The electronic and optical properties of quantum nano-structures
NASA Astrophysics Data System (ADS)
Ham, Heon
In semiconducting quantum nano-structures, the excitonic effects play an important role when we fabricate opto-electronic devices, such as lasers, diodes, detectors, etc. To gain a better understanding of the excitonic effects in quantum nano-structures, we investigated the exciton binding energy, oscillator strength, and linewidth in quantum nano-structures using both the infinite and finite well models. We investigated also the hydrogenic impurity binding energy and the photoionization cross section of the hydrogenic impurity in a spherical quantum dot. In our work, the variational approach is used in all calculations, because the Hamiltonian of the system is not separable, due to the different symmetries of the Coulomb and confining potentials. In the infinite well model of the semiconducting quantum nanostructures, the binding energy of the exciton increases with decreasing width of the potential barriers due to the increase in the effective strength of the Coulomb interaction between the electron and hole. In the finite well model, the exciton binding energy reaches a peak value, and the binding energy decreases with further decrease in the width of the potential barriers. The exciton linewidth in the infinite well model increases with decreasing wire radius, because the scattering rate of the exciton increases with decreasing wire radius. In the finite well model, the exciton linewidth in a cylindrical quantum wire reaches a peak value and the exciton linewidth decreases with further decrease in the wire radius, because the exciton is not well confined at very smaller wire radii. The binding energy of the hydrogenic impurity in a spherical quantum dot has also calculated using both the infinite and the finite well models. The binding energy of the hydrogenic impurity was calculated for on center and off center impurities in the spherical quantum dots. With decreasing radii of the dots, the binding energy of the hydrogenic impurity increases in the infinite well model. The binding energy of the hydrogenic impurity in the finite well model reaches a peak value and decreases with further decrease in the dot radii for both on center and off center impurities. We have calculated the photoionization cross section as a function of the radius and the frequency using both the infinite and finite well models. The photoionizaton cross section has a peak value at a frequency where the photon energy equals the difference between the final and initial state energies of the impurity. The behavior of the cross section with dot radius depends upon the location of the impurity and the polarization of the electromagnetic field.
Information scrambling at an impurity quantum critical point
NASA Astrophysics Data System (ADS)
Dóra, Balázs; Werner, Miklós Antal; Moca, Cǎtǎlin Paşcu
2017-10-01
The two-channel Kondo impurity model realizes a local non-Fermi-liquid state with finite residual entropy. The competition between the two channels drives the system to an impurity quantum critical point. We show that the out-of-time-ordered (OTO) commutator for the impurity spin reveals markedly distinct behavior depending on the low-energy impurity state. For the one-channel Kondo model with Fermi-liquid ground state, the OTO commutator vanishes for late times, indicating the absence of the butterfly effect. For the two channel case, the impurity OTO commutator is completely temperature independent and saturates quickly to its upper bound 1/4, and the butterfly effect is maximally enhanced. These compare favorably to numerics on spin chain representation of the Kondo model. Our results imply that a large late time value of the OTO commutator does not necessarily diagnose quantum chaos.
NASA Astrophysics Data System (ADS)
Kotliar, Gabriel
2005-01-01
Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.
NASA Astrophysics Data System (ADS)
Merker, L.; Costi, T. A.
2012-08-01
We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal energy can be expressed as a sum of purely local static correlation functions and a term that involves also the impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions; specifically via Cimp=(∂Eionic)/(∂T)+(1)/(2)(∂Ehyb)/(∂T), where Eionic and Ehyb are the energies of the (embedded) impurity and the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within other impurity solvers, for example, within quantum Monte Carlo techniques.
Quantum interference on electron scattering in graphene by carbon impurities in underlying h -BN
NASA Astrophysics Data System (ADS)
Kaneko, Tomoaki; Koshino, Mikito; Saito, Riichiro
2017-03-01
Electronic structures and transport properties of graphene on h -BN with carbon impurities are investigated by first-principles calculation and the tight-binding model. We show that the coupling between the impurity level and the graphene's Dirac cone sensitively depends on the impurity position, and in particular, it nearly vanishes when the impurity is located right below the center of the six membered ring of graphene. The Bloch phase factor at the Brillouin zone edge plays a decisive role in the cancellation of the hopping integrals. The impurity position dependence on the electronic structures of graphene on h -BN is investigated by the first-principles calculation, and its qualitative feature is well explained by a tight-binding model with graphene and a single impurity site. We also propose a simple one-dimensional chain-impurity model to analytically describe the role of the quantum interference in the position-dependent coupling.
Continuous-time quantum Monte Carlo impurity solvers
NASA Astrophysics Data System (ADS)
Gull, Emanuel; Werner, Philipp; Fuchs, Sebastian; Surer, Brigitte; Pruschke, Thomas; Troyer, Matthias
2011-04-01
Continuous-time quantum Monte Carlo impurity solvers are algorithms that sample the partition function of an impurity model using diagrammatic Monte Carlo techniques. The present paper describes codes that implement the interaction expansion algorithm originally developed by Rubtsov, Savkin, and Lichtenstein, as well as the hybridization expansion method developed by Werner, Millis, Troyer, et al. These impurity solvers are part of the ALPS-DMFT application package and are accompanied by an implementation of dynamical mean-field self-consistency equations for (single orbital single site) dynamical mean-field problems with arbitrary densities of states. Program summaryProgram title: dmft Catalogue identifier: AEIL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIL_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: ALPS LIBRARY LICENSE version 1.1 No. of lines in distributed program, including test data, etc.: 899 806 No. of bytes in distributed program, including test data, etc.: 32 153 916 Distribution format: tar.gz Programming language: C++ Operating system: The ALPS libraries have been tested on the following platforms and compilers: Linux with GNU Compiler Collection (g++ version 3.1 and higher), and Intel C++ Compiler (icc version 7.0 and higher) MacOS X with GNU Compiler (g++ Apple-version 3.1, 3.3 and 4.0) IBM AIX with Visual Age C++ (xlC version 6.0) and GNU (g++ version 3.1 and higher) compilers Compaq Tru64 UNIX with Compq C++ Compiler (cxx) SGI IRIX with MIPSpro C++ Compiler (CC) HP-UX with HP C++ Compiler (aCC) Windows with Cygwin or coLinux platforms and GNU Compiler Collection (g++ version 3.1 and higher) RAM: 10 MB-1 GB Classification: 7.3 External routines: ALPS [1], BLAS/LAPACK, HDF5 Nature of problem: (See [2].) Quantum impurity models describe an atom or molecule embedded in a host material with which it can exchange electrons. They are basic to nanoscience as representations of quantum dots and molecular conductors and play an increasingly important role in the theory of "correlated electron" materials as auxiliary problems whose solution gives the "dynamical mean field" approximation to the self-energy and local correlation functions. Solution method: Quantum impurity models require a method of solution which provides access to both high and low energy scales and is effective for wide classes of physically realistic models. The continuous-time quantum Monte Carlo algorithms for which we present implementations here meet this challenge. Continuous-time quantum impurity methods are based on partition function expansions of quantum impurity models that are stochastically sampled to all orders using diagrammatic quantum Monte Carlo techniques. For a review of quantum impurity models and their applications and of continuous-time quantum Monte Carlo methods for impurity models we refer the reader to [2]. Additional comments: Use of dmft requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. Running time: 60 s-8 h per iteration.
Impurity-induced tuning of quantum-well States in spin-dependent resonant tunneling.
Kalitsov, Alan; Coho, A; Kioussis, Nicholas; Vedyayev, Anatoly; Chshiev, M; Granovsky, A
2004-07-23
We report exact model calculations of the spin-dependent tunneling in double magnetic tunnel junctions in the presence of impurities in the well. We show that the impurity can tune selectively the spin channels giving rise to a wide variety of interesting and novel transport phenomena. The tunneling magnetoresistance, the spin polarization, and the local current can be dramatically enhanced or suppressed by impurities. The underlying mechanism is the impurity-induced shift of the quantum well states (QWSs), which depends on the impurity potential, impurity position, and the symmetry of the QWS. Copyright 2004 The American Physical Society
Universal scaling for the quantum Ising chain with a classical impurity
NASA Astrophysics Data System (ADS)
Apollaro, Tony J. G.; Francica, Gianluca; Giuliano, Domenico; Falcone, Giovanni; Palma, G. Massimo; Plastina, Francesco
2017-10-01
We study finite-size scaling for the magnetic observables of an impurity residing at the end point of an open quantum Ising chain with transverse magnetic field, realized by locally rescaling the field by a factor μ ≠1 . In the homogeneous chain limit at μ =1 , we find the expected finite-size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit μ =0 , we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. We provide both analytic approximate expressions for the magnetization and the susceptibility as well as numerical evidences for the scaling behavior. At intermediate values of μ , finite-size scaling is violated, and we provide a possible explanation of this result in terms of the appearance of a second, impurity-related length scale. Finally, by going along the standard quantum-to-classical mapping between statistical models, we derive the classical counterpart of the quantum Ising chain with an end-point impurity as a classical Ising model on a square lattice wrapped on a half-infinite cylinder, with the links along the first circle modified as a function of μ .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamanishi, Masamichi, E-mail: masamiya@crl.hpk.co.jp; Hirohata, Tooru; Hayashi, Syohei
2014-11-14
Free running line-widths (>100 kHz), much broader than intrinsic line-widths ∼100 Hz, of existing quantum-cascade lasers are governed by strong flicker frequency-noise originating from electrical flicker noise. Understanding of microscopic origins of the electrical flicker noises in quantum-cascade lasers is crucially important for the reduction of strength of flicker frequency-noise without assistances of any type of feedback schemes. In this article, an ad hoc model that is based on fluctuating charge-dipoles induced by electron trappings and de-trappings at indispensable impurity states in injector super-lattices of a quantum-cascade laser is proposed, developing theoretical framework based on the model. The validity of the presentmore » model is evaluated by comparing theoretical voltage-noise power spectral densities based on the model with experimental ones obtained by using mid-infrared quantum-cascade lasers with designed impurity-positioning. The obtained experimental results on flicker noises, in comparison with the theoretical ones, shed light on physical mechanisms, such as the inherent one due to impurity states in their injectors and extrinsic ones due to surface states on the ridge-walls and due to residual deep traps, for electrical flicker-noise generation in existing mid-infrared quantum-cascade lasers. It is shown theoretically that quasi-delta doping of impurities in their injectors leads to strong suppression of electrical flicker noise by minimization of the dipole length at a certain temperature, for instance ∼300 K and, in turn, is expected to result in substantial narrowing of the free running line-width down below 10 kHz.« less
Crossover physics in the nonequilibrium dynamics of quenched quantum impurity systems.
Vasseur, Romain; Trinh, Kien; Haas, Stephan; Saleur, Hubert
2013-06-14
A general framework is proposed to tackle analytically local quantum quenches in integrable impurity systems, combining a mapping onto a boundary problem with the form factor approach to boundary-condition-changing operators introduced by Lesage and Saleur [Phys. Rev. Lett. 80, 4370 (1998)]. We discuss how to compute exactly the following two central quantities of interest: the Loschmidt echo and the distribution of the work done during the quantum quench. Our results display an interesting crossover physics characterized by the energy scale T(b) of the impurity corresponding to the Kondo temperature. We discuss in detail the noninteracting case as a paradigm and benchmark for more complicated integrable impurity models and check our results using numerical methods.
Solution to the sign problem in a frustrated quantum impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hann, Connor T., E-mail: connor.hann@yale.edu; Huffman, Emilie; Chandrasekharan, Shailesh
2017-01-15
In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weightmore » configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.« less
Quantum impurity models for magnetic adsorbates on superconductor surfaces
NASA Astrophysics Data System (ADS)
Žitko, Rok
2018-05-01
Magnetic atoms adsorbed on surfaces have a quenched orbital moment while their ground-state spin multiplet is partially split as a consequence of the spin-orbit coupling which, even if intrinsically weak, has a large effect due to the abrupt change of the potential at the surface. Such metal adsorbates should be modelled using quantum impurity models that include the relevant internal degrees of freedom and the interaction terms, in particular the magnetic anisotropy and the Kondo exchange coupling. When adsorbed on superconducting surfaces, these impurities have complex spectra of sub-gap excitations due to magnetic anisotropy splitting and Kondo screening. Both anisotropy splitting and Zeeman splitting due to the external magnetic field are significantly renormalized by the coupling to the substrate electrons. In this work I discuss the quantum-to-classical crossover and the applicability of classical static-local-spin picture for discussing magnetic nanostructures on superconductors.
Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions.
Bayat, Abolfazl
2017-01-20
The emergence of a diverging length scale in many-body systems at a quantum phase transition implies that total entanglement has to reach its maximum there. In order to fully characterize this, one has to consider multipartite entanglement as, for instance, bipartite entanglement between individual particles fails to signal this effect. However, quantification of multipartite entanglement is very hard, and detecting it may not be possible due to the lack of accessibility to all individual particles. For these reasons it will be more sensible to partition the system into relevant subsystems, each containing a few to many spins, and study entanglement between those constituents as a coarse-grain picture of multipartite entanglement between individual particles. In impurity systems, famously exemplified by two-impurity and two-channel Kondo models, it is natural to divide the system into three parts, namely, impurities and the left and right bulks. By exploiting two tripartite entanglement measures, based on negativity, we show that at impurity quantum phase transitions the tripartite entanglement diverges and shows scaling behavior. While the critical exponents are different for each tripartite entanglement measure, they both provide very similar critical exponents for the two-impurity and the two-channel Kondo models, suggesting that they belong to the same universality class.
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-01-01
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516
Complexity of Quantum Impurity Problems
NASA Astrophysics Data System (ADS)
Bravyi, Sergey; Gosset, David
2017-12-01
We give a quasi-polynomial time classical algorithm for estimating the ground state energy and for computing low energy states of quantum impurity models. Such models describe a bath of free fermions coupled to a small interacting subsystem called an impurity. The full system consists of n fermionic modes and has a Hamiltonian {H=H_0+H_{imp}}, where H 0 is quadratic in creation-annihilation operators and H imp is an arbitrary Hamiltonian acting on a subset of O(1) modes. We show that the ground energy of H can be approximated with an additive error {2^{-b}} in time {n^3 \\exp{[O(b^3)]}}. Our algorithm also finds a low energy state that achieves this approximation. The low energy state is represented as a superposition of {\\exp{[O(b^3)]}} fermionic Gaussian states. To arrive at this result we prove several theorems concerning exact ground states of impurity models. In particular, we show that eigenvalues of the ground state covariance matrix decay exponentially with the exponent depending very mildly on the spectral gap of H 0. A key ingredient of our proof is Zolotarev's rational approximation to the {√{x}} function. We anticipate that our algorithms may be used in hybrid quantum-classical simulations of strongly correlated materials based on dynamical mean field theory. We implemented a simplified practical version of our algorithm and benchmarked it using the single impurity Anderson model.
Quantum Hall effect in graphene with interface-induced spin-orbit coupling
NASA Astrophysics Data System (ADS)
Cysne, Tarik P.; Garcia, Jose H.; Rocha, Alexandre R.; Rappoport, Tatiana G.
2018-02-01
We consider an effective model for graphene with interface-induced spin-orbit coupling and calculate the quantum Hall effect in the low-energy limit. We perform a systematic analysis of the contribution of the different terms of the effective Hamiltonian to the quantum Hall effect (QHE). By analyzing the spin splitting of the quantum Hall states as a function of magnetic field and gate voltage, we obtain different scaling laws that can be used to characterize the spin-orbit coupling in experiments. Furthermore, we employ a real-space quantum transport approach to calculate the quantum Hall conductivity and investigate the robustness of the QHE to disorder introduced by hydrogen impurities. For that purpose, we combine first-principles calculations and a genetic algorithm strategy to obtain a graphene-only Hamiltonian that models the impurity.
NASA Astrophysics Data System (ADS)
Ardila, L. A. Peña; Giorgini, S.
2015-09-01
We investigate the properties of an impurity immersed in a dilute Bose gas at zero temperature using quantum Monte Carlo methods. The interactions between bosons are modeled by a hard-sphere potential with scattering length a , whereas the interactions between the impurity and the bosons are modeled by a short-range, square-well potential where both the sign and the strength of the scattering length b can be varied by adjusting the well depth. We characterize the attractive and the repulsive polaron branch by calculating the binding energy and the effective mass of the impurity. Furthermore, we investigate the structural properties of the bath, such as the impurity-boson contact parameter and the change of the density profile around the impurity. At the unitary limit of the impurity-boson interaction, we find that the effective mass of the impurity remains smaller than twice its bare mass, while the binding energy scales with ℏ2n2 /3/m , where n is the density of the bath and m is the common mass of the impurity and the bosons in the bath. The implications for the phase diagram of binary Bose-Bose mixtures at low concentrations are also discussed.
Phase boundaries of power-law Anderson and Kondo models: A poor man's scaling study
NASA Astrophysics Data System (ADS)
Cheng, Mengxing; Chowdhury, Tathagata; Mohammed, Aaron; Ingersent, Kevin
2017-07-01
We use the poor man's scaling approach to study the phase boundaries of a pair of quantum impurity models featuring a power-law density of states ρ (ɛ ) ∝|ɛ| r , either vanishing (for r >0 ) or diverging (for r <0 ) at the Fermi energy ɛ =0 , that gives rise to quantum phase transitions between local-moment and Kondo-screened phases. For the Anderson model with a pseudogap (i.e., r >0 ), we find the phase boundary for (a) 0
Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
2016-08-24
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
Nonlinear optical response in a zincblende GaN cylindrical quantum dot with donor impurity center
NASA Astrophysics Data System (ADS)
Hoyos, Jaime H.; Correa, J. D.; Mora-Ramos, M. E.; Duque, C. A.
2016-03-01
We calculate the nonlinear optical absorption coefficient of a cylindrical zincblende GaN-based quantum dot. For this purpose, we consider Coulomb interactions between electrons and an impurity ionized donor atom. The electron-donor-impurity spectrum and the associated quantum states are calculated using the effective mass approximation with a parabolic potential energy model describing both the radial and axial electron confinement. We also include the effects of the hydrostatic pressure and external electrostatic fields. The energy spectrum is obtained through an expansion of the eigenstates as a linear combination of Gaussian-type functions which reduces the computational effort since all the matrix elements are obtained analytically. Therefore, the numerical problem is reduced to the direct diagonalization of the Hamiltonian. The obtained energies are used in the evaluation of the dielectric susceptibility and the nonlinear optical absorption coefficient within a modified two-level approach in a rotating wave approximation. This quantity is investigated as a function of the quantum dot dimensions, the impurity position, the external electric field intensity and the hydrostatic pressure. The results of this research could be important in the design and fabrication of zincblende GaN-quantum-dot-based electro-optical devices.
Numerical renormalization group method for entanglement negativity at finite temperature
NASA Astrophysics Data System (ADS)
Shim, Jeongmin; Sim, H.-S.; Lee, Seung-Sup B.
2018-04-01
We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contributes to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene
NASA Astrophysics Data System (ADS)
Ferreira, Aires; Milletari, Mirco
Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno
Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less
Resonant pair tunneling in double quantum dots.
Sela, Eran; Affleck, Ian
2009-08-21
We present exact results on the nonequilibrium current fluctuations for 2 quantum dots in series throughout a crossover from non-Fermi liquid to Fermi liquid behavior described by the 2 impurity Kondo model. The result corresponds to resonant tunneling of carriers of charge 2e for a critical interimpurity coupling. At low energy scales, the result can be understood from a Fermi liquid approach that we develop and use to also study nonequilibrium transport in an alternative double dot realization of the 2 impurity Kondo model under current experimental study.
Anatomy of quantum critical wave functions in dissipative impurity problems
NASA Astrophysics Data System (ADS)
Blunden-Codd, Zach; Bera, Soumya; Bruognolo, Benedikt; Linden, Nils-Oliver; Chin, Alex W.; von Delft, Jan; Nazir, Ahsan; Florens, Serge
2017-02-01
Quantum phase transitions reflect singular changes taking place in a many-body ground state; however, computing and analyzing large-scale critical wave functions constitutes a formidable challenge. Physical insights into the sub-Ohmic spin-boson model are provided by the coherent-state expansion (CSE), which represents the wave function by a linear combination of classically displaced configurations. We find that the distribution of low-energy displacements displays an emergent symmetry in the absence of spontaneous symmetry breaking while experiencing strong fluctuations of the order parameter near the quantum critical point. Quantum criticality provides two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement and a constant universal average squeezing amplitude. These observations, confirmed by extensive variational matrix-product-state (VMPS) simulations and field theory arguments, offer precious clues into the microscopics of critical many-body states in quantum impurity models.
Stark-shift of impurity fundamental state in a lens shaped quantum dot
NASA Astrophysics Data System (ADS)
Aderras, L.; Bah, A.; Feddi, E.; Dujardin, F.; Duque, C. A.
2017-05-01
We calculate the Stark effect and the polarisability of shallow-donor impurity located in the centre of lens shaped quantum dot by a variational method and in the effective-mass approximation. Our theoretical model assumes an infinite confinement to describe the barriers at the dot boundaries and the electric field is considered to be applied in the z-direction. The systematic theoretical investigation contains results with the quantum dot size and the strength of the external field. Our calculations reveal that the interval wherein the polarisability varies depends strongly on the dot size.
NASA Astrophysics Data System (ADS)
Hayrapetyan, D. B.; Ohanyan, G. L.; Baghdasaryan, D. A.; Sarkisyan, H. A.; Baskoutas, S.; Kazaryan, E. M.
2018-01-01
Hydrogen-like donor impurity states in strongly oblate ellipsoidal quantum dot have been studied. The hydrogen-like donor impurity states are investigated within the framework of variational method. The trial wave function constructed on the base of wave functions of the system without impurity. The dependence of the energy and binding energy for the ground and first excited states on the geometrical parameters of the ellipsoidal quantum dot and on the impurity position have been calculated. The behavior of the oscillator strength for different angles of incident light and geometrical parameters have been revealed. Photoionization cross-section of the electron transitions from the impurity ground state to the size-quantized ground and first excited states have been studied. The effects of impurity position and the geometrical parameters of the ellipsoidal quantum dot on the photoionization cross section dependence on the photon energy have been considered.
Strong quantum scarring by local impurities
Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa
2016-01-01
We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications. PMID:27892510
Strong quantum scarring by local impurities
NASA Astrophysics Data System (ADS)
Luukko, Perttu J. J.; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J.; Räsänen, Esa
2016-11-01
We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.
Strong quantum scarring by local impurities.
Luukko, Perttu J J; Drury, Byron; Klales, Anna; Kaplan, Lev; Heller, Eric J; Räsänen, Esa
2016-11-28
We discover and characterise strong quantum scars, or quantum eigenstates resembling classical periodic orbits, in two-dimensional quantum wells perturbed by local impurities. These scars are not explained by ordinary scar theory, which would require the existence of short, moderately unstable periodic orbits in the perturbed system. Instead, they are supported by classical resonances in the unperturbed system and the resulting quantum near-degeneracy. Even in the case of a large number of randomly scattered impurities, the scars prefer distinct orientations that extremise the overlap with the impurities. We demonstrate that these preferred orientations can be used for highly efficient transport of quantum wave packets across the perturbed potential landscape. Assisted by the scars, wave-packet recurrences are significantly stronger than in the unperturbed system. Together with the controllability of the preferred orientations, this property may be very useful for quantum transport applications.
NASA Astrophysics Data System (ADS)
Feddi, E.; El-Yadri, M.; Dujardin, F.; Restrepo, R. L.; Duque, C. A.
2017-02-01
In this study, we have investigated the confined donor impurity in a hollow cylindrical-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with rigid walls. Within the framework of the effective-mass approximation and by using a simple variational approach, we have computed the donor binding energy as a function of the shell sizes in order to study the behavior of the electron-impurity attraction for a very small thickness. Our results show that the binding energy of a donor impurity placed at the center of cylindrical core/shell dots depends strongly on the shell size. The binding energy increases when the shell-wideness becomes smaller and shows the same behavior as in a simple cylindrical quantum dot. A special case has been studied, which corresponds to the ratio between the inner and outer radii near to one (a/b → 1) for which our model gives a non-significant behavior of the impurity binding energy. This fact implies the existence of a critical value (a/b) for which the binding energy of the donor impurity tends to the limit value of 4 effective Rydbergs as in a 2D quantum well. We also analyse the photoionization cross section considering only the in-plane incident radiation polarization. We determine its behavior as a function of photon energy, shell size, and donor position. The measurement of photoionization in such systems would be of great interest to understand the optical properties of carriers in quantum dots.
A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics
NASA Astrophysics Data System (ADS)
Kretchmer, Joshua S.; Chan, Garnet Kin-Lic
2018-02-01
We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.
A real-time extension of density matrix embedding theory for non-equilibrium electron dynamics.
Kretchmer, Joshua S; Chan, Garnet Kin-Lic
2018-02-07
We introduce real-time density matrix embedding theory (DMET), a dynamical quantum embedding theory for computing non-equilibrium electron dynamics in strongly correlated systems. As in the previously developed static DMET, real-time DMET partitions the system into an impurity corresponding to the region of interest coupled to the surrounding environment, which is efficiently represented by a quantum bath of the same size as the impurity. In this work, we focus on a simplified single-impurity time-dependent formulation as a first step toward a multi-impurity theory. The equations of motion of the coupled impurity and bath embedding problem are derived using the time-dependent variational principle. The accuracy of real-time DMET is compared to that of time-dependent complete active space self-consistent field (TD-CASSCF) theory and time-dependent Hartree-Fock (TDHF) theory for a variety of quantum quenches in the single impurity Anderson model (SIAM), in which the Hamiltonian is suddenly changed (quenched) to induce a non-equilibrium state. Real-time DMET shows a marked improvement over the mean-field TDHF, converging to the exact answer even in the non-trivial Kondo regime of the SIAM. However, as expected from analogous behavior in static DMET, the constrained structure of the real-time DMET wavefunction leads to a slower convergence with respect to active space size, in the single-impurity formulation, relative to TD-CASSCF. Our initial results suggest that real-time DMET provides a promising framework to simulate non-equilibrium electron dynamics in which strong electron correlation plays an important role, and lays the groundwork for future multi-impurity formulations.
Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou
2016-05-05
The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, ρc(ω) proportional |ω − μF|(r) (0 < r < 1) near the Fermi energy μF. At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r = 0 to r = rc < 1. Surprisingly, in the 2CK phase, different power-law scalings from the well-known [Formula: see text] or [Formula: see text] form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.
Exact diagonalization library for quantum electron models
NASA Astrophysics Data System (ADS)
Iskakov, Sergei; Danilov, Michael
2018-04-01
We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.
Two-color Fermi-liquid theory for transport through a multilevel Kondo impurity
NASA Astrophysics Data System (ADS)
Karki, D. B.; Mora, Christophe; von Delft, Jan; Kiselev, Mikhail N.
2018-05-01
We consider a quantum dot with K ≥2 orbital levels occupied by two electrons connected to two electric terminals. The generic model is given by a multilevel Anderson Hamiltonian. The weak-coupling theory at the particle-hole symmetric point is governed by a two-channel S =1 Kondo model characterized by intrinsic channels asymmetry. Based on a conformal field theory approach we derived an effective Hamiltonian at a strong-coupling fixed point. The Hamiltonian capturing the low-energy physics of a two-stage Kondo screening represents the quantum impurity by a two-color local Fermi liquid. Using nonequilibrium (Keldysh) perturbation theory around the strong-coupling fixed point we analyze the transport properties of the model at finite temperature, Zeeman magnetic field, and source-drain voltage applied across the quantum dot. We compute the Fermi-liquid transport constants and discuss different universality classes associated with emergent symmetries.
Tunable Kondo physics in a carbon nanotube double quantum dot.
Chorley, S J; Galpin, M R; Jayatilaka, F W; Smith, C G; Logan, D E; Buitelaar, M R
2012-10-12
We investigate a tunable two-impurity Kondo system in a strongly correlated carbon nanotube double quantum dot, accessing the full range of charge regimes. In the regime where both dots contain an unpaired electron, the system approaches the two-impurity Kondo model. At zero magnetic field the interdot coupling disrupts the Kondo physics and a local singlet state arises, but we are able to tune the crossover to a Kondo screened phase by application of a magnetic field. All results show good agreement with a numerical renormalization group study of the device.
2012-01-01
Using a variational approach, we have investigated the effects of the magnetic field, the impurity position, and the nitrogen and indium concentrations on impurity binding energy in a Ga1−xInxNyAs1−y/GaAs quantum well. Our calculations have revealed the dependence of impurity binding on the applied magnetic field, the impurity position, and the nitrogen and indium concentrations. PMID:23095253
An impurity-induced gap system as a quantum data bus for quantum state transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Bing, E-mail: chenbingphys@gmail.com; Li, Yong; Song, Z.
2014-09-15
We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness ofmore » this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.« less
Non-Equilibrium Dynamics with Quantum Monte Carlo
NASA Astrophysics Data System (ADS)
Dong, Qiaoyuan
This work is motivated by the fact that the investigation of non-equilibrium phenomena in strongly correlated electron systems has developed into one of the most active and exciting branches of condensed matter physics as it provides rich new insights that could not be obtained from the study of equilibrium situations. However, a theoretical description of those phenomena is missing. Therefore, in this thesis, we develop a numerical method that can be used to study two minimal models--the Hubbard model and the Anderson impurity model with general parameter range and time dependence. We begin by introducing the theoretical framework and the general features of the Hubbard model. We then describe the dynamical mean field theory (DMFT), which was first invented by Georges in 1992. It provides a feasible way to approach strongly correlated electron systems and reduces the complexity of the calculations via a mapping of lattice models onto quantum impurity models subject to a self-consistency condition. We employ the non-equilibrium extension of DMFT and map the Hubbard model to the single impurity Anderson model (SIAM). Since the fundamental component of the DMFT method is a solver of the single impurity Anderson model, we continue with a description of the formalism to study the real-time dynamics of the impurity model staring at its thermal equilibrium state. We utilize the non-equilibrium strong-coupling perturbation theory and derive semi-analytical approximation methods such as the non-crossing approximation (NCA) and the one-crossing approximation (OCA). We then use the Quantum Monte-Carlo method (QMC) as a numerically exact method and present proper measurements of local observables, current and Green's functions. We perform simulations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibrium times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. However, this bare QMC solver suffers from a dynamical sign problem for long time propagations. To overcome the limitations of this bare treatment, we introduce the "Inchworm algorithm'', based on iteratively reusing the information obtained in previous steps to extend the propagation to longer times and stabilize the calculations. We show that this algorithm greatly reduces the required order for each simulation and re-scales the exponential challenge to quadratic in time. We introduce a method to compute Green's functions, spectral functions, and currents for inchworm Monte Carlo and show how systematic error assessments in real time can be obtained. We illustrate the capabilities of the algorithm with a study of the behavior of quantum impurities after an instantaneous voltage quench from a thermal equilibrium state. We conclude with the applications of the unbiased inchworm impurity solver to DMFT calculations. We employ the methods for a study of the one-band paramagnetic Hubbard model on the Bethe lattice in equilibrium, where the DMFT approximation becomes exact. We begin with a brief introduction of the Mott metal insulator phase diagram. We present the results of both real time Green's functions and spectral functions from our nonequilibrium calculations. We observe the metal-insulator crossover as the on-site interaction is increased and the formation of a quasi-particle peak as the temperature is lowered. We also illustrate the convergence of our algorithms in different aspects.
Impurity-generated non-Abelions
NASA Astrophysics Data System (ADS)
Simion, G.; Kazakov, A.; Rokhinson, L. P.; Wojtowicz, T.; Lyanda-Geller, Y. B.
2018-06-01
Two classes of topological superconductors and Majorana modes in condensed matter systems are known to date: one in which disorder induced by impurities strongly suppresses topological superconducting gap and is detrimental to Majorana modes, and another where Majorana fermions are protected by a disorder-robust topological superconductor gap. Observation and control of Majorana fermions and other non-Abelions often requires a symmetry of an underlying system leading to a gap in the single-particle or quasiparticle spectra. In semiconductor structures, impurities that provide charge carriers introduce states into the gap and enable conductance and proximity-induced superconductivity via the in-gap states. Thus a third class of topological superconductivity and Majorana modes emerges, in which topological superconductivity and Majorana fermions appear exclusively when impurities generate in-gap states. We show that impurity-enabled topological superconductivity is realized in a quantum Hall ferromagnet, when a helical domain wall is coupled to an s -wave superconductor. As an example of emergence of topological superconductivity in quantum Hall ferromagnets, we consider the integer quantum Hall effect in Mn-doped CdTe quantum wells. Recent experiments on transport through the quantum Hall ferromagnet domain wall in this system indicated a vital role of impurities in the conductance, but left unresolved the question whether impurities preclude generation of Majorana fermions and other non-Abelions in such systems in general. Here, solving a general quantum-mechanical problem of impurity bound states in a system of spin-orbit coupled Landau levels, we demonstrate that impurity-induced Majorana modes emerge at boundaries between topological and conventional superconducting states generated in a domain wall due to proximity to an s superconductor. We consider both short-range disorder and a smooth random potential. The phase diagram of the system is defined by characteristic disorder, gate voltage induced angular momentum splitting of impurity levels, and by a proximity superconducting gap. The phase diagram exhibits two ranges of gate voltage with conventional superconducting order separated by a gate voltage range with topological superconductivity. We show that electrostatic control of domain walls in an integer quantum Hall ferromagnet allows manipulation of Majorana fermions. Ferromagnetic transitions in the fractional quantum Hall regime may lead to the formation and electrostatic control of higher order non-Abelian excitations.
Spin-dependent tunneling recombination in heterostructures with a magnetic layer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S.
We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in themore » quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.« less
Quantum dot in interacting environments
NASA Astrophysics Data System (ADS)
Rylands, Colin; Andrei, Natan
2018-04-01
A quantum impurity attached to an interacting quantum wire gives rise to an array of new phenomena. Using the Bethe Ansatz we solve exactly models describing two geometries of a quantum dot coupled to an interacting quantum wire: a quantum dot that is (i) side coupled and (ii) embedded in a Luttinger liquid. We find the eigenstates and determine the spectrum through the Bethe Ansatz equations. Using this we derive exact expressions for the ground-state dot occupation. The thermodynamics are then studied using the thermodynamics Bethe Ansatz equations. It is shown that at low energies the dot becomes fully hybridized and acts as a backscattering impurity or tunnel junction depending on the geometry and furthermore that the two geometries are related by changing the sign of the interactions. Although remaining strongly coupled for all values of the interaction in the wire, there exists competition between the tunneling and backscattering leading to a suppression or enhancement of the dot occupation depending on the sign of the bulk interactions.
NASA Astrophysics Data System (ADS)
Robinson, Neil J.; Caux, Jean-Sébastien; Konik, Robert M.
2016-04-01
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.
Neil J. Robinson; Caux, Jean -Sebastien; Konik, Robert M.
2016-04-07
We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion—a period of quasistationary behavior. In conclusion, when the impurity is injected with a finite center-of-mass momentum,more » the impurity moves through the background gas in a snaking manner, arising from a quantum Newton’s cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.« less
Non-Fermi Liquid Behavior in the Single-Impurity Mixed Valence Problem
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu
An effective Hamiltonian of the Anderson single-impurity model with finite-range Coulomb interactions is derived near a particular limit, which is analogous to the Toulouse limit of the ordinary Kondo problem, and the physical properties around the mixed valence quantum critical point are calculated. At this quantum critical point, the local moment is only partially quenched and X-ray edge singularities are exhibited. Around this point, a new type of non-Fermi liquid behavior is predicted with an extra specific heat Cimp ~ T1/4 + AT ln T and spin-susceptibility χimp ~T-3/4 + B ln T.
NASA Astrophysics Data System (ADS)
Makhov, I. S.; Panevin, V. Yu; Firsov, D. A.; Vorobjev, L. E.; Sofronov, A. N.; Vinnichenko, M. Ya; Maleev, N. A.; Vasil'ev, A. P.
2018-03-01
Terahertz and near-infrared photoluminescence under conditions of interband stimulated emission are studied in n-GaAs/AlGaAs quantum well laser structure. The observed terahertz emission is related to the optical transitions of nonequilibrium electrons from the first electron subband and excited donor states to donor ground states in quantum wells. The opportunity to increase the intensity of impurity-assisted terahertz emission due to interband stimulated emission with the participation of impurity centres is demonstrated.
Silicon as a model ion trap: Time domain measurements of donor Rydberg states
Vinh, N. Q.; Greenland, P. T.; Litvinenko, K.; Redlich, B.; van der Meer, A. F. G.; Lynch, S. A.; Warner, M.; Stoneham, A. M.; Aeppli, G.; Paul, D. J.; Pidgeon, C. R.; Murdin, B. N.
2008-01-01
One of the great successes of quantum physics is the description of the long-lived Rydberg states of atoms and ions. The Bohr model is equally applicable to donor impurity atoms in semiconductor physics, where the conduction band corresponds to the vacuum, and the loosely bound electron orbiting a singly charged core has a hydrogen-like spectrum according to the usual Bohr–Sommerfeld formula, shifted to the far-infrared because of the small effective mass and high dielectric constant. Manipulation of Rydberg states in free atoms and ions by single and multiphoton processes has been tremendously productive since the development of pulsed visible laser spectroscopy. The analogous manipulations have not been conducted for donor impurities in silicon. Here, we use the FELIX pulsed free electron laser to perform time-domain measurements of the Rydberg state dynamics in phosphorus- and arsenic-doped silicon and we have obtained lifetimes consistent with frequency domain linewidths for isotopically purified silicon. This implies that the dominant decoherence mechanism for excited Rydberg states is lifetime broadening, just as for atoms in ion traps. The experiments are important because they represent a step toward coherent control and manipulation of atomic-like quantum levels in the most common semiconductor and complement magnetic resonance experiments in the literature, which show extraordinarily long spin lattice relaxation times—key to many well known schemes for quantum computing qubits—for the same impurities. Our results, taken together with the magnetic resonance data and progress in precise placement of single impurities, suggest that doped silicon, the basis for modern microelectronics, is also a model ion trap.
Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems
NASA Astrophysics Data System (ADS)
Cohen, Guy
2015-03-01
This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.
Polarons and Mobile Impurities Near a Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Shadkhoo, Shahriar
This dissertation aims at improving the current understanding of the physics of mobile impurities in highly correlated liquid-like phases of matter. Impurity problems pose challenging and intricate questions in different realms of many-body physics. For instance, the problem of ''solvation'' of charged solutes in polar solvents, has been the subject of longstanding debates among chemical physicists. The significant role of quantum fluctuations of the solvent, as well as the break down of linear response theory, render the ordinary treatments intractable. Inspired by this complicated problem, we first attempt to understand the role of non-specific quantum fluctuations in the solvation process. To this end, we calculate the dynamic structure factor of a model polar liquid, using the classical Molecular Dynamics (MD) simulations. We verify the failure of linear response approximation in the vicinity of a hydrated electron, by comparing the outcomes of MD simulations with the predictions of linear response theory. This nonlinear behavior is associated with the pronounced peaks of the structure factor, which reflect the strong fluctuations of the local modes. A cavity picture is constructed based on heuristic arguments, which suggests that the electron, along with the surrounding polarization cloud, behave like a frozen sphere, for which the linear response theory is broken inside and valid outside. The inverse radius of the spherical region serves as a UV momentum cutoff for the linear response approximation to be applicable. The problem of mobile impurities in polar liquids can be also addressed in the framework of the ''polaron'' problem. Polaron is a quasiparticle that typically acquires an extended state at weak couplings, and crossovers to a self-trapped state at strong couplings. Using the analytical fits to the numerically obtained charge-charge structure factor, a phenomenological approach is proposed within the Leggett's influence functional formalism, which derives the effective Euclidean action from the classical equation of motion. We calculate the effective mass of the polaron in the model polar liquid at zero and finite temperatures. The self-trapping transition of this polaron turns out to be discontinuous in certain regions of the phase diagram. In order to systematically investigate the role of quantum fluctuations on the polaron properties, we adopt a quantum field theory which supports nearly-critical local modes: the quantum Landau-Brazovskii (QLB) model, which exhibits fluctuation-induced first order transition (weak crystallization). In the vicinity of the phase transition, the quantum fluctuations are strongly correlated; one can in principle tune the strength of these fluctuations, by adjusting the parameters close to or away from the transition point. Furthermore, sufficiently close to the transition, the theory accommodates "soliton'' solutions, signaling the nonlinear response of the system. Therefore, the model seems to be a promising candidate for studying the effects of strong quantum fluctuations and also failure of linear response theory, in the polaron problem. We observe that at zero temperature, and away from the Brazovskii transition where the linear response approximation is valid, the localization transition of the polaron is discontinuous. Upon enhancing fluctuations---of either thermal or quantum nature---the gap of the effective mass closes at distinct second-order critical points. Sufficiently close to the Brazovskii transition where the nonlinear contributions of the field are significantly large, a new state appears in addition to extended and self-trapped polarons: an impurity-induced soliton. We interpret this as the break-down of linear response, reminiscent of what we observe in a polar liquid. Quantum LB model has been proposed to be realizable in ultracold Bose gases in cavities. We thus discuss the experimental feasibility, and propose a setup which is believed to exhibit the aforementioned polaronic and solitonic states. We eventually generalize the polaron formalism to the case of impurities that couple quadratically to a nearly-critical field; hence called the ''quadratic polaron''. The Hertz-Millis field theory and its generalization to the case of magnetic transition in helimagnets, is taken as a toy model. The phase diagram of the bare model contains both second-order and fluctuation-induced first-order quantum phase transitions. We propose a semi-classical scenario in which the impurity and the field couple quadratically. The polaron properties in the vicinity of these transitions are calculated in different dimensions. We observe that the quadratic coupling in three dimensions, even in the absence of the critical modes with finite wavelength, leads to a jump-like localization of the polaron. In lower dimensions, the transition behavior remains qualitatively similar to those in the case of linear coupling, namely the critical modes must have a finite wavelength to localize the particle.
Multi-photon Rabi oscillations in high spin paramagnetic impurity
NASA Astrophysics Data System (ADS)
Bertaina, S.; Groll, N.; Chen, L.; Chiorescu, I.
2011-10-01
We report on multiple photon monochromatic quantum oscillations (Rabi oscillations) observed by pulsed EPR (Electron Paramagnetic Resonance) of Mn2+ (S = 5/2) impurities in MgO. We find that when the microwave magnetic field is similar or large than the anisotropy splitting, the Rabi oscillations have a spectrum made of many frequencies not predicted by the S = l/2 Rabi model. We show that these new frequencies come from multiple photon coherent manipulation of the multi-level spin impurity. We develop a model based on the crystal field theory and the rotating frame approximation, describing the observed phenomenon with a very good agreement.
Negative quantum capacitance induced by midgap states in single-layer graphene.
Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning
2013-01-01
We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.
Negative Quantum Capacitance Induced by Midgap States in Single-layer Graphene
Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning
2013-01-01
We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions. PMID:23784258
NASA Astrophysics Data System (ADS)
Portacio, Alfonso A.; Rodríguez, Boris A.; Villamil, Pablo
2017-04-01
The linear and nonlinear optical response in a cylindrical quantum dot (CQD) of GaAs / Ga0.6Al0.4 As with a donor impurity in a uniform magnetic field applied in the axial direction of the cylinder is studied theoretically. The calculations were carried out in approximations of effective mass and two-level quantum systems. Using the variational method, the binding energies and the wave functions of the 1s-like y 2pz-like states for different positions of the impurity inside the CQD were found. It was found that the binding energy is greatest in the center of the CQD and diminishes as the impurity moves radially and/or axially. The optical rectification, the change in the refractive index, and the optical absorption were studied as functions of the energy of a photon incident on the CQD and different intensities of the magnetic field, with an impurity located at various positions. It was found that in a CDQ with an impurity inside, the effect of the variation of the intensity of the magnetic field on the optical response is much less than the effect produced by the variation of the position of the impurity. The physical reason for this behavior is that in nanostructures with impurities the Coulomb confinement is stronger than the magnetic confinement. It was also found that when the impurity is in the center of the quantum dot, the optical rectification coefficient is zero, due to the symmetry that the wave function of the impurity exhibits at this geometric point. When the impurity moves in the axial direction, the symmetry is broken and the optical rectification coefficient is different from zero, and its value increases as the impurity moves away from the center of the CQD.
NASA Astrophysics Data System (ADS)
Xiao, Jing-lin
2018-02-01
In the present work, we study the ground state energy, the first excited state energy and the transition frequency (TF) between the two states of the strong-coupling impurity bound polaron in an asymmetric Gaussian potential quantum well (AGPQW) by using the variational method of the Pekar type. By employing quantum statistics theory, the temperature effect on the state energies (SEs) and the TF are also calculated with a hydrogen-like impurity at the coordinate origin of the AGPQW. According to the obtained results, we found that the SEs and the TF are increasing functions of the temperature, whereas they are decreasing ones of the Coulombic impurity potential.
NASA Astrophysics Data System (ADS)
Hakimyfard, Alireza; Barseghyan, M. G.; Duque, C. A.; Kirakosyan, A. A.
2009-12-01
In the frame of the variational method and the effective-mass approximation, the effects of hydrostatic pressure and temperature on the binding energy for donor impurities in the Pöschl-Teller quantum well are studied. The binding energy dependencies on the width of the quantum well, the hydrostatic pressure, the impurity position, the temperature, and the parameters of the confining potential are reported. The results show that the binding energy increases (decreases) with the increasing of the hydrostatic pressure (temperature). It is also found that, associated with the symmetry breaking in the Pöschl-Teller quantum well, and depending on the impurity position, the binding energy can increase or decrease.
Electronic structure of vitamin B12 within the framework of the Haldane-Anderson impurity model
NASA Astrophysics Data System (ADS)
Kandemir, Zafer; Mayda, Selma; Bulut, Nejat
2015-03-01
We study the electronic structure of vitamin B12 (cyanocobalamine C63H88CoN14O14P) by using the framework of the multi-orbital single-impurity Haldane-Anderson model of a transition-metal impurity in a semiconductor host. Here, our purpose is to understand the many-body effects originating from the transition-metal impurity. In this approach, the cobalt 3 d orbitals are treated as the impurity states placed in a semiconductor host which consists of the rest of the molecule. The parameters of the resulting effective Haldane-Anderson model are obtained within the Hartree-Fock approximation for the electronic structure of the molecule. The quantum Monte Carlo technique is then used to calculate the one-electron and magnetic correlation functions of this effective Haldane-Anderson model for vitamin B12. We find that new states form inside the semiconductor gap due to the on-site Coulomb interaction at the impurity 3 d orbitals and that these states become the highest occupied molecular orbitals. In addition, we present results on the charge distribution and spin correlations around the Co atom. We compare the results of this approach with those obtained by the density-functional theory calculations.
Kreula, J. M.; Clark, S. R.; Jaksch, D.
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
Correlation effects in superconducting quantum dot systems
NASA Astrophysics Data System (ADS)
Pokorný, Vladislav; Žonda, Martin
2018-05-01
We study the effect of electron correlations on a system consisting of a single-level quantum dot with local Coulomb interaction attached to two superconducting leads. We use the single-impurity Anderson model with BCS superconducting baths to study the interplay between the proximity induced electron pairing and the local Coulomb interaction. We show how to solve the model using the continuous-time hybridization-expansion quantum Monte Carlo method. The results obtained for experimentally relevant parameters are compared with results of self-consistent second order perturbation theory as well as with the numerical renormalization group method.
NASA Astrophysics Data System (ADS)
Sarkar, Supratik; Sarkar, Samrat; Bose, Chayanika
2018-07-01
We present a general formulation of the ground state binding energy of a shallow hydrogenic impurity in spherical quantum dot with parabolic confinement, considering the effects of polarization and self energy. The variational approach within the effective mass approximation is employed here. The binding energy of an on-center impurity is computed for a GaAs/AlxGa1-xAs quantum dot as a function of the dot size with the dot barrier as parameter. The influence of polarization and self energy are also treated separately. Results indicate that the binding energy increases due to the presence of polarization charge, while decreases due to the self energy of the carrier. An overall enhancement in impurity binding energy, especially for small dots is noted.
Efficient implementation of the continuous-time hybridization expansion quantum impurity solver
NASA Astrophysics Data System (ADS)
Hafermann, Hartmut; Werner, Philipp; Gull, Emanuel
2013-04-01
Strongly correlated quantum impurity problems appear in a wide variety of contexts ranging from nanoscience and surface physics to material science and the theory of strongly correlated lattice models, where they appear as auxiliary systems within dynamical mean-field theory. Accurate and unbiased solutions must usually be obtained numerically, and continuous-time quantum Monte Carlo algorithms, a family of algorithms based on the stochastic sampling of partition function expansions, perform well for such systems. With the present paper we provide an efficient and generic implementation of the hybridization expansion quantum impurity solver, based on the segment representation. We provide a complete implementation featuring most of the recently developed extensions and optimizations. Our implementation allows one to treat retarded interactions and provides generalized measurement routines based on improved estimators for the self-energy and for vertex functions. The solver is embedded in the ALPS-DMFT application package. Catalogue identifier: AEOL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Use of the hybridization expansion impurity solvers requires citation of this paper. Use of any ALPS program requires citation of the ALPS [1] paper. No. of lines in distributed program, including test data, etc.: 650044 No. of bytes in distributed program, including test data, etc.: 20553265 Distribution format: tar.gz Programming language: C++/Python. Computer: Desktop PC, high-performance computers. Operating system: Unix, Linux, OSX, Windows. Has the code been vectorized or parallelized?: Yes, MPI parallelized. RAM: 1 GB Classification: 7.3. External routines: ALPS [1, 2, 3], BLAS [4, 5], LAPACK [6], HDF5 [7] Nature of problem: Quantum impurity models were originally introduced to describe a magnetic transition metal ion in a non-magnetic host metal. They are widely used today. In nanoscience they serve as representations of quantum dots and molecular conductors. In condensed matter physics, they are playing an increasingly important role in the description of strongly correlated electron materials, where the complicated many-body problem is mapped onto an auxiliary quantum impurity model in the context of dynamical mean-field theory, and its cluster and diagrammatic extensions. They still constitutes a non-trivial many-body problem, which takes into account the (possibly retarded) interaction between electrons occupying the impurity site. Electrons are allowed to dynamically hop on and off the impurity site, which is described by a time-dependent hybridization function. Solution method: The quantum impurity model is solved using a continuous-time quantum Monte Carlo algorithm which is based on a perturbation expansion of the partition function in the impurity-bath hybridization. Monte Carlo configurations are represented as segments on the imaginary time interval and individual terms correspond to Feynman diagrams which are stochastically sampled to all orders using a Metropolis algorithm. For a detailed review on the method, we refer the reader to [8]. Running time: 1-8 h. B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs, L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R. Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo, O. Parcollet, G. Pawlowski, J. D. Picon, L. Pollet, E. Santos, V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S. Trebst, M. Troyer, M. L. Wall, P. Werner and S. Wessel, Journal of Statistical Mechanics: Theory and Experiment 2011, P05001 (2011). F. Alet, P. Dayal, A. Grzesik, A. Honecker, M. Körner, A. Läuchli, S. R. Manmana, I. P. McCulloch, F. Michel, R. M. Noack, G. Schmid, U. Schollwöck, F. Stöckli, S. Todo, S. Trebst, M. Troyer, P. Werner, S. Wessel, J. Phys. Soc. Japan 74S (2005) 30. A. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S. Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi, M. Körner, A. Kozhevnikov, A. Láuchli, S. Manmana, M. Matsumoto, I. McCulloch, F. Michel, R. Noack, G. Pawlowski, L. Pollet, T. Pruschke, U. Schollwöck, S. Todo, S. Trebst, M. Troyer, P. Werner and S. Wessel, J. Magn. Magn. Mater. 310, 1187 (2007), proceedings of the 17th International Conference on Magnetism The International Conference on Magnetism. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, ACM Transactions on Mathematical Software 5, 324 (1979). L. S. Blackford, J. Demmel, I. Du, G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, and R. C. Whaley, ACM Trans. Math. Softw. 28, 135 (2002). E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’ Guide, 3rd ed. (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999). The HDF Group, Hierarchical data format version 5, http://www.hdfgroup.org/HDF5 (2000-2010). E. Gull, A. J. Millis, A. I. Lichtenstein, A. N. Rubtsov, M. Troyer and P. Werner, Rev. Mod. Phys. 83, 349 (2011).
Sodium dopants in helium clusters: Structure, equilibrium and submersion kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo, F.
Alkali impurities bind to helium nanodroplets very differently depending on their size and charge state, large neutral or charged dopants being wetted by the droplet whereas small neutral impurities prefer to reside aside. Using various computational modeling tools such as quantum Monte Carlo and path-integral molecular dynamics simulations, we have revisited some aspects of the physical chemistry of helium droplets interacting with sodium impurities, including the onset of snowball formation in presence of many-body polarization forces, the transition from non-wetted to wetted behavior in larger sodium clusters, and the kinetics of submersion of small dopants after sudden ionization.
NASA Astrophysics Data System (ADS)
Zvyagin, A. A.
2018-04-01
Based on the results of exact analytic calculations, we show that topological edge states and impurities in quantum dimerized chains manifest themselves in various local static and dynamical characteristics, which can be measured in experiments. In particular, topological edge states can be observed in the magnetic field behavior of the local magnetization or magnetic susceptibility of dimerized spin chains as jumps (for the magnetization) and features (for the static susceptibility) at zero field. In contrast, impurities reveal themselves in similar jumps and features, however, at nonzero values of the critical field. We also show that dynamical characteristics of dimerized quantum chains also manifest the features, related to the topological edge states and impurities. Those features, as a rule, can be seen more sharply than the manifestation of bulk extended states in, e.g., the dynamical local susceptibility. Such peculiarities can be observed in one-dimensional dimerized spin chains, e.g., in NMR experiments, or in various realizations of quantum dimerized chains in optical experiments.
Dominant source of disorder in graphene: charged impurities or ripples?
NASA Astrophysics Data System (ADS)
Fan, Zheyong; Uppstu, Andreas; Harju, Ari
2017-06-01
Experimentally produced graphene sheets exhibit a wide range of mobility values. Both extrinsic charged impurities and intrinsic ripples (corrugations) have been suggested to induce long-range disorder in graphene and could be a candidate for the dominant source of disorder. Here, using large-scale molecular dynamics and quantum transport simulations, we find that the hopping disorder and the gauge and scalar potentials induced by the ripples are short-ranged, in strong contrast with predictions by continuous models, and the transport fingerprints of the ripple disorder are very different from those of charged impurities. We conclude that charged impurities are the dominant source of disorder in most graphene samples, whereas scattering by ripples is mainly relevant in the high carrier density limit of ultraclean graphene samples (with a charged impurity concentration less than about 10 ppm) at room and higher temperatures. Our finding is valuable to theoretical modelling of transport properties of not only graphene, but also other two-dimensional materials, as the thermal ripples are universal.
Third-harmonic generation of a laser-driven quantum dot with impurity
NASA Astrophysics Data System (ADS)
Sakiroglu, S.; Kilic, D. Gul; Yesilgul, U.; Ungan, F.; Kasapoglu, E.; Sari, H.; Sokmen, I.
2018-06-01
The third-harmonic generation (THG) coefficient for a laser-driven quantum dot with an on-center Gaussian impurity under static magnetic field is theoretically investigated. Laser field effect is treated within the high-frequency Floquet approach and the analytical expression of the THG coefficient is deduced from the compact density-matrix approach. The numerical results demonstrate that the application of intense laser field causes substantial changes on the behavior of THG. In addition the position and magnitude of the resonant peak of THG coefficient is significantly affected by the magnetic field, quantum dot size and the characteristic parameters of the impurity potential.
Machine learning for many-body physics: The case of the Anderson impurity model
Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole; ...
2014-10-31
We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.
Machine learning for many-body physics: The case of the Anderson impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsenault, Louis-François; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole
We applied machine learning methods in order to find the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Furthermore, different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. Our results indicate that a machine learning approach to dynamical mean-field theory may be feasible.
iQIST v0.7: An open source continuous-time quantum Monte Carlo impurity solver toolkit
NASA Astrophysics Data System (ADS)
Huang, Li
2017-12-01
In this paper, we present a new version of the iQIST software package, which is capable of solving various quantum impurity models by using the hybridization expansion (or strong coupling expansion) continuous-time quantum Monte Carlo algorithm. In the revised version, the software architecture is completely redesigned. New basis (intermediate representation or singular value decomposition representation) for the single-particle and two-particle Green's functions is introduced. A lot of useful physical observables are added, such as the charge susceptibility, fidelity susceptibility, Binder cumulant, and autocorrelation time. Especially, we optimize measurement for the two-particle Green's functions. Both the particle-hole and particle-particle channels are supported. In addition, the block structure of the two-particle Green's functions is exploited to accelerate the calculation. Finally, we fix some known bugs and limitations. The computational efficiency of the code is greatly enhanced.
Orbital effect of the magnetic field in dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.
2017-12-01
The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.
Wetting layer effect on impurity-related electronic properties of different (In,Ga)N QD-shapes
NASA Astrophysics Data System (ADS)
El Ghazi, Haddou; Jorio, Anouar; Zorkani, Izeddine; Feddi, El Mustapha; El Mouchtachi, Ahmed
2018-05-01
In this paper, we have investigated the electronic properties of (In,Ga)N/GaN coupled wetting layer-quantum dot system using the numerical approach. The finite element method code is used to solve the Schrödinger equation, in the presence of the impurity. In our model, parallelepiped-shape, circular and square based-pyramidal and their wetting layers embedded in GaN matrix were considered. Based on the single band parabolic and the effective mass approximations, the envelop function and its corresponding energy eigenvalue are obtained assuming a finite potential barrier. Our results reveal that: (1) the wetting layer has a great influence on the electronic properties especially for a small quantum dot and acts in the opposite sense of the geometrical confinement, (2) a wetting layer-dependent critical QD-size is obtained limiting two different behaviors and (3) its effect is strongly-dependent on the quantum dot-shape.
Bloch oscillations in the absence of a lattice
NASA Astrophysics Data System (ADS)
Meinert, Florian; Knap, Michael; Kirilov, Emil; Jag-Lauber, Katharina; Zvonarev, Mikhail B.; Demler, Eugene; Nägerl, Hanns-Christoph
2017-06-01
The interplay of strong quantum correlations and far-from-equilibrium conditions can give rise to striking dynamical phenomena. We experimentally investigated the quantum motion of an impurity atom immersed in a strongly interacting one-dimensional Bose liquid and subject to an external force. We found that the momentum distribution of the impurity exhibits characteristic Bragg reflections at the edge of an emergent Brillouin zone. Although Bragg reflections are typically associated with lattice structures, in our strongly correlated quantum liquid they result from the interplay of short-range crystalline order and kinematic constraints on the many-body scattering processes in the one-dimensional system. As a consequence, the impurity exhibits periodic dynamics, reminiscent of Bloch oscillations, although the quantum liquid is translationally invariant. Our observations are supported by large-scale numerical simulations.
Seebeck effect on a weak link between Fermi and non-Fermi liquids
NASA Astrophysics Data System (ADS)
Nguyen, T. K. T.; Kiselev, M. N.
2018-02-01
We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.
Perpetual motion and driven dynamics of a mobile impurity in a quantum fluid
NASA Astrophysics Data System (ADS)
Lychkovskiy, O.
2015-04-01
We study the dynamics of a mobile impurity in a quantum fluid at zero temperature. Two related settings are considered. In the first setting, the impurity is injected in the fluid with some initial velocity v0, and we are interested in its velocity at infinite time, v∞. We derive a rigorous upper bound on | v0-v∞| for initial velocities smaller than the generalized critical velocity. In the limit of vanishing impurity-fluid coupling, this bound amounts to v∞=v0 , which can be regarded as a rigorous proof of the Landau criterion of superfluidity. In the case of a finite coupling, the velocity of the impurity can drop, but not to zero; the bound quantifies the maximal possible drop. In the second setting, a small constant force is exerted upon the impurity. We argue that two distinct dynamical regimes exist—backscattering oscillations of the impurity velocity and saturation of the velocity without oscillations. For fluids with vc L=vs (where vc L and vs are the Landau critical velocity and sound velocity, respectively), the latter regime is realized. For fluids with vc L
Recommender engine for continuous-time quantum Monte Carlo methods
NASA Astrophysics Data System (ADS)
Huang, Li; Yang, Yi-feng; Wang, Lei
2017-03-01
Recommender systems play an essential role in the modern business world. They recommend favorable items such as books, movies, and search queries to users based on their past preferences. Applying similar ideas and techniques to Monte Carlo simulations of physical systems boosts their efficiency without sacrificing accuracy. Exploiting the quantum to classical mapping inherent in the continuous-time quantum Monte Carlo methods, we construct a classical molecular gas model to reproduce the quantum distributions. We then utilize powerful molecular simulation techniques to propose efficient quantum Monte Carlo updates. The recommender engine approach provides a general way to speed up the quantum impurity solvers.
Nonlinear quantum Langevin equations for bosonic modes in solid-state systems
NASA Astrophysics Data System (ADS)
Manninen, Juuso; Agasti, Souvik; Massel, Francesco
2017-12-01
Based on the experimental evidence that impurities contribute to the dissipation properties of solid-state open quantum systems, we provide here a description in terms of nonlinear quantum Langevin equations of the role played by two-level systems in the dynamics of a bosonic degree of freedom. Our starting point is represented by the description of the system-environment coupling in terms of coupling to two separate reservoirs, modeling the interaction with external bosonic modes and two-level systems, respectively. Furthermore, we show how this model represents a specific example of a class of open quantum systems that can be described by nonlinear quantum Langevin equations. Our analysis offers a potential explanation of the parametric effects recently observed in circuit-QED cavity optomechanics experiments.
Optical coefficients in a semiconductor quantum ring: Electric field and donor impurity effects
NASA Astrophysics Data System (ADS)
Duque, C. M.; Acosta, Ruben E.; Morales, A. L.; Mora-Ramos, M. E.; Restrepo, R. L.; Ojeda, J. H.; Kasapoglu, E.; Duque, C. A.
2016-10-01
The electron states in a two-dimensional quantum dot ring are calculated in the presence of a donor impurity atom under the effective mass and parabolic band approximations. The effect of an externally applied electric field is also taken into account. The wavefunctions are obtained via the exact diagonalization of the problem Hamiltonian using a 2D expansion within the adiabatic approximation. The impurity-related optical response is analyzed via the optical absorption, relative refractive index change and the second harmonics generation. The dependencies of the electron states and these optical coefficients with the changes in the configuration of the quantum ring system are discussed in detail.
Nanomechanical dissipation at a tip-induced Kondo onset
NASA Astrophysics Data System (ADS)
Baruselli, Pier Paolo; Fabrizio, Michele; Tosatti, Erio
2017-08-01
The onset or demise of Kondo effect in a magnetic impurity on a metal surface can be triggered, as sometimes observed, by the simple mechanical nudging of a tip. Such a mechanically driven quantum phase transition must reflect in a corresponding mechanical dissipation peak; yet, this kind of signature has not been focused upon so far. Aiming at the simplest theoretical modeling, we treat the impurity as an Anderson impurity model, the tip action as a hybridization switching, and solve the problem by numerical renormalization group. Studying this model as function of temperature and magnetic field we are able to isolate the Kondo contribution to dissipation. While that is, reasonably, of the order of the Kondo energy, its temperature evolution shows a surprisingly large tail even above the Kondo temperature. The detectability of Kondo mechanical dissipation in atomic force microscopy is also discussed.
NASA Astrophysics Data System (ADS)
El-Yadri, M.; Aghoutane, N.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.
2018-05-01
This work reports on theoretical investigation of the temperature and hydrostatic pressure effects on the confined donor impurity in a AlGaAs-GaAs hollow cylindrical core-shell quantum dot. The charges are assumed to be completely confined to the interior of the shell with approximately rigid walls. Within the framework of the effective-mass approximation and by using a variational approach, we have computed the donor binding energies as a function of the shell size in order to study the behavior of the electron-impurity attraction for a very small thickness under the influence of both temperature and hydrostatic pressure. Our results show that the temperature and hydrostatic pressure have a significant influence on the impurity binding energy for large shell quantum dots. It will be shown that the binding energy is more pronounced with increasing pressure and decreasing temperature for any impurity position and quantum dot size. The photoionization cross section is also analyzed by considering only the in-plane incident radiation polarization. Its behavior is investigated as a function of photon energy for different values of pressure and temperature. The opposite effects caused by temperature and hydrostatic pressure reveal a big practical interest and offer an alternative way to tuning of correlated electron-impurity transitions in optoelectronic devices.
Strong-coupling Bose polarons out of equilibrium: Dynamical renormalization-group approach
NASA Astrophysics Data System (ADS)
Grusdt, Fabian; Seetharam, Kushal; Shchadilova, Yulia; Demler, Eugene
2018-03-01
When a mobile impurity interacts with a surrounding bath of bosons, it forms a polaron. Numerous methods have been developed to calculate how the energy and the effective mass of the polaron are renormalized by the medium for equilibrium situations. Here, we address the much less studied nonequilibrium regime and investigate how polarons form dynamically in time. To this end, we develop a time-dependent renormalization-group approach which allows calculations of all dynamical properties of the system and takes into account the effects of quantum fluctuations in the polaron cloud. We apply this method to calculate trajectories of polarons following a sudden quench of the impurity-boson interaction strength, revealing how the polaronic cloud around the impurity forms in time. Such trajectories provide additional information about the polaron's properties which are challenging to extract directly from the spectral function measured experimentally using ultracold atoms. At strong couplings, our calculations predict the appearance of trajectories where the impurity wavers back at intermediate times as a result of quantum fluctuations. Our method is applicable to a broader class of nonequilibrium problems. As a check, we also apply it to calculate the spectral function and find good agreement with experimental results. At very strong couplings, we predict that quantum fluctuations lead to the appearance of a dark continuum with strongly suppressed spectral weight at low energies. While our calculations start from an effective Fröhlich Hamiltonian describing impurities in a three-dimensional Bose-Einstein condensate, we also calculate the effects of additional terms in the Hamiltonian beyond the Fröhlich paradigm. We demonstrate that the main effect of these additional terms on the attractive side of a Feshbach resonance is to renormalize the coupling strength of the effective Fröhlich model.
Local density approximation in site-occupation embedding theory
NASA Astrophysics Data System (ADS)
Senjean, Bruno; Tsuchiizu, Masahisa; Robert, Vincent; Fromager, Emmanuel
2017-01-01
Site-occupation embedding theory (SOET) is a density functional theory (DFT)-based method which aims at modelling strongly correlated electrons. It is in principle exact and applicable to model and quantum chemical Hamiltonians. The theory is presented here for the Hubbard Hamiltonian. In contrast to conventional DFT approaches, the site (or orbital) occupations are deduced in SOET from a partially interacting system consisting of one (or more) impurity site(s) and non-interacting bath sites. The correlation energy of the bath is then treated implicitly by means of a site-occupation functional. In this work, we propose a simple impurity-occupation functional approximation based on the two-level (2L) Hubbard model which is referred to as two-level impurity local density approximation (2L-ILDA). Results obtained on a prototypical uniform eight-site Hubbard ring are promising. The extension of the method to larger systems and more sophisticated model Hamiltonians is currently in progress.
Fermi-edge transmission resonance in graphene driven by a single Coulomb impurity.
Karnatak, Paritosh; Goswami, Srijit; Kochat, Vidya; Pal, Atindra Nath; Ghosh, Arindam
2014-07-11
The interaction between the Fermi sea of conduction electrons and a nonadiabatic attractive impurity potential can lead to a power-law divergence in the tunneling probability of charge through the impurity. The resulting effect, known as the Fermi edge singularity (FES), constitutes one of the most fundamental many-body phenomena in quantum solid state physics. Here we report the first observation of FES for Dirac fermions in graphene driven by isolated Coulomb impurities in the conduction channel. In high-mobility graphene devices on hexagonal boron nitride substrates, the FES manifests in abrupt changes in conductance with a large magnitude ≈e(2)/h at resonance, indicating total many-body screening of a local Coulomb impurity with fluctuating charge occupancy. Furthermore, we exploit the extreme sensitivity of graphene to individual Coulomb impurities and demonstrate a new defect-spectroscopy tool to investigate strongly correlated phases in graphene in the quantum Hall regime.
NASA Astrophysics Data System (ADS)
Yilmaz, S.; Kirak, M.
2018-05-01
In the present study, we have studied theoretically the influences of donor impurity position on the binding energy of a GaAs cubic quantum box structure. The binding energy is calculated as functions of the position of impurity, electric field, temperature and hydrostatic pressure. The variational method is employed to obtain the energy eigenvalues of the structure in the framework of the effective mass approximation. It has been found that the impurity positions with electric field, pressure and temperature have an important effect on the binding energy of structure considered. The results can be used to manufacture semiconductor device application by manipulating the binding energy with the impurity positions, electric field, pressure and temperature.
Quantum quenches in a holographic Kondo model
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.
2017-04-01
We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.
NASA Astrophysics Data System (ADS)
Iqraoun, E.; Sali, A.; Rezzouk, A.; Feddi, E.; Dujardin, F.; Mora-Ramos, M. E.; Duque, C. A.
2017-06-01
The donor impurity-related electron states in GaAs cone-like quantum dots under the influence of an externally applied static electric field are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The uncorrelated Schrödinger-like electron states are obtained in quasi-analytical form and the entire electron-impurity correlated states are used to calculate the photoionisation cross section. Results for the electron state energies and the photoionisation cross section are reported as functions of the main geometrical parameters of the cone-like structures as well as of the electric field strength.
NASA Astrophysics Data System (ADS)
Tiutiunnyk, A.; Akimov, V.; Tulupenko, V.; Mora-Ramos, M. E.; Kasapoglu, E.; Ungan, F.; Sökmen, I.; Morales, A. L.; Duque, C. A.
2016-03-01
Electronic structure and optical properties in equilateral triangular GaAs/Al0.3Ga0.7As quantum dots are studied extensively. The effects of donor and acceptor impurity atoms positioned in the orthocenter of the triangle, as well as of the external DC electric field are taken into account. Binding energies of the impurity, exciton energies, interband photoluminescence peak positions as well as linear and non-linear optical properties in THz range caused by transitions between excitonic states are calculated and discussed.
NASA Astrophysics Data System (ADS)
Wang, Guangxin; Zhou, Rui; Duan, Xiuzhi
2016-07-01
The shallow-donor impurity states in cylindrical zinc-blende (ZB) In x Ga1- x N/GaN quantum dots (QDs) have been theoretically investigated, considering the combined effects of an intense laser field (ILF), an external electric field, and hydrostatic pressure. The numerical results show that for an on-center impurity in ZB In x Ga1- x N/GaN QD, (1) the ground-state binding energy of the donor impurity is a decreasing function of the laser-dressing parameter and/or the QD's height; (2) as the QD's radius decreases, the binding energy of the donor impurity increases at first, reaches a maximum value, and then drops rapidly; (3) the binding energy of the donor impurity is a decreasing function of the external electric field due to the Stark effect; (4) the binding energy of the donor impurity increases as the applied hydrostatic pressure becomes large. In addition, the position of the impurity ion was also found to have an important influence on the binding energy of the donor impurity. The physical reasons have been analyzed in detail.
NASA Astrophysics Data System (ADS)
Xiao, Jing-Lin
2014-06-01
On the condition of strong electron-LO phonon coupling in parabolic quantum dot (QD), the first excited state energy, the excitation energy and the transition frequency between the first excited and the ground states of the bound polaron are calculated by using the linear combination operator and the unitary transformation methods. The variation of the above quantities with the temperature, the Coulombic impurity potential and the QD confinement strength are studied in detail. We find that (1) These physical quantities will increase with increasing temperature. (2) They are increasing functions of the confinement strength due to the existence of the Coulombic impurity potential between the electron and the hydrogen-like impurity. (3) We obtain three ways of tuning them via controlling the temperature, the Coulombic impurity potential and the confinement strength.
Local nature of impurity induced spin-orbit torques
NASA Astrophysics Data System (ADS)
Nikolaev, Sergey; Kalitsov, Alan; Chshiev, Mairbec; Mryasov, Oleg
Spin-orbit torques are of a great interest due to their potential applications for spin electronics. Generally, it originates from strong spin orbit coupling of heavy 4d/5d elements and its mechanism is usually attributed either to the Spin Hall effect or Rashba spin-orbit coupling. We have developed a quantum-mechanical approach based on the non-equilibrium Green's function formalism and tight binding Hamiltonian model to study spin-orbit torques and extended our theory for the case of extrinsic spin-orbit coupling induced by impurities. For the sake of simplicity, we consider a magnetic material on a two dimensional lattice with a single non-magnetic impurity. However, our model can be easily extended for three dimensional layered heterostructures. Based on our calculations, we present the detailed analysis of the origin of local spin-orbit torques and persistent charge currents around the impurity, that give rise to spin-orbit torques even in equilibrium and explain the existence of anisotropy.
Bound magnetic polaron in a semimagnetic double quantum well
NASA Astrophysics Data System (ADS)
Kalpana, P.; Jayakumar, K.
2017-09-01
The effect of different combinations of the concentration of Mn2+ ion in the Quantum well Cd1-xinMnxin Te and the barrier Cd1-xoutMnxout Te on the Bound Magnetic Polaron (BMP) in a Diluted Magnetic Semiconductors (DMS) Double Quantum Well (DQW) has been investigated. The Schrodinger equation is solved variationally in the effective mass approximation through which the Spin Polaronic Shift (SPS) due to the formation of BMP has been estimated for various locations of the donor impurity in the DQW. The results show that the effect of the increase of Mn2+ ion composition with different combinations on SPS is predominant for On Centre Well (OCW) impurity when compared to all other impurity locations when there is no application of magnetic field (γ = 0), γ being a dimensionless parameter for the magnetic field, and the same is predominant for On Centre Barrier (OCB) impurity with the application of external magnetic field (γ = 0.15).
NASA Astrophysics Data System (ADS)
Xiao, Jing-Lin
2016-11-01
We study the ground state energy and the mean number of LO phonons of the strong-coupling polaron in a RbCl quantum pseudodot (QPD) with hydrogen-like impurity at the center. The variations of the ground state energy and the mean number of LO phonons with the temperature and the strength of the Coulombic impurity potential are obtained by employing the variational method of Pekar type and the quantum statistical theory (VMPTQST). Our numerical results have displayed that [InlineMediaObject not available: see fulltext.] the absolute value of the ground state energy increases (decreases) when the temperature increases at lower (higher) temperature regime, [InlineMediaObject not available: see fulltext.] the mean number of the LO phonons increases with increasing temperature, [InlineMediaObject not available: see fulltext.] the absolute value of ground state energy and the mean number of LO phonons are increasing functions of the strength of the Coulombic impurity potential.
Energetics of Single Substitutional Impurities in NiTi
NASA Technical Reports Server (NTRS)
Good, Brian S.; Noebe, Ronald
2003-01-01
Shape-memory alloys are of considerable current interest, with applications ranging from stents to Mars rover components. In this work, we present results on the energetics of single substitutional impurities in B2 NiTi. Specifically, energies of Pd, Pt, Zr and Hf impurities at both Ni and Ti sites are computed. All energies are computed using the CASTEP ab initio code, and, for comparison, using the quantum approximate energy method of Bozzolo, Ferrante and Smith. Atomistic relaxation in the vicinity of the impurities is investigated via quantum approximate Monte Carlo simulation, and in cases where the relaxation is found to be important, the resulting relaxations are applied to the ab initio calculations. We compare our results with available experimental work.
Quantum simulation in strongly correlated optical lattices
NASA Astrophysics Data System (ADS)
Mckay, David C.
My work on the 87Rb apparatus focuses on three main topics: simulating the Bose-Hubbard (BH) model out of equilibrium, developing thermometry probes, and developing impurity probes using a 3D spin-dependent lattice. Theoretical techniques (e.g., QMC) are adept at describing the equilibrium properties of the BH model, but the dynamics are unknown --- simulation is able to bridge this gap. We perform two experiments to simulate the BH model out of equilibrium. In the first experiment, published in Ref. [1], we measure the decay rate of the center-of-mass velocity for a Bose-Einstein condensate trapped in a cubic lattice. We explore this dissipation for different Bose-Hubbard parameters (corresponding to different lattice depths) and temperatures. We observe a decay rate that asymptotes to a finite value at zero temperature, which we interpret as evidence of intrinsic decay due to quantum tunneling of phase slips. The decay rate exponentially increases with temperature, which is consistent with a cross-over from quantum tunneling to thermal activation. While phase slips are a well-known dissipation mechanism in superconductors, numerous effects prevent unambiguous detection of quantum phase slips. Therefore, our measurement is among the strongest evidence for quantum tunneling of phase slips. In a second experiment, published in Ref. [2] with theory collaborators at Cornell University, we investigate condensate fraction evolution during fast (i.e., millisecond) ramps of the lattice potential depth. These ramps simulate the BH model with time-dependent parameters. We determine that interactions lead to significant condensate fraction redistribution during these ramps, in agreement with mean-field calculations. This result clarifies adiabatic timescales for the lattice gas and strongly constrains bandmapping as an equilibrium probe. Another part of this thesis work involves developing thermometry techniques for the lattice gas. These techniques are important because the ability to measure temperature is required for quantum simulation and to evaluate in-lattice cooling schemes. In work published in Ref. [3], we explore measuring temperature by directly fitting the quasimomentum distribution of a thermal lattice gas. We attempt to obtain quasimomentum distributions by bandmapping, a process in which the lattice depth is reduced slowly compared to the bandgap but fast with respect to all other timescales. We find that these temperature measurements fail when the thermal energy is comparable to the bandwidth of the lattice. This failure results from two main causes. First, the quasimomentum distribution is an insensitive probe at high temperatures because the band is occupied (i.e., additional thermal energy cannot be accommodated in the kinetic energy degrees of freedom). Second, the bandmapping process does not produce accurate quasimomentum distributions because of smoothing at the Brillouin zone edge. We determine that measuring temperature using the in-situ width overcomes these issues. The in-situ width does not asymptote to a finite value as temperature increases, and the in-situ width can be measured directly without using a mapping procedure. In a second experiment, we investigate using condensate fraction (obtained from the time-of-flight momentum distribution) as an indirect means to measure temperature in the superfluid regime of the BH model. Since no standard fitting procedure exists for the lattice time-of-flight distributions, we define and test a procedure as part of this work. We measure condensate fraction for a range of lattice depths varying from deep in the superfluid regime to lattice depths proximate to the Mott-insulator transition. We also vary the entropy per particle, which is measured in the harmonic trap before adiabatically loading into the lattice. As expected, the condensate fraction increases as entropy decreases, and the condensate fraction decreases at high lattice depths (due to quantum depletion). We compare our experimental results to condensate fraction predicted by the non-interacting, Hartree-Fock-Bogoliubov-Popov, and site-decoupled-mean-field theories. Theory and experiment disagree, which motivates several future extensions to this work, including calculating condensate fraction (and testing our fit procedure) using quantum Monte Carlo numerics, and experimentally and theoretically investigating the dynamics of the lattice load process (for the finite-temperature strongly correlated regime). Finally, we develop impurity probes for the Bose-Hubbard model by employing a spin-dependent lattice. A primary accomplishment of this thesis work was to develop the first 3D spin-dependent lattice in the strongly correlated regime (published in Ref. [4]). The spin-dependent lattice depth is proportional to |gFmF|, enabling the creation of mixtures of atoms trapped in the lattice (nonzero mF) co-trapped with atoms that do not experience the lattice (mF≠ 0). We use the non-lattice atoms as an impurity probe. We investigate using the impurity to probe the lattice temperature, and we determine that thermalization between the impurity and lattice gas is suppressed for larger lattice depths. Using a comparison to a Fermi's golden rule calculation of the collisional energy exchange rate, we determine that this effect is consistent with suppression of energy-exchanging collisions by a mismatch between the impurity and lattice gas dispersion. While this result invalidates the concept of an impurity thermometer, it paves the way for a unique cooling scheme that relies on inter-species thermal isolation. We also explore impurity transport through the lattice gas. In other preliminary measurements, we also identify the decay rate of the center-of-mass motion as a prospective impurity probe.
Impurities near an antiferromagnetic-singlet quantum critical point
Mendes-Santos, T.; Costa, N. C.; Batrouni, G.; ...
2017-02-15
Heavy-fermion systems and other strongly correlated electron materials often exhibit a competition between antiferromagnetic (AF) and singlet ground states. We examine the effect of impurities in the vicinity of such an AF-singlet quantum critical point (QCP), through an appropriately defined “impurity susceptibility” χimp, using exact quantum Monte Carlo simulations. Our key finding is a connection within a single calculational framework between AF domains induced on the singlet side of the transition and the behavior of the nuclear magnetic resonance (NMR) relaxation rate 1/T1. Furthermore, we show that local NMR measurements provide a diagnostic for the location of the QCP, whichmore » agrees remarkably well with the vanishing of the AF order parameter and large values of χimp.« less
Numerical method for N electrons bound to a polar quantum dot with a Coulomb impurity
NASA Astrophysics Data System (ADS)
Yau, J. K.; Lee, C. M.
2003-03-01
A numerical method is proposed to calculate the Frohlich Hamiltonian containing N electrons bound to polar quantum dot with a Coulomb impurity without transformation to the coordination frame of the center of mass and by direct diagonalization. As an example to demonstrate the formalism of this method, the low-lying spectra of three interacting electrons bound to an on-center Coulomb impurity, both for accepter and donor, are calculated and analyzed in a polar quantum dot under a perpendicular magnetic field. Taking polaron effect into account, the physical meaning of the phonon-induced terms, both self-square terms and cross terms of the Hamiltonian are discussed. The calculation can also be applied to systems containing particles with opposite charges, such as excitons.
Cobalt adatoms on graphene: Effects of anisotropies on the correlated electronic structure
NASA Astrophysics Data System (ADS)
Mozara, R.; Valentyuk, M.; Krivenko, I.; Şaşıoǧlu, E.; Kolorenč, J.; Lichtenstein, A. I.
2018-02-01
Impurities on surfaces experience a geometric symmetry breaking induced not only by the on-site crystal-field splitting and the orbital-dependent hybridization, but also by different screening of the Coulomb interaction in different directions. We present a many-body study of the Anderson impurity model representing a Co adatom on graphene, taking into account all anisotropies of the effective Coulomb interaction, which we obtained by the constrained random-phase approximation. The most pronounced differences are naturally displayed by the many-body self-energy projected onto the single-particle states. For the solution of the Anderson impurity model and analytical continuation of the Matsubara data, we employed new implementations of the continuous-time hybridization expansion quantum Monte Carlo and the stochastic optimization method, and we verified the results in parallel with the exact diagonalization method.
NASA Astrophysics Data System (ADS)
Cygorek, M.; Axt, V. M.
2015-08-01
Starting from a quantum kinetic theory for the spin dynamics in diluted magnetic semiconductors, we derive simplified equations that effectively describe the spin transfer between carriers and magnetic impurities for an arbitrary initial impurity magnetization. Taking the Markov limit of these effective equations, we obtain good quantitative agreement with the full quantum kinetic theory for the spin dynamics in bulk systems at high magnetic doping. In contrast, the standard rate description where the carrier-dopant interaction is treated according to Fermi’s golden rule, which involves the assumption of a short memory as well as a perturbative argument, has been shown previously to fail if the impurity magnetization is non-zero. The Markov limit of the effective equations is derived, assuming only a short memory, while higher order terms are still accounted for. These higher order terms represent the precession of the carrier-dopant correlations in the effective magnetic field due to the impurity spins. Numerical calculations show that the Markov limit of our effective equations reproduces the results of the full quantum kinetic theory very well. Furthermore, this limit allows for analytical solutions and for a physically transparent interpretation.
Modeling, Simulation, and Analysis of Quantum Transport.
1991-03-15
mode operation is important to prevent standby power dissipation in circuits. The relevant struc- ture consists of a quantum well one half of which...is intentionally doped while the other half is left undoped. In the absence of any external electric field, electrons mostly reside in the doped half ...electron wavefunction to the undoped half in which the mobility is much higher because of the absence of in-situ impurity scatterir". Consequently the
NASA Astrophysics Data System (ADS)
El Haouari, M.; Feddi, E.; Dujardin, F.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.
2017-11-01
The ground state of a conduction electron coupled to an off-center impurity donor in a AlAS/GaAs spherical core/shell quantum dot is investigated theoretically. The image-charge effect and the influence of the electron-polar-LO-phonon interaction are considered. The electron-impurity binding energy is calculated via a variational procedure and is reported both as a function of the shell width and of the radial position of the donor atom. The polaronic effects on this quantity are particularly discussed.
NASA Astrophysics Data System (ADS)
Al, E. B.; Kasapoglu, E.; Sakiroglu, S.; Duque, C. A.; Sökmen, I.
2018-04-01
For a quantum well which has the Tietz-Hua potential, the ground and some excited donor impurity binding energies and the total absorption coefficients, including linear and third order nonlinear terms for the transitions between the related impurity states with respect to the structure parameters and the impurity position as well as the electric field strength are investigated. The binding energies were obtained using the effective-mass approximation within a variational scheme and the optical transitions between any two impurity states were calculated by using the density matrix formalism and the perturbation expansion method. Our results show that the effects of the electric field and the structure parameters on the optical transitions are more pronounced. So we can adjust the red or blue shift in the peak position of the absorption coefficient by changing the strength of the electric field as well as the structure parameters.
Leading temperature dependence of the conductance in Kondo-correlated quantum dots.
Aligia, A A
2018-04-18
Using renormalized perturbation theory in the Coulomb repulsion, we derive an analytical expression for the leading term in the temperature dependence of the conductance through a quantum dot described by the impurity Anderson model, in terms of the renormalized parameters of the model. Taking these parameters from the literature, we compare the results with published ones calculated using the numerical renormalization group obtaining a very good agreement. The approach is superior to alternative perturbative treatments. We compare in particular to the results of a simple interpolative perturbation approach.
Universality class of non-Fermi-liquid behavior in mixed-valence systems
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu
1996-01-01
A generalized Anderson single-impurity model with off-site Coulomb interactions is derived from the extended three-band Hubbard model, originally proposed to describe the physics of the copper oxides. Using the Abelian bosonization technique and canonical transformations, an effective Hamiltonian is derived in the strong-coupling limit, which is essentially analogous to the Toulouse limit of the ordinary Kondo problem. In this limit, the effective Hamiltonian can be exactly solved, with a mixed-valence quantum critical point separating two different Fermi-liquid phases, i.e., the Kondo phase and the empty orbital phase. In the mixed-valence quantum critical regime, the local moment is only partially quenched and x-ray edge singularities are generated. Around the quantum critical point, a type of non-Fermi-liquid behavior is predicted with an extra specific heat Cimp~T1/4 and a singular spin susceptibility χimp~T-3/4. At the same time, the effective Hamiltonian under single occupancy is transformed into a resonant-level model, from which the correct Kondo physical properties (specific heat, spin susceptibility, and an enhanced Wilson ratio) are easily rederived. Finally, a brief discussion is given to relate these theoretical results to observations in UPdxCu5-x (x=1,1.5) alloys, which show single-impurity critical behavior consistent with our predictions.
NASA Astrophysics Data System (ADS)
Crum, Dax M.; Valsaraj, Amithraj; David, John K.; Register, Leonard F.; Banerjee, Sanjay K.
2016-12-01
Particle-based ensemble semi-classical Monte Carlo (MC) methods employ quantum corrections (QCs) to address quantum confinement and degenerate carrier populations to model tomorrow's ultra-scaled metal-oxide-semiconductor-field-effect-transistors. Here, we present the most complete treatment of quantum confinement and carrier degeneracy effects in a three-dimensional (3D) MC device simulator to date, and illustrate their significance through simulation of n-channel Si and III-V FinFETs. Original contributions include our treatment of far-from-equilibrium degenerate statistics and QC-based modeling of surface-roughness scattering, as well as considering quantum-confined phonon and ionized-impurity scattering in 3D. Typical MC simulations approximate degenerate carrier populations as Fermi distributions to model the Pauli-blocking (PB) of scattering to occupied final states. To allow for increasingly far-from-equilibrium non-Fermi carrier distributions in ultra-scaled and III-V devices, we instead generate the final-state occupation probabilities used for PB by sampling the local carrier populations as function of energy and energy valley. This process is aided by the use of fractional carriers or sub-carriers, which minimizes classical carrier-carrier scattering intrinsically incompatible with degenerate statistics. Quantum-confinement effects are addressed through quantum-correction potentials (QCPs) generated from coupled Schrödinger-Poisson solvers, as commonly done. However, we use these valley- and orientation-dependent QCPs not just to redistribute carriers in real space, or even among energy valleys, but also to calculate confinement-dependent phonon, ionized-impurity, and surface-roughness scattering rates. FinFET simulations are used to illustrate the contributions of each of these QCs. Collectively, these quantum effects can substantially reduce and even eliminate otherwise expected benefits of considered In0.53Ga0.47 As FinFETs over otherwise identical Si FinFETs despite higher thermal velocities in In0.53Ga0.47 As. It also may be possible to extend these basic uses of QCPs, however calculated, to still more computationally efficient drift-diffusion and hydrodynamic simulations, and the basic concepts even to compact device modeling.
NASA Astrophysics Data System (ADS)
Khordad, R.
2010-03-01
The influence of temperature and pressure, simultaneously, on the binding energy of a hydrogenic donor impurity in a ridge GaAs/Ga 1- xAl xAs quantum wire is studied using a variational procedure within the effective mass approximation. The subband energy and the binding energy of the donor impurity in its ground state as a function of the wire bend width and impurity location at different temperatures and pressures are calculated. The results show that, when the temperature increases, the donor binding energy decreases for a constant applied pressure for all wire bend widths. Also, the binding energy increases by increasing the pressure for a constant temperature for all wire bend widths. In addition, when the temperature and pressure are applied simultaneously the binding energy decreases as the quantum wire bend width increases. On the whole, it is deduced that the temperature and pressure have important effects on the donor binding energy in a V-groove quantum wire.
Equilibrium charge fluctuations of a charge detector and its effect on a nearby quantum dot
NASA Astrophysics Data System (ADS)
Ruiz-Tijerina, David; Vernek, Edson; Ulloa, Sergio
2014-03-01
We study the Kondo state of a spin-1/2 quantum dot (QD), in close proximity to a quantum point contact (QPC) charge detector near the conductance regime of the 0.7 anomaly. The electrostatic coupling between the QD and QPC introduces a remote gate on the QD level, which varies with the QPC gate voltage. Furthermore, models for the 0.7 anomaly [Y. Meir et al., PRL 89,196802(2002)] suggest that the QPC lodges a Kondo-screened level with charge-correlated hybridization, which may be also affected by capacitive coupling to the QD, giving rise to a competition between the two Kondo ground states. We model the QD-QPC system as two capacitively-coupled Kondo impurities, and explore the zero-bias transport of both the QD and the QPC for different local gate voltages and coupling strengths, using the numerical renormalization group and variational methods. We find that the capacitive coupling produces a remote gating effect, non-monotonic in the gate voltages, which reduces the gate voltage window for Kondo screening in either impurity, and which can also drive a quantum phase transition out of the Kondo regime. Our study is carried out for intermediate coupling strengths, and as such is highly relevant to experiments; particularly, to recent studies of decoherence effects on QDs. Supported by MWN/CIAM and NSF PIRE.
Quantum transport modelling of silicon nanobeams using heterogeneous computing scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harb, M., E-mail: harbm@physics.mcgill.ca; Michaud-Rioux, V., E-mail: vincentm@physics.mcgill.ca; Guo, H., E-mail: guo@physics.mcgill.ca
We report the development of a powerful method for quantum transport calculations of nanowire/nanobeam structures with large cross sectional area. Our approach to quantum transport is based on Green's functions and tight-binding potentials. A linear algebraic formulation allows us to harness the massively parallel nature of Graphics Processing Units (GPUs) and our implementation is based on a heterogeneous parallel computing scheme with traditional processors and GPUs working together. Using our software tool, the electronic and quantum transport properties of silicon nanobeams with a realistic cross sectional area of ∼22.7 nm{sup 2} and a length of ∼81.5 nm—comprising 105 000 Si atoms and 24 000more » passivating H atoms in the scattering region—are investigated. The method also allows us to perform significant averaging over impurity configurations—all possible configurations were considered in the case of single impurities. Finally, the effect of the position and number of vacancy defects on the transport properties was considered. It is found that the configurations with the vacancies lying closer to the local density of states (LDOS) maxima have lower transmission functions than the configurations with the vacancies located at LDOS minima or far away from LDOS maxima, suggesting both a qualitative method to tune or estimate optimal impurity configurations as well as a physical picture that accounts for device variability. Finally, we provide performance benchmarks for structures as large as ∼42.5 nm{sup 2} cross section and ∼81.5 nm length.« less
NASA Astrophysics Data System (ADS)
Hayrapetyan, David B.; Kotanjyan, Tigran V.; Tevosyan, Hovhannes Kh.; Kazaryan, Eduard M.
2016-12-01
The effects of hydrostatic pressure and size quantization on the binding energies of a hydrogen-like donor impurity in cylindrical GaAs quantum dot (QD) with Morse confining potential are studied using the variational method and effective-mass approximation. In the cylindrical QD, the effect of hydrostatic pressure on the binding energy of electron has been investigated and it has been found that the application of the hydrostatic pressure leads to the blue shift. The dependence of the absorption edge on geometrical parameters of cylindrical QD is obtained. Selection rules are revealed for transitions between levels with different quantum numbers. It is shown that for the radial quantum number, transitions are allowed between the levels with the same quantum numbers, and any transitions between different levels are allowed for the principal quantum number.
Donor-impurity-related optical response and electron Raman scattering in GaAs cone-like quantum dots
NASA Astrophysics Data System (ADS)
Gil-Corrales, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.
2017-02-01
The donor-impurity-related optical absorption, relative refractive index changes, and Raman scattering in GaAs cone-like quantum dots are theoretically investigated. Calculations are performed within the effective mass and parabolic band approximations, using the variational procedure to include the electron-impurity correlation effects. The study involves 1 s -like, 2px-like, and 2pz-like states. The conical structure is chosen in such a way that the cone height is large enough in comparison with the base radius thus allowing the use a quasi-analytic solution of the uncorrelated Schrödinger-like electron states.
Coulomb Impurity Potential RbCl Quantum Pseudodot Qubit
NASA Astrophysics Data System (ADS)
Ma, Xin-Jun; Qi, Bin; Xiao, Jing-Lin
2015-08-01
By employing a variational method of Pekar type, we study the eigenenergies and the corresponding eigenfunctions of the ground and the first-excited states of an electron strongly coupled to electron-LO in a RbCl quantum pseudodot (QPD) with a hydrogen-like impurity at the center. This QPD system may be used as a two-level quantum qubit. The expressions of electron's probability density versus time and the coordinates, and the oscillating period versus the Coulombic impurity potential and the polaron radius have been derived. The investigated results indicate ① that the probability density of the electron oscillates in the QPD with a certain oscillating period of , ② that due to the presence of the asymmetrical potential in the z direction of the RbCl QPD, the electron probability density shows double-peak configuration, whereas there is only one peak if the confinement is a two-dimensional symmetric structure in the xy plane of the QPD, ③ that the oscillation period is a decreasing function of the Coulombic impurity potential, whereas it is an increasing one of the polaron radius.
Tunable quantum criticality and super-ballistic transport in a "charge" Kondo circuit.
Iftikhar, Z; Anthore, A; Mitchell, A K; Parmentier, F D; Gennser, U; Ouerghi, A; Cavanna, A; Mora, C; Simon, P; Pierre, F
2018-05-03
Quantum phase transitions (QPTs) are ubiquitous in strongly-correlated materials. However the microscopic complexity of these systems impedes the quantitative understanding of QPTs. Here, we observe and thoroughly analyze the rich strongly-correlated physics in two profoundly dissimilar regimes of quantum criticality. With a circuit implementing a quantum simulator for the three-channel Kondo model, we reveal the universal scalings toward different low-temperature fixed points and along the multiple crossovers from quantum criticality. Notably, an unanticipated violation of the maximum conductance for ballistic free electrons is uncovered. The present charge pseudospin implementation of a Kondo impurity opens access to a broad variety of strongly-correlated phenomena. Copyright © 2018, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Hu, Min; Wang, Hailong; Gong, Qian; Wang, Shumin
2018-04-01
Within the framework of effective-mass envelope-function theory, the ground state binding energy of a hydrogenic donor impurity is calculated in the InGaAsP/InP concentric double quantum rings (CDQRs) using the plane wave method. The effects of geometry, impurity position, external electric field and alloy composition on binding energy are considered. It is shown that the peak value of the binding energy appears in two rings with large gap as the donor impurity moves along the radial direction. The binding energy reaches the peak value at the center of ring height when the donor impurity moves along the axial direction. The binding energy shows nonlinear variation with the increase of ring height. With the external electric field applied along the z-axis, the binding energy of the donor impurity located at zi ≥ 0 decreases while that located at zi < 0 increases. In addition, the binding energy decreases with increasing Ga composition, but increases with the increasing As composition.
Quantum Magnetism Applied to the Iron-Pnictides and Rare Earth Pyrochlores
NASA Astrophysics Data System (ADS)
Applegate, Ryan
This dissertation presents computational studies of two families of magnetic materials of significant current interest. The iron pnictides are new high temperature superconductors with interesting parent compound antiferromagnetism. The rare earth pyrochlore material Yb2Ti2O7 is a candidate quantum spin ice. The magnetic and structural phases of individual iron pnictides have both many common features and material specific differences. In an attempt to unify these behaviors as instances of a larger theoretical picture, we use Monte Carlo simulations of a two-dimensional Hamiltonian with coupled Heisenberg-spin and Ising-orbital degrees of freedom. We introduce spin-space and single-ion anisotropies and study the finite temperature transitions in our model. We develop a phase diagram and propose that the interplay of spin and orbital physics in the presence of anisotropy could explain how material details affect the transitions of the pnictide materials. Nuclear magnetic resonance (NMR) can study magnetic materials via the hyperfine interaction and the coupling between the nuclear moment and the field produced by the samples local moment environment. Recent measurements suggest that Zn doped BaFe2As2 may have quantum fluctuations about the striped phase that produce a distribution of fields at As nuclear sites. The non-magnetic ion Zn replaces Fe and can be treated as an impurity which can be studied by a zero-temperature Ising Series expansion method. We propose a Heisenberg-like J1a-J 1b-J2 model which has small ferromagnetic exchanges along the b axis and strong antiferromagnetic exchanges along the a axis. In our impurity model we find that the magnetic moments are everywhere reduced by quantum fluctuations, except on the nearest neighbor site in the AFM direction. We suggest that the presented impurity model may provide an explanation for the experimental measurements. Based on a recently proposed quantum spin ice model, we use numerical linked cluster (NLC) expansions to study thermodynamic properties of Yb 2Ti2O7. We show that high field fitting of inelastic neutron scattering experiments is an excellent method in determining the exchange constants of these materials. We calculate the heat capacity, entropy and magnetization as a function of temperature and field along a few high symmetry field directions. We compare our theoretical predictions to experiments and find remarkable agreement. These studies highlight the importance of localized model Hamiltonians in understanding magnetic properties of complex materials.
Cresswell, Alexander J; Wheatley, Richard J; Wilkinson, Richard D; Graham, Richard S
2016-10-20
Impurities from the CCS chain can greatly influence the physical properties of CO 2 . This has important design, safety and cost implications for the compression, transport and storage of CO 2 . There is an urgent need to understand and predict the properties of impure CO 2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO 2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO 2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO 2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure-volume behaviour of CO 2 binary mixtures with N 2 , O 2 , Ar and H 2 . A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO 2 and relevant impurities, taking N 2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately predict a much broader set of ab initio force-field calculations at comparatively low numerical cost. Although our method is not yet ready to be implemented in a molecular simulation, we outline the necessary steps here. Such simulations have the potential to deliver first-principles simulation of the thermodynamic properties of impure CO 2 , without fitting to experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavlov, D. A.; Bidus, N. V.; Bobrov, A. I., E-mail: bobrov@phys.unn.ru
2015-01-15
The distribution of elastic strains in a system consisting of a quantum-dot layer and a buried GaAs{sub x}P{sub 1−x} layer is studied using geometric phase analysis. A hypothesis is offered concerning the possibility of controlling the process of the formation of InAs quantum dots in a GaAs matrix using a local isovalent phosphorus impurity.
NASA Astrophysics Data System (ADS)
Lychkovskiy, Oleg; Gamayun, Oleksandr; Cheianov, Vadim
2018-02-01
The quantum adiabatic theorem states that a driven system can be kept arbitrarily close to the instantaneous eigenstate of its Hamiltonian if the latter varies in time slowly enough. When it comes to applying the adiabatic theorem in practice, the key question to be answered is how slow slowly enough is. This question can be an intricate one, especially for many-body systems, where the limits of slow driving and large system size may not commute. Recently we have shown how the quantum adiabaticity in many-body systems is related to the generalized orthogonality catastrophe [arXiv 1611.00663, to appear in Phys. Rev. Lett.]. We have proven a rigorous inequality relating these two phenomena and applied it to establish conditions for the quantized transport in the topological Thouless pump. In the present contribution we (i) review these developments and (ii) apply the inequality to establish the conditions for adiabaticity in a one-dimensional system consisting of a quantum fluid and an impurity particle pulled through the fluid by an external force. The latter analysis is vital for the correct quantitative description of the phenomenon of quasi-Bloch oscillations in a one-dimensional translation invariant impurity-fluid system.
NASA Astrophysics Data System (ADS)
Mughnetsyan, V. N.; Barseghyan, M. G.; Kirakosyan, A. A.
2008-01-01
We consider the photoionization of a hydrogen-like impurity centre in a quantum wire approximated by a cylindrical well of finite depth in a magnetic field directed along the wire axis. The ground state energy and the wave function of the electron localized on on-axis impurity centre are calculated using the variational method. The wave functions and energies of the final states in an one-dimensional conduction subband are also presented. The dependences of photoionization cross-section of a donor centre on magnetic field and frequency of incident radiation both for parallel and perpendicular polarizations and corresponding selection rules for the allowed transitions are found in the dipole approximation. The estimates of photoionization cross-section for various values of wire radius and magnetic field induction for GaAs quantum wire embedded in Ga 1-xAl 1-xAs matrix are given.
NASA Astrophysics Data System (ADS)
Bejan, D.; Stan, C.; Niculescu, E. C.
2018-01-01
We theoretically investigated the effects of the impurity position, in-plane electric field, intensity and polarization of the probe and control lasers on the electromagnetically induced transparency (EIT) in GaAs/GaAlAs disc shaped quantum ring. Our study reveals that, depending on the impurity position, the quantum system presents two specific configurations for the EIT occurrence even in the absence of the external electric field, i.e. ladder-configuration or V-configuration, and changes the configuration from ladder to V for specific electric field values. The polarization of the probe and control lasers plays a crucial role in obtaining a good transparency. The electric field controls the red-shift (blue-shift) of the transparency window and modifies its width. The system exhibits birefringence for the probe light in a limited interval of electric field values.
Convergence of high order perturbative expansions in open system quantum dynamics.
Xu, Meng; Song, Linze; Song, Kai; Shi, Qiang
2017-02-14
We propose a new method to directly calculate high order perturbative expansion terms in open system quantum dynamics. They are first written explicitly in path integral expressions. A set of differential equations are then derived by extending the hierarchical equation of motion (HEOM) approach. As two typical examples for the bosonic and fermionic baths, specific forms of the extended HEOM are obtained for the spin-boson model and the Anderson impurity model. Numerical results are then presented for these two models. General trends of the high order perturbation terms as well as the necessary orders for the perturbative expansions to converge are analyzed.
Reliability assessment of multiple quantum well avalanche photodiodes
NASA Technical Reports Server (NTRS)
Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.
1995-01-01
The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.
A Non-Perturbative Treatment of Quantum Impurity Problems in Real Lattices
NASA Astrophysics Data System (ADS)
Allerdt, Andrew C.
Historically, the RKKY or indirect exchange, interaction has been accepted as being able to be described by second order perturbation theory. A typical universal expression is usually given in this context. This approach, however, fails to incorporate many body effects, quantum fluctuations, and other important details. In Chapter 2, a novel numerical approach is developed to tackle these problems in a quasi-exact, non-perturbative manner. Behind the method lies the main concept of being able to exactly map an n-dimensional lattice problem onto a 1-dimensional chain. The density matrix renormalization group algorithm is then employed to solve the newly cast Hamiltonian. In the following chapters, it is demonstrated that conventional RKKY theory does not capture the crucial physics. It is found that the Kondo effect, i.e. the screening of an impurity spin, tends to dominate over a ferromagnetic interaction between impurity spins. Furthermore, it is found that the indirect exchange interaction does not decay algebraically. Instead, there is a crossover upon increasing JK, where impurities favor forming their own independent Kondo states after just a few lattice spacings. This is not a trivial result, as one may naively expect impurities to interact when their conventional Kondo clouds overlap. The spin structure around impurities coupled to the edge of a 2D topological insulator is investigated in Chapter 7. Modeled after materials such as silicine, germanene, and stanene, it is shown with spatial resolution of the lattice that the specific impurity placement plays a key role. Effects of spin-orbit interactions are also discussed. Finally, in the last chapter, transition metal complexes are studied. This really shows the power and versatility of the method developed throughout the work. The spin states of an iron atom in the molecule FeN4C 10 are calculated and compared to DFT, showing the importance of inter-orbital coulomb interactions. Using dynamical DMRG, the density of states for the 3d-orbitals can also be obtained.
NASA Astrophysics Data System (ADS)
Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.
2017-08-01
Bound polaron in RbCl delta quantum dot under electric field and Coulombic impurity were considered. The ground and first excited state energy were derived by employing Pekar variational and unitary transformation methods. Applying Fermi golden rule, the expression of temperature and polaron lifetime were derived. The decoherence was studied trough the Tsallis entropy. Results shows that decreasing (or increasing) the lifetime increases (or decreases) the temperature and delta parameter (electric field strength and hydrogenic impurity). This suggests that to accelerate quantum transition in nanostructure, temperature and delta have to be enhanced. The improvement of electric field and coulomb parameter, increases the lifetime of the delta quantum dot qubit. Energy spectrum of polaron increases with increase in temperature, electric field strength, Coulomb parameter, delta parameter, and polaronic radius. The control of the delta quantum dot energies can be done via the electric field, coulomb impurity, and delta parameter. Results also show that the non-extensive entropy is an oscillatory function of time. With the enhancement of delta parameter, non-extensive parameter, Coulombic parameter, and electric field strength, the entropy has a sinusoidal increase behavior with time. With the study of decoherence through the Tsallis entropy, it may be advised that to have a quantum system with efficient transmission of information, the non-extensive and delta parameters need to be significant. The study of the probability density showed an increase from the boundary to the center of the dot where it has its maximum value and oscillates with period T0 = ℏ / ΔE with the tunneling of the delta parameter, electric field strength, and Coulombic parameter. The results may be very helpful in the transmission of information in nanostructures and control of decoherence
Lim, Hosub; Woo, Ju Young; Lee, Doh C; Lee, Jinkee; Jeong, Sohee; Kim, Duckjong
2017-02-27
Colloidal quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.
NASA Astrophysics Data System (ADS)
Lim, Hosub; Woo, Ju Young; Lee, Doh Chang; Lee, Jinkee; Jeong, Sohee; Kim, Duckjong
2017-11-01
Colloidal Quantum dots (QDs) afford huge potential in numerous applications owing to their excellent optical and electronic properties. After the synthesis of QDs, separating QDs from unreacted impurities in large scale is one of the biggest issues to achieve scalable and high performance optoelectronic applications. Thus far, however, continuous purification method, which is essential for mass production, has rarely been reported. In this study, we developed a new continuous purification process that is suitable to the mass production of high-quality QDs. As-synthesized QDs are driven by electrophoresis in a flow channel and captured by porous electrodes and finally separated from the unreacted impurities. Nuclear magnetic resonance and ultraviolet/visible/near-infrared absorption spectroscopic data clearly showed that the impurities were efficiently removed from QDs with the purification yield, defined as the ratio of the mass of purified QDs to that of QDs in the crude solution, up to 87%. Also, we could successfully predict the purification yield depending on purification conditions with a simple theoretical model. The proposed large-scale purification process could be an important cornerstone for the mass production and industrial use of high-quality QDs.
NASA Astrophysics Data System (ADS)
Pal, Suvajit; Ghosh, Manas
2014-07-01
We investigate the profiles of diagonal components of static and frequency-dependent third nonlinear (γxxxx and γyyyy) polarizability of repulsive impurity doped quantum dots. The dopant impurity potential takes a GAUSSIAN form. We have considered propagation of the dopant within an environment that damps the motion. The study focuses on role of damping strength on the diagonal components of both static and frequency-dependent third nonlinear polarizability of the doped system. The doped system is further exposed to an external electric field of given intensity. Damping subtly modulates the dot-impurity interaction and fabricates the polarizability components in a noticeable manner.
Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures
NASA Astrophysics Data System (ADS)
Kleinbach, K. S.; Engel, F.; Dieterle, T.; Löw, R.; Pfau, T.; Meinert, F.
2018-05-01
Rydberg atoms immersed in a Bose-Einstein condensate interact with the quantum gas via electron-atom and ion-atom interaction. To suppress the typically dominant electron-neutral interaction, Rydberg states with a principal quantum number up to n =190 are excited from a dense and tightly trapped micron-sized condensate. This allows us to explore a regime where the Rydberg orbit exceeds the size of the atomic sample by far. In this case, a detailed line shape analysis of the Rydberg excitation spectrum provides clear evidence for ion-atom interaction at temperatures well below a microkelvin. Our results may open up ways to enter the quantum regime of ion-atom scattering for the exploration of charged quantum impurities and associated polaron physics.
NASA Astrophysics Data System (ADS)
Kasapoglu, E.; Sakiroglu, S.; Sökmen, I.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.
2016-10-01
We have calculated the effects of electric and intense laser fields on the binding energies of the ground and some excited states of conduction electrons coupled to shallow donor impurities as well as the total optical absorption coefficient for transitions between 1s and 2p± electron-impurity states in a asymmetric parabolic GaAs/Ga1-x AlxAs quantum well. The binding energies were obtained using the effective-mass approximation within a variational scheme. Total absorption coefficient (linear and nonlinear absorption coefficient) for the transitions between any two impurity states were calculated from first- and third-order dielectric susceptibilities derived within a perturbation expansion for the density matrix formalism. Our results show that the effects of the electric field, intense laser field, and the impurity location on the binding energy of 1s-impurity state are more pronounced compared with other impurity states. If the well center is changed to be Lc<0 (Lc>0), the effective well width decreases (increases), and thus we can obtain the red or blue shift in the resonant peak position of the absorption coefficient by changing the intensities of the electric and non-resonant intense laser field as well as dimensions of the well and impurity positions.
Magnetic resonance force microscopy quantum computer with tellurium donors in silicon.
Berman, G P; Doolen, G D; Hammel, P C; Tsifrinovich, V I
2001-03-26
We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.
Cyclotron resonance in HgTe/CdTe-based heterostructures in high magnetic fields
2012-01-01
Cyclotron resonance study of HgTe/CdTe-based quantum wells with both inverted and normal band structures in quantizing magnetic fields was performed. In semimetallic HgTe quantum wells with inverted band structure, a hole cyclotron resonance line was observed for the first time. In the samples with normal band structure, interband transitions were observed with wide line width due to quantum well width fluctuations. In all samples, impurity-related magnetoabsorption lines were revealed. The obtained results were interpreted within the Kane 8·8 model, the valence band offset of CdTe and HgTe, and the Kane parameter EP being adjusted. PMID:23013642
Perfect Spin Filter by Periodic Drive of a Ferromagnetic Quantum Barrier
NASA Astrophysics Data System (ADS)
Thuberg, Daniel; Muñoz, Enrique; Eggert, Sebastian; Reyes, Sebastián A.
2017-12-01
We consider the problem of particle tunneling through a periodically driven ferromagnetic quantum barrier connected to two leads. The barrier is modeled by an impurity site representing a ferromagnetic layer or a quantum dot in a tight-binding Hamiltonian with a local magnetic field and an ac-driven potential, which is solved using the Floquet formalism. The repulsive interactions in the quantum barrier are also taken into account. Our results show that the time-periodic potential causes sharp resonances of perfect transmission and reflection, which can be tuned by the frequency, the driving strength, and the magnetic field. We demonstrate that a device based on this configuration could act as a highly tunable spin valve for spintronic applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Wenjie; Subotnik, Joseph E.; Nitzan, Abraham
We investigate a simple surface hopping (SH) approach for modeling a single impurity level coupled to a single phonon and an electronic (metal) bath (i.e., the Anderson-Holstein model). The phonon degree of freedom is treated classically with motion along–and hops between–diabatic potential energy surfaces. The hopping rate is determined by the dynamics of the electronic bath (which are treated implicitly). For the case of one electronic bath, in the limit of small coupling to the bath, SH recovers phonon relaxation to thermal equilibrium and yields the correct impurity electron population (as compared with numerical renormalization group). For the case ofmore » out of equilibrium dynamics, SH current-voltage (I-V) curve is compared with the quantum master equation (QME) over a range of parameters, spanning the quantum region to the classical region. In the limit of large temperature, SH and QME agree. Furthermore, we can show that, in the limit of low temperature, the QME agrees with real-time path integral calculations. As such, the simple procedure described here should be useful in many other contexts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Nam Lyong; Lee, Sang-Seok; Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori
2013-07-15
The projection-reduction method introduced by the present authors is known to give a validated theory for optical transitions in the systems of electrons interacting with phonons. In this work, using this method, we derive the linear and first order nonlinear optical conductivites for an electron-impurity system and examine whether the expressions faithfully satisfy the quantum mechanical philosophy, in the same way as for the electron-phonon systems. The result shows that the Fermi distribution function for electrons, energy denominators, and electron-impurity coupling factors are contained properly in organized manners along with absorption of photons for each electron transition process in themore » final expressions. Furthermore, the result is shown to be represented properly by schematic diagrams, as in the formulation of electron-phonon interaction. Therefore, in conclusion, we claim that this method can be applied in modeling optical transitions of electrons interacting with both impurities and phonons.« less
Effect of geometry on the pressure induced donor binding energy in semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Kalpana, P.; Jayakumar, K.; Nithiananthi, P.
2015-09-01
The effect of geometry on an on-center hydrogenic donor impurity in a GaAs/(Ga,Al)As quantum wire (QWW) and quantum dot (QD) under the influence of Γ-X band mixing due to an applied hydrostatic pressure is theoretically studied. Numerical calculations are performed in an effective mass approximation. The ground state impurity energy is obtained by variational procedure. Both the effects of pressure and geometry are to exert an additional confinement on the impurity inside the wire as well as dot. We found that the donor binding energy is modified by the geometrical effects as well as by the confining potential when it is subjected to external pressure. The results are presented and discussed.
Two-point functions in a holographic Kondo model
NASA Astrophysics Data System (ADS)
Erdmenger, Johanna; Hoyos, Carlos; O'Bannon, Andy; Papadimitriou, Ioannis; Probst, Jonas; Wu, Jackson M. S.
2017-03-01
We develop the formalism of holographic renormalization to compute two-point functions in a holographic Kondo model. The model describes a (0 + 1)-dimensional impurity spin of a gauged SU( N ) interacting with a (1 + 1)-dimensional, large- N , strongly-coupled Conformal Field Theory (CFT). We describe the impurity using Abrikosov pseudo-fermions, and define an SU( N )-invariant scalar operator O built from a pseudo-fermion and a CFT fermion. At large N the Kondo interaction is of the form O^{\\dagger}O, which is marginally relevant, and generates a Renormalization Group (RG) flow at the impurity. A second-order mean-field phase transition occurs in which O condenses below a critical temperature, leading to the Kondo effect, including screening of the impurity. Via holography, the phase transition is dual to holographic superconductivity in (1 + 1)-dimensional Anti-de Sitter space. At all temperatures, spectral functions of O exhibit a Fano resonance, characteristic of a continuum of states interacting with an isolated resonance. In contrast to Fano resonances observed for example in quantum dots, our continuum and resonance arise from a (0 + 1)-dimensional UV fixed point and RG flow, respectively. In the low-temperature phase, the resonance comes from a pole in the Green's function of the form - i< O >2, which is characteristic of a Kondo resonance.
NASA Astrophysics Data System (ADS)
Pavlović, Vladan; Šušnjar, Marko; Petrović, Katarina; Stevanović, Ljiljana
2018-04-01
In this paper the effects of size, hydrostatic pressure and temperature on electromagnetically induced transparency, as well as on absorption and the dispersion properties of multilayered spherical quantum dot with hydrogenic impurity are theoretically investigated. Energy eigenvalues and wavefunctions of quantum systems in three-level and four-level configurations are calculated using the shooting method, while optical properties are obtained using the density matrix formalism and master equations. It is shown that peaks of the optical properties experience a blue-shift with increasing hydrostatic pressure and red-shift with increasing temperature. The changes of optical properties as a consequence of changes in barrier wells widths are non-monotonic, and these changes are discussed in detail.
NASA Astrophysics Data System (ADS)
Entin, M. V.; Magarill, L. I.
2010-02-01
The stationary current induced by a strong running potential wave in one-dimensional system is studied. Such a wave can result from illumination of a straight quantum wire with special grating or spiral quantum wire by circular-polarized light. The wave drags electrons in the direction correlated with the direction of the system symmetry and polarization of light. In a pure system the wave induces minibands in the accompanied system of reference. We study the effect in the presence of impurity scattering. The current is an interplay between the wave drag and impurity braking. It was found that the drag current is quantized when the Fermi level gets into energy gaps.
NASA Astrophysics Data System (ADS)
Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran
2015-12-01
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima-Zwanzig-Mori time-convolution (TC) and the other on the Tokuyama-Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called "memory kernel" or "generator," going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green's function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.
Quantum Engineering of Strongly Correlated Matter with Ultracold Fermi Gases
2013-05-01
aim at realizing model systems of strongly correlated, disordered electrons using ultracold fermionic atoms stored in an optical "crystal". The general...theme is to study high-temperature superfluids, Fermi liquids ("metals") and insulators in the presence of disordered impurities whose influence on...Presidential Early Career Award for Science and Education (PECASE). In this program, we aim at realizing model systems of strongly correlated, disordered
NASA Astrophysics Data System (ADS)
Eliëns, I. S.; Ramos, F. B.; Xavier, J. C.; Pereira, R. G.
2016-05-01
We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-S chains with S =1 /2 , 1, and 3 /2 .
NASA Astrophysics Data System (ADS)
Rezaei, G.; Vaseghi, B.; Doostimotlagh, N. A.
2012-03-01
Simultaneous effects of an on-center hydrogenic impurity and band edge non-parabolicity on intersubband optical absorption coefficients and refractive index changes of a typical GaAs/AlxGa1-x As spherical quantum dot are theoretically investigated, using the Luttinger—Kohn effective mass equation. So, electronic structure and optical properties of the system are studied by means of the matrix diagonalization technique and compact density matrix approach, respectively. Finally, effects of an impurity, band edge non-parabolicity, incident light intensity and the dot size on the linear, the third-order nonlinear and the total optical absorption coefficients and refractive index changes are investigated. Our results indicate that, the magnitudes of these optical quantities increase and their peaks shift to higher energies as the influences of the impurity and the band edge non-parabolicity are considered. Moreover, incident light intensity and the dot size have considerable effects on the optical absorption coefficients and refractive index changes.
Distilling quantum entanglement via mode-matched filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Yuping; Kumar, Prem
We propose an avenue toward distillation of quantum entanglement that is implemented by directly passing the entangled qubits through a mode-matched filter. This approach can be applied to a common class of entanglement impurities appearing in photonic systems, where the impurities inherently occupy different spatiotemporal modes than the entangled qubits. As a specific application, we show that our method can be used to significantly purify the telecom-band entanglement generated via the Kerr nonlinearity in single-mode fibers where a substantial amount of Raman-scattering noise is concomitantly produced.
Strange metal from local quantum chaos
NASA Astrophysics Data System (ADS)
Ben-Zion, Daniel; McGreevy, John
2018-04-01
How to make a model of a non-Fermi-liquid metal with efficient current dissipation is a long-standing problem. Results from holographic duality suggest a framework where local critical fermionic degrees of freedom provide both a source of decoherence for the Landau quasiparticle, and a sink for its momentum. This leads us to study a Kondo lattice type model with SYK models in place of the spin impurities. We find evidence for a stable phase at intermediate couplings.
The thermoelectric properties of strongly correlated systems
NASA Astrophysics Data System (ADS)
Cai, Jianwei
Strongly correlated systems are among the most interesting and complicated systems in physics. Large Seebeck coefficients are found in some of these systems, which highlight the possibility for thermoelectric applications. In this thesis, we study the thermoelectric properties of these strongly correlated systems with various methods. We derived analytic formulas for the resistivity and Seebeck coefficient of the periodic Anderson model based on the dynamic mean field theory. These formulas were possible as the self energy of the single impurity Anderson model could be given by an analytic ansatz derived from experiments and numerical calculations instead of complicated numerical calculations. The results show good agreement with the experimental data of rare-earth compound in a restricted temperature range. These formulas help to understand the properties of periodic Anderson model. Based on the study of rare-earth compounds, we proposed a design for the thermoelectric meta-material. This manmade material is made of quantum dots linked by conducting linkers. The quantum dots act as the rare-earth atoms with heavier mass. We set up a model similar to the periodic Anderson model for this new material. The new model was studied with the perturbation theory for energy bands. The dynamic mean field theory with numerical renormalization group as the impurity solver was used to study the transport properties. With these studies, we confirmed the improved thermoelectric properties of the designed material.
Loop-gap microwave resonator for hybrid quantum systems
NASA Astrophysics Data System (ADS)
Ball, Jason R.; Yamashiro, Yu; Sumiya, Hitoshi; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Konstantinov, Denis; Kubo, Yuimaru
2018-05-01
We designed a loop-gap microwave resonator for applications of spin-based hybrid quantum systems and tested it with impurity spins in diamond. Strong coupling with ensembles of nitrogen-vacancy (NV) centers and substitutional nitrogen (P1) centers was observed. These results show that loop-gap resonators are viable in the prospect of spin-based hybrid quantum systems, especially for an ensemble quantum memory or a quantum transducer.
NASA Astrophysics Data System (ADS)
Nguyen, N.; Ranganathan, R.; McCombe, B. D.; Rustgi, M. L.
1992-05-01
In view of the recent evidence found in favor of subband mixing in coupling of confined impurity states in doped double-quantum-well structures, a variational approach employing Gaussian trial wave functions has been used to calculate the binding energies of the ground, (1s, m=0) and first excited, (2p-, m=-1) states of a hydrogenic donor associated with the mixture of subbands of a double-GaAs quantum well coupled by a layer of Ga1-xA1xAs in the presence of a magnetic field. Two different well sizes and three different locations of the impurity, (A) at the outer edge, (B) at the center, and (C) at the inner edge of the well, are considered, and the barrier width is allowed to vary. It is found that for the structures considered here the results from the calculations using the mixture of only first (symmetric) and second (asymmetric) subbands are significantly different from those using only the lowest (symmetric) subband, especially for the intermediate barrier widths, and depend strongly on the location of the impurity in the well. These results demonstrate that subband mixing should be included in double-quantum-well structure calculations. The effect of varying the magnetic field on the binding energies is also studied. A comparison with the measurements of Ranganathan et al. [Phys. Rev. B 44, 1423 (1991)] demonstrates that the agreement is not improved when mixing of subbands higher than the lowest two is included in the calculation.
Classical impurities and boundary Majorana zero modes in quantum chains
NASA Astrophysics Data System (ADS)
Müller, Markus; Nersesyan, Alexander A.
2016-09-01
We study the response of classical impurities in quantum Ising chains. The Z2 degeneracy they entail renders the existence of two decoupled Majorana modes at zero energy, an exact property of a finite system at arbitrary values of its bulk parameters. We trace the evolution of these modes across the transition from the disordered phase to the ordered one and analyze the concomitant qualitative changes of local magnetic properties of an isolated impurity. In the disordered phase, the two ground states differ only close to the impurity, and they are related by the action of an explicitly constructed quasi-local operator. In this phase the local transverse spin susceptibility follows a Curie law. The critical response of a boundary impurity is logarithmically divergent and maps to the two-channel Kondo problem, while it saturates for critical bulk impurities, as well as in the ordered phase. The results for the Ising chain translate to the related problem of a resonant level coupled to a 1d p-wave superconductor or a Peierls chain, whereby the magnetic order is mapped to topological order. We find that the topological phase always exhibits a continuous impurity response to local fields as a result of the level repulsion of local levels from the boundary Majorana zero mode. In contrast, the disordered phase generically features a discontinuous magnetization or charging response. This difference constitutes a general thermodynamic fingerprint of topological order in phases with a bulk gap.
Effect of B, N, Ge, Sn, K doping on electronic-transport properties of (5, 0) zigzag carbon nanotube
NASA Astrophysics Data System (ADS)
Kamalian, Monir; Seyed Jalili, Yousef; Abbasi, Afshin
2018-04-01
In this paper the effect of impurity on the electronic properties and quantum conductance of zigzag (5, 0) carbon nanotube have been studied by using the Density Functional Theory (DFT) combined with Non-Equilibrium Green’s Function (NEGF) formalism with TranSIESTA software. The effect of Boron (B), Nitrogen (N), Germanium (Ge), Tin (Sn) and Potassium (K) impurities on the CNT conduction behavior and physical characteristics, like density of states (DOS), band structure, transmission coefficients and quantum conductance was considered and discussed simultaneously. The current‑voltage (I‑V) curves of all the proposed models were studied for comparative study under low-bias conditions. The distinct changes in conductance reported as the positions, number and type of dopants was varied in central region of the CNT between two electrodes at different bias voltages. This suggested conductance enhancement mechanism for the charge transport in the doped CNT at different positions is important for the design of CNT based nanoelectronic devices. The results show that Germanium, Tin and Potassium dopant atoms has increased the conductance of the model manifold than other doping atoms furthermore 10 Boron and 10 Nitrogen dopant atoms showed the amazing property of Negative Differential Resistance (NDR).
Casimir forces between defects in one-dimensional quantum liquids
NASA Astrophysics Data System (ADS)
Recati, A.; Fuchs, J. N.; Peça, C. S.; Zwerger, W.
2005-08-01
We discuss the effective interactions between two localized perturbations in one-dimensional quantum liquids. For noninteracting fermions, the interactions exhibit Friedel oscillations, giving rise to a Ruderman-Kittel-Kasuya-Yosida-type interaction familiar from impurity spins in metals. In the interacting case, at low energies, a Luttinger-liquid description applies. In the case of repulsive fermions, the Friedel oscillations of the interacting system are replaced, at long distances, by a universal Casimir-type interaction which depends only on the sound velocity and decays inversely with the separation. The Casimir-type interaction between localized perturbations embedded in a fermionic environment gives rise to a long-range coupling between quantum dots in ultracold Fermi gases, opening an alternative to couple qubits with neutral atoms. We also briefly discuss the case of bosonic quantum liquids in which the interaction between weak impurities turns out to be short ranged, decaying exponentially on the scale of the healing length.
Tomonaga-Luttinger physics in electronic quantum circuits.
Jezouin, S; Albert, M; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Safi, I; Pierre, F
2013-01-01
In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga-Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga-Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga-Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga-Luttinger liquid with an impurity.
NASA Astrophysics Data System (ADS)
Durán-Flórez, F.; Caicedo, L. C.; Gonzalez, J. E.
2018-04-01
In quantum mechanics it is very difficult to obtain exact solutions, therefore, it is necessary to resort to tools and methods that facilitate the calculations of the solutions of these systems, one of these methods is the variational method that consists in proposing a wave function that depend on several parameters that are adjusted to get close to the exact solution. Authors in the past have performed calculations applying this method using exponential and Gaussian orbital functions with linear and quadratic correlation factors. In this paper, a Gaussian function with a linear correlation factor is proposed, for the calculation of the binding energy of an impurity D ‑ centered on a quantum dot of radius r, the Gaussian function is dependent on the radius of the quantum dot.
Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions.
Song, Yang; Dery, Hanan
2014-07-25
We present a theory for resonance-tunneling magnetoresistance (MR) in ferromagnetic-insulator-nonmagnetic junctions. The theory sheds light on many of the recent electrical spin injection experiments, suggesting that this MR effect rather than spin accumulation in the nonmagnetic channel corresponds to the electrically detected signal. We quantify the dependence of the tunnel current on the magnetic field by quantum rate equations derived from the Anderson impurity model, with the important addition of impurity spin interactions. Considering the on-site Coulomb correlation, the MR effect is caused by competition between the field, spin interactions, and coupling to the magnetic lead. By extending the theory, we present a basis for operation of novel nanometer-size memories.
Universal entanglement crossover of coupled quantum wires
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Jacobsen, Jesper; Saleur, Hubert
2014-03-01
We consider the entanglement between two one-dimensional quantum wires (Luttinger Liquids) coupled by tunneling through a quantum impurity. The physics of the system involves a crossover between weak and strong coupling regimes characterized by an energy scale TB, and methods of conformal field theory therefore cannot be applied. The evolution of the entanglement in this crossover has led to many numerical studies, but has remained little understood, analytically or even qualitatively. This is, in part, due to the fact that the entanglement in this case is non-perturbative in the tunneling amplitude. We argue that the correct universal scaling form of the entanglement entropy S (for an arbitrary interval containing the impurity) is ∂S / ∂lnL = f(LTB) . In the special case where the coupling to the impurity can be refermionized, we show how the universal function f(LTB) can be obtained analytically using recent results on form factors of twist fields and a defect massless-scattering formalism. Our results are carefully checked against numerical simulations. This work was supported by the the French ANR (ANR Projet 2010 Blanc SIMI 4 : DIME), the US DOE (grant number DE-FG03-01ER45908), the Quantum Materials program of LBNL (RV) and the Institut Universitaire de France (JLJ).
Hydrogenic impurity bound polaron in an anisotropic quantum dot
NASA Astrophysics Data System (ADS)
Chen, Shi-Hua
2018-01-01
The effect of the electron-phonon interaction on an electron bound to a hydrogenic impurity in a three-dimensional (3D) anisotropic quantum dot (QD) is studied theoretically. We use the Landau-Pekar variational approach to calculate the binding energy of ground state (GS) and first-excited state (ES) with considering electron-phonon interaction. The expressions of the GS and ES energies under investigation depict a rich variety of dependent relationship with the variational parameters in three different limiting cases. Numerical calculations were performed for ZnSe QDs with different confinement lengths in the xy-plane and the z-direction, respectively. It is illustrated that binding energies of impurity polarons corresponding to each level are larger in small QDs. Furthermore, the contribution to binding energy from phonon is about 15% of the total binding energy.
Impact of the Injection Protocol on an Impurity's Stationary State
NASA Astrophysics Data System (ADS)
Gamayun, Oleksandr; Lychkovskiy, Oleg; Burovski, Evgeni; Malcomson, Matthew; Cheianov, Vadim V.; Zvonarev, Mikhail B.
2018-06-01
We examine stationary-state properties of an impurity particle injected into a one-dimensional quantum gas. We show that the value of the impurity's end velocity lies between zero and the speed of sound in the gas and is determined by the injection protocol. This way, the impurity's constant motion is a dynamically emergent phenomenon whose description goes beyond accounting for the kinematic constraints of the Landau approach to superfluidity. We provide exact analytic results in the thermodynamic limit and perform finite-size numerical simulations to demonstrate that the predicted phenomena are within the reach of the ultracold gas experiments.
Negativity as the entanglement measure to probe the Kondo regime in the spin-chain Kondo model
NASA Astrophysics Data System (ADS)
Bayat, Abolfazl; Sodano, Pasquale; Bose, Sougato
2010-02-01
We study the entanglement of an impurity at one end of a spin chain with a block of spins using negativity as a true measure of entanglement to characterize the unique features of the gapless Kondo regime in the spin-chain Kondo model. For this spin chain in the Kondo regime we determine—with a true entanglement measure—the spatial extent of the Kondo screening cloud, we propose an ansatz for its ground state and demonstrate that the impurity spin is indeed maximally entangled with the cloud. To better evidence the peculiarities of the Kondo regime, we carry a parallel analysis of the entanglement properties of the Kondo spin-chain model in the gapped dimerized regime. Our study shows how a genuine entanglement measure stemming from quantum information theory can fully characterize also nonperturbative regimes accessible to certain condensed matter systems.
NASA Astrophysics Data System (ADS)
Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.
2014-04-01
The nonequilibrium spectral properties of the Anderson impurity model with a chemical potential bias are investigated within a numerically exact real-time quantum Monte Carlo formalism. The two-time correlation function is computed in a form suitable for nonequilibrium dynamical mean field calculations. Additionally, the evolution of the model's spectral properties are simulated in an alternative representation, defined by a hypothetical but experimentally realizable weakly coupled auxiliary lead. The voltage splitting of the Kondo peak is confirmed and the dynamics of its formation after a coupling or gate quench are studied. This representation is shown to contain additional information about the dot's population dynamics. Further, we show that the voltage-dependent differential conductance gives a reasonable qualitative estimate of the equilibrium spectral function, but significant qualitative differences are found including incorrect trends and spurious temperature dependent effects.
Non-Fermi-Liquid Behavior in Transport Through Co-Doped Au Chains
NASA Astrophysics Data System (ADS)
Di Napoli, S.; Weichselbaum, A.; Roura-Bas, P.; Aligia, A. A.; Mokrousov, Y.; Blügel, S.
2013-05-01
We calculate the conductance as a function of temperature G(T) through Au monatomic chains containing one Co atom as a magnetic impurity, and connected to two conducting leads with a fourfold symmetry axis. Using the information derived from ab initio calculations, we construct an effective model H^eff that hybridizes a 3d7 quadruplet at the Co site with two 3d8 triplets through the hopping of 5dxz and 5dyz electrons of Au. The quadruplet is split by spin anisotropy due to spin-orbit coupling. Solving H^eff with the numerical renormalization group we find that at low temperatures G(T)=a-bT and the ground state impurity entropy is ln(2)/2, a behavior similar to the two-channel Kondo model. Stretching the chain leads to a non-Kondo phase, with the physics of the underscreened Kondo model at the quantum critical point.
NASA Astrophysics Data System (ADS)
Zheng, Jun-Hui; Cazalilla, Miguel A.
2018-06-01
We investigate nonperturbatively the effect of a magnetic dopant impurity on the edge transport of a quantum spin Hall (QSH) insulator. We show that for a strongly coupled magnetic dopant located near the edge of a system, a pair of transmission antiresonances appear. When the chemical potential is on resonance, interaction effects broaden the antiresonance width with decreasing temperature, thus suppressing transport for both repulsive and moderately attractive interactions. Consequences for the recently observed QSH insulating phase of the 1 -T' of WTe2 are briefly discussed.
Synthesis and Spectroscopy of Silver-Doped PbSe Quantum Dots
Kroupa, Daniel M.; Hughes, Barbara K.; Miller, Elisa M.; ...
2017-06-25
Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including amore » bleach of the first exciton transition and the appearance of a quantum-confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k • p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. Here, we hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.« less
Semiclassical approach to heterogeneous vacuum decay
Grinstein, Benjamin; Murphy, Christopher W.
2015-12-10
We derive the decay rate of an unstable phase of a quantum field theory in the presence of an impurity in the thin-wall approximation. This derivation is based on the how the impurity changes the (flat spacetime) geometry relative to case of pure false vacuum. Two examples are given that show how to estimate some of the additional parameters that enter into this heterogeneous decay rate. This formalism is then applied to the Higgs vacuum of the Standard Model (SM), where baryonic matter acts as an impurity in the electroweak Higgs vacuum. We find that the probability for heterogeneous vacuummore » decay to occur is suppressed with respect to the homogeneous case. That is to say, the conclusions drawn from the homogeneous case are not modified by the inclusion of baryonic matter in the calculation. On the other hand, we show that Beyond the Standard Model physics with a characteristic scale comparable to the scale that governs the homogeneous decay rate in the SM, can in principle lead to an enhanced decay rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kidon, Lyran; The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978; Wilner, Eli Y.
2015-12-21
The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operatormore » in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.« less
Chiral Maxwell demon in a quantum Hall system with a localized impurity
NASA Astrophysics Data System (ADS)
Rosselló, Guillem; López, Rosa; Platero, Gloria
2017-08-01
We investigate the role of chirality on the performance of a Maxwell demon implemented in a quantum Hall bar with a localized impurity. Within a stochastic thermodynamics description, we investigate the ability of such a demon to drive a current against a bias. We show that the ability of the demon to perform is directly related to its ability to extract information from the system. The key features of the proposed Maxwell demon are the topological properties of the quantum Hall system. The asymmetry of the electronic interactions felt at the localized state when the magnetic field is reversed joined to the fact that we consider energy-dependent (and asymmetric) tunneling barriers that connect such state with the Hall edge modes allow the demon to properly work.
Flux Noise due to Spins in SQUIDs
NASA Astrophysics Data System (ADS)
LaForest, Stephanie
Superconducting Quantum Interference Devices (SQUIDs) are currently being used as flux qubits and read-out detectors in a variety of solid-state quantum computer architectures. The main limitation of SQUID qubits is that they have a coherence time of the order of 10 micros, due to the presence of intrinsic flux noise that is not yet fully understood. The origin of flux noise is currently believed to be related to spin impurities present in the materials and interfaces that form the device. Here we present a novel numerical method that enables calculations of the flux produced by spin impurities even when they are located quite close to the SQUID wire. We show that the SQUID will be particularly sensitive to spins located at its wire edges, generating flux shifts of up to 4 nano flux quanta, much higher than previous calculations based on the software package FastHenry. This shows that spin impurities in a particular region along the wire's surface play a much more important role in producing flux noise than other spin impurities located elsewhere in the device.
Levy, Tal J; Rabani, Eran
2013-04-28
We study steady state transport through a double quantum dot array using the equation-of-motion approach to the nonequilibrium Green functions formalism. This popular technique relies on uncontrolled approximations to obtain a closure for a hierarchy of equations; however, its accuracy is questioned. We focus on 4 different closures, 2 of which were previously proposed in the context of the single quantum dot system (Anderson impurity model) and were extended to the double quantum dot array, and develop 2 new closures. Results for the differential conductance are compared to those attained by a master equation approach known to be accurate for weak system-leads couplings and high temperatures. While all 4 closures provide an accurate description of the Coulomb blockade and other transport properties in the single quantum dot case, they differ in the case of the double quantum dot array, where only one of the developed closures provides satisfactory results. This is rationalized by comparing the poles of the Green functions to the exact many-particle energy differences for the isolate system. Our analysis provides means to extend the equation-of-motion technique to more elaborate models of large bridge systems with strong electronic interactions.
Development of 256 x 256 Element Impurity Band Conduction Infrared Detector Arrays for Astronomy
NASA Technical Reports Server (NTRS)
Domingo, George
1997-01-01
This report describes the work performed on a one and a half year advance technology program to develop Impurity Band Conduction (IBC) detectors with very low dark current, high quantum efficiency, and with good repeatable processes. The program fabricated several epitaxial growths of Si:As detecting layers from 15 to 35 microns thick and analyzed the performance versus the thickness and the Arsenic concentration of these epitaxial layers. Some of the epitaxial runs did not yield because of excessive residual impurities. The thicker epitaxial layers and the ones with higher Arsenic concentration resulted in good detectors with low dark currents and good quantum efficiency. The program hybridized six detector die from the best detector wafers to a low noise, 256 x 256 readout array and delivered the hybrids to NASA Ames for a more detailed study of the performance of the detectors.
Impurity-directed transport within a finite disordered lattice
NASA Astrophysics Data System (ADS)
Magnetta, Bradley J.; Ordonez, Gonzalo; Garmon, Savannah
2018-02-01
We consider a finite, disordered 1D quantum lattice with a side-attached impurity. We study theoretically the transport of a single electron from the impurity into the lattice, at zero temperature. The transport is dominated by Anderson localization and, in general, the electron motion has a random character due to the lattice disorder. However, we show that by adjusting the impurity energy the electron can attain quasi-periodic motions, oscillating between the impurity and a small region of the lattice. This region corresponds to the spatial extent of a localized state with an energy matched by that of the impurity. By precisely tuning the impurity energy, the electron can be set to oscillate between the impurity and a region far from the impurity, even distances larger than the Anderson localization length. The electron oscillations result from the interference of hybridized states, which have some resemblance to Pendry's necklace states (Pendry, 1987) [21]. The dependence of the electron motion on the impurity energy gives a potential mechanism for selectively routing an electron towards different regions of a 1D disordered lattice.
Spectral functions of strongly correlated extended systems via an exact quantum embedding
NASA Astrophysics Data System (ADS)
Booth, George H.; Chan, Garnet Kin-Lic
2015-04-01
Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.
Continuous-time quantum Monte Carlo calculation of multiorbital vertex asymptotics
NASA Astrophysics Data System (ADS)
Kaufmann, Josef; Gunacker, Patrik; Held, Karsten
2017-07-01
We derive the equations for calculating the high-frequency asymptotics of the local two-particle vertex function for a multiorbital impurity model. These relate the asymptotics for a general local interaction to equal-time two-particle Green's functions, which we sample using continuous-time quantum Monte Carlo simulations with a worm algorithm. As specific examples we study the single-orbital Hubbard model and the three t2 g orbitals of SrVO3 within dynamical mean-field theory (DMFT). We demonstrate how the knowledge of the high-frequency asymptotics reduces the statistical uncertainties of the vertex and further eliminates finite-box-size effects. The proposed method benefits the calculation of nonlocal susceptibilities in DMFT and diagrammatic extensions of DMFT.
Korytár, Richard; Lorente, Nicolás
2011-09-07
We have developed a multi-orbital approach to compute the electronic structure of a quantum impurity using the non-crossing approximation. The calculation starts with a mean-field evaluation of the system's electronic structure using a standard quantum chemistry code; here we use density functional theory (DFT). We transformed the one-electron structure into an impurity Hamiltonian by using maximally localized Wannier functions. Hence, we have developed a method to study the Kondo effect in systems based on an initial one-electron calculation. We have applied our methodology to a copper phthalocyanine molecule chemisorbed on Ag(100), and we have described its spectral function for three different cases where the molecule presents a single spin or two spins with ferro- and anti-ferromagnetic exchange couplings. We find that the use of broken-symmetry mean-field theories such as Kohn-Sham DFT cannot deal with the complexity of the spin of open-shell molecules on metal surfaces and extra modeling is needed. © 2011 IOP Publishing Ltd
Magic angle for barrier-controlled double quantum dots
NASA Astrophysics Data System (ADS)
Yang, Xu-Chen; Wang, Xin
2018-01-01
We show that the exchange interaction of a singlet-triplet spin qubit confined in double quantum dots, when being controlled by the barrier method, is insensitive to a charged impurity lying along certain directions away from the center of the double-dot system. These directions differ from the polar axis of the double dots by the magic angle, equaling arccos(1 /√{3 })≈54 .7∘ , a value previously found in atomic physics and nuclear magnetic resonance. This phenomenon can be understood from an expansion of the additional Coulomb interaction created by the impurity, but also relies on the fact that the exchange interaction solely depends on the tunnel coupling in the barrier-control scheme. Our results suggest that for a scaled-up qubit array, when all pairs of double dots rotate their respective polar axes from the same reference line by the magic angle, crosstalk between qubits can be eliminated, allowing clean single-qubit operations. While our model is a rather simplified version of actual experiments, our results suggest that it is possible to minimize unwanted couplings by judiciously designing the layout of the qubits.
Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions.
Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W; Glazman, Leonid I; von Oppen, Felix
2016-12-23
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8π-periodic (or Z_{4}) fractional Josephson effect in the context of recent experiments.
TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model
NASA Astrophysics Data System (ADS)
Vučičević, J.; Ayral, T.; Parcollet, O.
2017-09-01
We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.
Quantum mechanical treatment of large spin baths
NASA Astrophysics Data System (ADS)
Röhrig, Robin; Schering, Philipp; Gravert, Lars B.; Fauseweh, Benedikt; Uhrig, Götz S.
2018-04-01
The electronic spin in quantum dots can be described by central spin models (CSMs) with a very large number Neff≈104 to 106 of bath spins posing a tremendous challenge to theoretical simulations. Here, a fully quantum mechanical theory is developed for the limit Neff→∞ by means of iterated equations of motion (iEoM). We find that the CSM can be mapped to a four-dimensional impurity coupled to a noninteracting bosonic bath in this limit. Remarkably, even for infinite bath the CSM does not become completely classical. The data obtained by the proposed iEoM approach are tested successfully against data from other, established approaches. Thus the iEoM mapping extends the set of theoretical tools that can be used to understand the spin dynamics in large CSMs.
Energy levels of a hydrogenic impurity in a parabolic quantum well with a magnetic field
NASA Astrophysics Data System (ADS)
Zang, J. X.; Rustgi, M. L.
1993-07-01
In this paper, we present a calculation of the energy levels of a hydrogenic impurity (or a hydrogenic atom) at the bottom of a one-dimensional parabolic quantum well with a magnetic field normal to the plane of the well. The finite-basis-set variational method is used to calculate the ground state and the excited states with major quantum number less than or equal to 3. The limit of small radial distance and the limit of great radial distance are considered to choose a set of proper basis functions. The results in the limit that the parabolic parameter α=0 are compared with the data of Rösner et al. [J. Phys. B 17, 29 (1984)]. The comparison shows that the present calculation is quite accurate. It is found that the energy levels increase with increasing parabolic parameter α and increase with increasing normalized magnetic-field strength γ except those levels with magnetic quantum number m<0 at small γ.
Tomonaga–Luttinger physics in electronic quantum circuits
Jezouin, S.; Albert, M.; Parmentier, F. D.; Anthore, A.; Gennser, U.; Cavanna, A.; Safi, I.; Pierre, F.
2013-01-01
In one-dimensional conductors, interactions result in correlated electronic systems. At low energy, a hallmark signature of the so-called Tomonaga–Luttinger liquids is the universal conductance curve predicted in presence of an impurity. A seemingly different topic is the quantum laws of electricity, when distinct quantum conductors are assembled in a circuit. In particular, the conductances are suppressed at low energy, a phenomenon called dynamical Coulomb blockade. Here we investigate the conductance of mesoscopic circuits constituted by a short single-channel quantum conductor in series with a resistance, and demonstrate a proposed link to Tomonaga–Luttinger physics. We reformulate and establish experimentally a recently derived phenomenological expression for the conductance using a wide range of circuits, including carbon nanotube data obtained elsewhere. By confronting both conductance data and phenomenological expression with the universal Tomonaga–Luttinger conductance curve, we demonstrate experimentally the predicted mapping between dynamical Coulomb blockade and the transport across a Tomonaga–Luttinger liquid with an impurity. PMID:23653214
Kerr effect from diffractive skew scattering in chiral px +/- ipy superconductors
NASA Astrophysics Data System (ADS)
König, Elio; Levchenko, Alex
We calculate the temperature dependent anomalous ac Hall conductance σH (Ω , T) for a two-dimensional chiral p-wave superconductor. This quantity determines the polar Kerr effect, as it was observed in Sr2RuO4. We concentrate on a single band model with arbitrary isotropic dispersion relation subjected to rare, weak impurities treated in the Born approximation. As we explicitly show by detailed computation, previously omitted contributions to extrinsic part of an anomalous Hall response, physically originating from diffractive skew scattering on quantum impurity complexes, appear to the leading order in impurity concentration. By direct comparison with published results from the literature we demonstrate the relevance of our findings for the interpretation of the Kerr effect measurements in superconductors. This work was financially supported in part by NSF Grants No. DMR-1606517 and ECCS-1560732 and at U of Wisconsin by the Office of the Vice Chancellor for Research and Graduate Education with funding from the Wisconsin Alumni Research Foundation.
Perpetual motion of a mobile impurity in a one-dimensional quantum gas
NASA Astrophysics Data System (ADS)
Lychkovskiy, O.
2014-03-01
Consider an impurity particle injected in a degenerate one-dimensional gas of noninteracting fermions (or, equivalently, Tonks-Girardeau bosons) with some initial momentum p0. We examine the infinite-time value of the momentum of the impurity, p∞, as a function of p0. A lower bound on |p∞(p0)| is derived under fairly general conditions. The derivation, based on the existence of the lower edge of the spectrum of the host gas, does not resort to any approximations. The existence of such bound implies the perpetual motion of the impurity in a one-dimensional gas of noninteracting fermions or Tonks-Girardeau bosons at zero temperature. The bound admits an especially simple and useful form when the interaction between the impurity and host particles is everywhere repulsive.
Studies of Atomic Free Radicals Stored in a Cryogenic Environment
NASA Technical Reports Server (NTRS)
Lee, David M.; Hubbard, Dorthy (Technical Monitor); Alexander, Glen (Technical Monitor)
2003-01-01
Impurity-Helium Solids are porous gel-like solids consisting of impurity atoms and molecules surrounded by thin layers of solid helium. They provide an ideal medium for matrix isolation of free radicals to prevent recombination and store chemical energy. In this work electron spin resonance, nuclear magnetic resonance, X-ray diffraction, and ultrasound techniques have all been employed to study the properties of these substances. Detailed studies via electron spin resonance of exchange tunneling chemical reactions involving hydrogen and deuterium molecular and atomic impurities in these solids have been performed and compared with theory. Concentrations of hydrogen approaching the quantum solid criterion have been produced. Structured studies involving X ray diffraction, ultrasound, and electron spin resonance have shown that the impurities in impurity helium solids are predominantly contained in impurity clusters, with each cluster being surrounded by thin layers of solid helium.
1997 Report to the Congress on Ballistic Missile Defense.
1997-10-01
Infrared Arrays • Quantum Well Infrared Photodector (QWIP) Focal Plane Array (FPA) • Staring Si Impurity Band Conduction Extremely Sensitive Focal...to be flown on STRV lc/d include a Quantum Well Infrared Photometer (QWIP) sensor and a multifunctional compos- ite structure. The Space Technology...Peoples Republic of China Platinum Silicide Quick Reaction Program Quick Response Program Quantum Well Infrared Photometer Research and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuraptsev, A. S., E-mail: aleksej-kurapcev@yandex.ru; Sokolov, I. M.
We develop a consistent quantum theory of the collective effects that take place when electromagnetic radiation interacts with a dense ensemble of impurity centers embedded in a transparent dielectric and placed in a Fabry–Perot cavity. We have calculated the spontaneous decay dynamics of an excited impurity atom as a specific example of applying the developed general theory. We analyze the dependence of the decay rate on the density of impurity centers and the sample sizes as well as on the characteristic level shifts of impurity atoms caused by the internal fields of the dielectric. We show that a cavity canmore » affect significantly the pattern of collective processes, in particular, the lifetimes of collective states.« less
NASA Astrophysics Data System (ADS)
Sharma, Neetika; Verma, Neha; Jogi, Jyotika
2017-11-01
This paper models the scattering limited electron transport in a nano-dimensional In0.52Al0.48As/In0.53Ga0.47As/InP heterostructure. An analytical model for temperature dependent sheet carrier concentration and carrier mobility in a two dimensional electron gas, confined in a triangular potential well has been developed. The model accounts for all the major scattering process including ionized impurity scattering and lattice scattering. Quantum mechanical variational technique is employed for studying the intrasubband scattering mechanism in the two dimensional electron gas. Results of various scattering limited structural parameters such as energy band-gap and functional parameters such as sheet carrier concentration, scattering rate and mobility are presented. The model corroborates the dominance of ionized impurity scattering mechanism at low temperatures and that of lattice scattering at high temperatures, both in turn limiting the carrier mobility. Net mobility obtained taking various scattering mechanisms into account has been found in agreement with earlier reported results, thus validating the model.
NASA Astrophysics Data System (ADS)
Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram
2017-11-01
We study the effect of magnetic field on the Coulomb interaction between the two electrons confined inside a CdTe/Cd1-xMnxTe Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD) for the composition of Mn2+ ion, x = 0.3. The two particle Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the applied magnetic field tremendously alters the Coulomb interaction of the electrons and their binding to the donor impurity by shrinking the spatial extension of the two particle wavefunction and leads to tunnelling through the barrier. The qualitative phenomenon involved in such variation of electron - electron interaction with the magnetic field has also been explained through the 3D - plot of the probability density function.
NASA Astrophysics Data System (ADS)
Polyakov, Evgeny A.; Rubtsov, Alexey N.
2018-02-01
When conducting the numerical simulation of quantum transport, the main obstacle is a rapid growth of the dimension of entangled Hilbert subspace. The Quantum Monte Carlo simulation techniques, while being capable of treating the problems of high dimension, are hindered by the so-called "sign problem". In the quantum transport, we have fundamental asymmetry between the processes of emission and absorption of environment excitations: the emitted excitations are rapidly and irreversibly scattered away. Whereas only a small part of these excitations is absorbed back by the open subsystem, thus exercising the non-Markovian self-action of the subsystem onto itself. We were able to devise a method for the exact simulation of the dominant quantum emission processes, while taking into account the small backaction effects in an approximate self-consistent way. Such an approach allows us to efficiently conduct simulations of real-time dynamics of small quantum subsystems immersed in non-Markovian bath for large times, reaching the quasistationary regime. As an example we calculate the spatial quench dynamics of Kondo cloud for a bozonized Kodno impurity model.
NASA Astrophysics Data System (ADS)
Islam, M. F.; Canali, C. M.; Pertsova, A.; Balatsky, A.; Mahatha, S. K.; Carbone, C.; Barla, A.; Kokh, K. A.; Tereshchenko, O. E.; Jiménez, E.; Brookes, N. B.; Gargiani, P.; Valvidares, M.; Schatz, S.; Peixoto, T. R. F.; Bentmann, H.; Reinert, F.; Jung, J.; Bathon, T.; Fauth, K.; Bode, M.; Sessi, P.
2018-04-01
The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3 . By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-ray magnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V- and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.
Sub-molecular modulation of a 4f driven Kondo resonance by surface-induced asymmetry
NASA Astrophysics Data System (ADS)
Warner, Ben; El Hallak, Fadi; Atodiresei, Nicolae; Seibt, Philipp; Prüser, Henning; Caciuc, Vasile; Waters, Michael; Fisher, Andrew J.; Blügel, Stefan; van Slageren, Joris; Hirjibehedin, Cyrus F.
2016-09-01
Coupling between a magnetic impurity and an external bath can give rise to many-body quantum phenomena, including Kondo and Hund's impurity states in metals, and Yu-Shiba-Rusinov states in superconductors. While advances have been made in probing the magnetic properties of d-shell impurities on surfaces, the confinement of f orbitals makes them difficult to access directly. Here we show that a 4f driven Kondo resonance can be modulated spatially by asymmetric coupling between a metallic surface and a molecule containing a 4f-like moment. Strong hybridization of dysprosium double-decker phthalocyanine with Cu(001) induces Kondo screening of the central magnetic moment. Misalignment between the symmetry axes of the molecule and the surface induces asymmetry in the molecule's electronic structure, spatially mediating electronic access to the magnetic moment through the Kondo resonance. This work demonstrates the important role that molecular ligands have in mediating electronic and magnetic coupling and in accessing many-body quantum states.
NASA Astrophysics Data System (ADS)
Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein
2017-03-01
In this paper, a GaAs / Alx Ga1-x As quantum dot laser with a semi-parabolic spherical well potential is assumed. By using Runge-Kutta method the eigenenergies and the eigenstates of valence and conduct bands are obtained. The effects of geometrical sizes, external electric fields and hydrogen impurity on the different electronic transitions of the optical gain are studied. The results show that the optical gain peak increases and red-shifts, by increasing the width of well or barrier, while more increasing of the width causes blue-shift and decreases it. The hydrogen impurity decreases the optical gain peak and blue-shifts it. Also, the increasing of the external electric fields cause to increase the peak of the optical gain, and (blue) red shift it. Finally, the optical gain for 1s-1s and 2s-1s transitions is prominent, while it is so weak for other transitions.
Spin power and efficiency in an Aharnov-Bohm ring with an embedded magnetic impurity quantum dot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xi; Guo, Yong, E-mail: guoy66@tsinghua.edu.cn; Collaborative Innovation Center of Quantum Matter, Beijing
2015-05-11
Spin thermoelectric effects in an Aharnov-Bohm ring with a magnetic impurity quantum dot (QD) are theoretically investigated by using the nonequilibrium Green's function method. It is found that due to the exchange coupling between the impurity and the electrons in QD, spin output power, and efficiency can be significant and be further modulated by the gate voltage. The spin thermoelectric effect can be modulated effectively by adjusting the Rashba spin-orbit interaction (RSOI) and the magnetic flux. The spin power and efficiency show zigzag oscillations, and thus spin thermoelectric effect can be switched by adjusting the magnetic flux phase factor andmore » RSOI ones. In addition, the spin efficiency can be significantly enhanced by the coexistence of the RSOI and the magnetic flux, and the maximal value of normalized spin efficiency η{sub max}/η{sub C} = 0.35 is obtained. Our results show that such a QD ring device may be used as a manipulative spin thermoelectric generator.« less
Interleaved numerical renormalization group as an efficient multiband impurity solver
NASA Astrophysics Data System (ADS)
Stadler, K. M.; Mitchell, A. K.; von Delft, J.; Weichselbaum, A.
2016-06-01
Quantum impurity problems can be solved using the numerical renormalization group (NRG), which involves discretizing the free conduction electron system and mapping to a "Wilson chain." It was shown recently that Wilson chains for different electronic species can be interleaved by use of a modified discretization, dramatically increasing the numerical efficiency of the RG scheme [Phys. Rev. B 89, 121105(R) (2014), 10.1103/PhysRevB.89.121105]. Here we systematically examine the accuracy and efficiency of the "interleaved" NRG (iNRG) method in the context of the single impurity Anderson model, the two-channel Kondo model, and a three-channel Anderson-Hund model. The performance of iNRG is explicitly compared with "standard" NRG (sNRG): when the average number of states kept per iteration is the same in both calculations, the accuracy of iNRG is equivalent to that of sNRG but the computational costs are significantly lower in iNRG when the same symmetries are exploited. Although iNRG weakly breaks SU(N ) channel symmetry (if present), both accuracy and numerical cost are entirely competitive with sNRG exploiting full symmetries. iNRG is therefore shown to be a viable and technically simple alternative to sNRG for high-symmetry models. Moreover, iNRG can be used to solve a range of lower-symmetry multiband problems that are inaccessible to sNRG.
Microscopic observation of magnon bound states and their dynamics.
Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian
2013-10-03
The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.
Self-learning Monte Carlo with deep neural networks
NASA Astrophysics Data System (ADS)
Shen, Huitao; Liu, Junwei; Fu, Liang
2018-05-01
The self-learning Monte Carlo (SLMC) method is a general algorithm to speedup MC simulations. Its efficiency has been demonstrated in various systems by introducing an effective model to propose global moves in the configuration space. In this paper, we show that deep neural networks can be naturally incorporated into SLMC, and without any prior knowledge can learn the original model accurately and efficiently. Demonstrated in quantum impurity models, we reduce the complexity for a local update from O (β2) in Hirsch-Fye algorithm to O (β lnβ ) , which is a significant speedup especially for systems at low temperatures.
Effect of magnetic field on the donor impurity in CdTe/Cd1-xMnxTe quantum well wire
NASA Astrophysics Data System (ADS)
Kalpana, P.; Reuben, A. Merwyn Jasper D.; Nithiananthi, P.; Jayakumar, K.
2016-05-01
The donor impurity binding energy in CdTe / Cd1-xMnxTe QWW with square well confinement along x - direction and parabolic confinement along y - direction under the influence of externally applied magnetic field has been computed using variational principle in the effective mass approximation. The spin polaronic shift has also been computed. The results are presented and discussed.
Bose polaron problem: Effect of mass imbalance on binding energy
NASA Astrophysics Data System (ADS)
Ardila, L. A. Peña; Giorgini, S.
2016-12-01
By means of quantum Monte Carlo methods we calculate the binding energy of an impurity immersed in a Bose-Einstein condensate at T =0 . The focus is on the attractive branch of the Bose polaron and on the role played by the mass imbalance between the impurity and the surrounding particles. For an impurity resonantly coupled to the bath, we investigate the dependence of the binding energy on the mass ratio and on the interaction strength within the medium. In particular, we determine the equation of state in the case of a static (infinite mass) impurity, where three-body correlations are irrelevant and the result is expected to be a universal function of the gas parameter. For the mass ratio corresponding to 40K impurities in a gas of 87Rb atoms, we provide an explicit comparison with the experimental findings of a recent study carried out at JILA.
Scattering of waves by impurities in precompressed granular chains.
Martínez, Alejandro J; Yasuda, Hiromi; Kim, Eunho; Kevrekidis, P G; Porter, Mason A; Yang, Jinkyu
2016-05-01
We study scattering of waves by impurities in strongly precompressed granular chains. We explore the linear scattering of plane waves and identify a closed-form expression for the reflection and transmission coefficients for the scattering of the waves from both a single impurity and a double impurity. For single-impurity chains, we show that, within the transmission band of the host granular chain, high-frequency waves are strongly attenuated (such that the transmission coefficient vanishes as the wavenumber k→±π), whereas low-frequency waves are well-transmitted through the impurity. For double-impurity chains, we identify a resonance-enabling full transmission at a particular frequency-in a manner that is analogous to the Ramsauer-Townsend (RT) resonance from quantum physics. We also demonstrate that one can tune the frequency of the RT resonance to any value in the pass band of the host chain. We corroborate our theoretical predictions both numerically and experimentally, and we directly observe almost complete transmission for frequencies close to the RT resonance frequency. Finally, we show how this RT resonance can lead to the existence of reflectionless modes in granular chains (including disordered ones) with multiple double impurities.
Pair interactions of heavy vortices in quantum fluids
NASA Astrophysics Data System (ADS)
Pshenichnyuk, Ivan A.
2018-02-01
The dynamics of quantum vortex pairs carrying heavy doping matter trapped inside their cores is studied. The nonlinear classical matter field formalism is used to build a universal mathematical model of a heavy vortex applicable to different types of quantum mixtures. It is shown how the usual vortex dynamics typical for undoped pairs qualitatively changes when heavy dopants are used: heavy vortices with opposite topological charges (chiralities) attract each other, while vortices with the same charge are repelled. The force responsible for such behavior appears as a result of superposition of vortices velocity fields in the presence of doping substance and can be considered as a special realization of the Magnus effect. The force is evaluated quantitatively and its inverse proportionality to the distance is demonstrated. The mechanism described in this paper gives an example of how a light nonlinear classical field may realize repulsive and attractive interactions between embedded heavy impurities.
Optical and structural properties of ensembles of colloidal Ag{sub 2}S quantum dots in gelatin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikov, O. V., E-mail: Ovchinnikov-O-V@rambler.ru; Smirnov, M. S.; Shapiro, B. I.
2015-03-15
The size dependences of the absorption and luminescence spectra of ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots produced by the sol-gel method and dispersed in gelatin are analyzed. By X-ray diffraction analysis and transmission electron microscopy, the formation of core/shell nanoparticles is detected. The characteristic feature of the nanoparticles is the formation of crystalline cores, 1.5–2.0 nm in dimensions, and shells of gelatin and its complexes with the components of synthesis. The observed slight size dependence of the position of infrared photoluminescence bands (in the range 1000–1400 nm) in the ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots ismore » explained within the context of the model of the radiative recombination of electrons localized at structural and impurity defects with free holes.« less
Many-body Tunneling and Nonequilibrium Dynamics of Doublons in Strongly Correlated Quantum Dots.
Hou, WenJie; Wang, YuanDong; Wei, JianHua; Zhu, ZhenGang; Yan, YiJing
2017-05-30
Quantum tunneling dominates coherent transport at low temperatures in many systems of great interest. In this work we report a many-body tunneling (MBT), by nonperturbatively solving the Anderson multi-impurity model, and identify it a fundamental tunneling process on top of the well-acknowledged sequential tunneling and cotunneling. We show that the MBT involves the dynamics of doublons in strongly correlated systems. Proportional to the numbers of dynamical doublons, the MBT can dominate the off-resonant transport in the strongly correlated regime. A T 3/2 -dependence of the MBT current on temperature is uncovered and can be identified as a fingerprint of the MBT in experiments. We also prove that the MBT can support the coherent long-range tunneling of doublons, which is well consistent with recent experiments on ultracold atoms. As a fundamental physical process, the MBT is expected to play important roles in general quantum systems.
Shchurova, L Yu; Kulbachinskii, V A
2011-03-01
We investigate energy levels, thermodynamic, transport and magnetotransport properties of holes in GaAs structure with quantum well InGaAs delta-doped by C and Mn. We present self-consistent calculations for energy levels in the quantum well for different degrees of ionization of Mn impurity. The magnetoresistance of holes in the quantum well is calculated. We explain observed negative magnetoresistance by the reduction of spin-flip scattering on magnetic ions due to aligning of spins with magnetic field.
Evidence for broken Galilean invariance at the quantum spin Hall edge
NASA Astrophysics Data System (ADS)
Geissler, Florian; Crépin, François; Trauzettel, Björn
2015-12-01
We study transport properties of the helical edge channels of a quantum spin Hall insulator, in the presence of electron-electron interactions and weak, local Rashba spin-orbit coupling. The combination of the two allows for inelastic backscattering that does not break time-reversal symmetry, resulting in interaction-dependent power-law corrections to the conductance. Here, we use a nonequilibrium Keldysh formalism to describe the situation of a long, one-dimensional edge channel coupled to external reservoirs, where the applied bias is the leading energy scale. By calculating explicitly the corrections to the conductance up to fourth order of the impurity strength, we analyze correlated single- and two-particle backscattering processes on a microscopic level. Interestingly, we show that the modeling of the leads together with the breaking of Galilean invariance has important effects on the transport properties. Such breaking occurs because the Galilean invariance of the bulk spectrum transforms into an emergent Lorentz invariance of the edge spectrum. With this broken Galilean invariance at the quantum spin Hall edge, we find a contribution to single-particle backscattering with a very low power scaling, while in the presence of Galilean invariance the leading contribution will be due to correlated two-particle backscattering only. This difference is further reflected in the different values of the Fano factor of the shot noise, an experimentally observable quantity. The described behavior is specific to the Rashba scatterer and does not occur in the case of backscattering off a time-reversal-breaking, magnetic impurity.
Properties of GaP Schottky barrier diodes at elevated temperatures.
NASA Technical Reports Server (NTRS)
Nannichi, Y.; Pearson, G. L.
1969-01-01
Gallium phosphide Schottky barrier diodes, discussing construction and metals used, barrier height relationships to impurity concentration and temperature, rectifying characteristics and internal quantum efficiency
Symmetry Enriched Topological Phases and Their Edge Theories
NASA Astrophysics Data System (ADS)
Heinrich, Christopher
In this thesis we investigate topological phases of matter that have a global, unbroken symmetry group--also known as symmetry enriched topological (SET) phases. We address three questions about these phases: (1) how can we build exactly solvable models that realize them? (2) how can we determine if their edge theories can be gapped without breaking the symmetry? and (3) how do we understand the phenomenon of decoupled charge and neutral modes which occurs in certain fractional quantum Hall states? More specifically, we address the first question by constructing exactly solvable models for a wide class of symmetry enriched topological (SET) phases, which we call symmetry-enriched string nets. The construction applies to 2D bosonic SET phases with finite unitary onsite symmetry group G, and we conjecture that our models realize every phase in this class that can be described by a commuting projector Hamiltonian. As an example, we present a model for a phase with the same anyon excitations as the toric code and with a Z2 symmetry which exchanges the e and m type anyons. We further illustrate our construction with a number of additional examples. For the second question, we focus on the edge theories of 2D SET phases with Z2 symmetry. The central problem we seek to solve is to determine which edge theories can be gapped without breaking the symmetry. Previous attempts to answer this question in special cases relied on constructing perturbations of a particular type to gap the edge. This method proves the edge can be gapped when the appropriate perturbations can be found, but is inconclusive if they cannot be found. We build on this previous work by deriving a necessary and sufficient algebraic condition for when the edge can be gapped. Our results apply to Z2 symmetry protected topological phases as well as Abelian Z2 SET phases. Finally, in the fourth chapter, we describe solvable models that capture how impurity scattering in certain fractional quantum Hall edges can give rise to a neutral mode--i.e. an edge mode that does not carry electric charge. These models consist of two counter-propagating chiral Luttinger liquids together with a collection of discrete impurity scatterers. Our main result is an exact solution of these models in the limit of infinitely strong impurity scattering. From this solution, we explicitly derive the existence of a neutral mode and we determine all of its microscopic properties including its velocity. We also study the stability of the neutral mode and show that it survives at finite but sufficiently strong scattering. Our results are applicable to a family of Abelian fractional quantum Hall states of which the nu = 2/3 state is the most prominent example.
NASA Astrophysics Data System (ADS)
Owji, Erfan; Keshavarz, Alireza; Mokhtari, Hosein
2016-10-01
In this paper, the effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity are investigated. For this purpose, the effects of temperature, pressure and quantum dot size on the band gap energy, effective mass, and dielectric constant are studied. The eigenenergies and eigenstates for valence and conduction band are calculated by using Runge-Kutta numerical method. Results show that changes in the temperature, pressure and size lead to the alteration of the band gap energy and effective mass. Also, increasing the temperature redshifts the optical gain peak and at special temperature ranges lead to increasing or decreasing of it. Further, by reducing the size, temperature-dependent of optical gain is decreased. Additionally, enhancing of the hydrostatic pressure blueshifts the peak of optical gain, and its behavior as a function of pressure which depends on the size. Finally, increasing the radius rises the redshifts of the peak of optical gain.
NASA Astrophysics Data System (ADS)
Jin, Jinshuang; Wang, Shikuan; Zhou, Jiahuan; Zhang, Wei-Min; Yan, YiJing
2018-04-01
We investigate the dynamics of charge-state coherence in a degenerate double-dot Aharonov–Bohm interferometer with finite inter-dot Coulomb interactions. The quantum coherence of the charge states is found to be sensitive to the transport setup configurations, involving both the single-electron impurity channels and the Coulomb-assisted ones. We numerically demonstrate the emergence of a complete coherence between the two charge states, with the relative phase being continuously controllable through the magnetic flux. Interestingly, a fully coherent charge qubit arises at the double-dots electron pair tunneling resonance condition, where the chemical potential of one electrode is tuned at the center between a single-electron impurity channel and the related Coulomb-assisted channel. This pure quantum state of charge qubit could be experimentally realized at the current–voltage characteristic turnover position, where differential conductance sign changes. We further elaborate the underlying mechanism for both the real-time and the stationary charge-states coherence in the double-dot systems of study.
Zuo, Xian-Jun
2018-03-07
Self-consistent calculations are performed to characterize the quantum corral effects on the electronic states of chiral d + id or f-wave superconductors in this paper. A variety of spatial structures of competing orders are revealed in the presence of ferromagnetic nano-corrals, and superconducting islands are found to be absent in the case of small corrals while being seen for large corrals. Compared with the local suppression of superconductivity by a magnetic impurity inside the corral, surprisingly, an additional remarkable feature, i.e., obvious oscillations or enhancement of superconductivity around a non-magnetic impurity, is observed inside the magnetic corral. This is important in view of applications, especially in view of the demand for devices to locally produce strong superconductivity. Meanwhile, the charge density displays obvious modulations due to quantum confinement but in contrast, the spin density pattern exhibits its robustness against the corral effect. Furthermore, we explore the local density of states so as to be directly checked by experiments. We demonstrate that a magnetic corral can suppress the formation of quasi-particle bound states induced by an impurity inside the corral in the chiral d + id state while the f-wave case shows different behaviors. These results also propose a new route to make a distinction between the two competing pairing states in triangular-lattice superconductors.
Density of Electronic States in Impurity-Doped Quantum Well Wires
NASA Astrophysics Data System (ADS)
Sierra-Ortega, J.; Mikhailov, I. D.
2003-03-01
We analyze the electronic states in a cylindrical quantum well-wire (QWW) with randomly distributed neutral, D^0 and negatively charged D^- donors. In order to calculate the ground state energies of the off-center donors D^0 and D^- as a function of the distance from the axis of the QWW, we use the recently developed fractal dimension method [1]. There the problems are reduced to those similar for a hydrogen-like atom and a negative-hydrogen-like ion respectively, in an isotropic effective space with variable fractional dimension. The numerical trigonometric sweep method [2] and the three-parameter Hylleraas-type trial function are used to solve these problems. Novel curves for the density of impurity states in cylindrical QWWs with square-well, parabolic and soft-edge barrier potentials are present. Additionally we analyze the effect of the repulsive core on the density of the impurity states. [1] I.D. Mikhailov, F. J. Betancur, R. Escorcia and J. Sierra-Ortega, Phys. Stat. Sol., 234(b), 590 (2002) [2] F. J. Betancur, I. D. Mikhailov and L. E. Oliveira, J. Appl. Phys. D, 31, 3391(1998)
NASA Astrophysics Data System (ADS)
Vartanian, A. L.; Asatryan, A. L.; Vardanyan, L. A.
2017-03-01
We have investigated the influence of an image charge effect (ICE) on the energies of the ground and first few excited states of a hydrogen-like impurity in a spherical quantum dot (QD) in the presence of an external electric field. The oscillator strengths of transitions from the 1 s -like state to excited states of 2px and 2pz symmetries are calculated as the functions of the strengths of the confinement potential and the electric field. Also, we have studied the effect of image charges on linear and third-order nonlinear optical absorption coefficients and refractive index changes (RICs). The results show that image charges lead to the decrease of energies for all the hydrogen-like states, to the significant enhancement of the oscillator strengths of transitions between the impurity states, and to comparatively large blue shifts in linear, nonlinear, and total absorption coefficients and refractive index changes. Our results indicate that the total optical characteristics can be controlled by the strength of the confinement and the electric field.
Donor states in a semimagnetic Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well
NASA Astrophysics Data System (ADS)
Kalpana, Panneer Selvam; Nithiananthi, Perumal; Jayakumar, Kalyanasundaram
2017-02-01
The theoretical investigation has been carried out on the binding energy of donor associated with the electrons confined in a Cd1 -xinMnxin Te /Cd1 -xoutMnxout Te Double Quantum Well (DQW) as a function of central barrier width for various well dimensions and impurity locations in the barrier and the well. The magnetic field can act as a tool to continuously change the interwell coupling inside this DQW systems and its effect on donor binding has also been studied. Moreover, the polaronic corrections, which is due to the strong exchange interaction between the magnetic moment of Mn2+ ion and the spin of the confined carrier, to the binding energy of the hydrogenic donor impurity has also been estimated with and without the application of magnetic field. The binding energy of the donor impurity is determined by solving the Schrodinger equation variationally in the effective mass approximation and the effect due to Bound Magnetic Polaron (BMP) is included using mean field theory with the modified Brillouin function. The results are reported and discussed.
Exploring the anisotropic Kondo model in and out of equilibrium with alkaline-earth atoms
NASA Astrophysics Data System (ADS)
Kanász-Nagy, Márton; Ashida, Yuto; Shi, Tao; Moca, Cǎtǎlin Paşcu; Ikeda, Tatsuhiko N.; Fölling, Simon; Cirac, J. Ignacio; Zaránd, Gergely; Demler, Eugene A.
2018-04-01
We propose a scheme to realize the Kondo model with tunable anisotropy using alkaline-earth atoms in an optical lattice. The new feature of our setup is Floquet engineering of interactions using time-dependent Zeeman shifts, that can be realized either using state-dependent optical Stark shifts or magnetic fields. The properties of the resulting Kondo model strongly depend on the anisotropy of the ferromagnetic interactions. In particular, easy-plane couplings give rise to Kondo singlet formation even though microscopic interactions are all ferromagnetic. We discuss both equilibrium and dynamical properties of the system that can be measured with ultracold atoms, including the impurity spin susceptibility, the impurity spin relaxation rate, as well as the equilibrium and dynamical spin correlations between the impurity and the ferromagnetic bath atoms. We analyze the nonequilibrium time evolution of the system using a variational non-Gaussian approach, which allows us to explore coherent dynamics over both short and long timescales, as set by the bandwidth and the Kondo singlet formation, respectively. In the quench-type experiments, when the Kondo interaction is suddenly switched on, we find that real-time dynamics shows crossovers reminiscent of poor man's renormalization group flow used to describe equilibrium systems. For bare easy-plane ferromagnetic couplings, this allows us to follow the formation of the Kondo screening cloud as the dynamics crosses over from ferromagnetic to antiferromagnetic behavior. On the other side of the phase diagram, our scheme makes it possible to measure quantum corrections to the well-known Korringa law describing the temperature dependence of the impurity spin relaxation rate. Theoretical results discussed in our paper can be measured using currently available experimental techniques.
Direct evidence of recombination between electrons in InGaN quantum discs and holes in p-type GaN.
Sun, Xiaoxiao; Wang, Xinqiang; Wang, Ping; Wang, Tao; Sheng, Bowen; Zheng, Xiantong; Li, Mo; Zhang, Jian; Yang, Xuelin; Xu, Fujun; Ge, Weikun; Shen, Bo
2017-11-27
Intense emission from an InGaN quantum disc (QDisc) embedded in a GaN nanowire p-n junction is directly resolved by performing cathodoluminescence spectroscopy. The luminescence observed from the p-type GaN region is exclusively dominated by the emission at 380 nm, which has been usually reported as the emission from Mg induced impurity bands. Here, we confirm that the robust emission from 380 nm is actually not due to the Mg induced impurity bands, but rather due to being the recombination between electrons in the QDisc and holes in the p-type GaN. This identification helps to get a better understanding of the confused luminescence from nanowires with thin QDiscs embedded for fabricating electrically driven single photon emitters.
Conductivity of Weakly Disordered Metals Close to a "Ferromagnetic" Quantum Critical Point
NASA Astrophysics Data System (ADS)
Kastrinakis, George
2018-05-01
We calculate analytically the conductivity of weakly disordered metals close to a "ferromagnetic" quantum critical point in the low-temperature regime. Ferromagnetic in the sense that the effective carrier potential V(q,ω ), due to critical fluctuations, is peaked at zero momentum q=0. Vertex corrections, due to both critical fluctuations and impurity scattering, are explicitly considered. We find that only the vertex corrections due to impurity scattering, combined with the self-energy, generate appreciable effects as a function of the temperature T and the control parameter a, which measures the proximity to the critical point. Our results are consistent with resistivity experiments in several materials displaying typical Fermi liquid behaviour, but with a diverging prefactor of the T^2 term for small a.
NASA Astrophysics Data System (ADS)
Kalpana, Panneer Selvam; Jayakumar, Kalyanasundaram
2017-11-01
We study the effect of Γ-X band crossover due to the application of hydrostatic pressure of a hydrogenic donor confined in a Triangular GaAs/Al1-xGaxAs Quantum Well (TQW) for x = 0.3 and the diamagnetic susceptibility (χdia) for such an impurity in 1s and some few low lying excited states have been investigated. The Schrodinger equation has been solved using variational technique in the effective mass approximation. The results show that the diamagnetic susceptibility (χdia) of a hydrogenic donor abruptly increases at a particular pressure for 1s and 2p± states but a steady increase for 2s state as a function of applied pressure.
Low-energy Model for Strongly Correlated Oxides
NASA Astrophysics Data System (ADS)
Liu, Shiu
We provide a detailed derivation of the low-energy model for site-diluted strongly correlated oxides, an example being Zn-diluted La2CuO 4, in the limit of low doping together with a study of the ground-state properties of that model. The generally complicated Hamiltonian on the energy scale of the most relevant atomic orbitals is systematically downfolded to an effective model containing only spin-spin interactions using several techniques. In our study, beginning with the site-diluted three-band Hubbard model for La2ZnxCu(1- x)O4, we first determine the hybridized electronic states of CuO4 and ZnO4 plaquettes within the CuO2 planes utilizing Wannier-orthogonalization of oxygen orbitals and cell-perturbation of the Hamiltonian of each plaquett. Qualitatively, we find that the hybridization of zinc and oxygen orbitals can result in an impurity state with the energy epsilon, which is lower than the effective Hubbard gap U. Then we apply canonical transformation in the limit of the effective hopping integral t << epsilon, U, to obtain the low-energy, spin-only Hamiltonian, which includes terms of the order t2/U, t4/epsilon3, and t 4/Uepsilon2. In other words, besides the usual diluted nearest-neighbor superexchange J-terms of order t2/U, the low-energy model contains impurity-mediated, further-neighbor frustrating interactions among the Cu spins surrounding Zn-sites in an otherwise unfrustrated antiferromagnetic background. These terms, denoted as J'Zn and J''Zn , are of order t4/epsilon3 and can be substantial when epsilon ˜ U/2, the latter value corresponding to the realistic CuO2 parameters. The other further-neighbor Cu spin interactions are of order t 4/U3, which are neglected in both pure and diluted systems, because they are much lesser than J'Zn and J''Zn and independent of impurity concentration. In order to verify this spin-only model, we subsequently apply the T-matrix approach to study the effect of impurities on the antiferromagnetic order parameter. Previous theoretical T-matrix and quantum Monte Carlo (QMC) studies, which include only the dilution effect of impurities, show a large discrepancy with experimental neutron scattering and nuclear quadrupole resonance (NQR) data in the doping dependence of the staggered magnetization at low doping. We demonstrate that this discrepancy is eliminated by including zinc orbitals in the three-band Hubbard model and by including impurity-induced frustrations into the effective spin model with realistic CuO2 parameters. Recent experimental study shows a significantly stronger suppression of spin stiffness in the case of Zn-doped La2CuO4 compared to the Mg-doped case and thus gives a strong support to our theory. Different site-diluting dopants with different electron configurations affect the magnetism of the whole system differently. We argue that the available impurity orbitals are crucial in deriving theoretical models for the site-diluted systems and the proposed impurity-induced frustrations should be important in other strongly correlated oxides and charge-transfer insulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagraev, N. T., E-mail: bagraev@mail.ioffe.ru; Grigoryev, V. Yu.; Klyachkin, L. E.
The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport. The aforesaid also promotes the creation of composite bosons and fermions by the capture of single magnetic flux quanta at the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of quantum kinetic phenomena in weak magnetic fields at high temperatures up to the room temperature. As a certain version noted above, we present the first findings of the high temperature de Haas–van Alphenmore » (300 K) and quantum Hall (77 K) effects in the silicon sandwich structure that represents the ultranarrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface. These data appear to result from the low density of single holes that are of small effective mass in the edge channels of p-type Si-QW because of the impurity confinement by the stripes consisting of the negative-U dipole boron centers which seems to give rise to the efficiency reduction of the electron–electron interaction.« less
Classical mapping for Hubbard operators: Application to the double-Anderson model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Bin; Miller, William H.; Levy, Tal J.
A classical Cartesian mapping for Hubbard operators is developed to describe the nonequilibrium transport of an open quantum system with many electrons. The mapping of the Hubbard operators representing the many-body Hamiltonian is derived by using analogies from classical mappings of boson creation and annihilation operators vis-à-vis a coherent state representation. The approach provides qualitative results for a double quantum dot array (double Anderson impurity model) coupled to fermionic leads for a range of bias voltages, Coulomb couplings, and hopping terms. While the width and height of the conduction peaks show deviations from the master equation approach considered to bemore » accurate in the limit of weak system-leads couplings and high temperatures, the Hubbard mapping captures all transport channels involving transition between many electron states, some of which are not captured by approximate nonequilibrium Green function closures.« less
NASA Astrophysics Data System (ADS)
Arslan, Seval; Demir, Abdullah; Şahin, Seval; Aydınlı, Atilla
2018-02-01
In semiconductor lasers, quantum well intermixing (QWI) with high selectivity using dielectrics often results in lower quantum efficiency. In this paper, we report on an investigation regarding the effect of thermally induced dielectric stress on the quantum efficiency of quantum well structures in impurity-free vacancy disordering (IFVD) process using photoluminescence and device characterization in conjunction with microscopy. SiO2 and Si x O2/SrF2 (versus SrF2) films were employed for the enhancement and suppression of QWI, respectively. Large intermixing selectivity of 75 nm (125 meV), consistent with the theoretical modeling results, with negligible effect on the suppression region characteristics, was obtained. Si x O2 layer compensates for the large thermal expansion coefficient mismatch of SrF2 with the semiconductor and mitigates the detrimental effects of SrF2 without sacrificing its QWI benefits. The bilayer dielectric approach dramatically improved the dielectric-semiconductor interface quality. Fabricated high power semiconductor lasers demonstrated high quantum efficiency in the lasing region using the bilayer dielectric film during the intermixing process. Our results reveal that stress engineering in IFVD is essential and the thermal stress can be controlled by engineering the dielectric strain opening new perspectives for QWI of photonic devices.
Topological states of matter in two-dimensional fermionic systems
NASA Astrophysics Data System (ADS)
Beugeling, W.
2012-09-01
Topological states of matter in two-dimensional systems are characterised by the different properties of the edges and the bulk of the system: The edges conduct electrical current while the bulk is insulating. The first well-known example is the quantum Hall effect, which is induced by a perpendicular magnetic field that generates chiral edge channels along which the current propagates. Each channel contributes one quantum to the Hall conductivity. Due to the chirality, i.e., all currents propagate in the same direction, backscattering due to impurities is absent, and the Hall conductivity carried by the edge states is therefore protected from perturbations. Another example is the quantum spin Hall effect, induced by intrinsic spin-orbit coupling in absence of a magnetic field. There the edge states are helical, i.e., spin up and down currents propagate oppositely. In this case, the spin Hall conductivity is quantized, and it is protected by time-reversal symmetry from backscattering due to impurities. In Chapter 2 of the thesis, I discuss the combined effect of the magnetic field and intrinsic spin-orbit coupling. In addition, I discuss the influence of the Rashba spin-orbit coupling and of the Zeeman effect. In particular, I show that in absence of magnetic impurities, a weaker form of the quantum spin Hall state persists in the presence of a magnetic field. In addition, I show that the intrinsic spin-orbit coupling and the Zeeman effect act similarly in the low-flux limit. I furthermore analyse the phase transitions induced by intrinsic spin-orbit coupling at a fixed magnetic field, thereby explaining the change of the Hall and spin Hall conductivities at the transition. I also study the subtle interplay between the effects of the different terms in the Hamiltonian. In Chapter 3, I investigate an effective model for HgTe quantum wells doped with Mn ions. Without doping, HgTe quantum wells may exhibit the quantum spin Hall effect, depending on the thickness of the well. The doping with Mn ions modifies the behaviour of the system in two ways: First, the quantum spin Hall gap is reduced in size, and secondly, the system becomes paramagnetic. The latter effect causes a bending of the Landau levels, which is responsible for reentrant behaviour of the (spin) Hall conductivity. I investigate the different types of reentrant behaviour, and I estimate the experimental resolvability of this effect. In Chapter 4, I present a framework to describe the fractional quantum Hall effect in systems with multiple internal degrees of freedom, e.g., spin or pseudospin. This framework describes the so-called flux attachment in terms of a Chern-Simons theory in Hamiltonian form, proposed earlier for systems without internal degrees of freedom. Here, I show a generalization of these results, by replacing the number of attached flux quanta by a matrix. In particular, the plasma analogy proposed by Laughlin still applies, and Kohn’s theorem remains valid. I also show that the results remain valid when the flux-attachment matrix is singular.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroupa, Daniel M.; Hughes, Barbara K.; Miller, Elisa M.
Electronic impurity doping of bulk semiconductors is an essential component of semiconductor science and technology. Yet there are only a handful of studies demonstrating control of electronic impurities in semiconductor nanocrystals. Here, we studied electronic impurity doping of colloidal PbSe quantum dots (QDs) using a postsynthetic cation exchange reaction in which Pb is exchanged for Ag. We found that varying the concentration of dopants exposed to the as-synthesized PbSe QDs controls the extent of exchange. The electronic impurity doped QDs exhibit the fundamental spectroscopic signatures associated with injecting a free charge carrier into a QD under equilibrium conditions, including amore » bleach of the first exciton transition and the appearance of a quantum-confined, low-energy intraband absorption feature. Photoelectron spectroscopy confirms that Ag acts as a p-type dopant for PbSe QDs and infrared spectroscopy is consistent with k • p calculations of the size-dependent intraband transition energy. We find that to bleach the first exciton transition by an average of 1 carrier per QD requires that approximately 10% of the Pb be replaced by Ag. Here, we hypothesize that the majority of incorporated Ag remains at the QD surface and does not interact with the core electronic states of the QD. Instead, the excess Ag at the surface promotes the incorporation of <1% Ag into the QD core where it causes p-type doping behavior.« less
NASA Astrophysics Data System (ADS)
Tiutiunnyk, Anton; Akimov, Volodymyr; Tulupenko, Viktor; Mora-Ramos, Miguel E.; Kasapoglu, Esin; Morales, Alvaro L.; Duque, Carlos Alberto
2016-04-01
The differential cross-section of electron Raman scattering and the Raman gain are calculated and analysed in the case of prismatic quantum dots with equilateral triangle base shape. The study takes into account their dependencies on the size of the triangle, the influence of externally applied electric field as well as the presence of an ionized donor center located at the triangle's orthocenter. The calculations are made within the effective mass and parabolic band approximations, with a diagonalization scheme being applied to obtain the eigenfunctions and eigenvalues of the x- y Hamiltonian. The incident and secondary (scattered) radiation have been considered linearly-polarized along the y-direction, coinciding with the direction of the applied electric field. For the case with an impurity center, Raman scattering with the intermediate state energy below the initial state one has been found to show maximum differential cross-section more than by an order of magnitude bigger than that resulting from the scheme with lower intermediate state energy. The Raman gain has maximum magnitude around 35 nm dot size and electric field of 40 kV/cm for the case without impurity and at maximum considered values of the input parameters for the case with impurity. Values of Raman gain of the order of up to 104cm-1 are predicted in both cases.
Bose-Hubbard lattice as a controllable environment for open quantum systems
NASA Astrophysics Data System (ADS)
Cosco, Francesco; Borrelli, Massimo; Mendoza-Arenas, Juan José; Plastina, Francesco; Jaksch, Dieter; Maniscalco, Sabrina
2018-04-01
We investigate the open dynamics of an atomic impurity embedded in a one-dimensional Bose-Hubbard lattice. We derive the reduced evolution equation for the impurity and show that the Bose-Hubbard lattice behaves as a tunable engineered environment allowing one to simulate both Markovian and non-Markovian dynamics in a controlled and experimentally realizable way. We demonstrate that the presence or absence of memory effects is a signature of the nature of the excitations induced by the impurity, being delocalized or localized in the two limiting cases of a superfluid and Mott insulator, respectively. Furthermore, our findings show how the excitations supported in the two phases can be characterized as information carriers.
Collision of impurities with Bose–Einstein condensates
NASA Astrophysics Data System (ADS)
Lingua, F.; Lepori, L.; Minardi, F.; Penna, V.; Salasnich, L.
2018-04-01
Quantum dynamics of impurities in a bath of bosons is a long-standing problem in solid-state, plasma, and atomic physics. Recent experimental and theoretical investigations with ultracold atoms have focused on this problem, studying atomic impurities immersed in an atomic Bose–Einstein condensate (BEC) and for various relative coupling strengths tuned by the Fano‑Feshbach resonance technique. Here, we report extensive numerical simulations on a closely related problem: the collision between a bosonic impurity consisting of a few 41K atoms and a BEC of 87Rb atoms in a quasi one-dimensional configuration and under a weak harmonic axial confinement. For small values of the inter-species interaction strength (regardless of its sign), we find that the impurity, which starts from outside the BEC, simply causes the BEC cloud to oscillate back and forth, but the frequency of oscillation depends on the interaction strength. For intermediate couplings, after a few cycles of oscillation the impurity is captured by the BEC, and strongly changes its amplitude of oscillation. In the strong interaction regime, if the inter-species interaction is attractive, a local maximum (bright soliton) in the BEC density occurs where the impurity is trapped; if, instead, the inter-species interaction is repulsive, the impurity is not able to enter the BEC cloud and the reflection coefficient is close to one. However, if the initial displacement of the impurity is increased, the impurity is able to penetrate the cloud, leading to the appearance of a moving hole (dark soliton) in the BEC.
Singular Valence Fluctuations at a Kondo Destroyed Quantum Critical Point
NASA Astrophysics Data System (ADS)
Pixley, Jedediah; Kirchner, Stefan; Ingersent, Kevin; Si, Qimiao
2012-02-01
Recent experiments on the heavy fermion superconductor beta-YbAlB4 have indicated that this compound satisfies quantum critical scaling [1]. Motivated by the observation of mixed valency in this material [2], we study the Kondo destruction physics in the mixed-valence regime [3] of a particle-hole asymmetric Anderson impurity model with a pseudogapped density of states. In the vicinity of the quantum critical point we determine the finite temperature spin and charge susceptibilities by utilizing a continuous time quantum Monte Carlo method [4] and the numerical renormalization group. We show that this mixed-valence quantum critical point displays a Kondo breakdown effect. Furthermore, we find that both dynamic spin and charge susceptibilities obey frequency over temperature scaling, and that the static charge susceptibility diverges with a universal exponent. Possible implications of our results for beta-YbAlB4 are discussed. [1] Matsumoto et al, Science 331, 316 (2011). [2] Okawaet al, Physical Review Letters 104, 247201 (2010). [3] J. H. Pixley, S. Kirchner, Kevin Ingersent and Q. Si, arXiv:1108.5227v1 (2011). [4] M. Glossop, S. Kirchner, J. H. Pixley and Q. Si, Phys. Rev. Lett. 107, 076404 (2011).
Tunneling current noise spectra of biased impurity with a phonon mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maslova, N. S.; Arseev, P. I.; Mantsevich, V. N., E-mail: vmantsev@gmail.com
We report the results of theoretical investigations of the tunneling current noise spectra through a single-level impurity both in the presence and in the absence of electron–phonon interaction based on the nonequilibrium Green’s functions formalism. We show that due to the quantum nature of tunneling, the Fano factor is dramatically different from the Poisson limit both in the presence and in the absence of inelastic processes. The results are demonstrated to be sensitive to the tunneling contact parameters.
Perturbation theory of a superconducting 0 - π impurity quantum phase transition.
Žonda, M; Pokorný, V; Janiš, V; Novotný, T
2015-03-06
A single-level quantum dot with Coulomb repulsion attached to two superconducting leads is studied via the perturbation expansion in the interaction strength. We use the Nambu formalism and the standard many-body diagrammatic representation of the impurity Green functions to formulate the Matsubara self-consistent perturbation expansion. We show that at zero temperature second order of the expansion in its spin-symmetric version yields a nearly perfect agreement with the numerically exact calculations for the position of the 0 - π phase boundary at which the Andreev bound states reach the Fermi energy as well as for the values of single-particle quantities in the 0-phase. We present results for phase diagrams, level occupation, induced local superconducting gap, Josephson current, and energy of the Andreev bound states with the precision surpassing any (semi)analytical approaches employed thus far.
Electronic structure of cobalt doped CdSe quantum dots using soft X-ray spectroscopy
Wright, Joshua T.; Su, Dong; van Buuren, Tony; ...
2014-08-21
Here, the electronic structure and magnetic properties of cobalt doped CdSe quantum dots (QDs) are studied using electron microscopy, soft X-ray spectroscopy, and magnetometry. Magnetometry measurements suggest these QDs are superparamagnetic, contrary to a spin-glass state observed in the bulk analogue. Electron microscopy shows well formed QDs, but with cobalt existing as doped into the QD and as unreacted species not contained in the QD. X-ray absorption measurements at the Co L3-edge suggest that changes in spectra features as a function of particle size can be described considering combination of a cobalt ion in a tetrahedral crystal field and anmore » octahedrally coordinated (impurity) phase. With decreasing particle sizes, the impurity phase increases, suggesting that small QDs can be difficult to dope.« less
Impurity and phonon scattering in silicon nanowires
NASA Astrophysics Data System (ADS)
Zhang, W.; Persson, M. P.; Mera, H.; Delerue, C.; Niquet, Y. M.; Allan, G.; Wang, E.
2011-03-01
We model the scattering of electrons by phonons and dopant impurities in ultimate [110]-oriented gate-all-around silicon nanowires with an atomistic valence force field and tight-binding approach. All electron-phonons interactions are included. We show that impurity scattering can reduce with decreasing nanowire diameter due to the enhanced screening by the gate. Donors and acceptors however perform very differently : acceptors behave as tunnel barriers for the electrons, while donors behave as quantum wells which introduce Fano resonances in the conductance. As a consequence the acceptors are much more limiting the mobility than the donors. The resistances of single acceptors are also very dependent on their radial position in the nanowire, which might be a significant source of variability in ultimate silicon nanowire devices. Concerning phonons, we show that, as a result of strong confinement, i) electrons couple to a wide and complex distribution of phonons modes, and ii) the mobility has a non-monotonic variation with wire diameter and is strongly reduced with respect to bulk. French National Research Agency ANR project QUANTAMONDE Contract No. ANR-07-NANO-023-02 and by the Délégation Générale pour l'Armement, French Ministry of Defense under Grant No. 2008.34.0031.
Two Impurities in a Bose-Einstein Condensate: From Yukawa to Efimov Attracted Polarons
NASA Astrophysics Data System (ADS)
Naidon, Pascal
2018-04-01
The well-known Yukawa and Efimov potentials are two different mediated interaction potentials. The first one arises in quantum field theory from the exchange of virtual particles. The second one is mediated by a real particle resonantly interacting with two other particles. This Letter shows how two impurities immersed in a Bose-Einstein condensate can exhibit both phenomena. For a weak attraction with the condensate, the two impurities form two polarons that interact through a weak Yukawa attraction mediated by virtual excitations. For a resonant attraction with the condensate, the exchanged excitation becomes a real boson and the mediated interaction changes to a strong Efimov attraction that can bind the two polarons. The resulting bipolarons turn into in-medium Efimov trimers made of the two impurities and one boson. Evidence of this physics could be seen in ultracold mixtures of atoms.
Level Anticrossing of Impurity States in Semiconductor Nanocrystals
Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Ponomareva, Irina O.; Leonov, Mikhail Yu.; Perova, Tatiana S.; Berwick, Kevin; Baranov, Alexander V.; Fedorov, Anatoly V.
2014-01-01
The size dependence of the quantized energies of elementary excitations is an essential feature of quantum nanostructures, underlying most of their applications in science and technology. Here we report on a fundamental property of impurity states in semiconductor nanocrystals that appears to have been overlooked—the anticrossing of energy levels exhibiting different size dependencies. We show that this property is inherent to the energy spectra of charge carriers whose spatial motion is simultaneously affected by the Coulomb potential of the impurity ion and the confining potential of the nanocrystal. The coupling of impurity states, which leads to the anticrossing, can be induced by interactions with elementary excitations residing inside the nanocrystal or an external electromagnetic field. We formulate physical conditions that allow a straightforward interpretation of level anticrossings in the nanocrystal energy spectrum and an accurate estimation of the states' coupling strength. PMID:25369911
Magnetic-field-induced mixed-level Kondo effect in two-level systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Arturo; Ngo, Anh T.; Ulloa, Sergio E.
2016-10-17
We consider a two-orbital impurity system with intra-and interlevel Coulomb repulsion that is coupled to a single conduction channel. This situation can generically occur in multilevel quantum dots or in systems of coupled quantum dots. For finite energy spacing between spin-degenerate orbitals, an in-plane magnetic field drives the system from a local-singlet ground state to a "mixed-level" Kondo regime, where the Zeeman-split levels are degenerate for opposite-spin states. We use the numerical renormalization group approach to fully characterize this mixed-level Kondo state and discuss its properties in terms of the applied Zeeman field, temperature, and system parameters. Under suitable conditions,more » the total spectral function is shown to develop a Fermi-level resonance, so that the linear conductance of the system peaks at a finite Zeeman field while it decreases as a function of temperature. These features, as well as the local moment and entropy contribution of the impurity system, are commensurate with Kondo physics, which can be studied in suitably tuned quantum dot systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goryachev, Maxim; Farr, Warrick G.; Carmo Carvalho, Natalia do
2015-06-08
Interaction of Whispering Gallery Modes (WGMs) with dilute spin ensembles in solids is an interesting paradigm of Hybrid Quantum Systems potentially beneficial for Quantum Signal Processing applications. Unexpected ion transitions are measured in single crystal Y{sub 2}SiO{sub 5} using WGM spectroscopy with large Zero Field Splittings at 14.7 GHz, 18.4 GHz, and 25.4 GHz, which also feature considerable anisotropy of the g-tensors as well as two inequivalent lattice sites, indicating spins from Iron Group Ion (IGI) impurities. The comparison of undoped and Rare-Earth doped crystals reveal that the IGIs are introduced during co-doping of Eu{sup 3+} or Er{sup 3+} with concentration at muchmore » lower levels of order 100 ppb. The strong coupling regime between an ensemble of IGI spins and WGM photons have been demonstrated at 18.4 GHz and near zero field. This approach together with useful optical properties of these ions opens avenues for “spins-in-solids” Quantum Electrodynamics.« less
NASA Astrophysics Data System (ADS)
Nasri, Djillali
2018-07-01
Using the plane wave expansion in the frame of the effective mass approximation, a straightforward method is presented to calculate the energy levels and the corresponding wavefunctions in a two dimensional GaAs/AlxGa1-xAs eccentric quantum rings (QRs) with and without donor impurity. The transition energy and their related optical absorption coefficients are calculated. The obtained results show that the transition energy between the ground state and the first two excited states and their related optical matrix are strongly influenced by the eccentricity and the donor position. The resonant peaks of the absorption coefficients for electron are blueshifted, while for QRs with an off center impurity the resonant peaks are red or blueshifted depending on the donor positions and eccentricity. In addition, we have found that a small eccentricity acts on the QRs qualitatively as a weak radial electric field. Moreover, an electric field is no longer able to reproduce perfectly the eccentricity effect when the eccentricity becomes relatively strong. Finally, our results are qualitatively similar to those reported in recent works dealing with concentric QRs under a radial electric field.
2012-01-01
The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum. PMID:23021497
Thermodynamic effects of single-qubit operations in silicon-based quantum computing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lougovski, Pavel; Peters, Nicholas A.
Silicon-based quantum logic is a promising technology to implement universal quantum computing. It is widely believed that a millikelvin cryogenic environment will be necessary to accommodate silicon-based qubits. This prompts a question of the ultimate scalability of the technology due to finite cooling capacity of refrigeration systems. In this work, we answer this question by studying energy dissipation due to interactions between nuclear spin impurities and qubit control pulses. Furthermore, we demonstrate that this interaction constrains the sustainable number of single-qubit operations per second for a given cooling capacity.
Thermodynamic effects of single-qubit operations in silicon-based quantum computing
Lougovski, Pavel; Peters, Nicholas A.
2018-05-21
Silicon-based quantum logic is a promising technology to implement universal quantum computing. It is widely believed that a millikelvin cryogenic environment will be necessary to accommodate silicon-based qubits. This prompts a question of the ultimate scalability of the technology due to finite cooling capacity of refrigeration systems. In this work, we answer this question by studying energy dissipation due to interactions between nuclear spin impurities and qubit control pulses. Furthermore, we demonstrate that this interaction constrains the sustainable number of single-qubit operations per second for a given cooling capacity.
NASA Astrophysics Data System (ADS)
Allerdt, Andrew; Feiguin, A. E.; Martins, G. B.
2017-07-01
We calculate exact zero-temperature real-space properties of a substitutional magnetic impurity coupled to the edge of a zigzag silicenelike nanoribbon. Using a Lanczos transformation [A. Allerdt et al., Phys. Rev. B 91, 085101 (2015), 10.1103/PhysRevB.91.085101] and the density-matrix renormalization-group method, we obtain a realistic description of stanene and germanene that includes the bulk and the edges as boundary one-dimensional helical metallic states. Our results for substitutional impurities indicate that the development of a Kondo state and the structure of the spin correlations between the impurity and the electron spins in the metallic edge state depend considerably on the location of the impurity. More specifically, our real-space resolution allows us to conclude that there is a sharp distinction between the impurity being located at a crest or a trough site at the zigzag edge. We also observe, as expected, that the spin correlations are anisotropic due to an emerging Dzyaloshinskii-Moriya interaction with the conduction electrons and that the edges scatter from the impurity and "snake" or circle around it. Our estimates for the Kondo temperature indicate that there is a very weak enhancement due to the presence of spin-orbit coupling.
Quantifying and tuning entanglement for quantum systems
NASA Astrophysics Data System (ADS)
Xu, Qing
A 2D Ising model with transverse field on a triangular lattice is studied using exact diagonalization. The quantum entanglement of the system is quantified by the entanglement of formation. The ground state property of the system is studied and the quantified entanglement is shown to be closely related to the ground state wavefunction while the singularity in the entanglement as a function of the transverse field is a reasonable indicator of the quantum phase transition. In order to tune the entanglement, one can either include an impurity in the otherwise homogeneous system whose strength is tunable, or one can vary the external transverse field as a tuner. The latter kind of tuning involves complicated dynamical properties of the system. From the study of the dynamics on a comparatively smaller system, we provide ways to tune the entanglement without triggering any decoherence. The finite temperature effect is also discussed. Besides showing above physical results, the realization of the trace-minimization method in our system is provided; the scalability of such method to larger systems is argued.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saravanamoorthy, S. N.; Peter, A. John, E-mail: a.john.peter@gmail.com
2016-05-23
Electronic properties of a hydrogenic donor impurity in a CdSe/Pb{sub 0.8}Cd{sub 0.2}Se/CdSe quantum dot quantum well system are investigated for various radii of core with shell materials. Confined energies are obtained taking into account the geometrical size of the system and thereby the donor binding energies are found. The diamagnetic susceptibility is estimated for a confined shallow donor in the well system. The results show that the diamagnetic susceptibility strongly depends on core and shell radii and it is more sensitive to variations of the geometrical size of the well material.
Optically probing the fine structure of a single Mn atom in an InAs quantum dot.
Kudelski, A; Lemaître, A; Miard, A; Voisin, P; Graham, T C M; Warburton, R J; Krebs, O
2007-12-14
We report on the optical spectroscopy of a single InAs/GaAs quantum dot doped with a single Mn atom in a longitudinal magnetic field of a few Tesla. Our findings show that the Mn impurity is a neutral acceptor state A0 whose effective spin J=1 is significantly perturbed by the quantum dot potential and its associated strain field. The spin interaction with photocarriers injected in the quantum dot is shown to be ferromagnetic for holes, with an effective coupling constant of a few hundreds of mueV, but vanishingly small for electrons.
A molecular model for ice nucleation and growth, attachment 1
NASA Technical Reports Server (NTRS)
Plummer, P. L. M.
1981-01-01
The quantum mechanical technique is used to study ionic, configurational, and impurity defects in the ice surface. In addition to static calculations of the energetics of the water monomer-ice surface interactions, molecular dynamics studies were initiated. The calculations of the monomer-ice surface interaction, molecular dynamics studies were initiated. The calculations of monomer-ice surface interactions indicate that many adsorption sites exist on the ice surfaces and that the barriers between bonding sites are relatively low. Bonding on the prism face of ice is preferentially above lattice sites.
Field-induced phase transition in Ce3M4Sn13 with M = Co, Rh, and Ru
NASA Astrophysics Data System (ADS)
Ślebarski, Andrzej; Goraus, Jerzy
2018-05-01
Large electronic specific heat coefficient, C (T) / T , suggests that the family of Ce3M4Sn13 heavy-fermions (HF) is near a magnetic quantum critical point (QCP). We analyze the 4 f contribution to the specific heat in terms of the single-ion Kondo resonance model. An unexpected change in the Kondo temperature TK versus magnetic field B signals a field-induced phase transition between the magnetically correlated HF phase and a single-ion Kondo impurity state.
Large enhancement in photocurrent by Mn doping in CdSe/ZTO quantum dot sensitized solar cells.
Pimachev, Artem; Poudyal, Uma; Proshchenko, Vitaly; Wang, Wenyong; Dahnovsky, Yuri
2016-09-29
We find a large enhancement in the efficiency of CdSe quantum dot sensitized solar cells by doping with manganese. In the presence of Mn impurities in relatively small concentrations (2.3%) the photoelectric current increases by up to 190%. The average photocurrent enhancement is about 160%. This effect cannot be explained by a light absorption mechanism because the experimental and theoretical absorption spectra demonstrate that there is no change in the absorption coefficient in the presence of the Mn impurities. To explain such a large increase in the injection current we propose a tunneling mechanism of electron injection from the quantum dot LUMO state to the Zn 2 SnO 4 (ZTO) semiconductor photoanode. The calculated enhancement is approximately equal to 150% which is very close to the experimental average value of 160%. The relative discrepancy between the calculated and experimentally measured ratios of the IPCE currents is only 6.25%. For other mechanisms (such as electron trapping, etc.) the remaining 6.25% cannot explain the large change in the experimental IPCE. Thus we have indirectly proved that electron tunneling is the major mechanism of photocurrent enhancement. This work proposes a new approach for a significant improvement in the efficiency of quantum dot sensitized solar cells.
Balseiro, C A; Usaj, G; Sánchez, M J
2010-10-27
We study non-equilibrium electron transport through a quantum impurity coupled to metallic leads using the equation of motion technique at finite temperature T. Assuming that the interactions are taking place solely in the impurity and focusing on the infinite Hubbard limit, we compute the out of equilibrium density of states and the differential conductance G(2)(T, V) in order to test several scaling laws. We find that G(2)(T, V)/G(2)(T, 0) is a universal function of both eV/T(K) and T/T(K), T(K) being the Kondo temperature. The effect of an in-plane magnetic field on the splitting of the zero bias anomaly in the differential conductance is also analyzed. For a Zeeman splitting Δ, the computed differential conductance peak splitting depends only on Δ/T(K), and for large fields approaches the value of 2Δ. Besides studying the traditional two leads setup, we also consider other configurations that mimic recent experiments, namely, an impurity embedded in a mesoscopic wire and the presence of a third weakly coupled lead. In these cases, a double peak structure of the Kondo resonance is clearly obtained in the differential conductance while the amplitude of the highest peak is shown to decrease as ln(eV/T(K)). Several features of these results are in qualitative agreement with recent experimental observations reported on quantum dots.
Extrinsic germanium Blocked Impurity Bank (BIB) detectors
NASA Technical Reports Server (NTRS)
Krabach, Timothy N.; Huffman, James E.; Watson, Dan M.
1989-01-01
Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered.
Molecular Kondo effect in flat-band lattices
NASA Astrophysics Data System (ADS)
Tran, Minh-Tien; Nguyen, Thuy Thi
2018-04-01
The Kondo effect of a single magnetic impurity embedded in the Lieb lattice is studied by the numerical renormalization group. When the band flatness is present in the local density of states at the impurity site, it quenches the participation of all dispersive electrons in the Kondo singlet formation and reduces the many-body Kondo problem to a two-electron molecular Kondo problem. A quantum entanglement of two spins, which is the two-electron molecular analog of the many-body Kondo singlet, is stable at low temperature, and the impurity contributions to thermodynamical and dynamical quantities are qualitatively different from that obtained in the many-body Kondo effect. The conditions for existence of the molecular Kondo effect in narrow band systems are also presented.
Transport through an impurity tunnel coupled to a Si/SiGe quantum dot
Foote, Ryan H.; Ward, Daniel R.; Prance, J. R.; ...
2015-09-11
Achieving controllable coupling of dopants in silicon is crucial for operating donor-based qubit devices, but it is difficult because of the small size of donor-bound electron wavefunctions. Here in this paper, we report the characterization of a quantum dot coupled to a localized electronic state and present evidence of controllable coupling between the quantum dot and the localized state. A set of measurements of transport through the device enable the determination that the most likely location of the localized state is consistent with a location in the quantum well near the edge of the quantum dot. Finally, our results aremore » consistent with a gate-voltage controllable tunnel coupling, which is an important building block for hybrid donor and gate-defined quantum dot devices.« less
Influence of damping on the frequency-dependent polarizabilities of doped quantum dot
NASA Astrophysics Data System (ADS)
Pal, Suvajit; Ghosh, Manas
2014-09-01
We investigate the profiles of diagonal components of frequency-dependent linear (αxx and αyy), and first nonlinear (βxxx and βyyy) optical response of repulsive impurity doped quantum dots. The dopant impurity potential chosen assumes Gaussian form. The study principally focuses on investigating the role of damping on the polarizability components. In view of this the dopant is considered to be propagating under damped condition which is otherwise linear inherently. The frequency-dependent polarizabilities are then analyzed by placing the doped dot to a periodically oscillating external electric field of given intensity. The damping strength, in conjunction with external oscillation frequency and confinement potentials, fabricate the polarizability components in a fascinating manner which is adorned with emergence of maximization, minimization, and saturation. The discrimination in the values of the polarizability components in x and y-directions has also been addressed in the present context.
Intersubband linear and nonlinear optical response of the delta-doped SiGe quantum well
NASA Astrophysics Data System (ADS)
Duque, C. A.; Akimov, V.; Demediuk, R.; Belykh, V.; Tiutiunnyk, A.; Morales, A. L.; Restrepo, R. L.; Mora-Ramos, M. E.; Fomina, O.; Tulupenko, V.
2015-11-01
The degree of ionization, controlled by external fields, of delta-doped layers inside the quantum wells can affect their energy structure, therefore delta-doped QWs can be used to engineer different kinds of tunable THz optical devices on intersubband transitions. Here it is calculated and analyzed the linear and nonlinear (Kerr-type) optical response, including absorption coefficient and refractive index change of 20 nm-wide Si0.8Ge0.2/Si/Si0.8Ge0.2 QW structures n-delta-doped either at the center or at the edge of the well under different temperatures. The conduction subband energy structure was found self-consistently, including the calculation of the impurity binding energy. Our results show that the degree of ionization of the impurity layer as well as the heterostructure symmetry has a strong influence on optical properties of the structures in THz region.
Irreducible Green's functions method for a quantum dot coupled to metallic and superconducting leads
NASA Astrophysics Data System (ADS)
Górski, Grzegorz; Kucab, Krzysztof
2017-05-01
Using irreducible Green's functions (IGF) method we analyse the Coulomb interaction dependence of the spectral functions and the transport properties of a quantum dot coupled to isotropic superconductor and metallic leads (SC-QD-N). The irreducible Green's functions method is the modification of classical equation of motion technique. The IGF scheme is based on differentiation of double-time Green's functions, both over the primary and secondary times. The IGF method allows to obtain the spectral functions for equilibrium and non-equilibrium impurity Anderson model used for SC-QD-N system. By the numerical computations, we show the change of spectral and the anomalous densities under the influence of the Coulomb interactions. The observed sign change of the anomalous spectral density can be used as the criterion of the SC singlet-Kondo singlet transition.
Quantum quench of Kondo correlations in optical absorption
NASA Astrophysics Data System (ADS)
Weichselbaum, Andreas
2013-03-01
Absorption spectra of individual semiconductor quantum dots tunnel-coupled to a degenerate electron gas in the Kondo regime have recently become accessible to the experiment. The absorption of a single photon leads to an abrupt change in the system Hamiltonian, which can be tailored such that it results in a quantum quench of the Kondo correlations. This is accompanied by a clear signature in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between initial and final many-body wave functions and with power-law exponents that can be tuned by an applied magnetic field. We have modeled the experiment in terms of an Anderson impurity model undergoing an optically induced quench, and studied this Kondo exciton in detail using both analytical methods and the Numerical Renormalization Group (NRG). Our NRG results reproduce the measured absorption line shapes very well, showing that NRG is ideally suited for the study of Kondo excitons. In summary, the experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only. Co-authors: Andreas Weichselbaum, Markus Hanl, and Jan von Delft, Ludwig Maximilians University.
Position-Dependent Mass Schrödinger Equation for the Morse Potential
NASA Astrophysics Data System (ADS)
Ovando, G.; Peña, J. J.; Morales, J.; López-Bonilla, J.
2017-01-01
The position dependent mass Schrödinger equation (PDMSE) has a wide range of quantum applications such as the study of semiconductors, quantum wells, quantum dots and impurities in crystals, among many others. On the other hand, the Morse potential is one of the most important potential models used to study the electronic properties of diatomic molecules. In this work, the solution of the effective mass one-dimensional Schrödinger equation for the Morse potential is presented. This is done by means of the canonical transformation method in algebraic form. The PDMSE is solved for any model of the proposed kinetic energy operators as for example the BenDaniel-Duke, Gora-Williams, Zhu-Kroemer or Li-Kuhn. Also, in order to solve the PDMSE with Morse potential, we consider a superpotential leading to a special form of the exactly solvable Schrödinger equation of constant mass for a class of multiparameter exponential-type potential along with a proper mass distribution. The proposed approach is general and can be applied in the search of new potentials suitable on science of materials by looking into the viable choices of the mass function.
Dissipative Quantum Mechanics and Kondo-Like Impurities on Noncommutative Two-Tori
NASA Astrophysics Data System (ADS)
Iacomino, Patrizia; Marotta, Vincenzo; Naddeo, Adele
In a recent paper, by exploiting the notion of Morita equivalence for field theories on noncommutative tori and choosing rational values of the noncommutativity parameter θ (in appropriate units), a general one-to-one correspondence between the m-reduced conformal field theory (CFT) describing a quantum Hall fluid (QHF) at paired states fillings1,2 ν = (m)/(pm+2) and an Abelian noncommutative field theory (NCFT) has been established.3 That allowed us to add new evidence to the relationship between noncommutativity and quantum Hall fluids.4 On the other hand, the m-reduced CFT is equivalent to a system of two massless scalar bosons with a magnetic boundary interaction as introduced in Ref. 5, at the so-called "magic" points. We are then able to describe, within such a framework, the dissipative quantum mechanics of a particle confined to a plane and subject to an external magnetic field normal to it. Here we develop such a point of view by focusing on the case m=2 which corresponds to a quantum Hall bilayer. The key role of a localized impurity which couples the two layers is emphasized and the effect of noncommutativity in terms of generalized magnetic translations (GMT) is fully exploited. As a result, general GMT operators are introduced, in the form of a tensor product, which act on the QHF and defect space respectively, and a comprehensive study of their rich structure is performed.
NASA Astrophysics Data System (ADS)
Vardanyan, L. A.; Vartanian, A. L.; Asatryan, A. L.; Kirakosyan, A. A.
2016-11-01
By using Landau-Pekar variational method, the ground and the first excited state energies and the transition frequencies between the ground and the first excited states of a hydrogen-like impurity-bound polaron in a spherical quantum dot (QD) have been studied by taking into account the image charge effect (ICE). We employ the dielectric continuum model to describe the phonon confinement effects. The oscillator strengths (OSs) of transitions from the 1 s-like state to excited states of 2 s, 2 p x , and 2 p z symmetries are calculated as functions of the applied electric field and strength of the confinement potential. We have shown that with and without image charge effect, the increase of the strength of the parabolic confinement potential leads to the increase of the oscillator strengths of 1 s - 2 p x and 1 s - 2 p z transitions. This indicates that the energy differences between 1 s- and 2 p x - as well as 1 s- and 2 p z -like states have a dominant role determining the oscillator strength. Although there is almost no difference in the oscillator strengths for transitions 1 s - 2 p x and 1 s -2 p z when the image charge effect is not taken into account, it becomes significant with the image charge effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasmine, P. Christina Lily; Peter, A. John, E-mail: a.john.peter@gmail.com
The dependence of electric field on the electronic and optical properties is investigated in a Cd{sub 0.8}Zn{sub 0.2}Se/ZnSe quantum dot. The hydrogenic binding energy, in the presence of electric field, is calculated with the spatial confinement effect. The electric field dependent optical gain with the photon energy is found using compact density matrix method. The results show that the electric field has a great influence on the optical properties of II-VI semiconductor quantum dot.
Teleportation between distant qudits via scattering of mobile qubits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciccarello, Francesco; Zarcone, Michelangelo; Bose, Sougato
2010-04-15
We consider a one-dimensional structure where noninteracting spin-s scattering centers, such as quantum impurities or multilevel atoms, are embedded at given positions. We show that the injection into the structure of unpolarized flying qubits, such as electrons or photons, along with path detection suffice to accomplish spin-state teleportation between two centers via a third ancillary one. No action over the internal quantum state of both the spin-s particles and the flying qubits is required. The protocol enables the transfer of quantum information between well-separated static entities in nanostructures by exploiting a very low control mechanism, namely scattering.
Laterally coupled circular quantum dots under applied electric field
NASA Astrophysics Data System (ADS)
Duque, C. M.; Correa, J. D.; Morales, A. L.; Mora-Ramos, M. E.; Duque, C. A.
2016-03-01
The optical response of a system of two laterally coupled quantum dots with circular cross-sectional shape is investigated within the effective mass approximation, taking into account the effects of the change in the geometrical configuration, the application of an external static electric field, and the presence of a donor impurity center. The first-order dielectric susceptibility is calculated in order to derive the corresponding light absorption and relative refractive index coefficients. The possibility of tuning these optical properties by means of changes in the quantum dot symmetry and the electric field intensity is particularly discussed.
Limiting scattering processes in high-mobility InSb quantum wells grown on GaSb buffer systems
NASA Astrophysics Data System (ADS)
Lehner, Ch. A.; Tschirky, T.; Ihn, T.; Dietsche, W.; Keller, J.; Fält, S.; Wegscheider, W.
2018-05-01
We present molecular beam epitaxial grown single- and double-side δ -doped InAlSb/InSb quantum wells with varying distances down to 50 nm to the surface on GaSb metamorphic buffers. We analyze the surface morphology as well as the impact of the crystalline quality on the electron transport. Comparing growth on GaSb and GaAs substrates indicates that the structural integrity of our InSb quantum wells is solely determined by the growth conditions at the GaSb/InAlSb transition and the InAlSb barrier growth. The two-dimensional electron gas samples show high mobilities of up to 349 000 cm2/Vs at cryogenic temperatures and 58 000 cm2/Vs at room temperature. With the calculated Dingle ratio and a transport lifetime model, ionized impurities predominantly remote from the quantum well are identified as the dominant source of scattering events. The analysis of the well-pronounced Shubnikov-de Haas oscillations reveals a high spin-orbit coupling with an effective g -factor of -38.4 in our samples. Along with the smooth surfaces and long mean free paths demonstrated, our InSb quantum wells are increasingly competitive for nanoscale implementations of Majorana mode devices.
High mobility In0.75Ga0.25As quantum wells in an InAs phonon lattice
NASA Astrophysics Data System (ADS)
Chen, C.; Holmes, S. N.; Farrer, I.; Beere, H. E.; Ritchie, D. A.
2018-03-01
InGaAs based devices are great complements to silicon for CMOS, as they provide an increased carrier saturation velocity, lower operating voltage and reduced power dissipation (International technology roadmap for semiconductors (www.itrs2.net)). In this work we show that In0.75Ga0.25As quantum wells with a high mobility, 15 000 to 20 000 cm2 V-1 s-1 at ambient temperature, show an InAs-like phonon with an energy of 28.8 meV, frequency of 232 cm-1 that dominates the polar-optical mode scattering from ˜70 K to 300 K. The measured optical phonon frequency is insensitive to the carrier density modulated with a surface gate or LED illumination. We model the electron scattering mechanisms as a function of temperature and identify mechanisms that limit the electron mobility in In0.75Ga0.25As quantum wells. Background impurity scattering starts to dominate for temperatures <100 K. In the high mobility In0.75Ga0.25As quantum well, GaAs-like phonons do not couple to the electron gas unlike the case of In0.53Ga0.47As quantum wells.
Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.
Vasseur, Romain; Moore, Joel E
2014-04-11
The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.
NASA Astrophysics Data System (ADS)
Wallace, John Paul
2011-03-01
Hydrogen is a difficult impurity to physically deal with in superconducting radio frequency (SRF) niobium, therefore, its properties in the metals should be well understood to allow the metal's superconducting properties to be optimized for minimum loss in the construction of resonant accelerator cavities. It is known that hydrogen is a paramagnetic impurity in niobium from NMR studies. This paramagnetism and its effect on superconducting properties are important to understand. To that end analytical induction measurements aimed at isolating the magnetic properties of hydrogen in SRF niobium are introduced along with optical reflection spectroscopy which is also sensitive to the presence of hydrogen. From the variety, magnitude and rapid kinetics found in the optical and magnetic properties of niobium contaminated with hydrogen forced a search for an atomic model. This yielded quantum mechanical description that correctly generates the activation energy for diffusion of the proton and its isotopes not only in niobium but the remaining metals for which data is available. This interpretation provides a frame work for understanding the individual and collective behavior of protons in metals.
The influence of dopants on the nucleation of semiconductor nanocrystals from homogeneous solution.
Bryan, J Daniel; Schwartz, Dana A; Gamelin, Daniel R
2005-09-01
The influence of Co2+ ions on the homogeneous nucleation of ZnO is examined. Using electronic absorption spectroscopy as a dopant-specific in-situ spectroscopic probe, Co2+ ions are found to be quantitatively excluded from the ZnO critical nuclei but incorporated nearly statistically in the subsequent growth layers, resulting in crystallites with pure ZnO cores and Zn(1-x)Co(x)O shells. Strong inhibition of ZnO nucleation by Co2+ ions is also observed. These results are explained using the classical nucleation model. Statistical analysis of nucleation inhibition data allows estimation of the critical nucleus size as 25 +/- 4 Zn2+ ions. Bulk calorimetric data allow the activation barrier for ZnO nucleation containing a single Co2+ impurity to be estimated as 5.75 kcal/mol cluster greater than that of pure ZnO, corresponding to a 1.5 x 10(4)-fold reduction in the ZnO nucleation rate constant upon introduction of a single Co2+ impurity. These data and analysis offer a rare view into the role of composition in homogeneous nucleation processes, and specifically address recent experiments targeting formation of semiconductor quantum dots containing single magnetic impurity ions at their precise centers.
NASA Astrophysics Data System (ADS)
Xin, Wei; Zhao, Yu-Wei; Sudu; Eerdunchaolu
2018-05-01
Considering Hydrogen-like impurity and the thickness effect, the eigenvalues and eigenfunctions of the electronic ground and first exited states in a quantum dot (QD) are derived by using the Lee-Low-Pins-Pekar variational method with the harmonic and Gaussian potentials as the transverse and longitudinal confinement potentials, respectively. A two-level system is constructed on the basis of those two states, and the electronic quantum transition affected by an electromagnetic field is discussed in terms of the two-level system theory. The results indicate the Gaussian potential reflects the real confinement potential more accurately than the parabolic one; the influence of the thickness of the QD on the electronic transition probability is interesting and significant, and cannot be ignored; the electronic transition probability Γ is influenced significantly by some physical quantities, such as the strength of the electron-phonon coupling α, the electric-field strength F, the magnetic-field cyclotron frequency ωc , the barrier height V0 and confinement range L of the asymmetric Gaussian potential, suggesting the transport and optical properties of the QD can be manipulated further though those physical quantities.
Polarizability and binding energy of a shallow donor in spherical quantum dot-quantum well (QD-QW)
NASA Astrophysics Data System (ADS)
Rahmani, K.; Chrafih, Y.; M’Zred, S.; Janati, S.; Zorkani, I.; Jorio, A.; Mmadi, A.
2018-03-01
The polarizability and the binding energy is estimated for a shallow donor confined to move in inhomogeneous quantum dots (CdS/HgS/CdS). In this work, the Hass variational method within the effective mass approximation in used in the case of an infinitely deep well. The polarizability and the binding energy depend on the inner and the outer radius of the QDQW, also it depends strongly on the donor position. It’s found that the stark effect is more important when the impurity is located at the center of the (QDQW) and becomes less important when the donor moves toward the extremities of the spherical layer. When the electric field increases, the binding energy and the polarizability decreases. Its effects is more pronounced when the impurity is placed on the center of the spherical layer and decrease when the donor move toward extremities of this spherical layer. We have demonstrated the existence of a critical value {≤ft( {{{{R_1}} \\over {{R_2}}}} \\right)cri} which can be used to distinguish the tree dimension confinement from the spherical surface confinement and it’s may be important for the nanofabrication techniques.
Inelastic fingerprints of hydrogen contamination in atomic gold wire systems
NASA Astrophysics Data System (ADS)
Frederiksen, Thomas; Paulsson, Magnus; Brandbyge, Mads
2007-03-01
We present series of first-principles calculations for both pure and hydrogen contaminated gold wire systems in order to investigate how such impurities can be detected. We show how a single H atom or a single H2 molecule in an atomic gold wire will affect forces and Au-Au atom distances under elongation. We further determine the corresponding evolution of the low-bias conductance as well as the inelastic contributions from vibrations. Our results indicate that the conductance of gold wires is only slightly reduced from the conductance quantum G0 = 2e2/h by the presence of a single hydrogen impurity, hence making it difficult to use the conductance itself to distinguish between various configurations. On the other hand, our calculations of the inelastic signals predict significant differences between pure and hydrogen contaminated wires, and, importantly, between atomic and molecular forms of the impurity. A detailed characterization of gold wires with a hydrogen impurity should therefore be possible from the strain dependence of the inelastic signals in the conductance.
Single magnetic adsorbates on s-wave superconductors
NASA Astrophysics Data System (ADS)
Heinrich, Benjamin W.; Pascual, Jose I.; Franke, Katharina J.
2018-02-01
In superconductors, magnetic impurities induce a pair-breaking potential for Cooper pairs, which locally affects the Bogoliubov quasiparticles and gives rise to Yu-Shiba-Rusinov (YSR or Shiba, in short) bound states in the density of states (DoS). These states carry information on the magnetic coupling strength of the impurity with the superconductor, which determines the many-body ground state properties of the system. Recently, the interest in Shiba physics was boosted by the prediction of topological superconductivity and Majorana modes in magnetically coupled chains and arrays of Shiba impurities. Here, we review the physical insights obtained by scanning tunneling microscopy into single magnetic adsorbates on the s-wave superconductor lead (Pb). We explore the tunneling processes into Shiba states, show how magnetic anisotropy affects many-body excitations, and determine the crossing of the many-body ground state through a quantum phase transition. Finally, we discuss the coupling of impurities into dimers and chains and their relation to Majorana physics.
Incorporation of impurity to a tetragonal lysozyme crystal
NASA Astrophysics Data System (ADS)
Kurihara, Kazuo; Miyashita, Satoru; Sazaki, Gen; Nakada, Toshitaka; Durbin, Stephen D.; Komatsu, Hiroshi; Ohba, Tetsuhiko; Ohki, Kazuo
1999-01-01
Concentration of a phosphor-labeled impurity (ovalbumin) incorporated into protein (hen egg white lysozyme) crystals during growth was measured by fluorescence.This technique enabled us to measure the local impurity concentration in a crystal quantitatively. Impurity concentration increased with growth rate, which could not be explained by two conventional models (equilibrium adsorption model and Burton-Prim-Slichter model); a modified model is proposed. Impurity concentration also increased with the pH of the solution. This result is discussed considering the electrostatic interaction between the impurity and the crystallizing species.
NASA Astrophysics Data System (ADS)
Krumrine, Jennifer Rebecca
This dissertation is concerned in part with the construction of accurate pairwise potentials, based on reliable ab initio potential energy surfaces (PES's), which are fully anisotropic in the sense that multiple PES's are accessible to systems with orientational electronic properties. We have carried out several investigations of B (2s 22p 2Po) with spherical ligands: (1)an investigation of the electronic spectrum of the BAr2 complex and (2)two related studies of the equilibrium properties and spectral simulation of B embedded in solid pH 2. Our investigations suggest that it cannot be assumed that nuclear motion in an open-shell system occurs on a single PES. The 2s2p2 2 D <-- 2s22p 2Po valence transition in the BAr 2 cluster is investigated. The electronic transition within BAr 2 is modeled theoretically; the excited potential energy surfaces of the five-fold degenerate B(2s2p2 2D) state within the ternary complex are computed using a pairwise-additive model. A collaborative path integral molecular dynamics investigation of the equilibrium properties of boron trapped in solid para-hydrogen (pH2) and a path integral Monte Carlo spectral simulation. Using fully anisotropic pair potentials, coupling of the electronic and nuclear degrees of freedom is observed, and is found to be an essential feature in understanding the behavior and determining the energy of the impure solid, especially in highly anisotropic matrices. We employ the variational Monte Carlo method to further study the behavior of ground state B embedded in solid pH2. When a boron atom exists in a substitutional site in a lattice, the anisotropic distortion of the local lattice plays a minimal role in the energetics. However, when a nearest neighbor vacancy is present along with the boron impurity, two phenomena are found to influence the behavior of the impure quantum solid: (1)orientation of the 2p orbital to minimize the energy of the impurity and (2)distortion of the local lattice structure to promote an energetically favorable nuclear configuration. This research was supported by the Joint Program for Atomic, Molecular and Optical Science sponsored by the University of Maryland at College Park and the National Insititute of Standards and Technology, and by the U.S. Air Force Office of Scientific Research. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Khedri, A.; Meden, V.; Costi, T. A.
2017-11-01
We investigate the effect of vibrational degrees of freedom on the linear thermoelectric transport through a single-level quantum dot described by the spinless Anderson-Holstein impurity model. To study the effects of strong electron-phonon coupling, we use the nonperturbative numerical renormalization group approach. We also compare our results, at weak to intermediate coupling, with those obtained by employing the functional renormalization group method, finding good agreement in this parameter regime. When applying a gate voltage at finite temperatures, the inelastic scattering processes, induced by phonon-assisted tunneling, result in an interesting interplay between electrical and thermal transport. We explore different parameter regimes and identify situations for which the thermoelectric power as well as the dimensionless figure of merit are significantly enhanced via a Mahan-Sofo type of mechanism. We show, in particular, that this occurs at strong electron-phonon coupling and in the antiadiabatic regime.
Wide Bandgap Extrinsic Photoconductive Switches
NASA Astrophysics Data System (ADS)
Sullivan, James Stephen
Wide Bandgap Extrinsic Photoconductive Switches Semi-insulating Gallium Nitride, 4H and 6H Silicon Carbide are attractive materials for compact, high voltage, extrinsic, photoconductive switches due to their wide bandgap, high dark resistance, high critical electric field strength and high electron saturation velocity. These wide bandgap semiconductors are made semi-insulating by the addition of vanadium (4H and 6H-SiC) and iron (2H-GaN) impurities that form deep acceptors. These deep acceptors trap electrons donated from shallow donor impurities. The electrons can be optically excited from these deep acceptor levels into the conduction band to transition the wide bandgap semiconductor materials from a semi-insulating to a conducting state. Extrinsic photoconductive switches with opposing electrodes have been constructed using vanadium compensated 6H-SiC and iron compensated 2H-GaN. These extrinsic photoconductive switches were tested at high voltage and high power to determine if they could be successfully used as the closing switch in compact medical accelerators. The successful development of a vanadium compensated, 6H-SiC extrinsic photoconductive switch for use as a closing switch for compact accelerator applications was realized by improvements made to the vanadium, nitrogen and boron impurity densities. The changes made to the impurity densities were based on the physical intuition outlined and simple rate equation models. The final 6H-SiC impurity 'recipe' calls for vanadium, nitrogen and boron densities of 2.5 e17 cm-3, 1.25e17 cm-3 and ≤ 1e16 cm-3, respectively. This recipe was originally developed to maximize the quantum efficiency of the vanadium compensated 6H-SiC, while maintaining a thermally stable semi-insulating material. The rate equation models indicate that, besides increasing the quantum efficiency, the impurity recipe should be expected to also increase the carrier recombination time. Three generations of 6H-SiC materials were tested. The third generation vanadium compensated 6H-SiC has average impurity densities close to the recipe values. Extrinsic photoconductive switches constructed from the third generation vanadium compensated, 6H-SiC, 1 mm thick, 1 cm2, substrates have achieved high power operation at 16 kV with pulsed currents exceeding 1400 Amperes and a minimum on resistance of 1 ohm. The extrinsic photoconductive switch performance of the third generation 6H-SiC material was improved by a factor of up to 50 for excitation at the 532 nm wavelength compared to the initial 6H-SiC material. Switches based on this material have been incorporated into a prototype compact proton medical accelerator being developed by the Compact Particle Acceleration Corporation (CPAC). The vanadium compensated, 6H-SiC, extrinsic photoconductive switch operates differently when excited by 1064, or 532 nm, wavelength light. The 6H-SiC extrinsic photoconductive switch is a unipolar device when excited with 1064 nm light. The carriers are electrons excited from filled vanadium acceptor levels and other electron traps located within 1.17 eV of the conduction band. The switch is bipolar at 532 nm since the carriers consist of holes, as well as electrons. The holes are primarily generated by the excitation of valence band electrons into empty trap/acceptor levels and by two-photon absorption. Carrier generation by two-photon absorption becomes more important at high applied optical intensity at 532 nm and contributes to the supralinear behavior of switch conductance as a function of optical power. The 6H-SiC switch material is trap dominated at low nitrogen to vanadium ratios. The trap dominated vanadium compensated 6H-SiC exhibits low quantum efficiency when excited with 1064 and 532 nm light and has a carrier recombination time of ˜ 150 - 300 ps. The vanadium compensated 6H-SiC transitions to an impurity dominated material as the ratio of nitrogen to vanadium is increased to 0.5. The increased nitrogen doping produces a material with much higher quantum efficiency and carrier recombination time of 0.9 to 1.0 ns. The iron compensated 2H-GaN did not perform well as an extrinsic photoconductive switch. The density of carriers generated at 1064 nm was, low indicating that there were very few electrons trapped in the iron acceptor level located at 0.5 - 0.6 eV below the conduction band. Carrier generation at 532 nm was dominated by two photon absorption resulting in the switch conductance increasing as the square of applied optical intensity. A minimum switch resistance of 0.8 ohms was calculated for the 400 nm thick, 1.2 by 1.2 cm, 2H-GaN switch for an applied optical intensity of 41.25 MW/cm2. An optical intensity of ˜ 70 MW/cm2 at 532 nm would be required to achieve a 0.8 ohm on resistance for a 1 mm thick, 1 cm2, 2H-GaN switch.
NASA Astrophysics Data System (ADS)
Zhou, Chenyi; Guo, Hong
2017-01-01
We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vernek, E.; Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos-SP 13560-970; Büsser, C. A.
2014-03-31
A double quantum dot device, connected to two channels that only interact through interdot Coulomb repulsion, is analyzed using the numerical renormalization group technique. Using a two-impurity Anderson model, and realistic parameter values [S. Amasha, A. J. Keller, I. G. Rau, A. Carmi, J. A. Katine, H. Shtrikman, Y. Oreg, and D. Goldhaber-Gordon, Phys. Rev. Lett. 110, 046604 (2013)], it is shown that, by applying a moderate magnetic field and independently adjusting the gate potential of each quantum dot at half-filling, a spin-orbital SU(2) Kondo state can be achieved where the Kondo resonance originates from spatially separated parts of themore » device. Our results clearly link this spatial separation effect to currents with opposing spin polarizations in each channel, i.e., the device acts as a spin filter. In addition, an experimental probe of this polarization effect is suggested, pointing to the exciting possibility of experimentally probing the internal structure of an SU(2) Kondo state.« less
The Quantum Socket: Wiring for Superconducting Qubits - Part 1
NASA Astrophysics Data System (ADS)
McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.
Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.
Blocked impurity band hybrid infrared focal plane arrays for astronomy
NASA Technical Reports Server (NTRS)
Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.
1989-01-01
High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.
Influences of temperature on asymmetric quantum dot qubit in Coulombic impunity potential
NASA Astrophysics Data System (ADS)
Chen, Y.-J.; Song, H.-T.; Xiao, J.-L.
2018-05-01
Using the variational method of the Pekar-type, we study the influences of the temperature on the asymmetric quantum dot (QD) qubit in the Coulombic impunity potential. Then we derive the numerical results and formulate the derivative relationships of the electron probability density and the electron oscillation period in the superposition state of the ground state and the first-excited state with the electron-phonon coupling constant, the Coulombic impurity potential, the transverse and longitudinal confinement strengths at different temperatures, respectively.
Universal many-body response of heavy impurities coupled to a Fermi sea: a review of recent progress
NASA Astrophysics Data System (ADS)
Schmidt, Richard; Knap, Michael; Ivanov, Dmitri A.; You, Jhih-Shih; Cetina, Marko; Demler, Eugene
2018-02-01
In this report we discuss the dynamical response of heavy quantum impurities immersed in a Fermi gas at zero and at finite temperature. Studying both the frequency and the time domain allows one to identify interaction regimes that are characterized by distinct many-body dynamics. From this theoretical study a picture emerges in which impurity dynamics is universal on essentially all time scales, and where the high-frequency few-body response is related to the long-time dynamics of the Anderson orthogonality catastrophe by Tan relations. Our theoretical description relies on different and complementary approaches: functional determinants give an exact numerical solution for time- and frequency-resolved responses, bosonization provides accurate analytical expressions at low temperatures, and the theory of Toeplitz determinants allows one to analytically predict response up to high temperatures. Using these approaches we predict the thermal decoherence rate of the fermionic system and prove that within the considered model the fastest rate of long-time decoherence is given by γ=π k_BT/4 . We show that Feshbach resonances in cold atomic systems give access to new interaction regimes where quantum effects can prevail even in the thermal regime of many-body dynamics. The key signature of this phenomenon is a crossover between different exponential decay rates of the real-time Ramsey signal. It is shown that the physics of the orthogonality catastrophe is experimentally observable up to temperatures T/T_F≲ 0.2 where it leaves its fingerprint in a power-law temperature dependence of thermal spectral weight and we review how this phenomenon is related to the physics of heavy ions in liquid {\\hspace{0pt}}3 He and the formation of Fermi polarons. The presented results are in excellent agreement with recent experiments on LiK mixtures, and we predict several new phenomena that can be tested using currently available experimental technology.
Green's function approach to the Kondo effect in nanosized quantum corrals
NASA Astrophysics Data System (ADS)
Li, Q. L.; Wang, R.; Xie, K. X.; Li, X. X.; Zheng, C.; Cao, R. X.; Miao, B. F.; Sun, L.; Wang, B. G.; Ding, H. F.
2018-04-01
We present a theoretical study of the Kondo effect for a magnetic atom placed inside nanocorrals using Green's function calculations. Based on the standard mapping of the Anderson impurity model to a one-dimensional chain model, we formulate a weak-coupling theory to study the Anderson impurities in a hosting bath with a surface state. With further taking into account the multiple scattering effect of the surrounding atoms, our calculations show that the Kondo resonance width of the atom placed at the center of the nanocorral can be significantly tuned by the corral size, in good agreement with recent experiments [Q. L. Li et al., Phys. Rev. B 97, 035417 (2018), 10.1103/PhysRevB.97.035417]. The method can also be applied to the atom placed at an arbitrary position inside the corral where our calculation shows that the Kondo resonance width also oscillates as the function of its separation from the corral center. The prediction is further confirmed by the low-temperature scanning tunneling microscopy studies where a one-to-one correspondence is found. The good agreement with the experiments validates the generality of the method to the system where multiadatoms are involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, John King; Nielsen, Erik; Baczewski, Andrew David
This paper describes our work over the past few years to use tools from quantum chemistry to describe electronic structure of nanoelectronic devices. These devices, dubbed "artificial atoms", comprise a few electrons, con ned by semiconductor heterostructures, impurities, and patterned electrodes, and are of intense interest due to potential applications in quantum information processing, quantum sensing, and extreme-scale classical logic. We detail two approaches we have employed: nite-element and Gaussian basis sets, exploring the interesting complications that arise when techniques that were intended to apply to atomic systems are instead used for artificial, solid-state devices.
Cobalt-doped ZnO nanocrystals: quantum confinement and surface effects from ab initio methods.
Schoenhalz, Aline L; Dalpian, Gustavo M
2013-10-14
Cobalt-doped ZnO nanocrystals were studied through ab initio methods based on the Density Functional Theory. Both quantum confinement and surface effects were explicitly taken into account. When only quantum confinement effects are considered, Co atoms interact through a superexchange mechanism, stabilizing an antiferromagnetic ground state. Usually, this is the case for high quality nanoparticles with perfect surface saturation. When the surfaces were considered, a strong hybridization between the Co atoms and surfaces was observed, strongly changing their electronic and magnetic properties. Our results indicated that the surfaces might qualitatively change the properties of impurities in semiconductor nanocrystals.
NASA Astrophysics Data System (ADS)
Ghosh, Anuja; Ghosh, Manas
2018-01-01
Present work explores the profiles of polarizability (αp) and electric dipole moment (μ) of impurity doped GaAs quantum dot (QD) under the aegis of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy of the system. Presence of noise has also been invoked to examine how its intervention further tunes αp and μ. Noise term maintains a Gaussian white feature and it has been incorporated to the system through two different roadways; additive and multiplicative. The various facets of influence of spatially-varying effective mass, spatially-varying dielectric constant and anisotropy on αp and μ depend quite delicately on presence/absence of noise and also on the mode through which noise has been administered. The outcomes of the study manifest viable routes to harness the dipole moment and polarizability of doped QD system through the interplay between noise, anisotropy and variable effective mass and dielectric constant of the system.
High-efficiency optical pumping of nuclear polarization in a GaAs quantum well
NASA Astrophysics Data System (ADS)
Mocek, R. W.; Korenev, V. L.; Bayer, M.; Kotur, M.; Dzhioev, R. I.; Tolmachev, D. O.; Cascio, G.; Kavokin, K. V.; Suter, D.
2017-11-01
The dynamic polarization of nuclear spins by photoexcited electrons is studied in a high quality GaAs/AlGaAs quantum well. We find a surprisingly high efficiency of the spin transfer from the electrons to the nuclei as reflected by a maximum nuclear field of 0.9 T in a tilted external magnetic field of 1 T strength only. This high efficiency is due to a low leakage of spin out of the polarized nuclear system, because mechanisms of spin relaxation other than the hyperfine interaction are strongly suppressed, leading to a long nuclear relaxation time of up to 1000 s. A key ingredient to that end is the low impurity concentration inside the heterostructure, while the electrostatic potential from charged impurities in the surrounding barriers becomes screened through illumination by which the spin relaxation time is increased compared to keeping the system in the dark. This finding indicates a strategy for obtaining high nuclear spin polarization as required for long-lasting carrier spin coherence.
First-principles simulations of transition metal ions in silicon as potential quantum bits
NASA Astrophysics Data System (ADS)
Ma, He; Seo, Hosung; Galli, Giulia
Optically active spin defects in semiconductors have gained increasing attention in recent years for use as potential solid-state quantum bits (or qubits). Examples include the nitrogen-vacancy center in diamond, transition metal impurities, and rare earth ions. In this talk, we present first-principles theoretical results on group 6 transition metal ion (Chromium, Molybdenum and Tungsten) impurities in silicon, and we investigate their potential use as qubits. We used density functional theory (DFT) to calculate defect formation energies and we found that transition metal ions have lower formation energies at interstitial than substitutional sites. We also computed the electronic structure of the defects with particular attention to the position of the defect energy levels with respect to the silicon band edges. Based on our results, we will discuss the possibility of implementing qubits in silicon using group 6 transition metal ions. This work is supported by the National Science Foundation (NSF) through the University of Chicago MRSEC under Award Number DMR-1420709.
Role Of Impurities On Deformation Of HCP Crystal: A Multi-Scale Approach
NASA Astrophysics Data System (ADS)
Bhatia, Mehul Anoopkumar
Commercially pure (CP) and extra low interstitial (ELI) grade Ti-alloys present excellent corrosion resistance, lightweight, and formability making them attractive materials for expanded use in transportation and medical applications. However, the strength and toughness of CP titanium are affected by relatively small variations in their impurity/solute content (IC), e.g., O, Al, and V. This increase in strength is due to the fact that the solute either increases the critical stress required for the prismatic slip systems ({10- 10}) or activates another slip system ((0001), {10-11}). In particular, solute additions such as O can effectively strengthen the alloy but with an attendant loss in ductility by changing the behavior from wavy (cross slip) to planar nature. In order to understand the underlying behavior of strengthening by solutes, it is important to understand the atomic scale mechanism. This dissertation aims to address this knowledge gap through a synergistic combination of density functional theory (DFT) and molecular dynamics. Further, due to the long-range strain fields of the dislocations and the periodicity of the DFT simulation cells, it is difficult to apply ab initio simulations to study the dislocation core structure. To alleviate this issue we developed a multiscale quantum mechanics/molecular mechanics approach (QM/MM) to study the dislocation core. We use the developed QM/MM method to study the pipe diffusion along a prismatic edge dislocation core. Complementary to the atomistic simulations, the Semi-discrete Variational Peierls-Nabarro model (SVPN) was also used to analyze the dislocation core structure and mobility. The chemical interaction between the solute/impurity and the dislocation core is captured by the so-called generalized stacking fault energy (GSFE) surface which was determined from DFT-VASP calculations. By taking the chemical interaction into consideration the SVPN model can predict the dislocation core structure and mobility in the presence and absence of the solute/impurity and thus reveal the effect of impurity/solute on the softening/hardening behavior in alpha-Ti. Finally, to study the interaction of the dislocation core with other planar defects such as grain boundaries (GB), we develop an automated method to theoretically generate GBs in HCP type materials.
Quantum theory of an atom in proximity to a superconductor
NASA Astrophysics Data System (ADS)
Le Dall, Matthias; Diniz, Igor; Dias da Silva, Luis G. G. V.; de Sousa, Rogério
2018-02-01
The impact of superconducting correlations on localized electronic states is important for a wide range of experiments in fundamental and applied superconductivity. This includes scanning tunneling microscopy of atomic impurities at the surface of superconductors, as well as superconducting-ion-chip spectroscopy of neutral ions and Rydberg states. Moreover, atomlike centers close to the surface are currently believed to be the main source of noise and decoherence in qubits based on superconducting devices. The proximity effect is known to dress atomic orbitals in Cooper-pair-like states known as Yu-Shiba-Rusinov (YSR) states, but the impact of superconductivity on the measured orbital splittings and optical-noise transitions is not known. Here we study the interplay between orbital degeneracy and particle-number admixture in atomic states, beyond the usual classical spin approximation. We model the atom as a generalized Anderson model interacting with a conventional s -wave superconductor. In the limit of zero on-site Coulomb repulsion (U =0 ), we obtain YSR subgap energy levels that are identical to the ones obtained from the classical spin model. When Δ is large and U >0 , the YSR spectra are no longer quasiparticle-like, and the highly degenerate orbital subspaces are split according to their spin, orbital, and number-parity symmetry. We show that U >0 activates additional poles in the atomic Green's function, suggesting an alternative explanation for the peak splittings recently observed in scanning tunneling microscopy of orbitally-degenerate impurities in superconductors. We describe optical excitation and absorption of photons by YSR states, showing that many additional optical channels open up in comparison to the nonsuperconducting case. Conversely, the additional dissipation channels imply increased electromagnetic noise due to impurities in superconducting devices.
Tunneling conductance in superconductor-hybrid double quantum dots Josephson junction
NASA Astrophysics Data System (ADS)
Chamoli, Tanuj; Ajay
2018-05-01
The present work deals with the theoretical model study to analyse the tunneling conductance across a superconductor hybrid double quantum dots tunnel junction (S-DQD-S). Recently, there are many experimental works where the Josephson current across such nanoscopic junction is found to be dependent on nature of the superconducting electrodes, coupling of the hybrid double quantum dot's electronic states with the electronic states of the superconductors and nature of electronic structure of the coupled dots. For this, we have attempted a theoretical model containing contributions of BCS superconducting leads, magnetic coupled quantum dot states and coupling of superconducting leads with QDs. In order to include magnetic coupled QDs the contributions of competitive Kondo and Ruderman-Kittel- Kasuya-Yosida (RKKY) interaction terms are also introduced through many body effects in the model Hamiltonian at low temperatures (where Kondo temperature TK < superconducting transition temperature TC). Employing non-equilibrium Green's function approach within mean field approximation, we have obtained expressions for density of states (DOS) and analysed the same using numerical computation to underline the nature of DOS close to Fermi level in S-DQD-S junctions. On the basis of numerical computation, it is pointed out that indirect exchange interaction between impurities (QD) i.e. RKKY interaction suppresses the screening of magnetic QD due to Cooper pair electrons i.e. Kondo effect in the form of reduction in the magnitude of sharp DOS peak close to Fermi level which is in qualitative agreement with the experimental observations in such tunnel junctions. Tunneling conductance is proportional to DOS, hence we can analyse it's behaviour with the help of DOS.
Probing and Manipulating Ultracold Fermi Superfluids
NASA Astrophysics Data System (ADS)
Jiang, Lei
Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi superfluids. Although a non-magnetic impurity does not change macroscopic properties of s-wave Fermi superfluids, depending on its shape and strength, a magnetic impurity can induce single or multiple mid-gap bound states. The multiple mid-gap states could coincide with the development of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase within the superfluid. As an analog of the Scanning Tunneling Microscope, we proposed a modified radio frequency spectroscopic method to measure the focal density of states which can be employed to detect these states and other quantum phases of cold atoms. A key result of our self consistent Bogoliubov-de Gennes calculations is that a magnetic impurity can controllably induce an FFLO state at currently accessible experimental parameters.
Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea
NASA Astrophysics Data System (ADS)
Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Keizer, J. G.; Hamhuis, G. J.; Nötzel, R.; Silov, A. Yu.; Koenraad, P. M.
2010-07-01
Many-body interactions give rise to fascinating physics such as the X-ray Fermi-edge singularity in metals, the Kondo effect in the resistance of metals with magnetic impurities and the fractional quantum Hall effect. Here we report the observation of striking many-body effects in the optical spectra of a semiconductor quantum dot interacting with a degenerate electron gas. A semiconductor quantum dot is an artificial atom, the properties of which can be controlled by means of a tunnel coupling between a metallic contact and the quantum dot. Previous studies concern mostly the regime of weak tunnel coupling, whereas here we investigate the regime of strong coupling, which markedly modifies the optical spectra. In particular we observe two many-body exciton states: Mahan and hybrid excitons. These experimental results open the route towards the observation of a tunable Kondo effect in excited states of semiconductors and are of importance for the technological implementation of quantum dots in devices for quantum information processing.
The effect of combination of magnetic field and low temperature on doped quantum wells
NASA Astrophysics Data System (ADS)
de P. Abreu, E.; Serra, R. M.; Emmel, P. D.
2001-10-01
In this work, we study in the optical absorption of lightly doped and compensated GaAs-GaAlAs quantum wells in the presence of applied magnetic field at low temperatures. The maximum values of magnetic field and temperature are chosen to be 10 T and 5 K, respectively. The wave functions and energies of electrons bound to impurities are calculated variationally using hydrogen-like functions. The absorption coefficient is computed through the use of Fermi golden rule and the statistics of this system is made by a self-consistent calculation of the electrostatic potential generated by ionized impurities, while the convergence parameter is the electronic chemical potential. We focus our attention on 1s→2p ± transitions. The results show that the range of frequency absorbed by the system stays unaltered in 1s→2p - transition and changes for the 1s→2p + transition, presenting a shift to higher frequencies as the magnetic field increases. Another important result is the decrease of the absorption coefficient for the lowest part of the frequency range as the temperature decreases, turning the material almost transparent for those frequencies. This kind of information may be useful for further diagnosis of quantum well systems.
Impurity-assisted electric control of spin-valley qubits in monolayer MoS2
NASA Astrophysics Data System (ADS)
Széchenyi, G.; Chirolli, L.; Pályi, A.
2018-07-01
We theoretically study a single-electron spin-valley qubit in an electrostatically defined quantum dot in a transition metal dichalcogenide monolayer, focusing on the example of MoS2. Coupling of the qubit basis states for coherent control is challenging, as it requires a simultaneous flip of spin and valley. Here, we show that a tilted magnetic field together with a short-range impurity, such as a vacancy, a substitutional defect, or an adatom, can give rise to a coupling between the qubit basis states. This mechanism renders the in-plane g-factor nonzero, and allows to control the qubit with an in-plane ac electric field, akin to electrically driven spin resonance. We evaluate the dependence of the in-plane g-factor and the electrically induced qubit Rabi frequency on the type and position of the impurity. We reveal highly unconventional features of the coupling mechanism, arising from symmetry-forbidden intervalley scattering, in the case when the impurity is located at a S site. Our results provide design guidelines for electrically controllable qubits in two-dimensional semiconductors.
Qin, Wei; Zhang, Zhenyu
2014-12-31
At the interface of an s-wave superconductor and a three-dimensional topological insulator, Majorana zero modes and Majorana helical states have been proposed to exist respectively around magnetic vortices and geometrical edges. Here we first show that randomly distributed magnetic impurities at such an interface will induce bound states that broaden into impurity bands inside (but near the edges of) the superconducting gap, which remains open unless the impurity concentration is too high. Next we find that an increase in the superconducting gap suppresses both the oscillation magnitude and the period of the Ruderman-Kittel-Kasuya-Yosida interaction between two magnetic impurities. Within a mean-field approximation, the ferromagnetic Curie temperature is found to be essentially independent of the superconducting gap, an intriguing phenomenon due to a compensation effect between the short-range ferromagnetic and long-range antiferromagnetic interactions. The existence of robust superconductivity and persistent ferromagnetism at the interface allows realization of a novel topological phase transition from a nonchiral to a chiral superconducting state at sufficiently low temperatures, providing a new platform for topological quantum computation.
Real time evolution at finite temperatures with operator space matrix product states
NASA Astrophysics Data System (ADS)
Pižorn, Iztok; Eisler, Viktor; Andergassen, Sabine; Troyer, Matthias
2014-07-01
We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.
Effect of impurities on optical properties of pentaerythritol tetranitrate
NASA Astrophysics Data System (ADS)
Tsyshevskiy, Roman; Sharia, Onise; Kuklja, Maija M.
2012-03-01
Despite numerous efforts, the electronic nature of initiation of high explosives to detonation in general and mechanisms of their sensitivity to laser initiation in particular are far from being completely understood. Recent experiments show that Nd:YAG laser irradiation (at 1064nm) causes resonance explosive decomposition of PETN samples. In an attempt to shed some light on electronic excitations and to develop a rigorous interpretation to these experiments, the electronic structure and optical properties of PETN and a series of common impurities were studied. Band gaps (S0→S1) and optical singlet-triplet (S0→T1) transitions in both an ideal material and PETN containing various defects were simulated by means of state-of-the-art quantum-chemical computational techniques. It was shown that the presence of impurities in the PETN crystal causes significant narrowing of the band gap. The structure and role of molecular excitons in PETN are discussed.
Enhanced Impurity-Free Intermixing Bandgap Engineering for InP-Based Photonic Integrated Circuits
NASA Astrophysics Data System (ADS)
Cui, Xiao; Zhang, Can; Liang, Song; Zhu, Hong-Liang; Hou, Lian-Ping
2014-04-01
Impurity-free intermixing of InGaAsP multiple quantum wells (MQW) using sputtering Cu/SiO2 layers followed by rapid thermal processing (RTP) is demonstrated. The bandgap energy could be modulated by varying the sputtering power and time of Cu, RTP temperature and time to satisfy the demands for lasers, modulators, photodetector, and passive waveguides for the photonic integrated circuits with a simple procedure. The blueshift of the bandgap wavelength of MQW is experimentally investigated on different sputtering and annealing conditions. It is obvious that the introduction of the Cu layer could increase the blueshift more greatly than the common impurity free vacancy disordering technique. A maximum bandgap blueshift of 172 nm is realized with an annealing condition of 750°C and 200s. The improved technique is promising for the fabrication of the active/passive optoelectronic components on a single wafer with simple process and low cost.
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Miao, K.; Sadasivam, S.; Charles, J.; Klimeck, G.; Fisher, T. S.; Kubis, T.
2016-03-01
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
Local perturbations perturb—exponentially-locally
NASA Astrophysics Data System (ADS)
De Roeck, W.; Schütz, M.
2015-06-01
We elaborate on the principle that for gapped quantum spin systems with local interaction, "local perturbations [in the Hamiltonian] perturb locally [the groundstate]." This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835-871 (2012)], relying on the "spectral flow technique" or "quasi-adiabatic continuation" [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique "bulk ground state" or "topological quantum order." We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonasson, O.; Karimi, F.; Knezevic, I.
2016-08-01
We derive a Markovian master equation for the single-electron density matrix, applicable to quantum cascade lasers (QCLs). The equation conserves the positivity of the density matrix, includes off-diagonal elements (coherences) as well as in-plane dynamics, and accounts for electron scattering with phonons and impurities. We use the model to simulate a terahertz-frequency QCL, and compare the results with both experiment and simulation via nonequilibrium Green's functions (NEGF). We obtain very good agreement with both experiment and NEGF when the QCL is biased for optimal lasing. For the considered device, we show that the magnitude of coherences can be a significantmore » fraction of the diagonal matrix elements, which demonstrates their importance when describing THz QCLs. We show that the in-plane energy distribution can deviate far from a heated Maxwellian distribution, which suggests that the assumption of thermalized subbands in simplified density-matrix models is inadequate. As a result, we also show that the current density and subband occupations relax towards their steady-state values on very different time scales.« less
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
NASA Astrophysics Data System (ADS)
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; Cohen, Guy
2018-03-01
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n -electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events.
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel; ...
2018-03-06
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events
NiO: correlated band structure of a charge-transfer insulator.
Kunes, J; Anisimov, V I; Skornyakov, S L; Lukoyanov, A V; Vollhardt, D
2007-10-12
The band structure of the prototypical charge-transfer insulator NiO is computed by using a combination of an ab initio band structure method and the dynamical mean-field theory with a quantum Monte-Carlo impurity solver. Employing a Hamiltonian which includes both Ni d and O p orbitals we find excellent agreement with the energy bands determined from angle-resolved photoemission spectroscopy. This brings an important progress in a long-standing problem of solid-state theory. Most notably we obtain the low-energy Zhang-Rice bands with strongly k-dependent orbital character discussed previously in the context of low-energy model theories.
Numerically exact full counting statistics of the nonequilibrium Anderson impurity model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, Michael; Singh, Viveka N.; Gull, Emanuel
The time-dependent full counting statistics of charge transport through an interacting quantum junction is evaluated from its generating function, controllably computed with the inchworm Monte Carlo method. Exact noninteracting results are reproduced; then, we continue to explore the effect of electron-electron interactions on the time-dependent charge cumulants, first-passage time distributions, and n-electron transfer distributions. We observe a crossover in the noise from Coulomb blockade to Kondo-dominated physics as the temperature is decreased. In addition, we uncover long-tailed spin distributions in the Kondo regime and analyze queuing behavior caused by correlations between single-electron transfer events
Chaotic electron transport in semiconductor devices
NASA Astrophysics Data System (ADS)
Scannell, William Christian
The field of quantum chaos investigates the quantum mechanical behavior of classically chaotic systems. This dissertation begins by describing an experiment conducted on an apparatus constructed to represent a three dimensional analog of a classically chaotic system. Patterns of reflected light are shown to produce fractals, and the behavior of the fractal dimension D F is shown to depend on the light's ability to escape the apparatus. The classically chaotic system is then used to investigate the conductance properties of semiconductor heterostructures engineered to produce a conducting plane relatively free of impurities and defects. Introducing walls that inhibit conduction to partition off sections considerably smaller than the mean distance between impurities defines devices called 'billiards'. Cooling to low temperatures enables the electrons traveling through the billiard to maintain quantum mechanical phase. Exposure to a changing electric or magnetic field alters the electron's phase, leading to fluctuations in the conductance through the billiard. Magnetoconductance fluctuations in billiards have previously been shown to be fractal. This behavior has been charted using an empirical parameter, Q, that is a measure of the resolution of the energy levels within the billiard. The relationship with Q is shown to extend beyond the ballistic regime into the 'quasi-ballistic' and 'diffusive' regimes, characterized by having defects within the conduction plane. A model analogous to the classically chaotic system is proposed as the origin of the fractal conductance fluctuations. This model is shown to be consistent with experiment and to account for changes of fine scale features in MCF known to occur when a billiard is brought to room temperature between low temperature measurements. An experiment is conducted in which fractal conductance fluctuations (FCF) are produced by exposing a billiard to a changing electric field. Comparison of DF values of FCF produced by electric fields is made to FCF produced by magnetic fields. FCF with high DF values are shown to de-correlate at smaller increments of field than the FCF with lower DF values. This indicates that FCF may be used as a novel sensor of external fields, so the response of FCF to high bias voltages is investigated.
Intraband Raman laser gain in a boron nitride coupled quantum well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moorthy, N. Narayana; Peter, A. John, E-mail: a.john.peter@gmail.com
2016-05-23
On-centre impurity related electronic and optical properties are studied in a Boron nitride coupled quantum well. Confined energies for the intraband transition are investigated by studying differential cross section of electron Raman scattering taking into consideration of spatial confinement in a B{sub 0.3}Ga{sub 0.7}N/BN coupled quantum well. Raman gain as a function of incident optical pump intensity is computed for constant well width. The enhancement of Raman gain is observed with the application of pump power. The results can be applied for the potential applications for fabricating some optical devices such as optical switches, infrared photo-detectors and electro-optical modulator.
Path-integral simulation of solids.
Herrero, C P; Ramírez, R
2014-06-11
The path-integral formulation of the statistical mechanics of quantum many-body systems is described, with the purpose of introducing practical techniques for the simulation of solids. Monte Carlo and molecular dynamics methods for distinguishable quantum particles are presented, with particular attention to the isothermal-isobaric ensemble. Applications of these computational techniques to different types of solids are reviewed, including noble-gas solids (helium and heavier elements), group-IV materials (diamond and elemental semiconductors), and molecular solids (with emphasis on hydrogen and ice). Structural, vibrational, and thermodynamic properties of these materials are discussed. Applications also include point defects in solids (structure and diffusion), as well as nuclear quantum effects in solid surfaces and adsorbates. Different phenomena are discussed, as solid-to-solid and orientational phase transitions, rates of quantum processes, classical-to-quantum crossover, and various finite-temperature anharmonic effects (thermal expansion, isotopic effects, electron-phonon interactions). Nuclear quantum effects are most remarkable in the presence of light atoms, so that especial emphasis is laid on solids containing hydrogen as a constituent element or as an impurity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valerio, Luis G., E-mail: luis.valerio@fda.hhs.gov; Cross, Kevin P.
Control and minimization of human exposure to potential genotoxic impurities found in drug substances and products is an important part of preclinical safety assessments of new drug products. The FDA's 2008 draft guidance on genotoxic and carcinogenic impurities in drug substances and products allows use of computational quantitative structure–activity relationships (QSAR) to identify structural alerts for known and expected impurities present at levels below qualified thresholds. This study provides the information necessary to establish the practical use of a new in silico toxicology model for predicting Salmonella t. mutagenicity (Ames assay outcome) of drug impurities and other chemicals. We describemore » the model's chemical content and toxicity fingerprint in terms of compound space, molecular and structural toxicophores, and have rigorously tested its predictive power using both cross-validation and external validation experiments, as well as case studies. Consistent with desired regulatory use, the model performs with high sensitivity (81%) and high negative predictivity (81%) based on external validation with 2368 compounds foreign to the model and having known mutagenicity. A database of drug impurities was created from proprietary FDA submissions and the public literature which found significant overlap between the structural features of drug impurities and training set chemicals in the QSAR model. Overall, the model's predictive performance was found to be acceptable for screening drug impurities for Salmonella mutagenicity. -- Highlights: ► We characterize a new in silico model to predict mutagenicity of drug impurities. ► The model predicts Salmonella mutagenicity and will be useful for safety assessment. ► We examine toxicity fingerprints and toxicophores of this Ames assay model. ► We compare these attributes to those found in drug impurities known to FDA/CDER. ► We validate the model and find it has a desired predictive performance.« less
Quantum theory of the electronic and optical properties of low-dimensional semiconductor systems
NASA Astrophysics Data System (ADS)
Lau, Wayne Heung
This thesis examines the electronic and optical properties of low-dimensional semiconductor systems. A theory is developed to study the electron-hole generation-recombination process of type-II semimetallic semiconductor heterojunctions based on a 3 x 3 k·p matrix Hamiltonian (three-band model) and an 8 x 8 k·p matrix Hamiltonian (eight-band model). A novel electron-hole generation and recombination process, which is called activationless generation-recombination process, is predicted. It is demonstrated that the current through the type-II semimetallic semiconductor heterojunctions is governed by the activationless electron-hole generation-recombination process at the heterointerfaces, and that the current-voltage characteristics are essentially linear. A qualitative agreement between theory and experiments is observed. The numerical results of the eight-band model are compared with those of the threeband model. Based on a lattice gas model, a theory is developed to study the influence of a random potential on the ionization equilibrium conditions for bound electron-hole pairs (excitons) in III--V semiconductor heterostructures. It is demonstrated that ionization equilibrium conditions for bound electron-hole pairs change drastically in the presence of strong disorder. It is predicted that strong disorder promotes dissociation of excitons in III--V semiconductor heterostructures. A theory of polariton (photon dressed by phonon) spontaneous emission in a III--V semiconductor doped with semiconductor quantum dots (QDs) or quantum wells (QWs) is developed. For the first time, superradiant and subradiant polariton spontaneous emission phenomena in a polariton-QD (QW) coupled system are predicted when the resonance energies of the two identical QDs (QWs) lie outside the polaritonic energy gap. It is also predicted that when the resonance energies of the two identical QDs (QWs) lie inside the polaritonic energy gap, spontaneous emission of polariton in the polariton-QD (QW) coupled system is inhibited and polariton bound states are formed within the polaritonic energy gap. A theory is also developed to study the polariton eigenenergy spectrum, polariton effective mass, and polariton spectral density of N identical semiconductor QDs (QWs) or a superlattice (SL) placed inside a III--V semiconductor. A polariton-impurity band lying within the polaritonic energy gap of the III--V semiconductor is predicted when the resonance energies of the QDs (QWs) lie inside the polaritonic energy gap. Hole-like polariton effective mass of the polariton-impurity band is predicted. It is also predicted that the spectral density of the polariton has a Lorentzian shape if the resonance energies of the QDs (QWs) lie outside the polaritonic gap.
Quantum state transfer in double-quantum-well devices
NASA Technical Reports Server (NTRS)
Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris
1994-01-01
A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.
Mobility in excess of 106 cm2/V s in InAs quantum wells grown on lattice mismatched InP substrates
NASA Astrophysics Data System (ADS)
Hatke, A. T.; Wang, T.; Thomas, C.; Gardner, G. C.; Manfra, M. J.
2017-10-01
We investigate the transport properties of a two-dimensional electron gas residing in strained composite quantum wells of In0.75Ga0.25As/InAs/In0.75Ga0.25As cladded with In0.75Al0.25As barriers grown metamorphically on insulating InP substrates. By optimizing the widths of the In0.75Ga0.25As layers, the In0.75Al0.25As barrier, and the InAs quantum well, we demonstrate mobility in excess of 1 ×106 cm2/V s. Mobility vs. density data indicate that scattering is dominated by a residual three dimensional distribution of charged impurities. We extract the effective Rashba parameter and spin-orbit length for these composite quantum wells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Garnet Kin-Lic
2017-04-30
This is the final technical report. We briefly describe some selected results below. Developments in density matrix embedding. DMET is a quantum embedding theory that we introduced at the beginning of the last funding period, around 2012-2013. Since the first DMET papers, which demonstrated proof-of- principle calculations on the Hubbard model and hydrogen rings, we have carried out a number of different developments, including: Extending the DMET technology to compute broken symmetry phases, including magnetic phases and super- conductivity (Pub. 13); Calibrating the accuracy of DMET and its cluster size convergence against other methods, and formulation of a dynamical clustermore » analog (Pubs. 4, 10) (see Fig. 1); Implementing DMET for ab-initio molecular calculations, and exploring different self-consistency criteria (Pubs. 9, 14); Using embedding to defi ne quantum classical interfaces Pub. 2; Formulating DMET for spectral functions (Pub. 7) (see Fig. 1); Extending DMET to coupled fermion-boson problems (Pub. 12). Together with these embedding developments, we have also implemented a wide variety of impurity solvers within our DMET framework, including DMRG (Pub. 3), AFQMC (Pub. 10), and coupled cluster theory (CC) (Pub. 9).« less
Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling
NASA Astrophysics Data System (ADS)
Oguri, Akira; Hewson, A. C.
2018-03-01
We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017), 10.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γσ σ';σ'σ(ω ,ω';ω',ω ), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω' using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.
Optimizing surface defects for atomic-scale electronics: Si dangling bonds
NASA Astrophysics Data System (ADS)
Scherpelz, Peter; Galli, Giulia
2017-07-01
Surface defects created and probed with scanning tunneling microscopes are a promising platform for atomic-scale electronics and quantum information technology applications. Using first-principles calculations we demonstrate how to engineer dangling bond (DB) defects on hydrogenated Si(100) surfaces, which give rise to isolated impurity states that can be used in atomic-scale devices. In particular, we show that sample thickness and biaxial strain can serve as control parameters to design the electronic properties of DB defects. While in thick Si samples the neutral DB state is resonant with bulk valence bands, ultrathin samples (1-2 nm) lead to an isolated impurity state in the gap; similar behavior is seen for DB pairs and DB wires. Strain further isolates the DB from the valence band, with the response to strain heavily dependent on sample thickness. These findings suggest new methods for tuning the properties of defects on surfaces for electronic and quantum information applications. Finally, we present a consistent and unifying interpretation of many results presented in the literature for DB defects on hydrogenated silicon surfaces, rationalizing apparent discrepancies between different experiments and simulations.
Higher-Order Fermi-Liquid Corrections for an Anderson Impurity Away from Half Filling.
Oguri, Akira; Hewson, A C
2018-03-23
We study the higher-order Fermi-liquid relations of Kondo systems for arbitrary impurity-electron fillings, extending the many-body quantum theoretical approach of Yamada and Yosida. It includes, partly, a microscopic clarification of the related achievements based on Nozières' phenomenological description: Filippone, Moca, von Delft, and Mora [Phys. Rev. B 95, 165404 (2017)PRBMDO2469-995010.1103/PhysRevB.95.165404]. In our formulation, the Fermi-liquid parameters such as the quasiparticle energy, damping, and transport coefficients are related to each other through the total vertex Γ_{σσ^{'};σ^{'}σ}(ω,ω^{'};ω^{'},ω), which may be regarded as a generalized Landau quasiparticle interaction. We obtain exactly this function up to linear order with respect to the frequencies ω and ω^{'} using the antisymmetry and analytic properties. The coefficients acquire additional contributions of three-body fluctuations away from half filling through the nonlinear susceptibilities. We also apply the formulation to nonequilibrium transport through a quantum dot, and clarify how the zero-bias peak evolves in a magnetic field.
NASA Astrophysics Data System (ADS)
Morgenstern Horing, Norman J.; Popov, Vyacheslav V.
2006-04-01
Recent experimental observations by X.G. Peralta and S.J. Allen, et al. of dc photoconductivity resonances in steady source-drain current subject to terahertz radiation in a grid-gated double-quantum well FET suggested an association with plasmon resonances. This association was definitively confirmed for some parameter ranges in our detailed electrodynamic absorbance calculations. In this paper we propose that the reason that the dc photoconductance resonances match the plasmon resonances in semiconductors is based on a nonlinear dynamic screening mechanism. In this, we employ a shielded potential approximation that is nonlinear in the terahertz field to determine the nonequilibrium Green's function and associated density perturbation that govern the nonequilibrium dielectric polarization of the medium. This ''conditioning'' of the system by the incident THz radiation results in resonant polarization response at the plasmon frequencies which, in turn, causes a sharp drop of the resistive shielded impurity scattering potentials and attendant increase of the dc source-drain current. This amounts to disabling the impurity scattering mechanism by plasmon resonant behavior in nonlinear screening.
Gu, Da Hwi; Jo, Seungki; Jeong, Hyewon; Ban, Hyeong Woo; Park, Sung Hoon; Heo, Seung Hwae; Kim, Fredrick; Jang, Jeong In; Lee, Ji Eun; Son, Jae Sung
2017-06-07
Electronically doped nanoparticles formed by incorporation of impurities have been of great interest because of their controllable electrical properties. However, the development of a strategy for n-type or p-type doping on sub-10 nm-sized nanoparticles under the quantum confinement regime is very challenging using conventional processes, owing to the difficulty in synthesis. Herein, we report the colloidal chemical synthesis of sub-10 nm-sized tellurium (Te)-doped Bismuth (Bi) nanoparticles with precisely controlled Te content from 0 to 5% and systematically investigate their low-temperature charge transport and thermoelectric properties. Microstructural characterization of nanoparticles demonstrates that Te ions are successfully incorporated into Bi nanoparticles rather than remaining on the nanoparticle surfaces. Low-temperature Hall measurement results of the hot-pressed Te-doped Bi-nanostructured materials, with grain sizes ranging from 30 to 60 nm, show that the charge transport properties are governed by the doping content and the related impurity and nanoscale grain boundary scatterings. Furthermore, the low-temperature thermoelectric properties reveal that the electrical conductivity and Seebeck coefficient expectedly change with the Te content, whereas the thermal conductivity is significantly reduced by Te doping because of phonon scattering at the sites arising from impurities and nanoscale grain boundaries. Accordingly, the 1% Te-doped Bi sample exhibits a higher figure-of-merit ZT by ∼10% than that of the undoped sample. The synthetic strategy demonstrated in this study offers the possibility of electronic doping of various quantum-confined nanoparticles for diverse applications.
Greenberg, Benjamin L; Ganguly, Shreyashi; Held, Jacob T; Kramer, Nicolaas J; Mkhoyan, K Andre; Aydil, Eray S; Kortshagen, Uwe R
2015-12-09
Metal oxide semiconductor nanocrystals (NCs) exhibit localized surface plasmon resonances (LSPRs) tunable within the infrared (IR) region of the electromagnetic spectrum by vacancy or impurity doping. Although a variety of these NCs have been produced using colloidal synthesis methods, incorporation and activation of dopants in the liquid phase has often been challenging. Herein, using Al-doped ZnO (AZO) NCs as an example, we demonstrate the potential of nonthermal plasma synthesis as an alternative strategy for the production of doped metal oxide NCs. Exploiting unique, thoroughly nonequilibrium synthesis conditions, we obtain NCs in which dopants are not segregated to the NC surfaces and local doping levels are high near the NC centers. Thus, we achieve overall doping levels as high as 2 × 10(20) cm(-3) in NCs with diameters ranging from 12.6 to 3.6 nm, and for the first time experimentally demonstrate a clear quantum confinement blue shift of the LSPR energy in vacancy- and impurity-doped semiconductor NCs. We propose that doping of central cores and heavy doping of small NCs are achievable via nonthermal plasma synthesis, because chemical potential differences between dopant and host atoms-which hinder dopant incorporation in colloidal synthesis-are irrelevant when NC nucleation and growth proceed via irreversible interactions among highly reactive gas-phase ions and radicals and ligand-free NC surfaces. We explore how the distinctive nucleation and growth kinetics occurring in the plasma influences dopant distribution and activation, defect structure, and impurity phase formation.
Transport properties of coupled quantum dots in the presence of phonons
NASA Astrophysics Data System (ADS)
Martins, G.; Al-Hassanieh, K.
2005-03-01
Here is presented the numerical study of the effect of Holstein phonons in the transport properties of two coupled quantum dots (QDs) in the Kondo regime. For the QDs we use the Anderson impurity model and each QD is coupled to a different Holstein mode. At T=0, in the absence of phonons, and with 1 electron per dot, the usual splitting of the Kondo resonance is observed.^1 When the QDs are coupled to the phonons, there is a reduction of the effective Coulomb repulsion, which is explained through a canonical transformation. In addition, the conductance at the electron-hole symmetric gate potential is not affected by the phonons. This is caused by the modulation of the coupling factors.^2 The difference between the effects of phonons in lithographic QDs and in molecular conductors is also discussed. 1- C.A. Büsser et al, Phys. Rev. B 62, 9907 (2000). 2- K.A. Al-Hassanieh, C.A. Büsser, G.B. Martins, Adriana Moreo and Elbio Dagotto (preprint)
Quantum Brownian motion with inhomogeneous damping and diffusion
NASA Astrophysics Data System (ADS)
Massignan, Pietro; Lampo, Aniello; Wehr, Jan; Lewenstein, Maciej
2015-03-01
We analyze the microscopic model of quantum Brownian motion, describing a Brownian particle interacting with a bosonic bath through a coupling which is linear in the creation and annihilation operators of the bath, but may be a nonlinear function of the position of the particle. Physically, this corresponds to a configuration in which damping and diffusion are spatially inhomogeneous. We derive systematically the quantum master equation for the Brownian particle in the Born-Markov approximation and we discuss the appearance of additional terms, for various polynomials forms of the coupling. We discuss the cases of linear and quadratic coupling in great detail and we derive, using Wigner function techniques, the stationary solutions of the master equation for a Brownian particle in a harmonic trapping potential. We predict quite generally Gaussian stationary states, and we compute the aspect ratio and the spread of the distributions. In particular, we find that these solutions may be squeezed (superlocalized) with respect to the position of the Brownian particle. We analyze various restrictions to the validity of our theory posed by non-Markovian effects and by the Heisenberg principle. We further study the dynamical stability of the system, by applying a Gaussian approximation to the time-dependent Wigner function, and we compute the decoherence rates of coherent quantum superpositions in position space. Finally, we propose a possible experimental realization of the physics discussed here, by considering an impurity particle embedded in a degenerate quantum gas.
NASA Astrophysics Data System (ADS)
Frigerio, Jacopo; Ballabio, Andrea; Isella, Giovanni; Sakat, Emilie; Pellegrini, Giovanni; Biagioni, Paolo; Bollani, Monica; Napolitani, Enrico; Manganelli, Costanza; Virgilio, Michele; Grupp, Alexander; Fischer, Marco P.; Brida, Daniele; Gallacher, Kevin; Paul, Douglas J.; Baldassarre, Leonetta; Calvani, Paolo; Giliberti, Valeria; Nucara, Alessandro; Ortolani, Michele
2016-08-01
Heavily doped semiconductor thin films are very promising for application in mid-infrared plasmonic devices because the real part of their dielectric function is negative and broadly tunable in the 5 to 50 μ m wavelength range at least. In this work, we investigate the electrodynamics of heavily n -type-doped germanium epilayers at infrared frequencies beyond the assumptions of the Drude model. The films are grown on silicon and germanium substrates, are in situ doped with phosphorous in the 1017 to 1019 cm-3 range, then screened plasma frequencies in the 100 to 1200 cm-1 range were observed. We employ infrared spectroscopy, pump-probe spectroscopy, and dc transport measurements to determine the tunability of the plasma frequency. Although no plasmonic structures have been realized in this work, we derive estimates of the decay time of mid-infrared plasmons and of their figures of merit for field confinement and for surface plasmon propagation. The average electron scattering rate increases almost linearly with excitation frequency, in agreement with quantum calculations based on a model of the ellipsoidal Fermi surface at the conduction band minimum of germanium accounting for electron scattering with optical phonons and charged impurities. Instead, we found weak dependence of plasmon losses on neutral impurity density. In films where a transient plasma was generated by optical pumping, we found significant dependence of the energy relaxation times in the few-picosecond range on the static doping level of the film, confirming the key but indirect role played by charged impurities in energy relaxation. Our results indicate that underdamped mid-infrared plasma oscillations are attained in n -type-doped germanium at room temperature.
Novel engineered compound semiconductor heterostructures for advanced electronics applications
NASA Astrophysics Data System (ADS)
Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.
1992-06-01
To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.
Tradeoffs between oscillator strength and lifetime in terahertz quantum cascade lasers
Chan, Chun Wang I.; Albo, Asaf; Hu, Qing; ...
2016-11-14
Contemporary research into diagonal active region terahertz quantum cascade lasers for high temperature operation has yielded little success. We present evidence that the failure of high diagonality alone as a design strategy is due to a fundamental trade-off between large optical oscillator strength and long upper-level lifetime. Here, we hypothesize that diagonality needs to be paired with increased doping in order to succeed, and present evidence that highly diagonal designs can benefit from much higher doping than normally found in terahertz quantum cascade lasers. In assuming the benefits of high diagonality paired with high doping, we also highlight important challengesmore » that need to be overcome, specifically the increased importance of carrier induced band-bending and impurity scattering.« less
Bonizzoni, C; Ghirri, A; Atzori, M; Sorace, L; Sessoli, R; Affronte, M
2017-10-12
Electron spins are ideal two-level systems that may couple with microwave photons so that, under specific conditions, coherent spin-photon states can be realized. This represents a fundamental step for the transfer and the manipulation of quantum information. Along with spin impurities in solids, molecular spins in concentrated phases have recently shown coherent dynamics under microwave stimuli. Here we show that it is possible to obtain high cooperativity regime between a molecular Vanadyl Phthalocyanine (VOPc) spin ensemble and a high quality factor superconducting YBa 2 Cu 3 O 7 (YBCO) coplanar resonator at 0.5 K. This demonstrates that molecular spin centers can be successfully integrated in hybrid quantum devices.
Laser Blow-Off Impurity Injection Experiments at the HSX Stellarator
NASA Astrophysics Data System (ADS)
Castillo, J. F.; Bader, A.; Likin, K. M.; Anderson, D. T.; Anderson, F. S. B.; Kumar, S. T. A.; Talmadge, J. N.
2017-10-01
Results from the HSX laser blow-off experiment are presented and compared to a synthetic diagnostic implemented in the STRAHL impurity transport modeling code in order to measure the impurity transport diffusivity and convective velocity. A laser blow-off impurity injection system is used to rapidly deposit a small, controlled quantity of aluminum into the confinement volume. Five AXUV photodiode arrays are used to take time-resolved measurements of the impurity radiation. The spatially one-dimensional impurity transport code STRAHL is used to calculate a time-dependent plasma emissivity profile. Modeled intensity signals calculated from a synthetic diagnostic code provide direct comparison between plasma simulation and experimental results. An optimization algorithm with impurity transport coefficients acting as free parameters is used to fit the model to experimental data. This work is supported by US DOE Grant DE-FG02-93ER54222.
Synthesis and evaluation of rare-earth doped glasses and crystals for optical refrigeration
NASA Astrophysics Data System (ADS)
Patterson, Wendy
This research focused on developing and characterizing rare-earth doped, solid-state materials for laser cooling. In particular, the work targeted the optimization of the lasercooling efficiency in Yb3+ and Tm3+ doped fluorides. The first instance of laser-induced cooling in a Tm3+-doped crystal, BaY2F8 was reported. Cooling by 3 degrees Kelvin below ambient temperature was obtained in a single-pass pump geometry at lambda = 1855 nm. Protocols were developed for materials synthesis and purification which can be applied to each component of ZBLANI:Yb 3+/Tm3+ (ZrF4 -- BaF2 -- LaF3 -- AlF3 -- NaF -- InF3: YbF3/TmF3) glass to enable a material with significantly reduced transition-metal impurities. A method for OH- impurity removal and ultra-drying of the metal fluorides was also improved upon. Several characterization tools were used to quantitatively and qualitatively verify purity, including inductively-coupled plasma mass spectrometry (ICP-MS). Here we found a more than 600-fold reduction in transition-metal impurities in a ZrCl2O solution. A non-contact spectroscopic technique for the measurement of laser-induced temperature changes in solids was developed. Two-band differential luminescence thermometry (TBDLT) achieved a sensitivity of ˜7 mK and enabled precise measurement of the zero-crossing temperature and net quantum efficiency. Several Yb3+-doped ZBLANI glasses fabricated from precursors of varying purity and by different processes were analyzed in detail by TBDLT. Laser-induced cooling was observed at room temperature for several of the materials. A net quantum efficiency of 97.39+/-0.01% at 238 K was found for the best ZBLANI:1%Yb 3+ laser-cooling sample produced from purified metal-fluoride precursors, and proved competitive with the best commercially procured material. The TBDLT technique enabled rapid and sensitive benchmarking of laser-cooling materials and provided critical feedback to the development and optimization of high-performance optical cryocooler materials. Also presented is an efficient and numerically stable method to calculate time-dependent, laser-induced temperature distributions in solids, including a detailed description of the computational procedure and its implementation. The model accurately predicted the zero-crossing temperature, the net quantum efficiency, and the functional shape of the transients, based on input parameters such as luminescence spectra, dopant concentration, pump properties, and several well-characterized material properties.
Validity of the local approximation in iron pnictides and chalcogenides
Sémon, Patrick; Haule, Kristjan; Kotliar, Gabriel
2017-05-08
We introduce a methodology to treat different degrees of freedom at different levels of approximation. We use cluster DMFT (dynamical mean field theory) for the t 2g electrons and single site DMFT for the e g electrons to study the normal state of the iron pnictides and chalcogenides. Furthermore, in the regime of moderate mass renormalizations, the self-energy is very local, justifying the success of single site DMFT for these materials and for other Hunds metals. Here we solve the corresponding impurity model with CTQMC (continuous time quantum Monte Carlo) and find that the minus sign problem is not severemore » in regimes of moderate mass renormalization.« less
Detecting Kondo Entanglement by Electron Conductance
NASA Astrophysics Data System (ADS)
Yoo, Gwangsu; Lee, S.-S. B.; Sim, H.-S.
2018-04-01
Quantum entanglement between an impurity spin and electrons nearby is a key property of the single-channel Kondo effects. We show that the entanglement can be detected by measuring electron conductance through a double quantum dot in an orbital Kondo regime. We derive a relation between the entanglement and the conductance, when the SU(2) spin symmetry of the regime is weakly broken. The relation reflects the universal form of many-body states near the Kondo fixed point. Using it, the spatial distribution of the entanglement—hence, the Kondo cloud—can be detected, with breaking of the symmetry spatially nonuniformly by electrical means.
NASA Astrophysics Data System (ADS)
Wong, Dillon
Graphene, a two-dimensional (2D) honeycomb lattice of sp 2-bonded carbon atoms, is renowned for its many extraordinary properties. Not only does it have an extremely high carrier mobility, exceptional mechanical strength, and fascinating optical behavior, graphene additionally has an interesting energy-momentum relationship that is emergent from its space group symmetry. Graphene's low-energy electronic excitations consist of quasiparticles whose energies disperse linearly with wavevector and obey a 2D massless Dirac equation with a modified speed of light. This fortuitous circumstance allows for the exploration of ultra-relativistic phenomena using conventional tabletop techniques common to solid state physics and material science. Here I discuss experiments that probe these ultra-relativistic effects via application of scanning tunneling microscopy (STM) and spectroscopy (STS) to graphene field-effect transistors (FETs) in proximity with charged impurities. The first part of this dissertation focuses on the ultra-relativistic Coulomb problem. Depending on the strength of the potential, the Coulomb problem for massless Dirac particles is divided into two regimes: the subcritical and the supercritical. The subcritical regime is characterized by an electron-hole asymmetry in the local density of states (LDOS) and, unlike in nonrelativistic quantum mechanics, does not support bound states. In contrast, the supercritical regime hosts quasi-bound states that are analogous to "atomic collapse" orbits predicted to occur in atoms with nuclear charge Z > 170. By using an STM tip to directly position calcium (Ca) impurities on a graphene surface, we assembled "artificial nuclei" and observed a transition between the subcritical and supercritical regimes with increasing nuclear charge. We also investigated the screening of these charged impurities by massless Dirac fermions while varying the graphene carrier concentration with an electrostatic gate. The second part of this dissertation focuses on the ultra-relativistic harmonic oscillator. We developed a method for manipulating charged defects inside the boron nitride (BN) substrate underneath graphene to construct circular graphene p-n junctions. These p-n junctions were effectively quantum dots that electrostatically trapped graphene's relativistic charge carriers, and we imaged the interference patterns corresponding to this quantum confinement. The observed energy-level spectra in our p-n junctions closely matched a theoretical spectrum obtained by solving the 2D massless Dirac equation with a quadratic potential, allowing us to identify each observed state with principal and angular momentum quantum numbers. The results discussed here provide insight into fundamental aspects of relativistic quantum mechanics and into graphene properties pertinent to technological applications. In particular, graphene's response to electrostatic potentials determines the scope in which its charge carriers can be directed and harnessed for useful purposes. Furthermore, many of the results contained in this dissertation are expected to generalize to other Dirac materials.
Red Mn4+-Doped Fluoride Phosphors: Why Purity Matters.
Verstraete, Reinert; Sijbom, Heleen F; Joos, Jonas J; Korthout, Katleen; Poelman, Dirk; Detavernier, Christophe; Smet, Philippe F
2018-06-06
Traditional light sources, e.g., incandescent and fluorescent lamps, are currently being replaced by white light-emitting diodes (wLEDs) because of their improved efficiency, prolonged lifetime, and environmental friendliness. Much effort has recently been spent to the development of Mn 4+ -doped fluoride phosphors that can enhance the color gamut in displays and improve the color rendering index, luminous efficacy of the radiation, and correlated color temperature of wLEDs used for lighting. Purity, stability, and degradation of fluoride phosphors are, however, rarely discussed. Nevertheless, the typical wet chemical synthesis routes (involving hydrogen fluoride (HF)) and the large variety of possible Mn valence states often lead to impurities that drastically influence the performance and stability of these phosphors. In this article, the origins and consequences of impurities formed during synthesis and aging of K 2 SiF 6 :Mn 4+ are revealed. Both crystalline impurities such as KHF 2 and ionic impurities such as Mn 3+ are found to affect the phosphor performance. While Mn 3+ mainly influences the optical absorption behavior, KHF 2 can affect both the optical performance and chemical stability of the phosphor. Moisture leads to decomposition of KHF 2 , forming HF and amorphous hydrated potassium fluoride. As a consequence of hydrate formation, significant amounts of water can be absorbed in impure phosphor powders containing KHF 2 , facilitating the hydrolysis of [MnF 6 ] 2- complexes and affecting the optical absorption of the phosphors. Strategies are discussed to identify impurities and to achieve pure and stable phosphors with internal quantum efficiencies of more than 90%.
Storing quantum information in spins and high-sensitivity ESR
NASA Astrophysics Data System (ADS)
Morton, John J. L.; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.
Storing quantum information in spins and high-sensitivity ESR.
Morton, John J L; Bertet, Patrice
2018-02-01
Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.
Controlling the quantum dynamics of a mesoscopic spin bath in diamond
de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald
2012-01-01
Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480
NASA Astrophysics Data System (ADS)
Ganguly, Jayanta; Ghosh, Manas
2015-07-01
We investigate the modulation of diagonal components of static linear (αxx, αyy) and first nonlinear (βxxx, βyyy) polarizabilities of quantum dots by Gaussian white noise. Quantum dot is doped with impurity represented by a Gaussian potential and repulsive in nature. The study reveals the importance of mode of application of noise (additive/multiplicative) on the polarizability components. The doped system is further exposed to a static external electric field of given intensity. As important observation we have found that the strength of additive noise becomes unable to influence the polarizability components. However, the multiplicative noise influences them conspicuously and gives rise to additional interesting features. Multiplicative noise even enhances the magnitude of the polarizability components immensely. The present investigation deems importance in view of the fact that noise seriously affects the optical properties of doped quantum dot devices.
Effect of Γ-X band mixing on the donor binding energy in a Quantum Wire
NASA Astrophysics Data System (ADS)
Vijaya Shanthi, R.; Jayakumar, K.; Nithiananthi, P.
2015-02-01
To invoke the technological applications of heterostructure semiconductors like Quantum Well (QW), Quantum Well Wire (QWW) and Quantum Dot (QD), it is important to understand the property of impurity energy which is responsible for the peculiar electronic & optical behavior of the Low Dimensional Semiconductor Systems (LDSS). Application of hydrostatic pressure P>35kbar drastically alters the band offsets leading to the crossover of Γ band of the well & X band of the barrier resulting in an indirect transition of the carrier and this effect has been studied experimentally and theoretically in a QW structure. In this paper, we have investigated the effect of Γ-X band mixing due to the application of hydrostatic pressure in a GaAs/AlxGa1-xAs QWW system. The results are presented and discussed for various widths of the wire.
Impurities in silicon solar cells
NASA Technical Reports Server (NTRS)
Hopkins, R. H.
1985-01-01
Metallic impurities, both singly and in combinations, affect the performance of silicon solar cells. Czochralski silicon web crystals were grown with controlled additions of secondary impurities. The primary electrical dopants were boron and phosphorus. The silicon test ingots were grown under controlled and carefully monitored conditions from high-purity charge and dopant material to minimize unintentional contamination. Following growth, each crystal was characterized by chemical, microstructural, electrical, and solar cell tests to provide a detailed and internally consistent description of the relationships between silicon impurity concentration and solar cell performance. Deep-level spectroscopy measurements were used to measure impurity concentrations at levels below the detectability of other techniques and to study thermally-induced changes in impurity activity. For the majority of contaminants, impurity-induced performance loss is due to a reduction of the base diffusion length. From these observations, a semi-empirical model which predicts cell performance as a function of metal impurity concentration was formulated. The model was then used successfully to predict the behavior of solar cells bearing as many as 11 different impurities.
NASA Astrophysics Data System (ADS)
Yarmohammadi, Mohsen
2016-12-01
Using the Harrison model and Green's function technique, impurity doping effects on the orbital density of states (DOS), electronic heat capacity (EHC) and magnetic susceptibility (MS) of a monolayer hydrogenated graphene, chair-like graphane, are investigated. The effect of scattering between electrons and dilute charged impurities is discussed in terms of the self-consistent Born approximation. Our results show that the graphane is a semiconductor and its band gap decreases with impurity. As a remarkable point, comparatively EHC reaches almost linearly to Schottky anomaly and does not change at low temperatures in the presence of impurity. Generally, EHC and MS increases with impurity doping. Surprisingly, impurity doping only affects the salient behavior of py orbital contribution of carbon atoms due to the symmetry breaking.
NASA Astrophysics Data System (ADS)
Hogan, J.; Demichelis, C.; Monier-Garbet, P.; Guirlet, R.; Hess, W.; Schunke, B.
2000-10-01
A model combining the MIST (core symmetric) and BBQ (SOL asymmetric) codes is used to study the relation between impurity density and radiated power for representative cases from Tore Supra experiments on strong radiation regimes using the ergodic divertor. Transport predictions of external radiation are compared with observation to estimate the absolute impurity density. BBQ provides the incoming distribution of recycling impurity charge states for the radial transport calculation. The shots studied use the ergodic divertor and high ICRH power. Power is first applied and then the extrinsic impurity (Ne, N or Ar) is injected. Separate time dependent intrinsic (C and O) impurity transport calculations match radiation levels before and during the high power and impurity injection phases. Empirical diffusivities are sought to reproduce the UV (CV R, I lines), CVI Lya, OVIII Lya, Zeff, and horizontal bolometer data. The model has been used to calculate the relative radiative efficiency (radiated power / extrinsically contributed electron) for the sample database.
Photovoltaic characteristics of n(+)pp(+) InP solar cells grown by OMVPE
NASA Technical Reports Server (NTRS)
Tyagi, S.; Singh, K.; Bhimnathwala, H.; Ghandhi, S. K.; Borrego, J. M.
1990-01-01
The photovoltaic characteristics of n(+)/p/p(+) homojunction InP solar cells fabricated by organometallic vapor-phase epitaxy (OMVPE) are described. The cells are characterized by I-V, C-V and quantum efficiency measurements, and simulations are used to obtain various device and material parameters. The I-V characteristics show a high recombination rate in the depletion region; this is shown to be independent of the impurity used. It is shown that cadmium is easier to use as an acceptor for the p base and p(+) buffer and is therefore beneficial. The high quantum efficiency of 98 percent at long wavelengths measured in these cells indicates a very good collection efficiency in the base. The short-wavelength quantum efficiency is poor, indicating a high surface recombination.
NASA Astrophysics Data System (ADS)
Geffe, Chernet Amente
2018-03-01
This article reports magnetization and specific heat capacity anomalies in one dimensional diluted magnetic semiconductors observed at very low temperatures. Based on quantum field theory double time temperature dependent Green function technique is employed to evaluate magnon dispersion and the time correlation function. It is understood that magnon-photon coupling and magnetic impurity concentration controls both, such that near absolute temperature magnetization is nearly zero and abruptly increase to saturation level with decreasing magnon-photon coupling strength. We also found out dropping of magnetic specific heat capacity as a result of increase in magnetic impurity concentration x, perhaps because of inter-band disorder that would suppress the enhancement of density of spin waves.
Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions
NASA Astrophysics Data System (ADS)
Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui
2016-05-01
We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.
Substitutional impurity in single-layer graphene: The Koster–Slater and Anderson models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davydov, S. Yu., E-mail: sergei-davydov@mail.ru
The Koster–Slater and Anderson models are used to consider substitutional impurities in free-standing single-layer graphene. The density of states of graphene is described using a model (the M model). For the nitrogen and boron impurities, the occupation numbers and the parameter η which defines the fraction of delocalized electrons of the impurity are determined. In this case, experimental data are used for both determination of the model parameters and comparison with the results of theoretical estimations. The general features of the Koster–Slater and Anderson models and the differences between the two models are discussed. Specifically, it is shown that themore » band contributions to the occupation numbers of a nitrogen atom in both models are comparable, whereas the local contributions are substantially different: the local contributions are decisive in the Koster–Slater model and negligible in the Anderson model. The asymptotic behavior of the wave functions of a defect is considered in the Koster–Slater model, and the electron states of impurity dimers are considered in the Anderson model.« less
Hong-Ou-Mandel Interference with a Single Atom.
Ralley, K A; Lerner, I V; Yurkevich, I V
2015-09-14
The Hong-Ou-Mandel (HOM) effect is widely regarded as the quintessential quantum interference phenomenon in optics. In this work we examine how nonlinearity can smear statistical photon bunching in the HOM interferometer. We model both the nonlinearity and a balanced beam splitter with a single two-level system and calculate a finite probability of anti-bunching arising in this geometry. We thus argue that the presence of such nonlinearity would reduce the visibility in the standard HOM setup, offering some explanation for the diminution of the HOM visibility observed in many experiments. We use the same model to show that the nonlinearity affects a resonant two-photon propagation through a two-level impurity in a waveguide due to a "weak photon blockade" caused by the impossibility of double-occupancy and argue that this effect might be stronger for multi-photon propagation.
Drude Conductivity of Dirac Fermions in Graphene
2010-01-01
interband transitions, as required by the sum rule. Our surprising observation indicates that many-body effects and Dirac fermion-impurity interactions...reduction of free electron oscillator strength is corroborated by corresponding changes in graphene interband transitions, as required by the sum...dimensions. Researchers have demonstrated in graphene exotic Dirac fermion phenomena ranging from anomalous quantum Hall effects 1,2 to Klein tunneling 3 in
Theory of scanning tunneling spectroscopy: from Kondo impurities to heavy fermion materials
NASA Astrophysics Data System (ADS)
Morr, Dirk K.
2017-01-01
Kondo systems ranging from the single Kondo impurity to heavy fermion materials present us with a plethora of unconventional properties whose theoretical understanding is still one of the major open problems in condensed matter physics. Over the last few years, groundbreaking scanning tunneling spectroscopy (STS) experiments have provided unprecedented new insight into the electronic structure of Kondo systems. Interpreting the results of these experiments—the differential conductance and the quasi-particle interference spectrum—however, has been complicated by the fact that electrons tunneling from the STS tip into the system can tunnel either into the heavy magnetic moment or the light conduction band states. In this article, we briefly review the theoretical progress made in understanding how quantum interference between these two tunneling paths affects the experimental STS results. We show how this theoretical insight has allowed us to interpret the results of STS experiments on a series of heavy fermion materials providing detailed knowledge of their complex electronic structure. It is this knowledge that is a conditio sine qua non for developing a deeper understanding of the fascinating properties exhibited by heavy fermion materials, ranging from unconventional superconductivity to non-Fermi-liquid behavior in the vicinity of quantum critical points.
Optical transitions in GaNAs quantum wells with variable nitrogen content embedded in AlGaAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elborg, M., E-mail: ELBORG.Martin@nims.go.jp; Noda, T.; Mano, T.
2016-06-15
We investigate the optical transitions of GaN{sub x}As{sub 1−x} quantum wells (QWs) embedded in wider band gap AlGaAs. A combination of absorption and emission spectroscopic techniques is employed to systematically investigate the properties of GaNAs QWs with N concentrations ranging from 0 – 3%. From measurement of the photocurrent spectra, we find that besides QW ground state and first excited transition, distinct increases in photocurrent generation are observed. Their origin can be explained by N-induced modifications in the density of states at higher energies above the QW ground state. Photoluminescence experiments reveal that peak position dependence with temperature changes withmore » N concentration. The characteristic S-shaped dependence for low N concentrations of 0.5% changes with increasing N concentration where the low temperature red-shift of the S-shape gradually disappears. This change indicates a gradual transition from impurity picture, where localized N induced energy states are present, to alloying picture, where an impurity-band is formed. In the highest-N sample, photoluminescence emission shows remarkable temperature stability. This phenomenon is explained by the interplay of N-induced energy states and QW confined states.« less
Anderson metal-insulator transitions with classical magnetic impurities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Daniel; Kettemann, Stefan
We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local densitymore » of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].« less
NASA Astrophysics Data System (ADS)
El Aouami, A.; Feddi, E.; El-Yadri, M.; Aghoutane, N.; Dujardin, F.; Duque, C. A.; Phuc, Huynh Vinh
2018-02-01
In this paper we present a theoretical investigation of quantum confinement effects on the electron and single donor states in GaN conical quantum dot with spherical edge. In the framework of the effective mass approximation, the Schrödinger equations of electron and donor have been solved analytically in an infinite potential barrier model. Our calculations show that the energies of electron and donor impurity are affected by the two characteristic parameters of the structure which are the angle Ω and the radial dimension R. We show that, despite the fact that the reduction of the two parameters Ω and R leads to the same confinement effects, the energy remains very sensitive to the variation of the radial part than the variation of the angular part. The analysis of the photoionization cross-section corresponding to optical transitions between the conduction band and the first donor energy level shows clearly that the reduction of the radius R causes a shift in resonance peaks towards the high energies. On the other hand, the optical transitions between 1 s - 1 p , 1 p - 1 d and 1 p - 2 s show that the increment of the conical aperture Ω (or reduction of R) implies a displacement of the excitation energy to higher energies.
Formalism for the solution of quadratic Hamiltonians with large cosine terms
NASA Astrophysics Data System (ADS)
Ganeshan, Sriram; Levin, Michael
2016-02-01
We consider quantum Hamiltonians of the form H =H0-U ∑jcos(Cj) , where H0 is a quadratic function of position and momentum variables {x1,p1,x2,p2,⋯} and the Cj's are linear in these variables. We allow H0 and Cj to be completely general with only two restrictions: we require that (1) the Cj's are linearly independent and (2) [Cj,Ck] is an integer multiple of 2 π i for all j ,k so that the different cosine terms commute with one another. Our main result is a recipe for solving these Hamiltonians and obtaining their exact low-energy spectrum in the limit U →∞ . This recipe involves constructing creation and annihilation operators and is similar in spirit to the procedure for diagonalizing quadratic Hamiltonians. In addition to our exact solution in the infinite U limit, we also discuss how to analyze these systems when U is large but finite. Our results are relevant to a number of different physical systems, but one of the most natural applications is to understanding the effects of electron scattering on quantum Hall edge modes. To demonstrate this application, we use our formalism to solve a toy model for a fractional quantum spin Hall edge with different types of impurities.
Reliability of the one-crossing approximation in describing the Mott transition
NASA Astrophysics Data System (ADS)
Vildosola, V.; Pourovskii, L. V.; Manuel, L. O.; Roura-Bas, P.
2015-12-01
We assess the reliability of the one-crossing approximation (OCA) approach in a quantitative description of the Mott transition in the framework of the dynamical mean field theory (DMFT). The OCA approach has been applied in conjunction with DMFT to a number of heavy-fermion, actinide, transition metal compounds and nanoscale systems. However, several recent studies in the framework of impurity models pointed out serious deficiencies of OCA and raised questions regarding its reliability. Here we consider a single band Hubbard model on the Bethe lattice at finite temperatures and compare the results of OCA to those of a numerically exact quantum Monte Carlo (QMC) method. The temperature-local repulsion U phase diagram for the particle-hole symmetric case obtained by OCA is in good agreement with that of QMC, with the metal-insulator transition captured very well. We find, however, that the insulator to metal transition is shifted to higher values of U and, simultaneously, correlations in the metallic phase are significantly overestimated. This counter-intuitive behaviour is due to simultaneous underestimations of the Kondo scale in the metallic phase and the size of the insulating gap. We trace the underestimation of the insulating gap to that of the second moment of the high-frequency expansion of the impurity spectral density. Calculations of the system away from the particle-hole symmetric case are also presented and discussed.
Development of a (Hg, Cd)Te photodiode detector, Phase 2. [for 10.6 micron spectral region
NASA Technical Reports Server (NTRS)
1972-01-01
High speed sensitive (Hg,Cd)Te photodiode detectors operating in the 77 to 90 K temperature range have been developed for the 10.6 micron spectral region. P-N junctions formed by impurity (gold) diffusion in p-type (Hg, Cd) Te have been investigated. It is shown that the bandwidth and quantum efficiency of a diode are a constant for a fixed ratio of mobility/lifetime ratio of minority carriers. The minority carrier mobility and lifetime uniquely determine the bandwidth and quantum efficiency and indicate the shallow n on p (Hg,Cd) Te diodes are preferable as high performance, high frequency devices.
Analysis and Design of Novel Nanophotonic Structures
NASA Astrophysics Data System (ADS)
Shugayev, Roman
Nanophotonic devices hold promise to revolutionize the fields of optical communications, quantum computing and bioimaging. Designing viable solutions to these pressing problems require developing accurate models of the relevant systems. While a great deal of work has been performed in terms of developing individual models with varying levels of fidelity, some of these more complex systems still require improved links between scales to allow for accurate design and optimization within a reasonable amount of computing time. For instance, color centers in nanocrystals appear to be a promising platform for room-temperature scalable quantum information science, but questions still remain about the optimal structures to control single-photon emitter rates, coupling fidelity, and suitable scaling architectures. In this work, a method for efficient optical access and readout of nanocrystal states via magnetic transitions was demonstrated. Separately novel Mie resonant devices that guarantee on-demand enhancement of emission from the single vacancy sources were shown. To improve addressability of the crystal-based impurities, a new approach for realization of single photon electro-optical devices is also proposed in this work. Furthermore, this work on color centers in nanocrystals has been shown to be sensitive to the local refractive index environment. This allows this system to be adapted to biomedical applications, such as sensitive, minimally invasive cancer detection. In this work, a novel scheme for propagation loss-free sensing of local refractive index using nanocrystal probes with broken symmetry is carefully investigated. In conclusion, this thesis develops several novel simulation and optimization techniques that combine existing nanophotonic modeling tools into a unique multi-scale modeling tool. It has been successfully applied to nanophotonically-tuned color vacancy centers. Potential applications span optical communications, quantum information processing, and biomedical sensing.
Experimental evidence of coherent transport.
Flores-Olmedo, E; Martínez-Argüello, A M; Martínez-Mares, M; Báez, G; Franco-Villafañe, J A; Méndez-Sánchez, R A
2016-04-28
Coherent transport phenomena are difficult to observe due to several sources of decoherence. For instance, in the electronic transport through quantum devices the thermal smearing and dephasing, the latter induced by inelastic scattering by phonons or impurities, destroy phase coherence. In other wave systems, the temperature and dephasing may not destroy the coherence and can then be used to observe the underlying wave behaviour of the coherent phenomena. Here, we observe coherent transmission of mechanical waves through a two-dimensional elastic Sinai billiard with two waveguides. The flexural-wave transmission, performed by non-contact means, shows the quantization when a new mode becomes open. These measurements agree with the theoretical predictions of the simplest model highlighting the universal character of the transmission fluctuations.
Experimental evidence of coherent transport
Flores-Olmedo, E.; Martínez-Argüello, A. M.; Martínez-Mares, M.; Báez, G.; Franco-Villafañe, J. A.; Méndez-Sánchez, R. A.
2016-01-01
Coherent transport phenomena are difficult to observe due to several sources of decoherence. For instance, in the electronic transport through quantum devices the thermal smearing and dephasing, the latter induced by inelastic scattering by phonons or impurities, destroy phase coherence. In other wave systems, the temperature and dephasing may not destroy the coherence and can then be used to observe the underlying wave behaviour of the coherent phenomena. Here, we observe coherent transmission of mechanical waves through a two-dimensional elastic Sinai billiard with two waveguides. The flexural-wave transmission, performed by non-contact means, shows the quantization when a new mode becomes open. These measurements agree with the theoretical predictions of the simplest model highlighting the universal character of the transmission fluctuations. PMID:27121226
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Rohatgi, A.; Hanes, M. H.; Rai-Choudhury, P.; Mollenkopf, H. C.
1982-01-01
The effects of impurities and processing on the characteristics of silicon and terrestrial silicon solar cells were defined in order to develop cost benefit relationships for the use of cheaper, less pure solar grades of silicon. The amount of concentrations of commonly encountered impurities that can be tolerated in typical p or n base solar cells was established, then a preliminary analytical model from which the cell performance could be projected depending on the kinds and amounts of contaminants in the silicon base material was developed. The impurity data base was expanded to include construction materials, and the impurity performace model was refined to account for additional effects such as base resistivity, grain boundary interactions, thermal processing, synergic behavior, and nonuniform impurity distributions. A preliminary assessment of long term (aging) behavior of impurities was also undertaken.
NASA Astrophysics Data System (ADS)
Bondareva, L.; Zakharov, Yu; Goudov, A.
2017-04-01
The paper is dedicated to the mathematical model of slurry wastewater treatment and disposal in a flooded mine working. The goal of the research is to develop and analyze the mathematical model of suspended impurities flow and distribution. Impurity sedimentation model is under consideration. Due to the sediment compaction problem solution domain can be modified. The model allows making a forecast whether volley emission is possible. Numerical simulation results for “Kolchuginskaya” coal mine presented. Impurity concentration diagrams in outflow corresponding to the real full-scale data obtained. Safely operation time mine workings like a wastewater treatment facility are estimated. The carried out calculations demonstrate that the method of industrial wastewater treatment in flooded waste mine workings can be put into practice but it is very important to observe all the processes going on to avoid volley emission of accumulated impurities.
Tight-Binding Description of Impurity States in Semiconductors
ERIC Educational Resources Information Center
Dominguez-Adame, F.
2012-01-01
Introductory textbooks in solid state physics usually present the hydrogenic impurity model to calculate the energy of carriers bound to donors or acceptors in semiconductors. This model treats the pure semiconductor as a homogeneous medium and the impurity is represented as a fixed point charge. This approach is only valid for shallow impurities…
How to detect fluctuating stripes in the high-temperature superconductors
NASA Astrophysics Data System (ADS)
Kivelson, S. A.; Bindloss, I. P.; Fradkin, E.; Oganesyan, V.; Tranquada, J. M.; Kapitulnik, A.; Howald, C.
2003-10-01
This article discusses fluctuating order in a quantum disordered phase proximate to a quantum critical point, with particular emphasis on fluctuating stripe order. Optimal strategies are derived for extracting information concerning such local order from experiments, with emphasis on neutron scattering and scanning tunneling microscopy. These ideas are tested by application to two model systems—an exactly solvable one-dimensional (1D) electron gas with an impurity, and a weakly interacting 2D electron gas. Experiments on the cuprate high-temperature superconductors which can be analyzed using these strategies are extensively reviewed. The authors adduce evidence that stripe correlations are widespread in the cuprates. They compare and contrast the advantages of two limiting perspectives on the high-temperature superconductor: weak coupling, in which correlation effects are treated as a perturbation on an underlying metallic (although renormalized) Fermi-liquid state, and strong coupling, in which the magnetism is associated with well-defined localized spins, and stripes are viewed as a form of micro phase separation. The authors present quantitative indicators that the latter view better accounts for the observed stripe phenomena in the cuprates.
Predictive modelling of JT-60SA high-beta steady-state plasma with impurity accumulation
NASA Astrophysics Data System (ADS)
Hayashi, N.; Hoshino, K.; Honda, M.; Ide, S.
2018-06-01
The integrated modelling code TOPICS has been extended to include core impurity transport, and applied to predictive modelling of JT-60SA high-beta steady-state plasma with the accumulation of impurity seeded to reduce the divertor heat load. In the modelling, models and conditions are selected for a conservative prediction, which considers a lower bound of plasma performance with the maximum accumulation of impurity. The conservative prediction shows the compatibility of impurity seeding with core plasma with high-beta (β N > 3.5) and full current drive conditions, i.e. when Ar seeding reduces the divertor heat load below 10 MW m‑2, its accumulation in the core is so moderate that the core plasma performance can be recovered by additional heating within the machine capability to compensate for Ar radiation. Due to the strong dependence of accumulation on the pedestal density gradient, high separatrix density is important for the low accumulation as well as the low divertor heat load. The conservative prediction also shows that JT-60SA has enough capability to explore the divertor heat load control by impurity seeding in high-beta steady-state plasmas.
Nonperturbative stochastic method for driven spin-boson model
NASA Astrophysics Data System (ADS)
Orth, Peter P.; Imambekov, Adilet; Le Hur, Karyn
2013-01-01
We introduce and apply a numerically exact method for investigating the real-time dissipative dynamics of quantum impurities embedded in a macroscopic environment beyond the weak-coupling limit. We focus on the spin-boson Hamiltonian that describes a two-level system interacting with a bosonic bath of harmonic oscillators. This model is archetypal for investigating dissipation in quantum systems, and tunable experimental realizations exist in mesoscopic and cold-atom systems. It finds abundant applications in physics ranging from the study of decoherence in quantum computing and quantum optics to extended dynamical mean-field theory. Starting from the real-time Feynman-Vernon path integral, we derive an exact stochastic Schrödinger equation that allows us to compute the full spin density matrix and spin-spin correlation functions beyond weak coupling. We greatly extend our earlier work [P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.032118 82, 032118 (2010)] by fleshing out the core concepts of the method and by presenting a number of interesting applications. Methodologically, we present an analogy between the dissipative dynamics of a quantum spin and that of a classical spin in a random magnetic field. This analogy is used to recover the well-known noninteracting-blip approximation in the weak-coupling limit. We explain in detail how to compute spin-spin autocorrelation functions. As interesting applications of our method, we explore the non-Markovian effects of the initial spin-bath preparation on the dynamics of the coherence σx(t) and of σz(t) under a Landau-Zener sweep of the bias field. We also compute to a high precision the asymptotic long-time dynamics of σz(t) without bias and demonstrate the wide applicability of our approach by calculating the spin dynamics at nonzero bias and different temperatures.
Many-body interferometry of magnetic polaron dynamics
NASA Astrophysics Data System (ADS)
Ashida, Yuto; Schmidt, Richard; Tarruell, Leticia; Demler, Eugene
2018-02-01
The physics of quantum impurities coupled to a many-body environment is among the most important paradigms of condensed-matter physics. In particular, the formation of polarons, quasiparticles dressed by the polarization cloud, is key to the understanding of transport, optical response, and induced interactions in a variety of materials. Despite recent remarkable developments in ultracold atoms and solid-state materials, the direct measurement of their ultimate building block, the polaron cloud, has remained a fundamental challenge. We propose and analyze a platform to probe time-resolved dynamics of polaron-cloud formation with an interferometric protocol. We consider an impurity atom immersed in a two-component Bose-Einstein condensate where the impurity generates spin-wave excitations that can be directly measured by the Ramsey interference of surrounding atoms. The dressing by spin waves leads to the formation of magnetic polarons and reveals a unique interplay between few- and many-body physics that is signified by single- and multi-frequency oscillatory dynamics corresponding to the formation of many-body bound states. Finally, we discuss concrete experimental implementations in ultracold atoms.
Sinclair, N.; Heshami, K.; Deshmukh, C.; Oblak, D.; Simon, C.; Tittel, W.
2016-01-01
Non-destructive detection of photonic qubits is an enabling technology for quantum information processing and quantum communication. For practical applications, such as quantum repeaters and networks, it is desirable to implement such detection in a way that allows some form of multiplexing as well as easy integration with other components such as solid-state quantum memories. Here, we propose an approach to non-destructive photonic qubit detection that promises to have all the mentioned features. Mediated by an impurity-doped crystal, a signal photon in an arbitrary time-bin qubit state modulates the phase of an intense probe pulse that is stored during the interaction. Using a thulium-doped waveguide in LiNbO3, we perform a proof-of-principle experiment with macroscopic signal pulses, demonstrating the expected cross-phase modulation as well as the ability to preserve the coherence between temporal modes. Our findings open the path to a new key component of quantum photonics based on rare-earth-ion-doped crystals. PMID:27853153
Influence of impurities on the high temperature conductivity of SrTiO3
NASA Astrophysics Data System (ADS)
Bowes, Preston C.; Baker, Jonathon N.; Harris, Joshua S.; Behrhorst, Brian D.; Irving, Douglas L.
2018-01-01
In studies of high temperature electrical conductivity (HiTEC) of dielectrics, the impurity in the highest concentration is assumed to form a single defect that controls HiTEC. However, carrier concentrations are typically at or below the level of background impurities, and all impurities may complex with native defects. Canonical defect models ignore complex formation and lump defects from multiple impurities into a single effective defect to reduce the number of associated reactions. To evaluate the importance of background impurities and defect complexes on HiTEC, a grand canonical defect model was developed with input from density functional theory calculations using hybrid exchange correlation functionals. The influence of common background impurities and first nearest neighbor complexes with oxygen vacancies (vO) was studied for three doping cases: nominally undoped, donor doped, and acceptor doped SrTiO3. In each case, conductivity depended on the ensemble of impurity defects simulated with the extent of the dependence governed by the character of the dominant impurity and its tendency to complex with vO. Agreement between simulated and measured conductivity profiles as a function of temperature and oxygen partial pressure improved significantly when background impurities were included in the nominally undoped case. Effects of the impurities simulated were reduced in the Nb and Al doped cases as both elements did not form complexes and were present in concentrations well exceeding all other active impurities. The influence of individual impurities on HiTEC in SrTiO3 was isolated and discussed and motivates further experiments on singly doped SrTiO3.
Implementing quantum gates through scattering between a static and a flying qubit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cordourier-Maruri, G.; Coss, R. de; Ciccarello, F.
2010-11-15
We investigate whether a two-qubit quantum gate can be implemented in a scattering process involving a flying and a static qubit. To this end, we focus on a paradigmatic setup made out of a mobile particle and a quantum impurity, whose respective spin degrees of freedom couple to each other during a one-dimensional scattering process. Once a condition for the occurrence of quantum gates is derived in terms of spin-dependent transmission coefficients, we show that this can be actually fulfilled through the insertion of an additional narrow potential barrier. An interesting observation is that under resonance conditions this procedure enablesmore » a gate only for isotropic Heisenberg (exchange) interactions and fails for an XY interaction. We show the existence of parameter regimes for which gates able to establish a maximum amount of entanglement can be implemented. The gates are found to be robust to variations of the optimal parameters.« less
Quantum metrology with a single spin-3/2 defect in silicon carbide
NASA Astrophysics Data System (ADS)
Soykal, Oney O.; Reinecke, Thomas L.
We show that implementations for quantum sensing with exceptional sensitivity and spatial resolution can be made using the novel features of semiconductor high half-spin multiplet defects with easy-to-implement optical detection protocols. To achieve this, we use the spin- 3 / 2 silicon monovacancy deep center in hexagonal silicon carbide based on our rigorous derivation of this defect's ground state and of its electronic and optical properties. For a single VSi- defect, we obtain magnetic field sensitivities capable of detecting individual nuclear magnetic moments. We also show that its zero-field splitting has an exceptional strain and temperature sensitivity within the technologically desirable near-infrared window of biological systems. Other point defects, i.e. 3d transition metal or rare-earth impurities in semiconductors, may also provide similar opportunities in quantum sensing due to their similar high spin (S >= 3 / 2) configurations. This work was supported in part by ONR and by the Office of Secretary of Defense, Quantum Science and Engineering Program.
Designing quantum dots for solotronics.
Kobak, J; Smoleński, T; Goryca, M; Papaj, M; Gietka, K; Bogucki, A; Koperski, M; Rousset, J-G; Suffczyński, J; Janik, E; Nawrocki, M; Golnik, A; Kossacki, P; Pacuski, W
2014-01-01
Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory.
Designing quantum dots for solotronics
Kobak, J.; Smoleński, T.; Goryca, M.; Papaj, M.; Gietka, K.; Bogucki, A.; Koperski, M.; Rousset, J.-G.; Suffczyński, J.; Janik, E.; Nawrocki, M.; Golnik, A.; Kossacki, P.; Pacuski, W.
2014-01-01
Solotronics, optoelectronics based on solitary dopants, is an emerging field of research and technology reaching the ultimate limit of miniaturization. It aims at exploiting quantum properties of individual ions or defects embedded in a semiconductor matrix. It has already been shown that optical control of a magnetic ion spin is feasible using the carriers confined in a quantum dot. However, a serious obstacle was the quenching of the exciton luminescence by magnetic impurities. Here we show, by photoluminescence studies on thus-far-unexplored individual CdTe dots with a single cobalt ion and CdSe dots with a single manganese ion, that even if energetically allowed, nonradiative exciton recombination through single-magnetic-ion intra-ionic transitions is negligible in such zero-dimensional structures. This opens solotronics for a wide range of as yet unconsidered systems. On the basis of results of our single-spin relaxation experiments and on the material trends, we identify optimal magnetic-ion quantum dot systems for implementation of a single-ion-based spin memory. PMID:24463946
NASA Astrophysics Data System (ADS)
El Harouny, El Hassan; Nakra Mohajer, Soukaina; Ibral, Asmaa; El Khamkhami, Jamal; Assaid, El Mahdi
2018-05-01
Eigenvalues equation of hydrogen-like off-center single donor impurity confined in polarized homogeneous hemispherical quantum dot deposited on a wetting layer, capped by insulated matrix and submitted to external uniform electric field is solved in the framework of the effective mass approximation. An infinitely deep potential is used to describe effects of quantum confinement due to conduction band offsets at surfaces where quantum dot and surrounding materials meet. Single donor ground state total and binding energies in presence of electric field are determined via two-dimensional finite difference approach and Ritz-Hassé variation principle. For the latter method, attractive coulomb correlation between electron and ionized single donor is taken into account in the expression of trial wave function. It appears that off-center single dopant binding energy, spatial extension and radial probability density are strongly dependent on hemisphere radius and single dopant position inside quantum dot. Influence of a uniform electric field is also investigated. It shows that Stark effect appears even for very small size dots and that single dopant energy shift is more significant when the single donor is near hemispherical surface.
NASA Astrophysics Data System (ADS)
Zhuravlev, A. K.; Anokhin, A. O.; Irkhin, V. Yu.
2018-02-01
Simple scaling consideration and NRG solution of the one- and two-channel Kondo model in the presence of a logarithmic Van Hove singularity at the Fermi level is given. The temperature dependences of local and impurity magnetic susceptibility and impurity entropy are calculated. The low-temperature behavior of the impurity susceptibility and impurity entropy turns out to be non-universal in the Kondo sense and independent of the s-d coupling J. The resonant level model solution in the strong coupling regime confirms the NRG results. In the two-channel case the local susceptibility demonstrates a non-Fermi-liquid power-law behavior.
Electrical control of spin dynamics in finite one-dimensional systems
NASA Astrophysics Data System (ADS)
Pertsova, A.; Stamenova, M.; Sanvito, S.
2011-10-01
We investigate the possibility of the electrical control of spin transfer in monoatomic chains incorporating spin impurities. Our theoretical framework is the mixed quantum-classical (Ehrenfest) description of the spin dynamics, in the spirit of the s-d model, where the itinerant electrons are described by a tight-binding model while localized spins are treated classically. Our main focus is on the dynamical exchange interaction between two well-separated spins. This can be quantified by the transfer of excitations in the form of transverse spin oscillations. We systematically study the effect of an electrostatic gate bias Vg on the interconnecting channel and we map out the long-range dynamical spin transfer as a function of Vg. We identify regions of Vg giving rise to significant amplification of the spin transmission at low frequencies and relate this to the electronic structure of the channel.
NASA Astrophysics Data System (ADS)
Alekseev, Ilia M.; Makhviladze, Tariel M.; Minushev, Airat Kh.; Sarychev, Mikhail E.
2009-10-01
On the basis of the general thermodynamic approach developed in a model describing the influence of point defects on the separation work at an interface of solid materials is developed. The kinetic equations describing the defect exchange between the interface and the material bulks are formulated. The model have been applied to the case when joined materials contain such point defects as impurity atoms (interstitial and substitutional), concretized the main characteristic parameters required for a numerical modeling as well as clarified their domains of variability. The results of the numerical modeling concerning the dependences on impurity concentrations and the temperature dependences are obtained and analyzed. Particularly, the effects of interfacial strengthening and adhesion incompatibility predicted analytically for the case of impurity atoms are verified and analyzed.
NASA Astrophysics Data System (ADS)
Alekseev, Ilia M.; Makhviladze, Tariel M.; Minushev, Airat Kh.; Sarychev, Mikhail E.
2010-02-01
On the basis of the general thermodynamic approach developed in a model describing the influence of point defects on the separation work at an interface of solid materials is developed. The kinetic equations describing the defect exchange between the interface and the material bulks are formulated. The model have been applied to the case when joined materials contain such point defects as impurity atoms (interstitial and substitutional), concretized the main characteristic parameters required for a numerical modeling as well as clarified their domains of variability. The results of the numerical modeling concerning the dependences on impurity concentrations and the temperature dependences are obtained and analyzed. Particularly, the effects of interfacial strengthening and adhesion incompatibility predicted analytically for the case of impurity atoms are verified and analyzed.
Impurity States and diamagnetic susceptibility of a donor in a triangular quantum well
NASA Astrophysics Data System (ADS)
Kalpana, P.; Reuben, A. Merwyn Jasper D.; Nithiananthi, P.; Jayakumar, K.
2017-05-01
We have calculated the binding energy and the diamagnetic susceptibility(χdia) of the ground (1s) and few low lying excited states (2s and 2p±) in a GaAs/AlxGa1-xAs Triangular Quantum Well (TQW) for the Al composition of x = 0.3. Since the estimation of
The Effects of Impurities on Protein Crystal Growth and Nucleation: A Preliminary Study
NASA Technical Reports Server (NTRS)
Schall, Constance A.
1998-01-01
Kubota and Mullin (1995) devised a simple model to account for the effects of impurities on crystal growth of small inorganic and organic molecules in aqueous solutions. Experimentally, the relative step velocity and crystal growth of these molecules asymptotically approach zero or non-zero values with increasing concentrations of impurities. Alternatively, the step velocity and crystal growth can linearly approach zero as the impurity concentration increases. The Kubota-Mullin model assumes that the impurity exhibits Langmuirian adsorption onto the crystal surface. Decreases in step velocities and subsequent growth rates are related to the fractional coverage (theta) of the crystal surface by adsorbed impurities; theta = Kx / (I +Kx), x = mole fraction of impurity in solution. In the presence of impurities, the relative step velocity, V/Vo, and the relative growth rate of a crystal face, G/Go, are proposed to conform to the following equations: V/Vo approx. = G/Go = 1 - (alpha)(theta). The adsorption of impurity is assumed to be rapid and in quasi-equilibrium with the crystal surface sites available. When the value of alpha, an effectiveness factor, is one the growth will asymptotically approach zero with increasing concentrations of impurity. At values less than one, growth approaches a non-zero value asymptotically. When alpha is much greater than one, there will be a linear relationship between impurity concentration and growth rates. Kubota and Mullin expect alpha to decrease with increasing supersaturation and shrinking size of a two dimensional nucleus. It is expected that impurity effects on protein crystal growth will exhibit behavior similar to that of impurities in small molecule growth. A number of proteins were added to purified chicken egg white lysozyme, the effect on crystal nucleation and growth assessed.
Robustness against non-magnetic impurities in topological superconductors
NASA Astrophysics Data System (ADS)
Nagai, Y.; Ota, Y.; Machida, M.
2014-12-01
We study the robustness against non-magnetic impurities in a three-dimensional topological superconductor, focusing on an effective model (massive Dirac Bogoliubov-de Gennes (BdG) Hamiltonian with s-wave on-site pairing) of CuxBi2Se3 with the parameter set determined by the first-principles calculation. With the use of the self-consistent T- matrix approximation for impurity scattering, we discuss the impurity-concentration dependence of the zero-energy density of states. We show that a single material variable, measuring relativistic effects in the Dirac-BdG Hamiltonian, well characterizes the numerical results. In the nonrelativistic limit, the odd-parity fully-gapped topological superconductivity is fragile against non-magnetic impurities, since this superconductivity can be mapped onto the p-wave superconductivity. On the other hand, in the ultrarelativistic limit, the superconductivity is robust against the non-magnetic impurities, since the effective model has the s-wave superconductivity. We derive the effective Hamiltonian in the both limit.
Demonstration of a Bias Tunable Quantum Dots-in-a-Well Focal Plane Array
2009-01-01
uniformity and mea- sured noise equivalent temperature difference for the double DWELL devices is computed and compared to the same results from the original...first generation DWELL. Finally, higher temperature operation is explored. Overall, the double DWELL devices had lower noise equivalent temperature...infrared photodetectors ( QWIPs ) with various doping and impurities have produced FPAs capable of detection across much of the infrared spectrum from
Photon Antibunching in the Fluorescence of a Single Dye Molecule Trapped in a Solid
1992-06-08
number) FIELD GROUP SUB-GROUP single-molecule spectroscopy in solids, photon antibunching, quantum-optics, nonclassical effects pentacene in p-terphenyl...emitted by an optically pumped single molecule of pentacene In a p-terphenyl host has been Investigated at short times. The correlation function...excitation tcclnique, certain individual pentacene impurity molecules in a p-terphenyl crystal 11 were observed to spectrally diffuse, i.e. their absorption
Spin filtering by field-dependent resonant tunneling.
Ristivojevic, Zoran; Japaridze, George I; Nattermann, Thomas
2010-02-19
We consider theoretically transport in a spinful one-channel interacting quantum wire placed in an external magnetic field. For the case of two pointlike impurities embedded in the wire, under a small voltage bias the spin-polarized current occurs at special points in the parameter space, tunable by a single parameter. At sufficiently low temperatures complete spin polarization may be achieved, provided repulsive interaction between electrons is not too strong.
Sensing Coulomb impurities with 1/f noise in 3D Topological Insulator
NASA Astrophysics Data System (ADS)
Bhattacharyya, Semonti; Banerjee, Mitali; Nhalil, Hariharan; Elizabeth, Suja; Ghosh, Arindam
2015-03-01
Electrical transport in the non-trivial surface states of bulk Topological Insulator (TI) reveal several intriguing properties ranging from bipolar field effect transistor action, weak antilocalization in quantum transport, to the recently discovered quantum anomalous Hall effect. Many of these phenomena depend crucially on the nature of disorder and its screening by the Dirac Fermions at the TI surface. We have carried out a systematic study of low-frequency 1/f noise in Bi1.6Sb0.4Te2Se1 single crystals, to explore the dominant source of scattering of surface electrons and monitor relative contributions of the surface and bulk channels. Our results reveal that while trapped coulomb impurities at the substrate-TI interface are dominating source of scattering for thin (10 nm) TI, charged crystal disorder contribute strongly in thick TI (110 nm) channels. An unexpected maximum at 25K in noise from thick TI devices indicate scattering of the surface states by a cooperative charge dynamics in the bulk of the TI, possibly associated with the Selenium vacancies. Our experiment demonstrates, for the first time, impact of the bulk charge distribution on the surface state transport in TIs that could be crucial to the implementation of these materials in electronic applications.
The Property, Preparation and Application of Topological Insulators: A Review
Tian, Wenchao; Shi, Jing; Wang, Yongkun
2017-01-01
Topological insulator (TI), a promising quantum and semiconductor material, has gapless surface state and narrow bulk band gap. Firstly, the properties, classifications and compounds of TI are introduced. Secondly, the preparation and doping of TI are assessed. Some results are listed. (1) Although various preparation methods are used to improve the crystal quality of the TI, it cannot reach the industrialization. Fermi level regulation still faces challenges; (2) The carrier type and lattice of TI are affected by non-magnetic impurities. The most promising property is the superconductivity at low temperature; (3) Magnetic impurities can destroy the time-reversal symmetry of the TI surface, which opens the band gap on the TI surface resulting in some novel physical effects such as quantum anomalous Hall effect (QAHE). Thirdly, this paper summarizes various applications of TI including photodetector, magnetic device, field-effect transistor (FET), laser, and so on. Furthermore, many of their parameters are compared based on TI and some common materials. It is found that TI-based devices exhibit excellent performance, but some parameters such as signal to noise ratio (S/N) are still lower than other materials. Finally, its advantages, challenges and future prospects are discussed. Overall, this paper provides an opportunity to improve crystal quality, doping regulation and application of TI. PMID:28773173
Resonant optical spectroscopy and coherent control of C r4 + spin ensembles in SiC and GaN
NASA Astrophysics Data System (ADS)
Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; Bourassa, Alexandre; Son, N. T.; Janzén, Erik; Awschalom, David D.
2017-01-01
Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information and spintronic technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here, we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (C r4 + ) impurities in silicon carbide (SiC) and gallium nitride (GaN). Spin polarization is made possible by the narrow optical linewidths of these ensembles (<8.5 GHz), which are similar in magnitude to the ground state zero-field spin splitting energies of the ions at liquid helium temperatures. This allows us to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained with the defects' zero-phonon lines. These characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.
Resonant optical spectroscopy and coherent control of C r 4 + spin ensembles in SiC and GaN
Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; ...
2017-01-15
Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr 4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). Polarization is made possible by the narrow optical linewidths of these ensembles (< 8.5 GHz), which are similar in magnitude to the ground state zero-field spinmore » splitting energies of the ions at liquid helium temperatures. We therefore are able to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that > 73% of the overall optical emission is contained with the defects’ zero-phonon lines. Lastly, these characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.« less
A white noise approach to the Feynman integrand for electrons in random media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grothaus, M., E-mail: grothaus@mathematik.uni-kl.de; Riemann, F., E-mail: riemann@mathematik.uni-kl.de; Suryawan, H. P., E-mail: suryawan@mathematik.uni-kl.de
2014-01-15
Using the Feynman path integral representation of quantum mechanics it is possible to derive a model of an electron in a random system containing dense and weakly coupled scatterers [see F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)]. The main goal of this paper is to give a mathematically rigorous realization of the corresponding Feynman integrand in dimension one based on the theory of white noise analysis. We refine and apply a Wick formula for the product of a square-integrable function with Donsker's delta functions and usemore » a method of complex scaling. As an essential part of the proof we also establish the existence of the exponential of the self-intersection local times of a one-dimensional Brownian bridge. As a result we obtain a neat formula for the propagator with identical start and end point. Thus, we obtain a well-defined mathematical object which is used to calculate the density of states [see, e.g., F. Edwards and Y. B. Gulyaev, “The density of states of a highly impure semiconductor,” Proc. Phys. Soc. 83, 495–496 (1964)].« less
Numerically Exact Long Time Magnetization Dynamics Near the Nonequilibrium Kondo Regime
NASA Astrophysics Data System (ADS)
Cohen, Guy; Gull, Emanuel; Reichman, David; Millis, Andrew; Rabani, Eran
2013-03-01
The dynamical and steady-state spin response of the nonequilibrium Anderson impurity model to magnetic fields, bias voltages, and temperature is investigated by a numerically exact method which allows access to unprecedentedly long times. The method is based on using real, continuous time bold Monte Carlo techniques--quantum Monte Carlo sampling of diagrammatic corrections to a partial re-summation--in order to compute the kernel of a memory function, which is then used to determine the reduced density matrix. The method owes its effectiveness to the fact that the memory kernel is dominated by relatively short-time properties even when the system's dynamics are long-ranged. We make predictions regarding the non-monotonic temperature dependence of the system at high bias voltage and the oscillatory quench dynamics at high magnetic fields. We also discuss extensions of the method to the computation of transport properties and correlation functions, and its suitability as an impurity solver free from the need for analytical continuation in the context of dynamical mean field theory. This work is supported by the US Department of Energy under grant DE-SC0006613, by NSF-DMR-1006282 and by the US-Israel Binational Science Foundation. GC is grateful to the Yad Hanadiv-Rothschild Foundation for the award of a Rothschild Fellowship.
Scanned gate microscopy of inter-edge channel scattering in the quantum Hall regime
NASA Astrophysics Data System (ADS)
Woodside, Michael T.; Vale, Chris; McEuen, Paul L.; Kadow, C.; Maranowski, K. D.; Gossard, A. C.
2000-03-01
Novel scanned probe techniques have recently been used to study in detail the microscopic properties of 2D electron gases in the quantum Hall regime [1]. We report local measurements of the scattering between edge states in a quantum Hall conductor with non-equilibrium edge state populations. Using an atomic force microscope (AFM) tip as a local gate to perturb the edge states, we find that the scattering is dominated by individual, microscopic scattering sites, which we directly image and characterise. The dependence of the scattering on the AFM tip voltage reveals that it involves tunneling both through quasi-bound impurity states and through disorder-induced weak links between the edge states. [1] S. H. Tessmer et al., Nature 392, 51 (1998); K. L. McCormick et al., Phys. Rev. B 59, 4654 (1999); A. Yacoby et al., Solid State Comm. 111, 1 (1999).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotani, Teruhisa, E-mail: tkotani@iis.u-tokyo.ac.jp; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505; Advanced Technology Research Laboratories, Sharp Corporation, 2613-1 Ichinomoto-cho, Tenri, Nara 632-8567
2015-09-14
Blue shift and broadening of the absorption spectra of mid-infrared intersubband transition in non-polar m-plane AlGaN/GaN 10 quantum wells were observed with increasing doping density. As the doping density was increased from 6.6 × 10{sup 11} to 6.0 × 10{sup 12 }cm{sup −2} per a quantum well, the intersubband absorption peak energy shifted from 274.0 meV to 302.9 meV, and the full width at half maximum increased from 56.4 meV to 112.4 meV. Theoretical calculations reveal that the blue shift is due to many body effects, and the intersubband linewidth in doped AlGaN/GaN QW is mainly determined by scattering due to interface roughness, LO phonons, and ionized impurities.
Transport properties of the two-dimensional electron gas in AlxGa1-xN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Han, Xiuxun; Honda, Yoshio; Narita, Tetsuo; Yamaguchi, Masahito; Sawaki, Nobuhiko
2007-01-01
Magnetotransport measurements were performed on a series of AlxGa1-xN/GaN heterostructures with different Al compositions (x = 0.15, 0.20 and 0.30) at 4.2 K. Adopting a fast Fourier transform method, we analysed the Shubnikov-de Hass oscillations due to the two-dimensional electron gas to derive the quantum scattering time (τq). It was found that the quantum scattering time in the ground subband decreases with increasing Al composition: 0.194 ps (x = 0.15), 0.174 ps (x = 0.20) and 0.123 ps (x = 0.30), respectively. To discern the predominant scattering process, the scattering time limited by interface roughness, the residual impurity and the alloy disorder were investigated numerically by including inter-subband scattering. We found that enhanced interface roughness scattering dominates both the transport and quantum scattering time in the ground subband.
Magnetotunneling spectroscopy of dilute Ga(AsN) quantum wells.
Endicott, J; Patanè, A; Ibáñez, J; Eaves, L; Bissiri, M; Hopkinson, M; Airey, R; Hill, G
2003-09-19
We use magnetotunneling spectroscopy to explore the admixing of the extended GaAs conduction band states with the localized N-impurity states in dilute GaAs(1-y)N(y) quantum wells. In our resonant tunneling diodes, electrons can tunnel into the N-induced E- and E+ subbands in a GaAs(1-y)N(y) quantum well layer, leading to resonant peaks in the current-voltage characteristics. By varying the magnetic field applied perpendicular to the current direction, we can tune an electron to tunnel into a given k state of the well; since the applied voltage tunes the energy, we can map out the form of the energy-momentum dispersion curves of E- and E+. The data reveal that for a small N content (approximately 0.1%) the E- and E+ subbands are highly nonparabolic and that the heavy effective mass E+ states have a significant Gamma-conduction band character even at k=0.
Type-controlled nanodevices based on encapsulated few-layer black phosphorus for quantum transport
NASA Astrophysics Data System (ADS)
Long, Gen; Xu, Shuigang; Shen, Junying; Hou, Jianqiang; Wu, Zefei; Han, Tianyi; Lin, Jiangxiazi; Wong, Wing Ki; Cai, Yuan; Lortz, Rolf; Wang, Ning
2016-09-01
We demonstrate that encapsulation of atomically thin black phosphorus (BP) by hexagonal boron nitride (h-BN) sheets is very effective for minimizing the interface impurities induced during fabrication of BP channel material for quantum transport nanodevices. Highly stable BP nanodevices with ultrahigh mobility and controllable types are realized through depositing appropriate metal electrodes after conducting a selective etching to the BP encapsulation structure. Chromium and titanium are suitable metal electrodes for BP channels to control the transition from a p-type unipolar property to ambipolar characteristic because of different work functions. Record-high mobilities of 6000 cm2 V-1 s-1 and 8400 cm2 V-1 s-1 are respectively obtained for electrons and holes at cryogenic temperatures. High-mobility BP devices enable the investigation of quantum oscillations with an indistinguishable Zeeman effect in laboratory magnetic field.
Erbium-implanted silica colloids with 80% luminescence quantum efficiency
NASA Astrophysics Data System (ADS)
Slooff, L. H.; de Dood, M. J. A.; van Blaaderen, A.; Polman, A.
2000-06-01
Silica colloids with a diameter of 240-360 nm, grown by wet chemical synthesis using ethanol, ammonia, water, and tetraethoxysilane, were implanted with 350 keV Er ions, to peak concentrations of 0.2-1.1 at. % and put onto a silicon or glass substrate. After annealing at 700-900 °C the colloids show clear room-temperature photoluminescence at 1.53 μm, with lifetimes as high as 17 ms. By comparing data of different Er concentrations, the purely radiative lifetime is estimated to be 20-22 ms, indicating a high quantum efficiency of about 80%. This high quantum efficiency indicates that, after annealing, the silica colloids are almost free of OH impurities. Spinning a layer of polymethylmethacrylate over the silica spheres results in an optically transparent nanocomposite layer, that can be used as a planar optical waveguide amplifier at 1.5 μm that is fully compatible with polymer technology.
Driving a Superconductor to Insulator Transition with Random Gauge Fields.
Nguyen, H Q; Hollen, S M; Shainline, J; Xu, J M; Valles, J M
2016-11-30
Typically the disorder that alters the interference of particle waves to produce Anderson localization is potential scattering from randomly placed impurities. Here we show that disorder in the form of random gauge fields that act directly on particle phases can also drive localization. We present evidence of a superfluid bose glass to insulator transition at a critical level of this gauge field disorder in a nano-patterned array of amorphous Bi islands. This transition shows signs of metallic transport near the critical point characterized by a resistance , indicative of a quantum phase transition. The critical disorder depends on interisland coupling in agreement with recent Quantum Monte Carlo simulations. We discuss how this disorder tuned SIT differs from the common frustration tuned SIT that also occurs in magnetic fields. Its discovery enables new high fidelity comparisons between theoretical and experimental studies of disorder effects on quantum critical systems.
Effect of atomic disorder on the magnetic phase separation.
Groshev, A G; Arzhnikov, A K
2018-05-10
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical [Formula: see text] and [Formula: see text] phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the [Formula: see text] Anderson-Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
Effect of atomic disorder on the magnetic phase separation
NASA Astrophysics Data System (ADS)
Groshev, A. G.; Arzhnikov, A. K.
2018-05-01
The effect of disorder on the magnetic phase separation between the antiferromagnetic and incommensurate helical and phases is investigated. The study is based on the quasi-two-dimensional single-band Hubbard model in the presence of atomic disorder (the Anderson–Hubbard model). A model of binary alloy disorder is considered, in which the disorder is determined by the difference in energy between the host and impurity atomic levels at a fixed impurity concentration. The problem is solved within the theory of functional integration in static approximation. Magnetic phase diagrams are obtained as functions of the temperature, the number of electrons and impurity concentration with allowance for phase separation. It is shown that for the model parameters chosen, the disorder caused by impurities whose atomic-level energy is greater than that of the host atomic levels, leads to qualitative changes in the phase diagram of the impurity-free system. In the opposite case, only quantitative changes occur. The peculiarities of the effect of disorder on the phase separation regions of the quasi-two-dimensional Hubbard model are discussed.
Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states.
Iftikhar, Z; Jezouin, S; Anthore, A; Gennser, U; Parmentier, F D; Cavanna, A; Pierre, F
2015-10-08
Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.
Unconventional transport in ultraclean graphene constriction devices
NASA Astrophysics Data System (ADS)
Pita Vidal, Marta; Ma, Qiong; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
Under mesoscopic conditions, strong electron-electron interactions and weak electron-phonon coupling in graphene lead to hydrodynamic behavior of electrons, resulting in unusual and unexpected transport phenomena. Specifically, this hydrodynamical collective cooperation of electrons is predicted to enhance the flow of electrical current, leading to a striking higher-than-ballistic conductance through a narrow geometrical constriction. To access the hydrodynamic regime, we fabricated high-quality, low-disorder graphene nano-constriction devices encapsulated by hexagonal boron nitride, where electron-electron scattering dominates impurity scattering. We will report on our systematic four-probe conductance measurements on devices with different constriction widths as a function of number density and temperature. The observation of quantum transport phenomena that are inconsistent with the non-interacting ballistic free-fermion model would suggest a macroscopic transport signature of electron viscosity.
On the radiative effects of light-absorbing impurities on snowpack evolution
NASA Astrophysics Data System (ADS)
Dumont, M.; Tuzet, F.; Lafaysse, M.; Arnaud, L.; Picard, G.; Lejeune, Y.; Lamare, M.; Morin, S.; Voisin, D.; Di Mauro, B.
2017-12-01
The presence of light absorbing impurities in snow strongly decreases snow reflectance leading to an increase in the amount of solar energy absorbed by the snowpack. This effect is also known as impurities direct radiative effect. The change in the amount of energy absorbed by the snowpack modifies the temperature profile inside the snowpack and in turn snow metamorphism (impurities indirect radiative effects). In this work, we used the detailed snowpack model SURFEX/ISBA-Crocus with an explicit representation of snow light-absorbing impurities content (Tuzet et al., 2017) fed by medium-resolution ALADIN-Climate atmospheric model to represent dust and black carbon atmospheric deposition fluxes. The model is used at two sites: Col de Porte (medium elevation site in the French Alps) and Torgnon (high elevation site in the Italian Alps). The simulations are compared to in-situ observations and used to quantify the effects of light-absorbing impurities on snow melt rate and timing. The respective parts of the direct and indirect radiative effects of light-absorbing impurities in snow are also computed for the two sites, emphasizing the need to account for the interactions between snow metamorphism and LAI radiative properties, to accurately predict the effects of light-absorbing impurities in snow. Moreover, we describe how automated hyperspectral reflectance can be used to estimate effective impurities surface content in snow. Finally we demonstrate how these reflectances measurements either from in situ or satellite data can be used via an assimilation scheme to constrain snowpack ensemble simulations and better predict the snowpack state and evolution.
Impurity effects on ionic-liquid-based supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Kun; Lian, Cheng; Henderson, Douglas; Wu, Jianzhong
2017-02-01
Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface of a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. By comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.
Impurity Induced Phase Competition and Supersolidity
NASA Astrophysics Data System (ADS)
Karmakar, Madhuparna; Ganesh, R.
2017-12-01
Several material families show competition between superconductivity and other orders. When such competition is driven by doping, it invariably involves spatial inhomogeneities which can seed competing orders. We study impurity-induced charge order in the attractive Hubbard model, a prototypical model for competition between superconductivity and charge density wave order. We show that a single impurity induces a charge-ordered texture over a length scale set by the energy cost of the competing phase. Our results are consistent with a strong-coupling field theory proposed earlier in which superconducting and charge order parameters form components of an SO(3) vector field. To discuss the effects of multiple impurities, we focus on two cases: correlated and random distributions. In the correlated case, the CDW puddles around each impurity overlap coherently leading to a "supersolid" phase with coexisting pairing and charge order. In contrast, a random distribution of impurities does not lead to coherent CDW formation. We argue that the energy lowering from coherent ordering can have a feedback effect, driving correlations between impurities. This can be understood as arising from an RKKY-like interaction, mediated by impurity textures. We discuss implications for charge order in the cuprates and doped CDW materials such as NbSe2.
Electronic properties of superlattices on quantum rings.
da Costa, D R; Chaves, A; Ferreira, W P; Farias, G A; Ferreira, R
2017-04-26
We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.
Electronic properties of superlattices on quantum rings
NASA Astrophysics Data System (ADS)
da Costa, D. R.; Chaves, A.; Ferreira, W. P.; Farias, G. A.; Ferreira, R.
2017-04-01
We present a theoretical study of the one-electron states of a semiconductor-made quantum ring (QR) containing a series of piecewise-constant wells and barriers distributed along the ring circumference. The single quantum well and the superlattice cases are considered in detail. We also investigate how such confining potentials affect the Aharonov-Bohm like oscillations of the energy spectrum and current in the presence of a magnetic field. The model is simple enough so as to allow obtaining various analytical or quasi-analytical results. We show that the well-in-a-ring structure presents enhanced localization features, as well as specific geometrical resonances in its above-barrier spectrum. We stress that the superlattice-in-a-ring structure allows giving a physical meaning to the often used but usually artificial Born-von-Karman periodic conditions, and discuss in detail the formation of energy minibands and minigaps for the circumferential motion, as well as several properties of the superlattice eigenstates in the presence of the magnetic field. We obtain that the Aharonov-Bohm oscillations of below-barrier miniband states are reinforced, owing to the important tunnel coupling between neighbour wells of the superlattice, which permits the electron to move in the ring. Additionally, we analysis a superlattice-like structure made of a regular distribution of ionized impurities placed around the QR, a system that may implement the superlattice in a ring idea. Finally, we consider several random disorder models, in order to study roughness disorder and to tackle the robustness of some results against deviations from the ideally nanostructured ring system.
NASA Astrophysics Data System (ADS)
Wellens, Thomas; Jalabert, Rodolfo A.
2016-10-01
We develop a self-consistent theory describing the spin and spatial electron diffusion in the impurity band of doped semiconductors under the effect of a weak spin-orbit coupling. The resulting low-temperature spin-relaxation time and diffusion coefficient are calculated within different schemes of the self-consistent framework. The simplest of these schemes qualitatively reproduces previous phenomenological developments, while more elaborate calculations provide corrections that approach the values obtained in numerical simulations. The results are universal for zinc-blende semiconductors with electron conductance in the impurity band, and thus they are able to account for the measured spin-relaxation times of materials with very different physical parameters. From a general point of view, our theory opens a new perspective for describing the hopping dynamics in random quantum networks.
Creation of Rydberg Polarons in a Bose Gas
NASA Astrophysics Data System (ADS)
Camargo, F.; Schmidt, R.; Whalen, J. D.; Ding, R.; Woehl, G.; Yoshida, S.; Burgdörfer, J.; Dunning, F. B.; Sadeghpour, H. R.; Demler, E.; Killian, T. C.
2018-02-01
We report spectroscopic observation of Rydberg polarons in an atomic Bose gas. Polarons are created by excitation of Rydberg atoms as impurities in a strontium Bose-Einstein condensate. They are distinguished from previously studied polarons by macroscopic occupation of bound molecular states that arise from scattering of the weakly bound Rydberg electron from ground-state atoms. The absence of a p -wave resonance in the low-energy electron-atom scattering in Sr introduces a universal behavior in the Rydberg spectral line shape and in scaling of the spectral width (narrowing) with the Rydberg principal quantum number, n . Spectral features are described with a functional determinant approach (FDA) that solves an extended Fröhlich Hamiltonian for a mobile impurity in a Bose gas. Excited states of polyatomic Rydberg molecules (trimers, tetrameters, and pentamers) are experimentally resolved and accurately reproduced with a FDA.
NASA Astrophysics Data System (ADS)
Ohsugi, S.; Tokunaga, Y.; Ishida, K.; Kitaoka, Y.; Azuma, M.; Fujishiro, Y.; Takano, M.
1999-08-01
We report characteristics of impurity-induced staggered polarization (IISP) and antiferromagnetic long-range order (AF-LRO) in the gapped spin-1/2 Heisenberg two-leg ladder compound SrCu2O3 (Sr123). We have carried out comprehensive NMR and NQR investigations on three impurity-doped systems, Sr(Cu1-xMx)2O3 (M=Zn, Ni) with x<=0.02 and Sr1-xLaxCu2O3 with x<=0.03. Either the Zn or Ni impurity that is nonmagnetic depletes a single spin on the ladders, whereas the La impurity is believed to dope electrons onto the ladders. The width of the Lorentzian Cu NMR spectrum increases with the increase in impurity content x and follows the Curie-like temperature (T) dependence as W/T. The W's for the Zn- and Ni-doped samples (M doping) are larger than for the La-doped one (La doping). The NMR spectra were fit by assuming that unpaired spin S0=1/2 induced next to impurity on the rung for the Zn and Ni doping (S0=1/4 for the La doping) creates the staggered spin polarization along the leg, which decreases exponentially from S0. In Sr123, an instantaneous spin-correlation length ξ0 was theoretically predicted as ξ0/a~3-8, where a is the lattice spacing between the Cu sites along the leg. However, a correlation length ξs/a estimated from the IISP along the leg was found to be much longer than ξ0/a in x=0.001 and 0.005. The notable result is that ξs/a that was found to be T independent is scaled to mean distances DAV=1/(2x) between the Zn and Ni impurities and DAV=1/x between the La impurities. When DAV=500 for x=0.001 (Zn doping), ξs/a~50 is estimated. The significantly broadened NQR spectrum has provided unambiguous evidence for the AF-LRO in the Zn and Ni doping (x=0.01 and 0.02). Rather uniform AF moments at the middle Cu sites between the impurities are estimated to be about 0.04μB at 1.4 K along the a axis. By assuming that exponential decay constants of AF moments are equivalent to ξs/a's for the IISP, the size of an AF moment next to the impurity is deduced as SAF~1/4. We propose that these exponential distributions of IISP and AF moments along the two-leg suggest that an interladder interaction is in a weakly coupled quasi-one-dimensional (WC-Q1D) regime. The formula of TN=J0exp(-DAV/(ξs/a)) based on the WC-Q1D model explains TN(exp)=3 K (x=0.01) and 5.8 K (x=0.02) quantitatively and predicts to be as small as TN=0.09 K for x=0.001 using J0=2000 K. On the other hand, there is no evidence of AF-LRO for the La doping (x=0.02 and 0.03) down to 1.4 K, nevertheless their ξs/a's are almost equivalent to those in the Zn and Ni doping (x=0.01 and 0.02). We remark that the Q1D-IISP is dramatically enhanced by the interladder interaction even though so weak, once the impurity breaks up the quantum coherence in the short-range resonating valence bond (RVB) state with the gap. On the one hand, we propose that TN is determined by a strength of the interladder interaction and a size of S0.
Impurity effects in crystal growth from solutions: Steady states, transients and step bunch motion
NASA Astrophysics Data System (ADS)
Ranganathan, Madhav; Weeks, John D.
2014-05-01
We analyze a recently formulated model in which adsorbed impurities impede the motion of steps in crystals grown from solutions, while moving steps can remove or deactivate adjacent impurities. In this model, the chemical potential change of an atom on incorporation/desorption to/from a step is calculated for different step configurations and used in the dynamical simulation of step motion. The crucial difference between solution growth and vapor growth is related to the dependence of the driving force for growth of the main component on the size of the terrace in front of the step. This model has features resembling experiments in solution growth, which yields a dead zone with essentially no growth at low supersaturation and the motion of large coherent step bunches at larger supersaturation. The transient behavior shows a regime wherein steps bunch together and move coherently as the bunch size increases. The behavior at large line tension is reminiscent of the kink-poisoning mechanism of impurities observed in calcite growth. Our model unifies different impurity models and gives a picture of nonequilibrium dynamics that includes both steady states and time dependent behavior and shows similarities with models of disordered systems and the pinning/depinning transition.
Room temperature quantum spin Hall insulators with a buckled square lattice.
Luo, Wei; Xiang, Hongjun
2015-05-13
Two-dimensional (2D) topological insulators (TIs), also known as quantum spin Hall (QSH) insulators, are excellent candidates for coherent spin transport related applications because the edge states of 2D TIs are robust against nonmagnetic impurities since the only available backscattering channel is forbidden. Currently, most known 2D TIs are based on a hexagonal (specifically, honeycomb) lattice. Here, we propose that there exists the quantum spin Hall effect (QSHE) in a buckled square lattice. Through performing global structure optimization, we predict a new three-layer quasi-2D (Q2D) structure, which has the lowest energy among all structures with the thickness less than 6.0 Å for the BiF system. It is identified to be a Q2D TI with a large band gap (0.69 eV). The electronic states of the Q2D BiF system near the Fermi level are mainly contributed by the middle Bi square lattice, which are sandwiched by two inert BiF2 layers. This is beneficial since the interaction between a substrate and the Q2D material may not change the topological properties of the system, as we demonstrate in the case of the NaF substrate. Finally, we come up with a new tight-binding model for a two-orbital system with the buckled square lattice to explain the low-energy physics of the Q2D BiF material. Our study not only predicts a QSH insulator for realistic room temperature applications but also provides a new lattice system for engineering topological states such as quantum anomalous Hall effect.
Impurity Effects in Highly Frustrated Diamond-Lattice Antiferromagnets
NASA Astrophysics Data System (ADS)
Savary, Lucile
2012-02-01
We consider the effects of local impurities in highly frustrated diamond lattice antiferromagnets, which exhibit large but non-extensive ground state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state, and provide a mechanism of degeneracy breaking. The states which are selected can be determined by a ``swiss cheese model'' analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.
Energy Levels in Quantum Wells.
NASA Astrophysics Data System (ADS)
Zang, Jan Xin
Normalized analytical equations for eigenstates of an arbitrary one-dimensional configuration of square potentials in a well have been derived. The general formulation is used to evaluate the energy levels of a particle in a very deep potential well containing seven internal barriers. The configuration can be considered as a finite superlattice sample or as a simplified model for a sample with only several atom layers. The results are shown in graphical forms as functions of the height and width of the potential barriers and as functions of the ratio of the effective mass in barrier to the mass in well. The formation of energy bands and surface eigenstates from eigenstates of a deep single well, the coming close of two energy bands and a surface state which are separate ordinarily, and mixing of the wave function of a surface state with the bulk energy bands are seen. Then the normalized derivation is extended to study the effect of a uniform electric field applied across a one-dimensional well containing an internal configuration of square potentials The general formulation is used to calculate the electric field dependence of the energy levels of a deep well with five internal barriers. Typical results are shown in graphical forms as functions of the barrier height, barrier width, barrier effective mass and the field strength. The formation of Stark ladders and surface states from the eigenstates of a single deep well in an electric field, the localization process of wave functions with changing barrier height, width, and field strength and their anticrossing behaviors are seen. The energy levels of a hydrogenic impurity in a uniform medium and in a uniform magnetic field are calculated with variational methods. The energy eigenvalues for the eigenstates with major quantum number less than or equal to 3 are obtained. The results are consistent with previous results. Furthermore, the energy levels of a hydrogenic impurity at the bottom of a one-dimensional parabolic quantum well with a magnetic field normal to the plane of the well are calculated with the finite-basis-set variational method. The limit of small radial distance and the limit of great radial distance are considered to choose a set of proper basis functions. It is found that the energy levels increase with increasing parabolic parameter alpha and increase with increasing normalized magnetic field strength gamma except those levels with magnetic quantum number m < 0 at small gamma.
Impurity-induced divertor plasma oscillations
Smirnov, R. D.; Kukushkin, A. S.; Krasheninnikov, S. I.; ...
2016-01-07
Two different oscillatory plasma regimes induced by seeding the plasma with high- and low-Z impurities are found for ITER-like divertor plasmas, using computer modeling with the DUSTT/UEDGE and SOLPS4.3 plasma-impurity transport codes. The oscillations are characterized by significant variations of the impurity-radiated power and of the peak heat load on the divertor targets. Qualitative analysis of the divertor plasma oscillations reveals different mechanisms driving the oscillations in the cases of high- and low-Z impurity seeding. The oscillations caused by the high-Z impurities are excited near the X-point by an impurity-related instability of the radiation-condensation type, accompanied by parallel impurity ionmore » transport affected by the thermal and plasma friction forces. The driving mechanism of the oscillations induced by the low-Z impurities is related to the cross-field transport of the impurity atoms, causing alteration between the high and low plasma temperature regimes in the plasma recycling region near the divertor targets. As a result, the implications of the impurity-induced plasma oscillations for divertor operation in the next generation tokamaks are also discussed.« less
Power Radiated from ITER and CIT by Impurities
DOE R&D Accomplishments Database
Cummings, J.; Cohen, S. A.; Hulse, R.; Post, D. E.; Redi, M. H.; Perkins, J.
1990-07-01
The MIST code has been used to model impurity radiation from the edge and core plasmas in ITER and CIT. A broad range of parameters have been varied, including Z{sub eff}, impurity species, impurity transport coefficients, and plasma temperature and density profiles, especially at the edge. For a set of these parameters representative of the baseline ITER ignition scenario, it is seen that impurity radiation, which is produced in roughly equal amounts by the edge and core regions, can make a major improvement in divertor operation without compromising core energy confinement. Scalings of impurity radiation with atomic number and machine size are also discussed.
Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase
NASA Astrophysics Data System (ADS)
Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.
2013-11-01
Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.
NASA Astrophysics Data System (ADS)
Sahasrabudhe, Harshad; Fallahi, Saeed; Nakamura, James; Povolotskyi, Michael; Novakovic, Bozidar; Rahman, Rajib; Manfra, Michael; Klimeck, Gerhard
Quantum Point Contacts (QPCs) are extensively used in semiconductor devices for charge sensing, tunneling and interference experiments. Fabry-Pérot interferometers containing 2 QPCs have applications in quantum computing, in which electrons/quasi-particles undergo interference due to back-scattering from the QPCs. Such experiments have turned out to be difficult because of the complex structure of edge states near the QPC boundary. We present realistic simulations of the edge states in QPCs based on GaAs/AlGaAs heterostructures, which can be used to predict conductance and edge state velocities. Conduction band profile is obtained by solving decoupled effective mass Schrödinger and Poisson equations self-consistently on a finite element mesh of a realistic geometry. In the integer quantum Hall regime, we obtain compressible and in-compressible regions near the edges. We then use the recursive Green`s function algorithm to solve Schrödinger equation with open boundary conditions for calculating transmission and local current density in the QPCs. Impurities are treated by inserting bumps in the potential with a Gaussian distribution. We compare observables with experiments for fitting some adjustable parameters. The authors would like to thank Purdue Research Foundation and Purdue Center for Topological Materials for their support.
Evaluating the Sources of Graphene’s Resistivity Using Differential Conductance
Somphonsane, R.; Ramamoorthy, H.; He, G.; ...
2017-09-04
We explore the contributions to the electrical resistance of monolayer and bilayer graphene, revealing transitions between different regimes of charge carrier scattering. In monolayer graphene at low densities, a nonmonotonic variation of the resistance is observed as a function of temperature. Such behaviour is consistent with the influence of scattering from screened Coulomb impurities. At higher densities, the resistance instead varies in a manner consistent with the influence of scattering from acoustic and optical phonons. The crossover from phonon-, to charged-impurity, limited conduction occurs once the concentration of gate-induced carriers is reduced below that of the residual carriers. In bilayermore » graphene, the resistance exhibits a monotonic decrease with increasing temperature for all densities, with the importance of short-range impurity scattering resulting in a “universal” density-independent (scaled) conductivity at high densities. At lower densities, the conductivity deviates from this universal curve, pointing to the importance of thermal activation of carriers out of charge puddles. These various assignments, in both systems, are made possible by an approach of “differential-conductance mapping”, which allows us to suppress quantum corrections to reveal the underlying mechanisms governing the resistivity.« less
Evaluating the Sources of Graphene’s Resistivity Using Differential Conductance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somphonsane, R.; Ramamoorthy, H.; He, G.
We explore the contributions to the electrical resistance of monolayer and bilayer graphene, revealing transitions between different regimes of charge carrier scattering. In monolayer graphene at low densities, a nonmonotonic variation of the resistance is observed as a function of temperature. Such behaviour is consistent with the influence of scattering from screened Coulomb impurities. At higher densities, the resistance instead varies in a manner consistent with the influence of scattering from acoustic and optical phonons. The crossover from phonon-, to charged-impurity, limited conduction occurs once the concentration of gate-induced carriers is reduced below that of the residual carriers. In bilayermore » graphene, the resistance exhibits a monotonic decrease with increasing temperature for all densities, with the importance of short-range impurity scattering resulting in a “universal” density-independent (scaled) conductivity at high densities. At lower densities, the conductivity deviates from this universal curve, pointing to the importance of thermal activation of carriers out of charge puddles. These various assignments, in both systems, are made possible by an approach of “differential-conductance mapping”, which allows us to suppress quantum corrections to reveal the underlying mechanisms governing the resistivity.« less
Unbinding slave spins in the Anderson impurity model
NASA Astrophysics Data System (ADS)
Guerci, Daniele; Fabrizio, Michele
2017-11-01
We show that a generic single-orbital Anderson impurity model, lacking, for instance, any kind of particle-hole symmetry, can be exactly mapped without any constraint onto a resonant level model coupled to two Ising variables, which reduce to one if the hybridization is particle-hole symmetric. The mean-field solution of this model is found to be stable to unphysical spontaneous magnetization of the impurity, unlike the saddle-point solution in the standard slave-boson representation. Remarkably, the mean-field estimate of the Wilson ratio approaches the exact value RW=2 in the Kondo regime.
Impurity effects on ionic-liquid-based supercapacitors
Liu, Kun; Lian, Cheng; Henderson, Douglas; ...
2016-12-27
Small amounts of an impurity may affect the key properties of an ionic liquid and such effects can be dramatically amplified when the electrolyte is under confinement. Here the classical density functional theory is employed to investigate the impurity effects on the microscopic structure and the performance of ionic-liquid-based electrical double-layer capacitors, also known as supercapacitors. Using a primitive model for ionic species, we study the effects of an impurity on the double layer structure and the integral capacitance of a room temperature ionic liquid in model electrode pores and find that an impurity strongly binding to the surface ofmore » a porous electrode can significantly alter the electric double layer structure and dampen the oscillatory dependence of the capacitance with the pore size of the electrode. Meanwhile, a strong affinity of the impurity with the ionic species affects the dependence of the integral capacitance on the pore size. Up to 30% increase in the integral capacitance can be achieved even at a very low impurity bulk concentration. As a result, by comparing with an ionic liquid mixture containing modified ionic species, we find that the cooperative effect of the bounded impurities is mainly responsible for the significant enhancement of the supercapacitor performance.« less
The effect of relative solubility on crystal purity
NASA Astrophysics Data System (ADS)
Givand, Jeffrey Christopher
This study establishes the relationship between impurity incorporation in a crystal by lattice substitution and the solubility of that impurity in solution. The model system studied was L-isoleucine crystals contaminated by the isomorphic impurity L-leucine. Upon crystallization from aqueous solution by cooling, leucine is concentrated in the isoleucine unit cell through lattice substitution mechanisms. Attempts to reduce the degree of leucine incorporation via adjustments of the rate at which supersaturation is generated yielded marginal success. This work demonstrates that incorporation of leucine in the crystal can be considerably suppressed by reducing the solubility of product relative to the solubility of impurity. Changes to the relative solubility of the impurity were accomplished by the addition of various electrolytes and organic co-solvents to the aqueous amino acid solutions. The solubilities of the two amino acids were measured and compared to their solubilities in pure water. Changes in the ratio of pure-component solubilities were directly related to changes in crystal purity. This thermodynamic quantity of relative solubility was shown to be a key factor in determining impurity uptake by lattice substitution. In addition to the experimental observations, a fundamental thermodynamic link between relative solubility and crystal purity is established through this research. First, the amino acid solubility data as a function of temperature in all solvent mixtures were accurately correlated using a thermodynamic model. The parameters from this model were then adapted to a novel solid-solution thermodynamic model to express the crystal purity in terms of equilibrium solution impurity concentration. After the determination of one system specific parameter, the model is able to predict the crystal purity in a new solvent in which the pure-component solubilities are known. The ability of an electrolyte or co-solvent to improve crystal purity from a given level can now be determined based on existing solubility and purity measurements and solubilities of the product and impurity in the new solvent mixture.
Impurity effect of iron(III) on the growth of potassium sulfate crystal in aqueous solution
NASA Astrophysics Data System (ADS)
Kubota, Noriaki; Katagiri, Ken-ichi; Yokota, Masaaki; Sato, Akira; Yashiro, Hitoshi; Itai, Kazuyoshi
1999-01-01
Growth rates of the {1 1 0} faces of a potassium sulfate crystal were measured in a flow cell in the presence of traces of impurity Fe(III) (up to 2 ppm) over the range of pH=2.5-6.0. The growth rate was significantly suppressed by the impurity. The effect became stronger as the impurity concentration was increased and at pH<5. It became weaker with increasing supersaturation. It also became weaker as the pH was increased and at pH>5 it finally disappeared completely. The concentration and supersaturation effects on the impurity action were reasonably explained with a model proposed by Kubota and Mullin [J. Crystal Growth, 152 (1995) 203]. The surface coverage of the active sites by Fe(III) is estimated to increase linearly on increasing its concentration in solution in the range examined by growth experiments. The impurity effectiveness factor is confirmed to increase inversely proportional to the supersaturation as predicted by the model. Apart from the discussion based on the model, the pH effect on the impurity action is qualitatively explained by assuming that the first hydrolysis product of aqua Fe(III) complex compound, [Fe(H 2O) 5(OH)] 2+, is both growth suppression and adsorption active, but the second hydrolysis product, [Fe(H 2O) 4(OH) 2] +, is only adsorption active.
NASA Astrophysics Data System (ADS)
Yan, Jiawei; Ke, Youqi
In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.
Exotic ferromagnetism in the two-dimensional quantum material C3N
NASA Astrophysics Data System (ADS)
Huang, Wen-Cheng; Li, Wei; Liu, Xiaosong
2018-04-01
The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator-ferromagnet transition by tuning an external electric field.
NASA Astrophysics Data System (ADS)
Saha, Surajit; Ghosh, Manas
2016-02-01
We perform a rigorous analysis of the profiles of a few diagonal and off-diagonal components of linear ( α xx , α yy , α xy , and α yx ), first nonlinear ( β xxx , β yyy , β xyy , and β yxx ), and second nonlinear ( γ xxxx , γ yyyy , γ xxyy , and γ yyxx ) polarizabilities of quantum dots exposed to an external pulsed field. Simultaneous presence of multiplicative white noise has also been taken into account. The quantum dot contains a dopant represented by a Gaussian potential. The number of pulse and the dopant location have been found to fabricate the said profiles through their interplay. Moreover, a variation in the noise strength also contributes evidently in designing the profiles of above polarizability components. In general, the off-diagonal components have been found to be somewhat more responsive to a variation of noise strength. However, we have found some exception to the above fact for the off-diagonal β yxx component. The study projects some pathways of achieving stable, enhanced, and often maximized output of linear and nonlinear polarizabilities of doped quantum dots driven by multiplicative noise.
NASA Astrophysics Data System (ADS)
Yavari, H.; Mokhtari, M.; Tamaddonpour, M.
2013-10-01
The combined effect of nonmagnetic and magnetic impurities on the spin susceptibility of a noncentrosymmetrical superconductor by considering a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components is investigated. For clean superconductor CePt3Si, the low-temperature dependence (T →0) of spin susceptibility is linear which suggests that the gap function has line nodes, consistent with our gap model. We will show that in the presence of magnetic impurities the susceptibility does not vanish even in the absence of spin orbit coupling and in the region where the energy gap still is finite, and in the low concentration of magnetic impurities the spin susceptibility at zero temperature is proportional to impurity concentration.
NASA Astrophysics Data System (ADS)
Tshipa, M.; Winkoun, D. P.; Nijegorodov, N.; Masale, M.
2018-04-01
Theoretical investigations are carried out of binding energies of a donor charge assumed to be located exactly at the center of symmetry of two concentric cylindrical quantum wires. The intrinsic confinement potential in the region of the inner cylinder is modeled in any one of the three profiles: simple parabolic, shifted parabolic or the polynomial potential. The potential inside the shell is taken to be a potential step or potential barrier of a finite height. Additional confinement of the charge carriers is due to the vector potential of the axial applied magnetic field. It is found that the binding energies attain maxima in their variations with the radius of the inner cylinder irrespective of the particular intrinsic confinement of the inner cylinder. As the radius of the inner cylinder is increased further, the binding energies corresponding to either the parabolic or the polynomial potentials attain minima at some critical core-radius. Finally, as anticipated, the binding energies increase with the increase of the parallel applied magnetic field. This behaviour of the binding energies is irrespective of the particular electric potential of the nanostructure or its specific dimensions.
Sun, Yaming; Bi, Qing; Zhang, Xiaoli; Wang, Litao; Zhang, Xia; Dong, Shuqing; Zhao, Liang
2016-05-01
A facile capillary electrophoresis (CE) method for the separation of cinnamic acid and its derivatives (3,4-dimethoxycinnamic acid, 4-methoxycinnamic acid, isoferulic acid, sinapic acid, cinnamic acid, ferulic acid, and trans-4-hydroxycinnamic acid) using graphene quantum dots (GQDs) as additives with direct ultraviolet (UV) detection is reported. GQDs were synthesized by chemical oxidization and further purified by a macroporous resin column to remove salts (Na2SO4 and NaNO3) and other impurities. Transmission electron microscopy (TEM) indicated that GQDs have a relatively uniform particle size (2.3 nm). Taking into account the structural features of GQDs, cinnamic acid and its derivatives were adopted as model compounds to investigate whether GQDs can be used to improve CE separations. The separation performance of GQDs used as additives in CE was studied through variations of pH, concentration of the background electrolyte (BGE), and contents of GQDs. The results indicated that excellent separation can be achieved in less than 18 min, which is mainly attributed to the interaction between the analytes and GQDs, especially isoferulic acid, sinapic acid, and cinnamic acid. Copyright © 2016 Elsevier Inc. All rights reserved.
On the nature of the Mott transition in multiorbital systems
NASA Astrophysics Data System (ADS)
Facio, Jorge I.; Vildosola, V.; García, D. J.; Cornaglia, Pablo S.
2017-02-01
We analyze the nature of a Mott metal-insulator transition in multiorbital systems using dynamical mean-field theory. The auxiliary multiorbital quantum impurity problem is solved using continuous-time quantum Monte Carlo and the rotationally invariant slave-boson (RISB) mean-field approximation. We focus our analysis on the Kanamori Hamiltonian and find that there are two markedly different regimes determined by the nature of the lowest-energy excitations of the atomic Hamiltonian. The RISB results at T →0 suggest the following rule of thumb for the order of the transition at zero temperature: a second-order transition is to be expected if the lowest-lying excitations of the atomic Hamiltonian are charge excitations, while the transition tends to be first order if the lowest-lying excitations are in the same charge sector as the atomic ground state. At finite temperatures, the transition is first order and its strength, as measured, e.g., by the jump in the quasiparticle weight at the transition, is stronger in the parameter regime where the RISB method predicts a first-order transition at zero temperature. Interestingly, these results seem to apply to a wide variety of models and parameter regimes.
Recent Progress in Studies of Nanostructured Impurity Helium Solids
NASA Astrophysics Data System (ADS)
Khmelenko, V. V.; Kunttu, H.; Lee, D. M.
2007-07-01
Impurity helium (Im He) solids are porous materials formed inside superfluid 4He by nanoclusters of impurities injected from the gas phase. The results of studies of these materials have relevance to soft condensed matter physics, matrix isolation of free radicals and low temperature chemistry. Recent studies by a variety of experimental techniques, including CW and pulse ESR, X-ray diffraction, ultrasound and Raman spectroscopy allow a better characterization of the properties of Im He solids. The structure of Im He solids, the trapping sites of stabilized atoms and the possible energy content of the samples are analyzed on the basis of experimental data. The kinetics of exchange tunneling reactions of hydrogen isotopes in nanoclusters and the changes of environment of the atoms during the course of these reactions are reviewed. Analysis of the ESR data shows that very large fraction of the stabilized atoms in Im He solids reside on the surfaces of impurity nanoclusters. The future directions for studying Im He solids are described. Among the most attractive are the studies of Im He solids with high concentrations of stabilized atoms at ultralow (10 20 mK) temperature for the observation of new collective quantum phenomena, the studies of practical application of Im He solids as a medium in neutron moderator for efficient production of ultracold (˜1 mK) neutrons, and the possibilities of obtaining high concentration of atomic nitrogen embedded in N2 clusters for energy storage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, Jayanta; Ghosh, Manas, E-mail: pcmg77@rediffmail.com
We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. Inmore » case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngo, Anh T.; Kim, Eugene H.; Ulloa, Sergio E.
Single-atom gating, achieved by manipulation of adatoms on a surface, has been shown in experiments to allow precise control over superposition of electronic states in quantum corrals. Using a Green's function approach, we demonstrate theoretically that such atom gating can also be used to control the coupling between magnetic degrees of freedom in these systems. Atomic gating enables control not only on the direct interaction between magnetic adatoms, but also over superpositions of many-body states which can then control long distance interactions. We illustrate this effect by considering the competition between direct exchange between magnetic impurities and the Kondo screeningmore » mediated by the host electrons, and how this is affected by gating. These results suggest that both magnetic and nonmagnetic single-atom gating may be used to investigate magnetic impurity systems with tailored interactions, and may allow the control of entanglement of different spin states.« less
NASA Astrophysics Data System (ADS)
Ho, Derek Y. H.; Yudhistira, Indra; Chakraborty, Nilotpal; Adam, Shaffique
2018-03-01
Electrons behave like a classical fluid with a momentum distribution function that varies slowly in space and time when the quantum-mechanical carrier-carrier scattering dominates over all other scattering processes. Recent experiments in monolayer and bilayer graphene have reported signatures of such hydrodynamic electron behavior in ultraclean devices. In this theoretical work, starting from a microscopic treatment of electron-electron, electron-phonon, and electron-impurity interactions within the random phase approximation, we demonstrate that monolayer and bilayer graphene both host two different hydrodynamic regimes. We predict that the hydrodynamic window in bilayer graphene is stronger than in monolayer graphene, and has a characteristic "v shape" as opposed to a "lung shape." Finally, we collapse experimental data onto a universal disorder-limited theory, demonstrating that the observed violation of the Wiedemann-Franz law in monolayers occurs in a regime dominated by impurity-induced electron-hole puddles.
Carrier Injection and Scattering in Atomically Thin Chalcogenides
NASA Astrophysics Data System (ADS)
Li, Song-Lin; Tsukagoshi, Kazuhito
2015-12-01
Atomically thin two-dimensional chalcogenides such as MoS2 monolayers are structurally ideal channel materials for the ultimate atomic electronics. However, a heavy thickness dependence of electrical performance is shown in these ultrathin materials, and the device performance normally degrades while exhibiting a low carrier mobility as compared with corresponding bulks, constituting a main hurdle for application in electronics. In this brief review, we summarize our recent work on electrode/channel contacts and carrier scattering mechanisms to address the origins of this adverse thickness dependence. Extrinsically, the Schottky barrier height increases at the electrode/channel contact area in thin channels owing to bandgap expansion caused by quantum confinement, which hinders carrier injection and degrades device performance. Intrinsically, thin channels tend to suffer from intensified Coulomb impurity scattering, resulting from the reduced interaction distance between interfacial impurities and channel carriers. Both factors are responsible for the adverse dependence of carrier mobility on channel thickness in two-dimensional semiconductors.
Ma-Hock, L; Farias, P M A; Hofmann, T; Andrade, A C D S; Silva, J N; Arnaud, T M S; Wohlleben, W; Strauss, V; Treumann, S; Chaves, C R; Gröters, S; Landsiedel, R; van Ravenzwaay, B
2014-02-10
Quantum dots exhibit extraordinary optical and mechanical properties, and the number of their applications is increasing. In order to investigate a possible effect of coating on the inhalation toxicity of previously tested non-coated CdS/Cd(OH)2 quantum dots and translocation of these very small particles from the lungs, rats were exposed to coated quantum dots or CdCl2 aerosol (since Cd(2+) was present as impurity), 6h/d for 5 consecutive days. Cd content was determined in organs and excreta after the end of exposure and three weeks thereafter. Toxicity was determined by examination of broncho-alveolar lavage fluid and microscopic evaluation of the entire respiratory tract. There was no evidence for translocation of particles from the respiratory tract. Evidence of a minimal inflammatory process was observed by examination of broncho-alveolar lavage fluid. Microscopically, minimal to mild epithelial alteration was seen in the larynx. The effects observed with coated quantum dots, non-coated quantum dots and CdCl2 were comparable, indicating that quantum dots elicited no significant effects beyond the toxicity of the Cd(2+) ion itself. Compared to other compounds with larger particle size tested at similarly low concentrations, quantum dots caused much less pronounced toxicological effects. Therefore, the present data show that small particle sizes with corresponding high surfaces are not the only factor triggering the toxic response or translocation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Bell pair creation in current of Kondo-correlated dot
NASA Astrophysics Data System (ADS)
Sakano, Rui; Oguri, Akira; Nishikawa, Yunori; Abe, Eisuke
Recently, local-Fermi-liquid properties in non-linear currents and shot noises through the Kondo dot have been investigated both theoretically and experimentally. We suggest a new entangled-electron-pair generator utilizing mechanism of quasiparticle-pair creation which has been observed as enhancement of shot noise in the quantum dot. Using the renormalized perturbation theory for an orbital-degenerate impurity Anderson model and the full counting statistics, we calculate the Clauser-Horne-Shimony-Holt type Bell's correlator for currents through correlated two different channels of a Kondo correlated dot. It is shown that residual exchange-interactions of the local-Fermi-liquid create spin-entangled quasiparticle-pairs in nonlinear current and this results in violation of the Bell's inequality. This work was partially supported by JSPS KAKENHI Grant Numbers JP26220711, JP26400319, JP15K05181 and JP16K17723.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Yishuai; Chiu, Janet; Miao, Lin
Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond themore » localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less
NASA Technical Reports Server (NTRS)
Sah, C. T.
1979-01-01
Numerical solutions were obtained from the exact one dimensional transmission line circuit model to study the following effects on the terrestrial performance of silicon solar cells: interband Auger recombination; surface recombination at the contact interfaces; enhanced metallic impurity solubility; diffusion profiles; and defect-impurity recombination centers. Thermal recombination parameters of titanium impurity in silicon were estimated from recent experimental data. Based on those parameters, computer model calculations showed that titanium concentration must be kept below 6x10 to the 12th power Ti/cu cm in order to achieve 16% AM1 efficiency in a silicon solar cell of 250 micrometers thick and 1.5 ohm-cm resistivity.
Tunneling spectroscopy of a phosphorus impurity atom on the Ge(111)-(2 × 1) surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savinov, S. V.; Oreshkin, A. I., E-mail: oreshkin@spmlab.phys.msu.su, E-mail: oreshkin@spmlab.ru; Oreshkin, S. I.
2015-06-15
We numerically model the Ge(111)-(2 × 1) surface electronic properties in the vicinity of a P donor impurity atom located near the surface. We find a notable increase in the surface local density of states (LDOS) around the surface dopant near the bottom of the empty surface state band π*, which we call a split state due to its limited spatial extent and energetic position inside the band gap. We show that despite the well-established bulk donor impurity energy level position at the very bottom of the conduction band, a surface donor impurity on the Ge(111)-(2 × 1) surface mightmore » produce an energy level below the Fermi energy, depending on the impurity atom local environment. It is demonstrated that the impurity located in subsurface atomic layers is visible in a scanning tunneling microscope (STM) experiment on the Ge(111)-(2 × 1) surface. The quasi-1D character of the impurity image, observed in STM experiments, is confirmed by our computer simulations with a note that a few π-bonded dimer rows may be affected by the presence of the impurity atom. We elaborate a model that allows classifying atoms on the experimental low-temperature STM image. We show the presence of spatial oscillations of the LDOS by the density-functional theory method.« less
NASA Technical Reports Server (NTRS)
Hunt, W. D.; Brennan, K. F.; Summers, C. J.; Yun, Ilgu
1994-01-01
Reliability modeling and parametric yield prediction of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiodes (APDs), which are of interest as an ultra-low noise image capture mechanism for high definition systems, have been investigated. First, the effect of various doping methods on the reliability of GaAs/AlGaAs multiple quantum well (MQW) avalanche photodiode (APD) structures fabricated by molecular beam epitaxy is investigated. Reliability is examined by accelerated life tests by monitoring dark current and breakdown voltage. Median device lifetime and the activation energy of the degradation mechanism are computed for undoped, doped-barrier, and doped-well APD structures. Lifetimes for each device structure are examined via a statistically designed experiment. Analysis of variance shows that dark-current is affected primarily by device diameter, temperature and stressing time, and breakdown voltage depends on the diameter, stressing time and APD type. It is concluded that the undoped APD has the highest reliability, followed by the doped well and doped barrier devices, respectively. To determine the source of the degradation mechanism for each device structure, failure analysis using the electron-beam induced current method is performed. This analysis reveals some degree of device degradation caused by ionic impurities in the passivation layer, and energy-dispersive spectrometry subsequently verified the presence of ionic sodium as the primary contaminant. However, since all device structures are similarly passivated, sodium contamination alone does not account for the observed variation between the differently doped APDs. This effect is explained by the dopant migration during stressing, which is verified by free carrier concentration measurements using the capacitance-voltage technique.
NASA Astrophysics Data System (ADS)
Voloshin, A. E.
2013-11-01
The well-known one-dimensional Burton-Prim-Slichter and Ostrogorsky-Müller analytical models obtained for the stationary mass transfer regime describe in a simple form the dependence of the effective impurity segregation coefficient on the ratio of the crystal growth and convective flow rates. Solutions for the initial transient regime are found in both models. It is shown that the formulas obtained make it possible to determine both the crystal growth rate and the convective mixing intensity on the basis of the analysis of impurity segregation in crystal.
Modeling Electronegative Impurity Concentrations in Liquid Argon Detectors
NASA Astrophysics Data System (ADS)
Tang, Wei; Li, Yichen; Thorn, Craig; Qian, Xin
2017-01-01
Achieving long electron lifetime is crucial to reach the high performance of large Liquid Argon Time Projection Chamber (LArTPC) envisioned for next generation neutrino experiments. We have built up a quantitative model to describe the impurity distribution and transportation in a cryostat. Henrys constants of Oxygen and water, which describe the partition of impurities between gas argon and liquid argon, have been deduced through this model with the measurements in BNL 20-L LAr test stand. These results indicate the importance of the gas purification system and prospects on large LArTPC detectors will be discussed.
Global modelling of plasma-wall interaction in reversed field pinches
NASA Astrophysics Data System (ADS)
Bagatin, M.; Costa, S.; Ortolani, S.
1989-04-01
The impurity production and deuterium recycling mechanisms in ETA—BETA II and RFX are firstly discussed by means of a simple model applicable to a stationary plasma interacting with the wall. This gives the time constant and the saturation values of the impurity concentration as a function of the boundary temperature and density. If the latter is sufficiently high, the impurity buildup in the main plasma becomes to some extent stabilized by the shielding effect of the edge. A self-consistent global model of the time evolution of an RFP plasma interacting with the wall is then described. The bulk and edge parameters are derived by solving the energy and particle balance equations incorporating some of the basic plasma-surface processes, such as sputtering, backscattering and desorption. The application of the model to ETA-BETA II confirms the impurity concentrations of the light and metal impurities as well as the time evolution of the average electron density found experimentally under different conditions. The model is then applied to RFX, a larger RFP experiment under construction, whose wall will be protected by a full graphite armour. The time evolution of the discharge shows that carbon sputtering could increase Zeff to ~ 4, but without affecting significantly the plasma performance.
NASA Astrophysics Data System (ADS)
Voloshin, A. E.; Prostomolotov, A. I.; Verezub, N. A.
2016-11-01
The paper deals with the analysis of the accuracy of some one-dimensional (1D) analytical models of the axial distribution of impurities in the crystal grown from a melt. The models proposed by Burton-Prim-Slichter, Ostrogorsky-Muller and Garandet with co-authors are considered, these models are compared to the results of a two-dimensional (2D) numerical simulation. Stationary solutions as well as solutions for the initial transient regime obtained using these models are considered. The sources of errors are analyzed, a conclusion is made about the applicability of 1D analytical models for quantitative estimates of impurity incorporation into the crystal sample as well as for the solution of the inverse problems.
NASA Astrophysics Data System (ADS)
Tuzet, Francois; Dumont, Marie; Lafaysse, Matthieu; Picard, Ghislain; Arnaud, Laurent; Voisin, Didier; Lejeune, Yves; Charrois, Luc; Nabat, Pierre; Morin, Samuel
2017-11-01
Light-absorbing impurities (LAIs) decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive and direct impact is to accelerate snowmelt. Enhanced energy absorption in snow also modifies snow metamorphism, which can indirectly drive further variations of snow albedo in the near-infrared part of the solar spectrum because of the evolution of the near-surface snow microstructure. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities' deposition and evolution within the snowpack and their direct and indirect impacts. Once deposited, the model computes impurities' mass evolution until snow melts out, accounting for scavenging by meltwater. Taking advantage of the recent inclusion of the spectral radiative transfer model TARTES (Two-stream Analytical Radiative TransfEr in Snow model) in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. The model was evaluated at the Col de Porte experimental site (French Alps) during the 2013-2014 snow season against in situ standard snow measurements and spectral albedo measurements. In situ meteorological measurements were used to drive the snowpack model, except for aerosol deposition fluxes. Black carbon (BC) and dust deposition fluxes used to drive the model were extracted from simulations of the atmospheric model ALADIN-Climate. The model simulates snowpack evolution reasonably, providing similar performances to our reference Crocus version in terms of snow depth, snow water equivalent (SWE), near-surface specific surface area (SSA) and shortwave albedo. Since the reference empirical albedo scheme was calibrated at the Col de Porte, improvements were not expected to be significant in this study. We show that the deposition fluxes from the ALADIN-Climate model provide a reasonable estimate of the amount of light-absorbing impurities deposited on the snowpack except for extreme deposition events which are greatly underestimated. For this particular season, the simulated melt-out date advances by 6 to 9 days due to the presence of light-absorbing impurities. The model makes it possible to apportion the relative importance of direct and indirect impacts of light-absorbing impurities on energy absorption in snow. For the snow season considered, the direct impact in the visible part of the solar spectrum accounts for 85 % of the total impact, while the indirect impact related to accelerated snow metamorphism decreasing near-surface specific surface area and thus decreasing near-infrared albedo accounts for 15 % of the total impact. Our model results demonstrate that these relative proportions vary with time during the season, with potentially significant impacts for snowmelt and avalanche prediction.
Spectroscopy of a one-dimensional V-shaped quantum well with a point impurity
NASA Astrophysics Data System (ADS)
Fassari, S.; Gadella, M.; Glasser, M. L.; Nieto, L. M.
2018-02-01
We consider the one-dimensional Hamiltonian with a V-shaped potential H0 = 1/2 [ -d2/dx2 + | x | ], decorated with a point impurity of either δ-type, or local δ‧-type or even nonlocal δ‧-type, thus yielding three exactly solvable models. We analyse the behaviour of the change in the energy levels when an interaction of the type - λ δ(x) or - λ δ(x -x0) is switched on. In the first case, even energy levels, pertaining to antisymmetric bound states, remain invariant with respect to λ even though odd energy levels, pertaining to symmetric bound states, decrease as λ increases. In the second, all energy levels decrease when the factor λ increases. A similar study has been performed for the so-called nonlocal δ‧ interaction, requiring a coupling constant renormalisation, which implies the replacement of the form factor λ by a renormalised form factor β. In terms of β, odd energy levels are unchanged. However, we show the existence of level crossings: after a fixed value of β the energy of each even level, with the natural exception of the first one, becomes lower than the constant energy of the previous odd level. Finally, we consider an interaction of the type - λδ(x) + μδ‧(x) , and analyse in detail the discrete spectrum of the resulting self-adjoint Hamiltonian.
NASA Astrophysics Data System (ADS)
Stankevich, Vladimir G.; Sukhanov, Leonid P.; Svechnikov, Nicolay Yu.; Lebedev, Alexey M.; Menshikov, Kostantin A.; Kolbasov, Boris N.
2017-10-01
Investigations of the effect of Fe impurities on D2 thermal desorption (TD) from homogeneous CDx films (x ˜ 0.5) formed in the D-plasma discharge of the T-10 tokamak were carried out. The experimental TD spectra of the films showed two groups of peaks at 650-850 K and 900-1000 K for two adsorption states. The main result of the iron catalysis effect consists in the shift of the high-temperature peak by -24 K and in the increase in the fraction of the weakly bonded adsorption states. To describe the effect of iron impurities on TD of hydrogen isotopes, a structural cluster model based on the interaction of the Fe+ ion with the 1,3-C6H8 molecule was proposed. The potential energy surfaces of chemical reactions with the H2 elimination were calculated using ab initio methods of quantum chemistry. It was established that the activation barrier of hydrogen TD is reduced by about 1 eV due to the interaction of the Fe+ ion with the π-subsystem of the 1,3-C6H8 molecule leading to a redistribution of the double bonds along the carbon system. Contribution to the topical issue "Plasma Sources and Plasma Processes (PSPP)"", edited by Luis Lemos Alves, Thierry Belmonte and Tiberiu Minea
NASA Astrophysics Data System (ADS)
Tuzet, F.; Dumont, M.; Lafaysse, M.; Hagenmuller, P.; Arnaud, L.; Picard, G.; Morin, S.
2017-12-01
Light-absorbing impurities decrease snow albedo, increasing the amount of solar energy absorbed by the snowpack. Its most intuitive impact is to accelerate snow melt. However the presence of a layer highly concentrated in light-absorbing impurities in the snowpack also modify its temperature profile affecting snow metamorphism. New capabilities have been implemented in the detailed snowpack model SURFEX/ISBA-Crocus (referred to as Crocus) to account for impurities deposition and evolution within the snowpack (Tuzet et al., 2017, TCD). Once deposited, the model computes impurities mass evolution until snow melts out. Taking benefits of the recent inclusion of the spectral radiative transfer model TARTES in Crocus, the model explicitly represents the radiative impacts of light-absorbing impurities in snow. In the Pyrenees mountain range, strong sporadic Saharan dust deposition (referred to as dust outbreaks) can occur during the snow season leading some snow layers in the snowpack to contain high concentrations of mineral dust. One of the major events of the past years occurred on February 2014, affecting the whole southern Europe. During the weeks following this dust outbreak a strong avalanche activity was reported in the Aran valley (Pyrenees, Spain). For now, the link between the dust outbreak and the avalanche activity is not demonstrated.We investigate the impact of this dust outbreak on the snowpack stability in the Aran valley using the Crocus model, trying to determine whether the snowpack instability observed after the dust outbreak can be related to the presence of dust. SAFRAN-reanalysis meteorological data are used to drive the model on several altitudes, slopes and aspects. For each slope configuration two different simulations are run; one without dust and one simulating the dust outbreak of February 2014.The two corresponding simulations are then compared to assess the role of impurities on snow metamorphism and stability.On this example, we numerically prove that under specific meteorological conditions the presence of a dusty layer in the snowpack causes an enhanced temperature gradient at the interface, favoring the formation of faceted crystals.These preliminary results need to be evaluated against field measurements and with respect to uncertainties in Crocus model.
Stoichiometry control in quantum dots: a viable analog to impurity doping of bulk materials.
Luther, Joseph M; Pietryga, Jeffrey M
2013-03-26
A growing body of research indicates that the stoichiometry of compound semiconductor quantum dots (QDs) may offer control over the materials' optoelectronic properties in ways that could be invaluable in electronic devices. Quantum dots have been characterized as having a stoichiometric bulk-like core with a highly reconstructed surface of a more flexible composition, consisting essentially of ligated, weakly bound ions. As such, many efforts toward stoichiometry-based control over material properties have focused on ligand manipulation. In this issue of ACS Nano, Murray and Kagan's groups instead demonstrate control of the conductive properties of QD arrays by altering the stoichiometry via atomic infusion using a thermal evaporation technique. In this work, PbSe and PbS QD films are made to show controlled n- or p-type behavior, which is key to developing optimized QD-based electronics. In this Perspective, we discuss recent developments and the future outlook in using stoichiometry as a tool to further manipulate QD material properties in this context.
Stability of Weyl metals under impurity scattering
NASA Astrophysics Data System (ADS)
Huang, Zhoushen; Das, Tanmoy; Balatsky, Alexander V.; Arovas, Daniel P.
2013-04-01
We investigate the effects of bulk impurities on the electronic spectrum of Weyl semimetals, a recently identified class of Dirac-type materials. Using a T-matrix approach, we study resonant scattering due to a localized impurity in tight-binding versions of the continuum models recently discussed by [Burkov, Hook, and Balents, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.84.235126 84, 235126 (2011)], describing perturbed four-component Dirac fermions in the vicinity of a critical point. The impurity potential is described by a strength g as well as a matrix structure Λ. Unlike the case in d-wave superconductors, where a zero energy resonance can always be induced by varying the scalar and/or magnetic impurity strength, we find that for certain types of impurity (Λ), the Weyl node is protected and that a scalar impurity will induce an intragap resonance over a wide range of scattering strength. A general framework is developed to address this question, as well as to determine the dependence of resonance energy on the impurity strength.
NASA Astrophysics Data System (ADS)
Vignesh, G.; Nithiananthi, P.
2016-04-01
The influence of pressure along the growth axis on carrier localization in GaAs/Al0.3Ga0.7As Double Quantum Well (DQW) is studied under strongly coupled regime and isolated regimes of the well. The effective mass approximation combined with variation technique is adopted with the inclusion of mismatches in effective mass and dielectric constants of the well and barrier material. Effect of the barrier and well on carrier localization is investigated by observing the diamagnetic susceptibility (χdia) for various impurity locations (zi) and the critical limit of the barrier (Lb ≈ 50 Å) for tunneling has also been estimated. The effect of Γ-Χ crossover due to the application of pressure on the donor localization is picturized through diamagnetic susceptibility.
Direct observation of the orbital spin Kondo effect in gallium arsenide quantum dots
NASA Astrophysics Data System (ADS)
Shang, Ru-Nan; Zhang, Ting; Cao, Gang; Li, Hai-Ou; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping
2018-02-01
Besides the spin Kondo effect, other degrees of freedom can give rise to the pseudospin Kondo effect. We report a direct observation of the orbital spin Kondo effect in a series-coupled gallium arsenide (GaAs) double quantum dot device where orbital degrees act as pseudospin. Electron occupation in both dots induces a pseudospin Kondo effect. In a region of one net spin impurity, complete spectra with three resonance peaks are observed. Furthermore, we observe a pseudo-Zeeman effect and demonstrate its electrical controllability for the artificial pseudospin in this orbital spin Kondo process via gate voltage control. The fourfold degeneracy point is realized at a specific value supplemented by spin degeneracy, indicating a transition from the SU(2) to the SU(4) Kondo effect.
Oliver E. Buckley Condensed Matter Prize: Quantum-topological phases of matter
NASA Astrophysics Data System (ADS)
Wen, Xiao-Gang
For a long time, we thought that symmetry breaking patterns describe all phases and phase transitions. The featureless disordered liquids correspond to trivial phase. But in fact disordered liquids have very rich features, with amazing emergent phenomena, such as fractional quantum numbers, fractional and non-abelian statistics, perfect conducting boundary even in presence of magnetic impurities, etc. All those are due to many-body entanglement. In this talk, I will first discuss topological phases that have topological order (ie with long range entanglement). Then I will cover topological phases that have no topological order (ie with only short-range entanglement). I will stress on how to understand and describe many-body entanglement, which is a very new phenomenon. This research is supported by NSF Grant No. DMR-1506475.
Laser diodes using InAlGaAs multiple quantum wells intermixed to varying extent
NASA Astrophysics Data System (ADS)
Alahmadi, Yousef; LiKam Wa, Patrick
2018-02-01
Bandgap-modified InAlGaAs/InP multi-quantum well lasers have been demonstrated using an impurity-free disordering technique. Varying degrees of disordering are achieved by rapidly annealing silicon nitride-capped samples at temperatures ranging from 730°C to 830°C for 20 s. The lasing wavelength shift resulting from the intermixing, ranges between 28.2 nm and 147.2 nm. As the annealing temperature is increased, the lasing threshold currents of the fabricated waveguide lasers increase from 25mA to 45mA, while the slope efficiency decrease from 0.101 W/A to 0.068 W/A, compared to a threshold current of 27.8 mA and a slope efficiency of 0.121 W/A for an as-grown laser diode.
Modeling of non-stationary local response on impurity penetration in plasma
NASA Astrophysics Data System (ADS)
Tokar, M. Z.; Koltunov, M.
2012-04-01
In fusion devices, strongly localized intensive sources of impurities may arise unexpectedly, e.g., if the wall is excessively demolished by hot plasma particles, or can be created deliberately through impurity seeding. The spreading of impurities from such sources both along and perpendicular to the magnetic field is affected by coulomb collisions with background particles, ionization, acceleration by electric field, etc. Simultaneously, the plasma itself can be significantly disturbed by these interactions. To describe self-consistently the impurity spreading process and the plasma response, three-dimensional fluid equations for the particle, parallel momentum, and energy balances of various plasma components are solved by reducing them to ordinary differential equations for the time evolution of several parameters characterizing the solutions in principal details: the maximum densities of impurity ions of different charges, the dimensions both along and across the magnetic field of the shells occupied by these particles, the characteristic temperatures of all plasma components, and the densities of the main ions and electrons in different shells. The results of modeling for penetration of lithium singly charged particles in tokamak edge plasma are presented. A new mechanism for the condensation phenomenon and formation of cold dense plasma structures, implying an outstanding role of coulomb collisions between main and impurity ions, is proposed.
Impurity effects in highly frustrated diamond-lattice antiferromagnets
NASA Astrophysics Data System (ADS)
Savary, Lucile; Gull, Emanuel; Trebst, Simon; Alicea, Jason; Bergman, Doron; Balents, Leon
2011-08-01
We consider the effects of local impurities in highly frustrated diamond-lattice antiferromagnets, which exhibit large but nonextensive ground-state degeneracies. Such models are appropriate to many A-site magnetic spinels. We argue very generally that sufficiently dilute impurities induce an ordered magnetic ground state and provide a mechanism of degeneracy breaking. The states that are selected can be determined by a “swiss cheese model” analysis, which we demonstrate numerically for a particular impurity model in this case. Moreover, we present criteria for estimating the stability of the resulting ordered phase to a competing frozen (spin glass) one. The results may explain the contrasting finding of frozen and ordered ground states in CoAl2O4 and MnSc2S4, respectively.
Electronic Structure of Helium Atom in a Quantum Dot
NASA Astrophysics Data System (ADS)
Saha, Jayanta K.; Bhattacharyya, S.; Mukherjee, T. K.
2016-03-01
Bound and resonance states of helium atom have been investigated inside a quantum dot by using explicitly correlated Hylleraas type basis set within the framework of stabilization method. To be specific, precise energy eigenvalues of bound 1sns (1Se) (n = 1-6) states and the resonance parameters i.e. positions and widths of 1Se states due to 2sns (n = 2-5) and 2pnp (n = 2-5) configurations of confined helium below N = 2 ionization threshold of He+ have been estimated. The two-parameter (Depth and Width) finite oscillator potential is used to represent the confining potential due to the quantum dot. It has been explicitly demonstrated that the electronic structural properties become sensitive functions of the dot size. It is observed from the calculations of ionization potential that the stability of an impurity ion within a quantum dot may be manipulated by varying the confinement parameters. A possibility of controlling the autoionization lifetime of doubly excited states of two-electron ions by tuning the width of the quantum cavity is also discussed here. TKM Gratefully Acknowledges Financial Support under Grant No. 37(3)/14/27/2014-BRNS from the Department of Atomic Energy, BRNS, Government of India. SB Acknowledges Financial Support under Grant No. PSW-160/14-15(ERO) from University Grants Commission, Government of India
Delta-Doping at Wafer Level for High Throughput, High Yield Fabrication of Silicon Imaging Arrays
NASA Technical Reports Server (NTRS)
Hoenk, Michael E. (Inventor); Nikzad, Shoulch (Inventor); Jones, Todd J. (Inventor); Greer, Frank (Inventor); Carver, Alexander G. (Inventor)
2014-01-01
Systems and methods for producing high quantum efficiency silicon devices. A silicon MBE has a preparation chamber that provides for cleaning silicon surfaces using an oxygen plasma to remove impurities and a gaseous (dry) NH3 + NF3 room temperature oxide removal process that leaves the silicon surface hydrogen terminated. Silicon wafers up to 8 inches in diameter have devices that can be fabricated using the cleaning procedures and MBE processing, including delta doping.
Nucleation and Growth Control of ZnO via Impurity-mediated Crystallization
2015-01-02
Characteristics of Crystalline Silicon/Si Quantum Dot/Poly(3,4-ethylenedioxythiophene) Hybrid Solar Cells ”, G. Uchida, Y. Wang, D. Ichida, H. Seo, K. Kamataki, N...Electron Transfer of Dye-Sensitized Solar Cell Using Vanadium Doped TiO2 ”, H. Seo, Y. Wang, D. Ichida, G. Uchida, N. Itagaki, K. Koga, M. Shiratani, S...conductive oxide (TCO) in flat-panel displays, touch screens on smartphones, organic light-emitting diodes (OLEDs), solar cells , etc [1-6]. The resistivity
1991-11-07
new area of opticAl sp,,ctroscopy of solids where truly unique single environments and quantum effects can be studied in detail. In the pentacene in p...observed. Until very recentlx, the reports of SMI) have concentrated on the crystalline system of pentacene in p-terphenyl. Owing to the complex physical...excessive PSIIB, pentacene in benzoi, acid, is described briefly. The advantages of the perylene in PF_. system become evident immediately when
NASA Astrophysics Data System (ADS)
Butler, Christopher J.; Wu, Yu-Mi; Hsing, Cheng-Rong; Tseng, Yi; Sankar, Raman; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong
2017-11-01
Scanning tunneling microscopy visualizations of quasiparticle interference (QPI) enable powerful insights into the k -space properties of superconducting, topological, Rashba, and other exotic electronic phases, but their reliance on impurities acting as scattering centers is rarely scrutinized. Here, we investigate QPI at the vacuum-cleaved (001) surface of the Dirac semimetal ZrSiS. We find that interference patterns around impurities located on the Zr and S lattice sites appear very different, and can be ascribed to selective scattering of different subsets of the predominantly Zr 4 d -derived band structure, namely, the m =0 and ±1 components. We show that the selectivity of scattering channels requires an explanation beyond the different bands' orbital characteristics and their respective charge density distributions over Zr and S lattice sites. Importantly, this result shows that the usual assumption of generic scattering centers allowing observations of quasiparticle interference to shed light indiscriminately and isotropically upon the q space of scattering events does not hold, and that the scope and interpretation of QPI observations can therefore be be strongly contingent on the material defect chemistry. This finding promises to spur new investigations into the quasiparticle scattering process itself, to inform future interpretations of quasiparticle interference observations, and ultimately to aid the understanding and engineering of quantum electronic transport properties.
Chirped-Superlattice, Blocked-Intersubband QWIP
NASA Technical Reports Server (NTRS)
Gunapala, Sarath; Ting, David; Bandara, Sumith
2004-01-01
An Al(x)Ga(1-x)As/GaAs quantum-well infrared photodetector (QWIP) of the blocked-intersubband-detector (BID) type, now undergoing development, features a chirped (that is, aperiodic) superlattice. The purpose of the chirped superlattice is to increase the quantum efficiency of the device. A somewhat lengthy background discussion is necessary to give meaning to a brief description of the present developmental QWIP. A BID QWIP was described in "MQW Based Block Intersubband Detector for Low-Background Operation" (NPO-21073), NASA Tech Briefs Vol. 25, No. 7 (July 2001), page 46. To recapitulate: The BID design was conceived in response to the deleterious effects of operation of a QWIP at low temperature under low background radiation. These effects can be summarized as a buildup of space charge and an associated high impedance and diminution of responsivity with increasing modulation frequency. The BID design, which reduces these deleterious effects, calls for a heavily doped multiple-quantum-well (MQW) emitter section with barriers that are thinner than in prior MQW devices. The thinning of the barriers results in a large overlap of sublevel wave functions, thereby creating a miniband. Because of sequential resonant quantum-mechanical tunneling of electrons from the negative ohmic contact to and between wells, any space charge is quickly neutralized. At the same time, what would otherwise be a large component of dark current attributable to tunneling current through the whole device is suppressed by placing a relatively thick, undoped, impurity-free AlxGa1 x As blocking barrier layer between the MQW emitter section and the positive ohmic contact. [This layer is similar to the thick, undoped Al(x)Ga(1-x)As layers used in photodetectors of the blocked-impurity-band (BIB) type.] Notwithstanding the aforementioned advantage afforded by the BID design, the responsivity of a BID QWIP is very low because of low collection efficiency, which, in turn, is a result of low electrostatic- potential drop across the superlattice emitter. Because the emitter must be electrically conductive to prevent the buildup of space charge in depleted quantum wells, most of the externally applied bias voltage drop occurs across the blocking-barrier layer. This completes the background discussion. In the developmental QWIP, the periodic superlattice of the prior BID design is to be replaced with the chirped superlattice, which is expected to provide a built-in electric field. As a result, the efficiency of collection of photoexcited charge carriers (and, hence, the net quantum efficiency and thus responsivity) should increase significantly.
Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors
NASA Astrophysics Data System (ADS)
Yang, F.; Yu, T.; Wu, M. W.
2018-05-01
By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.
Donor impurity incorporation during layer growth of Zn II-VI semiconductors
NASA Astrophysics Data System (ADS)
Barlow, D. A.
2017-12-01
The maximum halogen donor concentration in Zn II-VI semiconductors during layer growth is studied using a standard model from statistical mechanics. Here the driving force for incorporation is an increase in entropy upon mixing of the donor impurity into the available anion lattice sites in the host binary. A formation energy opposes this increase and thus equilibrium is attained at some maximum concentration. Considering the halogen donor impurities within the Zn II-VI binary semiconductors ZnO, ZnS, ZnSe and ZnTe, a heat of reaction obtained from reported diatomic bond strengths is shown to be directly proportional to the log of maximum donor concentration. The formation energy can then be estimated and an expression for maximum donor concentration derived. Values for the maximum donor concentration with each of the halogen impurities, within the Zn II-VI compounds, are computed. This model predicts that the halogens will serve as electron donors in these compounds in order of increasing effectiveness as: F, Br, I, Cl. Finally, this result is taken to be equivalent to an alternative model where donor concentration depends upon impurity diffusion and the conduction band energy shift due to a depletion region at the growing crystal's surface. From this, we are able to estimate the diffusion activation energy for each of the impurities mentioned above. Comparisons are made with reported values and relevant conclusions presented.
Fluorescence metrology used for analytics of high-quality optical materials
NASA Astrophysics Data System (ADS)
Engel, Axel; Haspel, Rainer; Rupertus, Volker
2004-09-01
Optical, glass ceramics and crystals are used for various specialized applications in telecommunication, biomedical, optical, and micro lithography technology. In order to qualify and control the material quality during the research and production processes several specialized ultra trace analytisis methods have to be appliedcs Schott Glas is applied. One focus of our the activities is the determination of impurities ranging in the sub ppb-regime, because such kind of impurity level is required e.g. for pure materials used for microlithography for example. Common analytical techniques for these impurity levels areSuch impurities are determined using analytical methods like LA ICP-MS and or Neutron Activation Analysis for example. On the other hand direct and non-destructive optical analysistic becomes is attractive because it visualizes the requirement of the optical applications additionally. Typical eExamples are absorption and laser resistivity measurements of optical material with optical methods like precision spectral photometers and or in-situ transmission measurements by means ofusing lamps and or UV lasers. Analytical methods have the drawback that they are time consuming and rather expensive, whereas the sensitivity for the absorption method will not be sufficient to characterize the future needs (coefficient much below 10-3 cm-1). For a non-destructive qualification for the current and future quality requirements a Jobin Yvon FLUOROLOG 3.22 fluorescence spectrometery is employed to enable fast and precise qualification and analysis. The main advantage of this setup is the combination of highest sensitivity (more than one order of magnitude higher sensitivity than state of the art UV absorption spectroscopy), fast measurement and evaluation cycles (several minutes compared to several hours necessary for chemical analystics). An overview is given for spectral characteristics using specified standards, which are necessary to establish the analytical system. The elementary fluorescence and absorption of rare earth element impurities as well as crystal defects induced luminescence originated by impurities was investigated. Quantitative numbers are given for the relative quantum yield as well as for the excitation cross section for doped glass and calcium fluoride.
Lifting of Spin Blockade by Charged Impurities in Si-MOS Double Quantum Dot Devices
NASA Astrophysics Data System (ADS)
King, Cameron; Schoenfield, Joshua; Calderón, M. J.; Koiller, Belita; Saraiva, André; Hu, Xuedong; Jiang, Hong-Wen; Friesen, Mark; Coppersmith, S. N.
Fabricating quantum dots in silicon metal-oxide-semiconductor (MOS) for quantum information processing applications is attractive because of the long spin coherence times in silicon and the potential for leveraging the massive investments that have been made for scaling of the technology for classical electronics. One obstacle that has impeded the development of electrically gated MOS singlet-triplet qubits is the lack of observed spin blockade, where the tunneling of a second electron into a dot is fast when the two-electron state is a singlet and slow when the two-electron state is a triplet, even in samples with large singlet-triplet energy splittings. We show that this is a commonly exhibited problem in MOS double quantum dots, and present evidence that the cause is stray positive charges in the oxide layer inducing accidental dots near the device's active region that allow spin blockade lifting. This work was supported by ARO (W911NF-12-1-0607), NSF (IIA-1132804), the Department of Defense under Contract No. H98230-15-C 0453, ARO (W911NF-14-1-0346), NSF (OISE-1132804), ONR (N00014-15-1-0029), and ARO (W911NF-12-R-0012).
Imaging Anyons with Scanning Tunneling Microscopy
NASA Astrophysics Data System (ADS)
Papić, Zlatko; Mong, Roger S. K.; Yazdani, Ali; Zaletel, Michael P.
2018-01-01
Anyons are exotic quasiparticles with fractional charge that can emerge as fundamental excitations of strongly interacting topological quantum phases of matter. Unlike ordinary fermions and bosons, they may obey non-Abelian statistics—a property that would help realize fault-tolerant quantum computation. Non-Abelian anyons have long been predicted to occur in the fractional quantum Hall (FQH) phases that form in two-dimensional electron gases in the presence of a large magnetic field, such as the ν =5 /2 FQH state. However, direct experimental evidence of anyons and tests that can distinguish between Abelian and non-Abelian quantum ground states with such excitations have remained elusive. Here, we propose a new experimental approach to directly visualize the structure of interacting electronic states of FQH states with the STM. Our theoretical calculations show how spectroscopy mapping with the STM near individual impurity defects can be used to image fractional statistics in FQH states, identifying unique signatures in such measurements that can distinguish different proposed ground states. The presence of locally trapped anyons should leave distinct signatures in STM spectroscopic maps, and enables a new approach to directly detect—and perhaps ultimately manipulate—these exotic quasiparticles.
Resonant optical spectroscopy and coherent control of Cr4+ spin ensembles in SiC and GaN
NASA Astrophysics Data System (ADS)
Koehl, William
Spins bound to point defects have emerged as an important resource in quantum information and spintronic technologies, especially as new materials systems have been developed that enable robust and precise quantum state control via optical, electronic, or mechanical degrees of freedom. In an effort to broaden the range of materials platforms available to such defect-based quantum technologies, we have recently begun exploring optically active transition metal ion spins doped into common wide-bandgap semiconductors. The spins of such ions are derived in part from unpaired d orbital electron states, suggesting in some cases that they may be portable across multiple materials systems. This in contrast to many vacancy-related defect spins such as the diamond nitrogen vacancy center or silicon carbide divacancy, which are formed primarily from the dangling bond states of the host. Here we demonstrate ensemble optical spin polarization and time-resolved optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). We find that these impurities possess narrow optical linewidths (<8.5 GHz at cryogenic temperatures) that allow us to optically resolve the magnetic sublevels of the spins even when probing a large ensemble of many ions simultaneously. This enables us to directly polarize and probe the Cr4+ spins using straightforward optical techniques, which we then combine with coherent microwave excitation in order to characterize the dynamical properties of the ensemble. Significantly, these near-infrared emitters also possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained within the defects' zero-phonon lines. These characteristics make the Cr4+ ion system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials. In collaboration with B. Diler, S. J. Whiteley, A. Bourassa, N. T. Son, E. Janzén, and D. D. Awschalom. This work supported by AFOSR, ARO, NSF MRSEC, the Argonne LDRD Program, LiLi-NFM, and the Knut and Alice Wallenberg Foundation.
NASA Astrophysics Data System (ADS)
Ghosh, Arindam
Three-dimensional bulk-doped semiconductors, in particular phosphorus (P)-doped silicon (Si) and germanium (Ge), are among the best studied systems for many fundamental concepts in solid state physics, ranging from the Anderson metal-insulator transition to the many-body Coulomb interaction effects on quantum transport. Recent advances in material engineering have led to vertically confined doping of phosphorus (P) atoms inside bulk crystalline silicon and germanium, where the electron transport occurs through one or very few atomic layers, constituting a new and unique platform to investigate many of these phenomena at reduced dimensions. In this talk I shall present results of extensive quantum transport experiments in delta-doped silicon and germanium epilayers, over a wide range of doping density that allow independent tuning of the on-site Coulomb interaction and hopping energy scales. We find that low-frequency flicker noise, or the 1 / f noise, in the electrical conductance of these systems is exceptionally low, and in fact among the lowest when compared with other low-dimensional materials. This is attributed to the physical separation of the conduction electrons, embedded inside the crystalline semiconductor matrix, from the charged fluctuators at the surface. Most importantly, we find a remarkable suppression of weak localization effects, including the quantum correction to conductivity and universal conductance fluctuations, with decreasing doping density or, equivalently, increasing effective on-site Coulomb interaction. In-plane magneto-transport measurements indicate the presence of intrinsic local spin fluctuations at low doping although no signatures of long range magnetic order could be identified. We argue that these results indicate a spontaneous breakdown of time reversal symmetry, which is one of the most fundamental and robust symmetries of nonmagnetic quantum systems. While the microscopic origin of this spontaneous time reversal symmetry breaking remains unknown, we believe this indicates a new many-body electronic phase in two-dimensionally doped silicon and germanium with a half-filled impurity band. We acknowledge financial support from Department of Science and Technology, Government of India, and Australia-India Strategic Research Fund (AISRF).
NASA Astrophysics Data System (ADS)
Gubanov, V. A.; Pentaleri, E. A.; Boekema, C.; Fong, C. Y.; Klein, B. M.
1997-03-01
We have investigated clusterization of nitrogen vacancies and Si and Mg doping impurities in zinc-blende aluminum nitride (c-AlN) and gallium nitride (c-GaN) by the tight-binding LMTO technique. The calculations used 128-site supercells. Si and Mg atoms replacing ions in both the cation and anion sublattices of the host lattices of the host crystals have been considered. The Mg impurity at cation sites is found to form partially occupied states at the valence-band edge, and may result in p-type conductivity. When Si substitutes for Ga, the impurity band is formed at the conduction-band edge, resulting in n-type conductivity. Si impurities at cation sites, and Mg impurity at anion sites are able to form resonance states in the gap. The influence of impurity clusterization in the host lattice and interstitial sites on electronic properties of c-AlN and c-GaN crystals are modeled. The changes in vacancy- and impurity-state energies, bonding type, localization, density of states at the Fermi level in different host lattices, their dependence on impurity/vacancy concentration are analyzed and compared with the experimental data.
Measurements of Impurity Particle Transport Associated with Drift-Wave Turbulence in MST
NASA Astrophysics Data System (ADS)
Nishizawa, Takashi; Nornberg, Mark; Boguski, John; Craig, Darren; den Hartog, Daniel; Pueschel, M. J.; Sarff, John; Terry, Paul; Williams, Zach; Xing, Zichuan
2017-10-01
Understanding and controlling impurity transport in a toroidal magnetized plasma is one of the critical issues that need to be addressed in order to achieve controlled fusion. Gyrokinetic modeling shows turbulence can drive impurity transport, but direct measurements of the turbulent flux have not been made. Particle balance is typically used to infer the presence of turbulent impurity transport. We report, for the first time in a toroidal plasma, direct measurements of turbulence-driven impurity transport. Trapped electron mode (TEM) turbulence appears in MST plasmas when MHD tearing fluctuations are suppressed. Impurity ion-Doppler spectroscopy is used to correlate impurity density and radial velocity fluctuations associated with TEM. Small Doppler shifts associated with the radial velocity fluctuations (rms 1km/s) are resolved with the use of a new linearized spectrum correlation analysis method, which improves the rejection of Poisson noise. The method employs frequency-domain correlation analysis to expose the fluctuation and transport spectrum. The C+ 2 impurity transport velocity driven by turbulence is found to be 48m/s (inward), which is sufficiently large to impact an impurity flux balance in MST improved-confinement plasmas. This work is supported by the US DOE.
Stability of Weyl metals under imuurity scattering
NASA Astrophysics Data System (ADS)
Huang, Zhoushen; Das, Tanmoy; Balatsky, Alexander V.; Arovas, Daniel P.
2013-03-01
We investigate the effects of bulk impurities on the electronic spectrum of Weyl semimetals, a recently identified class of Dirac-type materials. Using a T-matrix approach, we study resonant scattering due to a localized impurity in tight binding versions of the continuum models recently discussed by Burkov, Hook, and Balents, describing perturbed four-component Dirac fermions in the vicinity of a critical point. The impurity potential is described by a strength g as well as a matrix structure Λ. Unlike the case in d-wave superconductors, where a zero energy resonance can always be induced by varying the impurity scalar and/or magnetic impurity strength, we find that for certain types of impurity (Λ), the Weyl node is protected, and that a scalar impurity will induce an intragap resonance over a wide range of scattering stength. A general framework is developed to address this question, as well as to determine the dependence of resonance energy on the impurity strength. This work is supported in part by the NSF through grant DMR-1007028. Work at LANL was supported by US DoE.
NASA Astrophysics Data System (ADS)
Riseborough, P. S.; Lawrence, J. M.
2016-08-01
We review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effect and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger’s theorem, the Friedel sum rule, the Schrieffer-Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Noziéres exhaustion principle, Doniach’s diagram, the Anderson lattice model, the Slave-Boson method, etc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riseborough, P. S.; Lawrence, Jon M.
Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less
Riseborough, P. S.; Lawrence, Jon M.
2016-07-04
Here, we review the theory of mixed-valent metals and make comparison with experiments. A single-impurity description of the mixed-valent state is discussed alongside the description of the nearly-integer valent or Kondo limit. The degeneracy N of the f-shell plays an important role in the description of the low-temperature Fermi-liquid state. In particular, for large N, there is a rapid cross-over between the mixed-valent and the Kondo limit when the number of f electrons is changed. We discuss the limitations on the application of the single-impurity description to concentrated compounds such as those caused by the saturation of the Kondo effectmore » and those due to the presence of magnetic interactions between the impurities. This discussion is followed by a description of a periodic lattice of mixed-valent ions, including the role of the degeneracy N. The article concludes with a comparison of theory and experiment. Topics covered include the single-impurity Anderson model, Luttinger's theorem, the Friedel sum rule, the Schrieffer–Wolff transformation, the single-impurity Kondo model, Kondo screening, the Wilson ratio, local Fermi-liquids, Fermi-liquid sum rules, the Nozieres exhaustion principle, Doniach's diagram, the Anderson lattice model, the Slave-Boson method, etc.« less
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4).
Quasiparticle Properties of a Mobile Impurity in a Bose-Einstein Condensate.
Christensen, Rasmus Søgaard; Levinsen, Jesper; Bruun, Georg M
2015-10-16
We develop a systematic perturbation theory for the quasiparticle properties of a single impurity immersed in a Bose-Einstein condensate. Analytical results are derived for the impurity energy, effective mass, and residue to third order in the impurity-boson scattering length. The energy is shown to depend logarithmically on the scattering length to third order, whereas the residue and the effective mass are given by analytical power series. When the boson-boson scattering length equals the boson-impurity scattering length, the energy has the same structure as that of a weakly interacting Bose gas, including terms of the Lee-Huang-Yang and fourth order logarithmic form. Our results, which cannot be obtained within the canonical Fröhlich model of an impurity interacting with phonons, provide valuable benchmarks for many-body theories and for experiments.
Disorder enabled band structure engineering of a topological insulator surface
Xu, Yishuai; Chiu, Janet; Miao, Lin; ...
2017-02-03
Three-dimensional topological insulators are bulk insulators with Z 2 topological electronic order that gives rise to conducting light-like surface states. These surface electrons are exceptionally resistant to localization by non-magnetic disorder, and have been adopted as the basis for a wide range of proposals to achieve new quasiparticle species and device functionality. Recent studies have yielded a surprise by showing that in spite of resisting localization, topological insulator surface electrons can be reshaped by defects into distinctive resonance states. Here we use numerical simulations and scanning tunnelling microscopy data to show that these resonance states have significance well beyond themore » localized regime usually associated with impurity bands. Lastly, at native densities in the model Bi 2X 3 (X=Bi, Te) compounds, defect resonance states are predicted to generate a new quantum basis for an emergent electron gas that supports diffusive electrical transport.« less
Hydrodynamic model for conductivity in graphene.
Mendoza, M; Herrmann, H J; Succi, S
2013-01-01
Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data.
NASA Astrophysics Data System (ADS)
Hu, Bo
2015-08-01
Based on semiclassical Boltzamnn transport theory in random phase approximation, we develop a theoretical model to investigate low-temperature carrier transport properties in relatively high doped bilayer graphene. In the presence of both electron-hole puddles and band gap induced by charged impurities, we calculate low-temperature charged impurity scattering-limited conductivity in relatively high doped bilayer graphene. Our calculated conductivity results are in excellent agreement with published experimental data in all compensated gate voltage regime of study by using potential fluctuation parameter as only one free fitting parameter, indicating that both electron-hole puddles and band gap induced by charged impurities play an important role in carrier transport. More importantly, we also find that the conductivity not only depends strongly on the total charged impurity density, but also on the top layer charged impurity density, which is different from that obtained by neglecting the opening of band gap, especially for bilayer graphene with high top layer charged impurity density.
Cr doping induced negative transverse magnetoresistance in C d3A s2 thin films
NASA Astrophysics Data System (ADS)
Liu, Yanwen; Tiwari, Rajarshi; Narayan, Awadhesh; Jin, Zhao; Yuan, Xiang; Zhang, Cheng; Chen, Feng; Li, Liang; Xia, Zhengcai; Sanvito, Stefano; Zhou, Peng; Xiu, Faxian
2018-02-01
The magnetoresistance of a material conveys various dynamic information about charge and spin carriers, inspiring both fundamental studies in physics and practical applications such as magnetic sensors, data storage, and spintronic devices. Magnetic impurities play a crucial role in the magnetoresistance as they induce exotic states of matter such as the quantum anomalous Hall effect in topological insulators and tunable ferromagnetic phases in dilute magnetic semiconductors. However, magnetically doped topological Dirac semimetals are hitherto lacking. Here, we report a systematic study of Cr-doped C d3A s2 thin films grown by molecular-beam epitaxy. With the Cr doping, C d3A s2 thin films exhibit unexpected negative transverse magnetoresistance and strong quantum oscillations, bearing a trivial Berry's phase and an enhanced effective mass. More importantly, with ionic gating the magnetoresistance of Cr-doped C d3A s2 thin films can be drastically tuned from negative to positive, demonstrating the strong correlation between electrons and the localized spins of the Cr impurities, which we interpret through the formation of magnetic polarons. Such a negative magnetoresistance under perpendicular magnetic field and its gate tunability have not been observed previously in the Dirac semimetal C d3A s2 . The Cr-induced topological phase transition and the formation of magnetic polarons in C d3A s2 provide insights into the magnetic interaction in Dirac semimetals as well as their potential applications in spintronics.
Structural Stability and Defect Energetics of ZnO from Diffusion Quantum Monte Carlo
Santana Palacio, Juan A.; Krogel, Jaron T.; Kim, Jeongnim; ...
2015-04-28
We have applied the many-body ab-initio diffusion quantum Monte Carlo (DMC) method to study Zn and ZnO crystals under pressure, and the energetics of the oxygen vacancy, zinc interstitial and hydrogen impurities in ZnO. We show that DMC is an accurate and practical method that can be used to characterize multiple properties of materials that are challenging for density functional theory approximations. DMC agrees with experimental measurements to within 0.3 eV, including the band-gap of ZnO, the ionization potential of O and Zn, and the atomization energy of O2, ZnO dimer, and wurtzite ZnO. DMC predicts the oxygen vacancy asmore » a deep donor with a formation energy of 5.0(2) eV under O-rich conditions and thermodynamic transition levels located between 1.8 and 2.5 eV from the valence band maximum. Our DMC results indicate that the concentration of zinc interstitial and hydrogen impurities in ZnO should be low under n-type, and Zn- and H-rich conditions because these defects have formation energies above 1.4 eV under these conditions. Comparison of DMC and hybrid functionals shows that these DFT approximations can be parameterized to yield a general correct qualitative description of ZnO. However, the formation energy of defects in ZnO evaluated with DMC and hybrid functionals can differ by more than 0.5 eV.« less
Afzalian, A; Vasen, T; Ramvall, P; Shen, T-M; Wu, J; Passlack, M
2018-06-27
We report the capability to simulate in a quantum-mechanical atomistic fashion record-large nanowire devices, featuring several hundred to millions of atoms and a diameter up to 18.2 nm. We have employed a tight-binding mode-space NEGF technique demonstrating by far the fastest (up to 10 000 × faster) but accurate (error < 1%) atomistic simulations to date. Such technique and capability opens new avenues to explore and understand the physics of nanoscale and mesoscopic devices dominated by quantum effects. In particular, our method addresses in an unprecedented way the technologically-relevant case of band-to-band tunneling (BTBT) in III-V nanowire broken-gap heterojunction tunnel-FETs (HTFETs). We demonstrate an accurate match of simulated BTBT currents to experimental measurements in a 12 nm diameter InAs NW and in an InAs/GaSb Esaki tunneling diode. We apply our TB MS simulations and report the first in-depth atomistic study of the scaling potential of III-V GAA nanowire HTFETs including the effect of electron-phonon scattering and discrete dopant impurity band tails, quantifying the benefits of this technology for low-power low-voltage CMOS applications.
NASA Astrophysics Data System (ADS)
Afzalian, A.; Vasen, T.; Ramvall, P.; Shen, T.-M.; Wu, J.; Passlack, M.
2018-06-01
We report the capability to simulate in a quantum-mechanical atomistic fashion record-large nanowire devices, featuring several hundred to millions of atoms and a diameter up to 18.2 nm. We have employed a tight-binding mode-space NEGF technique demonstrating by far the fastest (up to 10 000 × faster) but accurate (error < 1%) atomistic simulations to date. Such technique and capability opens new avenues to explore and understand the physics of nanoscale and mesoscopic devices dominated by quantum effects. In particular, our method addresses in an unprecedented way the technologically-relevant case of band-to-band tunneling (BTBT) in III–V nanowire broken-gap heterojunction tunnel-FETs (HTFETs). We demonstrate an accurate match of simulated BTBT currents to experimental measurements in a 12 nm diameter InAs NW and in an InAs/GaSb Esaki tunneling diode. We apply our TB MS simulations and report the first in-depth atomistic study of the scaling potential of III–V GAA nanowire HTFETs including the effect of electron–phonon scattering and discrete dopant impurity band tails, quantifying the benefits of this technology for low-power low-voltage CMOS applications.
Influence of kondo effect on the specific heat jump of anisotropic superconductors
NASA Astrophysics Data System (ADS)
Yoksan, S.
1986-01-01
A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. We give explicit expressions for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally.
Mysteries of TOPSe revealed: insights into quantum dot nucleation.
Evans, Christopher M; Evans, Meagan E; Krauss, Todd D
2010-08-18
We have investigated the reaction mechanism responsible for QD nucleation using optical absorption and nuclear magnetic resonance spectroscopies. For typical II-VI and IV-VI quantum dot (QD) syntheses, pure tertiary phosphine selenide sources (e.g., trioctylphosphine selenide (TOPSe)) were surprisingly found to be unreactive with metal carboxylates and incapable of yielding QDs. Rather, small quantities of secondary phosphines, which are impurities in tertiary phosphines, are entirely responsible for the nucleation of QDs; their low concentrations account for poor synthetic conversion yields. QD yields increase to nearly quantitative levels when replacing TOPSe with a stoiciometric amount of a secondary phosphine chalcogenide such as diphenylphosphine selenide. Based on our observations, we have proposed potential monomer identities, reaction pathways, and transition states and believe this mechanism to be universal to all II-VI and IV-VI QDs synthesized using phosphine based methods.
Mysteries of TOPSe Revealed: Insights into Quantum Dot Nucleation
Evans, Christopher M.; Evans, Meagan E.
2010-01-01
We have investigated the reaction mechanism responsible for QD nucleation using optical absorption and nuclear magnetic resonance spectroscopies. For typical II-VI and IV-VI quantum dot (QD) syntheses, pure tertiary phosphine selenide sources (e.g. trioctylphosphine selenide (TOPSe)) were surprisingly found to be unreactive with metal carboxylates and incapable of yielding QDs. Rather, small quantities of secondary phosphines, which are impurities in tertiary phosphines, are entirely responsible for the nucleation of QDs; their low concentrations account for poor synthetic conversion yields. QD yields increase to nearly quantitative levels when replacing TOPSe with a stoiciometric amount of a secondary phosphine chalcogenide such as diphenylphosphine selenide. Based on our observations, we have proposed potential monomer identities, reaction pathways and transition states, and believe this mechanism to be universal to all II-VI and IV-VI QDs synthesized using phosphine based methods. PMID:20698646
NASA Astrophysics Data System (ADS)
Baroni, Travis C.; Griffin, Brendan J.; Browne, James R.; Lincoln, Frank J.
2000-01-01
Charge contrast images (CCI) of synthetic gibbsite obtained on an environmental scanning electron microscope gives information on the crystallization process. Furthermore, X-ray mapping of the same grains shows that impurities are localized during the initial stages of growth and that the resulting composition images have features similar to these observed in CCI. This suggests a possible correlation between impurity distributions and the emission detected during CCI. X-ray line profiles, simulating the spatial distribution of impurities derived from the Monte Carlo program CASINO, have been compared with experimental line profiles and give an estimate of the localization. The model suggests that a main impurity, Ca, is depleted from the solution within approximately 3 4 [mu]m of growth.
Transport Simulations of DIII-D Discharges with Impurity Injection
NASA Astrophysics Data System (ADS)
Mandrekas, J.; Stacey, W. M.; Murakami, M.
2001-10-01
Several recent DIII-D discharges with external impurity injection into L-mode plasmas are analyzed with a coupled main plasma and multi-charge state 1frac 12-D impurity transport code. These discharges exhibit various degrees of confinement improvement, which has been attributed to the synergistic effects of impurity induced enhancement of the E×B shearing rate and reduction of the drift wave turbulence growth rate (M. Murakami, et. al., Nucl. Fusion 41) (2001) 317.. Impurity transport is described by empirical and neoclassical transport models. Both the standard neoclassical theory as well as an enhanced theory which takes into account the effects of external momentum input and radial momentum transport (W.M. Stacey, Phys. Plasmas 8) (2001) 158. have been considered.
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments Database
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
Scanning tunnelling spectroscopy as a probe of multi-Q magnetic states of itinerant magnets
Gastiasoro, Maria N.; Eremin, Ilya; Fernandes, Rafael M.; ...
2017-02-08
The combination of electronic correlations and Fermi surfaces with multiple nesting vectors can lead to the appearance of complex multi-Q magnetic ground states, hosting unusual states such as chiral density waves and quantum Hall insulators. Distinguishing single-Q and multi-Q magnetic phases is however a notoriously difficult experimental problem. Here we propose theoretically that the local density of states (LDOS) near a magnetic impurity, whose orientation may be controlled by an external magnetic field, can be used to map out the detailed magnetic configuration of an itinerant system and distinguish unambiguously between single-Q and multi-Q phases. We demonstrate this concept bymore » computing and contrasting the LDOS near a magnetic impurity embedded in three different magnetic ground states relevant to iron-based superconductors—one single-Q and two double-Q phases. Our results open a promising avenue to investigate the complex magnetic configurations in itinerant systems via standard scanning tunnelling spectroscopy, without requiring spin-resolved capability.« less
NASA Astrophysics Data System (ADS)
Di Napoli, S.; Roura-Bas, P.; Weichselbaum, Andreas; Aligia, A. A.
2014-09-01
We calculate the differential conductance as a function of temperature and bias voltage, G (T,V), through Au monatomic chains with a substitutional Co atom as a magnetic impurity, connected to a fourfold symmetric lead. The system was recently proposed as a possible scenario for observation of the overscreened Kondo physics. Stretching the chain, the system could be tuned through a quantum critical point (QCP) with three different regimes: overscreened, underscreened, and non-Kondo phases. We present calculations of the impurity spectral function by using the numerical renormalization group for the three different regimes characterizing the QCP. Nontrivial behavior of the spectral function is reported near the QCP. Comparison with results using the noncrossing approximation (NCA) shows that the latter is reliable in the overscreened regime, when the anisotropy is larger than the Kondo temperature. For these parameters, which correspond to realistic previous estimates, G (T,V) calculated within NCA exhibits clear signatures of the non-Fermi-liquid behavior within the overscreened regime.
Separation of semiconducting and ferromagnetic FeSi2-nanoparticles by magnetic filtering
NASA Astrophysics Data System (ADS)
Aigner, Willi; Niesar, Sabrina; Mehmedovic, Ervin; Opel, Matthias; Wagner, Friedrich E.; Wiggers, Hartmut; Stutzmann, Martin
2013-10-01
We have investigated the potential of solution-processed β-phase iron disilicide (FeSi2) nanoparticles as a novel semiconducting material for photovoltaic applications. Combined ultraviolet-visible absorption and photothermal deflection spectroscopy measurements have revealed a direct band gap of 0.85 eV and, therefore, a particularly high absorption in the near infrared. With the help of Fourier-transform infrared and X-ray photoelectron spectroscopy, we have observed that exposure to air primarily leads to the formation of a silicon oxide rather than iron oxide. Mössbauer measurements have confirmed that the nanoparticles possess a phase purity of more than 99%. To diminish the small fraction of metallic iron impurities, which were detected by superconducting quantum interference device magnetometry and which would act as unwanted Auger recombination centers, we present a novel concept to magnetically separate the FeSi2 nanoparticles (NPs). This process leads to a reduction of more than 95% of the iron impurities.
Spatially resolved NMR spectra for the Swiss cheese model in heavy fermion PuCoGa5 superconductor
NASA Astrophysics Data System (ADS)
Das, Tanmoy; Zhu, Jian-Xin; Balatsky, A. V.; Graf, M. J.
2011-03-01
Spatially resolved NMR experiments, which probe the local electronic excitations, play a vital role for studying the pairing symmetry of unconventional superconductors. Here we calculate the spatial modulation of the NMR spin-lattice relaxation rate (1/T1) for the Swiss cheese model as a function of impurity concentration in PuCoGa5 superconductor. The local suppression of the superconducting order parameter due to impurities is related to the number of holes in the Swiss cheese model. Our results indicate that Friedel-like oscillations,as seen in the local-density of states near an impurity, are also present in the behavior of 1/T1 as one moves away from the impurity site. We demonstrate that the gap nodes, which are filled by disorder, can be probed by NMR through the local information encoded in the spectra. The advantage of spatially resolved NMR compared to STM measurements is that the former probe is not sensitive to surface states. Work is supported by US DOE.
NASA Astrophysics Data System (ADS)
Liang, Sang-Zi; Chen, Gugang; Harutyunyan, Avetik R.; Sofo, Jorge O.
2014-09-01
In carbon nanotube and graphene gas sensing, the measured conductance change after the sensor is exposed to target molecules has been traditionally attributed to carrier density change due to charge transfer between the sample and the adsorbed molecule. However, this explanation has many problems when it is applied to graphene: The increased amount of Coulomb impurities should lead to decrease in carrier mobility which was not observed in many experiments, carrier density is controlled by the gate voltage in the experimental setup, and there are inconsistencies in the energetics of the charge transfer. In this paper we explore an alternative mechanism. Charged functional groups and dipolar molecules on the surface of graphene may counteract the effect of charged impurities on the substrate. Because scattering of electrons with these charged impurities has been shown to be the limiting factor in graphene conductivity, this leads to significant changes in the transport behavior. A model for the conductivity is established using the random phase approximation dielectric function of graphene and the first-order Born approximation for scattering. The model predicts optimal magnitudes for the charge and dipole moment which maximally screen a given charged impurity. The dipole screening is shown to be generally weaker than the charge screening although the former becomes more effective with higher gate voltage away from the charge neutrality point. The model also predicts that with increasing amount of adsorbates, the charge impurities eventually become saturated and additional adsorption always lead to decreasing conductivity.
NASA Astrophysics Data System (ADS)
Syaina, L. P.; Majidi, M. A.
2018-04-01
Single impurity Anderson model describes a system consisting of non-interacting conduction electrons coupled with a localized orbital having strongly interacting electrons at a particular site. This model has been proven successful to explain the phenomenon of metal-insulator transition through Anderson localization. Despite the well-understood behaviors of the model, little has been explored theoretically on how the model properties gradually evolve as functions of hybridization parameter, interaction energy, impurity concentration, and temperature. Here, we propose to do a theoretical study on those aspects of a single impurity Anderson model using the distributional exact diagonalization method. We solve the model Hamiltonian by randomly generating sampling distribution of some conducting electron energy levels with various number of occupying electrons. The resulting eigenvalues and eigenstates are then used to define the local single-particle Green function for each sampled electron energy distribution using Lehmann representation. Later, we extract the corresponding self-energy of each distribution, then average over all the distributions and construct the local Green function of the system to calculate the density of states. We repeat this procedure for various values of those controllable parameters, and discuss our results in connection with the criteria of the occurrence of metal-insulator transition in this system.
Hydrodynamic Model for Conductivity in Graphene
Mendoza, M.; Herrmann, H. J.; Succi, S.
2013-01-01
Based on the recently developed picture of an electronic ideal relativistic fluid at the Dirac point, we present an analytical model for the conductivity in graphene that is able to describe the linear dependence on the carrier density and the existence of a minimum conductivity. The model treats impurities as submerged rigid obstacles, forming a disordered medium through which graphene electrons flow, in close analogy with classical fluid dynamics. To describe the minimum conductivity, we take into account the additional carrier density induced by the impurities in the sample. The model, which predicts the conductivity as a function of the impurity fraction of the sample, is supported by extensive simulations for different values of ε, the dimensionless strength of the electric field, and provides excellent agreement with experimental data. PMID:23316277
NASA Astrophysics Data System (ADS)
Xu, Shenzhen
Metal oxide materials are ubiquitous in nature and in our daily lives. For example, the Earth's mantle layer that makes up about 80% of our Earth's volume is composed of metal oxide materials, the cathode materials in the lithium-ion batteries that provide power for most of our mobile electronic devices are composed of metal oxides, the chemical components of the passivation layers on many kinds of metal materials that protect the metal from further corrosion are metal oxides. This thesis is composed of two major topics about the metal oxide materials in nature. The first topic is about our computational study of the iron chemistry in the Earth's lower mantle metal oxide materials, i.e. the bridgmanite (Fe-bearing MgSiO3 where iron is the substitution impurity element) and the ferropericlase (Fe-bearing MgO where iron is the substitution impurity element). The second topic is about our multiscale modeling works for understanding the nanoscale kinetic and thermodynamic properties of the metal oxide cathode interfaces in Li-ion batteries, including the intrinsic cathode interfaces (intergrowth of multiple types of cathode materials, compositional gradient cathode materials, etc.), the cathode/coating interface systems and the cathode/electrolyte interface systems. This thesis uses models based on density functional theory quantum mechanical calculations to explore the underlying physics behind several types of metal oxide materials existing in the interior of the Earth or used in the applications of lithium-ion batteries. The exploration of this physics can help us better understand the geochemical and seismic properties of our Earth and inspire us to engineer the next generation of electrochemical technologies.
NASA Astrophysics Data System (ADS)
Khomitsky, D. V.; Chubanov, A. A.; Konakov, A. A.
2016-12-01
The dynamics of Dirac-Weyl spin-polarized wavepackets driven by a periodic electric field is considered for the electrons in a mesoscopic quantum dot formed at the edge of the two-dimensional HgTe/CdTe topological insulator with Dirac-Weyl massless energy spectra, where the motion of carriers is less sensitive to disorder and impurity potentials. It is observed that the interplay of strongly coupled spin and charge degrees of freedom creates the regimes of irregular dynamics in both coordinate and spin channels. The border between the regular and irregular regimes determined by the strength and frequency of the driving field is found analytically within the quasiclassical approach by means of the Ince-Strutt diagram for the Mathieu equation, and is supported by full quantum-mechanical simulations of the driven dynamics. The investigation of quasienergy spectrum by Floquet approach reveals the presence of non-Poissonian level statistics, which indicates the possibility of chaotic quantum dynamics and corresponds to the areas of parameters for irregular regimes within the quasiclassical approach. We find that the influence of weak disorder leads to partial suppression of the dynamical chaos. Our findings are of interest both for progress in the fundamental field of quantum chaotic dynamics and for further experimental and technological applications of spindependent phenomena in nanostructures based on topological insulators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khomitsky, D. V., E-mail: khomitsky@phys.unn.ru; Chubanov, A. A.; Konakov, A. A.
2016-12-15
The dynamics of Dirac–Weyl spin-polarized wavepackets driven by a periodic electric field is considered for the electrons in a mesoscopic quantum dot formed at the edge of the two-dimensional HgTe/CdTe topological insulator with Dirac–Weyl massless energy spectra, where the motion of carriers is less sensitive to disorder and impurity potentials. It is observed that the interplay of strongly coupled spin and charge degrees of freedom creates the regimes of irregular dynamics in both coordinate and spin channels. The border between the regular and irregular regimes determined by the strength and frequency of the driving field is found analytically within themore » quasiclassical approach by means of the Ince–Strutt diagram for the Mathieu equation, and is supported by full quantum-mechanical simulations of the driven dynamics. The investigation of quasienergy spectrum by Floquet approach reveals the presence of non-Poissonian level statistics, which indicates the possibility of chaotic quantum dynamics and corresponds to the areas of parameters for irregular regimes within the quasiclassical approach. We find that the influence of weak disorder leads to partial suppression of the dynamical chaos. Our findings are of interest both for progress in the fundamental field of quantum chaotic dynamics and for further experimental and technological applications of spindependent phenomena in nanostructures based on topological insulators.« less
Mobile spin impurity in an optical lattice
NASA Astrophysics Data System (ADS)
Duncan, C. W.; Bellotti, F. F.; Öhberg, P.; Zinner, N. T.; Valiente, M.
2017-07-01
We investigate the Fermi polaron problem in a spin-1/2 Fermi gas in an optical lattice for the limit of both strong repulsive contact interactions and one dimension. In this limit, a polaronic-like behaviour is not expected, and the physics is that of a magnon or impurity. While the charge degrees of freedom of the system are frozen, the resulting tight-binding Hamiltonian for the impurity’s spin exhibits an intriguing structure that strongly depends on the filling factor of the lattice potential. This filling dependency also transfers to the nature of the interactions for the case of two magnons and the important spin balanced case. At low filling, and up until near unit filling, the single impurity Hamiltonian faithfully reproduces a single-band, quasi-homogeneous tight-binding problem. As the filling is increased and the second band of the single particle spectrum of the periodic potential is progressively filled, the impurity Hamiltonian, at low energies, describes a single particle trapped in a multi-well potential. Interestingly, once the first two bands are fully filled, the impurity Hamiltonian is a near-perfect realisation of the Su-Schrieffer-Heeger model. Our studies, which go well beyond the single-band approximation, that is, the Hubbard model, pave the way for the realisation of interacting one-dimensional models of condensed matter physics.
NASA Technical Reports Server (NTRS)
Henderson, R. H.; Sun, D.; Towe, E.
1995-01-01
The photoluminescence characteristics of pseudomorphic In(0.19)Ga(0.81)As/GaAs quantum well structures grown on both the conventional (001) and the unconventional (112)B GaAs substrate are investigated. It is found that the emission spectra of the structures grown on the (112)B surface exhibit some spectral characteristics not observed on similar structures grown on the (001) surface. A spectral blue shift of the e yields hh1 transition with increasing optical pump intensity is observed for the quantum wells on the (112) surface. This shift is interpreted to be evidence of a strain-induced piezoelectric field. A second spectral feature located within the band gap of the In(0.19)Ga(0.81)As layer is also observed for the (112) structure; this feature is thought to be an impurity-related emission. The expected transition energies of the quantum well structures are calculated using the effective mass theory based on the 4 x 4 Luttinger valence band Hamiltonian, and related strain Hamiltonian.
Long range spin qubit interaction mediated by microcavity polaritons
NASA Astrophysics Data System (ADS)
Piermarocchi, Carlo; Quinteiro, Guillermo F.; Fernandez-Rossier, Joaquin
2007-03-01
Planar microcavities are semiconductor devices that confine the electromagnetic field by means of two parallel semiconductor mirrors. When a quantum well (QW) is placed inside a planar microcavity, the excitons in the QW couple to confined electromagnetic modes. In the strong-coupling regime, excitons and cavity photons give rise to new states, cavity polaritons, which appear in two branches separated by a vacuum Rabi splitting. We study theoretically the dynamics of localized spins in the QW interacting with cavity polaritons. Our calculations consider localized electron spins of shallow neutral donors in GaAs (e.g., Si), but the theory is valid for other impurities and host semiconductors, as well as to charged quantum dots. In the strong-coupling regime, the vacuum Rabi splitting introduces anisotropies in the spin coupling. Moreover, due to their photon-like mass, polaritons provide an extremely long spin coupling range. This suggests the realization of two-qubit all-optical quantum operations within tens of picoseconds with spins localized as far as hundreds of nanometers apart. [G. F. Quinteiro et al., Phys. Rev. Lett. 97 097401, (2006)].
NASA Technical Reports Server (NTRS)
Mena, R. A.; Schacham, S. E.; Haugland, E. J.; Alterovitz, S. A.; Young, P. G.; Bibyk, S. B.; Ringel, S. A.
1995-01-01
The transport properties of channel delta-doped quantum well structures were characterized by conventional Hall effect and light-modulated Shubnikov-de Haas (SdH) effect measurements. The large number of carriers that become available due to the delta-doping of the channel, leads to an apparent degeneracy in the well. As a result of this degeneracy, the carrier mobility remains constant as a function of temperature from 300 K down to 1.4 K. The large amount of impurity scattering, associated with the overlap of the charge carriers and the dopants, resulted in low carrier mobilities and restricted the observation of the oscillatory magneto-resistance used to characterize the two-dimensional electron gas (2DEG) by conventional SdH measurements. By light-modulating the carriers, we were able to observe the SdH oscillation at low magnetic fields, below 1.4 tesla, and derive a value for the quantum scattering time. Our results for the ratio of the transport and quantum scattering times are lower than those previously measured for similar structures using much higher magnetic fields.
High quantum yield of the Egyptian blue family of infrared phosphors (MCuSi4O10, M = Ca, Sr, Ba)
NASA Astrophysics Data System (ADS)
Berdahl, Paul; Boocock, Simon K.; Chan, George C.-Y.; Chen, Sharon S.; Levinson, Ronnen M.; Zalich, Michael A.
2018-05-01
The alkaline earth copper tetra-silicates, blue pigments, are interesting infrared phosphors. The Ca, Sr, and Ba variants fluoresce in the near-infrared (NIR) at 909, 914, and 948 nm, respectively, with spectral widths on the order of 120 nm. The highest quantum yield ϕ reported thus far is ca. 10%. We use temperature measurements in sunlight to determine this parameter. The yield depends on the pigment loading (mass per unit area) ω with values approaching 100% as ω → 0 for the Ca and Sr variants. Although maximum quantum yield occurs near ω = 0, maximum fluorescence occurs near ω = 70 g m-2, at which ϕ = 0.7. The better samples show fluorescence decay times in the range of 130 to 160 μs. The absorbing impurity CuO is often present. Good phosphor performance requires long fluorescence decay times and very low levels of parasitic absorption. The strong fluorescence enhances prospects for energy applications such as cooling of sunlit surfaces (to reduce air conditioning requirements) and luminescent solar concentrators.
Mims electron-nuclear double resonance in LiYF4:Ce3+ crystal
NASA Astrophysics Data System (ADS)
Gafurov, M.; Mamin, G.; Kurkin, I.; Orlinskii, S.
2018-05-01
We report the observation of the pulsed electron-nuclear double resonance (ENDOR) spectra from 19F and 7Li nuclei on impurity Ce3+ ions in LiYF4 crystal. The resolved structure from the nearby and remote nuclei in spectra is observed. The outcome shows that LiYF4:Ce3+ system can be exploited as a convenient matrix for performing spin manipulations and adjusting quantum computation protocols while ENDOR technique is usable for the investigation of electron-nuclear interaction with all the nuclei of the system.
Optical Amplification of Spin Noise Spectroscopy via Homodyne Detection
NASA Astrophysics Data System (ADS)
Sterin, Pavel; Wiegand, Julia; Hübner, Jens; Oestreich, Michael
2018-03-01
Spin noise (SN) spectroscopy measurements on delicate semiconductor spin systems, like single (In,Ga)As quantum dots, are currently not limited by optical shot noise but rather by the electronic noise of the detection system. We report on a realization of homodyne SN spectroscopy enabling shot-noise-limited SN measurements. The proof-of-principle measurements on impurities in an isotopically enriched rubidium atom vapor show that homodyne SN spectroscopy can be utilized even in the low-frequency spectrum, which facilitates advanced semiconductor spin research like higher order SN measurements on spin qubits.
Microscopic theory of cation exchange in CdSe nanocrystals.
Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C
2014-10-10
Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.
Quantum critical fluctuations in disordered d-wave superconductors.
Meyer, Julia S; Gornyi, Igor V; Altland, Alexander
2003-03-14
To explain the strong quasiparticle damping in the cuprates, Sachdev and collaborators proposed to couple the system to a critically fluctuating id(xy)- or is-order parameter mode. Here we generalize the approach to the presence of static disorder. In the id case, the order parameter dynamics becomes diffusive, but otherwise much of the phenomenology of the clean case remains intact. In contrast, the interplay of disorder and is-order parameter fluctuations leads to a secondary superconductor transition, with a critical temperature exponentially sensitive to the impurity concentration.
Semiconducting behavior of substitutionally doped bilayer graphene
NASA Astrophysics Data System (ADS)
Mousavi, Hamze; Khodadadi, Jabbar; Grabowski, Marek
2018-02-01
In the framework of the Green's functions approach, random tight-binding model and using the coherent potential approximation, electronic characteristics of the bilayer graphene are investigated by exploring various forms of substitutional doping of a single or both layers of the system by either boron and (or) nitrogen atoms. The results for displacement of the Fermi level resemble the behavior of acceptor or donor doping in a conventional semiconductor, dependent on the impurity type and concentration. The particular pattern of doping of just one layer with one impurity type is most efficient for opening a gap within the energy bands which could be tuned directly by impurity concentration. Doping both layers at the same time, each with one impurity type, leads to an anomaly whereby the gap decreases with increasing impurity concentration.
Single- or multi-flavor Kondo effect in graphene
NASA Astrophysics Data System (ADS)
Zhu, Zhen-Gang; Ding, Kai-He; Berakdar, Jamal
2010-06-01
Based on the tight-binding formalism, we investigate the Anderson and the Kondo model for an adatom magnetic impurity above graphene. Different impurity positions are analyzed. Employing a partial-wave representation we study the nature of the coupling between the impurity and the conducting electrons. The components from the two Dirac points are mixed while interacting with the impurity. Two configurations are considered explicitly: the adatom is above one atom (ADA), the other case is the adatom above the center the honeycomb (ADC). For ADA the impurity is coupled with one flavor for both A and B sublattice and both Dirac points. For ADC the impurity couples with multi-flavor states for a spinor state of the impurity. We show, explicitly for a 3d magnetic atom, dz2, (dxz,dyz), and (dx2- y2,dxy) couple respectively with the Γ1, Γ5(E1), and Γ6(E2) representations (reps) of C6v group in ADC case. The bases for these reps of graphene are also derived explicitly. For ADA we calculate the Kondo temperature.
NASA Astrophysics Data System (ADS)
Bellmann, M. P.; Meese, E. A.; Arnberg, L.
2011-03-01
We have performed axisymmetric, transient simulations of the vertical Bridgman growth of mc-silicon to study the effect of the accelerated crucible rotation technique (ACRT) on the melt flow and impurity segregation. A solute transport model has been applied to predict the final segregation pattern of impurities in a circular ingot. The sinusoidal ACRT rotation cycle considered here suppresses mixing in the melt near the center, resulting in diffusion-limited mass transport. Therefore the radial impurity segregation is increased towards the center. The effect of increased radial segregation is intensified for low values of the Ekman time scale.
Neoclassical poloidal and toroidal rotation in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Y.B.; Diamond, P.H.; Groebner, R.J.
1991-08-01
Explicit expressions for the neoclassical poloidal and toroidal rotation speeds of primary ion and impurity species are derived via the Hirshman and Sigmar moment approach. The rotation speeds of the primary ion can be significantly different from those of impurities in various interesting cases. The rapid increase of impurity poloidal rotation in the edge region of H-mode discharges in tokamaks can be explained by a rapid steepening of the primary ion pressure gradient. Depending on ion collisionality, the poloidal rotation speed of the primary ions at the edge can be quite small and the flow direction may be opposite tomore » that of the impurities. This may cast considerable doubts on current L to H bifurcation models based on primary ion poloidal rotation only. Also, the difference between the toroidal rotation velocities of primary ions and impurities is not negligible in various cases. In Ohmic plasmas, the parallel electric field induces a large impurity toroidal rotation close to the magnetic axis, which seems to agree with experimental observations. In the ion banana and plateau regime, there can be non-negligible disparities between primary ion and impurity toroidal rotation velocities due to the ion density and temperature gradients. Detailed analytic expressions for the primary ion and impurity rotation speeds are presented, and the methodology for generalization to the case of several impurity species is also presented for future numerical evaluation.« less
Comparative DMFT study of the eg-orbital Hubbard model in thin films
NASA Astrophysics Data System (ADS)
Rüegg, Andreas; Hung, Hsiang-Hsuan; Gull, Emanuel; Fiete, Gregory A.
2014-02-01
Heterostructures of transition-metal oxides have emerged as a new route to engineer electronic systems with desired functionalities. Motivated by these developments, we study a two-orbital Hubbard model in a thin-film geometry confined along the cubic [001] direction using the dynamical mean-field theory. We contrast the results of two approximate impurity solvers (exact diagonalization and one-crossing approximation) to the results of the numerically exact continuous-time quantum Monte Carlo solver. Consistent with earlier studies, we find that the one-crossing approximation performs well in the insulating regime, while the advantage of the exact-diagonalization-based solver is more pronounced in the metallic regime. We then investigate various aspects of strongly correlated eg-orbital systems in thin-film geometries. In particular, we show how the interfacial orbital polarization dies off quickly a few layers from the interface and how the film thickness affects the location of the interaction-driven Mott transition. In addition, we explore the changes in the electronic structure with varying carrier concentration and identify large variations of the orbital polarization in the strongly correlated regime.
Emergent causality and the N-photon scattering matrix in waveguide QED
NASA Astrophysics Data System (ADS)
Sánchez-Burillo, E.; Cadarso, A.; Martín-Moreno, L.; García-Ripoll, J. J.; Zueco, D.
2018-01-01
In this work we discuss the emergence of approximate causality in a general setup from waveguide QED—i.e. a one-dimensional propagating field interacting with a scatterer. We prove that this emergent causality translates into a structure for the N-photon scattering matrix. Our work builds on the derivation of a Lieb-Robinson-type bound for continuous models and for all coupling strengths, as well as on several intermediate results, of which we highlight: (i) the asymptotic independence of space-like separated wave packets, (ii) the proper definition of input and output scattering states, and (iii) the characterization of the ground state and correlations in the model. We illustrate our formal results by analyzing the two-photon scattering from a quantum impurity in the ultrastrong coupling regime, verifying the cluster decomposition and ground-state nature. Besides, we generalize the cluster decomposition if inelastic or Raman scattering occurs, finding the structure of the S-matrix in momentum space for linear dispersion relations. In this case, we compute the decay of the fluorescence (photon-photon correlations) caused by this S-matrix.