support the collection, analysis and evaluation of natural catastrophes in order to support disaster risk financing.

  18. On the robustness of bucket brigade quantum RAM

    NASA Astrophysics Data System (ADS)

    Arunachalam, Srinivasan; Gheorghiu, Vlad; Jochym-O'Connor, Tomas; Mosca, Michele; Varshinee Srinivasan, Priyaa

    2015-12-01

    We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP ’08 733), we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order o({2}-n/2) (where N={2}n is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machine learning Rebentrost et al (2014 Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of ‘active’ gates, since all components have to be actively error corrected.

  19. Quantum games as quantum types

    NASA Astrophysics Data System (ADS)

    Delbecque, Yannick

    In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other work in quantum computing. Quantum strategies could thus be useful for other purposes than the study of quantum programming languages.

  20. Modeling Magnetic Properties in EZTB

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; vonAllmen, Paul

    2007-01-01

    A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.

  1. The SLH framework for modeling quantum input-output networks

    DOE PAGES

    Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan

    2017-09-04

    Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less

  2. The SLH framework for modeling quantum input-output networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan

    Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less

  3. Feasibility of self-correcting quantum memory and thermal stability of topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Beni, E-mail: rouge@mit.edu

    2011-10-15

    Recently, it has become apparent that the thermal stability of topologically ordered systems at finite temperature, as discussed in condensed matter physics, can be studied by addressing the feasibility of self-correcting quantum memory, as discussed in quantum information science. Here, with this correspondence in mind, we propose a model of quantum codes that may cover a large class of physically realizable quantum memory. The model is supported by a certain class of gapped spin Hamiltonians, called stabilizer Hamiltonians, with translation symmetries and a small number of ground states that does not grow with the system size. We show that themore » model does not work as self-correcting quantum memory due to a certain topological constraint on geometric shapes of its logical operators. This quantum coding theoretical result implies that systems covered or approximated by the model cannot have thermally stable topological order, meaning that systems cannot be stable against both thermal fluctuations and local perturbations simultaneously in two and three spatial dimensions. - Highlights: > We define a class of physically realizable quantum codes. > We determine their coding and physical properties completely. > We establish the connection between topological order and self-correcting memory. > We find they do not work as self-correcting quantum memory. > We find they do not have thermally stable topological order.« less

  4. An Evaluation of Alternatives for Processing of Administrative Pay Vouchers: A Simulation Approach.

    DTIC Science & Technology

    1982-09-01

    Finance Travel Voucher Q-GERT Productivity Personnel Forecasts Simulation Model 20. ABSTRACT (Continue on reverse side if necessary end Jdentfly by...Finance Office (ACF) has devised a Point System for use in determining the productivity of the ACF Travel Section (ACFTT). This Point System sets values...5 to 5+) to be assigned to incoming travel vouchers based on voucher complexity. This research had set objectives of (1) building an ACFTT model that

  5. Scrambling of quantum information in quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Iyoda, Eiki; Sagawa, Takahiro

    2018-04-01

    We systematically investigate scrambling (or delocalizing) processes of quantum information encoded in quantum many-body systems by using numerical exact diagonalization. As a measure of scrambling, we adopt the tripartite mutual information (TMI) that becomes negative when quantum information is delocalized. We clarify that scrambling is an independent property of the integrability of Hamiltonians; TMI can be negative or positive for both integrable and nonintegrable systems. This implies that scrambling is a separate concept from conventional quantum chaos characterized by nonintegrability. Specifically, we argue that there are a few exceptional initial states that do not exhibit scrambling, and show that such exceptional initial states have small effective dimensions. Furthermore, we calculate TMI in the Sachdev-Ye-Kitaev (SYK) model, a fermionic toy model of quantum gravity. We find that disorder does not make scrambling slower but makes it smoother in the SYK model, in contrast to many-body localization in spin chains.

  6. Seebeck effect on a weak link between Fermi and non-Fermi liquids

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. T.; Kiselev, M. N.

    2018-02-01

    We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.

  7. Efficiency and its bounds for a quantum Einstein engine at maximum power.

    PubMed

    Yan, H; Guo, Hao

    2012-11-01

    We study a quantum thermal engine model for which the heat transfer law is determined by Einstein's theory of radiation. The working substance of the quantum engine is assumed to be a two-level quantum system of which the constituent particles obey Maxwell-Boltzmann (MB), Fermi-Dirac (FD), or Bose-Einstein (BE) distributions, respectively, at equilibrium. The thermal efficiency and its bounds at maximum power of these models are derived and discussed in the long and short thermal contact time limits. The similarity and difference between these models are discussed. We also compare the efficiency bounds of this quantum thermal engine to those of its classical counterpart.

  8. On the physical Hilbert space of loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noui, Karim; Perez, Alejandro; Vandersloot, Kevin

    2005-02-15

    In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable, consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology.

  9. Efficient quantum circuits for one-way quantum computing.

    PubMed

    Tanamoto, Tetsufumi; Liu, Yu-Xi; Hu, Xuedong; Nori, Franco

    2009-03-13

    While Ising-type interactions are ideal for implementing controlled phase flip gates in one-way quantum computing, natural interactions between solid-state qubits are most often described by either the XY or the Heisenberg models. We show an efficient way of generating cluster states directly using either the imaginary SWAP (iSWAP) gate for the XY model, or the sqrt[SWAP] gate for the Heisenberg model. Our approach thus makes one-way quantum computing more feasible for solid-state devices.

  10. De Broglie-Bohm interpretation of a Hořava-Lifshitz quantum cosmology model

    NASA Astrophysics Data System (ADS)

    Oliveira-Neto, G.; Martins, L. G.; Monerat, G. A.; Corrêa Silva, E. V.

    2018-01-01

    In this paper, we consider the De Broglie-Bohm interpretation of a Hořava-Lifshitz quantum cosmology model in the presence of a radiation perfect fluid. We compute the Bohm’s trajectory for the scale factor and show that it never goes to zero. That result gives a strong indication that this model is free from singularities at the quantum level. We also compute the quantum potential. That quantity helps in understanding why the scale factor never vanishes.

  11. Superconducting quantum circuits theory and application

    NASA Astrophysics Data System (ADS)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons states. The model and toolbox are engineered with a superconducting quantum circuit where two superconducting resonators are coupled via the UQDP circuit. Using fourth order perturbation theory one can realize a complete set of quantum operations between these two photon modes. This helps open a new field to treat photon modes as qubits. Additional, a three-wave mixing scheme using phase qubits permits one to engineer the coupling Hamiltonian using a phase qubit as a tunable coupler. Along with Feynman's idea using quantum to simulate quantum, superconducting quantum simulators have been studied intensively recently. Taking the advantage of mesoscopic size of superconducting circuit and local tunability, we came out the idea to simulate quantum phase transition due to disorder. Our first paper was to propose a superconducting quantum simulator of Bose-Hubbard model to do site-wise manipulation and observe Mott-insulator to superfluid phase transition. The side-band cooling of an array of superconducting resonators is solved after the paper was published. In light of the developed technology in manipulating quantum information with superconducting circuit, one can couple other quantum oscillator system to superconducting resonators in order manipulation of its quantum states or parametric amplification of weak quantum signal. A theory that works for different coupling schemes has been studied in chapter 5. This will be a platform for further research.

  12. Resonant quantum kicked rotor with two internal levels

    NASA Astrophysics Data System (ADS)

    Hernández, Guzmán; Romanelli, Alejandro

    2013-04-01

    We study a system consisting of a quantum kicked rotor with an additional degree of freedom. We show analytically and numerically that this model is characterized by its quantum resonances with ballistic spreading and by the entanglement between the internal and momentum degrees of freedom. We conclude that the model shows certain interesting similarities with the standard quantum walk on the line.

  13. Contextuality supplies the 'magic' for quantum computation.

    PubMed

    Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph

    2014-06-19

    Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.

  14. Special Relativity at the Quantum Scale

    PubMed Central

    Lam, Pui K.

    2014-01-01

    It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry). Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's “checker-board” trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1) the quantum version of the postulates of special relativity and (2) the appropriate quantum “coordinates”. This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point. PMID:25531675

  15. Special relativity at the quantum scale.

    PubMed

    Lam, Pui K

    2014-01-01

    It has been suggested that the space-time structure as described by the theory of special relativity is a macroscopic manifestation of a more fundamental quantum structure (pre-geometry). Efforts to quantify this idea have come mainly from the area of abstract quantum logic theory. Here we present a preliminary attempt to develop a quantum formulation of special relativity based on a model that retains some geometric attributes. Our model is Feynman's "checker-board" trajectory for a 1-D relativistic free particle. We use this model to guide us in identifying (1) the quantum version of the postulates of special relativity and (2) the appropriate quantum "coordinates". This model possesses a useful feature that it admits an interpretation both in terms of paths in space-time and in terms of quantum states. Based on the quantum version of the postulates, we derive a transformation rule for velocity. This rule reduces to the Einstein's velocity-addition formula in the macroscopic limit and reveals an interesting aspect of time. The 3-D case, time-dilation effect, and invariant interval are also discussed in term of this new formulation. This is a preliminary investigation; some results are derived, while others are interesting observations at this point.

  16. Quantum simulation of strongly correlated condensed matter systems

    NASA Astrophysics Data System (ADS)

    Hofstetter, W.; Qin, T.

    2018-04-01

    We review recent experimental and theoretical progress in realizing and simulating many-body phases of ultracold atoms in optical lattices, which gives access to analog quantum simulations of fundamental model Hamiltonians for strongly correlated condensed matter systems, such as the Hubbard model. After a general introduction to quantum gases in optical lattices, their preparation and cooling, and measurement techniques for relevant observables, we focus on several examples, where quantum simulations of this type have been performed successfully during the past years: Mott-insulator states, itinerant quantum magnetism, disorder-induced localization and its interplay with interactions, and topological quantum states in synthetic gauge fields.

  17. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench.

    PubMed

    Banerjee, D; Dalmonte, M; Müller, M; Rico, E; Stebler, P; Wiese, U-J; Zoller, P

    2012-10-26

    Using a Fermi-Bose mixture of ultracold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.

  18. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    NASA Astrophysics Data System (ADS)

    Adame, J.; Warzel, S.

    2015-11-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  19. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    NASA Astrophysics Data System (ADS)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-03-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  20. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adame, J.; Warzel, S., E-mail: warzel@ma.tum.de

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  1. The Influences of Quantum Coherence on the Positive Work and the Efficiency of Quantum Heat Engine with Working Substance of Two-Qubit Heisenberg XXX Model

    NASA Astrophysics Data System (ADS)

    Peng, Hu-Ping; Fang, Mao-Fa; Yu, Min; Zou, Hong-Mei

    2018-06-01

    We study the influences of quantum coherence on the positive work and the efficiency of quantum heat engine (QHE) based on working substance of two-qubit Heisenberg model under a constant external magnetic field. By using analytical and numerical solution, we give the relation expressions for both the positive work and the efficiency with quantum coherence, and in detail discuss the effects of the quantum coherence on the positive work and the efficiency of QHE in the absence or presence of external magnetic field, respectively.

  2. Connes' embedding problem and winning strategies for quantum XOR games

    NASA Astrophysics Data System (ADS)

    Harris, Samuel J.

    2017-12-01

    We consider quantum XOR games, defined in the work of Regev and Vidick [ACM Trans. Comput. Theory 7, 43 (2015)], from the perspective of unitary correlations defined in the work of Harris and Paulsen [Integr. Equations Oper. Theory 89, 125 (2017)]. We show that the winning bias of a quantum XOR game in the tensor product model (respectively, the commuting model) is equal to the norm of its associated linear functional on the unitary correlation set from the appropriate model. We show that Connes' embedding problem has a positive answer if and only if every quantum XOR game has entanglement bias equal to the commuting bias. In particular, the embedding problem is equivalent to determining whether every quantum XOR game G with a winning strategy in the commuting model also has a winning strategy in the approximate finite-dimensional model.

  3. Quantum protocols within Spekkens' toy model

    NASA Astrophysics Data System (ADS)

    Disilvestro, Leonardo; Markham, Damian

    2017-05-01

    Quantum mechanics is known to provide significant improvements in information processing tasks when compared to classical models. These advantages range from computational speedups to security improvements. A key question is where these advantages come from. The toy model developed by Spekkens [R. W. Spekkens, Phys. Rev. A 75, 032110 (2007), 10.1103/PhysRevA.75.032110] mimics many of the features of quantum mechanics, such as entanglement and no cloning, regarded as being important in this regard, despite being a local hidden variable theory. In this work, we study several protocols within Spekkens' toy model where we see it can also mimic the advantages and limitations shown in the quantum case. We first provide explicit proofs for the impossibility of toy bit commitment and the existence of a toy error correction protocol and consequent k -threshold secret sharing. Then, defining a toy computational model based on the quantum one-way computer, we prove the existence of blind and verified protocols. Importantly, these two last quantum protocols are known to achieve a better-than-classical security. Our results suggest that such quantum improvements need not arise from any Bell-type nonlocality or contextuality, but rather as a consequence of steering correlations.

  4. Quantum neural networks: Current status and prospects for development

    NASA Astrophysics Data System (ADS)

    Altaisky, M. V.; Kaputkina, N. E.; Krylov, V. A.

    2014-11-01

    The idea of quantum artificial neural networks, first formulated in [34], unites the artificial neural network concept with the quantum computation paradigm. Quantum artificial neural networks were first systematically considered in the PhD thesis by T. Menneer (1998). Based on the works of Menneer and Narayanan [42, 43], Kouda, Matsui, and Nishimura [35, 36], Altaisky [2, 68], Zhou [67], and others, quantum-inspired learning algorithms for neural networks were developed, and are now used in various training programs and computer games [29, 30]. The first practically realizable scaled hardware-implemented model of the quantum artificial neural network is obtained by D-Wave Systems, Inc. [33]. It is a quantum Hopfield network implemented on the basis of superconducting quantum interference devices (SQUIDs). In this work we analyze possibilities and underlying principles of an alternative way to implement quantum neural networks on the basis of quantum dots. A possibility of using quantum neural network algorithms in automated control systems, associative memory devices, and in modeling biological and social networks is examined.

  5. Measurements of entanglement over a kilometric distance to test superluminal models of Quantum Mechanics: preliminary results.

    NASA Astrophysics Data System (ADS)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2017-08-01

    As shown in the EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is a non-local Theory. The Bell theorem and the successive experiments ruled out the possibility of explaining quantum correlations using only local hidden variables models. Some authors suggested that quantum correlations could be due to superluminal communications that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt and in some special cases, Quantum Mechanics and superluminal models lead to different predictions. So far, no deviations from the predictions of Quantum Mechanics have been detected and only lower bounds for the superluminal velocities vt have been established. Here we describe a new experiment that increases the maximum detectable superluminal velocities and we give some preliminary results.

  6. Exploration of quantum phases transition in the XXZ model with Dzyaloshinskii-Moriya interaction using trance distance discord

    NASA Astrophysics Data System (ADS)

    Zhang, Ren-jie; Xu, Shuai; Shi, Jia-dong; Ma, Wen-chao; Ye, Liu

    2015-11-01

    In the paper, we researched the quantum phase transition (QPT) in the anisotropic spin XXZ model by exploiting the quantum renormalization group (QRG) method. The innovation point is that we adopt a new approach called trace distance discord to indicate the quantum correlation of the system. QPT after several iterations of renormalization in current system has been observed. Consequently, it opened the possibility of investigation of QPR in the geometric discord territory. While the anisotropy suppresses the correlation due to favoring of the alignment of spins, the DM interaction restores the spoiled correlation via creation of the quantum fluctuations. We also apply quantum renormalization group method to probe the thermodynamic limit of the model and emerging of nonanalytic behavior of the correlation.

  7. Quantum entanglement in photoactive prebiotic systems.

    PubMed

    Tamulis, Arvydas; Grigalavicius, Mantas

    2014-06-01

    This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.

  8. Background-independent condensed matter models for quantum gravity

    NASA Astrophysics Data System (ADS)

    Hamma, Alioscia; Markopoulou, Fotini

    2011-09-01

    A number of recent proposals on a quantum theory of gravity are based on the idea that spacetime geometry and gravity are derivative concepts and only apply at an approximate level. There are two fundamental challenges to any such approach. At the conceptual level, there is a clash between the 'timelessness' of general relativity and emergence. Secondly, the lack of a fundamental spacetime renders difficult the straightforward application of well-known methods of statistical physics to the problem. We recently initiated a study of such problems using spin systems based on the evolution of quantum networks with no a priori geometric notions as models for emergent geometry and gravity. In this paper, we review two such models. The first model is a model of emergent (flat) space and matter, and we show how to use methods from quantum information theory to derive features such as the speed of light from a non-geometric quantum system. The second model exhibits interacting matter and geometry, with the geometry defined by the behavior of matter. This model has primitive notions of gravitational attraction that we illustrate with a toy black hole, and exhibits entanglement between matter and geometry and thermalization of the quantum geometry.

  9. Are quantum-mechanical-like models possible, or necessary, outside quantum physics?

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2014-12-01

    This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.

  10. Communication impacting financial markets

    NASA Astrophysics Data System (ADS)

    Vitting Andersen, Jørgen; Vrontos, Ioannis; Dellaportas, Petros; Galam, Serge

    2014-10-01

    Since the attribution of the Nobel prize in 2002 to Kahneman for prospect theory, behavioral finance has become an increasingly important subfield of finance. However the main parts of behavioral finance, prospect theory included, understand financial markets through individual investment behavior. Behavioral finance thereby ignores any interaction between participants. We introduce a socio-financial model (Vitting Andersen J. and Nowak A., An Introduction to Socio-Finance (Springer, Berlin) 2013) that studies the impact of communication on the pricing in financial markets. Considering the simplest possible case where each market participant has either a positive (bullish) or negative (bearish) sentiment with respect to the market, we model the evolution of the sentiment in the population due to communication in subgroups of different sizes. Nonlinear feedback effects between the market performance and changes in sentiments are taken into account by assuming that the market performance is dependent on changes in sentiments (e.g., a large sudden positive change in bullishness would lead to more buying). The market performance in turn has an impact on the sentiment through the transition probabilities to change an opinion in a group of a given size. The idea is that if for example the market has observed a recent downturn, it will be easier for even a bearish minority to convince a bullish majority to change opinion compared to the case where the meeting takes place in a bullish upturn of the market. Within the framework of our proposed model, financial markets stylized facts such as volatility clustering and extreme events may be perceived as arising due to abrupt sentiment changes via ongoing communication of the market participants. The model introduces a new volatility measure which is apt of capturing volatility clustering and from maximum-likelihood analysis we are able to apply the model to real data and give additional long term insight into where a market is heading.

  11. Novel Plasmonic and Hyberbolic Optical Materials for Control of Quantum Nanoemitters

    DTIC Science & Technology

    2016-12-08

    properties, metal ion implantation techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. 15. SUBJECT TERMS nanotechnology 16...techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. During the course of this project we studied plasmonic

  12. Financing Higher Education: Lessons from China

    ERIC Educational Resources Information Center

    Fengliang, Li

    2012-01-01

    In China, debates about higher education finance led to the introduction of a cost-sharing model, whereby students were required to pay tuition fees, over a decade ago. However, there is still significant resistance towards such a system within the broader society. In order to share insights into the development of the cost-sharing policy in China…

  13. Valuation of Capabilities and System Architecture Options to Meet Affordability Requirement

    DTIC Science & Technology

    2014-04-30

    is an extension of the historic volatility and trend of the stock using Brownian motion . In finance , the Black-Scholes equation is used to value...the underlying asset whose value is modeled as a stochastic process. In finance , the underlying asset is a tradeable stock and the stochastic process

  14. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    PubMed Central

    Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055

  15. A transfer hamiltonian model for devices based on quantum dot arrays.

    PubMed

    Illera, S; Prades, J D; Cirera, A; Cornet, A

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  16. Breaking the Bank: Three Financing Models for Addressing the Drug Innovation Cost Crisis.

    PubMed

    Kleinke, J D; McGee, Nancy

    2015-05-01

    The introduction of innovative specialty pharmaceuticals with high prices has renewed efforts by public and private healthcare payers to constrain their utilization, increase patient cost-sharing, and compel government intervention on pricing. These efforts, although rational for individual payers, have the potential to undermine the public health impact and overall economic value of these innovations for society. The emerging archetypal example is the outcry over the cost of sofosbuvir, a drug proved to cure hepatitis C infection at a cost of $84,000 per person for a course of treatment (or $1000 per tablet). This represents a radical medical breakthrough for public health, with great promise for the long-term costs associated with this disease, but with major short-term cost implications for the budgets of healthcare payers. To propose potential financing models to provide a workable and lasting solution that directly addresses the misalignment of incentives between healthcare payers confronted with the high upfront costs of innovative specialty drugs and the rest of the US healthcare system, and to articulate these in the context of the historic struggle over paying for innovation. We describe 3 innovative financing models to manage expensive specialty drugs that will significantly reduce the direct, immediate cost burden of these drugs to public and private healthcare payers. The 3 financing models include high-cost drug mortgages, high-cost drugs reinsurance, and high-cost drug patient rebates. These models have been proved successful in other areas and should be adopted into healthcare to mitigate the high-cost of specialty drugs. We discuss the distribution of this burden over time and across the healthcare system, and we match the financial burden of medical innovations to the healthcare stakeholders who capture their overall value. All 3 models work within or replicate the current healthcare marketplace mechanisms for distributing immediate high-cost events across multiple at-risk stakeholders, and/or encouraging active participation by patients as consumers. The adoption of these 3 models for the financing of high-cost drugs would ameliorate decades-long economic conflict in the healthcare system over the value of, and financial responsibility for, drug innovation.

  17. Breaking the Bank: Three Financing Models for Addressing the Drug Innovation Cost Crisis

    PubMed Central

    Kleinke, J.D.; McGee, Nancy

    2015-01-01

    Background The introduction of innovative specialty pharmaceuticals with high prices has renewed efforts by public and private healthcare payers to constrain their utilization, increase patient cost-sharing, and compel government intervention on pricing. These efforts, although rational for individual payers, have the potential to undermine the public health impact and overall economic value of these innovations for society. The emerging archetypal example is the outcry over the cost of sofosbuvir, a drug proved to cure hepatitis C infection at a cost of $84,000 per person for a course of treatment (or $1000 per tablet). This represents a radical medical breakthrough for public health, with great promise for the long-term costs associated with this disease, but with major short-term cost implications for the budgets of healthcare payers. Objectives To propose potential financing models to provide a workable and lasting solution that directly addresses the misalignment of incentives between healthcare payers confronted with the high upfront costs of innovative specialty drugs and the rest of the US healthcare system, and to articulate these in the context of the historic struggle over paying for innovation. Discussion We describe 3 innovative financing models to manage expensive specialty drugs that will significantly reduce the direct, immediate cost burden of these drugs to public and private healthcare payers. The 3 financing models include high-cost drug mortgages, high-cost drugs reinsurance, and high-cost drug patient rebates. These models have been proved successful in other areas and should be adopted into healthcare to mitigate the high-cost of specialty drugs. We discuss the distribution of this burden over time and across the healthcare system, and we match the financial burden of medical innovations to the healthcare stakeholders who capture their overall value. All 3 models work within or replicate the current healthcare marketplace mechanisms for distributing immediate high-cost events across multiple at-risk stakeholders, and/or encouraging active participation by patients as consumers. Conclusion The adoption of these 3 models for the financing of high-cost drugs would ameliorate decades-long economic conflict in the healthcare system over the value of, and financial responsibility for, drug innovation. PMID:26085900

  18. Bismarck meets Beveridge on the Silk Road: coordinating funding sources to create a universal health financing system in Kyrgyzstan.

    PubMed

    Kutzin, Joseph; Ibraimova, Ainura; Jakab, Melitta; O'Dougherty, Sheila

    2009-07-01

    Options for health financing reform are often portrayed as a choice between general taxation (known as the Beveridge model) and social health insurance (known as the Bismarck model). Ten years of health financing reform in Kyrgyzstan, since the introduction of its compulsory health insurance fund in 1997, provide an excellent example of why it is wrong to reduce health financing policy to a choice between the Beveridge and Bismarck models. Rather than fragment the system according to the insurance status of the population, as many other low- and middle-income countries have done, the Kyrgyz reforms were guided by the objective of having a single system for the entire population. Key features include the role and gradual development of the compulsory health insurance fund as the single purchaser of health-care services for the entire population using output-based payment methods, the complete restructuring of pooling arrangements from the former decentralized budgetary structure to a single national pool, and the establishment of an explicit benefit package. Central to the process was the transformation of the role of general budget revenues - the main source of public funding for health - from directly subsidizing the supply of services to subsidizing the purchase of services on behalf of the entire population by redirecting them into the health insurance fund. Through their approach to health financing policy, and pooling in particular, the Kyrgyz health reformers demonstrated that different sources of funds can be used in an explicitly complementary manner to enable the creation of a unified, universal system.

  19. An optimal contract approach to hospital financing.

    PubMed

    Boadway, Robin; Marchand, Maurice; Sato, Motohiro

    2004-01-01

    Existing models of hospital financing advocate mixed schemes which include both lump-sum and cost-based payments. The doctor is generally the unique decision maker, which is unrealistic in a hospital setting where both managers and doctors are involved. This paper develops a model in which managers and doctors are responsible for different decisions within the hospital. In this model, public authorities who provide the financing, hospital managers who allocate resources within the hospital, and doctors who assign patients to either a low-tech or a high-tech therapy have information of increasing quality on the casemix of patients. The public authorities sign with hospital managers contracts specifying some lump-sum financing and some size of a high-tech equipment. In turn, managers, who know the broad mix of patients in the hospital, sign with hospital doctors contracts that specify the non-medical resources allocated to this facility as well as some remuneration. Doctors, who know each patient's illness severity, select the patients to be treated by the high-tech facility, and receive from public authorities some fee-for-service payment that is differentiated according to the low- or high-tech treatment used for curing their patients. What emerges is a two-stage agency problem in which contracts are designed to elicit information in the most efficient way.

  20. Quantum Spin Glasses, Annealing and Computation

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bikas K.; Inoue, Jun-ichi; Tamura, Ryo; Tanaka, Shu

    2017-05-01

    List of tables; List of figures, Preface; 1. Introduction; Part I. Quantum Spin Glass, Annealing and Computation: 2. Classical spin models from ferromagnetic spin systems to spin glasses; 3. Simulated annealing; 4. Quantum spin glass; 5. Quantum dynamics; 6. Quantum annealing; Part II. Additional Notes: 7. Notes on adiabatic quantum computers; 8. Quantum information and quenching dynamics; 9. A brief historical note on the studies of quantum glass, annealing and computation.

  1. Phase diagram of quantum critical system via local convertibility of ground state

    PubMed Central

    Liu, Si-Yuan; Quan, Quan; Chen, Jin-Jun; Zhang, Yu-Ran; Yang, Wen-Li; Fan, Heng

    2016-01-01

    We investigate the relationship between two kinds of ground-state local convertibility and quantum phase transitions in XY model. The local operations and classical communications (LOCC) convertibility is examined by the majorization relations and the entanglement-assisted local operations and classical communications (ELOCC) via Rényi entropy interception. In the phase diagram of XY model, LOCC convertibility and ELOCC convertibility of ground-states are presented and compared. It is shown that different phases in the phase diagram of XY model can have different LOCC or ELOCC convertibility, which can be used to detect the quantum phase transition. This study will enlighten extensive studies of quantum phase transitions from the perspective of local convertibility, e.g., finite-temperature phase transitions and other quantum many-body models. PMID:27381284

  2. Effect of quantum learning model in improving creativity and memory

    NASA Astrophysics Data System (ADS)

    Sujatmika, S.; Hasanah, D.; Hakim, L. L.

    2018-04-01

    Quantum learning is a combination of many interactions that exist during learning. This model can be applied by current interesting topic, contextual, repetitive, and give opportunities to students to demonstrate their abilities. The basis of the quantum learning model are left brain theory, right brain theory, triune, visual, auditorial, kinesthetic, game, symbol, holistic, and experiential learning theory. Creativity plays an important role to be success in the working world. Creativity shows alternatives way to problem-solving or creates something. Good memory plays a role in the success of learning. Through quantum learning, students will use all of their abilities, interested in learning and create their own ways of memorizing concepts of the material being studied. From this idea, researchers assume that quantum learning models can improve creativity and memory of the students.

  3. Ancilla-driven quantum computation for qudits and continuous variables

    NASA Astrophysics Data System (ADS)

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia; Andersson, Erika; Kendon, Viv

    2017-05-01

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general "quantum variable" formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated "quantum memory" register and which may be applied to the setting of qubits, qudits (for d >2 ), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of a single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. Finally, we discuss settings in which these models may be of practical interest.

  4. A quantum–quantum Metropolis algorithm

    PubMed Central

    Yung, Man-Hong; Aspuru-Guzik, Alán

    2012-01-01

    The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. PMID:22215584

  5. New Spin Foam Models of Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Miković, A.

    We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.

  6. Evolution Model and Simulation of Profit Model of Agricultural Products Logistics Financing

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Wu, Yan

    2018-03-01

    Agricultural products logistics financial warehousing business mainly involves agricultural production and processing enterprises, third-party logistics enterprises and financial institutions tripartite, to enable the three parties to achieve win-win situation, the article first gives the replication dynamics and evolutionary stability strategy between the three parties in business participation, and then use NetLogo simulation platform, using the overall modeling and simulation method of Multi-Agent, established the evolutionary game simulation model, and run the model under different revenue parameters, finally, analyzed the simulation results. To achieve the agricultural products logistics financial financing warehouse business to participate in tripartite mutually beneficial win-win situation, thus promoting the smooth flow of agricultural products logistics business.

  7. Focus on Statistical Physics Modeling in Economics and Finance

    NASA Astrophysics Data System (ADS)

    Mantegna, Rosario N.; Kertész, János

    2011-02-01

    This focus issue presents a collection of papers on recent results in statistical physics modeling in economics and finance, commonly known as econophysics. We touch briefly on the history of this relatively new multi-disciplinary field, summarize the motivations behind its emergence and try to characterize its specific features. We point out some research aspects that must be improved and briefly discuss the topics the research field is moving toward. Finally, we give a short account of the papers collected in this issue.

  8. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  9. Devil's staircases, quantum dimer models, and stripe formation in strong coupling models of quantum frustration.

    NASA Astrophysics Data System (ADS)

    Raman, Kumar; Papanikolaou, Stefanos; Fradkin, Eduardo

    2007-03-01

    We construct a two-dimensional microscopic model of interacting quantum dimers that displays an infinite number of periodic striped phases in its T=0 phase diagram. The phases form an incomplete devil's staircase and the period becomes arbitrarily large as the staircase is traversed. The Hamiltonian has purely short-range interactions, does not break any symmetries, and is generic in that it does not involve the fine tuning of a large number of parameters. Our model, a quantum mechanical analog of the Pokrovsky-Talapov model of fluctuating domain walls in two dimensional classical statistical mechanics, provides a mechanism by which striped phases with periods large compared to the lattice spacing can, in principle, form in frustrated quantum magnetic systems with only short-ranged interactions and no explicitly broken symmetries. Please see cond-mat/0611390 for more details.

  10. Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming

    2018-02-01

    In this article, we investigate the dynamics and correlations of quantum-memory-assisted entropic uncertainty, the tightness of the uncertainty, entanglement, quantum correlation and mixedness for various spin chain models with Dzyaloshinskii-Moriya (DM) interaction, including the XXZ model with DM interaction, the XY model with DM interaction and the Ising model with DM interaction. We find that the uncertainty grows to a stable value with growing temperature but reduces as the coupling coefficient, anisotropy parameter and DM values increase. It is found that the entropic uncertainty is closely correlated with the mixedness of the system. The increasing quantum correlation can result in a decrease in the uncertainty, and the robustness of quantum correlation is better than entanglement since entanglement means sudden birth and death. The tightness of the uncertainty drops to zero, apart from slight volatility as various parameters increase. Furthermore, we propose an effective approach to steering the uncertainty by weak measurement reversal.

  11. Stability of the quantum Sherrington-Kirkpatrick spin glass model

    NASA Astrophysics Data System (ADS)

    Young, A. P.

    2017-09-01

    I study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e., the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodynamic limit. I find that the replica symmetric solution is unstable down to zero temperature, in contrast to some previous claims, and so there is not only a line of transitions in the (longitudinal) field-temperature plane (the de Almeida-Thouless, AT, line) where replica symmetry is broken, but also a quantum de Almeida-Thouless (QuAT) line in the transverse field-longitudinal field plane at T =0 . If the QuAT line also occurs in models with short-range interactions its presence might affect the performance of quantum annealers when solving spin glass-type problems with a bias (i.e., magnetic field).

  12. Quantum Computation

    NASA Astrophysics Data System (ADS)

    Aharonov, Dorit

    In the last few years, theoretical study of quantum systems serving as computational devices has achieved tremendous progress. We now have strong theoretical evidence that quantum computers, if built, might be used as a dramatically powerful computational tool, capable of performing tasks which seem intractable for classical computers. This review is about to tell the story of theoretical quantum computation. I l out the developing topic of experimental realizations of the model, and neglected other closely related topics which are quantum information and quantum communication. As a result of narrowing the scope of this paper, I hope it has gained the benefit of being an almost self contained introduction to the exciting field of quantum computation. The review begins with background on theoretical computer science, Turing machines and Boolean circuits. In light of these models, I define quantum computers, and discuss the issue of universal quantum gates. Quantum algorithms, including Shor's factorization algorithm and Grover's algorithm for searching databases, are explained. I will devote much attention to understanding what the origins of the quantum computational power are, and what the limits of this power are. Finally, I describe the recent theoretical results which show that quantum computers maintain their complexity power even in the presence of noise, inaccuracies and finite precision. This question cannot be separated from that of quantum complexity because any realistic model will inevitably be subjected to such inaccuracies. I tried to put all results in their context, asking what the implications to other issues in computer science and physics are. In the end of this review, I make these connections explicit by discussing the possible implications of quantum computation on fundamental physical questions such as the transition from quantum to classical physics.

  13. Deformed quantum double realization of the toric code and beyond

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo

    2016-09-01

    Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.

  14. The Quantum Arnold Transformation for the damped harmonic oscillator: from the Caldirola-Kanai model toward the Bateman model

    NASA Astrophysics Data System (ADS)

    López-Ruiz, F. F.; Guerrero, J.; Aldaya, V.; Cossío, F.

    2012-08-01

    Using a quantum version of the Arnold transformation of classical mechanics, all quantum dynamical systems whose classical equations of motion are non-homogeneous linear second-order ordinary differential equations (LSODE), including systems with friction linear in velocity such as the damped harmonic oscillator, can be related to the quantum free-particle dynamical system. This implies that symmetries and simple computations in the free particle can be exported to the LSODE-system. The quantum Arnold transformation is given explicitly for the damped harmonic oscillator, and an algebraic connection between the Caldirola-Kanai model for the damped harmonic oscillator and the Bateman system will be sketched out.

  15. Experimental demonstration of a measurement-based realisation of a quantum channel

    NASA Astrophysics Data System (ADS)

    McCutcheon, W.; McMillan, A.; Rarity, J. G.; Tame, M. S.

    2018-03-01

    We introduce and experimentally demonstrate a method for realising a quantum channel using the measurement-based model. Using a photonic setup and modifying the basis of single-qubit measurements on a four-qubit entangled cluster state, representative channels are realised for the case of a single qubit in the form of amplitude and phase damping channels. The experimental results match the theoretical model well, demonstrating the successful performance of the channels. We also show how other types of quantum channels can be realised using our approach. This work highlights the potential of the measurement-based model for realising quantum channels which may serve as building blocks for simulations of realistic open quantum systems.

  16. Gravity quantized: Loop quantum gravity with a scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domagala, Marcin; Kaminski, Wojciech; Giesel, Kristina

    2010-11-15

    ...''but we do not have quantum gravity.'' This phrase is often used when analysis of a physical problem enters the regime in which quantum gravity effects should be taken into account. In fact, there are several models of the gravitational field coupled to (scalar) fields for which the quantization procedure can be completed using loop quantum gravity techniques. The model we present in this paper consists of the gravitational field coupled to a scalar field. The result has similar structure to the loop quantum cosmology models, except that it involves all the local degrees of freedom of the gravitational fieldmore » because no symmetry reduction has been performed at the classical level.« less

  17. Financing dengue vaccine introduction in the Americas: challenges and opportunities.

    PubMed

    Constenla, Dagna; Clark, Samantha

    2016-01-01

    Dengue has escalated in the region of the Americas unabated despite major investments in integrated vector control and prevention strategies. An effective and affordable dengue vaccine can play a critical role in reducing the human and economic costs of the disease by preventing millions around the world from getting sick. However, there are considerable challenges on the path towards vaccine introduction. These include lack of sufficient financing tools, absence of capacity within national level decision-making bodies, and demands that new vaccines place on stressed health systems. Various financing models can be used to overcome these challenges including setting up procurement mechanisms, integrating regional and domestic taxes, and setting up low interest multilateral loans. In this paper we review these challenges and opportunities of financing dengue vaccine introduction in the Americas.

  18. Quantum coherence of planar spin models with Dzyaloshinsky-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Chandrashekar; Ermakov, Igor; Byrnes, Tim

    2017-07-01

    The quantum coherence of one-dimensional planar spin models with Dzyaloshinsky-Moriya interaction is investigated. The anisotropic XY model, the isotropic XX model, and the transverse field model are studied in the large N limit using two qubit reduced density matrices and two point correlation functions. From our investigations we find that the coherence as measured using Jensen-Shannon divergence can be used to detect quantum phase transitions and quantum critical points. The derivative of coherence shows nonanalytic behavior at critical points, leading to the conclusion that these transitions are of second order. Further, we show that the presence of Dzyaloshinsky-Moriya coupling suppresses the phase transition due to residual ferromagnetism, which is caused by spin canting.

  19. Infrastructure Analysis Tools: A Focus on Cash Flow Analysis (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, M.; Penev, M.

    2012-09-01

    NREL has developed and maintains a variety of infrastructure analysis models for the U.S. Department of Energy. Business case analysis has recently been added to this tool set. This presentation focuses on cash flow analysis. Cash flows depend upon infrastructure costs, optimized spatially and temporally, and assumptions about financing and revenue. NREL has incorporated detailed metrics on financing and incentives into the models. Next steps in modeling include continuing to collect feedback on regional/local infrastructure development activities and 'roadmap' dynamics, and incorporating consumer preference assumptions on infrastructure to provide direct feedback between vehicles and station rollout.

  20. The cost of free health care for all Kenyans: assessing the financial sustainability of contributory and non-contributory financing mechanisms.

    PubMed

    Okungu, Vincent; Chuma, Jane; McIntyre, Di

    2017-02-27

    The need to provide quality and equitable health services and protect populations from impoverishing health care costs has pushed universal health coverage (UHC) to the top of global health policy agenda. In many developing countries where the majority of the population works in the informal sector, there are critical debates over the best financing mechanisms to progress towards UHC. In Kenya, government health policy has prioritized contributory financing strategy (social health insurance) as the main financing mechanism for UHC. However, there are currently no studies that have assessed the cost of either social health insurance (SHI) as the contributory approach or an alternative financing mechanism involving non-contributory (general tax funding) approaches to UHC in Kenya. The aim of this study was to critically assess the financial requirements of both contributory and non-contributory mechanisms to financing UHC in Kenya in the context of large informal sector populations. SimIns Basic® model, Version 2.1, 2008 (WHO/GTZ), was used to assess the feasibility of UHC in Kenya and provide estimates of financial resource needs for UHC over a 17-year period (2013-2030). Data sources included review of national and international literature on inflation, demography, macro-economy, health insurance, health services unit costs and utilization rates. The data were triangulated across geographic regions for accuracy and integrity of the simulation. SimIns models for 10 years only so data from the final year of the model was used to project for another 7 years. The 17-year period was necessary because the Government of Kenya aims to achieve UHC by 2030. The results show that SHI is financially sustainable (Sustainability in this study is used to mean that expenditure does not outstrip revenue.) (revenues and expenditure match) within the first five years of implementation, but it becomes less sustainable with time. Modelling for a non-contributory scenario, on the other hand, showed greater sustainability both in the short- and long-term. The financial resource requirements for universal access to health care through general government revenue are compared with a contributory health insurance scheme approach. Although both funding options would require considerable government subsidies, given the magnitude of the informal sector in Kenya and their limited financial capacity, a tax-funded system would be less costly and more sustainable in the long-term than an insurance scheme approach. However, more innovative financing for health care as well as giving the health sector higher priority in government expenditure will be required to make the non-contributory financing mechanism more sustainable.

  1. Hybrid architecture for encoded measurement-based quantum computation

    PubMed Central

    Zwerger, M.; Briegel, H. J.; Dür, W.

    2014-01-01

    We present a hybrid scheme for quantum computation that combines the modular structure of elementary building blocks used in the circuit model with the advantages of a measurement-based approach to quantum computation. We show how to construct optimal resource states of minimal size to implement elementary building blocks for encoded quantum computation in a measurement-based way, including states for error correction and encoded gates. The performance of the scheme is determined by the quality of the resource states, where within the considered error model a threshold of the order of 10% local noise per particle for fault-tolerant quantum computation and quantum communication. PMID:24946906

  2. The localized quantum vacuum field

    NASA Astrophysics Data System (ADS)

    Dragoman, D.

    2008-03-01

    A model for the localized quantum vacuum is proposed in which the zero-point energy (ZPE) of the quantum electromagnetic field originates in energy- and momentum-conserving transitions of material systems from their ground state to an unstable state with negative energy. These transitions are accompanied by emissions and re-absorptions of real photons, which generate a localized quantum vacuum in the neighborhood of material systems. The model could help resolve the cosmological paradox associated with the ZPE of electromagnetic fields, while reclaiming quantum effects associated with quantum vacuum such as the Casimir effect and the Lamb shift. It also offers a new insight into the Zitterbewegung of material particles.

  3. Capacity of a quantum memory channel correlated by matrix product states

    NASA Astrophysics Data System (ADS)

    Mulherkar, Jaideep; Sunitha, V.

    2018-04-01

    We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar-Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.

  4. Effect of self assembled quantum dots on carrier mobility, with application to modeling the dark current in quantum dot infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Youssef, Sarah; El-Batawy, Yasser M.; Abouelsaood, Ahmed A.

    2016-09-01

    A theoretical method for calculating the electron mobility in quantum dot infrared photodetectors is developed. The mobility calculation is based on a time-dependent, finite-difference solution of the Boltzmann transport equation in a bulk semiconductor material with randomly positioned conical quantum dots. The quantum dots act as scatterers of current carriers (conduction-band electrons in our case), resulting in limiting their mobility. In fact, carrier scattering by quantum dots is typically the dominant factor in determining the mobility in the active region of the quantum dot device. The calculated values of the mobility are used in a recently developed generalized drift-diffusion model for the dark current of the device [Ameen et al., J. Appl. Phys. 115, 063703 (2014)] in order to fix the overall current scale. The results of the model are verified by comparing the predicted dark current characteristics to those experimentally measured and reported for actual InAs/GaAs quantum dot infrared photodetectors. Finally, the effect of the several relevant device parameters, including the operating temperature and the quantum dot average density, is studied.

  5. Photodissociation of ultracold diatomic strontium molecules with quantum state control.

    PubMed

    McDonald, M; McGuyer, B H; Apfelbeck, F; Lee, C-H; Majewska, I; Moszynski, R; Zelevinsky, T

    2016-07-07

    Chemical reactions at ultracold temperatures are expected to be dominated by quantum mechanical effects. Although progress towards ultracold chemistry has been made through atomic photoassociation, Feshbach resonances and bimolecular collisions, these approaches have been limited by imperfect quantum state selectivity. In particular, attaining complete control of the ground or excited continuum quantum states has remained a challenge. Here we achieve this control using photodissociation, an approach that encodes a wealth of information in the angular distribution of outgoing fragments. By photodissociating ultracold (88)Sr2 molecules with full control of the low-energy continuum, we access the quantum regime of ultracold chemistry, observing resonant and nonresonant barrier tunnelling, matter-wave interference of reaction products and forbidden reaction pathways. Our results illustrate the failure of the traditional quasiclassical model of photodissociation and instead are accurately described by a quantum mechanical model. The experimental ability to produce well-defined quantum continuum states at low energies will enable high-precision studies of long-range molecular potentials for which accurate quantum chemistry models are unavailable, and may serve as a source of entangled states and coherent matter waves for a wide range of experiments in quantum optics.

  6. Quantum Accelerators for High-performance Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S.; Britt, Keith A.; Mohiyaddin, Fahd A.

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, themore » prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.« less

  7. Quantum critical dynamics of the boson system in the Ginzburg-Landau model

    NASA Astrophysics Data System (ADS)

    Vasin, M. G.

    2014-12-01

    The quantum critical dynamics of the quantum phase transitions is considered. In the framework of the unified theory, based on the Keldysh technique, we consider the crossover from the classical to the quantum description of the boson many-body system dynamics close to the second order quantum phase transition. It is shown that in this case the upper critical space dimension of this model is dc+=2, therefore the quantum critical dynamics approach is useful in case of d<2. In the one-dimension system the phase coherence time does diverge at the quantum critical point, gc, and has the form of τ∝-ln∣g-gc∣/∣g-gc∣, the correlation radius diverges as rc∝∣g-gc∣(ν=0.6).

  8. Single-Photon-Triggered Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Lü, Xin-You; Zheng, Li-Li; Zhu, Gui-Lei; Wu, Ying

    2018-06-01

    We propose a hybrid quantum model combining cavity QED and optomechanics, which allows the occurrence of an equilibrium superradiant quantum phase transition (QPT) triggered by a single photon. This single-photon-triggered QPT exists in the cases of both ignoring and including the so-called A2 term; i.e., it is immune to the no-go theorem. It originally comes from the photon-dependent quantum criticality featured by the proposed hybrid quantum model. Moreover, a reversed superradiant QPT is induced by the competition between the introduced A2 term and the optomechanical interaction. This work offers an approach to manipulate QPT with a single photon, which should inspire the exploration of single-photon quantum-criticality physics and the engineering of new single-photon quantum devices.

  9. Solution to the sign problem in a frustrated quantum impurity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hann, Connor T., E-mail: connor.hann@yale.edu; Huffman, Emilie; Chandrasekharan, Shailesh

    2017-01-15

    In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weightmore » configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.« less

  10. ODE/IM correspondence and the Argyres-Douglas theory

    NASA Astrophysics Data System (ADS)

    Ito, Katsushi; Shu, Hongfei

    2017-08-01

    We study the quantum spectral curve of the Argyres-Douglas theories in the Nekrasov-Sahashvili limit of the Omega-background. Using the ODE/IM correspondence we investigate the quantum integrable model corresponding to the quantum spectral curve. We show that the models for the A 2 N -type theories are non-unitary coset models ( A 1)1 × ( A 1) L /( A 1) L+1 at the fractional level L=2/2N+1-2 , which appear in the study of the 4d/2d correspondence of N = 2 superconformal field theories. Based on the WKB analysis, we clarify the relation between the Y-functions and the quantum periods and study the exact Bohr-Sommerfeld quantization condition for the quantum periods. We also discuss the quantum spectral curves for the D and E type theories.

  11. Cryptography in the Bounded-Quantum-Storage Model

    NASA Astrophysics Data System (ADS)

    Schaffner, Christian

    2007-09-01

    This thesis initiates the study of cryptographic protocols in the bounded-quantum-storage model. On the practical side, simple protocols for Rabin Oblivious Transfer, 1-2 Oblivious Transfer and Bit Commitment are presented. No quantum memory is required for honest players, whereas the protocols can only be broken by an adversary controlling a large amount of quantum memory. The protocols are efficient, non-interactive and can be implemented with today's technology. On the theoretical side, new entropic uncertainty relations involving min-entropy are established and used to prove the security of protocols according to new strong security definitions. For instance, in the realistic setting of Quantum Key Distribution (QKD) against quantum-memory-bounded eavesdroppers, the uncertainty relation allows to prove the security of QKD protocols while tolerating considerably higher error rates compared to the standard model with unbounded adversaries.

  12. A scalable quantum computer with ions in an array of microtraps

    PubMed

    Cirac; Zoller

    2000-04-06

    Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).

  13. Quantum computers: Definition and implementations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Delgado, Carlos A.; Kok, Pieter

    The DiVincenzo criteria for implementing a quantum computer have been seminal in focusing both experimental and theoretical research in quantum-information processing. These criteria were formulated specifically for the circuit model of quantum computing. However, several new models for quantum computing (paradigms) have been proposed that do not seem to fit the criteria well. Therefore, the question is what are the general criteria for implementing quantum computers. To this end, a formal operational definition of a quantum computer is introduced. It is then shown that, according to this definition, a device is a quantum computer if it obeys the following criteria:more » Any quantum computer must consist of a quantum memory, with an additional structure that (1) facilitates a controlled quantum evolution of the quantum memory; (2) includes a method for information theoretic cooling of the memory; and (3) provides a readout mechanism for subsets of the quantum memory. The criteria are met when the device is scalable and operates fault tolerantly. We discuss various existing quantum computing paradigms and how they fit within this framework. Finally, we present a decision tree for selecting an avenue toward building a quantum computer. This is intended to help experimentalists determine the most natural paradigm given a particular physical implementation.« less

  14. Architectures and Applications for Scalable Quantum Information Systems

    DTIC Science & Technology

    2007-01-01

    quantum computation models, such as adiabatic quantum computing , can be converted to quantum circuits. Therefore, in our design flow’s first phase...vol. 26, no. 5, pp. 1484–1509, 1997. [19] A. Childs, E. Farhi, and J. Preskill, “Robustness of adiabatic quantum computation ,” Phys. Rev. A, vol. 65...magnetic resonance computer with three quantum bits that simulates an adiabatic quantum optimization algorithm. Adiabatic

  15. Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy

    DTIC Science & Technology

    2016-08-25

    life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an... quantum computer . DOI: 10.1103/PhysRevX.6.021028 Subject Areas: Condensed Matter Physics, Quantum Physics, Quantum Information I. INTRODUCTION Quantum ... computing hardware is affected by a substantial level of intrinsic noise and therefore naturally realizes dis- sipative quantum dynamics [1,2

  16. Quantum and classical noise in practical quantum-cryptography systems based on polarization-entangled photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castelletto, S.; Degiovanni, I.P.; Rastello, M.L.

    2003-02-01

    Quantum-cryptography key distribution (QCKD) experiments have been recently reported using polarization-entangled photons. However, in any practical realization, quantum systems suffer from either unwanted or induced interactions with the environment and the quantum measurement system, showing up as quantum and, ultimately, statistical noise. In this paper, we investigate how an ideal polarization entanglement in spontaneous parametric down-conversion (SPDC) suffers quantum noise in its practical implementation as a secure quantum system, yielding errors in the transmitted bit sequence. Since all SPDC-based QCKD schemes rely on the measurement of coincidence to assert the bit transmission between the two parties, we bundle up themore » overall quantum and statistical noise in an exhaustive model to calculate the accidental coincidences. This model predicts the quantum-bit error rate and the sifted key and allows comparisons between different security criteria of the hitherto proposed QCKD protocols, resulting in an objective assessment of performances and advantages of different systems.« less

  17. Quantum Common Causes and Quantum Causal Models

    NASA Astrophysics Data System (ADS)

    Allen, John-Mark A.; Barrett, Jonathan; Horsman, Dominic C.; Lee, Ciarán M.; Spekkens, Robert W.

    2017-07-01

    Reichenbach's principle asserts that if two observed variables are found to be correlated, then there should be a causal explanation of these correlations. Furthermore, if the explanation is in terms of a common cause, then the conditional probability distribution over the variables given the complete common cause should factorize. The principle is generalized by the formalism of causal models, in which the causal relationships among variables constrain the form of their joint probability distribution. In the quantum case, however, the observed correlations in Bell experiments cannot be explained in the manner Reichenbach's principle would seem to demand. Motivated by this, we introduce a quantum counterpart to the principle. We demonstrate that under the assumption that quantum dynamics is fundamentally unitary, if a quantum channel with input A and outputs B and C is compatible with A being a complete common cause of B and C , then it must factorize in a particular way. Finally, we show how to generalize our quantum version of Reichenbach's principle to a formalism for quantum causal models and provide examples of how the formalism works.

  18. Charge transport in quantum dot organic solar cells with Si quantum dots sandwiched between poly(3-hexylthiophene) (P3HT) absorber and bathocuproine (BCP) transport layers

    NASA Astrophysics Data System (ADS)

    Verma, Upendra Kumar; Kumar, Brijesh

    2017-10-01

    We have modeled a multilayer quantum dot organic solar cell that explores the current-voltage characteristic of the solar cell whose characteristics can be tuned by varying the fabrication parameters of the quantum dots (QDs). The modeled device consists of a hole transport layer (HTL) which doubles up as photon absorbing layer, several quantum dot layers, and an electron transport layer (ETL). The conduction of charge carriers in HTL and ETL has been modeled by the drift-diffusion transport mechanism. The conduction and recombination in the quantum dot layers are described by a system of coupled rate equations incorporating tunneling and bimolecular recombination. Analysis of QD-solar cells shows improved device performance compared to the similar bilayer and trilayer device structures without QDs. Keeping other design parameters constant, solar cell characteristics can be controlled by the quantum dot layers. Bimolecular recombination coefficient of quantum dots is a prime factor which controls the open circuit voltage (VOC) without any significant reduction in short circuit current (JSC).

  19. JOURNAL SCOPE GUIDELINES: Paper classification scheme

    NASA Astrophysics Data System (ADS)

    2005-06-01

    This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas

  20. Reliability of analog quantum simulation

    DOE PAGES

    Sarovar, Mohan; Zhang, Jun; Zeng, Lishan

    2017-01-03

    Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these twomore » points of view is a critical step in making the most of this promising technology. In this paper we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. Finally, to demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.« less

  1. Decoherence and dissipation for a quantum system coupled to a local environment

    NASA Technical Reports Server (NTRS)

    Gallis, Michael R.

    1994-01-01

    Decoherence and dissipation in quantum systems has been studied extensively in the context of Quantum Brownian Motion. Effective decoherence in coarse grained quantum systems has been a central issue in recent efforts by Zurek and by Hartle and Gell-Mann to address the Quantum Measurement Problem. Although these models can yield very general classical phenomenology, they are incapable of reproducing relevant characteristics expected of a local environment on a quantum system, such as the characteristic dependence of decoherence on environment spatial correlations. I discuss the characteristics of Quantum Brownian Motion in a local environment by examining aspects of first principle calculations and by the construction of phenomenological models. Effective quantum Langevin equations and master equations are presented in a variety of representations. Comparisons are made with standard results such as the Caldeira-Leggett master equation.

  2. Quantum Associative Neural Network with Nonlinear Search Algorithm

    NASA Astrophysics Data System (ADS)

    Zhou, Rigui; Wang, Huian; Wu, Qian; Shi, Yang

    2012-03-01

    Based on analysis on properties of quantum linear superposition, to overcome the complexity of existing quantum associative memory which was proposed by Ventura, a new storage method for multiply patterns is proposed in this paper by constructing the quantum array with the binary decision diagrams. Also, the adoption of the nonlinear search algorithm increases the pattern recalling speed of this model which has multiply patterns to O( {log2}^{2^{n -t}} ) = O( n - t ) time complexity, where n is the number of quantum bit and t is the quantum information of the t quantum bit. Results of case analysis show that the associative neural network model proposed in this paper based on quantum learning is much better and optimized than other researchers' counterparts both in terms of avoiding the additional qubits or extraordinary initial operators, storing pattern and improving the recalling speed.

  3. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  4. Security of a kind of quantum secret sharing with entangled states.

    PubMed

    Wang, Tian-Yin; Liu, Ying-Zhao; Wei, Chun-Yan; Cai, Xiao-Qiu; Ma, Jian-Feng

    2017-05-30

    We present a new collusion attack to a kind of quantum secret sharing schemes with entangled states. Using this attack, an unauthorized set of agents can gain access to the shared secret without the others' cooperation. Furthermore, we establish a general model for this kind of quantum secret sharing schemes and then give some necessary conditions to design a secure quantum secret sharing scheme under this model.

  5. On the Origin of Quantum Diffusion Coefficient and Quantum Potential

    NASA Astrophysics Data System (ADS)

    Gupta, Aseem

    2016-03-01

    Synchronizability of space and time experiences between different inhabitants of a spacetime is abstracted as a fundamental premise of Classical physics. Absence thereof i.e. desynchronization between space and time experiences of a system under study and the observer is then studied for a single dimension single particle system. Desynchronization fundamentally makes probability concepts enter physics ab-initio and not as secondary tools to deal with situations wherein incomplete information in situation following perfectly deterministic dynamics demands its introduction. Desynchronization model based on Poisson distribution of events vis-à-vis an observer, leads to expectation of particle's motion as a Brownian motion deriving Nelson's quantum diffusion coefficient naturally, without needing to postulate it. This model also incorporates physical effects akin to those of Bohm's Quantum Potential, again without needing any sub-quantum medium. Schrodinger's equation is shown to be derivable incorporating desynchronization only of space while Quantum Field Theory is shown to model desynchronization of time as well. Fundamental suggestion of the study is that it is desynchronization that is at the root of quantum phenomena rather than sub-micro scales of spacetime. Absence of possibility of synchronization between system's space and time and those of observer is studied. Mathematical modeling of desynchronized evolution explains some intriguing aspects of Quantum Mechanical theory.

  6. A review on mathematical methods of conventional and Islamic derivatives

    NASA Astrophysics Data System (ADS)

    Hisham, Azie Farhani Badrol; Jaffar, Maheran Mohd

    2014-12-01

    Despite the impressive growth of risk management tools in financial institutions, Islamic finance remains miles away behind the conventional institutions. Islamic finance products need to comply with the syariah law and prohibitions, therefore they can use fewer of the available risk management tools compared to conventional. Derivatives have proven to be the effective hedging technique and instrument that broadly being used in the conventional institutions to manage their risks. However, derivatives are not generally accepted as the legitimate products in Islamic finance and they remain controversial issues among the Islamic scholars. This paper reviews the evolution of derivatives such as forwards, futures and options and then explores the mathematical models that being used to solve derivatives such as random walk model, asset pricing model that follows Brownian motion and Black-Scholes model. Other than that, this paper also critically discuss the perspective of derivatives from Islamic point of view. In conclusion, this paper delivers the traditional Islamic products such as salam, urbun and istijrar that can be used to create building blocks of Islamic derivatives.

  7. Are tax subsidies for private medical insurance self-financing? Evidence from a microsimulation model.

    PubMed

    López Nicolás, Angel; Vera-Hernández, Marcos

    2008-09-01

    This paper develops an empirical strategy to estimate whether subsidies to private medical insurance are self-financing in countries where public and private insurance coexist and the latter covers the same treatments as the former. We construct a simulation routine based on a micro-econometric discrete choice model that allows us to evaluate the impact of premium changes on the utilization of outpatient and inpatient health care services. As an application, we estimate the budgetary effects of scrapping a subsidy from the purchase of individual private policies, using micro-data from Catalonia. Our results suggest that the subsidy is not self-financing. This result is driven by the fact that private medical insurance holders make concurrent use of public and private services, and by the price inelasticity of the demand for private policies.

  8. Public financing of the Medicare program will make its uniform structure increasingly costly to sustain.

    PubMed

    Baicker, Katherine; Shepard, Mark; Skinner, Jonathan

    2013-05-01

    The US Medicare program consumes an ever-rising share of the federal budget. Although this public spending can produce health and social benefits, raising taxes to finance it comes at the cost of slower economic growth. In this article we describe a model incorporating the benefits of public programs and the cost of tax financing. The model implies that the "one-size-fits-all" Medicare program, with everyone covered by the same insurance policy, will be increasingly difficult to sustain. We show that a Medicare program with guaranteed basic benefits and the option to purchase additional coverage could lead to more unequal health spending but slower growth in taxation, greater overall well-being, and more rapid growth of gross domestic product. Our framework highlights the key trade-offs between Medicare spending and economic prosperity.

  9. Consumer-directed models of personal care: lessons from Medicaid.

    PubMed

    Doty, P; Kasper, J; Litvak, S

    1996-01-01

    "Consumer-directed" models of financing and services delivery are compared with models that emphasize professional control and accountability within the context of Medicaid-financed personal care services (PCS). The Medicaid PCS benefit finances aide or attendant services for low-income persons with functional disabilities to assist them with daily living tasks. Consumer-directed modes of service provision permit service recipients themselves to have greater choice and control over all aspects of service provision. Client surveys in three states found that clients were most satisfied with the program elements of Medicaid PCS services that gave them more choice and control. Case studies of how Medicaid PCS programs in particular states are administered indicate that the use of aides who are independent providers, unattached to a home health or home care agency, is a critical aspect of consumer direction. By itself, however, this factor does not guarantee consumer direction because other Medicaid PCS rules and regulations may restrict client choice and control.

  10. Contextual Advantage for State Discrimination

    NASA Astrophysics Data System (ADS)

    Schmid, David; Spekkens, Robert W.

    2018-02-01

    Finding quantitative aspects of quantum phenomena which cannot be explained by any classical model has foundational importance for understanding the boundary between classical and quantum theory. It also has practical significance for identifying information processing tasks for which those phenomena provide a quantum advantage. Using the framework of generalized noncontextuality as our notion of classicality, we find one such nonclassical feature within the phenomenology of quantum minimum-error state discrimination. Namely, we identify quantitative limits on the success probability for minimum-error state discrimination in any experiment described by a noncontextual ontological model. These constraints constitute noncontextuality inequalities that are violated by quantum theory, and this violation implies a quantum advantage for state discrimination relative to noncontextual models. Furthermore, our noncontextuality inequalities are robust to noise and are operationally formulated, so that any experimental violation of the inequalities is a witness of contextuality, independently of the validity of quantum theory. Along the way, we introduce new methods for analyzing noncontextuality scenarios and demonstrate a tight connection between our minimum-error state discrimination scenario and a Bell scenario.

  11. Gravitational decoherence

    NASA Astrophysics Data System (ADS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-10-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity (G and g) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems.

  12. Clean Energy Finance: Challenges and Opportunities of Early-Stage Energy Investing (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heap, D.; Pless, J.; Aieta, N.

    Characterized by a changing landscape and new opportunities, today's increasingly complex energy decision space will need innovative financing and investment models to appropriately assess risk and profitability. This report provides an overview of the current state of clean energy finance across the entire spectrum but with a focus on early stage investing, and it includes insights from investors across all investment classes. Further, this report aims to provide a roadmap with the mechanisms, limitations, and considerations involved in making successful investments by identifying risks, challenges, and opportunities in the clean energy sector.

  13. Reform towards National Health Insurance in Malaysia: the equity implications.

    PubMed

    Yu, Chai Ping; Whynes, David K; Sach, Tracey H

    2011-05-01

    This paper assesses the potential equity impact of Malaysia's projected reform of its current tax financed system towards National Health Insurance (NHI). The Kakwani's progressivity index was used to assess the equity consequences of the new NHI system (with flat rate NHI scheme) compared to the current tax financed system. It was also used to model a proposed system (with a progressive NHI scheme) that can generate the same amount of funding more equitably. The new NHI system would be less equitable than the current tax financed system, as evident from the reduction of Kakwani's index to 0.168 from 0.217. The new flat rate NHI scheme, if implemented, would reduce the progressivity of the health finance system because it is a less progressive finance source than that of general government revenue. We proposed a system with a progressive NHI scheme that generates the same amount of funding whilst preserving the equity at the Kakwani's progressivity index of 0.213. A NHI system with a progressive NHI scheme is proposed to be implemented to raise health funding whilst preserving the equity in health care financing. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Information transmission in microbial and fungal communication: from classical to quantum.

    PubMed

    Majumdar, Sarangam; Pal, Sukla

    2018-06-01

    Microbes have their own communication systems. Secretion and reception of chemical signaling molecules and ion-channels mediated electrical signaling mechanism are yet observed two special ways of information transmission in microbial community. In this article, we address the aspects of various crucial machineries which set the backbone of microbial cell-to-cell communication process such as quorum sensing mechanism (bacterial and fungal), quorum sensing regulated biofilm formation, gene expression, virulence, swarming, quorum quenching, role of noise in quorum sensing, mathematical models (therapy model, evolutionary model, molecular mechanism model and many more), synthetic bacterial communication, bacterial ion-channels, bacterial nanowires and electrical communication. In particular, we highlight bacterial collective behavior with classical and quantum mechanical approaches (including quantum information). Moreover, we shed a new light to introduce the concept of quantum synthetic biology and possible cellular quantum Turing test.

  15. Wealth, Income, and Price Effects in Local School Finance.

    ERIC Educational Resources Information Center

    Grubb, W. Norton

    In this paper, the author attempts to clarify several implicit hypotheses about local school finance reform, set up tests whereby hypothesis validity can be affirmed or rejected, and outline the policy implications of the results. Two mathematical models of school district behavior are examined, and their implications are tested on a sample of 150…

  16. Overcoming the current deadlock in antibiotic research.

    PubMed

    Schäberle, Till F; Hack, Ingrid M

    2014-04-01

    Antibiotic-resistant bacteria are on the rise, making it harder to treat bacterial infections. The situation is aggravated by the shrinking of the antibiotic development pipeline. To finance urgently needed incentives for antibiotic research, creative financing solutions are needed. Public-private partnerships (PPPs) are a successful model for moving forward. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Textbook Readability and Student Performance in Online Introductory Corporate Finance Classes

    ERIC Educational Resources Information Center

    Peng, Chien-Chih

    2015-01-01

    This paper examines whether the choice of a more readable textbook can improve student performance in online introductory corporate finance classes. The ordinary least squares regression model is employed to analyze a sample of 206 students during the period from 2008 to 2012. The results of this study show that the student's age, student's major,…

  18. Predictors of Performance in Introductory Finance: Variables within and beyond the Student's Control

    ERIC Educational Resources Information Center

    Englander, Fred; Wang, Zhaobo; Betz, Kenneth

    2015-01-01

    This study examined variables that are within and beyond the control of students in explaining variations in performance in an introductory finance course. Regression models were utilized to consider whether the variables within the student's control have a greater impact on course performance relative to the variables beyond the student's…

  19. The Influence of Finance and Accountability Policies on Location of New York State Charter Schools

    ERIC Educational Resources Information Center

    Bifulco, Robert; Buerger, Christian

    2015-01-01

    This article identifies a set of location incentives created by New York's charter school financing and accountability provisions. We then use regression models to examine the location of charter schools across and within districts. We find that charter schools (1) are significantly more likely to locate in districts with high operating expenses…

  20. Quantum thermodynamic cycles and quantum heat engines. II.

    PubMed

    Quan, H T

    2009-04-01

    We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.

  1. Verifiable fault tolerance in measurement-based quantum computation

    NASA Astrophysics Data System (ADS)

    Fujii, Keisuke; Hayashi, Masahito

    2017-09-01

    Quantum systems, in general, cannot be simulated efficiently by a classical computer, and hence are useful for solving certain mathematical problems and simulating quantum many-body systems. This also implies, unfortunately, that verification of the output of the quantum systems is not so trivial, since predicting the output is exponentially hard. As another problem, the quantum system is very delicate for noise and thus needs an error correction. Here, we propose a framework for verification of the output of fault-tolerant quantum computation in a measurement-based model. In contrast to existing analyses on fault tolerance, we do not assume any noise model on the resource state, but an arbitrary resource state is tested by using only single-qubit measurements to verify whether or not the output of measurement-based quantum computation on it is correct. Verifiability is equipped by a constant time repetition of the original measurement-based quantum computation in appropriate measurement bases. Since full characterization of quantum noise is exponentially hard for large-scale quantum computing systems, our framework provides an efficient way to practically verify the experimental quantum error correction.

  2. Hidden Quantum Processes, Quantum Ion Channels, and 1/ fθ-Type Noise.

    PubMed

    Paris, Alan; Vosoughi, Azadeh; Berman, Stephen A; Atia, George

    2018-07-01

    In this letter, we perform a complete and in-depth analysis of Lorentzian noises, such as those arising from [Formula: see text] and [Formula: see text] channel kinetics, in order to identify the source of [Formula: see text]-type noise in neurological membranes. We prove that the autocovariance of Lorentzian noise depends solely on the eigenvalues (time constants) of the kinetic matrix but that the Lorentzian weighting coefficients depend entirely on the eigenvectors of this matrix. We then show that there are rotations of the kinetic eigenvectors that send any initial weights to any target weights without altering the time constants. In particular, we show there are target weights for which the resulting Lorenztian noise has an approximately [Formula: see text]-type spectrum. We justify these kinetic rotations by introducing a quantum mechanical formulation of membrane stochastics, called hidden quantum activated-measurement models, and prove that these quantum models are probabilistically indistinguishable from the classical hidden Markov models typically used for ion channel stochastics. The quantum dividend obtained by replacing classical with quantum membranes is that rotations of the Lorentzian weights become simple readjustments of the quantum state without any change to the laboratory-determined kinetic and conductance parameters. Moreover, the quantum formalism allows us to model the activation energy of a membrane, and we show that maximizing entropy under constrained activation energy yields the previous [Formula: see text]-type Lorentzian weights, in which the spectral exponent [Formula: see text] is a Lagrange multiplier for the energy constraint. Thus, we provide a plausible neurophysical mechanism by which channel and membrane kinetics can give rise to [Formula: see text]-type noise (something that has been occasionally denied in the literature), as well as a realistic and experimentally testable explanation for the numerical values of the spectral exponents. We also discuss applications of quantum membranes beyond [Formula: see text]-type -noise, including applications to animal models and possible impact on quantum foundations.

  3. From axiomatics of quantum probability to modelling geological uncertainty and management of intelligent hydrocarbon reservoirs with the theory of open quantum systems.

    PubMed

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia

    2018-04-28

    As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper , we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E ; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. 'explore or not?'; 'open new well or not?'; 'contaminated by water or not?'; 'double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism).This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).

  4. From axiomatics of quantum probability to modelling geological uncertainty and management of intelligent hydrocarbon reservoirs with the theory of open quantum systems

    NASA Astrophysics Data System (ADS)

    Lozada Aguilar, Miguel Ángel; Khrennikov, Andrei; Oleschko, Klaudia

    2018-04-01

    As was recently shown by the authors, quantum probability theory can be used for the modelling of the process of decision-making (e.g. probabilistic risk analysis) for macroscopic geophysical structures such as hydrocarbon reservoirs. This approach can be considered as a geophysical realization of Hilbert's programme on axiomatization of statistical models in physics (the famous sixth Hilbert problem). In this conceptual paper, we continue development of this approach to decision-making under uncertainty which is generated by complexity, variability, heterogeneity, anisotropy, as well as the restrictions to accessibility of subsurface structures. The belief state of a geological expert about the potential of exploring a hydrocarbon reservoir is continuously updated by outputs of measurements, and selection of mathematical models and scales of numerical simulation. These outputs can be treated as signals from the information environment E. The dynamics of the belief state can be modelled with the aid of the theory of open quantum systems: a quantum state (representing uncertainty in beliefs) is dynamically modified through coupling with E; stabilization to a steady state determines a decision strategy. In this paper, the process of decision-making about hydrocarbon reservoirs (e.g. `explore or not?'; `open new well or not?'; `contaminated by water or not?'; `double or triple porosity medium?') is modelled by using the Gorini-Kossakowski-Sudarshan-Lindblad equation. In our model, this equation describes the evolution of experts' predictions about a geophysical structure. We proceed with the information approach to quantum theory and the subjective interpretation of quantum probabilities (due to quantum Bayesianism). This article is part of the theme issue `Hilbert's sixth problem'.

  5. A new market risk model for cogeneration project financing---combined heat and power development without a power purchase agreement

    NASA Astrophysics Data System (ADS)

    Lockwood, Timothy A.

    Federal legislative changes in 2006 no longer entitle cogeneration project financings by law to receive the benefit of a power purchase agreement underwritten by an investment-grade investor-owned utility. Consequently, this research explored the need for a new market-risk model for future cogeneration and combined heat and power (CHP) project financing. CHP project investment represents a potentially enormous energy efficiency benefit through its application by reducing fossil fuel use up to 55% when compared to traditional energy generation, and concurrently eliminates constituent air emissions up to 50%, including global warming gases. As a supplemental approach to a comprehensive technical analysis, a quantitative multivariate modeling was also used to test the statistical validity and reliability of host facility energy demand and CHP supply ratios in predicting the economic performance of CHP project financing. The resulting analytical models, although not statistically reliable at this time, suggest a radically simplified CHP design method for future profitable CHP investments using four easily attainable energy ratios. This design method shows that financially successful CHP adoption occurs when the average system heat-to-power-ratio supply is less than or equal to the average host-convertible-energy-ratio, and when the average nominally-rated capacity is less than average host facility-load-factor demands. New CHP investments can play a role in solving the world-wide problem of accommodating growing energy demand while preserving our precious and irreplaceable air quality for future generations.

  6. Reforming health care financing in Bulgaria: the population perspective.

    PubMed

    Balabanova, Dina; McKee, Martin

    2004-02-01

    Health financing reform in Bulgaria has been characterised by lack of political consensus on reform direction, economic shocks, and, since 1998, steps towards social insurance. As in other eastern European countries, the reform has been driven by an imperative to embrace new ideas modelled on systems elsewhere, but with little attention to whether these reflect popular values. This study explores underlying values, such as views on the role of the state and solidarity, attitudes to, and understanding of compulsory and voluntary insurance, and co-payments. The study identifies general principles (equity, transparency) considered important by the population and practical aspects of implementation of reform. Data were obtained from a representative survey (n=1547) and from 58 in-depth interviews and 6 focus groups with users and health professionals, conducted in 1997 before the actual reform of the health financing system in Bulgaria. A majority supports significant state involvement in health care financing, ranging from providing safety net for the poor, through co-subsidising or regulating the social insurance system, to providing state-financed universal free care (half of all respondents). Collectivist values in Bulgaria remain strong, with support for free access to services regardless of income, age, or health status and progressive funding. There is strong support (especially among the well off) for a social insurance system based on the principle of solidarity and accountability rather than the former tax-based model. The preferred health insurance fund was autonomous, state regulated, financing only health care, and offering optional membership. Voluntary insurance and, less so, co-payments were acceptable if limited to selected services and better off groups. In conclusion, a health financing system under public control that fits well with values and population preferences is likely to improve compliance and be more sustainable. Universal health insurance appears to attract most support, but a broader public debate involving less empowered people is needed to resolve misunderstandings and create realistic expectations.

  7. Ancilla-driven quantum computation for qudits and continuous variables

    DOE PAGES

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia; ...

    2017-05-10

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general “quantum variable” formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated “quantum memory” register and which may be applied to the setting of qubits, qudits (for d>2), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of amore » single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. In conclusion, we discuss settings in which these models may be of practical interest.« less

  8. Quantum Statistical Mechanics on a Quantum Computer

    NASA Astrophysics Data System (ADS)

    Raedt, H. D.; Hams, A. H.; Michielsen, K.; Miyashita, S.; Saito, K.

    We describe a quantum algorithm to compute the density of states and thermal equilibrium properties of quantum many-body systems. We present results obtained by running this algorithm on a software implementation of a 21-qubit quantum computer for the case of an antiferromagnetic Heisenberg model on triangular lattices of different size.

  9. Reversibility and measurement in quantum computing

    NASA Astrophysics Data System (ADS)

    Leãao, J. P.

    1998-03-01

    The relation between computation and measurement at a fundamental physical level is yet to be understood. Rolf Landauer was perhaps the first to stress the strong analogy between these two concepts. His early queries have regained pertinence with the recent efforts to developed realizable models of quantum computers. In this context the irreversibility of quantum measurement appears in conflict with the requirement of reversibility of the overall computation associated with the unitary dynamics of quantum evolution. The latter in turn is responsible for the features of superposition and entanglement which make some quantum algorithms superior to classical ones for the same task in speed and resource demand. In this article we advocate an approach to this question which relies on a model of computation designed to enforce the analogy between the two concepts instead of demarcating them as it has been the case so far. The model is introduced as a symmetrization of the classical Turing machine model and is then carried on to quantum mechanics, first as a an abstract local interaction scheme (symbolic measurement) and finally in a nonlocal noninteractive implementation based on Aharonov-Bohm potentials and modular variables. It is suggested that this implementation leads to the most ubiquitous of quantum algorithms: the Discrete Fourier Transform.

  10. Simplicity constraints: A 3D toy model for loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Charles, Christoph

    2018-05-01

    In loop quantum gravity, tremendous progress has been made using the Ashtekar-Barbero variables. These variables, defined in a gauge fixing of the theory, correspond to a parametrization of the solutions of the so-called simplicity constraints. Their geometrical interpretation is however unsatisfactory as they do not constitute a space-time connection. It would be possible to resolve this point by using a full Lorentz connection or, equivalently, by using the self-dual Ashtekar variables. This leads however to simplicity constraints or reality conditions which are notoriously difficult to implement in the quantum theory. We explore in this paper the possibility of using completely degenerate actions to impose such constraints at the quantum level in the context of canonical quantization. To do so, we define a simpler model, in 3D, with similar constraints by extending the phase space to include an independent vielbein. We define the classical model and show that a precise quantum theory by gauge unfixing can be defined out of it, completely equivalent to the standard 3D Euclidean quantum gravity. We discuss possible future explorations around this model as it could help as a stepping stone to define full-fledged covariant loop quantum gravity.

  11. The weak coupling limit as a quantum functional central limit

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Frigerio, A.; Lu, Y. G.

    1990-08-01

    We show that, in the weak coupling limit, the laser model process converges weakly in the sense of the matrix elements to a quantum diffusion whose equation is explicitly obtained. We prove convergence, in the same sense, of the Heisenberg evolution of an observable of the system to the solution of a quantum Langevin equation. As a corollary of this result, via the quantum Feynman-Kac technique, one can recover previous results on the quantum master equation for reduced evolutions of open systems. When applied to some particular model (e.g. the free Boson gas) our results allow to interpret the Lamb shift as an Ito correction term and to express the pumping rates in terms of quantities related to the original Hamiltonian model.

  12. A quantum anharmonic oscillator model for the stock market

    NASA Astrophysics Data System (ADS)

    Gao, Tingting; Chen, Yu

    2017-02-01

    A financially interpretable quantum model is proposed to study the probability distributions of the stock price return. The dynamics of a quantum particle is considered an analog of the motion of stock price. Then the probability distributions of price return can be computed from the wave functions that evolve according to Schrodinger equation. Instead of a harmonic oscillator in previous studies, a quantum anharmonic oscillator is applied to the stock in liquid market. The leptokurtic distributions of price return can be reproduced by our quantum model with the introduction of mixed-state and multi-potential. The trend following dominant market, in which the price return follows a bimodal distribution, is discussed as a specific case of the illiquid market.

  13. Quantum gates with controlled adiabatic evolutions

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2015-02-01

    We introduce a class of quantum adiabatic evolutions that we claim may be interpreted as the equivalents of the unitary gates of the quantum gate model. We argue that these gates form a universal set and may therefore be used as building blocks in the construction of arbitrary "adiabatic circuits," analogously to the manner in which gates are used in the circuit model. One implication of the above construction is that arbitrary classical boolean circuits as well as gate model circuits may be directly translated to adiabatic algorithms with no additional resources or complexities. We show that while these adiabatic algorithms fail to exhibit certain aspects of the inherent fault tolerance of traditional quantum adiabatic algorithms, they may have certain other experimental advantages acting as quantum gates.

  14. Quantum computation with coherent spin states and the close Hadamard problem

    NASA Astrophysics Data System (ADS)

    Adcock, Mark R. A.; Høyer, Peter; Sanders, Barry C.

    2016-04-01

    We study a model of quantum computation based on the continuously parameterized yet finite-dimensional Hilbert space of a spin system. We explore the computational powers of this model by analyzing a pilot problem we refer to as the close Hadamard problem. We prove that the close Hadamard problem can be solved in the spin system model with arbitrarily small error probability in a constant number of oracle queries. We conclude that this model of quantum computation is suitable for solving certain types of problems. The model is effective for problems where symmetries between the structure of the information associated with the problem and the structure of the unitary operators employed in the quantum algorithm can be exploited.

  15. Cryptography from noisy storage.

    PubMed

    Wehner, Stephanie; Schaffner, Christian; Terhal, Barbara M

    2008-06-06

    We show how to implement cryptographic primitives based on the realistic assumption that quantum storage of qubits is noisy. We thereby consider individual-storage attacks; i.e., the dishonest party attempts to store each incoming qubit separately. Our model is similar to the model of bounded-quantum storage; however, we consider an explicit noise model inspired by present-day technology. To illustrate the power of this new model, we show that a protocol for oblivious transfer is secure for any amount of quantum-storage noise, as long as honest players can perform perfect quantum operations. Our model also allows us to show the security of protocols that cope with noise in the operations of the honest players and achieve more advanced tasks such as secure identification.

  16. Conceptual Modeling of a Quantum Key Distribution Simulation Framework Using the Discrete Event System Specification

    DTIC Science & Technology

    2014-09-18

    and full/scale experimental verifications towards ground/ satellite quantum key distribution0 Oat Qhotonics 4235>9+7,=5;9!អ \\58^ Zin K. Dao Z. Miu T...Conceptual Modeling of a Quantum Key Distribution Simulation Framework Using the Discrete Event System Specification DISSERTATION Jeffrey D. Morris... QUANTUM KEY DISTRIBUTION SIMULATION FRAMEWORK USING THE DISCRETE EVENT SYSTEM SPECIFICATION DISSERTATION Presented to the Faculty Department of Systems

  17. Experimental Preparation and Measurement of Quantum States of Motion of a Trapped Atom

    DTIC Science & Technology

    1997-01-01

    trapped atom are quantum harmonic oscillators, their couplings to internal atomic levels (described by the Jaynes - Cummings model (JCM) [ l , 21) are... wave approximation in a frame rotating with WO, where hwo is the energy difference of the two internal levels, the interaction of the classical laser... Jaynes - Cummings model , the system is suited to realizing many proposals originally introduced in the realm of quantum optics and cavity quantum

  18. Coherent states, quantum gravity, and the Born-Oppenheimer approximation. I. General considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stottmeister, Alexander, E-mail: alexander.stottmeister@gravity.fau.de; Thiemann, Thomas, E-mail: thomas.thiemann@gravity.fau.de

    2016-06-15

    This article, as the first of three, aims at establishing the (time-dependent) Born-Oppenheimer approximation, in the sense of space adiabatic perturbation theory, for quantum systems constructed by techniques of the loop quantum gravity framework, especially the canonical formulation of the latter. The analysis presented here fits into a rather general framework and offers a solution to the problem of applying the usual Born-Oppenheimer ansatz for molecular (or structurally analogous) systems to more general quantum systems (e.g., spin-orbit models) by means of space adiabatic perturbation theory. The proposed solution is applied to a simple, finite dimensional model of interacting spin systems,more » which serves as a non-trivial, minimal model of the aforesaid problem. Furthermore, it is explained how the content of this article and its companion affect the possible extraction of quantum field theory on curved spacetime from loop quantum gravity (including matter fields).« less

  19. Post-Markovian dynamics of quantum correlations: entanglement versus discord

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hamidreza

    2017-02-01

    Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.

  20. Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems.

    PubMed

    Yan, Yun-An

    2016-01-14

    The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a new short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today's nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.

  1. Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction.

    PubMed

    Vahedi, J; Ashouri, A; Mahdavifar, S

    2016-10-01

    Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.

  2. Software Systems for High-performance Quantum Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; Britt, Keith A

    Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventionalmore » computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.« less

  3. Quantum lattice model solver HΦ

    NASA Astrophysics Data System (ADS)

    Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki

    2017-08-01

    HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).

  4. Dirac Cellular Automaton from Split-step Quantum Walk

    PubMed Central

    Mallick, Arindam; Chandrashekar, C. M.

    2016-01-01

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory. PMID:27184159

  5. A Quantum Theoretical Explanation for Probability Judgment Errors

    ERIC Educational Resources Information Center

    Busemeyer, Jerome R.; Pothos, Emmanuel M.; Franco, Riccardo; Trueblood, Jennifer S.

    2011-01-01

    A quantum probability model is introduced and used to explain human probability judgment errors including the conjunction and disjunction fallacies, averaging effects, unpacking effects, and order effects on inference. On the one hand, quantum theory is similar to other categorization and memory models of cognition in that it relies on vector…

  6. Bell's Inequality: Revolution in Quantum Physics or Just AN Inadequate Mathematical Model?

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    The main aim of this review is to stress the role of mathematical models in physics. The Bell inequality (BI) is often called the "most famous inequality of the 20th century." It is commonly accepted that its violation in corresponding experiments induced a revolution in quantum physics. Unlike "old quantum mechanics" (of Einstein, Schrodinger Bohr, Heisenberg, Pauli, Landau, Fock), "modern quantum mechanics" (of Bell, Aspect, Zeilinger, Shimony, Green-berger, Gisin, Mermin) takes seriously so called quantum non-locality. We will show that the conclusion that one has to give up the realism (i.e., a possibility to assign results of measurements to physical systems) or the locality (i.e., to assume action at a distance) is heavily based on one special mathematical model. This model was invented by A. N. Kolmogorov in 1933. One should pay serious attention to the role of mathematical models in physics. The problems of the realism and locality induced by Bell's argument can be solved by using non-Kolmogorovian probabilistic models. We compare this situation with non-Euclidean geometric models in relativity theory.

  7. Quasi-local holographic dualities in non-perturbative 3D quantum gravity

    NASA Astrophysics Data System (ADS)

    Dittrich, Bianca; Goeller, Christophe; Livine, Etera R.; Riello, Aldo

    2018-07-01

    We present a line of research aimed at investigating holographic dualities in the context of three dimensional quantum gravity within finite bounded regions. The bulk quantum geometrodynamics is provided by the Ponzano–Regge state-sum model, which defines 3D quantum gravity as a discrete topological quantum field theory (TQFT). This formulation provides an explicit and detailed definition of the quantum boundary states, which allows a rich correspondence between quantum boundary conditions and boundary theories, thereby leading to holographic dualities between 3D quantum gravity and 2D statistical models as used in condensed matter. After presenting the general framework, we focus on the concrete example of the coherent twisted torus boundary, which allows for a direct comparison with other approaches to 3D/2D holography at asymptotic infinity. We conclude with the most interesting questions to pursue in this framework.

  8. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    NASA Astrophysics Data System (ADS)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical approaches based on an approximate, yet systematically improved account of quantum correlations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proctor, Timothy; Giulian, Melissa; Korolkova, Natalia

    Although qubits are the leading candidate for the basic elements in a quantum computer, there are also a range of reasons to consider using higher-dimensional qudits or quantum continuous variables (QCVs). In this paper, we use a general “quantum variable” formalism to propose a method of quantum computation in which ancillas are used to mediate gates on a well-isolated “quantum memory” register and which may be applied to the setting of qubits, qudits (for d>2), or QCVs. More specifically, we present a model in which universal quantum computation may be implemented on a register using only repeated applications of amore » single fixed two-body ancilla-register interaction gate, ancillas prepared in a single state, and local measurements of these ancillas. In order to maintain determinism in the computation, adaptive measurements via a classical feed forward of measurement outcomes are used, with the method similar to that in measurement-based quantum computation (MBQC). We show that our model has the same hybrid quantum-classical processing advantages as MBQC, including the power to implement any Clifford circuit in essentially one layer of quantum computation. In some physical settings, high-quality measurements of the ancillas may be highly challenging or not possible, and hence we also present a globally unitary model which replaces the need for measurements of the ancillas with the requirement for ancillas to be prepared in states from a fixed orthonormal basis. In conclusion, we discuss settings in which these models may be of practical interest.« less

  10. The value of flexibility in conservation financing.

    PubMed

    Lennox, Gareth D; Fargione, Joseph; Spector, Sacha; Williams, Gwyn; Armsworth, Paul R

    2017-06-01

    Land-acquisition strategies employed by conservation organizations vary in their flexibility. Conservation-planning theory largely fails to reflect this by presenting models that are either extremely inflexible-parcel acquisitions are irreversible and budgets are fixed-or extremely flexible-previously acquired parcels can readily be sold. This latter approach, the selling of protected areas, is infeasible or problematic in many situations. We considered the value to conservation organizations of increasing the flexibility of their land-acquisition strategies through their approach to financing deals. Specifically, we modeled 2 acquisition-financing methods commonly used by conservation organizations: borrowing and budget carry-over. Using simulated data, we compared results from these models with those from an inflexible fixed-budget model and an extremely flexible selling model in which previous acquisitions could be sold to fund new acquisitions. We then examined 3 case studies of how conservation organizations use borrowing and budget carry-over in practice. Model comparisons showed that borrowing and budget carry-over always returned considerably higher rewards than the fixed-budget model. How they performed relative to the selling model depended on the relative conservation value of past acquisitions. Both the models and case studies showed that incorporating flexibility through borrowing or budget carry-over gives conservation organizations the ability to purchase parcels of higher conservation value than when budgets are fixed without the problems associated with the selling of protected areas. © 2016 Society for Conservation Biology.

  11. Financing health care in the United Arab Emirates.

    PubMed

    Taha, Nabila Fahed; Sharif, Amer Ahmad; Blair, Iain

    2013-01-01

    Newcomers to the United Arab Emirates (UAE) health care system often enquire about the way in which UAE health services are financed particularly when funding issues affect eligibility for treatment. The UAE ranks alongside many western counties on measures of life expectancy and child mortality but because of the unique population structure spends less of its national income on health. In the past as a wealthy country the UAE had no difficulty ensuring universal access to a comprehensive range of services but the health needs of the UAE population are becoming more complex and like many countries the UAE health system is facing the twin challenges of quality and cost. To meet these challenges new models of health care financing are being introduced. In this brief article we will describe the evolution of UAE health financing, its current state and likely future developments.

  12. Organization and financing of the Danish health care system.

    PubMed

    Christiansen, Terkel

    2002-02-01

    The present paper aims at giving a short overview of the organization and financing of the Danish health care system as of 1997-1998 when the SWOT panel evaluated the system. The overview follows the triangular model of a health care system. The Danish system is characterized by being decentralized and single-funded. The hospital sector is public, and hospitals are financed and run by the counties (with only a very small private hospital sector alongside). General practitioners are private entrepreneurs but work under contract for the counties. Hospitals are financed by global budgets, while general practitioners are paid by a mixed remuneration system of capitation fees and fee-for-service. During the past 20 years, the government has repeatedly imposed budget ceilings on the counties which has limited growth in the health care sector.

  13. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  14. Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator.

    PubMed

    Li, Keren; Wan, Yidun; Hung, Ling-Yan; Lan, Tian; Long, Guilu; Lu, Dawei; Zeng, Bei; Laflamme, Raymond

    2017-02-24

    Topological orders can be used as media for topological quantum computing-a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their modular S and T matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the properties of three topologically ordered matter phases described by the string-net model with two string types, including the Z_{2} toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian Fibonacci order is notably expected to be the simplest candidate for universal topological quantum computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-Abelian anyons and ultimately, topological quantum computation via the braiding, and thus provides a new approach of investigating topological orders using quantum computers.

  15. A quantum probability explanation for violations of ‘rational’ decision theory

    PubMed Central

    Pothos, Emmanuel M.; Busemeyer, Jerome R.

    2009-01-01

    Two experimental tasks in psychology, the two-stage gambling game and the Prisoner's Dilemma game, show that people violate the sure thing principle of decision theory. These paradoxical findings have resisted explanation by classical decision theory for over a decade. A quantum probability model, based on a Hilbert space representation and Schrödinger's equation, provides a simple and elegant explanation for this behaviour. The quantum model is compared with an equivalent Markov model and it is shown that the latter is unable to account for violations of the sure thing principle. Accordingly, it is argued that quantum probability provides a better framework for modelling human decision-making. PMID:19324743

  16. Dynamics of Topological Excitations in a Model Quantum Spin Ice

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Jiong; Deng, Youjin; Wan, Yuan; Meng, Zi Yang

    2018-04-01

    We study the quantum spin dynamics of a frustrated X X Z model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window. Our results provide experimentally relevant, quantitative information for the ongoing pursuit of quantum spin ice materials.

  17. Quantum model of light transmission in array waveguide gratings.

    PubMed

    Capmany, J; Mora, J; Fernández-Pousa, C R; Muñoz, P

    2013-06-17

    We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, cyclic AWG is experimentally characterized with weak input coherent states as a means of exploring its behaviour under realistic quantum detection. In particular it is shown the existence of a cutoff value of the average photon number below which quantum crosstalk between AWG ports is negligible with respect to dark counts. These results can be useful when considering the application of AWG devices to integrated quantum photonic systems.

  18. Quantum Control of Open Systems and Dense Atomic Ensembles

    NASA Astrophysics Data System (ADS)

    DiLoreto, Christopher

    Controlling the dynamics of open quantum systems; i.e. quantum systems that decohere because of interactions with the environment, is an active area of research with many applications in quantum optics and quantum computation. My thesis expands the scope of this inquiry by seeking to control open systems in proximity to an additional system. The latter could be a classical system such as metal nanoparticles, or a quantum system such as a cluster of similar atoms. By modelling the interactions between the systems, we are able to expand the accessible state space of the quantum system in question. For a single, three-level quantum system, I examine isolated systems that have only normal spontaneous emission. I then show that intensity-intensity correlation spectra, which depend directly on the density matrix of the system, can be used detect whether transitions share a common energy level. This detection is possible due to the presence of quantum interference effects between two transitions if they are connected. This effect allows one to asses energy level structure diagrams in complex atoms/molecules. By placing an open quantum system near a nanoparticle dimer, I show that the spontaneous emission rate of the system can be changed "on demand" by changing the polarization of an incident, driving field. In a three-level, Lambda system, this allows a qubit to both retain high qubit fidelity when it is operating, and to be rapidly initialized to a pure state once it is rendered unusable by decoherence. This type of behaviour is not possible in a single open quantum system; therefore adding a classical system nearby extends the overall control space of the quantum system. An open quantum system near identical neighbours in a dense ensemble is another example of how the accessible state space can be expanded. I show that a dense ensemble of atoms rapidly becomes disordered with states that are not directly excited by an incident field becoming significantly populated. This effect motivates the need for using multi-directional basis sets in theoretical analysis of dense quantum systems. My results demonstrate the shortcomings of short-pulse techniques used in many recent studies. Based on my numerical studies, I hypothesize that the dense ensemble can be modelled by an effective single quantum system that has a decoherence rate that changes over time. My effective single particle model provides a way in which computational time can be reduced, and also a model in which the underlying physical processes involved in the system's evolution are much easier to understand. I then use this model to provide an elegant theoretical explanation for an unusual experimental result called "transverse optical magnetism''. My effective single particle model's predictions match very well with experimental data.

  19. Haag duality for Kitaev’s quantum double model for abelian groups

    NASA Astrophysics Data System (ADS)

    Fiedler, Leander; Naaijkens, Pieter

    2015-11-01

    We prove Haag duality for cone-like regions in the ground state representation corresponding to the translational invariant ground state of Kitaev’s quantum double model for finite abelian groups. This property says that if an observable commutes with all observables localized outside the cone region, it actually is an element of the von Neumann algebra generated by the local observables inside the cone. This strengthens locality, which says that observables localized in disjoint regions commute. As an application, we consider the superselection structure of the quantum double model for abelian groups on an infinite lattice in the spirit of the Doplicher-Haag-Roberts program in algebraic quantum field theory. We find that, as is the case for the toric code model on an infinite lattice, the superselection structure is given by the category of irreducible representations of the quantum double.

  20. Magnon edge states in the hardcore- Bose-Hubbard model.

    PubMed

    Owerre, S A

    2016-11-02

    Quantum Monte Carlo (QMC) simulation has uncovered nonzero Berry curvature and bosonic edge states in the hardcore-Bose-Hubbard model on the gapped honeycomb lattice. The competition between the chemical potential and staggered onsite potential leads to an interesting quantum phase diagram comprising the superfluid phase, Mott insulator, and charge density wave insulator. In this paper, we present a semiclassical perspective of this system by mapping to a spin-1/2 quantum XY model. We give an explicit analytical origin of the quantum phase diagram, the Berry curvatures, and the edge states using semiclassical approximations. We find very good agreement between the semiclassical analyses and the QMC results. Our results show that the topological properties of the hardcore-Bose-Hubbard model are the same as those of magnon in the corresponding quantum spin system. Our results are applicable to systems of ultracold bosonic atoms trapped in honeycomb optical lattices.

  1. Analogies of the classical Euler top with a rotor to spin squeezing and quantum phase transitions in a generalized Lipkin-Meshkov-Glick model.

    PubMed

    Opatrný, Tomáš; Richterek, Lukáš; Opatrný, Martin

    2018-01-31

    We show that the classical model of Euler top (freely rotating, generally asymmetric rigid body), possibly supplemented with a rotor, corresponds to a generalized Lipkin-Meshkov-Glick (LMG) model describing phenomena of various branches of quantum physics. Classical effects such as free precession of a symmetric top, Feynman's wobbling plate, tennis-racket instability and the Dzhanibekov effect, attitude control of satellites by momentum wheels, or twisting somersault dynamics, have their counterparts in quantum effects that include spin squeezing by one-axis twisting and two-axis countertwisting, transitions between the Josephson and Rabi regimes of a Bose-Einstein condensate in a double-well potential, and other quantum critical phenomena. The parallels enable us to expand the range of explored quantum phase transitions in the generalized LMG model, as well as to present a classical analogy of the recently proposed LMG Floquet time crystal.

  2. The dynamics of stock exchange based on the formalism of weak continuous quantum measurement

    NASA Astrophysics Data System (ADS)

    Melnyk, S.; Tuluzov, I.

    2010-07-01

    The problem of measurement in economic models and the possibility of their quantum-mechanical description are considered. It is revealed that the apparent paradox of such a description is associated with a priori requirement of conformity of the model to all the alternatives of free choice of the observer. The measurement of the state of a trader on a stock exchange is formally defined as his responses to the proposals of sale at a fixed price. It is shown that an analogue of Bell's inequalities for this measurement model is violated at the most general assumptions related to the strategy of the trader and requires a quantum-mechanical description of the dynamics of his condition. In the framework of the theory of weak continuous quantum measurements, the equation of stock price dynamics and the quantum-mechanical generalization of the F. Black and M. Scholes model for pricing options are obtained. The fundamental distinctions between the obtained model and the classical one are discussed.

  3. Self-organization of vortex-length distribution in quantum turbulence: An approach based on the Barabasi-Albert model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitani, Akira; Tsubota, Makoto

    2006-07-01

    The energy spectrum of decaying quantum turbulence at T=0 obeys Kolmogorov's law. In addition to this, recent studies revealed that the vortex-length distribution (VLD), meaning the size distribution of the vortices, in decaying Kolmogorov quantum turbulence also obeys a power law. This power-law VLD suggests that the decaying turbulence has scale-free structure in real space. Unfortunately, however, there has been no practical study that answers the following important question: why can quantum turbulence acquire a scale-free VLD? We propose here a model to study the origin of the power law of the VLD from a generic point of view. Themore » nature of quantized vortices allows one to describe the decay of quantum turbulence with a simple model that is similar to the Barabasi-Albert model, which explains the scale-invariance structure of large networks. We show here that such a model can reproduce the power law of the VLD well.« less

  4. Quantum energy teleportation in a quantum Hall system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusa, Go; Izumida, Wataru; Hotta, Masahiro

    2011-09-15

    We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.

  5. Quantum Graphical Models and Belief Propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leifer, M.S.; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo Ont., N2L 2Y5; Poulin, D.

    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markovmore » Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described.« less

  6. A model of adaptive decision-making from representation of information environment by quantum fields.

    PubMed

    Bagarello, F; Haven, E; Khrennikov, A

    2017-11-13

    We present the mathematical model of decision-making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioural and geopolitical factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are a purely informational nature. The QFT model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism. We demonstrate the quantum-like interference effect in DM, which is exhibited as a violation of the formula of total probability, and hence the classical Bayesian inference scheme.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).

  7. A model of adaptive decision-making from representation of information environment by quantum fields

    NASA Astrophysics Data System (ADS)

    Bagarello, F.; Haven, E.; Khrennikov, A.

    2017-10-01

    We present the mathematical model of decision-making (DM) of agents acting in a complex and uncertain environment (combining huge variety of economical, financial, behavioural and geopolitical factors). To describe interaction of agents with it, we apply the formalism of quantum field theory (QTF). Quantum fields are a purely informational nature. The QFT model can be treated as a far relative of the expected utility theory, where the role of utility is played by adaptivity to an environment (bath). However, this sort of utility-adaptivity cannot be represented simply as a numerical function. The operator representation in Hilbert space is used and adaptivity is described as in quantum dynamics. We are especially interested in stabilization of solutions for sufficiently large time. The outputs of this stabilization process, probabilities for possible choices, are treated in the framework of classical DM. To connect classical and quantum DM, we appeal to Quantum Bayesianism. We demonstrate the quantum-like interference effect in DM, which is exhibited as a violation of the formula of total probability, and hence the classical Bayesian inference scheme. This article is part of the themed issue `Second quantum revolution: foundational questions'.

  8. Broken selection rule in the quantum Rabi model

    PubMed Central

    Forn-Díaz, P.; Romero, G.; Harmans, C. J. P. M.; Solano, E.; Mooij, J. E.

    2016-01-01

    Understanding the interaction between light and matter is very relevant for fundamental studies of quantum electrodynamics and for the development of quantum technologies. The quantum Rabi model captures the physics of a single atom interacting with a single photon at all regimes of coupling strength. We report the spectroscopic observation of a resonant transition that breaks a selection rule in the quantum Rabi model, implemented using an LC resonator and an artificial atom, a superconducting qubit. The eigenstates of the system consist of a superposition of bare qubit-resonator states with a relative sign. When the qubit-resonator coupling strength is negligible compared to their own frequencies, the matrix element between excited eigenstates of different sign is very small in presence of a resonator drive, establishing a sign-preserving selection rule. Here, our qubit-resonator system operates in the ultrastrong coupling regime, where the coupling strength is 10% of the resonator frequency, allowing sign-changing transitions to be activated and, therefore, detected. This work shows that sign-changing transitions are an unambiguous, distinctive signature of systems operating in the ultrastrong coupling regime of the quantum Rabi model. These results pave the way to further studies of sign-preserving selection rules in multiqubit and multiphoton models. PMID:27273346

  9. Phenomenological implications of an alternative Hamiltonian constraint for quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Mikhail

    2005-11-15

    In this paper we review a model based on loop quantum cosmology that arises from a symmetry reduction of the self-dual Plebanski action. In this formulation the symmetry reduction leads to a very simple Hamiltonian constraint that can be quantized explicitly in the framework of loop quantum cosmology. We investigate the phenomenological implications of this model in the semiclassical regime and compare those with the known results of the standard Loop Quantum Cosmology.

  10. AlGaAs-GaAs quantum-well lasers for direct solar photopumping

    NASA Technical Reports Server (NTRS)

    Unnikrishnan, Sreenath; Anderson, Neal G.

    1991-01-01

    The paper theoretically examines the solar power requirements for low-threshold AlGaAs-GaAs quantum-well lasers directly photopumped by focused sunlight. A model of separate-confinement quantum-well-heterostructure (SCQWH) lasers was developed, which explicitly treats absorption and transport phenomena relevant to solar pumping. The model was used to identify separate-confinement single-quantum-well laser structures which should operate at photoexcitation intensities of less than 10,000 suns.

  11. Community Crowd-Funded Solar Finance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagerson, Gordon "Ty"

    The award supported the demonstration and development of the Village Power Platform, which enables community organizations to more readily develop, finance and operate solar installations on local community organizations. The platform enables partial or complete local ownership of the solar installation. The award specifically supported key features including financial modeling tools, community communications tools, crowdfunding mechanisms, a mobile app, and other critical features.

  12. Demand-Side Financing--A Focus on Vouchers in Post-Compulsory Education and Training: Discussion Paper and Case Studies. CEDEFOP Dossier.

    ERIC Educational Resources Information Center

    West, Anne; Sparkes, Jo; Balabanov, Todor

    The use of demand-side financing mechanisms and vouchers for postcompulsory secondary-level education was examined through case studies of funding practices in the following countries: Austria; France; the United Kingdom; the United States; and Wallonia (the French community of Belgium). Different models of voucher use were identified in the…

  13. Disrupting Cocaine Trafficking Networks: Interdicting a Combined Social-Functional Network Model

    DTIC Science & Technology

    2016-03-01

    organizations,  (6.3.C) target transnational money laundering networks to deny drug trafficking organizations illicit financing and money laundering ...6.3.C) target transnational money laundering networks to deny drug trafficking organizations illicit financing and money laundering capabilities...tonne or metric ton (1000 kg) MCO major combat operations MLO money laundering organization MM million NDIC National Drug Intelligence Center

  14. Increasing Effectiveness of the Community College Financial Model: A Global Perspective for the Global Economy. International and Development Education

    ERIC Educational Resources Information Center

    Sutin, Stewart E., Ed.; Derrico, Daniel, Ed.; Raby, Rosalind Latiner, Ed.; Valeau, Edward J., Ed.

    2011-01-01

    This book seeks to explore thematic and pragmatic applications of financing the community college to help facilitate educational reform, to assist efforts related to internationalization, and to create systemic support systems to maintain the mission. It includes chapters on a wide variety of finance related topics, and specific case studies of…

  15. The Supply and Cost of Education and the Vote: A Political-Economic Theory of School Finance Elections.

    ERIC Educational Resources Information Center

    Boss, Michael

    The recent marked increase in voter-taxpayer rejection of school budget and school bond issues at polls across the United States -- a phenomenon popularly called the "taxpayers' revolt" -- has given rise to the widespread claim that public school finance is in a state of crisis. This paper develops a simplified model of a political…

  16. Experiential Learning--A Case Study of the Use of Computerised Stock Market Trading Simulation in Finance Education

    ERIC Educational Resources Information Center

    Marriott, Pru; Tan, Siew Min; Marriott, Neil

    2015-01-01

    Finance is a popular programme of study in UK higher education despite it being a challenging subject that requires students to understand and apply complex and abstract mathematical models and academic theories. Educational simulation is an active learning method found to be useful in enhancing students' learning experience, but there has been…

  17. The Search for Equity in School Finance: Michigan School District Response to a Guaranteed Tax Base.

    ERIC Educational Resources Information Center

    Park, Rolla Edward; Carroll, Stephen J.

    Part of a three-volume report on the effects of school finance reform, this volume examines the effects of reform on Michigan school districts' budgets from 1971 to 1976. Econometric models were used. Researchers found a very small "price" effect--an elasticity of -.02. The data provide no evidence that state matching grants stimulate…

  18. Quantum-like model of brain's functioning: decision making from decoherence.

    PubMed

    Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu; Basieva, Irina; Khrennikov, Andrei

    2011-07-21

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices (representing mental states). This equilibrium state determines Alice's mixed (i.e., probabilistic) strategy. We use a master equation in which quantum physics describes the process of decoherence as the result of interaction with environment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence is induced by the interaction with memory and the external mental environment. We study (numerically) the dynamics of quantum entropy of Alice's mental state in the process of decision making. We also consider classical entropy corresponding to Alice's choices. We introduce a measure of Alice's diffidence as the difference between classical and quantum entropies of Alice's mental state. We see that (at least in our model example) diffidence decreases (approaching zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like dynamics in the brain; especially roles played by lateral prefrontal cortex or/and orbitofrontal cortex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Public Financing Of The Medicare Program Will Make Its Uniform Structure Increasingly Costly To Sustain

    PubMed Central

    Baicker, Katherine; Shepard, Mark; Skinner, Jonathan

    2013-01-01

    The US Medicare program consumes an ever-rising share of the federal budget. Although this public spending can produce health and social benefits, raising taxes to finance it comes at the cost of slower economic growth. In this article we describe a model incorporating the benefits of public programs and the cost of tax financing. The model implies that the “one-size-fits-all” Medicare program, with everyone covered by the same insurance policy, will be increasingly difficult to sustain. We show that a Medicare program with guaranteed basic benefits and the option to purchase additional coverage could lead to more unequal health spending but slower growth in taxation, greater overall well-being, and more rapid growth of gross domestic product. Our framework highlights the key trade-offs between Medicare spending and economic prosperity. PMID:23650321

  20. Classical Yang-Baxter equations and quantum integrable systems

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav

    1989-06-01

    Quantum integrable models associated with nondegenerate solutions of classical Yang-Baxter equations related to the simple Lie algebras are investigated. These models are diagonalized for rational and trigonometric solutions in the cases of sl(N)/gl(N)/, o(N) and sp(N) algebras. The analogy with the quantum inverse scattering method is demonstrated.

  1. Relative resilience to noise of standard and sequential approaches to measurement-based quantum computation

    NASA Astrophysics Data System (ADS)

    Gallagher, C. B.; Ferraro, A.

    2018-05-01

    A possible alternative to the standard model of measurement-based quantum computation (MBQC) is offered by the sequential model of MBQC—a particular class of quantum computation via ancillae. Although these two models are equivalent under ideal conditions, their relative resilience to noise in practical conditions is not yet known. We analyze this relationship for various noise models in the ancilla preparation and in the entangling-gate implementation. The comparison of the two models is performed utilizing both the gate infidelity and the diamond distance as figures of merit. Our results show that in the majority of instances the sequential model outperforms the standard one in regard to a universal set of operations for quantum computation. Further investigation is made into the performance of sequential MBQC in experimental scenarios, thus setting benchmarks for possible cavity-QED implementations.

  2. Quantum Computation by Optically Coupled Steady Atoms/Quantum-Dots Inside a Quantum Cavity

    NASA Technical Reports Server (NTRS)

    Pradhan, P.; Wang, K. L.; Roychowdhury, V. P.; Anantram, M. P.; Mor, T.; Saini, Subhash (Technical Monitor)

    1999-01-01

    We present a model for quantum computation using $n$ steady 3-level atoms kept inside a quantum cavity, or using $n$ quantum-dots (QDs) kept inside a quantum cavity. In this model one external laser is pointed towards all the atoms/QDs, and $n$ pairs of electrodes are addressing the atoms/QDs, so that each atom is addressed by one pair. The energy levels of each atom/QD are controlled by an external Stark field given to the atom/QD by its external pair of electrodes. Transition between two energy levels of an individual atom/ QD are controlled by the voltage on its electrodes, and by the external laser. Interactions between two atoms/ QDs are performed with the additional help of the cavity mode (using on-resonance condition). Laser frequency, cavity frequency, and energy levels are far off-resonance most of the time, and they are brought to the resonance (using the Stark effect) only at the time of operations. Steps for a controlled-NOT gate between any two atoms/QDs have been described for this model. Our model demands some challenging technological efforts, such as manufacturing single-electron QDs inside a cavity. However, it promises big advantages over other existing models which are currently implemented, and might enable a much easier scale-up, to compute with many more qubits.

  3. Application of Non-Kolmogorovian Probability and Quantum Adaptive Dynamics to Unconscious Inference in Visual Perception Process

    NASA Astrophysics Data System (ADS)

    Accardi, Luigi; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2016-07-01

    Recently a novel quantum information formalism — quantum adaptive dynamics — was developed and applied to modelling of information processing by bio-systems including cognitive phenomena: from molecular biology (glucose-lactose metabolism for E.coli bacteria, epigenetic evolution) to cognition, psychology. From the foundational point of view quantum adaptive dynamics describes mutual adapting of the information states of two interacting systems (physical or biological) as well as adapting of co-observations performed by the systems. In this paper we apply this formalism to model unconscious inference: the process of transition from sensation to perception. The paper combines theory and experiment. Statistical data collected in an experimental study on recognition of a particular ambiguous figure, the Schröder stairs, support the viability of the quantum(-like) model of unconscious inference including modelling of biases generated by rotation-contexts. From the probabilistic point of view, we study (for concrete experimental data) the problem of contextuality of probability, its dependence on experimental contexts. Mathematically contextuality leads to non-Komogorovness: probability distributions generated by various rotation contexts cannot be treated in the Kolmogorovian framework. At the same time they can be embedded in a “big Kolmogorov space” as conditional probabilities. However, such a Kolmogorov space has too complex structure and the operational quantum formalism in the form of quantum adaptive dynamics simplifies the modelling essentially.

  4. Cosmological evolution as squeezing: a toy model for group field cosmology

    NASA Astrophysics Data System (ADS)

    Adjei, Eugene; Gielen, Steffen; Wieland, Wolfgang

    2018-05-01

    We present a simple model of quantum cosmology based on the group field theory (GFT) approach to quantum gravity. The model is formulated on a subspace of the GFT Fock space for the quanta of geometry, with a fixed volume per quantum. In this Hilbert space, cosmological expansion corresponds to the generation of new quanta. Our main insight is that the evolution of a flat Friedmann–Lemaître–Robertson–Walker universe with a massless scalar field can be described on this Hilbert space as squeezing, familiar from quantum optics. As in GFT cosmology, we find that the three-volume satisfies an effective Friedmann equation similar to the one of loop quantum cosmology, connecting the classical contracting and expanding solutions by a quantum bounce. The only free parameter in the model is identified with Newton’s constant. We also comment on the possible topological interpretation of our squeezed states. This paper can serve as an introduction into the main ideas of GFT cosmology without requiring the full GFT formalism; our results can also motivate new developments in GFT and its cosmological application.

  5. Quantum-like model of processing of information in the brain based on classical electromagnetic field.

    PubMed

    Khrennikov, Andrei

    2011-09-01

    We propose a model of quantum-like (QL) processing of mental information. This model is based on quantum information theory. However, in contrast to models of "quantum physical brain" reducing mental activity (at least at the highest level) to quantum physical phenomena in the brain, our model matches well with the basic neuronal paradigm of the cognitive science. QL information processing is based (surprisingly) on classical electromagnetic signals induced by joint activity of neurons. This novel approach to quantum information is based on representation of quantum mechanics as a version of classical signal theory which was recently elaborated by the author. The brain uses the QL representation (QLR) for working with abstract concepts; concrete images are described by classical information theory. Two processes, classical and QL, are performed parallely. Moreover, information is actively transmitted from one representation to another. A QL concept given in our model by a density operator can generate a variety of concrete images given by temporal realizations of the corresponding (Gaussian) random signal. This signal has the covariance operator coinciding with the density operator encoding the abstract concept under consideration. The presence of various temporal scales in the brain plays the crucial role in creation of QLR in the brain. Moreover, in our model electromagnetic noise produced by neurons is a source of superstrong QL correlations between processes in different spatial domains in the brain; the binding problem is solved on the QL level, but with the aid of the classical background fluctuations. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  6. Modelling and simulation of parallel triangular triple quantum dots (TTQD) by using SIMON 2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fathany, Maulana Yusuf, E-mail: myfathany@gmail.com; Fuada, Syifaul, E-mail: fsyifaul@gmail.com; Lawu, Braham Lawas, E-mail: bram-labs@rocketmail.com

    2016-04-19

    This research presents analysis of modeling on Parallel Triple Quantum Dots (TQD) by using SIMON (SIMulation Of Nano-structures). Single Electron Transistor (SET) is used as the basic concept of modeling. We design the structure of Parallel TQD by metal material with triangular geometry model, it is called by Triangular Triple Quantum Dots (TTQD). We simulate it with several scenarios using different parameters; such as different value of capacitance, various gate voltage, and different thermal condition.

  7. Quantum corrections to quasi-periodic solution of Sine-Gordon model and periodic solution of phi4 model

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, G.; Leble, S.

    2014-03-01

    Analytical form of quantum corrections to quasi-periodic solution of Sine-Gordon model and periodic solution of phi4 model is obtained through zeta function regularisation with account of all rest variables of a d-dimensional theory. Qualitative dependence of quantum corrections on parameters of the classical systems is also evaluated for a much broader class of potentials u(x) = b2f(bx) + C with b and C as arbitrary real constants.

  8. Generalized Tavis-Cummings models and quantum networks

    NASA Astrophysics Data System (ADS)

    Gorokhov, A. V.

    2018-04-01

    The properties of quantum networks based on generalized Tavis-Cummings models are theoretically investigated. We have calculated the information transfer success rate from one node to another in a simple model of a quantum network realized with two-level atoms placed in the cavities and interacting with an external laser field and cavity photons. The method of dynamical group of the Hamiltonian and technique of corresponding coherent states were used for investigation of the temporal dynamics of the two nodes model.

  9. Disciplines, models, and computers: the path to computational quantum chemistry.

    PubMed

    Lenhard, Johannes

    2014-12-01

    Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.

  10. Random unitary evolution model of quantum Darwinism with pure decoherence

    NASA Astrophysics Data System (ADS)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  11. Constraints on quantum information field and “human gain medium” making possible functioning of social laser

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2017-08-01

    Starting with the quantum-like paradigm on application of quantum information and probability outside of physics we proceed to the social laser model describing Stimulated Amplification of Social Actions (SASA). The basic components of social laser are the quantum information field carrying information excitations and the human gain medium. The aim of this note is to analyze constraints on these components making possible SASA. The soical laser model can be used to explain the recent wave of color revolutions as well as such “unpredictable events” as Brexit and election of Donald Trump as the president of the United States of America. The presented quantum-like model is not only descriptive. We shall list explicitly conditions for creation of social laser.

  12. An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Ding, Kun; Chan, C. T.

    2018-02-01

    Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.

  13. Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution.

    PubMed

    Melkikh, Alexey V; Khrennikov, Andrei

    2017-11-01

    A review of the mechanisms of speciation is performed. The mechanisms of the evolution of species, taking into account the feedback of the state of the environment and mechanisms of the emergence of complexity, are considered. It is shown that these mechanisms, at the molecular level, cannot work steadily in terms of classical mechanics. Quantum mechanisms of changes in the genome, based on the long-range interaction potential between biologically important molecules, are proposed as one of possible explanation. Different variants of interactions of the organism and environment based on molecular recognition and leading to new species origins are considered. Experiments to verify the model are proposed. This bio-physical study is completed by the general operational model of based on quantum information theory. The latter is applied to model of epigenetic evolution. We briefly present the basics of the quantum-like approach to modeling of bio-informational processes. This approach is illustrated by the quantum-like model of epigenetic evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Optical pumping and negative luminescence polarization in charged GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Shabaev, Andrew; Stinaff, Eric A.; Bracker, Allan S.; Gammon, Daniel; Efros, Alexander L.; Korenev, Vladimir L.; Merkulov, Igor

    2009-01-01

    Optical pumping of electron spins and negative photoluminescence polarization are observed when interface quantum dots in a GaAs quantum well are excited nonresonantly by circularly polarized light. Both observations can be explained by the formation of long-lived dark excitons through hole spin relaxation in the GaAs quantum well prior to exciton capture. In this model, optical pumping of resident electron spins is caused by capture of dark excitons and recombination in charged quantum dots. Negative polarization results from accumulation of dark excitons in the quantum well and is enhanced by optical pumping. The dark exciton model describes the experimental results very well, including intensity and bias dependence of the photoluminescence polarization and the Hanle effect.

  15. Summary of the SWOT panel's evaluation of the organisation and financing of the Danish health care system.

    PubMed

    Christiansen, Terkel

    2002-02-01

    The organisation and financing of the Danish health care system was evaluated within a framework of a SWOT analysis (analysis of strengths, weaknesses, opportunities and threats) by a panel of five members with a background in health economics. This paper systematically summarises the panel's assessments, within the framework of the triangular model of health care. The members of the panel are in agreement on a number of aspects, while their views on other aspects differ. In general they find many strength in the way the system is organised and financed more so in the primary sector than in the hospital sector.

  16. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  17. Limits on efficient computation in the physical world

    NASA Astrophysics Data System (ADS)

    Aaronson, Scott Joel

    More than a speculative technology, quantum computing seems to challenge our most basic intuitions about how the physical world should behave. In this thesis I show that, while some intuitions from classical computer science must be jettisoned in the light of modern physics, many others emerge nearly unscathed; and I use powerful tools from computational complexity theory to help determine which are which. In the first part of the thesis, I attack the common belief that quantum computing resembles classical exponential parallelism, by showing that quantum computers would face serious limitations on a wider range of problems than was previously known. In particular, any quantum algorithm that solves the collision problem---that of deciding whether a sequence of n integers is one-to-one or two-to-one---must query the sequence O (n1/5) times. This resolves a question that was open for years; previously no lower bound better than constant was known. A corollary is that there is no "black-box" quantum algorithm to break cryptographic hash functions or solve the Graph Isomorphism problem in polynomial time. I also show that relative to an oracle, quantum computers could not solve NP-complete problems in polynomial time, even with the help of nonuniform "quantum advice states"; and that any quantum algorithm needs O (2n/4/n) queries to find a local minimum of a black-box function on the n-dimensional hypercube. Surprisingly, the latter result also leads to new classical lower bounds for the local search problem. Finally, I give new lower bounds on quantum one-way communication complexity, and on the quantum query complexity of total Boolean functions and recursive Fourier sampling. The second part of the thesis studies the relationship of the quantum computing model to physical reality. I first examine the arguments of Leonid Levin, Stephen Wolfram, and others who believe quantum computing to be fundamentally impossible. I find their arguments unconvincing without a "Sure/Shor separator"---a criterion that separates the already-verified quantum states from those that appear in Shor's factoring algorithm. I argue that such a separator should be based on a complexity classification of quantum states, and go on to create such a classification. Next I ask what happens to the quantum computing model if we take into account that the speed of light is finite---and in particular, whether Grover's algorithm still yields a quadratic speedup for searching a database. Refuting a claim by Benioff, I show that the surprising answer is yes. Finally, I analyze hypothetical models of computation that go even beyond quantum computing. I show that many such models would be as powerful as the complexity class PP, and use this fact to give a simple, quantum computing based proof that PP is closed under intersection. On the other hand, I also present one model---wherein we could sample the entire history of a hidden variable---that appears to be more powerful than standard quantum computing, but only slightly so.

  18. Some properties of correlations of quantum lattice systems in thermal equilibrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröhlich, Jürg, E-mail: juerg@phys.ethz.ch; Ueltschi, Daniel, E-mail: daniel@ueltschi.org

    Simple proofs of uniqueness of the thermodynamic limit of KMS states and of the decay of equilibrium correlations are presented for a large class of quantum lattice systems at high temperatures. New quantum correlation inequalities for general Heisenberg models are described. Finally, a simplified derivation of a general result on power-law decay of correlations in 2D quantum lattice systems with continuous symmetries is given, extending results of McBryan and Spencer for the 2D classical XY model.

  19. Bounds on quantum confinement effects in metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Blackman, G. Neal; Genov, Dentcho A.

    2018-03-01

    Quantum size effects on the permittivity of metal nanoparticles are investigated using the quantum box model. Explicit upper and lower bounds are derived for the permittivity and relaxation rates due to quantum confinement effects. These bounds are verified numerically, and the size dependence and frequency dependence of the empirical Drude size parameter is extracted from the model. Results suggest that the common practice of empirically modifying the dielectric function can lead to inaccurate predictions for highly uniform distributions of finite-sized particles.

  20. Computing quantum hashing in the model of quantum branching programs

    NASA Astrophysics Data System (ADS)

    Ablayev, Farid; Ablayev, Marat; Vasiliev, Alexander

    2018-02-01

    We investigate the branching program complexity of quantum hashing. We consider a quantum hash function that maps elements of a finite field into quantum states. We require that this function is preimage-resistant and collision-resistant. We consider two complexity measures for Quantum Branching Programs (QBP): a number of qubits and a number of compu-tational steps. We show that the quantum hash function can be computed efficiently. Moreover, we prove that such QBP construction is optimal. That is, we prove lower bounds that match the constructed quantum hash function computation.

  1. The Quantum Atomic Model "Electronium": A Successful Teaching Tool.

    ERIC Educational Resources Information Center

    Budde, Marion; Niedderer, Hans; Scott, Philip; Leach, John

    2002-01-01

    Focuses on the quantum atomic model Electronium. Outlines the Bremen teaching approach in which this model is used, and analyzes the learning of two students as they progress through the teaching unit. (Author/MM)

  2. Power loss of an oscillating electric dipole in a quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghaderipoor, L.; Mehramiz, A.

    2012-12-15

    A system of linearized quantum plasma equations (quantum hydrodynamic model) has been used for investigating the dispersion equation for electrostatic waves in the plasma. Furthermore, dispersion relations and their modifications due to quantum effects are used for calculating the power loss of an oscillating electric dipole. Finally, the results are compared in quantum and classical regimes.

  3. Complexity Bounds for Quantum Computation

    DTIC Science & Technology

    2007-06-22

    Programs Trustees of Boston University Boston, MA 02215 - Complexity Bounds for Quantum Computation REPORT DOCUMENTATION PAGE 18. SECURITY CLASSIFICATION...Complexity Bounds for Quantum Comp[utation Report Title ABSTRACT This project focused on upper and lower bounds for quantum computability using constant...classical computation models, particularly emphasizing new examples of where quantum circuits are more powerful than their classical counterparts. A second

  4. Using the Stock Market to Teach Physics

    NASA Astrophysics Data System (ADS)

    Faux, David A.; Hearn, Stephen

    2004-11-01

    Students are interested in money. Personal finance is an important issue for most students, especially as they move into university education and take a greater control of their own finances. Many are also interested in stock markets and their ability to allow someone to make, and lose, large sums of money, with their interest fueled by the boom in technology-based stocks of 2000/2001 followed by their subsequent dramatic collapse and the publicizing of so-called "rogue-traders." There is also a much greater ownership of stocks by families following public offerings, stock-based savings products, and the ability to trade stocks online. Consequently, there has been a steady growth of finance and finance-related courses available within degree programs in response to the student demand, with many students motivated by the huge salaries commanded by those with a successful career in the financial sector. We report here details of a joint project between Charterhouse School and the University of Surrey designed to exploit the excitement of finance to teach elements of the high school (age 16-18) curriculum through modeling and simulation.

  5. Philosophical Concepts in Physics

    NASA Astrophysics Data System (ADS)

    Cushing, James T.

    1998-01-01

    Preface; Part I. The Scientific Enterprise: 1. Ways of knowing; 2. Aristotle and Francis Bacon; 3. Science and metaphysics; Part II. Ancient and Modern Models of the Universe: 4. Observational astronomy and the Ptolemaic model; 5. The Copernican model and Kepler's laws; 6. Galileo on motion; Part III. The Newtonian Universe: 7. Newton's Principia; 8. Newton's law of universal gravitation; 9. Some old questions revisited; Part IV. A Perspective: 10. Galileo's Letter to the Grand Duchess; 11. An overarching Newtonian framework; 12. A view of the world based on science: determinism; Part V. Mechanical Versus Electrodynamical World Views: 13. Models of the aether; 14. Maxwell's theory; 15. The Kaufmann experiments; Part VI. The Theory of Relativity: 16. The background to and essentials of special relativity; 17. Further logical consequences of Einstein's postulates; 18. General relativity and the expanding universe; Part VII. The Quantum World and the Completeness of Quantum Mechanics: 19. The road to quantum mechanics; 20. 'Copenhage' quantum mechanics; 21. Is quantum mechanics complete?; Part VIII. Some Philosophical Lessons from Quantum Mechanics: 22. The EPR paper and Bell's theorem; 23. An alternative version of quantum mechanics; 24. An essential role for historical contingency?; Part IX. A Retrospective: 25. The goals of science and the status of its knowledge; Notes; General references; Bibliography; Author index; Subject index.

  6. Integrals of motion from quantum toroidal algebras

    NASA Astrophysics Data System (ADS)

    Feigin, B.; Jimbo, M.; Mukhin, E.

    2017-11-01

    We identify the Taylor coefficients of the transfer matrices corresponding to quantum toroidal algebras with the elliptic local and non-local integrals of motion introduced by Kojima, Shiraishi, Watanabe, and one of the authors. That allows us to prove the Litvinov conjectures on the Intermediate Long Wave model. We also discuss the ({gl_m, {gl_n) duality of XXZ models in quantum toroidal setting and the implications for the quantum KdV model. In particular, we conjecture that the spectrum of non-local integrals of motion of Bazhanov, Lukyanov, and Zamolodchikov is described by Gaudin Bethe ansatz equations associated to affine {sl}2 . Dedicated to the memory of Petr Petrovich Kulish.

  7. Conductance in inhomogeneous quantum wires: Luttinger liquid predictions and quantum Monte Carlo results

    NASA Astrophysics Data System (ADS)

    Morath, D.; Sedlmayr, N.; Sirker, J.; Eggert, S.

    2016-09-01

    We study electron and spin transport in interacting quantum wires contacted by noninteracting leads. We theoretically model the wire and junctions as an inhomogeneous chain where the parameters at the junction change on the scale of the lattice spacing. We study such systems analytically in the appropriate limits based on Luttinger liquid theory and compare the results to quantum Monte Carlo calculations of the conductances and local densities near the junction. We first consider an inhomogeneous spinless fermion model with a nearest-neighbor interaction and then generalize our results to a spinful model with an on-site Hubbard interaction.

  8. Quantum mechanics and hidden superconformal symmetry

    NASA Astrophysics Data System (ADS)

    Bonezzi, R.; Corradini, O.; Latini, E.; Waldron, A.

    2017-12-01

    Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating osp (1 |2 ) superconformal symmetry. We study the problem of constructing all quantum mechanical models with a hidden osp (1 |2 ) symmetry on a given space of states. This problem stems from interacting higher spin models coupled to gravity. In one dimension, we show that the solution to this problem is the Vasiliev-Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wave function parity. These models—both oscillator and particlelike—realize all possible unitary irreducible representations of osp (1 |2 ).

  9. Adler-Kostant-Symes scheme for face and Calogero-Moser-Sutherland-type models

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Schupp, Peter

    1998-07-01

    We give the construction of quantum Lax equations for IRF models and the difference version of the Calogero-Moser-Sutherland model introduced by Ruijsenaars. We solve the equations using factorization properties of the underlying face Hopf algebras/elliptic quantum groups. This construction is in the spirit of the Adler-Kostant-Symes method and generalizes our previous work to the case of face Hopf algebras/elliptic quantum groups with dynamical R matrices.

  10. Who pays for health care in the United States? Implications for health system reform.

    PubMed

    Holahan, J; Zedlewski, S

    1992-01-01

    This paper examines the distribution of health care spending and financing in the United States. We analyze the distribution of employer and employee contributions to health insurance, private nongroup health insurance purchases, out-of-pocket expenses, Medicaid benefits, uncompensated care, tax benefits due to the exemption of employer-paid health benefits, and taxes paid to finance Medicare, Medicaid, and the health benefit tax exclusion. All spending and financing burdens are distributed across the U.S. population using the Urban Institute's TRIM2 microsimulation model. We then examine the distributional effects of the U.S. health care system across income levels, family types, and regions of the country. The results show that health care spending increases with income. Spending for persons in the highest income deciles is about 60% above that of persons in the lowest decile. Nonetheless, the distribution of health care financing is regressive. When direct spending, employer contributions, tax benefits, and tax spending are all considered, the persons in the lowest income deciles devote nearly 20% of cash income to finance health care, compared with about 8% for persons in the highest income decile. We discuss how alternative health system reform approaches are likely to change the distribution of health spending and financing burdens.

  11. Computational Role of Tunneling in a Programmable Quantum Annealer

    NASA Technical Reports Server (NTRS)

    Boixo, Sergio; Smelyanskiy, Vadim; Shabani, Alireza; Isakov, Sergei V.; Dykman, Mark; Amin, Mohammad; Mohseni, Masoud; Denchev, Vasil S.; Neven, Hartmut

    2016-01-01

    Quantum tunneling is a phenomenon in which a quantum state tunnels through energy barriers above the energy of the state itself. Tunneling has been hypothesized as an advantageous physical resource for optimization. Here we present the first experimental evidence of a computational role of multiqubit quantum tunneling in the evolution of a programmable quantum annealer. We developed a theoretical model based on a NIBA Quantum Master Equation to describe the multi-qubit dissipative cotunneling effects under the complex noise characteristics of such quantum devices.We start by considering a computational primitive, the simplest non-convex optimization problem consisting of just one global and one local minimum. The quantum evolutions enable tunneling to the global minimum while the corresponding classical paths are trapped in a false minimum. In our study the non-convex potentials are realized by frustrated networks of qubit clusters with strong intra-cluster coupling. We show that the collective effect of the quantum environment is suppressed in the critical phase during the evolution where quantum tunneling decides the right path to solution. In a later stage dissipation facilitates the multiqubit cotunneling leading to the solution state. The predictions of the model accurately describe the experimental data from the D-WaveII quantum annealer at NASA Ames. In our computational primitive the temperature dependence of the probability of success in the quantum model is opposite to that of the classical paths with thermal hopping. Specially, we provide an analysis of an optimization problem with sixteen qubits,demonstrating eight qubit cotunneling that increases success probabilities. Furthermore, we report results for larger problems with up to 200 qubits that contain the primitive as subproblems.

  12. Excitonic quantum interference in a quantum dot chain with rings.

    PubMed

    Hong, Suc-Kyoung; Nam, Seog Woo; Yeon, Kyu-Hwang

    2008-04-16

    We demonstrate excitonic quantum interference in a closely spaced quantum dot chain with nanorings. In the resonant dipole-dipole interaction model with direct diagonalization method, we have found a peculiar feature that the excitation of specified quantum dots in the chain is completely inhibited, depending on the orientational configuration of the transition dipole moments and specified initial preparation of the excitation. In practice, these excited states facilitating quantum interference can provide a conceptual basis for quantum interference devices of excitonic hopping.

  13. Mechanical equivalent of quantum heat engines.

    PubMed

    Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice

    2008-06-01

    Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines, employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot efficiency. Heat pumps and negative temperatures are considered.

  14. Three-State Quantum Dot Gate FETs Using ZnS-ZnMgS Lattice-Matched Gate Insulator on Silicon

    NASA Astrophysics Data System (ADS)

    Karmakar, Supriya; Suarez, Ernesto; Jain, Faquir C.

    2011-08-01

    This paper presents the three-state behavior of quantum dot gate field-effect transistors (FETs). GeO x -cladded Ge quantum dots (QDs) are site-specifically self-assembled over lattice-matched ZnS-ZnMgS high- κ gate insulator layers grown by metalorganic chemical vapor deposition (MOCVD) on silicon substrates. A model of three-state behavior manifested in the transfer characteristics due to the quantum dot gate is also presented. The model is based on the transfer of carriers from the inversion channel to two layers of cladded GeO x -Ge quantum dots.

  15. Emergent quantum mechanics without wavefunctions

    NASA Astrophysics Data System (ADS)

    Mesa Pascasio, J.; Fussy, S.; Schwabl, H.; Grössing, G.

    2016-03-01

    We present our model of an Emergent Quantum Mechanics which can be characterized by “realism without pre-determination”. This is illustrated by our analytic description and corresponding computer simulations of Bohmian-like “surreal” trajectories, which are obtained classically, i.e. without the use of any quantum mechanical tool such as wavefunctions. However, these trajectories do not necessarily represent ontological paths of particles but rather mappings of the probability density flux in a hydrodynamical sense. Modelling emergent quantum mechanics in a high-low intesity double slit scenario gives rise to the “quantum sweeper effect” with a characteristic intensity pattern. This phenomenon should be experimentally testable via weak measurement techniques.

  16. Does finance affect environmental degradation: evidence from One Belt and One Road Initiative region?

    PubMed

    Hafeez, Muhammad; Chunhui, Yuan; Strohmaier, David; Ahmed, Manzoor; Jie, Liu

    2018-04-01

    This paper explores the effects of finance on environmental degradation and investigates environmental Kuznets curve (EKC) of each country among 52 that participate in the One Belt and One Road Initiative (OBORI) using the latest long panel data span (1980-2016). We utilized panel long run econometric models (fully modified ordinary least square and dynamic ordinary least square) to explore the long-run estimates in full panel and country level. Moreover, the Dumitrescu and Hurlin (2012) causality test is applied to examine the short-run causalities among our considered variables. The empirical findings validate the EKC hypothesis; the long-run estimates point out that finance significantly enhances the environmental degradation (negatively in few cases). The short-run heterogeneous causality confirms the bi-directional causality between finance and environmental degradation. The empirical outcomes suggest that policymakers should consider the environmental degradation issue caused by financial development in the One Belt and One Road region.

  17. Quantum spectral curve for ( q, t)-matrix model

    NASA Astrophysics Data System (ADS)

    Zenkevich, Yegor

    2018-02-01

    We derive quantum spectral curve equation for ( q, t)-matrix model, which turns out to be a certain difference equation. We show that in Nekrasov-Shatashvili limit this equation reproduces the Baxter TQ equation for the quantum XXZ spin chain. This chain is spectral dual to the Seiberg-Witten integrable system associated with the AGT dual gauge theory.

  18. Simple proof of equivalence between adiabatic quantum computation and the circuit model.

    PubMed

    Mizel, Ari; Lidar, Daniel A; Mitchell, Morgan

    2007-08-17

    We prove the equivalence between adiabatic quantum computation and quantum computation in the circuit model. An explicit adiabatic computation procedure is given that generates a ground state from which the answer can be extracted. The amount of time needed is evaluated by computing the gap. We show that the procedure is computationally efficient.

  19. Exotic singularities and spatially curved loop quantum cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Parampreet; Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5; Vidotto, Francesca

    2011-03-15

    We investigate the occurrence of various exotic spacelike singularities in the past and the future evolution of k={+-}1 Friedmann-Robertson-Walker model and loop quantum cosmology using a sufficiently general phenomenological model for the equation of state. We highlight the nontrivial role played by the intrinsic curvature for these singularities and the new physics which emerges at the Planck scale. We show that quantum gravity effects generically resolve all strong curvature singularities including big rip and big freeze singularities. The weak singularities, which include sudden and big brake singularities, are ignored by quantum gravity when spatial curvature is negative, as was previouslymore » found for the spatially flat model. Interestingly, for the spatially closed model there exist cases where weak singularities may be resolved when they occur in the past evolution. The spatially closed model exhibits another novel feature. For a particular class of equation of state, this model also exhibits an additional physical branch in loop quantum cosmology, a baby universe separated from the parent branch. Our analysis generalizes previous results obtained on the resolution of strong curvature singularities in flat models to isotropic spacetimes with nonzero spatial curvature.« less

  20. Transport in semiconductor nanowire superlattices described by coupled quantum mechanical and kinetic models.

    PubMed

    Alvaro, M; Bonilla, L L; Carretero, M; Melnik, R V N; Prabhakar, S

    2013-08-21

    In this paper we develop a kinetic model for the analysis of semiconductor superlattices, accounting for quantum effects. The model consists of a Boltzmann-Poisson type system of equations with simplified Bhatnagar-Gross-Krook collisions, obtained from the general time-dependent Schrödinger-Poisson model using Wigner functions. This system for superlattice transport is supplemented by the quantum mechanical part of the model based on the Ben-Daniel-Duke form of the Schrödinger equation for a cylindrical superlattice of finite radius. The resulting energy spectrum is used to characterize the Fermi-Dirac distribution that appears in the Bhatnagar-Gross-Krook collision, thereby coupling the quantum mechanical and kinetic parts of the model. The kinetic model uses the dispersion relation obtained by the generalized Kronig-Penney method, and allows us to estimate radii of quantum wire superlattices that have the same miniband widths as in experiments. It also allows us to determine more accurately the time-dependent characteristics of superlattices, in particular their current density. Results, for several experimentally grown superlattices, are discussed in the context of self-sustained coherent oscillations of the current density which are important in an increasing range of current and potential applications.

  1. Some foundational aspects of quantum computers and quantum robots.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benioff, P.; Physics

    1998-01-01

    This paper addresses foundational issues related to quantum computing. The need for a universally valid theory such as quantum mechanics to describe to some extent its own validation is noted. This includes quantum mechanical descriptions of systems that do theoretical calculations (i.e. quantum computers) and systems that perform experiments. Quantum robots interacting with an environment are a small first step in this direction. Quantum robots are described here as mobile quantum systems with on-board quantum computers that interact with environments. Included are discussions on the carrying out of tasks and the division of tasks into computation and action phases. Specificmore » models based on quantum Turing machines are described. Differences and similarities between quantum robots plus environments and quantum computers are discussed.« less

  2. Characterization of Dynamical Phase Transitions in Quantum Jump Trajectories Beyond the Properties of the Stationary State

    NASA Astrophysics Data System (ADS)

    Lesanovsky, Igor; van Horssen, Merlijn; Guţă, Mădălin; Garrahan, Juan P.

    2013-04-01

    We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states.

  3. Quantum gravity in the Southern Cone Conference. Proceedings. Conference, Bariloche (Argentina), 7 - 10 Jan 1998.

    NASA Astrophysics Data System (ADS)

    1999-04-01

    The following topics are discussed: Black hole formation by canonical dynamics of gravitating shells; canonical quantum gravity; Vassiliev invariants; midisuperspace models; quantum spacetime; large-N limit of superconformal field theories and supergravity; world-volume fields and background coupling of branes; gauge enhancement and chirality changes in nonperturbative orbifold models; chiral p-forms; formally renormalizable gravitationally self-interacting string models; gauge supergravities for all odd dimensions; black hole radiation and S-matrix; primordial black holes; fluctuations in a thermal field and dissipation of a black hole spacetime in far-field limit; adiabatic interpretation of particle creation in a de Sitter universe; nonequilibrium dynamics of quantum fields in inflationary cosmology; magnetic fields in the early Universe; classical regime of a quantum universe obtained through a functional method; decoherence and correlations in semiclassical cosmology; fluid of primordial fluctuations; causal statistical mechanics calculation of initial cosmic entropy and quantum gravity prospects and black hole-D-brane correspondence.

  4. Quantum Monte Carlo study of the transverse-field quantum Ising model on infinite-dimensional structures

    NASA Astrophysics Data System (ADS)

    Baek, Seung Ki; Um, Jaegon; Yi, Su Do; Kim, Beom Jun

    2011-11-01

    In a number of classical statistical-physical models, there exists a characteristic dimensionality called the upper critical dimension above which one observes the mean-field critical behavior. Instead of constructing high-dimensional lattices, however, one can also consider infinite-dimensional structures, and the question is whether this mean-field character extends to quantum-mechanical cases as well. We therefore investigate the transverse-field quantum Ising model on the globally coupled network and on the Watts-Strogatz small-world network by means of quantum Monte Carlo simulations and the finite-size scaling analysis. We confirm that both of the structures exhibit critical behavior consistent with the mean-field description. In particular, we show that the existing cumulant method has difficulty in estimating the correct dynamic critical exponent and suggest that an order parameter based on the quantum-mechanical expectation value can be a practically useful numerical observable to determine critical behavior when there is no well-defined dimensionality.

  5. Towards a Quantum Theory of Humour

    NASA Astrophysics Data System (ADS)

    Gabora, Liane; Kitto, Kirsty

    2016-12-01

    This paper proposes that cognitive humour can be modelled using the mathematical framework of quantum theory, suggesting that a Quantum Theory of Humour (QTH) is a viable approach. We begin with brief overviews of both research on humour, and the generalized quantum framework. We show how the bisociation of incongruous frames or word meanings in jokes can be modelled as a linear superposition of a set of basis states, or possible interpretations, in a complex Hilbert space. The choice of possible interpretations depends on the context provided by the set-up versus the punchline of a joke. We apply QTH first to a verbal pun, and then consider how this might be extended to frame blending in cartoons. An initial study of 85 participant responses to 35 jokes (and a number of variants) suggests that there is reason to believe that a quantum approach to the modelling of cognitive humour is a viable new avenue of research for the field of quantum cognition.

  6. Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yun-An, E-mail: yunan@gznc.edu.cn

    2016-01-14

    The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a newmore » short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today’s nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.« less

  7. Characterization of dynamical phase transitions in quantum jump trajectories beyond the properties of the stationary state.

    PubMed

    Lesanovsky, Igor; van Horssen, Merlijn; Guţă, Mădălin; Garrahan, Juan P

    2013-04-12

    We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states.

  8. Quantum spin liquids: a review.

    PubMed

    Savary, Lucile; Balents, Leon

    2017-01-01

    Quantum spin liquids may be considered 'quantum disordered' ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.

  9. Andreev molecules in semiconductor nanowire double quantum dots.

    PubMed

    Su, Zhaoen; Tacla, Alexandre B; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Daley, Andrew J; Pekker, David; Frolov, Sergey M

    2017-09-19

    Chains of quantum dots coupled to superconductors are promising for the realization of the Kitaev model of a topological superconductor. While individual superconducting quantum dots have been explored, control of longer chains requires understanding of interdot coupling. Here, double quantum dots are defined by gate voltages in indium antimonide nanowires. High transparency superconducting niobium titanium nitride contacts are made to each of the dots in order to induce superconductivity, as well as probe electron transport. Andreev bound states induced on each of dots hybridize to define Andreev molecular states. The evolution of these states is studied as a function of charge parity on the dots, and in magnetic field. The experiments are found in agreement with a numerical model.Quantum dots in a nanowire are one possible approach to creating a solid-state quantum simulator. Here, the authors demonstrate the coupling of electronic states in a double quantum dot to form Andreev molecule states; a potential building block for longer chains suitable for quantum simulation.

  10. The road maintenance funding models in Indonesia use earmarked tax

    NASA Astrophysics Data System (ADS)

    Gultom, Tiopan Henry M.; Tamin, Ofyar Z.; Sjafruddin, Ade; Pradono

    2017-11-01

    One of the solutions to get a sustainable road maintenance fund is to separate road sector revenue from other accounts, afterward, form a specific account for road maintenance. In 2001, Antameng and the Ministry of Public Works proposed a road fund model in Indonesia. Sources of the road funds proposal was a tariff formed on the nominal total tax. The policy of road funds was proposed to finance the road network maintenance of districts and provincials. This research aims to create a policy model of road maintenance funds in Indonesia using an earmarked tax mechanism. The research method is qualitative research, with data collection techniques are triangulation. Interview methods conducted were semi-structured. Strength, Weakness, Opportunities, and Threat from every part of the models were showen on the survey format. Respondents were representative of executives who involved directly against the financing of road maintenance. Validation model conducted by a discussion panel, it was called the Focus Group Discussion (FGD). The FGD involved all selected respondents. Road maintenance financing model that most appropriately applied in Indonesia was a model of revenue source use an earmarked PBBKB, PKB and PPnBM. Revenue collection mechanism was added tariff of registered vehicle tax (PKB), Vehicle Fuel Tax (PBBKB) and the luxury vehicle sales tax (PPnBM). The funds are managed at the provincial level by a public service agency.

  11. Public Private Business Models for Defence Acquisition

    DTIC Science & Technology

    2014-04-30

    Initiatives (PFIs), franchising , concessions, Joint Ventures (JVs) and outright privatisation (Grimsey & Lewis, 2004, p. 54); Off-The-Shelf (OTS...Design (D), Finance (F), Buy (B)/Rent (R)/Lease (L), Construct (C) (Build (B)), Develop (D), Own (O), Operate (O), Manage (M), Maintain (M) and Transfer...Logistics Logistics Infrastructure, and Locistics Other affected None None Equipment Eql..ipment OLoOs Finance- Buy - Desig~ - Buy - Private sector

  12. School Finance in the Digital-Learning Era. Creating Sound Policy for Digital Learning. A Working Paper Series from the Thomas B. Fordham Institute

    ERIC Educational Resources Information Center

    Hill, Paul T.

    2011-01-01

    America's system for financing K-12 education is not neutral about innovation and the use of new technologies. Indeed, that system is stacked against them. To remedy this, our education-funding system needs to shift dramatically. Instead of today's model--which rigidly funds programs, staff positions, and administrative structures, instead of…

  13. Leveraging the Local Control Funding Formula: Making the Case for Early Learning and Development in Your School District. An Education Primer

    ERIC Educational Resources Information Center

    Children Now, 2014

    2014-01-01

    After decades of research, policy discussions, and legislation promoting finance reform, in 2013, California adopted a major change in how schools are funded and held accountable: the Local Control Funding Formula (LCFF). This new funding model is the most comprehensive education finance reform implemented in California in nearly 40 years, and…

  14. Network Models of Entrepreneurial Ecosystems in Developing Economies

    DTIC Science & Technology

    2014-01-01

    Department of Mathematical Sciences, U.S. Military Academy Candice Price , Ph.D. , Department of Mathematical Sciences, U.S. Military Academy NOTICES...methodology. “Youth unemployment is a ticking time bomb,” –Alexander Chikwanda, Finance Minister, Zambia Protesters in Tahrir Square, Cairo...with the recent political and social changes in the region, only contributes to this high unemployment rate. As the Finance Minister of Zambia stated

  15. Mixture Hidden Markov Models in Finance Research

    NASA Astrophysics Data System (ADS)

    Dias, José G.; Vermunt, Jeroen K.; Ramos, Sofia

    Finite mixture models have proven to be a powerful framework whenever unobserved heterogeneity cannot be ignored. We introduce in finance research the Mixture Hidden Markov Model (MHMM) that takes into account time and space heterogeneity simultaneously. This approach is flexible in the sense that it can deal with the specific features of financial time series data, such as asymmetry, kurtosis, and unobserved heterogeneity. This methodology is applied to model simultaneously 12 time series of Asian stock markets indexes. Because we selected a heterogeneous sample of countries including both developed and emerging countries, we expect that heterogeneity in market returns due to country idiosyncrasies will show up in the results. The best fitting model was the one with two clusters at country level with different dynamics between the two regimes.

  16. Dynamical thermalization in isolated quantum dots and black holes

    NASA Astrophysics Data System (ADS)

    Kolovsky, Andrey R.; Shepelyansky, Dima L.

    2017-01-01

    We study numerically a model of quantum dot with interacting fermions. At strong interactions with small conductance the model is reduced to the Sachdev-Ye-Kitaev black-hole model while at weak interactions and large conductance it describes a Landau-Fermi liquid in a regime of quantum chaos. We show that above the Åberg threshold for interactions there is an onset of dynamical themalization with the Fermi-Dirac distribution describing the eigenstates of an isolated dot. At strong interactions in the isolated black-hole regime there is also the onset of dynamical thermalization with the entropy described by the quantum Gibbs distribution. This dynamical thermalization takes place in an isolated system without any contact with a thermostat. We discuss the possible realization of these regimes with quantum dots of 2D electrons and cold ions in optical lattices.

  17. General Method for Constructing Local Hidden Variable Models for Entangled Quantum States

    NASA Astrophysics Data System (ADS)

    Cavalcanti, D.; Guerini, L.; Rabelo, R.; Skrzypczyk, P.

    2016-11-01

    Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent quantum information protocols. However, not all entangled quantum states display nonlocality. A central question is to determine the precise relation between entanglement and nonlocality. Here we present the first general test to decide whether a quantum state is local, and show that the test can be implemented by semidefinite programing. This method can be applied to any given state and for the construction of new examples of states with local hidden variable models for both projective and general measurements. As applications, we provide a lower-bound estimate of the fraction of two-qubit local entangled states and present new explicit examples of such states, including those that arise from physical noise models, Bell-diagonal states, and noisy Greenberger-Horne-Zeilinger and W states.

  18. Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp

    The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculatingmore » the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.« less

  19. Construction of a business model to assure financial sustainability of biobanks.

    PubMed

    Warth, Rainer; Perren, Aurel

    2014-12-01

    Biobank-suisse (BBS) is a collaborative network of biobanks in Switzerland. Since 2005, the network has worked with biobank managers towards a Swiss biobanking platform that harmonizes structures and procedures. The work with biobank managers has shown that long-term, sustainable financing is difficult to obtain. In this report, three typical biobank business models are identified and their characteristics analyzed. Five forces analysis was used to understand the competitive environment of biobanks. Data provided by OECD was used for financial estimations. The model was constructed using the business model canvas tool. The business models identified feature financing influenced by the economic situation and the research budgets in a given country. Overall, the competitive environment for biobanks is positive. The bargaining power with the buyer is negative since price setting and demand prediction is difficult. In Switzerland, the healthcare industry collects approximately 5600 U.S. dollars per person and year. If each Swiss citizen paid 0.1% (or 5 U.S. dollars) of this amount to Swiss biobanks, 45 million U.S. dollars could be collected. This compares to the approximately 10 million U.S. dollars made available for cohort studies, longitudinal studies, and pathology biobanks through science funding. With the same approach, Germany, the United States, Canada, France, and the United Kingdom could collect 361, 2634, 154, 264, and 221 million U.S. dollars, respectively. In Switzerland and in other countries, an annual fee less than 5 U.S. dollars per person is sufficient to provide biobanks with sustainable financing. This inspired us to construct a business model that not only includes the academic and industrial research sectors as customer segment, but also includes the population. The revenues would be collected as fees by the healthcare system. In Italy and Germany, a small share of healthcare spending is already used to finance selected clinical trials. The legal frameworks could serve as templates for the business model proposed here.

  20. Analog quantum simulation of generalized Dicke models in trapped ions

    NASA Astrophysics Data System (ADS)

    Aedo, Ibai; Lamata, Lucas

    2018-04-01

    We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.

  1. From the GKLS Equation to the Theory of Solar and Fuel Cells

    NASA Astrophysics Data System (ADS)

    Alicki, R.

    The mathematically sound theory of quantum open systems, formulated in the ’70s and highlighted by the discovery of Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation, found a wide range of applications in various branches of physics and chemistry, notably in the field of quantum information and quantum thermodynamics. However, it took 40 years before this formalism has been applied to explain correctly the operation principles of long existing energy transducers like photovoltaic, thermoelectric and fuel cells. This long path is briefly reviewed from the author’s perspective. Finally, the new, fully quantum model of chemical engine based on GKLS equation and applicable to fuel cells or replicators is outlined. The model illustrates the difficulty with an entirely quantum operational definition of work, comparable to the problem of quantum measurement.

  2. Experimental quantum computing without entanglement.

    PubMed

    Lanyon, B P; Barbieri, M; Almeida, M P; White, A G

    2008-11-14

    Deterministic quantum computation with one pure qubit (DQC1) is an efficient model of computation that uses highly mixed states. Unlike pure-state models, its power is not derived from the generation of a large amount of entanglement. Instead it has been proposed that other nonclassical correlations are responsible for the computational speedup, and that these can be captured by the quantum discord. In this Letter we implement DQC1 in an all-optical architecture, and experimentally observe the generated correlations. We find no entanglement, but large amounts of quantum discord-except in three cases where an efficient classical simulation is always possible. Our results show that even fully separable, highly mixed, states can contain intrinsically quantum mechanical correlations and that these could offer a valuable resource for quantum information technologies.

  3. Observational exclusion of a consistent loop quantum cosmology scenario

    NASA Astrophysics Data System (ADS)

    Bolliet, Boris; Barrau, Aurélien; Grain, Julien; Schander, Susanne

    2016-06-01

    It is often argued that inflation erases all the information about what took place before it started. Quantum gravity, relevant in the Planck era, seems therefore mostly impossible to probe with cosmological observations. In general, only very ad hoc scenarios or hyper fine-tuned initial conditions can lead to observationally testable theories. Here we consider a well-defined and well-motivated candidate quantum cosmology model that predicts inflation. Using the most recent observational constraints on the cosmic microwave background B-modes, we show that the model is excluded for all its parameter space, without any tuning. Some important consequences are drawn for the deformed algebra approach to loop quantum cosmology. We emphasize that neither loop quantum cosmology in general nor loop quantum gravity are disfavored by this study but their falsifiability is established.

  4. Minimal Length Scale Scenarios for Quantum Gravity.

    PubMed

    Hossenfelder, Sabine

    2013-01-01

    We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.

  5. Financing Solar PV at Government Sites with PPAs and Public Debt (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-12-01

    Historically, state and local governmental agencies have employed one of two models to deploy solar photovoltaic (PV) projects: (1) self-ownership (financed through a variety of means) or (2) third-party ownership through a power purchase agreement (PPA). Morris County, New Jersey, administrators recently pioneered a way to combine many of the benefits of self-ownership and third-party PPAs through a bond-PPA hybrid, frequently referred to as the Morris Model. At the request of the Department of Energy?s Solar Market Transformation group, NREL examined the hybrid model. This fact sheet describes how the hybrid model works, assesses the model?s relative advantages and challengesmore » as compared to self-ownership and the third-party PPA model, provides a quick guide to project implementation, and assesses the replicability of the model in other jurisdictions across the United States.« less

  6. Hybrid quantum computing with ancillas

    NASA Astrophysics Data System (ADS)

    Proctor, Timothy J.; Kendon, Viv

    2016-10-01

    In the quest to build a practical quantum computer, it is important to use efficient schemes for enacting the elementary quantum operations from which quantum computer programs are constructed. The opposing requirements of well-protected quantum data and fast quantum operations must be balanced to maintain the integrity of the quantum information throughout the computation. One important approach to quantum operations is to use an extra quantum system - an ancilla - to interact with the quantum data register. Ancillas can mediate interactions between separated quantum registers, and by using fresh ancillas for each quantum operation, data integrity can be preserved for longer. This review provides an overview of the basic concepts of the gate model quantum computer architecture, including the different possible forms of information encodings - from base two up to continuous variables - and a more detailed description of how the main types of ancilla-mediated quantum operations provide efficient quantum gates.

  7. Molecular Model of a Quantum Dot Beyond the Constant Interaction Approximation

    NASA Astrophysics Data System (ADS)

    Temirov, Ruslan; Green, Matthew F. B.; Friedrich, Niklas; Leinen, Philipp; Esat, Taner; Chmielniak, Pawel; Sarwar, Sidra; Rawson, Jeff; Kögerler, Paul; Wagner, Christian; Rohlfing, Michael; Tautz, F. Stefan

    2018-05-01

    We present a physically intuitive model of molecular quantum dots beyond the constant interaction approximation. It accurately describes their charging behavior and allows the extraction of important molecular properties that are otherwise experimentally inaccessible. The model is applied to data recorded with a noncontact atomic force microscope on three different molecules that act as a quantum dot when attached to the microscope tip. The results are in excellent agreement with first-principles simulations.

  8. A quantum-like model of homeopathy clinical trials: importance of in situ randomization and unblinding.

    PubMed

    Beauvais, Francis

    2013-04-01

    The randomized controlled trial (RCT) is the 'gold standard' of modern clinical pharmacology. However, for many practitioners of homeopathy, blind RCTs are an inadequate research tool for testing complex therapies such as homeopathy. Classical probabilities used in biological sciences and in medicine are only a special case of the generalized theory of probability used in quantum physics. I describe homeopathy trials using a quantum-like statistical model, a model inspired by quantum physics and taking into consideration superposition of states, non-commuting observables, probability interferences, contextuality, etc. The negative effect of blinding on success of homeopathy trials and the 'smearing effect' ('specific' effects of homeopathy medicine occurring in the placebo group) are described by quantum-like probabilities without supplementary ad hoc hypotheses. The difference of positive outcome rates between placebo and homeopathy groups frequently vanish in centralized blind trials. The model proposed here suggests a way to circumvent such problems in masked homeopathy trials by incorporating in situ randomization/unblinding. In this quantum-like model of homeopathy clinical trials, success in open-label setting and failure with centralized blind RCTs emerge logically from the formalism. This model suggests that significant differences between placebo and homeopathy in blind RCTs would be found more frequently if in situ randomization/unblinding was used. Copyright © 2013. Published by Elsevier Ltd.

  9. Quantum model for electro-optical amplitude modulation.

    PubMed

    Capmany, José; Fernández-Pousa, Carlos R

    2010-11-22

    We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.

  10. Benefits of Objective Collapse Models for Cosmology and Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Okon, Elias; Sudarsky, Daniel

    2014-02-01

    We display a number of advantages of objective collapse theories for the resolution of long-standing problems in cosmology and quantum gravity. In particular, we examine applications of objective reduction models to three important issues: the origin of the seeds of cosmic structure, the problem of time in quantum gravity and the information loss paradox; we show how reduction models contain the necessary tools to provide solutions for these issues. We wrap up with an adventurous proposal, which relates the spontaneous collapse events of objective collapse models to microscopic virtual black holes.

  11. Analog model for quantum gravity effects: phonons in random fluids.

    PubMed

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.

  12. Introduction to Theoretical Modelling

    NASA Astrophysics Data System (ADS)

    Davis, Matthew J.; Gardiner, Simon A.; Hanna, Thomas M.; Nygaard, Nicolai; Proukakis, Nick P.; Szymańska, Marzena H.

    2013-02-01

    We briefly overview commonly encountered theoretical notions arising in the modelling of quantum gases, intended to provide a unified background to the `language' and diverse theoretical models presented elsewhere in this book, and aimed particularly at researchers from outside the quantum gases community.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarovar, Mohan; Zhang, Jun; Zeng, Lishan

    Analog quantum simulators (AQS) will likely be the first nontrivial application of quantum technology for predictive simulation. However, there remain questions regarding the degree of confidence that can be placed in the results of AQS since they do not naturally incorporate error correction. Specifically, how do we know whether an analog simulation of a quantum model will produce predictions that agree with the ideal model in the presence of inevitable imperfections? At the same time there is a widely held expectation that certain quantum simulation questions will be robust to errors and perturbations in the underlying hardware. Resolving these twomore » points of view is a critical step in making the most of this promising technology. In this paper we formalize the notion of AQS reliability by determining sensitivity of AQS outputs to underlying parameters, and formulate conditions for robust simulation. Our approach naturally reveals the importance of model symmetries in dictating the robust properties. Finally, to demonstrate the approach, we characterize the robust features of a variety of quantum many-body models.« less

  14. Block entropy and quantum phase transition in the anisotropic Kondo necklace model

    NASA Astrophysics Data System (ADS)

    Mendoza-Arenas, J. J.; Franco, R.; Silva-Valencia, J.

    2010-06-01

    We study the von Neumann block entropy in the Kondo necklace model for different anisotropies η in the XY interaction between conduction spins using the density matrix renormalization group method. It was found that the block entropy presents a maximum for each η considered, and, comparing it with the results of the quantum criticality of the model based on the behavior of the energy gap, we observe that the maximum block entropy occurs at the quantum critical point between an antiferromagnetic and a Kondo singlet state, so this measure of entanglement is useful for giving information about where a quantum phase transition occurs in this model. We observe that the block entropy also presents a maximum at the quantum critical points that are obtained when an anisotropy Δ is included in the Kondo exchange between localized and conduction spins; when Δ diminishes for a fixed value of η, the critical point increases, favoring the antiferromagnetic phase.

  15. The metaphysics of D-CTCs: On the underlying assumptions of Deutsch's quantum solution to the paradoxes of time travel

    NASA Astrophysics Data System (ADS)

    Dunlap, Lucas

    2016-11-01

    I argue that Deutsch's model for the behavior of systems traveling around closed timelike curves (CTCs) relies implicitly on a substantive metaphysical assumption. Deutsch is employing a version of quantum theory with a significantly supplemented ontology of parallel existent worlds, which differ in kind from the many worlds of the Everett interpretation. Standard Everett does not support the existence of multiple identical copies of the world, which the D-CTC model requires. This has been obscured because he often refers to the branching structure of Everett as a "multiverse", and describes quantum interference by reference to parallel interacting definite worlds. But he admits that this is only an approximation to Everett. The D-CTC model, however, relies crucially on the existence of a multiverse of parallel interacting worlds. Since his model is supplemented by structures that go significantly beyond quantum theory, and play an ineliminable role in its predictions and explanations, it does not represent a quantum solution to the paradoxes of time travel.

  16. Fermionic topological quantum states as tensor networks

    NASA Astrophysics Data System (ADS)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  17. Software-defined Quantum Networking Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S.; Sadlier, Ronald

    The software enables a user to perform modeling and simulation of software-defined quantum networks. The software addresses the problem of how to synchronize transmission of quantum and classical signals through multi-node networks and to demonstrate quantum information protocols such as quantum teleportation. The software approaches this problem by generating a graphical model of the underlying network and attributing properties to each node and link in the graph. The graphical model is then simulated using a combination of discrete-event simulators to calculate the expected state of each node and link in the graph at a future time. A user interacts withmore » the software by providing an initial network model and instantiating methods for the nodes to transmit information with each other. This includes writing application scripts in python that make use of the software library interfaces. A user then initiates the application scripts, which invokes the software simulation. The user then uses the built-in diagnostic tools to query the state of the simulation and to collect statistics on synchronization.« less

  18. Modelling microtubules in the brain as n-qudit quantum Hopfield network and beyond

    NASA Astrophysics Data System (ADS)

    Pyari Srivastava, Dayal; Sahni, Vishal; Saran Satsangi, Prem

    2016-01-01

    The scientific approach to understand the nature of consciousness revolves around the study of the human brain. Neurobiological studies that compare the nervous system of different species have accorded the highest place to humans on account of various factors that include a highly developed cortical area comprising of approximately 100 billion neurons, that are intrinsically connected to form a highly complex network. Quantum theories of consciousness are based on mathematical abstraction and the Penrose-Hameroff Orch-OR theory is one of the most promising ones. Inspired by the Penrose-Hameroff Orch-OR theory, Behrman et al. have simulated a quantum Hopfield neural network with the structure of a microtubule. They have used an extremely simplified model of the tubulin dimers with each dimer represented simply as a qubit, a single quantum two-state system. The extension of this model to n-dimensional quantum states or n-qudits presented in this work holds considerable promise for even higher mathematical abstraction in modelling consciousness systems.

  19. Causal Modeling the Delayed-Choice Experiment

    NASA Astrophysics Data System (ADS)

    Chaves, Rafael; Lemos, Gabriela Barreto; Pienaar, Jacques

    2018-05-01

    Wave-particle duality has become one of the flagships of quantum mechanics. This counterintuitive concept is highlighted in a delayed-choice experiment, where the experimental setup that reveals either the particle or wave nature of a quantum system is decided after the system has entered the apparatus. Here we consider delayed-choice experiments from the perspective of device-independent causal models and show their equivalence to a prepare-and-measure scenario. Within this framework, we consider Wheeler's original proposal and its variant using a quantum control and show that a simple classical causal model is capable of reproducing the quantum mechanical predictions. Nonetheless, among other results, we show that, in a slight variant of Wheeler's gedanken experiment, a photon in an interferometer can indeed generate statistics incompatible with any nonretrocausal hidden variable model, whose dimensionality is the same as that of the quantum system it is supposed to mimic. Our proposal tolerates arbitrary losses and inefficiencies, making it specially suited to loophole-free experimental implementations.

  20. Quantum critical singularities in two-dimensional metallic XY ferromagnets

    NASA Astrophysics Data System (ADS)

    Varma, Chandra M.; Gannon, W. J.; Aronson, M. C.; Rodriguez-Rivera, J. A.; Qiu, Y.

    2018-02-01

    An important problem in contemporary physics concerns quantum-critical fluctuations in metals. A scaling function for the momentum, frequency, temperature, and magnetic field dependence of the correlation function near a 2D-ferromagnetic quantum-critical point (QCP) is constructed, and its singularities are determined by comparing to the recent calculations of the correlation functions of the dissipative quantum XY model (DQXY). The calculations are motivated by the measured properties of the metallic compound YFe2Al10 , which is a realization of the DQXY model in 2D. The frequency, temperature, and magnetic field dependence of the scaling function as well as the singularities measured in the experiments are given by the theory without adjustable exponents. The same model is applicable to the superconductor-insulator transitions, classes of metallic AFM-QCPs, and as fluctuations of the loop-current ordered state in hole-doped cuprates. The results presented here lend credence to the solution found for the 2D-DQXY model and its applications in understanding quantum-critical properties of diverse systems.

  1. Graph-theoretic quantum system modelling for neuronal microtubules as hierarchical clustered quantum Hopfield networks

    NASA Astrophysics Data System (ADS)

    Srivastava, D. P.; Sahni, V.; Satsangi, P. S.

    2014-08-01

    Graph-theoretic quantum system modelling (GTQSM) is facilitated by considering the fundamental unit of quantum computation and information, viz. a quantum bit or qubit as a basic building block. Unit directional vectors "ket 0" and "ket 1" constitute two distinct fundamental quantum across variable orthonormal basis vectors, for the Hilbert space, specifying the direction of propagation of information, or computation data, while complementary fundamental quantum through, or flow rate, variables specify probability parameters, or amplitudes, as surrogates for scalar quantum information measure (von Neumann entropy). This paper applies GTQSM in continuum of protein heterodimer tubulin molecules of self-assembling polymers, viz. microtubules in the brain as a holistic system of interacting components representing hierarchical clustered quantum Hopfield network, hQHN, of networks. The quantum input/output ports of the constituent elemental interaction components, or processes, of tunnelling interactions and Coulombic bidirectional interactions are in cascade and parallel interconnections with each other, while the classical output ports of all elemental components are interconnected in parallel to accumulate micro-energy functions generated in the system as Hamiltonian, or Lyapunov, energy function. The paper presents an insight, otherwise difficult to gain, for the complex system of systems represented by clustered quantum Hopfield network, hQHN, through the application of GTQSM construct.

  2. Toward quantum-like modeling of financial processes

    NASA Astrophysics Data System (ADS)

    Choustova, Olga

    2007-05-01

    We apply methods of quantum mechanics for mathematical modeling of price dynamics at the financial market. We propose to describe behavioral financial factors (e.g., expectations of traders) by using the pilot wave (Bohmian) model of quantum mechanics. Trajectories of prices are determined by two financial potentials: classical-like V(q) ("hard" market conditions, e.g., natural resources) and quantum-like U(q) (behavioral market conditions). On the one hand, our Bohmian model is a quantum-like model for the financial market, cf. with works of W. Segal, I. E. Segal, E. Haven, E. W. Piotrowski, J. Sladkowski. On the other hand, (since Bohmian mechanics provides the possibility to describe individual price trajectories) it belongs to the domain of extended research on deterministic dynamics for financial assets (C.W.J. Granger, W.A. Barnett, A. J. Benhabib, W.A. Brock, C. Sayers, J. Y. Campbell, A. W. Lo, A. C. MacKinlay, A. Serletis, S. Kuchta, M. Frank, R. Gencay, T. Stengos, M. J. Hinich, D. Patterson, D. A. Hsieh, D. T. Caplan, J.A. Scheinkman, B. LeBaron and many others).

  3. Experimental teleportation of a quantum controlled-NOT gate.

    PubMed

    Huang, Yun-Feng; Ren, Xi-Feng; Zhang, Yong-Sheng; Duan, Lu-Ming; Guo, Guang-Can

    2004-12-10

    Teleportation of quantum gates is a critical step for the implementation of quantum networking and teleportation-based models of quantum computation. We report an experimental demonstration of teleportation of the prototypical quantum controlled-NOT (CNOT) gate. Assisted with linear optical manipulations, photon entanglement produced from parametric down-conversion, and postselection from the coincidence measurements, we teleport the quantum CNOT gate from acting on local qubits to acting on remote qubits. The quality of the quantum gate teleportation is characterized through the method of quantum process tomography, with an average fidelity of 0.84 demonstrated for the teleported gate.

  4. Quantum criticality of a spin-1 XY model with easy-plane single-ion anisotropy via a two-time Green function approach avoiding the Anderson-Callen decoupling

    NASA Astrophysics Data System (ADS)

    Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.

    2016-04-01

    In this work we study the quantum phase transition, the phase diagram and the quantum criticality induced by the easy-plane single-ion anisotropy in a d-dimensional quantum spin-1 XY model in absence of an external longitudinal magnetic field. We employ the two-time Green function method by avoiding the Anderson-Callen decoupling of spin operators at the same sites which is of doubtful accuracy. Following the original Devlin procedure we treat exactly the higher order single-site anisotropy Green functions and use Tyablikov-like decouplings for the exchange higher order ones. The related self-consistent equations appear suitable for an analysis of the thermodynamic properties at and around second order phase transition points. Remarkably, the equivalence between the microscopic spin model and the continuous O(2) -vector model with transverse-Ising model (TIM)-like dynamics, characterized by a dynamic critical exponent z=1, emerges at low temperatures close to the quantum critical point with the single-ion anisotropy parameter D as the non-thermal control parameter. The zero-temperature critic anisotropy parameter Dc is obtained for dimensionalities d > 1 as a function of the microscopic exchange coupling parameter and the related numerical data for different lattices are found to be in reasonable agreement with those obtained by means of alternative analytical and numerical methods. For d > 2, and in particular for d=3, we determine the finite-temperature critical line ending in the quantum critical point and the related TIM-like shift exponent, consistently with recent renormalization group predictions. The main crossover lines between different asymptotic regimes around the quantum critical point are also estimated providing a global phase diagram and a quantum criticality very similar to the conventional ones.

  5. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    PubMed Central

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2016-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (NDDO) and self-consistent density-functional tight-binding (SCC-DFTB) semiempirical models are evaluated against high-level quantum mechanical benchmark calculations for seven biologically important data sets. The data sets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling “modified divide-and-conquer” model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles within the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic probes, was problematic for all of the models considered. Analysis of the strengths and weakness of the models suggest that the creation of robust next-generation models should emphasize the improvement of relative conformational energies and barriers, and nonbond interactions. PMID:25943338

  6. Quantum speed limit for arbitrary initial states

    PubMed Central

    Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Cao, Jun-Peng; Fan, Heng

    2014-01-01

    The minimal time a system needs to evolve from an initial state to its one orthogonal state is defined as the quantum speed limit time, which can be used to characterize the maximal speed of evolution of a quantum system. This is a fundamental question of quantum physics. We investigate the generic bound on the minimal evolution time of the open dynamical quantum system. This quantum speed limit time is applicable to both mixed and pure initial states. We then apply this result to the damped Jaynes-Cummings model and the Ohimc-like dephasing model starting from a general time-evolution state. The bound of this time-dependent state at any point in time can be found. For the damped Jaynes-Cummings model, when the system starts from the excited state, the corresponding bound first decreases and then increases in the Markovian dynamics. While in the non-Markovian regime, the speed limit time shows an interesting periodic oscillatory behavior. For the case of Ohimc-like dephasing model, this bound would be gradually trapped to a fixed value. In addition, the roles of the relativistic effects on the speed limit time for the observer in non-inertial frames are discussed. PMID:24809395

  7. Quantum-assisted learning of graphical models with arbitrary pairwise connectivity

    NASA Astrophysics Data System (ADS)

    Realpe-Gómez, John; Benedetti, Marcello; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    Mainstream machine learning techniques rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speedup these tasks. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful machine learning models. Here we show how to surpass this `curse of limited connectivity' bottleneck and illustrate our findings by training probabilistic generative models with arbitrary pairwise connectivity on a real dataset of handwritten digits and two synthetic datasets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding Boltzmann-like distribution. Therefore, the need to infer the effective temperature at each iteration is avoided, speeding up learning, and the effect of noise in the control parameters is mitigated, improving accuracy. This work was supported in part by NASA, AFRL, ODNI, and IARPA.

  8. Quantum networks in divergence-free circuit QED

    NASA Astrophysics Data System (ADS)

    Parra-Rodriguez, A.; Rico, E.; Solano, E.; Egusquiza, I. L.

    2018-04-01

    Superconducting circuits are one of the leading quantum platforms for quantum technologies. With growing system complexity, it is of crucial importance to develop scalable circuit models that contain the minimum information required to predict the behaviour of the physical system. Based on microwave engineering methods, divergent and non-divergent Hamiltonian models in circuit quantum electrodynamics have been proposed to explain the dynamics of superconducting quantum networks coupled to infinite-dimensional systems, such as transmission lines and general impedance environments. Here, we study systematically common linear coupling configurations between networks and infinite-dimensional systems. The main result is that the simple Lagrangian models for these configurations present an intrinsic natural length that provides a natural ultraviolet cutoff. This length is due to the unavoidable dressing of the environment modes by the network. In this manner, the coupling parameters between their components correctly manifest their natural decoupling at high frequencies. Furthermore, we show the requirements to correctly separate infinite-dimensional coupled systems in local bases. We also compare our analytical results with other analytical and approximate methods available in the literature. Finally, we propose several applications of these general methods to analogue quantum simulation of multi-spin-boson models in non-perturbative coupling regimes.

  9. Tailored Codes for Small Quantum Memories

    NASA Astrophysics Data System (ADS)

    Robertson, Alan; Granade, Christopher; Bartlett, Stephen D.; Flammia, Steven T.

    2017-12-01

    We demonstrate that small quantum memories, realized via quantum error correction in multiqubit devices, can benefit substantially by choosing a quantum code that is tailored to the relevant error model of the system. For a biased noise model, with independent bit and phase flips occurring at different rates, we show that a single code greatly outperforms the well-studied Steane code across the full range of parameters of the noise model, including for unbiased noise. In fact, this tailored code performs almost optimally when compared with 10 000 randomly selected stabilizer codes of comparable experimental complexity. Tailored codes can even outperform the Steane code with realistic experimental noise, and without any increase in the experimental complexity, as we demonstrate by comparison in the observed error model in a recent seven-qubit trapped ion experiment.

  10. Quantum Darwinism in Quantum Brownian Motion

    NASA Astrophysics Data System (ADS)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2008-12-01

    Quantum Darwinism—the redundant encoding of information about a decohering system in its environment—was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state—a macroscopic superposition—the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.

  11. Quantum Darwinism in quantum Brownian motion.

    PubMed

    Blume-Kohout, Robin; Zurek, Wojciech H

    2008-12-12

    Quantum Darwinism--the redundant encoding of information about a decohering system in its environment--was proposed to reconcile the quantum nature of our Universe with apparent classicality. We report the first study of the dynamics of quantum Darwinism in a realistic model of decoherence, quantum Brownian motion. Prepared in a highly squeezed state--a macroscopic superposition--the system leaves records whose redundancy increases rapidly with initial delocalization. Redundancy appears rapidly (on the decoherence time scale) and persists for a long time.

  12. Filamentation instability in a quantum magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bret, A.; and Instituto de Investigaciones Energeticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real

    2008-02-15

    The filamentation instability occurring when a nonrelativistic electron beam passes through a quantum magnetized plasma is investigated by means of a cold quantum magnetohydrodynamic model. It is proved that the instability can be completely suppressed by quantum effects if and only if a finite magnetic field is present. A dimensionless parameter is identified that measures the strength of quantum effects. Strong quantum effects allow for a much smaller magnetic field to suppress the instability than in the classical regime.

  13. Quantum gap and spin-wave excitations in the Kitaev model on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Di Ciolo, Andrea; Jackeli, George

    2018-05-01

    We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model. The quantum fluctuations lift the subextensive degeneracy of the classical ground-state manifold by a quantum order-by-disorder mechanism. Nearest-neighbor chains remain decoupled and the surviving discrete degeneracy of the ground state is protected by a hidden model symmetry. We show how the four-spin interaction, emergent from the fluctuations, generates a spin gap shifting the nodal lines of the linear spin-wave spectrum to finite energies.

  14. Modeling the dynamics of multipartite quantum systems created departing from two-level systems using general local and non-local interactions

    NASA Astrophysics Data System (ADS)

    Delgado, Francisco

    2017-12-01

    Quantum information is an emergent area merging physics, mathematics, computer science and engineering. To reach its technological goals, it is requiring adequate approaches to understand how to combine physical restrictions, computational approaches and technological requirements to get functional universal quantum information processing. This work presents the modeling and the analysis of certain general type of Hamiltonian representing several physical systems used in quantum information and establishing a dynamics reduction in a natural grammar for bipartite processing based on entangled states.

  15. Efficiency at Maximum Power Output of a Quantum-Mechanical Brayton Cycle

    NASA Astrophysics Data System (ADS)

    Yuan, Yuan; He, Ji-Zhou; Gao, Yong; Wang, Jian-Hui

    2014-03-01

    The performance in finite time of a quantum-mechanical Brayton engine cycle is discussed, without introduction of temperature. The engine model consists of two quantum isoenergetic and two quantum isobaric processes, and works with a single particle in a harmonic trap. Directly employing the finite-time thermodynamics, the efficiency at maximum power output is determined. Extending the harmonic trap to a power-law trap, we find that the efficiency at maximum power is independent of any parameter involved in the model, but depends on the confinement of the trapping potential.

  16. Off-diagonal series expansion for quantum partition functions

    NASA Astrophysics Data System (ADS)

    Hen, Itay

    2018-05-01

    We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.

  17. Natural inflation and quantum gravity.

    PubMed

    de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman

    2015-04-17

    Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.

  18. Quantum Bayesian networks with application to games displaying Parrondo's paradox

    NASA Astrophysics Data System (ADS)

    Pejic, Michael

    Bayesian networks and their accompanying graphical models are widely used for prediction and analysis across many disciplines. We will reformulate these in terms of linear maps. This reformulation will suggest a natural extension, which we will show is equivalent to standard textbook quantum mechanics. Therefore, this extension will be termed quantum. However, the term quantum should not be taken to imply this extension is necessarily only of utility in situations traditionally thought of as in the domain of quantum mechanics. In principle, it may be employed in any modelling situation, say forecasting the weather or the stock market---it is up to experiment to determine if this extension is useful in practice. Even restricting to the domain of quantum mechanics, with this new formulation the advantages of Bayesian networks can be maintained for models incorporating quantum and mixed classical-quantum behavior. The use of these will be illustrated by various basic examples. Parrondo's paradox refers to the situation where two, multi-round games with a fixed winning criteria, both with probability greater than one-half for one player to win, are combined. Using a possibly biased coin to determine the rule to employ for each round, paradoxically, the previously losing player now wins the combined game with probabilitygreater than one-half. Using the extended Bayesian networks, we will formulate and analyze classical observed, classical hidden, and quantum versions of a game that displays this paradox, finding bounds for the discrepancy from naive expectations for the occurrence of the paradox. A quantum paradox inspired by Parrondo's paradox will also be analyzed. We will prove a bound for the discrepancy from naive expectations for this paradox as well. Games involving quantum walks that achieve this bound will be presented.

  19. How quantum is the big bang?

    PubMed

    Bojowald, Martin

    2008-06-06

    When quantum gravity is used to discuss the big bang singularity, the most important, though rarely addressed, question is what role genuine quantum degrees of freedom play. Here, complete effective equations are derived for isotropic models with an interacting scalar to all orders in the expansions involved. The resulting coupling terms show that quantum fluctuations do not affect the bounce much. Quantum correlations, however, do have an important role and could even eliminate the bounce. How quantum gravity regularizes the big bang depends crucially on properties of the quantum state.

  20. Sustainable Financing of Innovative Therapies: A Review of Approaches.

    PubMed

    Hollis, Aidan

    2016-10-01

    The process of innovation is inherently complex, and it occurs within an even more complex institutional environment characterized by incomplete information, market power, and externalities. There are therefore different competing approaches to supporting and financing innovation in medical technologies, which bring their own advantages and disadvantages. This article reviews value- and cost-based pricing, as well direct government funding, and cross-cutting institutional structures. It argues that performance-based risk-sharing agreements are likely to have little effect on the sustainability of financing; that there is a role for cost-based pricing models in some situations; and that the push towards longer exclusivity periods is likely contrary to the interests of industry.

Top