Sample records for quantum jarzynski equality

  1. Quantum work statistics of charged Dirac particles in time-dependent fields

    DOE PAGES

    Deffner, Sebastian; Saxena, Avadh

    2015-09-28

    The quantum Jarzynski equality is an important theorem of modern quantum thermodynamics. We show that the Jarzynski equality readily generalizes to relativistic quantum mechanics described by the Dirac equation. After establishing the conceptual framework we solve a pedagogical, yet experimentally relevant, system analytically. As a main result we obtain the exact quantum work distributions for charged particles traveling through a time-dependent vector potential evolving under Schrödinger as well as under Dirac dynamics, and for which the Jarzynski equality is verified. Thus, special emphasis is put on the conceptual and technical subtleties arising from relativistic quantum mechanics.

  2. Experimental Verification of a Jarzynski-Related Information-Theoretic Equality by a Single Trapped Ion.

    PubMed

    Xiong, T P; Yan, L L; Zhou, F; Rehan, K; Liang, D F; Chen, L; Yang, W L; Ma, Z H; Feng, M; Vedral, V

    2018-01-05

    Most nonequilibrium processes in thermodynamics are quantified only by inequalities; however, the Jarzynski relation presents a remarkably simple and general equality relating nonequilibrium quantities with the equilibrium free energy, and this equality holds in both the classical and quantum regimes. We report a single-spin test and confirmation of the Jarzynski relation in the quantum regime using a single ultracold ^{40}Ca^{+} ion trapped in a harmonic potential, based on a general information-theoretic equality for a temporal evolution of the system sandwiched between two projective measurements. By considering both initially pure and mixed states, respectively, we verify, in an exact and fundamental fashion, the nonequilibrium quantum thermodynamics relevant to the mutual information and Jarzynski equality.

  3. Jarzynski equality in PT-symmetric quantum mechanics

    DOE PAGES

    Deffner, Sebastian; Saxena, Avadh

    2015-04-13

    We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system – two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.

  4. Detecting entanglement with Jarzynski's equality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hide, Jenny; Vedral, Vlatko; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

    2010-06-15

    We present a method for detecting the entanglement of a state using nonequilibrium processes. A comparison of relative entropies allows us to construct an entanglement witness. The relative entropy can further be related to the quantum Jarzynski equality, allowing nonequilibrium work to be used in entanglement detection. To exemplify our results, we consider two different spin chains.

  5. Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics

    NASA Astrophysics Data System (ADS)

    Browne, Cormac; Farrow, Tristan; Dahlsten, Oscar C. O.; Taylor, Robert A.; Vlatko, Vedral

    2017-08-01

    We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.

  6. Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics.

    PubMed

    Browne, Cormac; Farrow, Tristan; Dahlsten, Oscar C O; Taylor, Robert A; Vlatko, Vedral

    2017-08-01

    We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.

  7. Quantum work fluctuations in connection with the Jarzynski equality.

    PubMed

    Jaramillo, Juan D; Deng, Jiawen; Gong, Jiangbin

    2017-10-01

    A result of great theoretical and experimental interest, the Jarzynski equality predicts a free energy change ΔF of a system at inverse temperature β from an ensemble average of nonequilibrium exponential work, i.e., 〈e^{-βW}〉=e^{-βΔF}. The number of experimental work values needed to reach a given accuracy of ΔF is determined by the variance of e^{-βW}, denoted var(e^{-βW}). We discover in this work that var(e^{-βW}) in both harmonic and anharmonic Hamiltonian systems can systematically diverge in nonadiabatic work protocols, even when the adiabatic protocols do not suffer from such divergence. This divergence may be regarded as a type of dynamically induced phase transition in work fluctuations. For a quantum harmonic oscillator with time-dependent trapping frequency as a working example, any nonadiabatic work protocol is found to yield a diverging var(e^{-βW}) at sufficiently low temperatures, markedly different from the classical behavior. The divergence of var(e^{-βW}) indicates the too-far-from-equilibrium nature of a nonadiabatic work protocol and makes it compulsory to apply designed control fields to suppress the quantum work fluctuations in order to test the Jarzynski equality.

  8. Quantum Jarzynski equality of measurement-based work extraction

    NASA Astrophysics Data System (ADS)

    Morikuni, Yohei; Tajima, Hiroyasu; Hatano, Naomichi

    2017-03-01

    Many studies of quantum-size heat engines assume that the dynamics of an internal system is unitary and that the extracted work is equal to the energy loss of the internal system. Both assumptions, however, should be under scrutiny. In the present paper, we analyze quantum-scale heat engines, employing the measurement-based formulation of the work extraction recently introduced by Hayashi and Tajima [M. Hayashi and H. Tajima, arXiv:1504.06150]. We first demonstrate the inappropriateness of the unitary time evolution of the internal system (namely, the first assumption above) using a simple two-level system; we show that the variance of the energy transferred to an external system diverges when the dynamics of the internal system is approximated to a unitary time evolution. Second, we derive the quantum Jarzynski equality based on the formulation of Hayashi and Tajima as a relation for the work measured by an external macroscopic apparatus. The right-hand side of the equality reduces to unity for "natural" cyclic processes but fluctuates wildly for noncyclic ones, exceeding unity often. This fluctuation should be detectable in experiments and provide evidence for the present formulation.

  9. Quantum Jarzynski equality of measurement-based work extraction.

    PubMed

    Morikuni, Yohei; Tajima, Hiroyasu; Hatano, Naomichi

    2017-03-01

    Many studies of quantum-size heat engines assume that the dynamics of an internal system is unitary and that the extracted work is equal to the energy loss of the internal system. Both assumptions, however, should be under scrutiny. In the present paper, we analyze quantum-scale heat engines, employing the measurement-based formulation of the work extraction recently introduced by Hayashi and Tajima [M. Hayashi and H. Tajima, arXiv:1504.06150]. We first demonstrate the inappropriateness of the unitary time evolution of the internal system (namely, the first assumption above) using a simple two-level system; we show that the variance of the energy transferred to an external system diverges when the dynamics of the internal system is approximated to a unitary time evolution. Second, we derive the quantum Jarzynski equality based on the formulation of Hayashi and Tajima as a relation for the work measured by an external macroscopic apparatus. The right-hand side of the equality reduces to unity for "natural" cyclic processes but fluctuates wildly for noncyclic ones, exceeding unity often. This fluctuation should be detectable in experiments and provide evidence for the present formulation.

  10. Jarzynski equality: connections to thermodynamics and the second law.

    PubMed

    Palmieri, Benoit; Ronis, David

    2007-01-01

    The one-dimensional expanding ideal gas model is used to compute the exact nonequilibrium distribution function. The state of the system during the expansion is defined in terms of local thermodynamics quantities. The final equilibrium free energy, obtained a long time after the expansion, is compared against the free energy that appears in the Jarzynski equality. Within this model, where the Jarzynski equality holds rigorously, the free energy change that appears in the equality does not equal the actual free energy change of the system at any time of the process. More generally, the work bound that is obtained from the Jarzynski equality is an upper bound to the upper bound that is obtained from the first and second laws of thermodynamics. The cancellation of the dissipative (nonequilibrium) terms that result in the Jarzynski equality is shown in the framework of response theory. This is used to show that the intuitive assumption that the Jarzynski work bound becomes equal to the average work done when the system evolves quasistatically is incorrect under some conditions.

  11. Out-of-equilibrium protocol for Rényi entropies via the Jarzynski equality.

    PubMed

    Alba, Vincenzo

    2017-06-01

    In recent years entanglement measures, such as the von Neumann and the Rényi entropies, provided a unique opportunity to access elusive features of quantum many-body systems. However, extracting entanglement properties analytically, experimentally, or in numerical simulations can be a formidable task. Here, by combining the replica trick and the Jarzynski equality we devise an alternative effective out-of-equilibrium protocol for measuring the equilibrium Rényi entropies. The key idea is to perform a quench in the geometry of the replicas. The Rényi entropies are obtained as the exponential average of the work performed during the quench. We illustrate an application of the method in classical Monte Carlo simulations, although it could be useful in different contexts, such as in quantum Monte Carlo, or experimentally in cold-atom systems. The method is most effective in the quasistatic regime, i.e., for a slow quench. As a benchmark, we compute the Rényi entropies in the Ising universality class in 1+1 dimensions. We find perfect agreement with the well-known conformal field theory predictions.

  12. Non-hermitian quantum thermodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  13. Non-hermitian quantum thermodynamics

    DOE PAGES

    Gardas, Bartłomiej; Deffner, Sebastian; Saxena, Avadh

    2016-03-22

    Thermodynamics is the phenomenological theory of heat and work. Here we analyze to what extent quantum thermodynamic relations are immune to the underlying mathematical formulation of quantum mechanics. As a main result, we show that the Jarzynski equality holds true for all non-hermitian quantum systems with real spectrum. This equality expresses the second law of thermodynamics for isothermal processes arbitrarily far from equilibrium. In the quasistatic limit however, the second law leads to the Carnot bound which is fulfilled even if some eigenenergies are complex provided they appear in conjugate pairs. Lastly, we propose two setups to test our predictions,more » namely with strongly interacting excitons and photons in a semiconductor microcavity and in the non-hermitian tight-binding model.« less

  14. Jarzynski equality in the context of maximum path entropy

    NASA Astrophysics Data System (ADS)

    González, Diego; Davis, Sergio

    2017-06-01

    In the global framework of finding an axiomatic derivation of nonequilibrium Statistical Mechanics from fundamental principles, such as the maximum path entropy - also known as Maximum Caliber principle -, this work proposes an alternative derivation of the well-known Jarzynski equality, a nonequilibrium identity of great importance today due to its applications to irreversible processes: biological systems (protein folding), mechanical systems, among others. This equality relates the free energy differences between two equilibrium thermodynamic states with the work performed when going between those states, through an average over a path ensemble. In this work the analysis of Jarzynski's equality will be performed using the formalism of inference over path space. This derivation highlights the wide generality of Jarzynski's original result, which could even be used in non-thermodynamical settings such as social systems, financial and ecological systems.

  15. Transient quantum fluctuation theorems and generalized measurements

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter

    2014-01-01

    The transient quantum fluctuation theorems of Crooks and Jarzynski restrict and relate the statistics of work performed in forward and backward forcing protocols. So far, these theorems have been obtained under the assumption that the work is determined by two projective energy measurements, one at the end, and the other one at the beginning of each run of the protocol. We found that one can replace these two projective measurements only by special error-free generalized energy measurements with pairs of tailored, protocol-dependent post-measurement states that satisfy detailed balance-like relations. For other generalized measurements, the Crooks relation is typically not satisfied. For the validity of the Jarzynski equality, it is sufficient that the first energy measurements are error-free and the post-measurement states form a complete orthonormal set of elements in the Hilbert space of the considered system. Additionally, the effects of the second energy measurements must have unit trace. We illustrate our results by an example of a two-level system for different generalized measurements.

  16. Transient quantum fluctuation theorems and generalized measurements

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter

    2014-05-01

    The transient quantum fluctuation theorems of Crooks and Jarzynski restrict and relate the statistics of work performed in forward and backward forcing protocols. So far, these theorems have been obtained under the assumption that the work is determined by two projective energy measurements, one at the end, and the other one at the beginning of each run of the protocol.We found that one can replace these two projective measurements only by special error-free generalized energy measurements with pairs of tailored, protocol-dependent post-measurement states that satisfy detailed balance-like relations. For other generalized measurements, the Crooks relation is typically not satisfied. For the validity of the Jarzynski equality, it is sufficient that the first energy measurements are error-free and the post-measurement states form a complete orthonormal set of elements in the Hilbert space of the considered system. Additionally, the effects of the second energy measurements must have unit trace. We illustrate our results by an example of a two-level system for different generalized measurements.

  17. Jarzynski-Type Equalities in Gambling: Role of Information in Capital Growth

    NASA Astrophysics Data System (ADS)

    Hirono, Yuji; Hidaka, Yoshimasa

    2015-11-01

    We study the capital growth in gambling with (and without) side information and memory effects. We derive several equalities for gambling, which are of similar form to the Jarzynski equality and its extension to systems with feedback controls. Those relations provide us with new measures to quantify the effects of information on the statistics of capital growth in gambling. We discuss the implications of the equalities and show that they reproduce the known upper bounds of average capital growth rates.

  18. Step-wise pulling protocols for non-equilibrium dynamics

    NASA Astrophysics Data System (ADS)

    Ngo, Van Anh

    The fundamental laws of thermodynamics and statistical mechanics, and the deeper understandings of quantum mechanics have been rebuilt in recent years. It is partly because of the increasing power of computing resources nowadays, that allow shedding direct insights into the connections among the thermodynamics laws, statistical nature of our world, and the concepts of quantum mechanics, which have not yet been understood. But mostly, the most important reason, also the ultimate goal, is to understand the mechanisms, statistics and dynamics of biological systems, whose prevailing non-equilibrium processes violate the fundamental laws of thermodynamics, deviate from statistical mechanics, and finally complicate quantum effects. I believe that investigations of the fundamental laws of non-equilibrium dynamics will be a frontier research for at least several more decades. One of the fundamental laws was first discovered in 1997 by Jarzynski, so-called Jarzynski's Equality. Since then, different proofs, alternative descriptions of Jarzynski's Equality, and its further developments and applications have been quickly accumulated. My understandings, developments and applications of an alternative theory on Jarzynski's Equality form the bulk of this dissertation. The core of my theory is based on stepwise pulling protocols, which provide deeper insight into how fluctuations of reaction coordinates contribute to free-energy changes along a reaction pathway. We find that the most optimal pathways, having the largest contribution to free-energy changes, follow the principle of detailed balance. This is a glimpse of why the principle of detailed balance appears so powerful for sampling the most probable statistics of events. In a further development on Jarzynski's Equality, I have been trying to use it in the formalism of diagonal entropy to propose a way to extract useful thermodynamic quantities such temperature, work and free-energy profiles from far-from-equilibrium ensembles, which can be used to characterize non-equilibrium dynamics. Furthermore, we have applied the stepwise pulling protocols and Jarzynski's Equality to investigate the ion selectivity of potassium channels via molecular dynamics simulations. The mechanism of the potassium ion selectivity has remained poorly understood for over fifty years, although a Nobel Prize was awarded to the discovery of the molecular structure of a potassium-selective channel in 2003. In one year of performing simulations, we were able to reproduce the major results of ion selectivity accumulated in fifty years. We have been even boldly going further to propose a new model for ion selectivity based on the structural rearrangement of the selectivity filter of potassium-selective KcsA channels. This structural rearrangement has never been shown to play such a pivotal role in selecting and conducting potassium ions, but effectively rejecting sodium ions. Using the stepwise pulling protocols, we are also able to estimate conductance for ion channels, which remains elusive by using other methods. In the light of ion channels, we have also investigated how a synthetic channel of telemeric G-quadruplex conducts different types of ions. These two studies on ion selectivity not only constitute an interesting part of this dissertation, but also will enable us to further explore a new set of ion-selectivity principles. Beside the focus of my dissertation, I used million-atom molecular dynamics simulations to investigate the mechanical properties of body-centered-cubic (BCCS) and face-centered-cubic (FCCS) supercrystals of DNA-functionalized gold nanoparticles. These properties are valuable for examining whether these supercrystals can be used in gene delivery and gene therapy. The formation of such ordered supercrystals is useful to protect DNAs or RNAs from being attacked and destroyed by enzymes in cells. I also performed all-atom molecular dynamics simulations to study a pure oleic acid (OA) membrane in water that results into a triple-layer structure. The simulations show that the trans-membrane movement of water and OAs is cooperative and correlated, and agrees with experimentally measured absorption rates. The simulation results support the idea that OA flip-flop is more favorable than transport by means of functional proteins. This study might provide further insight into how primitive cell membranes work, and how the interplay and correlation between water and fatty acids may occur.

  19. Comment on ``On the Crooks fluctuation theorem and the Jarzynski equality'' [J. Chem. Phys. 129, 091101 (2008)

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2009-06-01

    It has recently been argued that a self-consistency condition involving the Jarzynski equality (JE) and the Crooks fluctuation theorem (CFT) is violated for a simple Brownian process [L. Y. Chen, J. Chem. Phys.129, 091101 (2008)]. This note adopts the definitions in the original formulation of the JE and CFT and demonstrates the contrary.

  20. Quantum work and the thermodynamic cost of quantum measurements

    DOE PAGES

    Deffner, Sebastian; Paz, Juan Pablo; Zurek, Wojciech H.

    2016-07-07

    Quantum work is usually determined from two projective measurements of the energy at the beginning and at the end of a thermodynamic process. However, this paradigm cannot be considered thermodynamically consistent as it does not account for the thermodynamic cost of these measurements. To remedy this conceptual inconsistency we introduce a paradigm that relies only on the expected change of the average energy given the initial energy eigenbasis. In particular, we completely omit quantum measurements in the definition of quantum work, and hence quantum work is identified as a thermodynamic quantity of only the system. As main results we derivemore » a modified quantum Jarzynski equality and a sharpened maximum work theorem in terms of the information free energy. Lastly, a comparison of our results with the standard approach allows one to quantify the informational cost of projective measurements.« less

  1. Theoretical test of Jarzynski's equality for reversible volume-switching processes of an ideal gas system.

    PubMed

    Sung, Jaeyoung

    2007-07-01

    We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.

  2. Quantum fluctuation theorems and generalized measurements during the force protocol.

    PubMed

    Watanabe, Gentaro; Venkatesh, B Prasanna; Talkner, Peter; Campisi, Michele; Hänggi, Peter

    2014-03-01

    Generalized measurements of an observable performed on a quantum system during a force protocol are investigated and conditions that guarantee the validity of the Jarzynski equality and the Crooks relation are formulated. In agreement with previous studies by M. Campisi, P. Talkner, and P. Hänggi [Phys. Rev. Lett. 105, 140601 (2010); Phys. Rev. E 83, 041114 (2011)], we find that these fluctuation relations are satisfied for projective measurements; however, for generalized measurements special conditions on the operators determining the measurements need to be met. For the Jarzynski equality to hold, the measurement operators of the forward protocol must be normalized in a particular way. The Crooks relation additionally entails that the backward and forward measurement operators depend on each other. Yet, quite some freedom is left as to how the two sets of operators are interrelated. This ambiguity is removed if one considers selective measurements, which are specified by a joint probability density function of work and measurement results of the considered observable. We find that the respective forward and backward joint probabilities satisfy the Crooks relation only if the measurement operators of the forward and backward protocols are the time-reversed adjoints of each other. In this case, the work probability density function conditioned on the measurement result satisfies a modified Crooks relation. The modification appears as a protocol-dependent factor that can be expressed by the information gained by the measurements during the forward and backward protocols. Finally, detailed fluctuation theorems with an arbitrary number of intervening measurements are obtained.

  3. Capturing the Landauer bound through the application of a detailed Jarzynski equality for entropic memory erasure.

    PubMed

    Das, Moupriya

    2014-12-01

    The states of an overdamped Brownian particle confined in a two-dimensional bilobal enclosure are considered to correspond to two binary values: 0 (left lobe) and 1 (right lobe). An ensemble of such particles represents bits of entropic information. An external bias is applied on the particles, equally distributed in two lobes, to drive them to a particular lobe erasing one kind of bit of information. It has been shown that the average work done for the entropic memory erasure process approaches the Landauer bound for a very slow erasure cycle. Furthermore, the detailed Jarzynski equality holds to a very good extent for the erasure protocol, so that the Landauer bound may be calculated irrespective of the time period of the erasure cycle in terms of the effective free-energy change for the process. The detailed Jarzynski equality applied to two subprocesses, namely the transition from entropic memory state 0 to state 1 and the transition from entropic memory state 1 to state 1, connects the work done on the system to the probability to occupy the two states under a time-reversed process. In the entire treatment, the work appears as a boundary effect of the physical confinement of the system not having a conventional potential energy barrier. Finally, an analytical derivation of the detailed and classical Jarzynski equality for Brownian movement in confined space with varying width has been proposed. Our analytical scheme supports the numerical simulations presented in this paper.

  4. Work probability distribution and tossing a biased coin

    NASA Astrophysics Data System (ADS)

    Saha, Arnab; Bhattacharjee, Jayanta K.; Chakraborty, Sagar

    2011-01-01

    We show that the rare events present in dissipated work that enters Jarzynski equality, when mapped appropriately to the phenomenon of large deviations found in a biased coin toss, are enough to yield a quantitative work probability distribution for the Jarzynski equality. This allows us to propose a recipe for constructing work probability distribution independent of the details of any relevant system. The underlying framework, developed herein, is expected to be of use in modeling other physical phenomena where rare events play an important role.

  5. Quantum fluctuation theorems and generalized measurements during the force protocol

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Venkatesh, B. Prasanna; Talkner, Peter; Campisi, Michele; Hänggi, Peter

    2014-03-01

    Generalized measurements of an observable performed on a quantum system during a force protocol are investigated and conditions that guarantee the validity of the Jarzynski equality and the Crooks relation are formulated. In agreement with previous studies by M. Campisi, P. Talkner, and P. Hänggi [Phys. Rev. Lett. 105, 140601 (2010), 10.1103/PhysRevLett.105.140601; Phys. Rev. E 83, 041114 (2011), 10.1103/PhysRevE.83.041114], we find that these fluctuation relations are satisfied for projective measurements; however, for generalized measurements special conditions on the operators determining the measurements need to be met. For the Jarzynski equality to hold, the measurement operators of the forward protocol must be normalized in a particular way. The Crooks relation additionally entails that the backward and forward measurement operators depend on each other. Yet, quite some freedom is left as to how the two sets of operators are interrelated. This ambiguity is removed if one considers selective measurements, which are specified by a joint probability density function of work and measurement results of the considered observable. We find that the respective forward and backward joint probabilities satisfy the Crooks relation only if the measurement operators of the forward and backward protocols are the time-reversed adjoints of each other. In this case, the work probability density function conditioned on the measurement result satisfies a modified Crooks relation. The modification appears as a protocol-dependent factor that can be expressed by the information gained by the measurements during the forward and backward protocols. Finally, detailed fluctuation theorems with an arbitrary number of intervening measurements are obtained.

  6. Reconstruction of Energy Surfaces from Friction Force Microscopy Measurements with the Jarzynski Equality

    NASA Astrophysics Data System (ADS)

    Berkovich, Ronen; Klafter, Joseph; Urbakh, Michael

    Free energy is one of the most fundamental thermodynamic functions, determining relative phase stability and serving as a generating function for other thermodynamic quantities. The calculation of free energies is a challenging enterprise. In equilibrium statistical mechanics, the free energy is related to the canonical partition function. The partition function itself involves integrations over all degrees of freedom in the system and, in most cases, cannot be easily calculated directly. In 1997, Jarzynski proved a remarkable equality that allows computing the equilibrium free-energy difference between two states from the probability distribution of the nonequilibrium work done on the system to switch between the two states. The Jarzynski equality provides a powerful free-energy difference estimator from a set of irreversible experiments. This method is closely related to free-energy perturbation approach, which is also a computational technique for estimating free-energy differences. The ability to map potential profiles and topologies is of major significance to areas as diverse as biological recognition and nanoscale friction. This capability has been demonstrated for frictional studies where a force between the tip of the scanning force microscope and the surface is probed. The surface free-energy corrugation produces a detectable friction forces. Thus, friction force microscopy (FFM) should be able to discriminate between energetically different areas on the probed surface. Here, we apply the Jarzynski equality for the analysis of FFM measurements and thus obtain a variation of the free energy along a surface.

  7. Comment on “On the Crooks fluctuation theorem and the Jarzynski equality” [J. Chem. Phys. 129, 091101 (2008)

    PubMed Central

    Adib, Artur B.

    2009-01-01

    It has recently been argued that a self-consistency condition involving the Jarzynski equality (JE) and the Crooks fluctuation theorem (CFT) is violated for a simple Brownian process [L. Y. Chen, J. Chem. Phys.129, 091101 (2008)]. This note adopts the definitions in the original formulation of the JE and CFT and demonstrates the contrary. PMID:19566186

  8. Suppression of work fluctuations by optimal control: An approach based on Jarzynski's equality

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoyang; Gong, Jiangbin

    2014-11-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, aspects of work fluctuations will be an important factor in designing nanoscale heat engines. In this work, an optimal control approach directly exploiting Jarzynski's equality is proposed to effectively suppress the fluctuations in the work statistics, for systems (initially at thermal equilibrium) subject to a work protocol but isolated from a bath during the protocol. The control strategy is to minimize the deviations of individual values of e-β W from their ensemble average given by e-β Δ F, where W is the work, β is the inverse temperature, and Δ F is the free energy difference between two equilibrium states. It is further shown that even when the system Hamiltonian is not fully known, it is still possible to suppress work fluctuations through a feedback loop, by refining the control target function on the fly through Jarzynski's equality itself. Numerical experiments are based on linear and nonlinear parametric oscillators. Optimal control results for linear parametric oscillators are also benchmarked with early results based on shortcuts to adiabaticity.

  9. Statistics of the Work done in a Quantum Quench

    NASA Astrophysics Data System (ADS)

    Silva, Alessandro

    2009-03-01

    The quantum quench, i.e. a rapid change in time of a control parameter of a quantum system, is the simplest paradigm of non-equilibrium process, completely analogous to a standard thermodynamic transformation. The dynamics following a quantum quench is particularly interesting in strongly correlated quantum systems, most prominently when the quench in performed across a quantum critical point. In this talk I will present a way to characterize the physics of quantum quenches by looking at the statistics of a basic thermodynamic variable: the work done on the system by changing its parameters [1]. I will first elucidate the relation between the probability distribution of the work, quantum Jarzynski equalities, and the Loschmidt echo, a quantity that emerges usually in the context of dephasing. Using this connection, I will then characterize the statistics of the work done on a Quantum Ising chain by quenching locally or globally the transverse field. I will then show that for global quenches the presence of a quantum critical point results in singularities of the moments of the distribution, while, for local quenches starting at criticality, the probability distribution itself displays an interesting edge singularity. The results of a similar analysis for other systems will be discussed. [4pt] [1] A. Silva, Phys. Rev. Lett. 101, 120603 (2008).

  10. Scaling from single molecule to macroscopic adhesion at polymer/metal interfaces.

    PubMed

    Utzig, Thomas; Raman, Sangeetha; Valtiner, Markus

    2015-03-10

    Understanding the evolution of macroscopic adhesion based on fundamental molecular interactions is crucial to designing strong and smart polymer/metal interfaces that play an important role in many industrial and biomedical applications. Here we show how macroscopic adhesion can be predicted on the basis of single molecular interactions. In particular, we carry out dynamic single molecule-force spectroscopy (SM-AFM) in the framework of Bell-Evans' theory to gain information about the energy barrier between the bound and unbound states of an amine/gold junction. Furthermore, we use Jarzynski's equality to obtain the equilibrium ground-state energy difference of the amine/gold bond from these nonequilibrium force measurements. In addition, we perform surface forces apparatus (SFA) experiments to measure macroscopic adhesion forces at contacts where approximately 10(7) amine/gold bonds are formed simultaneously. The SFA approach provides an amine/gold interaction energy (normalized by the number of interacting molecules) of (36 ± 1)k(B)T, which is in excellent agreement with the interaction free energy of (35 ± 3)k(B)T calculated using Jarzynski's equality and single-molecule AFM experiments. Our results validate Jarzynski's equality for the field of polymer/metal interactions by measuring both sides of the equation. Furthermore, the comparison of SFA and AFM shows how macroscopic interaction energies can be predicted on the basis of single molecular interactions, providing a new strategy to potentially predict adhesive properties of novel glues or coatings as well as bio- and wet adhesion.

  11. Experimental Test of the Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary Initial States

    NASA Astrophysics Data System (ADS)

    Hoang, Thai M.; Pan, Rui; Ahn, Jonghoon; Bang, Jaehoon; Quan, H. T.; Li, Tongcang

    2018-02-01

    Nonequilibrium processes of small systems such as molecular machines are ubiquitous in biology, chemistry, and physics but are often challenging to comprehend. In the past two decades, several exact thermodynamic relations of nonequilibrium processes, collectively known as fluctuation theorems, have been discovered and provided critical insights. These fluctuation theorems are generalizations of the second law and can be unified by a differential fluctuation theorem. Here we perform the first experimental test of the differential fluctuation theorem using an optically levitated nanosphere in both underdamped and overdamped regimes and in both spatial and velocity spaces. We also test several theorems that can be obtained from it directly, including a generalized Jarzynski equality that is valid for arbitrary initial states, and the Hummer-Szabo relation. Our study experimentally verifies these fundamental theorems and initiates the experimental study of stochastic energetics with the instantaneous velocity measurement.

  12. Path integral analysis of Jarzynski's equality: Analytical results

    NASA Astrophysics Data System (ADS)

    Minh, David D. L.; Adib, Artur B.

    2009-02-01

    We apply path integrals to study nonequilibrium work theorems in the context of Brownian dynamics, deriving in particular the equations of motion governing the most typical and most dominant trajectories. For the analytically soluble cases of a moving harmonic potential and a harmonic oscillator with a time-dependent natural frequency, we find such trajectories, evaluate the work-weighted propagators, and validate Jarzynski’s equality.

  13. Responses to applied forces and the Jarzynski equality in classical oscillator systems coupled to finite baths: an exactly solvable nondissipative nonergodic model.

    PubMed

    Hasegawa, Hideo

    2011-07-01

    Responses of small open oscillator systems to applied external forces have been studied with the use of an exactly solvable classical Caldeira-Leggett model in which a harmonic oscillator (system) is coupled to finite N-body oscillators (bath) with an identical frequency (ω(n) = ω(o) for n = 1 to N). We have derived exact expressions for positions, momenta, and energy of the system in nonequilibrium states and for work performed by applied forces. A detailed study has been made on an analytical method for canonical averages of physical quantities over the initial equilibrium state, which is much superior to numerical averages commonly adopted in simulations of small systems. The calculated energy of the system which is strongly coupled to a finite bath is fluctuating but nondissipative. It has been shown that the Jarzynski equality is valid in nondissipative nonergodic open oscillator systems regardless of the rate of applied ramp force.

  14. Work fluctuations for Bose particles in grand canonical initial states.

    PubMed

    Yi, Juyeon; Kim, Yong Woon; Talkner, Peter

    2012-05-01

    We consider bosons in a harmonic trap and investigate the fluctuations of the work performed by an adiabatic change of the trap curvature. Depending on the reservoir conditions such as temperature and chemical potential that provide the initial equilibrium state, the exponentiated work average (EWA) defined in the context of the Crooks relation and the Jarzynski equality may diverge if the trap becomes wider. We investigate how the probability distribution function (PDF) of the work signals this divergence. It is shown that at low temperatures the PDF is highly asymmetric with a steep fall-off at one side and an exponential tail at the other side. For high temperatures it is closer to a symmetric distribution approaching a Gaussian form. These properties of the work PDF are discussed in relation to the convergence of the EWA and to the existence of the hypothetical equilibrium state to which those thermodynamic potential changes refer that enter both the Crooks relation and the Jarzynski equality.

  15. Dynamic information for cardiotoxin protein desorption from a methyl-terminated self-assembled monolayer using steered molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Hung, Shih-Wei; Hsiao, Pai-Yi; Chieng, Ching-Chang

    2011-05-01

    Dynamic information, such as force, structural change, interaction energy, and potential of mean force (PMF), about the desorption of a single cardiotoxin (CTX) protein from a methyl-terminated self-assembled monolayer (SAM) surface was investigated by means of steered molecular dynamics (SMD) simulations. The simulation results indicated that Loop I is the first loop to depart from the SAM surface, which is in good agreement with the results of the nuclear magnetic resonance spectroscopy experiment. The free energy landscape and the thermodynamic force of the CTX desorption process was represented by the PMF and by the derivative of PMF with respect to distance, respectively. By applying Jarzynski's equality, the PMF can be reconstructed from the SMD simulation. The PMFs, calculated by different estimators based upon Jarzynski's equality, were compared with the conventional umbrella sampling method. The best estimation was obtained by using the fluctuation-dissipation estimator with a pulling velocity of v = 0.25 nm/ns for the present study.

  16. Exact results in nonequilibrium statistical mechanics: Formalism and applications in chemical kinetics and single-molecule free energy estimation

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    In the last two decades or so, a collection of results in nonequilibrium statistical mechanics that departs from the traditional near-equilibrium framework introduced by Lars Onsager in 1931 has been derived, yielding new fundamental insights into far-from-equilibrium processes in general. Apart from offering a more quantitative statement of the second law of thermodynamics, some of these results---typified by the so-called "Jarzynski equality"---have also offered novel means of estimating equilibrium quantities from nonequilibrium processes, such as free energy differences from single-molecule "pulling" experiments. This thesis contributes to such efforts by offering three novel results in nonequilibrium statistical mechanics: (a) The entropic analog of the Jarzynski equality; (b) A methodology for estimating free energies from "clamp-and-release" nonequilibrium processes; and (c) A directly measurable symmetry relation in chemical kinetics similar to (but more general than) chemical detailed balance. These results share in common the feature of remaining valid outside Onsager's near-equilibrium regime, and bear direct applicability in protein folding kinetics as well as in single-molecule free energy estimation.

  17. Generalized energy measurements and modified transient quantum fluctuation theorems

    NASA Astrophysics Data System (ADS)

    Watanabe, Gentaro; Venkatesh, B. Prasanna; Talkner, Peter

    2014-05-01

    Determining the work which is supplied to a system by an external agent provides a crucial step in any experimental realization of transient fluctuation relations. This, however, poses a problem for quantum systems, where the standard procedure requires the projective measurement of energy at the beginning and the end of the protocol. Unfortunately, projective measurements, which are preferable from the point of view of theory, seem to be difficult to implement experimentally. We demonstrate that, when using a particular type of generalized energy measurements, the resulting work statistics is simply related to that of projective measurements. This relation between the two work statistics entails the existence of modified transient fluctuation relations. The modifications are exclusively determined by the errors incurred in the generalized energy measurements. They are universal in the sense that they do not depend on the force protocol. Particularly simple expressions for the modified Crooks relation and Jarzynski equality are found for Gaussian energy measurements. These can be obtained by a sequence of sufficiently many generalized measurements which need not be Gaussian. In accordance with the central limit theorem, this leads to an effective error reduction in the individual measurements and even yields a projective measurement in the limit of infinite repetitions.

  18. Quantum fluctuation theorems and power measurements

    NASA Astrophysics Data System (ADS)

    Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter

    2015-07-01

    Work in the paradigm of the quantum fluctuation theorems of Crooks and Jarzynski is determined by projective measurements of energy at the beginning and end of the force protocol. In analogy to classical systems, we consider an alternative definition of work given by the integral of the supplied power determined by integrating up the results of repeated measurements of the instantaneous power during the force protocol. We observe that such a definition of work, in spite of taking account of the process dependence, has different possible values and statistics from the work determined by the conventional two energy measurement approach (TEMA). In the limit of many projective measurements of power, the system’s dynamics is frozen in the power measurement basis due to the quantum Zeno effect leading to statistics only trivially dependent on the force protocol. In general the Jarzynski relation is not satisfied except for the case when the instantaneous power operator commutes with the total Hamiltonian at all times. We also consider properties of the joint statistics of power-based definition of work and TEMA work in protocols where both values are determined. This allows us to quantify their correlations. Relaxing the projective measurement condition, weak continuous measurements of power are considered within the stochastic master equation formalism. Even in this scenario the power-based work statistics is in general not able to reproduce qualitative features of the TEMA work statistics.

  19. Understanding quantum work in a quantum many-body system.

    PubMed

    Wang, Qian; Quan, H T

    2017-03-01

    Based on previous studies in a single-particle system in both the integrable [Jarzynski, Quan, and Rahav, Phys. Rev. X 5, 031038 (2015)2160-330810.1103/PhysRevX.5.031038] and the chaotic systems [Zhu, Gong, Wu, and Quan, Phys. Rev. E 93, 062108 (2016)1539-375510.1103/PhysRevE.93.062108], we study the the correspondence principle between quantum and classical work distributions in a quantum many-body system. Even though the interaction and the indistinguishability of identical particles increase the complexity of the system, we find that for a quantum many-body system the quantum work distribution still converges to its classical counterpart in the semiclassical limit. Our results imply that there exists a correspondence principle between quantum and classical work distributions in an interacting quantum many-body system, especially in the large particle number limit, and further justify the definition of quantum work via two-point energy measurements in quantum many-body systems.

  20. Entropy and density of states from isoenergetic nonequilibrium processes

    NASA Astrophysics Data System (ADS)

    Adib, Artur B.

    2005-05-01

    Two identities in statistical mechanics involving entropy differences (or ratios of densities of states) at constant energy are derived. The first provides a nontrivial extension of the Jarzynski equality to the microcanonical ensemble [C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)], which can be seen as a “fast-switching” version of the adiabatic switching method for computing entropies [M. Watanabe and W. P. Reinhardt, Phys. Rev. Lett. 65, 3301 (1990)]. The second is a thermodynamic integration formula analogous to a well-known expression for free energies, and follows after taking the quasistatic limit of the first. Both identities can be conveniently used in conjunction with a scaling relation (herein derived) that allows one to extrapolate measurements taken at a single energy to a wide range of energy values. Practical aspects of these identities in the context of numerical simulations are discussed.

  1. Microscopic heat engine and control of work fluctuations

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoyang

    In this thesis, we study novel behaviors of microscopic work and heat in systems involving few degrees of freedom. We firstly report that a quantum Carnot cycle should consist of two isothermal processes and two mechanical adiabatic processes if we want to maximize its heat-to-work conversion efficiency. We then find that the efficiency can be further optimized, and it is generally system specific, lower than the Carnot efficiency, and dependent upon both temperatures of the cold and hot reservoirs. We then move on to the studies the fluctuations of microscopic work. We find a principle of minimal work fluctuations related to the Jarzynski equality. In brief, an adiabatic process without energy level crossing yields the minimal fluctuations in exponential work, given a thermally isolated system initially prepared at thermal equilibrium. Finally, we investigate an optimal control approach to suppress the work fluctuations and accelerate the adiabatic processes. This optimal control approach can apply to wide variety of systems even when we do not have full knowledge of the systems.

  2. Evaluation of protein-ligand affinity prediction using steered molecular dynamics simulations.

    PubMed

    Okimoto, Noriaki; Suenaga, Atsushi; Taiji, Makoto

    2017-11-01

    In computational drug design, ranking a series of compound analogs in a manner that is consistent with experimental affinities remains a challenge. In this study, we evaluated the prediction of protein-ligand binding affinities using steered molecular dynamics simulations. First, we investigated the appropriate conditions for accurate predictions in these simulations. A conic harmonic restraint was applied to the system for efficient sampling of work values on the ligand unbinding pathway. We found that pulling velocity significantly influenced affinity predictions, but that the number of collectable trajectories was less influential. We identified the appropriate pulling velocity and collectable trajectories for binding affinity predictions as 1.25 Å/ns and 100, respectively, and these parameters were used to evaluate three target proteins (FK506 binding protein, trypsin, and cyclin-dependent kinase 2). For these proteins using our parameters, the accuracy of affinity prediction was higher and more stable when Jarzynski's equality was employed compared with the second-order cumulant expansion equation of Jarzynski's equality. Our results showed that steered molecular dynamics simulations are effective for predicting the rank order of ligands; thus, they are a potential tool for compound selection in hit-to-lead and lead optimization processes.

  3. Principle of minimal work fluctuations.

    PubMed

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  4. Comment on ``Experimental Free Energy Reconstruction From Single-Molecule Force Spectroscopy Using Jarzynski's Equality''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friddle, R W

    2008-01-14

    Harris, Song and Kiang [1] (HSK) describe their results on reconstructing the free energy profiles for both the stretch of the titin polymer, and the unfolding of an individual I27 domain. The new finding reported in [1] is the measurement of the free energy barrier (or activation energy) to unfolding the I27 domain. Due to a misinterpretation of the mechanics involved, the free energy surface (and thus the energy barrier) to unfolding the I27 domain was not measured.

  5. Free energy computations employing Jarzynski identity and Wang – Landau algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyan, M. Suman, E-mail: maroju.sk@gmail.com; Murthy, K. P. N.; School of Physics, University of Hyderabad, Hyderabad, Telangana, India – 500046

    We introduce a simple method to compute free energy differences employing Jarzynski identity in conjunction with Wang – Landau algorithm. We demonstrate this method on Ising spin system by comparing the results with those obtained from canonical sampling.

  6. Lossless Brownian Information Engine

    NASA Astrophysics Data System (ADS)

    Paneru, Govind; Lee, Dong Yun; Tlusty, Tsvi; Pak, Hyuk Kyu

    2018-01-01

    We report on a lossless information engine that converts nearly all available information from an error-free feedback protocol into mechanical work. Combining high-precision detection at a resolution of 1 nm with ultrafast feedback control, the engine is tuned to extract the maximum work from information on the position of a Brownian particle. We show that the work produced by the engine achieves a bound set by a generalized second law of thermodynamics, demonstrating for the first time the sharpness of this bound. We validate a generalized Jarzynski equality for error-free feedback-controlled information engines.

  7. Lossless Brownian Information Engine.

    PubMed

    Paneru, Govind; Lee, Dong Yun; Tlusty, Tsvi; Pak, Hyuk Kyu

    2018-01-12

    We report on a lossless information engine that converts nearly all available information from an error-free feedback protocol into mechanical work. Combining high-precision detection at a resolution of 1 nm with ultrafast feedback control, the engine is tuned to extract the maximum work from information on the position of a Brownian particle. We show that the work produced by the engine achieves a bound set by a generalized second law of thermodynamics, demonstrating for the first time the sharpness of this bound. We validate a generalized Jarzynski equality for error-free feedback-controlled information engines.

  8. Use of Nonequilibrium Work Methods to Compute Free Energy Differences Between Molecular Mechanical and Quantum Mechanical Representations of Molecular Systems.

    PubMed

    Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan

    2015-12-03

    Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches.

  9. Discrete Fluctuations in Memory Erasure without Energy Cost

    NASA Astrophysics Data System (ADS)

    Croucher, Toshio; Bedkihal, Salil; Vaccaro, Joan A.

    2017-02-01

    According to Landauer's principle, erasing one bit of information incurs a minimum energy cost. Recently, Vaccaro and Barnett (VB) explored information erasure within the context of generalized Gibbs ensembles and demonstrated that for energy-degenerate spin reservoirs the cost of erasure can be solely in terms of a minimum amount of spin angular momentum and no energy. As opposed to the Landauer case, the cost of erasure in this case is associated with an intrinsically discrete degree of freedom. Here we study the discrete fluctuations in this cost and the probability of violation of the VB bound. We also obtain a Jarzynski-like equality for the VB erasure protocol. We find that the fluctuations below the VB bound are exponentially suppressed at a far greater rate and more tightly than for an equivalent Jarzynski expression for VB erasure. We expose a trade-off between the size of the fluctuations and the cost of erasure. We find that the discrete nature of the fluctuations is pronounced in the regime where reservoir spins are maximally polarized. We also state the first laws of thermodynamics corresponding to the conservation of spin angular momentum for this particular erasure protocol. Our work will be important for novel heat engines based on information erasure schemes that do not incur an energy cost.

  10. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy.

    PubMed

    Heenan, Patrick R; Yu, Hao; Siewny, Matthew G W; Perkins, Thomas T

    2018-03-28

    Precisely quantifying the energetics that drive the folding of membrane proteins into a lipid bilayer remains challenging. More than 15 years ago, atomic force microscopy (AFM) emerged as a powerful tool to mechanically extract individual membrane proteins from a lipid bilayer. Concurrently, fluctuation theorems, such as the Jarzynski equality, were applied to deduce equilibrium free energies (ΔG 0 ) from non-equilibrium single-molecule force spectroscopy records. The combination of these two advances in single-molecule studies deduced the free-energy of the model membrane protein bacteriorhodopsin in its native lipid bilayer. To elucidate this free-energy landscape at a higher resolution, we applied two recent developments. First, as an input to the reconstruction, we used force-extension curves acquired with a 100-fold higher time resolution and 10-fold higher force precision than traditional AFM studies of membrane proteins. Next, by using an inverse Weierstrass transform and the Jarzynski equality, we removed the free energy associated with the force probe and determined the molecular free-energy landscape of the molecule under study, bacteriorhodopsin. The resulting landscape yielded an average unfolding free energy per amino acid (aa) of 1.0 ± 0.1 kcal/mol, in agreement with past single-molecule studies. Moreover, on a smaller spatial scale, this high-resolution landscape also agreed with an equilibrium measurement of a particular three-aa transition in bacteriorhodopsin that yielded 2.7 kcal/mol/aa, an unexpectedly high value. Hence, while average unfolding ΔG 0 per aa is a useful metric, the derived high-resolution landscape details significant local variation from the mean. More generally, we demonstrated that, as anticipated, the inverse Weierstrass transform is an efficient means to reconstruct free-energy landscapes from AFM data.

  11. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy

    NASA Astrophysics Data System (ADS)

    Heenan, Patrick R.; Yu, Hao; Siewny, Matthew G. W.; Perkins, Thomas T.

    2018-03-01

    Precisely quantifying the energetics that drive the folding of membrane proteins into a lipid bilayer remains challenging. More than 15 years ago, atomic force microscopy (AFM) emerged as a powerful tool to mechanically extract individual membrane proteins from a lipid bilayer. Concurrently, fluctuation theorems, such as the Jarzynski equality, were applied to deduce equilibrium free energies (ΔG0) from non-equilibrium single-molecule force spectroscopy records. The combination of these two advances in single-molecule studies deduced the free-energy of the model membrane protein bacteriorhodopsin in its native lipid bilayer. To elucidate this free-energy landscape at a higher resolution, we applied two recent developments. First, as an input to the reconstruction, we used force-extension curves acquired with a 100-fold higher time resolution and 10-fold higher force precision than traditional AFM studies of membrane proteins. Next, by using an inverse Weierstrass transform and the Jarzynski equality, we removed the free energy associated with the force probe and determined the molecular free-energy landscape of the molecule under study, bacteriorhodopsin. The resulting landscape yielded an average unfolding free energy per amino acid (aa) of 1.0 ± 0.1 kcal/mol, in agreement with past single-molecule studies. Moreover, on a smaller spatial scale, this high-resolution landscape also agreed with an equilibrium measurement of a particular three-aa transition in bacteriorhodopsin that yielded 2.7 kcal/mol/aa, an unexpectedly high value. Hence, while average unfolding ΔG0 per aa is a useful metric, the derived high-resolution landscape details significant local variation from the mean. More generally, we demonstrated that, as anticipated, the inverse Weierstrass transform is an efficient means to reconstruct free-energy landscapes from AFM data.

  12. Quantum Quench Dynamics in the Transverse Field Ising Model at Non-zero Temperatures

    NASA Astrophysics Data System (ADS)

    Abeling, Nils; Kehrein, Stefan

    The recently discovered Dynamical Phase Transition denotes non-analytic behavior in the real time evolution of quantum systems in the thermodynamic limit and has been shown to occur in different systems at zero temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this talk we present the extension of the analysis to non-zero temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum quench in the transverse field Ising model. Although the quantitative behavior at non-zero temperatures still displays features derived from the zero temperature non-analyticities, it is shown that in this model dynamical phase transitions do not exist if T > 0 . This is a consequence of the system being initialized in a thermal state. Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a global quench or to obtain the change of the equilibrium free energy density. This work was supported through CRC SFB 1073 (Project B03) of the Deutsche Forschungsgemeinschaft (DFG).

  13. Influence of ionization states of antigen on anti-fluorescein antibodies

    NASA Astrophysics Data System (ADS)

    Fukunishi, Hiroaki

    2012-10-01

    Ratios of anion and di-anion states of fluorescein (FLU(-1) and FLU(-2)) are 21.2% and 78.8%, respectively, in the neutral pH. We investigated the influence of ionization states of antigen on anti-fluorescein antibodies. For this purpose, steered molecular dynamics (SMD) simulations were performed. Potential of mean forces (PMF) based on Jarzynski equality showed that wild-type (4-4-20) more strongly binds to FLU(-1) than FLU(-2), whereas its femtomolar-affinity mutant (4M5.3) more strongly binds to FLU(-2) than FLU(-1). It was speculated that the environment or the process of in vivo antibody production had been different from those of the protein engineering.

  14. Free energy profiles from single-molecule pulling experiments.

    PubMed

    Hummer, Gerhard; Szabo, Attila

    2010-12-14

    Nonequilibrium pulling experiments provide detailed information about the thermodynamic and kinetic properties of molecules. We show that unperturbed free energy profiles as a function of molecular extension can be obtained rigorously from such experiments without using work-weighted position histograms. An inverse Weierstrass transform is used to relate the system free energy obtained from the Jarzynski equality directly to the underlying molecular free energy surface. An accurate approximation for the free energy surface is obtained by using the method of steepest descent to evaluate the inverse transform. The formalism is applied to simulated data obtained from a kinetic model of RNA folding, in which the dynamics consists of jumping between linker-dominated folded and unfolded free energy surfaces.

  15. Nonequilibrium thermodynamics of single DNA hairpins in a dual-trap optical tweezers setup

    NASA Astrophysics Data System (ADS)

    Crivellari, M. Ribezzi; Huguet, J. M.; Ritort, F.

    2011-03-01

    We use two counter propagating laser beams to create a dual trap optical tweezers setup which is free from cross interference between the beams and provides great instrumental stability. This setup works by direct measurement of light momentum, separately for each trap, and is based on the Minitweezers design [1]. The dual trap setup has many applications: it can be used to study the force-dependent unfolding kinetics of single molecules and to address fundamental problems in nonequilibrium thermodynamics of small systems [2]. Recent progress in statistical physics has shown the importance of considering large energy deviations in the beahvior of systems that are driven out-of-equilibrium by time-dependent forces. Prominent examples are nonequilibrium work relations (e.g. the Jarzynski equality [3]) and fluctuation theorems. By repeated measurement of the irreversible work the Jarzynski equality allows us to recover the free energy difference between two thermodynamic states, AF, by taking exponential averages of the work W done by the external agent on the system, e-βΔF =

  16. Testing ground for fluctuation theorems: The one-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Lemos, C. G. O.; Santos, M.; Ferreira, A. L.; Figueiredo, W.

    2018-04-01

    In this paper we determine the nonequilibrium magnetic work performed on a Ising model and relate it to the fluctuation theorem derived some years ago by Jarzynski. The basic idea behind this theorem is the relationship connecting the free energy difference between two thermodynamic states of a system and the average work performed by an external agent, in a finite time, through nonequilibrium paths between the same thermodynamic states. We test the validity of this theorem by considering the one-dimensional Ising model where the free energy is exactly determined as a function of temperature and magnetic field. We have found that the Jarzynski theorem remains valid for all the values of the rate of variation of the magnetic field applied to the system. We have also determined the probability distribution function for the work performed on the system for the forward and reverse processes and verified that predictions based on the Crooks relation are equally correct. We also propose a method to calculate the lag between the current state of the system and that of the equilibrium based on macroscopic variables. We have shown that the lag increases with the sweeping rate of the field at its final value for the reverse process, while it decreases in the case of the forward process. The lag increases linearly with the size of the chain and with a slope decreasing with the inverse of the rate of variation of the field.

  17. Universal ideal behavior and macroscopic work relation of linear irreversible stochastic thermodynamics

    NASA Astrophysics Data System (ADS)

    Ma, Yi-An; Qian, Hong

    2015-06-01

    We revisit the Ornstein-Uhlenbeck (OU) process as the fundamental mathematical description of linear irreversible phenomena, with fluctuations, near an equilibrium. By identifying the underlying circulating dynamics in a stationary process as the natural generalization of classical conservative mechanics, a bridge between a family of OU processes with equilibrium fluctuations and thermodynamics is established through the celebrated Helmholtz theorem. The Helmholtz theorem provides an emergent macroscopic ‘equation of state’ of the entire system, which exhibits a universal ideal thermodynamic behavior. Fluctuating macroscopic quantities are studied from the stochastic thermodynamic point of view and a non-equilibrium work relation is obtained in the macroscopic picture, which may facilitate experimental study and application of the equalities due to Jarzynski, Crooks, and Hatano and Sasa.

  18. Direct Determination of the Equilibrium Unbinding Potential Profile for a Short DNA Duplex from Force Spectroscopy Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noy, A

    2004-05-04

    Modern force microscopy techniques allow researchers to use mechanical forces to probe interactions between biomolecules. However, such measurements often happen in non-equilibrium regime, which precludes straightforward extraction of the equilibrium energy information. Here we use the work averaging method based on Jarzynski equality to reconstruct the equilibrium interaction potential from the unbinding of a complementary 14-mer DNA duplex from the results of non-equilibrium single-molecule measurements. The reconstructed potential reproduces most of the features of the DNA stretching transition, previously observed only in equilibrium stretching of long DNA sequences. We also compare the reconstructed potential with the thermodynamic parameters of DNAmore » duplex unbinding and show that the reconstruction accurately predicts duplex melting enthalpy.« less

  19. Statistical Mechanical Derivation of Jarzynski's Identity for Thermostated Non-Hamiltonian Dynamics

    NASA Astrophysics Data System (ADS)

    Cuendet, Michel A.

    2006-03-01

    The recent Jarzynski identity (JI) relates thermodynamic free energy differences to nonequilibrium work averages. Several proofs of the JI have been provided on the thermodynamic level. They rely on assumptions such as equivalence of ensembles in the thermodynamic limit or weakly coupled infinite heat baths. However, the JI is widely applied to NVT computer simulations involving finite numbers of particles, whose equations of motion are strongly coupled to a few extra degrees of freedom modeling a thermostat. In this case, the above assumptions are no longer valid. We propose a statistical mechanical approach to the JI solely based on the specific equations of motion, without any further assumption. We provide a detailed derivation for the non-Hamiltonian Nosé-Hoover dynamics, which is routinely used in computer simulations to produce canonical sampling.

  20. Carbinolamine Formation and Dehydration in a DNA Repair Enzyme Active Site

    PubMed Central

    Dodson, M. L.; Walker, Ross C.; Lloyd, R. Stephen

    2012-01-01

    In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics–molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water–independent enzyme–catalyzed reaction had a bias–corrected Jarzynski–average barrier height of approximately for the carbinolamine formation reaction and ) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately in the forward (formation) reaction and for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water–independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N–terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site carboxylate and the N–terminal amine. PMID:22384015

  1. Work statistics of charged noninteracting fermions in slowly changing magnetic fields.

    PubMed

    Yi, Juyeon; Talkner, Peter

    2011-04-01

    We consider N fermionic particles in a harmonic trap initially prepared in a thermal equilibrium state at temperature β^{-1} and examine the probability density function (pdf) of the work done by a magnetic field slowly varying in time. The behavior of the pdf crucially depends on the number of particles N but also on the temperature. At high temperatures (β≪1) the pdf is given by an asymmetric Laplace distribution for a single particle, and for many particles it approaches a Gaussian distribution with variance proportional to N/β(2). At low temperatures the pdf becomes strongly peaked at the center with a variance that still linearly increases with N but exponentially decreases with the temperature. We point out the consequences of these findings for the experimental confirmation of the Jarzynski equality such as the low probability issue at high temperatures and its solution at low temperatures, together with a discussion of the crossover behavior between the two temperature regimes. ©2011 American Physical Society

  2. Work statistics of charged noninteracting fermions in slowly changing magnetic fields

    NASA Astrophysics Data System (ADS)

    Yi, Juyeon; Talkner, Peter

    2011-04-01

    We consider N fermionic particles in a harmonic trap initially prepared in a thermal equilibrium state at temperature β-1 and examine the probability density function (pdf) of the work done by a magnetic field slowly varying in time. The behavior of the pdf crucially depends on the number of particles N but also on the temperature. At high temperatures (β≪1) the pdf is given by an asymmetric Laplace distribution for a single particle, and for many particles it approaches a Gaussian distribution with variance proportional to N/β2. At low temperatures the pdf becomes strongly peaked at the center with a variance that still linearly increases with N but exponentially decreases with the temperature. We point out the consequences of these findings for the experimental confirmation of the Jarzynski equality such as the low probability issue at high temperatures and its solution at low temperatures, together with a discussion of the crossover behavior between the two temperature regimes.

  3. Free-energy landscape of glycerol permeation through aquaglyceroporin GlpF determined from steered molecular dynamics simulations.

    PubMed

    Chen, L Y

    2010-10-01

    The free-energy landscape of glycerol permeation through the aquaglyceroporin GlpF has been estimated in the literature by the nonequilibrium method of steered molecular dynamics (SMD) simulations and by the equilibrium method of adaptive biasing force (ABF) simulations. However, the ABF results qualitatively disagree with the SMD results that were based on the Jarzynski equality (JE) relating the equilibrium free-energy difference to the nonequilibrium work of the irreversible pulling experiments. In this paper, I present a new SMD study of the glycerol permeation through GlpF to explore the free-energy profile of glycerol along the permeation channel. Instead of the JE in terms of thermodynamic work, I use the fluctuation-dissipation theorem (FDT) of Brownian dynamics (BD), in terms of mechanical work, for extracting the free-energy difference from the nonequilibrium work of irreversible pulling experiments. The results of this new SMD-BD-FDT study are in agreement with the experimental data and with the ABF results. 2010 Elsevier B.V. All rights reserved.

  4. Algorithmic complexity of quantum capacity

    NASA Astrophysics Data System (ADS)

    Oskouei, Samad Khabbazi; Mancini, Stefano

    2018-04-01

    We analyze the notion of quantum capacity from the perspective of algorithmic (descriptive) complexity. To this end, we resort to the concept of semi-computability in order to describe quantum states and quantum channel maps. We introduce algorithmic entropies (like algorithmic quantum coherent information) and derive relevant properties for them. Then we show that quantum capacity based on semi-computable concept equals the entropy rate of algorithmic coherent information, which in turn equals the standard quantum capacity. Thanks to this, we finally prove that the quantum capacity, for a given semi-computable channel, is limit computable.

  5. General monogamy equalities of complementarity relation and distributive entanglement for multi-qubit pure states

    NASA Astrophysics Data System (ADS)

    Zha, Xinwei; Da, Zhang; Ahmed, Irfan; Zhang, Dan; Zhang, Yanpeng

    2018-02-01

    In this paper, we determine the complementarity relations for pure quantum states of N qubits by presenting the definition of local and non-local forms. By comparing the entanglement monogamy equality proposed by Coffman, Kundu, and Wootters, we prove that there exist strict monogamy laws for quantum correlations in all many-qubit systems. Further, the proper form of general entanglement monogamy equality for arbitrary quantum states is found with the characterization of total quantum correlation of qubits. These results may open a new window for multi-qubit entanglement.

  6. Measurements satisfying the quantum Cramer-Rao equality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luczak, Andrzej

    The situation where the quantum Cramer-Rao inequality for a general measurement becomes equality is analyzed in some detail in the case of a family of pure states. In particular, it turns out that under some natural assumptions, the measurement in question is simple, and the states must have a special form. This fact in turn allows us to obtain in the two-dimensional case a characterization of the pure states for which the quantum Cramer-Rao equality holds.

  7. Replica and extreme-value analysis of the Jarzynski free-energy estimator

    NASA Astrophysics Data System (ADS)

    Palassini, Matteo; Ritort, Felix

    2008-03-01

    We analyze the Jarzynski estimator of free-energy differences from nonequilibrium work measurements. By a simple mapping onto Derrida's Random Energy Model, we obtain a scaling limit for the expectation of the bias of the estimator. We then derive analytical approximations in three different regimes of the scaling parameter x = log(N)/W, where N is the number of measurements and W the mean dissipated work. Our approach is valid for a generic distribution of the dissipated work, and is based on a replica symmetry breaking scheme for x >> 1, the asymptotic theory of extreme value statistics for x << 1, and a direct approach for x near one. The combination of the three analytic approximations describes well Monte Carlo data for the expectation value of the estimator, for a wide range of values of N, from N=1 to large N, and for different work distributions. Based on these results, we introduce improved free-energy estimators and discuss the application to the analysis of experimental data.

  8. Optimal quantum cloning based on the maximin principle by using a priori information

    NASA Astrophysics Data System (ADS)

    Kang, Peng; Dai, Hong-Yi; Wei, Jia-Hua; Zhang, Ming

    2016-10-01

    We propose an optimal 1 →2 quantum cloning method based on the maximin principle by making full use of a priori information of amplitude and phase about the general cloned qubit input set, which is a simply connected region enclosed by a "longitude-latitude grid" on the Bloch sphere. Theoretically, the fidelity of the optimal quantum cloning machine derived from this method is the largest in terms of the maximin principle compared with that of any other machine. The problem solving is an optimization process that involves six unknown complex variables, six vectors in an uncertain-dimensional complex vector space, and four equality constraints. Moreover, by restricting the structure of the quantum cloning machine, the optimization problem is simplified as a three-real-parameter suboptimization problem with only one equality constraint. We obtain the explicit formula for a suboptimal quantum cloning machine. Additionally, the fidelity of our suboptimal quantum cloning machine is higher than or at least equal to that of universal quantum cloning machines and phase-covariant quantum cloning machines. It is also underlined that the suboptimal cloning machine outperforms the "belt quantum cloning machine" for some cases.

  9. A Back-to-Front Derivation: The Equal Spacing of Quantum Levels Is a Proof of Simple Harmonic Oscillator Physics

    ERIC Educational Resources Information Center

    Andrews, David L.; Romero, Luciana C. Davila

    2009-01-01

    The dynamical behaviour of simple harmonic motion can be found in numerous natural phenomena. Within the quantum realm of atomic, molecular and optical systems, two main features are associated with harmonic oscillations: a finite ground-state energy and equally spaced quantum energy levels. Here it is shown that there is in fact a one-to-one…

  10. Criteria for equality in two entropic inequalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirokov, M. E., E-mail: msh@mi.ras.ru

    2014-07-31

    We obtain a simple criterion for local equality between the constrained Holevo capacity and the quantum mutual information of a quantum channel. This shows that the set of all states for which this equality holds is determined by the kernel of the channel (as a linear map). Applications to Bosonic Gaussian channels are considered. It is shown that for a Gaussian channel having no completely depolarizing components the above characteristics may coincide only at non-Gaussian mixed states and a criterion for the existence of such states is given. All the obtained results may be reformulated as conditions for equality betweenmore » the constrained Holevo capacity of a quantum channel and the input von Neumann entropy. Bibliography: 20 titles. (paper)« less

  11. Stochastic driven systems far from equilibrium

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hyuk

    We study the dynamics and steady states of two systems far from equilibrium: a 1-D driven lattice gas and a driven Brownian particle with inertia. (1) We investigate the dynamical scaling behavior of a 1-D driven lattice gas model with two species of particles hopping in opposite directions. We confirm numerically that the dynamic exponent is equal to z = 1.5. We show analytically that a quasi-particle representation relates all phase points to a special phase line directly related to the single-species asymmetric simple exclusion process. Quasi-particle two-point correlations decay exponentially, and in such a manner that quasi-particles of opposite charge dynamically screen each other with a special balance. The balance encompasses all over the phase space. These results indicate that the model belongs to the Kardar-Parisi-Zhang (KPZ) universality class. (2) We investigate the non-equilibrium thermodynamics of a Brownian particle with inertia under feedback control of its inertia. We find such open systems can act as a molecular refrigerator due to an entropy pumping mechanism. We extend the fluctuation theorems to the refrigerator. The entropy pumping modifies both the Jarzynski equality and the fluctuation theorems. We discover that the entropy pumping has a dual role of work and heat. We also investigate the thermodynamics of the particle under a hydrodynamic interaction described by a Langevin equation with a multiplicative noise. The Stratonovich stochastic integration prescription involved in the definition of heat is shown to be the unique physical choice.

  12. Time-reversal symmetry in nonstationary Markov processes with application to some fluctuation theorems

    NASA Astrophysics Data System (ADS)

    Van Vliet, Carolyne M.

    2012-11-01

    Nonequilibrium processes require that the density operator of an interacting system with Hamiltonian H(t)=H0(t)+λV converges and produces entropy. Employing projection operators in the state space, the density operator is developed to all orders of perturbation and then resummed. In contrast to earlier treatments by Van Hove [Physica0031-891410.1016/S0031-8914(54)92646-4 21, 517 (1955)] and others [U. Fano, Rev. Mod. Phys.0034-686110.1103/RevModPhys.29.74 29, 74 (1959); U. Fano, in Lectures on the Many-Body Problem, Vol 2, edited by E. R. Caniello (Academic Press, New York, 1964); R. Zwanzig, in Lectures in Theoretical Physics, Vol. III, edited by W. E. Britten, B. W. Downs, and J. Downs (Wiley Interscience, New York, 1961), pp. 116-141; K. M. Van Vliet, J. Math. Phys.0022-248810.1063/1.523833 19, 1345 (1978); K. M. Van Vliet, Can. J. Phys. 56, 1206 (1978)], closed expressions are obtained. From these we establish the time-reversal symmetry property P(γ,t|γ',t')=P˜(γ',t'|γ,t), where the tilde refers to the time-reversed protocol; also a nonstationary Markovian master equation is derived. Time-reversal symmetry is then applied to thermostatted systems yielding the Crooks-Tasaki fluctuation theorem (FT) and the quantum Jarzynski work-energy theorem, as well as the general entropy FT. The quantum mechanical concepts of work and entropy are discussed in detail. Finally, we present a nonequilibrium extension of Mazo's lemma of linear response theory, obtaining some applications via this alternate route.

  13. On the Small Mass Limit of Quantum Brownian Motion with Inhomogeneous Damping and Diffusion

    NASA Astrophysics Data System (ADS)

    Lim, Soon Hoe; Wehr, Jan; Lampo, Aniello; García-March, Miguel Ángel; Lewenstein, Maciej

    2018-01-01

    We study the small mass limit (or: the Smoluchowski-Kramers limit) of a class of quantum Brownian motions with inhomogeneous damping and diffusion. For Ohmic bath spectral density with a Lorentz-Drude cutoff, we derive the Heisenberg-Langevin equations for the particle's observables using a quantum stochastic calculus approach. We set the mass of the particle to equal m = m0 ɛ , the reduced Planck constant to equal \\hbar = ɛ and the cutoff frequency to equal Λ = E_{Λ}/ɛ , where m_0 and E_{Λ} are positive constants, so that the particle's de Broglie wavelength and the largest energy scale of the bath are fixed as ɛ → 0. We study the limit as ɛ → 0 of the rescaled model and derive a limiting equation for the (slow) particle's position variable. We find that the limiting equation contains several drift correction terms, the quantum noise-induced drifts, including terms of purely quantum nature, with no classical counterparts.

  14. Equilibrium sampling by reweighting nonequilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  15. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    PubMed

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  16. Free energy calculation of single molecular interaction using Jarzynski's identity method: the case of HIV-1 protease inhibitor system

    NASA Astrophysics Data System (ADS)

    Li, De-Chang; Ji, Bao-Hua

    2012-06-01

    Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and experiments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molecular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic complexity of the ligand-receptor system, the energy barrier predicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results suggested that the JI method is more appropriate for reconstructing free energy landscape using the data taken from experiments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distribution in SMD simulations.

  17. The Jarzynski identity derived from general Hamiltonian or non-Hamiltonian dynamics reproducing NVT or NPT ensembles

    NASA Astrophysics Data System (ADS)

    Cuendet, Michel A.

    2006-10-01

    The Jarzynski identity (JI) relates nonequilibrium work averages to thermodynamic free energy differences. It was shown in a recent contribution [M. A. Cuendet, Phys. Rev. Lett. 96, 120602 (2006)] that the JI can, in particular, be derived directly from the Nosé-Hoover thermostated dynamics. This statistical mechanical derivation is particularly relevant in the framework of molecular dynamics simulation, because it is based solely on the equations of motion considered and is free of any additional assumptions on system size or bath coupling. Here, this result is generalized to a variety of dynamics, along two directions. On the one hand, specific improved thermostating schemes used in practical applications are treated. These include Nosé-Hoover chains, higher moment thermostats, as well as an isothermal-isobaric scheme yielding the JI in the NPT ensemble. On the other hand, the theoretical generality of the new derivation is explored. Generic dynamics with arbitrary coupling terms and an arbitrary number of thermostating variables, both non-Hamiltonian and Hamiltonian, are shown to imply the JI. In particular, a nonautonomous formulation of the generalized Nosé-Poincaré thermostat is proposed. Finally, general conditions required for the JI derivation are briefly discussed.

  18. Validation of the Jarzynski relation for a system with strong thermal coupling: an isothermal ideal gas model.

    PubMed

    Baule, A; Evans, R M L; Olmsted, P D

    2006-12-01

    We revisit the paradigm of an ideal gas under isothermal conditions. A moving piston performs work on an ideal gas in a container that is strongly coupled to a heat reservoir. The thermal coupling is modeled by stochastic scattering at the boundaries. In contrast to recent studies of an adiabatic ideal gas with a piston [R.C. Lua and A.Y. Grosberg, J. Phys. Chem. B 109, 6805 (2005); I. Bena, Europhys. Lett. 71, 879 (2005)], the container and piston stay in contact with the heat bath during the work process. Under this condition the heat reservoir as well as the system depend on the work parameter lambda and microscopic reversibility is broken for a moving piston. Our model is thus not included in the class of systems for which the nonequilibrium work theorem has been derived rigorously either by Hamiltonian [C. Jarzynski, J. Stat. Mech. (2004) P09005] or stochastic methods [G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)]. Nevertheless the validity of the nonequilibrium work theorem is confirmed both numerically for a wide range of parameter values and analytically in the limit of a very fast moving piston, i.e., in the far nonequilibrium regime.

  19. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L., E-mail: jinliang@nankai.edu.cn

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmissionmore » zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.« less

  20. Does Bohm's Quantum Force Have a Classical Origin?

    NASA Astrophysics Data System (ADS)

    Lush, David C.

    2016-08-01

    In the de Broglie-Bohm formulation of quantum mechanics, the electron is stationary in the ground state of hydrogenic atoms, because the quantum force exactly cancels the Coulomb attraction of the electron to the nucleus. In this paper it is shown that classical electrodynamics similarly predicts the Coulomb force can be effectively canceled by part of the magnetic force that occurs between two similar particles each consisting of a point charge moving with circulatory motion at the speed of light. Supposition of such motion is the basis of the Zitterbewegung interpretation of quantum mechanics. The magnetic force between two luminally-circulating charges for separation large compared to their circulatory motions contains a radial inverse square law part with magnitude equal to the Coulomb force, sinusoidally modulated by the phase difference between the circulatory motions. When the particles have equal mass and their circulatory motions are aligned but out of phase, part of the magnetic force is equal but opposite the Coulomb force. This raises a possibility that the quantum force of Bohmian mechanics may be attributable to the magnetic force of classical electrodynamics. It is further shown that relative motion between the particles leads to modulation of the magnetic force with spatial period equal to the de Broglie wavelength.

  1. Necessary and sufficient optimality conditions for classical simulations of quantum communication processes

    NASA Astrophysics Data System (ADS)

    Montina, Alberto; Wolf, Stefan

    2014-07-01

    We consider the process consisting of preparation, transmission through a quantum channel, and subsequent measurement of quantum states. The communication complexity of the channel is the minimal amount of classical communication required for classically simulating it. Recently, we reduced the computation of this quantity to a convex minimization problem with linear constraints. Every solution of the constraints provides an upper bound on the communication complexity. In this paper, we derive the dual maximization problem of the original one. The feasible points of the dual constraints, which are inequalities, give lower bounds on the communication complexity, as illustrated with an example. The optimal values of the two problems turn out to be equal (zero duality gap). By this property, we provide necessary and sufficient conditions for optimality in terms of a set of equalities and inequalities. We use these conditions and two reasonable but unproven hypotheses to derive the lower bound n ×2n -1 for a noiseless quantum channel with capacity equal to n qubits. This lower bound can have interesting consequences in the context of the recent debate on the reality of the quantum state.

  2. Monogamy equalities for qubit entanglement from Lorentz invariance.

    PubMed

    Eltschka, Christopher; Siewert, Jens

    2015-04-10

    A striking result from nonrelativistic quantum mechanics is the monogamy of entanglement, which states that a particle can be maximally entangled only with one other party, not with several ones. While there is the exact quantitative relation for three qubits and also several inequalities describing monogamy properties, it is not clear to what extent exact monogamy relations are a general feature of quantum mechanics. We prove that in all many-qubit systems there exist strict monogamy laws for quantum correlations. They come about through the curious relationship between the nonrelativistic quantum mechanics of qubits and Minkowski space. We elucidate the origin of entanglement monogamy from this symmetry perspective and provide recipes to construct new families of such equalities.

  3. Quantum Max-flow/Min-cut

    NASA Astrophysics Data System (ADS)

    Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg

    2016-06-01

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.

  4. Work and heat fluctuations in two-state systems: a trajectory thermodynamics formalism

    NASA Astrophysics Data System (ADS)

    Ritort, F.

    2004-10-01

    Two-state models provide phenomenological descriptions of many different systems, ranging from physics to chemistry and biology. We investigate work fluctuations in an ensemble of two-state systems driven out of equilibrium under the action of an external perturbation. We calculate the probability density PN(W) that work equal to W is exerted upon the system (of size N) along a given non-equilibrium trajectory and introduce a trajectory thermodynamics formalism to quantify work fluctuations in the large-N limit. We then define a trajectory entropy SN(W) that counts the number of non-equilibrium trajectories PN(W) = exp(SN(W)/kBT) with work equal to W and characterizes fluctuations of work trajectories around the most probable value Wmp. A trajectory free energy {\\cal F}_N(W) can also be defined, which has a minimum at W = W†, this being the value of the work that has to be efficiently sampled to quantitatively test the Jarzynski equality. Within this formalism a Lagrange multiplier is also introduced, the inverse of which plays the role of a trajectory temperature. Our general solution for PN(W) exactly satisfies the fluctuation theorem by Crooks and allows us to investigate heat fluctuations for a protocol that is invariant under time reversal. The heat distribution is then characterized by a Gaussian component (describing small and frequent heat exchange events) and exponential tails (describing the statistics of large deviations and rare events). For the latter, the width of the exponential tails is related to the aforementioned trajectory temperature. Finite-size effects to the large-N theory and the recovery of work distributions for finite N are also discussed. Finally, we pay particular attention to the case of magnetic nanoparticle systems under the action of a magnetic field H where work and heat fluctuations are predicted to be observable in ramping experiments in micro-SQUIDs.

  5. Connes' embedding problem and winning strategies for quantum XOR games

    NASA Astrophysics Data System (ADS)

    Harris, Samuel J.

    2017-12-01

    We consider quantum XOR games, defined in the work of Regev and Vidick [ACM Trans. Comput. Theory 7, 43 (2015)], from the perspective of unitary correlations defined in the work of Harris and Paulsen [Integr. Equations Oper. Theory 89, 125 (2017)]. We show that the winning bias of a quantum XOR game in the tensor product model (respectively, the commuting model) is equal to the norm of its associated linear functional on the unitary correlation set from the appropriate model. We show that Connes' embedding problem has a positive answer if and only if every quantum XOR game has entanglement bias equal to the commuting bias. In particular, the embedding problem is equivalent to determining whether every quantum XOR game G with a winning strategy in the commuting model also has a winning strategy in the approximate finite-dimensional model.

  6. A Prediction Method of Binding Free Energy of Protein and Ligand

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Wang, Xicheng

    2010-05-01

    Predicting the binding free energy is an important problem in bimolecular simulation. Such prediction would be great benefit in understanding protein functions, and may be useful for computational prediction of ligand binding strengths, e.g., in discovering pharmaceutical drugs. Free energy perturbation (FEP)/thermodynamics integration (TI) is a classical method to explicitly predict free energy. However, this method need plenty of time to collect datum, and that attempts to deal with some simple systems and small changes of molecular structures. Another one for estimating ligand binding affinities is linear interaction energy (LIE) method. This method employs averages of interaction potential energy terms from molecular dynamics simulations or other thermal conformational sampling techniques. Incorporation of systematic deviations from electrostatic linear response, derived from free energy perturbation studies, into the absolute binding free energy expression significantly enhances the accuracy of the approach. However, it also is time-consuming work. In this paper, a new prediction method based on steered molecular dynamics (SMD) with direction optimization is developed to compute binding free energy. Jarzynski's equality is used to derive the PMF or free-energy. The results for two numerical examples are presented, showing that the method has good accuracy and efficiency. The novel method can also simulate whole binding proceeding and give some important structural information about development of new drugs.

  7. Quantum coherence and correlations in quantum system

    PubMed Central

    Xi, Zhengjun; Li, Yongming; Fan, Heng

    2015-01-01

    Criteria of measure quantifying quantum coherence, a unique property of quantum system, are proposed recently. In this paper, we first give an uncertainty-like expression relating the coherence and the entropy of quantum system. This finding allows us to discuss the relations between the entanglement and the coherence. Further, we discuss in detail the relations among the coherence, the discord and the deficit in the bipartite quantum system. We show that, the one-way quantum deficit is equal to the sum between quantum discord and the relative entropy of coherence of measured subsystem. PMID:26094795

  8. Quantum Max-flow/Min-cut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Shawn X., E-mail: xingshan@math.ucsb.edu; Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052; Freedman, Michael H., E-mail: michaelf@microsoft.com

    2016-06-15

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts ofmore » the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.« less

  9. Relating quantum coherence and correlations with entropy-based measures.

    PubMed

    Wang, Xiao-Li; Yue, Qiu-Ling; Yu, Chao-Hua; Gao, Fei; Qin, Su-Juan

    2017-09-21

    Quantum coherence and quantum correlations are important quantum resources for quantum computation and quantum information. In this paper, using entropy-based measures, we investigate the relationships between quantum correlated coherence, which is the coherence between subsystems, and two main kinds of quantum correlations as defined by quantum discord as well as quantum entanglement. In particular, we show that quantum discord and quantum entanglement can be well characterized by quantum correlated coherence. Moreover, we prove that the entanglement measure formulated by quantum correlated coherence is lower and upper bounded by the relative entropy of entanglement and the entanglement of formation, respectively, and equal to the relative entropy of entanglement for all the maximally correlated states.

  10. Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, V.P.; Thorne, K.S.

    1989-04-15

    The renormalized expectation value of the stress-energy tensor /sup ren/ of a quantum field in an arbitrary quantum state near the future horizon of a rotating (Kerr) black hole is derived in two very different ways: One derivation (restricted for simplicity to a massless scalar field) makes use of traditional techniques of quantum field theory in curved spacetime, augmented by a variant of the ''eta formalism'' for handling superradiant modes. The other derivation (valid for any quantum field) uses the equivalence principle to infer, from /sup ren/ in flat spacetime, what must be /sup ren/ near the hole's horizon. Themore » two derivations give the same result: a result in accord with a previous conjecture by Zurek and Thorne: /sup ren/, in any quantum state, is equal to that, /sup ZAMO/, which zero-angular-momentum observers (ZAMO's) would compute from their own physical measurements near the horizon, plus a vacuum-polarization contribution T/sub ..mu..//sub ..nu..//sup vac pol/, which is the negative of the stress-energy of a rigidly rotating thermal reservoir with angular velocity equal to that of the horizon ..cap omega../sub H/, and (red-shifted) temperature equal to that of the Hawking temperature T/sub H/.« less

  11. Superfield Hamiltonian quantization in terms of quantum antibrackets

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-04-01

    We develop a new version of the superfield Hamiltonian quantization. The main new feature is that the BRST-BFV charge and the gauge fixing Fermion are introduced on equal footing within the sigma model approach, which provides for the actual use of the quantum/derived antibrackets. We study in detail the generating equations for the quantum antibrackets and their primed counterparts. We discuss the finite quantum anticanonical transformations generated by the quantum antibracket.

  12. Synchronous correlation matrices and Connes’ embedding conjecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykema, Kenneth J., E-mail: kdykema@math.tamu.edu; Paulsen, Vern, E-mail: vern@math.uh.edu

    In the work of Paulsen et al. [J. Funct. Anal. (in press); preprint arXiv:1407.6918], the concept of synchronous quantum correlation matrices was introduced and these were shown to correspond to traces on certain C*-algebras. In particular, synchronous correlation matrices arose in their study of various versions of quantum chromatic numbers of graphs and other quantum versions of graph theoretic parameters. In this paper, we develop these ideas further, focusing on the relations between synchronous correlation matrices and microstates. We prove that Connes’ embedding conjecture is equivalent to the equality of two families of synchronous quantum correlation matrices. We prove thatmore » if Connes’ embedding conjecture has a positive answer, then the tracial rank and projective rank are equal for every graph. We then apply these results to more general non-local games.« less

  13. Classical synchronization indicates persistent entanglement in isolated quantum systems

    PubMed Central

    Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc

    2017-01-01

    Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms. PMID:28401881

  14. Classical synchronization indicates persistent entanglement in isolated quantum systems.

    PubMed

    Witthaut, Dirk; Wimberger, Sandro; Burioni, Raffaella; Timme, Marc

    2017-04-12

    Synchronization and entanglement constitute fundamental collective phenomena in multi-unit classical and quantum systems, respectively, both equally implying coordinated system states. Here, we present a direct link for a class of isolated quantum many-body systems, demonstrating that synchronization emerges as an intrinsic system feature. Intriguingly, quantum coherence and entanglement arise persistently through the same transition as synchronization. This direct link between classical and quantum cooperative phenomena may further our understanding of strongly correlated quantum systems and can be readily observed in state-of-the-art experiments, for example, with ultracold atoms.

  15. Analysis of limiting information characteristics of quantum-cryptography protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sych, D V; Grishanin, Boris A; Zadkov, Viktor N

    2005-01-31

    The problem of increasing the critical error rate of quantum-cryptography protocols by varying a set of letters in a quantum alphabet for space of a fixed dimensionality is studied. Quantum alphabets forming regular polyhedra on the Bloch sphere and the continual alphabet equally including all the quantum states are considered. It is shown that, in the absence of basis reconciliation, a protocol with the tetrahedral alphabet has the highest critical error rate among the protocols considered, while after the basis reconciliation, a protocol with the continual alphabet possesses the highest critical error rate. (quantum optics and quantum computation)

  16. Theory of excess noise in unstable resonator lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamprecht, C.; Ritsch, H.

    2002-11-01

    We theoretically investigate the quantum dynamics of an unstable resonator laser. Compared to a stable cavity laser of equal gain and loss it exhibits a K-fold enhanced linewidth. This excess noise factor K is a measure of the nonorthogonality of the resonator eigenmodes and amounts to an enlargement of the quantum vacuum fluctuations. Using a quantum treatment starting from first principles based on the nonorthogonal eigenmodes, we put previous theoretical predictions onto a more firm ground. While we find a position-dependent enhancement of the spontaneous emission rate into an empty mode of only {radical}(K), the constructive quantum interference of themore » spontaneous emission with a single oscillating mode lets the Petermann excess noise factor K reappear in the phase diffusion (laser linewidth). Hence locally enhanced spontaneous emission as well as noise enhanced by interference (amplified spontaneous emission) play an equal role in the origin of excess noise.« less

  17. Accessible Information for Equally-Distant Partially-Entangled Alphabet State Resource

    NASA Astrophysics Data System (ADS)

    Hao, San-Ru; Hou, Bo-Yu; Xi, Xiao-Qiang; Yue, Rui-Hong

    2002-02-01

    We have proposed a quantum system with equally-distant partially-entangled alphabet states which has the minimal mutual overlap and the highly distinguishability, these quantum states are used as the "signal states" of the quantum communication. We have also constructed the positive operator-valued measure for these "signal states" and discussed their entanglement properties and measurement of entanglement. We calculate the accessible information for these alphabet states and show that the accessible information is closely related to the entanglement of the "signal states": the higher the entanglement of the "signal states", the better the accessible information of the quantum system, and the accessible information reaches its maximal value when the alphabet states have their maximal entanglement. The project supported in part by Foundation of the Science and Technology Committee of China, and Foundation of the Science and Technology Committee of Hunan Province of China under the contract FSTCH-21000205

  18. The quantum measurement of time

    NASA Technical Reports Server (NTRS)

    Shepard, Scott R.

    1994-01-01

    Traditionally, in non-relativistic Quantum Mechanics, time is considered to be a parameter, rather than an observable quantity like space. In relativistic Quantum Field Theory, space and time are treated equally by reducing space to also be a parameter. Herein, after a brief review of other measurements, we describe a third possibility, which is to treat time as a directly observable quantity.

  19. From quantum foundations to applications and back.

    PubMed

    Gisin, Nicolas; Fröwis, Florian

    2018-07-13

    Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  20. Atomic electron energies including relativistic effects and quantum electrodynamic corrections

    NASA Technical Reports Server (NTRS)

    Aoyagi, M.; Chen, M. H.; Crasemann, B.; Huang, K. N.; Mark, H.

    1977-01-01

    Atomic electron energies have been calculated relativistically. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first order correction to the local approximation was thus included. Quantum-electrodynamic corrections were made. For all orbitals in all atoms with 2 less than or equal to Z less than or equal to 106, the following quantities are listed: total energies, electron kinetic energies, electron-nucleus potential energies, electron-electron potential energies consisting of electrostatic and Breit interaction (magnetic and retardation) terms, and vacuum polarization energies. These results will serve for detailed comparison of calculations based on other approaches. The magnitude of quantum electrodynamic corrections is exhibited quantitatively for each state.

  1. 1.9 THz Quantum-cascade Lasers with One-well Injector

    NASA Technical Reports Server (NTRS)

    Kumar, Sushil; Williams, Benjamin S.; Hu, Qing; Reno, John L.

    2006-01-01

    We report terahertz quantum-cascade lasers operating predominantly at 1.90 THz with side modes as low as 1.86 THz (lambda approx. equal to 161 micrometers, planck's constant omega approx. equal to 7.7 meV). This is the longest wavelength to date of any solid-state laser that operates without assistance of a magnetic field. Carriers are injected into the upper radiative state by using a single quantum-well injector, which resulted in a significant reduction of free-carrier losses. The laser operated up to a heat-sink temperature of 110 K in pulsed mode, 95 K in continuous wave (cw) mode, and the threshold current density at 5 K was approx. 140 A per square centimeters.

  2. Time-Resolved Electronic Relaxation Processes in Self-Organized Quantum Dots

    DTIC Science & Technology

    2005-05-16

    in a quantum dot infrared photodetector ,” paper CthM11, presented at CLEO, Baltimore, 2003. K. Kim, T. Norris, J. Singh, P. Bhattacharya...nanostructures have been equally spectacular. Following the development of quantum-well infrared photodetectors in the late 1980’s and early 90’s...4]. The quantum cascade laser is of course the best known of the new devices, as it constitutes an entirely new concept in semiconductor laser

  3. Quantum secret information equal exchange protocol based on dense coding

    NASA Astrophysics Data System (ADS)

    Jiang, Ying-Hua; Zhang, Shi-Bin; Dai, Jin-Qiao; Shi, Zhi-Ping

    2018-04-01

    In this paper, we design a novel quantum secret information equal exchange protocol, which implements the equal exchange of secret information between the two parties with the help of semi-trusted third party (TP). In the protocol, EPR pairs prepared by the TP are, respectively, distributed to both the communication parties. Then, the two parties perform Pauli operation on each particle and return the new particles to TP, respectively. TP measures each new pair with Bell basis and announces the measurement results. Both parties deduce the secret information of each other according to the result of announcement by TP. Finally, the security analysis shows that this protocol solves the problem about equal exchange of secret information between two parties and verifies the security of semi-trusted TPs. It proves that the protocol can effectively resist glitch attacks, intercept retransmission attacks and entanglement attack.

  4. Parametric interactions in presence of different size colloids in semiconductor quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanshpal, R., E-mail: ravivanshpal@gmail.com; Sharma, Uttam; Dubey, Swati

    2015-07-31

    Present work is an attempt to investigate the effect of different size colloids on parametric interaction in semiconductor quantum plasma. Inclusion of quantum effect is being done in this analysis through quantum correction term in classical hydrodynamic model of homogeneous semiconductor plasma. The effect is associated with purely quantum origin using quantum Bohm potential and quantum statistics. Colloidal size and quantum correction term modify the parametric dispersion characteristics of ion implanted semiconductor plasma medium. It is found that quantum effect on colloids is inversely proportional to their size. Moreover critical size of implanted colloids for the effective quantum correction ismore » determined which is found to be equal to the lattice spacing of the crystal.« less

  5. Method Evaluations for Adsorption Free Energy Calculations at the Solid/Water Interface through Metadynamics, Umbrella Sampling, and Jarzynski's Equality.

    PubMed

    Wei, Qichao; Zhao, Weilong; Yang, Yang; Cui, Beiliang; Xu, Zhijun; Yang, Xiaoning

    2018-03-19

    Considerable interest in characterizing protein/peptide-surface interactions has prompted extensive computational studies on calculations of adsorption free energy. However, in many cases, each individual study has focused on the application of free energy calculations to a specific system; therefore, it is difficult to combine the results into a general picture for choosing an appropriate strategy for the system of interest. Herein, three well-established computational algorithms are systemically compared and evaluated to compute the adsorption free energy of small molecules on two representative surfaces. The results clearly demonstrate that the characteristics of studied interfacial systems have crucial effects on the accuracy and efficiency of the adsorption free energy calculations. For the hydrophobic surface, steered molecular dynamics exhibits the highest efficiency, which appears to be a favorable method of choice for enhanced sampling simulations. However, for the charged surface, only the umbrella sampling method has the ability to accurately explore the adsorption free energy surface. The affinity of the water layer to the surface significantly affects the performance of free energy calculation methods, especially at the region close to the surface. Therefore, a general principle of how to discriminate between methodological and sampling issues based on the interfacial characteristics of the system under investigation is proposed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Classical and quantum optical correlation effects between single quantum dots: The role of the hopping photon

    NASA Astrophysics Data System (ADS)

    Hughes, S.; Gotoh, H.; Kamada, H.

    2006-09-01

    We present a theoretical study of photon-coupled single quantum dots in a semiconductor. A series of optical effects are demonstrated, including a subradiant dark resonance, superradiance, reversible spontaneous emission decay, and pronounced exciton entanglement. Both classical and quantum optical approaches are presented using a self-consistent formalism that treats real and virtual photon exchange on an equal footing and can account for different quantum dot properties, surface effects, and retardation in the dipole-dipole coupling, all of which are shown to play a non-negligible role.

  7. Revealing a quantum feature of dimensionless uncertainty in linear and quadratic potentials by changing potential intervals

    NASA Astrophysics Data System (ADS)

    Kheiri, R.

    2016-09-01

    As an undergraduate exercise, in an article (2012 Am. J. Phys. 80 780-14), quantum and classical uncertainties for dimensionless variables of position and momentum were evaluated in three potentials: infinite well, bouncing ball, and harmonic oscillator. While original quantum uncertainty products depend on {{\\hslash }} and the number of states (n), a dimensionless approach makes the comparison between quantum uncertainty and classical dispersion possible by excluding {{\\hslash }}. But the question is whether the uncertainty still remains dependent on quantum number n. In the above-mentioned article, there lies this contrast; on the one hand, the dimensionless quantum uncertainty of the potential box approaches classical dispersion only in the limit of large quantum numbers (n\\to ∞ )—consistent with the correspondence principle. On the other hand, similar evaluations for bouncing ball and harmonic oscillator potentials are equal to their classical counterparts independent of n. This equality may hide the quantum feature of low energy levels. In the current study, we change the potential intervals in order to make them symmetric for the linear potential and non-symmetric for the quadratic potential. As a result, it is shown in this paper that the dimensionless quantum uncertainty of these potentials in the new potential intervals is expressed in terms of quantum number n. In other words, the uncertainty requires the correspondence principle in order to approach the classical limit. Therefore, it can be concluded that the dimensionless analysis, as a useful pedagogical method, does not take away the quantum feature of the n-dependence of quantum uncertainty in general. Moreover, our numerical calculations include the higher powers of the position for the potentials.

  8. Influence of hydrostatic pressure on the built-in electric field in ZnO/ZnMgO quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teisseyre, Henryk, E-mail: teiss@ifpan.edu.pl; Institute of High Pressure, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw; Kaminska, Agata

    We used high hydrostatic pressure to perform photoluminescence measurements on polar ZnO/ZnMgO quantum well structures. Our structure oriented along the c-direction (polar direction) was grown by plasma-assisted molecular beam epitaxy on a-plane sapphire. Due to the intrinsic electric field, which exists in polar wurtzite structure at ambient pressure, we observed a red shift of the emission related to the quantum-confined Stark effect. In the high hydrostatic pressure experiment, we observed a strong decrease of the quantum well pressure coefficients with increased thickness of the quantum wells. Generally, a narrower quantum well gave a higher pressure coefficient, closer to the band-gapmore » pressure coefficient of bulk material 20 meV/GPa for ZnO, while for wider quantum wells it is much lower. We observed a pressure coefficient of 19.4 meV/GPa for a 1.5 nm quantum well, while for an 8 nm quantum well the pressure coefficient was equal to 8.9 meV/GPa only. This is explained by taking into account the pressure-induced increase of the strain in our structure. The strain was calculated taking in to account that in-plane strain is not equal (due to fact that we used a-plane sapphire as a substrate) and the potential distribution in the structure was calculated self-consistently. The pressure induced increase of the built-in electric field is the same for all thicknesses of quantum wells, but becomes more pronounced for thicker quantum wells due to the quantum confined Stark effect lowering the pressure coefficients.« less

  9. Monogamy equality in 2⊗2⊗d quantum systems

    NASA Astrophysics Data System (ADS)

    Chi, Dong Pyo; Choi, Jeong Woon; Jeong, Kabgyun; San Kim, Jeong; Kim, Taewan; Lee, Soojoon

    2008-11-01

    There is an interesting property about multipartite entanglement, called the monogamy of entanglement. The property can be shown by the monogamy inequality, called the Coffman-Kundu-Wootters inequality [Phys. Rev. A 61, 052306 (2000); Coffman-Kundu-WoottersPhys. Rev. Lett. 96, 220503 (2006)], and more explicitly by the monogamy equality in terms of the concurrence and the concurrence of assistance, CA(BC)2=CAB2+(CACa)2, in the three-qubit system. In this paper, we consider the monogamy equality in 2⊗2⊗d quantum systems. We show that CA(BC)=CAB if and only if CACa=0 and also show that if CA(BC)=CACa, then CAB=0, while there exists a state in a 2⊗2⊗d system such that CAB=0 but CA(BC)>CACa.

  10. Loss resilience for two-qubit state transmission using distributed phase sensitive amplification

    DOE PAGES

    Dailey, James; Agarwal, Anjali; Toliver, Paul; ...

    2015-11-12

    We transmit phase-encoded non-orthogonal quantum states through a 5-km long fibre-based distributed optical phase-sensitive amplifier (OPSA) using telecom-wavelength photonic qubit pairs. The gain is set to equal the transmission loss to probabilistically preserve input states during transmission. While neither state is optimally aligned to the OPSA, each input state is equally amplified with no measurable degradation in state quality. These results promise a new approach to reduce the effects of loss by encoding quantum information in a two-qubit Hilbert space which is designed to benefit from transmission through an OPSA.

  11. Loss resilience for two-qubit state transmission using distributed phase sensitive amplification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dailey, James; Agarwal, Anjali; Toliver, Paul

    We transmit phase-encoded non-orthogonal quantum states through a 5-km long fibre-based distributed optical phase-sensitive amplifier (OPSA) using telecom-wavelength photonic qubit pairs. The gain is set to equal the transmission loss to probabilistically preserve input states during transmission. While neither state is optimally aligned to the OPSA, each input state is equally amplified with no measurable degradation in state quality. These results promise a new approach to reduce the effects of loss by encoding quantum information in a two-qubit Hilbert space which is designed to benefit from transmission through an OPSA.

  12. Theory of coherent quantum phase slips in Josephson junction chains with periodic spatial modulations

    NASA Astrophysics Data System (ADS)

    Svetogorov, Aleksandr E.; Taguchi, Masahiko; Tokura, Yasuhiro; Basko, Denis M.; Hekking, Frank W. J.

    2018-03-01

    We study coherent quantum phase slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schön modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.

  13. Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures

    NASA Astrophysics Data System (ADS)

    Datta, Nilanjana; Wilde, Mark M.

    2015-12-01

    A short quantum Markov chain is a tripartite state {ρ }{ABC} such that system A can be recovered perfectly by acting on system C of the reduced state {ρ }{BC}. Such states have conditional mutual information I(A;B| C) equal to zero and are the only states with this property. A quantum channel {N} is sufficient for two states ρ and σ if there exists a recovery channel using which one can perfectly recover ρ from {N}(ρ ) and σ from {N}(σ ). The relative entropy difference D(ρ \\parallel σ )-D({N}(ρ )\\parallel {N}(σ )) is equal to zero if and only if {N} is sufficient for ρ and σ. In this paper, we show that these properties extend to Rényi generalizations of these information measures which were proposed in (Berta et al 2015 J. Math. Phys. 56 022205; Seshadreesan et al 2015 J. Phys. A: Math. Theor. 48 395303), thus providing an alternate characterization of short quantum Markov chains and sufficient quantum channels. These results give further support to these quantities as being legitimate Rényi generalizations of the conditional mutual information and the relative entropy difference. Along the way, we solve some open questions of Ruskai and Zhang, regarding the trace of particular matrices that arise in the study of monotonicity of relative entropy under quantum operations and strong subadditivity of the von Neumann entropy.

  14. Relationship between Hawking radiation and gravitational anomalies.

    PubMed

    Robinson, Sean P; Wilczek, Frank

    2005-07-01

    We show that in order to avoid a breakdown of general covariance at the quantum level the total flux in each outgoing partial wave of a quantum field in a black hole background must be equal to that of a (1+1)-dimensional blackbody at the Hawking temperature.

  15. Non-Lipschitz Approach to Quantum Mechnics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1997-01-01

    An attempt to reconcile quantum mechanics with Newton's laws represented by the non-Lipschitz formalism has been made. As a Proof-of-concept, a line of equally spaced atoms was studied. It appeared that enforcement of atom incompressibility required relaxation of the lipschitz condition at the points of contact.

  16. Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106-295 nm

    NASA Technical Reports Server (NTRS)

    Suto, Masako; Wang, Xiuyan; Shan, Jun; Lee, L. C.

    1992-01-01

    Photoabsorption and fluorescence cross sections of benzene, (o-, m-, p-) xylenes, naphthalene, 1-methylnaphthalene, and 2-ethylnaphthalene in the gas phase are measured at 106-295 nm using synchrotron radiation as a light source. Fluorescences are observed from the photoexcitation of benzene and xylenes at 230-280 nm and from naphthalene and its derivatives at 190-295 nm. The absolute fluorescence cross section is determined by calibration with respect to the emission intensity of the NO(A-X) system, for which the fluorescence quantum yield is equal to 1. To cross-check the current calibration method, the quantum yield of the SO2(C-X) system at 220-230 nm was measured since it is about equal to 1. The current quantum-yield data are compared with previously published values measured by different methods.

  17. Quantum-secret-sharing scheme based on local distinguishability of orthogonal multiqudit entangled states

    NASA Astrophysics Data System (ADS)

    Wang, Jingtao; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-02-01

    In this study, we propose the concept of judgment space to investigate the quantum-secret-sharing scheme based on local distinguishability (called LOCC-QSS). Because of the proposing of this conception, the property of orthogonal mutiqudit entangled states under restricted local operation and classical communication (LOCC) can be described more clearly. According to these properties, we reveal that, in the previous (k ,n )-threshold LOCC-QSS scheme, there are two required conditions for the selected quantum states to resist the unambiguous attack: (i) their k -level judgment spaces are orthogonal, and (ii) their (k -1 )-level judgment spaces are equal. Practically, if k

  18. Memories of Crisis: Bohr, Kuhn, and the Quantum Mechanical ``Revolution''

    NASA Astrophysics Data System (ADS)

    Seth, Suman

    2013-04-01

    ``The history of science, to my knowledge,'' wrote Thomas Kuhn, describing the years just prior to the development of matrix and wave mechanics, ``offers no equally clear, detailed, and cogent example of the creative functions of normal science and crisis.'' By 1924, most quantum theorists shared a sense that there was much wrong with all extant atomic models. Yet not all shared equally in the sense that the failure was either terribly surprising or particularly demoralizing. Not all agreed, that is, that a crisis for Bohr-like models was a crisis for quantum theory. This paper attempts to answer four questions: two about history, two about memory. First, which sub-groups of the quantum theoretical community saw themselves and their field in a state of crisis in the early 1920s? Second, why did they do so, and how was a sense of crisis related to their theoretical practices in physics? Third, do we regard the years before 1925 as a crisis because they were followed by the quantum mechanical revolution? And fourth, to reverse the last question, were we to call into the question the existence of a crisis (for some at least) does that make a subsequent revolution less revolutionary?

  19. Quantum break-time of de Sitter

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gómez, César; Zell, Sebastian

    2017-06-01

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.

  20. Quantum simulation of dissipative processes without reservoir engineering

    DOE PAGES

    Di Candia, R.; Pedernales, J. S.; del Campo, A.; ...

    2015-05-29

    We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.

  1. Regularized maximum pure-state input-output fidelity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Ernst, Moritz F.; Klesse, Rochus

    2017-12-01

    As a toy model for the capacity problem in quantum information theory we investigate finite and asymptotic regularizations of the maximum pure-state input-output fidelity F (N ) of a general quantum channel N . We show that the asymptotic regularization F ˜(N ) is lower bounded by the maximum output ∞ -norm ν∞(N ) of the channel. For N being a Pauli channel, we find that both quantities are equal.

  2. Black holes are almost optimal quantum cloners

    NASA Astrophysics Data System (ADS)

    Adami, Christoph; Ver Steeg, Greg

    2015-06-01

    If black holes were able to clone quantum states, a number of paradoxes in black hole physics would disappear. However, the linearity of quantum mechanics forbids exact cloning of quantum states. Here we show that black holes indeed clone incoming quantum states with a fidelity that depends on the black hole’s absorption coefficient, without violating the no-cloning theorem because the clones are only approximate. Perfectly reflecting black holes are optimal universal ‘quantum cloning machines’ and operate on the principle of stimulated emission, exactly as their quantum optical counterparts. In the limit of perfect absorption, the fidelity of clones is only equal to what can be obtained via quantum state estimation methods. But for any absorption probability less than one, the cloning fidelity is nearly optimal as long as ω /T≥slant 10, a common parameter for modest-sized black holes.

  3. Oriented covalent immobilization of antibodies for measurement of intermolecular binding forces between zipper-like contact surfaces of split inteins.

    PubMed

    Sorci, Mirco; Dassa, Bareket; Liu, Hongwei; Anand, Gaurav; Dutta, Amit K; Pietrokovski, Shmuel; Belfort, Marlene; Belfort, Georges

    2013-06-18

    In order to measure the intermolecular binding forces between two halves (or partners) of naturally split protein splicing elements called inteins, a novel thiol-hydrazide linker was designed and used to orient immobilized antibodies specific for each partner. Activation of the surfaces was achieved in one step, allowing direct intermolecular force measurement of the binding of the two partners of the split intein (called protein trans-splicing). Through this binding process, a whole functional intein is formed resulting in subsequent splicing. Atomic force microscopy (AFM) was used to directly measure the split intein partner binding at 1 μm/s between native (wild-type) and mixed pairs of C- and N-terminal partners of naturally occurring split inteins from three cyanobacteria. Native and mixed pairs exhibit similar binding forces within the error of the measurement technique (~52 pN). Bioinformatic sequence analysis and computational structural analysis discovered a zipper-like contact between the two partners with electrostatic and nonpolar attraction between multiple aligned ion pairs and hydrophobic residues. Also, we tested the Jarzynski's equality and demonstrated, as expected, that nonequilibrium dissipative measurements obtained here gave larger energies of interaction as compared with those for equilibrium. Hence, AFM coupled with our immobilization strategy and computational studies provides a useful analytical tool for the direct measurement of intermolecular association of split inteins and could be extended to any interacting protein pair.

  4. Influence of Γ-X band mixing on the excited donor in a parabolic quantum well

    NASA Astrophysics Data System (ADS)

    Raghuvaran, T.; Shanthi, R. Vijaya; D'Reuben, A. Merwyn Jasper; Nithiananthi, P.

    2013-06-01

    Equally spaced energy levels of Parabolic Quantum Well are perturbed due to the application of hydrostatic pressure. It will modify the electronic and optical behavior of high Potential devices. The variation of excited state donor binding energy due to Γ-X band mixing at critical cross over pressures in a Parabolic GaAs/AlxGa1-x As quantum well has been investigated in the effective mass approximation using variational method.

  5. Multiparty Quantum Key Agreement Based on Quantum Search Algorithm

    PubMed Central

    Cao, Hao; Ma, Wenping

    2017-01-01

    Quantum key agreement is an important topic that the shared key must be negotiated equally by all participants, and any nontrivial subset of participants cannot fully determine the shared key. To date, the embed modes of subkey in all the previously proposed quantum key agreement protocols are based on either BB84 or entangled states. The research of the quantum key agreement protocol based on quantum search algorithms is still blank. In this paper, on the basis of investigating the properties of quantum search algorithms, we propose the first quantum key agreement protocol whose embed mode of subkey is based on a quantum search algorithm known as Grover’s algorithm. A novel example of protocols with 5 – party is presented. The efficiency analysis shows that our protocol is prior to existing MQKA protocols. Furthermore it is secure against both external attack and internal attacks. PMID:28332610

  6. Femtosecond Laser--Pumped Source of Entangled Photons for Quantum Cryptography Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, D.; Donaldson, W.; Sobolewski, R.

    2007-07-31

    We present an experimental setup for generation of entangled-photon pairs via spontaneous parametric down-conversion, based on the femtosecond-pulsed laser. Our entangled-photon source utilizes a 76-MHz-repetition-rate, 100-fs-pulse-width, mode-locked, ultrafast femtosecond laser, which can produce, on average, more photon pairs than a cw laser of an equal pump power. The resulting entangled pairs are counted by a pair of high-quantum-efficiency, single-photon, silicon avalanche photodiodes. Our apparatus is intended as an efficient source/receiver system for the quantum communications and quantum cryptography applications.

  7. Quantum-capacity-approaching codes for the detected-jump channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassl, Markus; Wei Zhaohui; Ji Zhengfeng

    2010-12-15

    The quantum-channel capacity gives the ultimate limit for the rate at which quantum data can be reliably transmitted through a noisy quantum channel. Degradable quantum channels are among the few channels whose quantum capacities are known. Given the quantum capacity of a degradable channel, it remains challenging to find a practical coding scheme which approaches capacity. Here we discuss code designs for the detected-jump channel, a degradable channel with practical relevance describing the physics of spontaneous decay of atoms with detected photon emission. We show that this channel can be used to simulate a binary classical channel with both erasuresmore » and bit flips. The capacity of the simulated classical channel gives a lower bound on the quantum capacity of the detected-jump channel. When the jump probability is small, it almost equals the quantum capacity. Hence using a classical capacity-approaching code for the simulated classical channel yields a quantum code which approaches the quantum capacity of the detected-jump channel.« less

  8. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  9. Quantum and Private Capacities of Low-Noise Channels

    NASA Astrophysics Data System (ADS)

    Leditzky, Felix; Leung, Debbie; Smith, Graeme

    2018-04-01

    We determine both the quantum and the private capacities of low-noise quantum channels to leading orders in the channel's distance to the perfect channel. It has been an open problem for more than 20 yr to determine the capacities of some of these low-noise channels such as the depolarizing channel. We also show that both capacities are equal to the single-letter coherent information of the channel, again to leading orders. We thus find that, in the low-noise regime, superadditivity and degenerate codes have a negligible benefit for the quantum capacity, and shielding does not improve the private capacity beyond the quantum capacity, in stark contrast to the situation when noisier channels are considered.

  10. Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet

    NASA Astrophysics Data System (ADS)

    Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.

  11. Statistics attack on `quantum private comparison with a malicious third party' and its improvement

    NASA Astrophysics Data System (ADS)

    Gu, Jun; Ho, Chih-Yung; Hwang, Tzonelih

    2018-02-01

    Recently, Sun et al. (Quantum Inf Process:14:2125-2133, 2015) proposed a quantum private comparison protocol allowing two participants to compare the equality of their secrets via a malicious third party (TP). They designed an interesting trap comparison method to prevent the TP from knowing the final comparison result. However, this study shows that the malicious TP can use the statistics attack to reveal the comparison result. A simple modification is hence proposed to solve this problem.

  12. Group Γ (2) and the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Georgelin, Yvon; Wallet, Jean-Christophe

    1997-02-01

    We analyze the action of the inhomogeneous modular group Γ (2) on the three cusps of its principal fundamental domain in the Poincaré half plane. From this, we obtain an exhaustive classification of the fractional quantum Hall numbers. This classification, in which the integer and the fractional states appear on an equal level, is somehow similar to the one given by Jain. We also present some resulting remarks concerning direct phase transitions between the different quantum Hall states.

  13. Loop Quantum Gravity and Asymptotically Flat Spaces

    NASA Astrophysics Data System (ADS)

    Arnsdorf, Matthias

    2002-12-01

    Remarkable progress has been made in the field of non-perturbative (loop) quantum gravity in the last decade or so and it is now a rigorously defined kinematical theory (c.f. [5] for a review and references). We are now at the stage where physical applications of loop quantum gravity can be studied and used to provide checks for the consistency of the quantisation programme. Equally, old fundamental problems of canonical quantum gravity such as the problem of time or the interpretation of quantum cosmology need to be reevaluated seriously. These issues can be addressed most profitably in the asymptotically flat sector of quantum gravity. Indeed, it is likely that we should obtain a quantum theory for this special case even if it is not possible to quantise full general relativity. The purpose of this summary is to advertise the extension of loop quantum gravity to this sector that was developed in [1]...

  14. Multiparty quantum mutual information: An alternative definition

    NASA Astrophysics Data System (ADS)

    Kumar, Asutosh

    2017-07-01

    Mutual information is the reciprocal information that is common to or shared by two or more parties. Quantum mutual information for bipartite quantum systems is non-negative, and bears the interpretation of total correlation between the two subsystems. This may, however, no longer be true for three or more party quantum systems. In this paper, we propose an alternative definition of multipartite information, taking into account the shared information between two and more parties. It is non-negative, observes monotonicity under partial trace as well as completely positive maps, and equals the multipartite information measure in literature for pure states. We then define multiparty quantum discord, and give some examples. Interestingly, we observe that quantum discord increases when a measurement is performed on a large number of subsystems. Consequently, the symmetric quantum discord, which involves a measurement on all parties, reveals the maximal quantumness. This raises a question on the interpretation of measured mutual information as a classical correlation.

  15. Unambiguous discrimination between linearly dependent equidistant states with multiple copies

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hai; Ren, Gang

    2018-07-01

    Linearly independent quantum states can be unambiguously discriminated, but linearly dependent ones cannot. For linearly dependent quantum states, however, if C copies of the single states are available, then they may form linearly independent states, and can be unambiguously discriminated. We consider unambiguous discrimination among N = D + 1 linearly dependent states given that C copies are available and that the single copies span a D-dimensional space with equal inner products. The maximum unambiguous discrimination probability is derived for all C with equal a priori probabilities. For this classification of the linearly dependent equidistant states, our result shows that if C is even then adding a further copy fails to increase the maximum discrimination probability.

  16. Conversion of type of quantum well structure

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng (Inventor)

    2007-01-01

    A method for converting a Type 2 quantum well semiconductor material to a Type 1 material. A second layer of undoped material is placed between first and third layers of selectively doped material, which are separated from the second layer by undoped layers having small widths. Doping profiles are chosen so that a first electrical potential increment across a first layer-second layer interface is equal to a first selected value and/or a second electrical potential increment across a second layer-third layer interface is equal to a second selected value. The semiconductor structure thus produced is useful as a laser material and as an incident light detector material in various wavelength regions, such as a mid-infrared region.

  17. Conversion of Type of Quantum Well Structure

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng (Inventor)

    2007-01-01

    A method for converting a Type 2 quantum well semiconductor material to a Type 1 material. A second layer of undoped material is placed between first and third layers of selectively doped material, which are separated from the second layer by undoped layers having small widths. Doping profiles are chosen so that a first electrical potential increment across a first layer-second layer interface is equal to a first selected value and/or a second electrical potential increment across a second layer-third layer interface is equal to a second selected value. The semiconductor structure thus produced is useful as a laser material and as an incident light detector material in various wavelength regions, such as a mid-infrared region.

  18. Test of a hypothesis of realism in quantum theory using a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Nikitin, N.; Toms, K.

    2017-05-01

    In this paper we propose a time-independent equality and time-dependent inequality, suitable for an experimental test of the hypothesis of realism. The derivation of these relations is based on the concept of conditional probability and on Bayes' theorem in the framework of Kolmogorov's axiomatics of probability theory. The equality obtained is intrinsically different from the well-known Greenberger-Horne-Zeilinger (GHZ) equality and its variants, because violation of the proposed equality might be tested in experiments with only two microsystems in a maximally entangled Bell state |Ψ-> , while a test of the GHZ equality requires at least three quantum systems in a special state |ΨGHZ> . The obtained inequality differs from Bell's, Wigner's, and Leggett-Garg inequalities, because it deals with spin s =1 /2 projections onto only two nonparallel directions at two different moments of time, while a test of the Bell and Wigner inequalities requires at least three nonparallel directions, and a test of the Leggett-Garg inequalities requires at least three distinct moments of time. Hence, the proposed inequality seems to open an additional experimental possibility to avoid the "contextuality loophole." Violation of the proposed equality and inequality is illustrated with the behavior of a pair of anticorrelated spins in an external magnetic field and also with the oscillations of flavor-entangled pairs of neutral pseudoscalar mesons.

  19. On the substructure of the cosmological constant

    NASA Astrophysics Data System (ADS)

    Dvali, G.; Gomez, C.; Zell, S.

    We summarize the findings of our paper arXiv:1701.08776 [hep-th]. We start by defining the quantum break-time. Once one understands a classical solution as expectation value of an underlying quantum state, it emerges as time-scale after which the true quantum evolution departs from the classical mean field evolution. We apply this idea to de Sitter space. Following earlier work, we construct a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as coherent quantum state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all semi-classical calculations in de Sitter, such as thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the (1/N)-effects of back reaction to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: Older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.

  20. Quantum break-time of de Sitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvali, Gia; Gómez, César; Zell, Sebastian, E-mail: georgi.dvali@physik.uni-muenchen.de, E-mail: cesar.gomez@uam.es, E-mail: sebastian.zell@campus.lmu.de

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. Themore » mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S -matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/ N -effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N . We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10{sup 100} years old in its entire classical history.« less

  1. Improvements of Quantum Private Comparison Protocol Based on Cluster States

    NASA Astrophysics Data System (ADS)

    Zhou, Ming-Kuai

    2018-01-01

    Quantum private comparison aims to determine whether the secrets from two different users are equal or not by utilizing the laws of quantum mechanics. Recently, Sun and Long put forward a quantum private comparison (QPC) protocol by using four-particle cluster states (Int. J. Theor. Phys. 52, 212-218, 2013). In this paper, we investigate this protocol in depth, and suggest the corresponding improvements. Compared with the original protocol, the improved protocol has the following advantages: 1) it can release the requirements of authenticated classical channels and unitary operations; 2) it can prevent the malicious attack from the genuine semi-honest TP; 3) it can enhance the qubit efficiency.

  2. Purification of Logic-Qubit Entanglement.

    PubMed

    Zhou, Lan; Sheng, Yu-Bo

    2016-07-05

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.

  3. Quantum mechanics and hidden superconformal symmetry

    NASA Astrophysics Data System (ADS)

    Bonezzi, R.; Corradini, O.; Latini, E.; Waldron, A.

    2017-12-01

    Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating osp (1 |2 ) superconformal symmetry. We study the problem of constructing all quantum mechanical models with a hidden osp (1 |2 ) symmetry on a given space of states. This problem stems from interacting higher spin models coupled to gravity. In one dimension, we show that the solution to this problem is the Vasiliev-Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wave function parity. These models—both oscillator and particlelike—realize all possible unitary irreducible representations of osp (1 |2 ).

  4. Position-based coding and convex splitting for private communication over quantum channels

    NASA Astrophysics Data System (ADS)

    Wilde, Mark M.

    2017-10-01

    The classical-input quantum-output (cq) wiretap channel is a communication model involving a classical sender X, a legitimate quantum receiver B, and a quantum eavesdropper E. The goal of a private communication protocol that uses such a channel is for the sender X to transmit a message in such a way that the legitimate receiver B can decode it reliably, while the eavesdropper E learns essentially nothing about which message was transmitted. The ɛ -one-shot private capacity of a cq wiretap channel is equal to the maximum number of bits that can be transmitted over the channel, such that the privacy error is no larger than ɛ \\in (0,1). The present paper provides a lower bound on the ɛ -one-shot private classical capacity, by exploiting the recently developed techniques of Anshu, Devabathini, Jain, and Warsi, called position-based coding and convex splitting. The lower bound is equal to a difference of the hypothesis testing mutual information between X and B and the "alternate" smooth max-information between X and E. The one-shot lower bound then leads to a non-trivial lower bound on the second-order coding rate for private classical communication over a memoryless cq wiretap channel.

  5. Quantum information theory of the Bell-state quantum eraser

    NASA Astrophysics Data System (ADS)

    Glick, Jennifer R.; Adami, Christoph

    2017-01-01

    Quantum systems can display particle- or wavelike properties, depending on the type of measurement that is performed on them. The Bell-state quantum eraser is an experiment that brings the duality to the forefront, as a single measurement can retroactively be made to measure particlelike or wavelike properties (or anything in between). Here we develop a unitary information-theoretic description of this and several related quantum measurement situations that sheds light on the trade-off between the quantum and classical features of the measurement. In particular, we show that both the coherence of the quantum state and the classical information obtained from it can be described using only quantum-information-theoretic tools and that those two measures satisfy an equality on account of the chain rule for entropies. The coherence information and the which-path information have simple interpretations in terms of state preparation and state determination and suggest ways to account for the relationship between the classical and the quantum world.

  6. Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory

    NASA Astrophysics Data System (ADS)

    Tzemos, Athanasios C.; Efthymiopoulos, Christos; Contopoulos, George

    2018-04-01

    We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.

  7. Origin of chaos near three-dimensional quantum vortices: A general Bohmian theory.

    PubMed

    Tzemos, Athanasios C; Efthymiopoulos, Christos; Contopoulos, George

    2018-04-01

    We provide a general theory for the structure of the quantum flow near three-dimensional (3D) nodal lines, i.e., one-dimensional loci where the 3D wave function becomes equal to zero. In suitably defined coordinates (comoving with the nodal line) the generic structure of the flow implies the formation of 3D quantum vortices. We show that such vortices are accompanied by nearby invariant lines of the comoving quantum flow, called X lines, which are normally hyperbolic. Furthermore, the stable and unstable manifolds of the X lines produce chaotic scatterings of nearby quantum (Bohmian) trajectories, thus inducing an intricate form of the quantum current in the neighborhood of each 3D quantum vortex. Generic formulas describing the structure around 3D quantum vortices are provided, applicable to an arbitrary choice of 3D wave function. We also give specific numerical examples as well as a discussion of the physical consequences of chaos near 3D quantum vortices.

  8. Theoretical investigations of quantum correlations in NMR multiple-pulse spin-locking experiments

    NASA Astrophysics Data System (ADS)

    Gerasev, S. A.; Fedorova, A. V.; Fel'dman, E. B.; Kuznetsova, E. I.

    2018-04-01

    Quantum correlations are investigated theoretically in a two-spin system with the dipole-dipole interactions in the NMR multiple-pulse spin-locking experiments. We consider two schemes of the multiple-pulse spin-locking. The first scheme consists of π /2-pulses only and the delays between the pulses can differ. The second scheme contains φ-pulses (0<φ <π ) and has equal delays between them. We calculate entanglement for both schemes for an initial separable state. We show that entanglement is absent for the first scheme at equal delays between π /2-pulses at arbitrary temperatures. Entanglement emerges after several periods of the pulse sequence in the second scheme at φ =π /4 at milliKelvin temperatures. The necessary number of the periods increases with increasing temperature. We demonstrate the dependence of entanglement on the number of the periods of the multiple-pulse sequence. Quantum discord is obtained for the first scheme of the multiple-pulse spin-locking experiment at different temperatures.

  9. A Robust and Efficient Quantum Private Comparison of Equality Based on the Entangled Swapping of GHZ-like State and χ + State

    NASA Astrophysics Data System (ADS)

    Xu, Ling; Zhao, Zhiwen

    2017-08-01

    A new quantum protocol with the assistance of a semi-honest third party (TP) is proposed, which allows the participants comparing the equality of their private information without disclosing them. Different from previous protocols, this protocol utilizes quantum key distribution against the collective-dephasing noise and the collective-rotation noise, which is more robust and abandons few samples, to transmit the classical information. In addition, this protocol utilizes the GHZ-like state and the χ + state to produce the entanglement swapping. And the Bell basis and the dual basis are used to measure the particle pair so that 3 bits of each participant's private information can be compared in each comparison time, which is more efficient and consumes fewer comparison times. Meanwhile, there is no need of unitary operation and hash function in this protocol. At the end, various kinds of outside attack and participant attack are discussed and analyzed to be invalid, so it can complete the comparison in security.

  10. Equal-Spin Andreev Reflection on Junctions of Spin-Resolved Quantum Hall Bulk State and Spin-Singlet Superconductor.

    PubMed

    Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo

    2018-02-22

    The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.

  11. Generalized Reduction Formula for Discrete Wigner Functions of Multiqubit Systems

    NASA Astrophysics Data System (ADS)

    Srinivasan, K.; Raghavan, G.

    2018-03-01

    Density matrices and Discrete Wigner Functions are equally valid representations of multiqubit quantum states. For density matrices, the partial trace operation is used to obtain the quantum state of subsystems, but an analogous prescription is not available for discrete Wigner Functions. Further, the discrete Wigner function corresponding to a density matrix is not unique but depends on the choice of the quantum net used for its reconstruction. In the present work, we derive a reduction formula for discrete Wigner functions of a general multiqubit state which works for arbitrary quantum nets. These results would be useful for the analysis and classification of entangled states and the study of decoherence purely in a discrete phase space setting and also in applications to quantum computing.

  12. Quantum-coherent mixtures of causal relations

    NASA Astrophysics Data System (ADS)

    Maclean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-05-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  13. Quantum-coherent mixtures of causal relations

    PubMed Central

    MacLean, Jean-Philippe W.; Ried, Katja; Spekkens, Robert W.; Resch, Kevin J.

    2017-01-01

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity. PMID:28485394

  14. Quantum-coherent mixtures of causal relations.

    PubMed

    MacLean, Jean-Philippe W; Ried, Katja; Spekkens, Robert W; Resch, Kevin J

    2017-05-09

    Understanding the causal influences that hold among parts of a system is critical both to explaining that system's natural behaviour and to controlling it through targeted interventions. In a quantum world, understanding causal relations is equally important, but the set of possibilities is far richer. The two basic ways in which a pair of time-ordered quantum systems may be causally related are by a cause-effect mechanism or by a common-cause acting on both. Here we show a coherent mixture of these two possibilities. We realize this nonclassical causal relation in a quantum optics experiment and derive a set of criteria for witnessing the coherence based on a quantum version of Berkson's effect, whereby two independent causes can become correlated on observation of their common effect. The interplay of causality and quantum theory lies at the heart of challenging foundational puzzles, including Bell's theorem and the search for quantum gravity.

  15. Reexamination of strong subadditivity: A quantum-correlation approach

    NASA Astrophysics Data System (ADS)

    Taghiabadi, Razieh; Akhtarshenas, Seyed Javad; Sarbishaei, Mohsen

    2017-03-01

    The strong subadditivity inequality of von Neumann entropy relates the entropy of subsystems of a tripartite state ρA B C to that of the composite system. Here, we define T(a )(ρA B C) as the extent to which ρA B C fails to satisfy the strong subadditivity inequality S (ρB) +S (ρC) ≤S (ρA B) +S (ρA C) with equality and investigate its properties. In particular, by introducing auxiliary subsystem E , we consider any purification | ψA B C E> of ρA B C and formulate T(a )(ρA B C) as the extent to which the bipartite quantum correlations of ρA B and ρA C, measured by entanglement of formation and quantum discord, change under the transformation B →B E and C →C E . Invariance of quantum correlations of ρA B and ρA C under such transformation is shown to be a necessary and sufficient condition for vanishing T(a )(ρA B C) . Our approach allows one to characterize, intuitively, the structure of states for which the strong subadditivity is saturated. Moreover, along with providing a conservation law for quantum correlations of states for which the strong subadditivity inequality is satisfied with equality, we find that such states coincide with those that the Koashi-Winter monogamy relation is saturated.

  16. Quantum Private Comparison Protocol with Linear Optics

    NASA Astrophysics Data System (ADS)

    Luo, Qing-bin; Yang, Guo-wu; She, Kun; Li, Xiaoyu

    2016-12-01

    In this paper, we propose an innovative quantum private comparison(QPC) protocol based on partial Bell-state measurement from the view of linear optics, which enabling two parties to compare the equality of their private information with the help of a semi-honest third party. Partial Bell-state measurement has been realized by using only linear optical elements in experimental measurement-device-independent quantum key distribution(MDI-QKD) schemes, which makes us believe that our protocol can be realized in the near future. The security analysis shows that the participants will not leak their private information.

  17. Controllable continuous evolution of electronic states in a single quantum ring

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tapash; Manaselyan, Aram; Barseghyan, Manuk; Laroze, David

    2018-02-01

    An intense terahertz laser field is shown to have a profound effect on the electronic and optical properties of quantum rings where the isotropic and anisotropic quantum rings can now be treated on equal footing. We have demonstrated that in isotropic quantum rings the laser field creates unusual Aharonov-Bohm oscillations that are usually expected in anisotropic rings. Furthermore, we have shown that intense laser fields can restore the isotropic physical properties in anisotropic quantum rings. In principle, all types of anisotropies (structural, effective masses, defects, etc.) can evolve as in isotropic rings in our present approach. Most importantly, we have found a continuous evolution of the energy spectra and intraband optical characteristics of structurally anisotropic quantum rings to those of isotropic rings in a controlled manner with the help of a laser field.

  18. Band-selective shaped pulse for high fidelity quantum control in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevelsmore » (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.« less

  19. Fisher information as a generalized measure of coherence in classical and quantum optics.

    PubMed

    Luis, Alfredo

    2012-10-22

    We show that metrological resolution in the detection of small phase shifts provides a suitable generalization of the degrees of coherence and polarization. Resolution is estimated via Fisher information. Besides the standard two-beam Gaussian case, this approach provides also good results for multiple field components and nonGaussian statistics. This works equally well in quantum and classical optics.

  20. The many faces of the quantum Liouville exponentials

    NASA Astrophysics Data System (ADS)

    Gervais, Jean-Loup; Schnittger, Jens

    1994-01-01

    First, it is proven that the three main operator approaches to the quantum Liouville exponentials—that is the one of Gervais-Neveu (more recently developed further by Gervais), Braaten-Curtright-Ghandour-Thorn, and Otto-Weigt—are equivalent since they are related by simple basis transformations in the Fock space of the free field depending upon the zero-mode only. Second, the GN-G expressions for quantum Liouville exponentials, where the U q( sl(2)) quantum-group structure is manifest, are shown to be given by q-binomial sums over powers of the chiral fields in the J = {1}/{2} representation. Third, the Liouville exponentials are expressed as operator tau functions, whose chiral expansion exhibits a q Gauss decomposition, which is the direct quantum analogue of the classical solution of Leznov and Saveliev. It involves q exponentials of quantum-group generators with group "parameters" equal to chiral components of the quantum metric. Fourth, we point out that the OPE of the J = {1}/{2} Liouville exponential provides the quantum version of the Hirota bilinear equation.

  1. Dynamical quantum phase transitions: a review

    NASA Astrophysics Data System (ADS)

    Heyl, Markus

    2018-05-01

    Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.

  2. Dynamical quantum phase transitions: a review.

    PubMed

    Heyl, Markus

    2018-05-01

    Quantum theory provides an extensive framework for the description of the equilibrium properties of quantum matter. Yet experiments in quantum simulators have now opened up a route towards the generation of quantum states beyond this equilibrium paradigm. While these states promise to show properties not constrained by equilibrium principles, such as the equal a priori probability of the microcanonical ensemble, identifying the general properties of nonequilibrium quantum dynamics remains a major challenge, especially in view of the lack of conventional concepts such as free energies. The theory of dynamical quantum phase transitions attempts to identify such general principles by lifting the concept of phase transitions to coherent quantum real-time evolution. This review provides a pedagogical introduction to this field. Starting from the general setting of nonequilibrium dynamics in closed quantum many-body systems, we give the definition of dynamical quantum phase transitions as phase transitions in time with physical quantities becoming nonanalytic at critical times. We summarize the achieved theoretical advances as well as the first experimental observations, and furthermore provide an outlook to major open questions as well as future directions of research.

  3. Optimal quantum networks and one-shot entropies

    NASA Astrophysics Data System (ADS)

    Chiribella, Giulio; Ebler, Daniel

    2016-09-01

    We develop a semidefinite programming method for the optimization of quantum networks, including both causal networks and networks with indefinite causal structure. Our method applies to a broad class of performance measures, defined operationally in terms of interative tests set up by a verifier. We show that the optimal performance is equal to a max relative entropy, which quantifies the informativeness of the test. Building on this result, we extend the notion of conditional min-entropy from quantum states to quantum causal networks. The optimization method is illustrated in a number of applications, including the inversion, charge conjugation, and controlization of an unknown unitary dynamics. In the non-causal setting, we show a proof-of-principle application to the maximization of the winning probability in a non-causal quantum game.

  4. Purification of Logic-Qubit Entanglement

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  5. Measurement-induced randomness and state-merging

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Indranil; Deshpande, Abhishek; Chatterjee, Sourav

    In this work we introduce the randomness which is truly quantum mechanical in nature arising as an act of measurement. For a composite classical system, we have the joint entropy to quantify the randomness present in the total system and that happens to be equal to the sum of the entropy of one subsystem and the conditional entropy of the other subsystem, given we know the first system. The same analogy carries over to the quantum setting by replacing the Shannon entropy by the von Neumann entropy. However, if we replace the conditional von Neumann entropy by the average conditional entropy due to measurement, we find that it is different from the joint entropy of the system. We call this difference Measurement Induced Randomness (MIR) and argue that this is unique of quantum mechanical systems and there is no classical counterpart to this. In other words, the joint von Neumann entropy gives only the total randomness that arises because of the heterogeneity of the mixture and we show that it is not the total randomness that can be generated in the composite system. We generalize this quantity for N-qubit systems and show that it reduces to quantum discord for two-qubit systems. Further, we show that it is exactly equal to the change in the cost quantum state merging that arises because of the measurement. We argue that for quantum information processing tasks like state merging, the change in the cost as a result of discarding prior information can also be viewed as a rise of randomness due to measurement.

  6. Quantum chaos: An entropy approach

    NASA Astrophysics Data System (ADS)

    Sl/omczyński, Wojciech; Życzkowski, Karol

    1994-11-01

    A new definition of the entropy of a given dynamical system and of an instrument describing the measurement process is proposed within the operational approach to quantum mechanics. It generalizes other definitions of entropy, in both the classical and quantum cases. The Kolmogorov-Sinai (KS) entropy is obtained for a classical system and the sharp measurement instrument. For a quantum system and a coherent states instrument, a new quantity, coherent states entropy, is defined. It may be used to measure chaos in quantum mechanics. The following correspondence principle is proved: the upper limit of the coherent states entropy of a quantum map as ℏ→0 is less than or equal to the KS-entropy of the corresponding classical map. ``Chaos umpire sits, And by decision more imbroils the fray By which he reigns: next him high arbiter Chance governs all.'' John Milton, Paradise Lost, Book II

  7. Quantum annealing versus classical machine learning applied to a simplified computational biology problem

    PubMed Central

    Li, Richard Y.; Di Felice, Rosa; Rohs, Remo; Lidar, Daniel A.

    2018-01-01

    Transcription factors regulate gene expression, but how these proteins recognize and specifically bind to their DNA targets is still debated. Machine learning models are effective means to reveal interaction mechanisms. Here we studied the ability of a quantum machine learning approach to predict binding specificity. Using simplified datasets of a small number of DNA sequences derived from actual binding affinity experiments, we trained a commercially available quantum annealer to classify and rank transcription factor binding. The results were compared to state-of-the-art classical approaches for the same simplified datasets, including simulated annealing, simulated quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting. Despite technological limitations, we find a slight advantage in classification performance and nearly equal ranking performance using the quantum annealer for these fairly small training data sets. Thus, we propose that quantum annealing might be an effective method to implement machine learning for certain computational biology problems. PMID:29652405

  8. Fritz London and the scale of quantum mechanisms

    NASA Astrophysics Data System (ADS)

    Monaldi, Daniela

    2017-11-01

    Fritz London's seminal idea of ;quantum mechanisms of macroscopic scale;, first articulated in 1946, was the unanticipated result of two decades of research, during which London pursued quantum-mechanical explanations of various kinds of systems of particles at different scales. He started at the microphysical scale with the hydrogen molecule, generalized his approach to chemical bonds and intermolecular forces, then turned to macrophysical systems like superconductors and superfluid helium. Along this path, he formulated a set of concepts-the quantum mechanism of exchange, the rigidity of the wave function, the role of quantum statistics in multi-particle systems, the possibility of order in momentum space-that eventually coalesced into a new conception of systems of equal particles. In particular, it was London's clarification of Bose-Einstein condensation that enabled him to formulate the notion of superfluids, and led him to the recognition that quantum mechanics was not, as it was commonly assumed, relevant exclusively as a micromechanics.

  9. Converting multilevel nonclassicality into genuine multipartite entanglement

    NASA Astrophysics Data System (ADS)

    Regula, Bartosz; Piani, Marco; Cianciaruso, Marco; Bromley, Thomas R.; Streltsov, Alexander; Adesso, Gerardo

    2018-03-01

    Characterizing genuine quantum resources and determining operational rules for their manipulation are crucial steps to appraise possibilities and limitations of quantum technologies. Two such key resources are nonclassicality, manifested as quantum superposition between reference states of a single system, and entanglement, capturing quantum correlations among two or more subsystems. Here we present a general formalism for the conversion of nonclassicality into multipartite entanglement, showing that a faithful reversible transformation between the two resources is always possible within a precise resource-theoretic framework. Specializing to quantum coherence between the levels of a quantum system as an instance of nonclassicality, we introduce explicit protocols for such a mapping. We further show that the conversion relates multilevel coherence and multipartite entanglement not only qualitatively, but also quantitatively, restricting the amount of entanglement achievable in the process and in particular yielding an equality between the two resources when quantified by fidelity-based geometric measures.

  10. Online evolution reconstruction from a single measurement record with random time intervals for quantum communication

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Su, Yang; Wang, Rong; Zhu, Yong; Shen, Huiping; Pu, Tao; Wu, Chuanxin; Zhao, Jiyong; Zhang, Baofu; Xu, Zhiyong

    2017-10-01

    Online reconstruction of a time-variant quantum state from the encoding/decoding results of quantum communication is addressed by developing a method of evolution reconstruction from a single measurement record with random time intervals. A time-variant two-dimensional state is reconstructed on the basis of recovering its expectation value functions of three nonorthogonal projectors from a random single measurement record, which is composed from the discarded qubits of the six-state protocol. The simulated results prove that our method is robust to typical metro quantum channels. Our work extends the Fourier-based method of evolution reconstruction from the version for a regular single measurement record with equal time intervals to a unified one, which can be applied to arbitrary single measurement records. The proposed protocol of evolution reconstruction runs concurrently with the one of quantum communication, which can facilitate the online quantum tomography.

  11. Microwave quantum illumination.

    PubMed

    Barzanjeh, Shabir; Guha, Saikat; Weedbrook, Christian; Vitali, David; Shapiro, Jeffrey H; Pirandola, Stefano

    2015-02-27

    Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.

  12. Growth of analog Al(x)Ga(1-x)As/GaAs parabolic quantum wells by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Wang, S. M.; Treideris, G.; Chen, W. Q.; Andersson, T. G.

    1993-01-01

    Parabolic Al(x)Ga(1-x)As/GaAs quantum wells have been grown by molecular beam epitaxy with linear ramping of the Al effusion cell temperature, where the ramping rate was carefully analyzed to avoid a flux lag. The calculated potential profile from the temperature variation was very close to the parabolic one. Low-temperature photoluminescence showed clear interband transitions up to the n = 3 sublevels. The equal energy spacing between adjacent transitions involving heavy-hole states confirmed the parabolic shape of the quantum well.

  13. Quantum statistical mechanics of nonrelativistic membranes: crumpling transition at finite temperature

    NASA Astrophysics Data System (ADS)

    Borelli, M. E. S.; Kleinert, H.; Schakel, Adriaan M. J.

    2000-03-01

    The effect of quantum fluctuations on a nearly flat, nonrelativistic two-dimensional membrane with extrinsic curvature stiffness and tension is investigated. The renormalization group analysis is carried out in first-order perturbative theory. In contrast to thermal fluctuations, which soften the membrane at large scales and turn it into a crumpled surface, quantum fluctuations are found to stiffen the membrane, so that it exhibits a Hausdorff dimension equal to two. The large-scale behavior of the membrane is further studied at finite temperature, where a nontrivial fixed point is found, signaling a crumpling transition.

  14. Comment on "Similarity between quantum mechanics and thermodynamics: Entropy, temperature, and Carnot cycle".

    PubMed

    González-Díaz, L A; Díaz-Solórzano, S

    2015-05-01

    In the paper by Abe and Okuyama [Phys. Rev. E 83, 021121 (2011)], the quantum Carnot cycle of a simple two-state model of a particle confined in a one-dimensional infinite potential well is discussed. It is claimed that the state at the beginning of the quantum Carnot cycle is pure. After that, it is apparently transmuted to a mixed state if Clausius equality is imposed. We prove that this statement is incorrect. In particular, we prove that the state at the beginning of the cycle is mixed due to the process of measuring energy.

  15. Nonmonotonous electron mobility due to structurally induced resonant coupling of subband states in an asymmetric double quantum well

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nayak, R. K.; Das, S.; Panda, A. K.

    We show that sharp nonmonotic variation of low temperature electron mobility μ can be achieved in GaAs/Al{sub x}Ga{sub 1-x}As barrier delta-doped double quantum well structure due to quantum mechanical transfer of subband electron wave functions within the wells. We vary the potential profile of the coupled structure as a function of the doping concentration in order to bring the subbands into resonance such that the subband energy levels anticross and the eigen states of the coupled structure equally share both the wells thereby giving rise to a dip in mobility. When the wells are of equal widths, the dip inmore » mobility occurs under symmetric doping of the side barriers. In case of unequal well widths, the resonance can be obtained by suitable asymmetric variation of the doping concentrations. The dip in mobility becomes sharp and also the wavy nature of mobility takes a rectangular shape by increasing the barrier width. We show that the dip in mobility at resonance is governed by the interface roughness scattering through step like changes in the subband mobilities. It is also gratifying to show that the drop in mobility at the onset of occupation of second subband is substantially supressed through the quantum mechanical transfer of subband wave functions between the wells. Our results can be utilized for performance enhancement of coupled quantum well devices.« less

  16. Effect of crosstalk on QBER in QKD in urban telecommunication fiber lines

    NASA Astrophysics Data System (ADS)

    Kurochkin, Vladimir L.; Kurochkin, Yuriy V.; Miller, Alexander V.; Sokolov, Alexander S.; Kanapin, Alan A.

    2016-12-01

    Quantum key distribution (QKD) as a technology is being actively implemented into existing urban telecommunication networks. QKD devices are commercially available products. While sending single photons through optical fiber, adjacent fibers, which are used to transfer classical information, might influence the amount of registrations of single photon detectors. This influence is registered, since it directly introduces a higher quantum bit error rate (QBER) into the final key [1-3]. Our report presents the results of the first tests of the QKD device, developed in the Russian Quantum Center. These tests were conducted in Moscow, and are the first of such a device in Russia in urban optical fiber telecommunication networks. The device in question is based on a two-pass auto-compensating optical scheme, which provides stable single photon transfer through urban optical fiber telecommunication networks [4,5]. The single photon detectors ID230 by ID Quantique were used. They operate in free-running mode, and with a quantum effectiveness of 10 % have a dark count 10 Hz. The background signal level in the dedicated fiber was no less than 5.6•10-14 W, which corresponds to 4.4•104 detector clicks per second. The single mode fiber length in Moscow was 30.6 km, the total attenuation equal to 11.7 dB. The sifted quantum key bit rate reached values of 1.9 kbit/s with the QBER level equal to 5.1 %. Methods of lowering the influence of crosstalk on the QBER are considered.

  17. Cyclotron resonance of interacting quantum Hall droplets

    NASA Astrophysics Data System (ADS)

    Widmann, M.; Merkt, U.; Cortés, M.; Häusler, W.; Eberl, K.

    1998-06-01

    The line shape and position of cyclotron resonance in gated GaAs/GaAlAs heterojunctions with δ-doped layers of negatively charged beryllium acceptors, that provide strong potential fluctuations in the channels of the quasi-two-dimensional electron systems, are examined. Specifically, the magnetic quantum limit is considered when the electrons are localized in separate quantum Hall droplets in the valleys of the disorder potential. A model treating disorder and electron-electron interaction on an equal footing accounts for all of the principal experimental findings: blue shifts from the unperturbed cyclotron frequency that decrease when the electron density is reduced, surprisingly narrow lines in the magnetic quantum limit, and asymmetric lines due to additional oscillator strength on their high-frequency sides.

  18. Work extraction and thermodynamics for individual quantum systems

    NASA Astrophysics Data System (ADS)

    Skrzypczyk, Paul; Short, Anthony J.; Popescu, Sandu

    2014-06-01

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a ‘weight’ that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine.

  19. Work extraction and thermodynamics for individual quantum systems.

    PubMed

    Skrzypczyk, Paul; Short, Anthony J; Popescu, Sandu

    2014-06-27

    Thermodynamics is traditionally concerned with systems comprised of a large number of particles. Here we present a framework for extending thermodynamics to individual quantum systems, including explicitly a thermal bath and work-storage device (essentially a 'weight' that can be raised or lowered). We prove that the second law of thermodynamics holds in our framework, and gives a simple protocol to extract the optimal amount of work from the system, equal to its change in free energy. Our results apply to any quantum system in an arbitrary initial state, in particular including non-equilibrium situations. The optimal protocol is essentially reversible, similar to classical Carnot cycles, and indeed, we show that it can be used to construct a quantum Carnot engine.

  20. Classical-quantum arbitrarily varying wiretap channel: Secret message transmission under jamming attacks

    NASA Astrophysics Data System (ADS)

    Boche, Holger; Cai, Minglai; Deppe, Christian; Nötzel, Janis

    2017-10-01

    We analyze arbitrarily varying classical-quantum wiretap channels. These channels are subject to two attacks at the same time: one passive (eavesdropping) and one active (jamming). We elaborate on our previous studies [H. Boche et al., Quantum Inf. Process. 15(11), 4853-4895 (2016) and H. Boche et al., Quantum Inf. Process. 16(1), 1-48 (2016)] by introducing a reduced class of allowable codes that fulfills a more stringent secrecy requirement than earlier definitions. In addition, we prove that non-symmetrizability of the legal link is sufficient for equality of the deterministic and the common randomness assisted secrecy capacities. Finally, we focus on analytic properties of both secrecy capacities: We completely characterize their discontinuity points and their super-activation properties.

  1. Single-Atom Demonstration of the Quantum Landauer Principle

    NASA Astrophysics Data System (ADS)

    Yan, L. L.; Xiong, T. P.; Rehan, K.; Zhou, F.; Liang, D. F.; Chen, L.; Zhang, J. Q.; Yang, W. L.; Ma, Z. H.; Feng, M.

    2018-05-01

    One of the outstanding challenges to information processing is the eloquent suppression of energy consumption in the execution of logic operations. The Landauer principle sets an energy constraint in deletion of a classical bit of information. Although some attempts have been made to experimentally approach the fundamental limit restricted by this principle, exploring the Landauer principle in a purely quantum mechanical fashion is still an open question. Employing a trapped ultracold ion, we experimentally demonstrate a quantum version of the Landauer principle, i.e., an equality associated with the energy cost of information erasure in conjunction with the entropy change of the associated quantized environment. Our experimental investigation substantiates an intimate link between information thermodynamics and quantum candidate systems for information processing.

  2. Quantum Phase Transitions in Conventional Matrix Product Systems

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min; Huang, Fei; Chang, Yan

    2017-02-01

    For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.

  3. Higher (odd) dimensional quantum Hall effect and extended dimensional hierarchy

    NASA Astrophysics Data System (ADS)

    Hasebe, Kazuki

    2017-07-01

    We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S 2 k - 1 in the SO (2 k - 1) monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S 2 k - 1 to the one-dimension higher SO (2 k) gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah-Patodi-Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  4. Hawking radiation from charged black holes via gauge and gravitational anomalies.

    PubMed

    Iso, Satoshi; Umetsu, Hiroshi; Wilczek, Frank

    2006-04-21

    Extending the method of Robinson and Wolczek, we show that in order to avoid a breakdown of general covariance and gauge invariance at the quantum level the total flux of charge and energy in each outgoing partial wave of a charged quantum field in a Reissner-Nordström black hole background must be equal to that of a (1 + 1)-dimensional blackbody at the Hawking temperature with the appropriate chemical potential.

  5. A multipurpose information engine that can go beyond the Carnot limit

    NASA Astrophysics Data System (ADS)

    Rana, Shubhashis; Jayannavar, A. M.

    2016-10-01

    Motivated by the recent work of Mandal and Jarzynski on an autonomous Maxwell demon information engine, we have extended their model by introducing two different heat baths. The system (demon) is coupled to a memory register (tape) and a work source. The performance of the system depends on the interplay between the two sources along with the heat baths. We have found that the system can act as an engine, refrigerator or an eraser. Even the combination of any two is possible in some parameter space. We have achieved an efficiency of the engine greater than the Carnot limit. The coefficient of performance of the refrigerator is also larger than the Carnot limit.

  6. Quantum Probability Cancellation Due to a Single-Photon State

    NASA Technical Reports Server (NTRS)

    Ou, Z. Y.

    1996-01-01

    When an N-photon state enters a lossless symmetric beamsplitter from one input port, the photon distribution for the two output ports has the form of Bernouli Binormial, with highest probability at equal partition (N/2 at one outport and N/2 at the other). However, injection of a single photon state at the other input port can dramatically change the photon distribution at the outputs, resulting in zero probability at equal partition. Such a strong deviation from classical particle theory stems from quantum probability amplitude cancellation. The effect persists even if the N-photon state is replaced by an arbitrary state of light. A special case is the coherent state which corresponds to homodyne detection of a single photon state and can lead to the measurement of the wave function of a single photon state.

  7. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    NASA Astrophysics Data System (ADS)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-03-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  8. Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States

    NASA Astrophysics Data System (ADS)

    Min, Shi-Qi; Chen, Hua-Ying; Gong, Li-Hua

    2018-06-01

    A significant aspect of quantum cryptography is quantum key agreement (QKA), which ensures the security of key agreement protocols by quantum information theory. The fairness of an absolute security multi-party quantum key agreement (MQKA) protocol demands that all participants can affect the protocol result equally so as to establish a shared key and that nobody can determine the shared key by himself/herself. We found that it is difficult for the existing multi-party quantum key agreement protocol to withstand the collusion attacks. Put differently, it is possible for several cooperated and untruthful participants to determine the final key without being detected. To address this issue, based on the entanglement swapping between G-like state and Bell states, a new multi-party quantum key agreement protocol is put forward. The proposed protocol makes full use of EPR pairs as quantum resources, and adopts Bell measurement and unitary operation to share a secret key. Besides, the proposed protocol is fair, secure and efficient without involving a third party quantum center. It demonstrates that the protocol is capable of protecting users' privacy and meeting the requirement of fairness. Moreover, it is feasible to carry out the protocol with existing technologies.

  9. Quantum ratchet effect in a time non-uniform double-kicked model

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang

    2017-07-01

    The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.

  10. Dimensional discontinuity in quantum communication complexity at dimension seven

    NASA Astrophysics Data System (ADS)

    Tavakoli, Armin; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed

    2017-02-01

    Entanglement-assisted classical communication and transmission of a quantum system are the two quantum resources for information processing. Many information tasks can be performed using either quantum resource. However, this equivalence is not always present since entanglement-assisted classical communication is sometimes known to be the better performing resource. Here, we show not only the opposite phenomenon, that there exist tasks for which transmission of a quantum system is a more powerful resource than entanglement-assisted classical communication, but also that such phenomena can have a surprisingly strong dependence on the dimension of Hilbert space. We introduce a family of communication complexity problems parametrized by the dimension of Hilbert space and study the performance of each quantum resource. Under an additional assumption of a linear strategy for the receiving party, we find that for low dimensions the two resources perform equally well, whereas for dimension seven and above the equivalence is suddenly broken and transmission of a quantum system becomes more powerful than entanglement-assisted classical communication. Moreover, we find that transmission of a quantum system may even outperform classical communication assisted by the stronger-than-quantum correlations obtained from the principle of macroscopic locality.

  11. Lower bounds on the violation of the monogamy inequality for quantum correlation measures

    NASA Astrophysics Data System (ADS)

    Kumar, Asutosh; Dhar, Himadri Shekhar

    2016-06-01

    In multiparty quantum systems, the monogamy inequality proposes an upper bound on the distribution of bipartite quantum correlation between a single party and each of the remaining parties in the system, in terms of the amount of quantum correlation shared by that party with the rest of the system taken as a whole. However, it is well known that not all quantum correlation measures universally satisfy the monogamy inequality. In this work, we aim at determining the nontrivial value by which the monogamy inequality can be violated by a quantum correlation measure. Using an information-theoretic complementarity relation between the normalized purity and quantum correlation in any given multiparty state, we obtain a nontrivial lower bound on the negative monogamy score for the quantum correlation measure. In particular, for the three-qubit states the lower bound is equal to the negative von Neumann entropy of the single qubit reduced density matrix. We analytically examine the tightness of the derived lower bound for certain n -qubit quantum states. Further, we report numerical results of the same for monogamy violating correlation measures using Haar uniformly generated three-qubit states.

  12. Homodyne versus photon-counting quantum trajectories for dissipative Kerr resonators with two-photon driving

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Minganti, Fabrizio; Lolli, Jared; Ciuti, Cristiano

    2017-07-01

    We investigate two different kinds of quantum trajectories for a nonlinear photon resonator subject to two-photon pumping, a configuration recently studied for the generation of photonic Schrödinger cat states. In the absence of feedback control and in the strong-driving limit, the steady-state density matrix is a statistical mixture of two states with equal weight. While along a single photon-counting trajectory the systems intermittently switches between an odd and an even cat state, we show that upon homodyne detection the situation is different. Indeed, homodyne quantum trajectories reveal switches between coherent states of opposite phase.

  13. Quantum pattern recognition with multi-neuron interactions

    NASA Astrophysics Data System (ADS)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  14. Analytical theory and possible detection of the ac quantum spin Hall effect

    DOE PAGES

    Deng, W. Y.; Ren, Y. J.; Lin, Z. X.; ...

    2017-07-11

    Here, we develop an analytical theory of the low-frequency ac quantum spin Hall (QSH) effect based upon the scattering matrix formalism. It is shown that the ac QSH effect can be interpreted as a bulk quantum pumping effect. When the electron spin is conserved, the integer-quantized ac spin Hall conductivity can be linked to the winding numbers of the reflection matrices in the electrodes, which also equal to the bulk spin Chern numbers of the QSH material. Furthermore, a possible experimental scheme by using ferromagnetic metals as electrodes is proposed to detect the topological ac spin current by electrical means.

  15. Multidimensional supersymmetric quantum mechanics: spurious states for the tensor sector two Hamiltonian.

    PubMed

    Chou, Chia-Chun; Kouri, Donald J

    2013-04-25

    We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.

  16. Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces

    NASA Astrophysics Data System (ADS)

    Boichenko, Stepan

    2018-04-01

    We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.

  17. Quantum annealing versus classical machine learning applied to a simplified computational biology problem

    NASA Astrophysics Data System (ADS)

    Li, Richard Y.; Di Felice, Rosa; Rohs, Remo; Lidar, Daniel A.

    2018-03-01

    Transcription factors regulate gene expression, but how these proteins recognize and specifically bind to their DNA targets is still debated. Machine learning models are effective means to reveal interaction mechanisms. Here we studied the ability of a quantum machine learning approach to classify and rank binding affinities. Using simplified data sets of a small number of DNA sequences derived from actual binding affinity experiments, we trained a commercially available quantum annealer to classify and rank transcription factor binding. The results were compared to state-of-the-art classical approaches for the same simplified data sets, including simulated annealing, simulated quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting. Despite technological limitations, we find a slight advantage in classification performance and nearly equal ranking performance using the quantum annealer for these fairly small training data sets. Thus, we propose that quantum annealing might be an effective method to implement machine learning for certain computational biology problems.

  18. Self-consistent projection operator theory in nonlinear quantum optical systems: A case study on degenerate optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Degenfeld-Schonburg, Peter; Navarrete-Benlloch, Carlos; Hartmann, Michael J.

    2015-05-01

    Nonlinear quantum optical systems are of paramount relevance for modern quantum technologies, as well as for the study of dissipative phase transitions. Their nonlinear nature makes their theoretical study very challenging and hence they have always served as great motivation to develop new techniques for the analysis of open quantum systems. We apply the recently developed self-consistent projection operator theory to the degenerate optical parametric oscillator to exemplify its general applicability to quantum optical systems. We show that this theory provides an efficient method to calculate the full quantum state of each mode with a high degree of accuracy, even at the critical point. It is equally successful in describing both the stationary limit and the dynamics, including regions of the parameter space where the numerical integration of the full problem is significantly less efficient. We further develop a Gaussian approach consistent with our theory, which yields sensibly better results than the previous Gaussian methods developed for this system, most notably standard linearization techniques.

  19. Classical Information Storage in an n-Level Quantum System

    NASA Astrophysics Data System (ADS)

    Frenkel, Péter E.; Weiner, Mihály

    2015-12-01

    A game is played by a team of two—say Alice and Bob—in which the value of a random variable x is revealed to Alice only, who cannot freely communicate with Bob. Instead, she is given a quantum n-level system, respectively a classical n-state system, which she can put in possession of Bob in any state she wishes. We evaluate how successfully they managed to store and recover the value of x by requiring Bob to specify a value z and giving a reward of value f ( x, z) to the team. We show that whatever the probability distribution of x and the reward function f are, when using a quantum n-level system, the maximum expected reward obtainable with the best possible team strategy is equal to that obtainable with the use of a classical n-state system. The proof relies on mixed discriminants of positive matrices and—perhaps surprisingly—an application of the Supply-Demand Theorem for bipartite graphs. As a corollary, we get an infinite set of new, dimension dependent inequalities regarding positive operator valued measures and density operators on complex n-space. As a further corollary, we see that the greatest value, with respect to a given distribution of x, of the mutual information I ( x; z) that is obtainable using an n-level quantum system equals the analogous maximum for a classical n-state system.

  20. Generalized description of few-electron quantum dots at zero and nonzero magnetic fields

    NASA Astrophysics Data System (ADS)

    Ciftja, Orion

    2007-01-01

    We introduce a generalized ground state variational wavefunction for parabolically confined two-dimensional quantum dots that equally applies to both cases of weak (or zero) and strong magnetic field. The wavefunction has a Laughlin-like form in the limit of infinite magnetic field, but transforms into a Jastrow-Slater wavefunction at zero magnetic field. At intermediate magnetic fields (where a fraction of electrons is spin-reversed) it resembles Halperin's spin-reversed wavefunction for the fractional quantum Hall effect. The properties of this variational wavefunction are illustrated for the case of two-dimensional quantum dot helium (a system of two interacting electrons in a parabolic confinement potential) where we find the description to be an excellent representation of the true ground state for the whole range of magnetic fields.

  1. Quantum and quasiclassical dynamics of the multi-channel H + H2S reaction.

    PubMed

    Qi, Ji; Lu, Dandan; Song, Hongwei; Li, Jun; Yang, Minghui

    2017-03-28

    The prototypical multi-channel reaction H + H 2 S → H 2 + SH/H + H 2 S has been investigated using the full-dimensional quantum scattering and quasi-classical trajectory methods to unveil the underlying competition mechanism between different product channels and the mode specificity. This reaction favors the abstraction channel over the exchange channel. For both channels, excitations in the two stretching modes promote the reaction with nearly equal efficiency and are more efficient than the bending mode excitation. However, they are all less efficient than the translational energy. In addition, the experimentally observed non-Arrhenius temperature dependence of the thermal rate constants is reasonably reproduced by the quantum dynamics calculations, confirming that the non-Arrhenius behavior is caused by the pronounced quantum tunneling.

  2. Shortwave quantum cascade laser frequency comb for multi-heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Lu, Q. Y.; Manna, S.; Wu, D. H.; Slivken, S.; Razeghi, M.

    2018-04-01

    Quantum cascade lasers (QCLs) are versatile light sources with tailorable emitting wavelengths covering the mid-infrared and terahertz spectral ranges. When the dispersion is minimized, frequency combs can be directly emitted from quantum cascade lasers via four-wave mixing. To date, most of the mid-infrared quantum cascade laser combs are operational in a narrow wavelength range wherein the QCL dispersion is minimal. In this work, we address the issue of very high dispersion for shortwave QCLs and demonstrate 1-W dispersion compensated shortwave QCL frequency combs at λ ˜ 5.0 μm, spanning a spectral range of 100 cm-1. The multi-heterodyne spectrum exhibits 95 equally spaced frequency comb lines, indicating that the shortwave QCL combs are ideal candidates for high-speed high-resolution spectroscopy.

  3. Qudit hypergraph states and their properties

    NASA Astrophysics Data System (ADS)

    Xiong, Fei-Lei; Zhen, Yi-Zheng; Cao, Wen-Fei; Chen, Kai; Chen, Zeng-Bing

    2018-01-01

    Hypergraph states, a generalization of graph states, constitute a large class of quantum states with intriguing nonlocal properties, and they have promising applications in quantum information science and technology. In this paper, we study some features of an independently proposed generalization of hypergraph states to qudit hypergraph states, i.e., each vertex in the generalized hypergraph (multi-hypergraph) represents a d -level system instead of a two-level one. It is shown that multi-hypergraphs and d -level hypergraph states have a one-to-one correspondence, and the structure of a multi-hypergraph exhibits the entanglement property of the corresponding quantum state. We discuss their relationship with some well-known state classes, e.g., real equally weighted states and stabilizer states. The Bell nonlocality, an important resource in fulfilling many quantum information tasks, is also investigated.

  4. Quantum Authencryption with Two-Photon Entangled States for Off-Line Communicants

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu

    2016-02-01

    In this paper, a quantum authencryption protocol is proposed by using the two-photon entangled states as the quantum resource. Two communicants Alice and Bob share two private keys in advance, which determine the generation of two-photon entangled states. The sender Alice sends the two-photon entangled state sequence encoded with her classical bits to the receiver Bob in the manner of one-step quantum transmission. Upon receiving the encoded quantum state sequence, Bob decodes out Alice's classical bits with the two-photon joint measurements and authenticates the integrity of Alice's secret with the help of one-way hash function. The proposed protocol only uses the one-step quantum transmission and needs neither a public discussion nor a trusted third party. As a result, the proposed protocol can be adapted to the case where the receiver is off-line, such as the quantum E-mail systems. Moreover, the proposed protocol provides the message authentication to one bit level with the help of one-way hash function and has an information-theoretical efficiency equal to 100 %.

  5. Probing Carbohydrate Product Expulsion from a Processive Cellulase with Multiple Absolute Binding Free Energy Methods*

    PubMed Central

    Bu, Lintao; Beckham, Gregg T.; Shirts, Michael R.; Nimlos, Mark R.; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.

    2011-01-01

    Understanding the enzymatic mechanism that cellulases employ to degrade cellulose is critical to efforts to efficiently utilize plant biomass as a sustainable energy resource. A key component of cellulase action on cellulose is product inhibition from monosaccharide and disaccharides in the product site of cellulase tunnel. The absolute binding free energy of cellobiose and glucose to the product site of the catalytic tunnel of the Family 7 cellobiohydrolase (Cel7A) of Trichoderma reesei (Hypocrea jecorina) was calculated using two different approaches: steered molecular dynamics (SMD) simulations and alchemical free energy perturbation molecular dynamics (FEP/MD) simulations. For the SMD approach, three methods based on Jarzynski's equality were used to construct the potential of mean force from multiple pulling trajectories. The calculated binding free energies, −14.4 kcal/mol using SMD and −11.2 kcal/mol using FEP/MD, are in good qualitative agreement. Analysis of the SMD pulling trajectories suggests that several protein residues (Arg-251, Asp-259, Asp-262, Trp-376, and Tyr-381) play key roles in cellobiose and glucose binding to the catalytic tunnel. Five mutations (R251A, D259A, D262A, W376A, and Y381A) were made computationally to measure the changes in free energy during the product expulsion process. The absolute binding free energies of cellobiose to the catalytic tunnel of these five mutants are −13.1, −6.0, −11.5, −7.5, and −8.8 kcal/mol, respectively. The results demonstrated that all of the mutants tested can lower the binding free energy of cellobiose, which provides potential applications in engineering the enzyme to accelerate the product expulsion process and improve the efficiency of biomass conversion. PMID:21454590

  6. Opposing intermolecular tuning of Ca2+ affinity for Calmodulin by its target peptides

    NASA Astrophysics Data System (ADS)

    Cheung, Margaret

    We investigated the impact of bound calmodulin (CaM)-target compound structure on the affinity of calcium (Ca2+) by integrating coarse-grained models and all-atomistic simulations with non-equilibrium physics. We focused on binding between CaM and two specific targets, Ca2+/CaM-dependent protein kinase II (CaMKII) and neurogranin (Ng), as they both regulate CaM-dependent Ca2+ signaling pathways in neurons. It was shown experimentally that Ca2+/CaM binds to the CaMKII peptide with higher affinity than the Ng peptide. The binding of CaMKII peptide to CaM in return increases the Ca2+ affinity for CaM. However, this reciprocal relation was not observed in the Ng peptide, which binds to Ca2+-free CaM or Ca2+/CaM with similar binding affinity. Unlike CaM-CaMKII peptide that allowed structure determination by crystallography, the structural description of CaM-Ng peptide is unknown due to low binding affinity, therefore, we computationally generated an ensemble of CaM-Ng peptide structures by matching the changes in the chemical shifts of CaM upon Ng peptide binding from nuclear magnetic resonance experiments. We computed the changes in Ca2+ affinity for CaM with and without binding targets in atomistic models using Jarzynski's equality. We discovered the molecular underpinnings of lowered affinity of Ca2+ for CaM in the presence of Ng by showing that the N-terminal acidic region of Ng peptide pries open the β-sheet structure between the Ca2+ binding loops particularly at C-domain of CaM, enabling Ca2+release. In contrast, CaMKII increases Ca2+ affinity for the C-domain of CaM by stabilizing the two Ca2+ binding loops.

  7. Some Properties of Generalized Connections in Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Velhinho, J. M.

    2002-12-01

    Theories of connections play an important role in fundamental interactions, including Yang-Mills theories and gravity in the Ashtekar formulation. Typically in such cases, the classical configuration space {A}/ {G} of connections modulo gauge transformations is an infinite dimensional non-linear space of great complexity. Having in mind a rigorous quantization procedure, methods of functional calculus in an extension of {A}/ {G} have been developed. For a compact gauge group G, the compact space /line { {A}{ {/}} {G}} ( ⊃ {A}/ {G}) introduced by Ashtekar and Isham using C*-algebraic methods is a natural candidate to replace {A}/ {G} in the quantum context, 1 allowing the construction of diffeomorphism invariant measures. 2,3,4 Equally important is the space of generalized connections bar {A} introduced in a similar way by Baez. 5 bar {A} is particularly useful for the definition of vector fields in /line { {A}{ {/}} {G}} , fundamental in the construction of quantum observables. 6 These works crucially depend on the use of (generalized) Wilson variables associated to certain types of curves. We will consider the case of piecewise analytic curves, 1,2,5 althought most of the arguments apply equally to the piecewise smooth case. 7,8...

  8. Generalized contexts and consistent histories in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Losada, Marcelo; Laura, Roberto

    2014-05-01

    We analyze a restriction of the theory of consistent histories by imposing that a valid description of a physical system must include quantum histories which satisfy the consistency conditions for all states. We prove that these conditions are equivalent to imposing the compatibility conditions of our formalism of generalized contexts. Moreover, we show that the theory of consistent histories with the consistency conditions for all states and the formalism of generalized context are equally useful representing expressions which involve properties at different times.

  9. RKKY exchange interaction within the parabolic quantum-well

    NASA Astrophysics Data System (ADS)

    Baķ, Zygmunt

    2001-03-01

    Indirect magnetic exchange in a semimagnetic semiconductor heterostructure with the parabolic quantum-well barrier potential is considered. Within the analytical method, we provide the exact derivation of the spatial dependence of the RKKY exchange integral. Using the effective dimensionality approach, we show that the spectral dimensionality of the free electron (hole) system equals four. We prove, that the RKKY exchange integral shows conventional, sign reversal variation with the 2 kF period, however, the envelope function falls off in a manner characteristic to 4D systems.

  10. Screenings and vertex operators of quantum superalgebra U{sub q}(sl-caret(N|1))

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kojima, Takeo

    2012-08-15

    We construct the screening currents of the quantum superalgebra U{sub q}(sl-caret(N|1)) for an arbitrary level k{ne}-N+ 1. We show that these screening currents commute with the superalgebra modulo total difference. We propose bosonizations of the vertex operators by using the screening currents. We check that these vertex operators are the intertwiners among the Fock-Wakimoto representation and the typical representation for rank N Less-Than-Or-Slanted-Equal-To 4.

  11. Formation and stability of manganese-doped ZnS quantum dot monolayers determined by QCM-D and streaming potential measurements.

    PubMed

    Oćwieja, Magdalena; Matras-Postołek, Katarzyna; Maciejewska-Prończuk, Julia; Morga, Maria; Adamczyk, Zbigniew; Sovinska, Svitlana; Żaba, Adam; Gajewska, Marta; Król, Tomasz; Cupiał, Klaudia; Bredol, Michael

    2017-10-01

    Manganese-doped ZnS quantum dots (QDs) stabilized by cysteamine hydrochloride were successfully synthesized. Their thorough physicochemical characteristics were acquired using UV-Vis absorption and photoluminescence spectroscopy, X-ray diffraction, dynamic light scattering (DLS), transmission electron microscopy (HR-TEM), energy dispersive spectroscopy (EDS) and Fourier transform infrared (FT-IR) spectroscopy. The average particle size, derived from HR-TEM, was 3.1nm, which agrees with the hydrodynamic diameter acquired by DLS, that was equal to 3-4nm, depending on ionic strength. The quantum dots also exhibited a large positive zeta potential varying between 75 and 36mV for ionic strength of 10 -4 and 10 -2 M, respectively (at pH 6.2) and an intense luminescent emission at 590nm. The quantum yield was equal to 31% and the optical band gap energy was equal to 4.26eV. The kinetics of QD monolayer formation on silica substrates (silica sensors and oxidized silicon wafers) under convection-controlled transport was quantitatively evaluated by the quartz crystal microbalance (QCM) and the streaming potential measurements. A high stability of the monolayer for ionic strength 10 -4 and 10 -2 M was confirmed in these measurements. The experimental data were adequately reflected by the extended random sequential adsorption model (eRSA). Additionally, thorough electrokinetic characteristics of the QD monolayers and their stability for various ionic strengths and pH were acquired by streaming potential measurements carried out under in situ conditions. These results were quantitatively interpreted in terms of the three-dimensional (3D) electrokinetic model that furnished bulk zeta potential of particles for high ionic strengths that is impractical by other experimental techniques. It is concluded that these results can be used for designing of biosensors of controlled monolayer structure capable to bind various ligands via covalent as well as electrostatic interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Quantum corrections to holographic mutual information

    DOE PAGES

    Agon, Cesar A.; Faulkner, Thomas

    2016-08-22

    We compute the leading contribution to the mutual information (MI) of two disjoint spheres in the large distance regime for arbitrary conformal field theories (CFT) in any dimension. This is achieved by refining the operator product expansion method introduced by Cardy [1]. For CFTs with holographic duals the leading contribution to the MI at long distances comes from bulk quantum corrections to the Ryu-Takayanagi area formula. According to the FLM proposal [2] this equals the bulk MI between the two disjoint regions spanned by the boundary spheres and their corresponding minimal area surfaces. We compute this quantum correction and providemore » in this way a non-trivial check of the FLM proposal.« less

  13. Intermediate band solar cell with extreme broadband spectrum quantum efficiency.

    PubMed

    Datas, A; López, E; Ramiro, I; Antolín, E; Martí, A; Luque, A; Tamaki, R; Shoji, Y; Sogabe, T; Okada, Y

    2015-04-17

    We report, for the first time, about an intermediate band solar cell implemented with InAs/AlGaAs quantum dots whose photoresponse expands from 250 to ∼6000  nm. To our knowledge, this is the broadest quantum efficiency reported to date for a solar cell and demonstrates that the intermediate band solar cell is capable of producing photocurrent when illuminated with photons whose energy equals the energy of the lowest band gap. We show experimental evidence indicating that this result is in agreement with the theory of the intermediate band solar cell, according to which the generation recombination between the intermediate band and the valence band makes this photocurrent detectable.

  14. Entanglement Entropy of Eigenstates of Quantum Chaotic Hamiltonians.

    PubMed

    Vidmar, Lev; Rigol, Marcos

    2017-12-01

    In quantum statistical mechanics, it is of fundamental interest to understand how close the bipartite entanglement entropy of eigenstates of quantum chaotic Hamiltonians is to maximal. For random pure states in the Hilbert space, the average entanglement entropy is known to be nearly maximal, with a deviation that is, at most, a constant. Here we prove that, in a system that is away from half filling and divided in two equal halves, an upper bound for the average entanglement entropy of random pure states with a fixed particle number and normally distributed real coefficients exhibits a deviation from the maximal value that grows with the square root of the volume of the system. Exact numerical results for highly excited eigenstates of a particle number conserving quantum chaotic model indicate that the bound is saturated with increasing system size.

  15. Assisted Distillation of Quantum Coherence.

    PubMed

    Chitambar, E; Streltsov, A; Rana, S; Bera, M N; Adesso, G; Lewenstein, M

    2016-02-19

    We introduce and study the task of assisted coherence distillation. This task arises naturally in bipartite systems where both parties work together to generate the maximal possible coherence on one of the subsystems. Only incoherent operations are allowed on the target system, while general local quantum operations are permitted on the other; this is an operational paradigm that we call local quantum-incoherent operations and classical communication. We show that the asymptotic rate of assisted coherence distillation for pure states is equal to the coherence of assistance, an analog of the entanglement of assistance, whose properties we characterize. Our findings imply a novel interpretation of the von Neumann entropy: it quantifies the maximum amount of extra quantum coherence a system can gain when receiving assistance from a collaborative party. Our results are generalized to coherence localization in a multipartite setting and possible applications are discussed.

  16. Optical control of spin-dependent thermal transport in a quantum ring

    NASA Astrophysics Data System (ADS)

    Abdullah, Nzar Rauf

    2018-05-01

    We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron-photon coupling strength on spin-dependent heat and thermoelectric currents are presented.

  17. Entanglement-assisted quantum quasicyclic low-density parity-check codes

    NASA Astrophysics Data System (ADS)

    Hsieh, Min-Hsiu; Brun, Todd A.; Devetak, Igor

    2009-03-01

    We investigate the construction of quantum low-density parity-check (LDPC) codes from classical quasicyclic (QC) LDPC codes with girth greater than or equal to 6. We have shown that the classical codes in the generalized Calderbank-Skor-Steane construction do not need to satisfy the dual-containing property as long as preshared entanglement is available to both sender and receiver. We can use this to avoid the many four cycles which typically arise in dual-containing LDPC codes. The advantage of such quantum codes comes from the use of efficient decoding algorithms such as sum-product algorithm (SPA). It is well known that in the SPA, cycles of length 4 make successive decoding iterations highly correlated and hence limit the decoding performance. We show the principle of constructing quantum QC-LDPC codes which require only small amounts of initial shared entanglement.

  18. Generalized Hofmann quantum process fidelity bounds for quantum filters

    NASA Astrophysics Data System (ADS)

    Sedlák, Michal; Fiurášek, Jaromír

    2016-04-01

    We propose and investigate bounds on the quantum process fidelity of quantum filters, i.e., probabilistic quantum operations represented by a single Kraus operator K . These bounds generalize the Hofmann bounds on the quantum process fidelity of unitary operations [H. F. Hofmann, Phys. Rev. Lett. 94, 160504 (2005), 10.1103/PhysRevLett.94.160504] and are based on probing the quantum filter with pure states forming two mutually unbiased bases. Determination of these bounds therefore requires far fewer measurements than full quantum process tomography. We find that it is particularly suitable to construct one of the probe bases from the right eigenstates of K , because in this case the bounds are tight in the sense that if the actual filter coincides with the ideal one, then both the lower and the upper bounds are equal to 1. We theoretically investigate the application of these bounds to a two-qubit optical quantum filter formed by the interference of two photons on a partially polarizing beam splitter. For an experimentally convenient choice of factorized input states and measurements we study the tightness of the bounds. We show that more stringent bounds can be obtained by more sophisticated processing of the data using convex optimization and we compare our methods for different choices of the input probe states.

  19. Testing the Quantum-Classical Boundary and Dimensionality of Quantum Systems

    NASA Astrophysics Data System (ADS)

    Shun, Poh Hou

    Quantum theory introduces a cut between the observer and the observed system [1], but does not provide a definition of what is an observer [2]. Based on an informational def- inition of the observer, Grinbaum has recently [3] predicted an upper bound on bipartite correlations in the Clauser-Horne-Shimony-Holt (CHSH) Bell scenario equal to 2.82537, which is slightly smaller than the Tsirelson bound [4] of standard quantum theory, but is consistent with all the available experimental results [5--17]. Not being able to exceed Grin- baum's limit would support that quantum theory is only an effective description of a more fundamental theory and would have a deep impact in physics and quantum information processing. In this thesis, we present a test of the CHSH inequality on photon pairs in maximally entangled states of polarization in which a value 2.8276 +/- 0.00082 is observed, violating Grinbaum's bound by 2.72 standard deviations and providing the smallest distance with respect to Tsirelson's bound ever reported, namely, 0.0008 +/- 0.00082. (Abstract shortened by UMI.).

  20. Reconstructing high-dimensional two-photon entangled states via compressive sensing

    PubMed Central

    Tonolini, Francesco; Chan, Susan; Agnew, Megan; Lindsay, Alan; Leach, Jonathan

    2014-01-01

    Accurately establishing the state of large-scale quantum systems is an important tool in quantum information science; however, the large number of unknown parameters hinders the rapid characterisation of such states, and reconstruction procedures can become prohibitively time-consuming. Compressive sensing, a procedure for solving inverse problems by incorporating prior knowledge about the form of the solution, provides an attractive alternative to the problem of high-dimensional quantum state characterisation. Using a modified version of compressive sensing that incorporates the principles of singular value thresholding, we reconstruct the density matrix of a high-dimensional two-photon entangled system. The dimension of each photon is equal to d = 17, corresponding to a system of 83521 unknown real parameters. Accurate reconstruction is achieved with approximately 2500 measurements, only 3% of the total number of unknown parameters in the state. The algorithm we develop is fast, computationally inexpensive, and applicable to a wide range of quantum states, thus demonstrating compressive sensing as an effective technique for measuring the state of large-scale quantum systems. PMID:25306850

  1. Lower bounds of concurrence for N-qubit systems and the detection of k-nonseparability of multipartite quantum systems

    NASA Astrophysics Data System (ADS)

    Qi, Xianfei; Gao, Ting; Yan, Fengli

    2017-01-01

    Concurrence, as one of the entanglement measures, is a useful tool to characterize quantum entanglement in various quantum systems. However, the computation of the concurrence involves difficult optimizations and only for the case of two qubits, an exact formula was found. We investigate the concurrence of four-qubit quantum states and derive analytical lower bound of concurrence using the multiqubit monogamy inequality. It is shown that this lower bound is able to improve the existing bounds. This approach can be generalized to arbitrary qubit systems. We present an exact formula of concurrence for some mixed quantum states. For even-qubit states, we derive an improved lower bound of concurrence using a monogamy equality for qubit systems. At the same time, we show that a multipartite state is k-nonseparable if the multipartite concurrence is larger than a constant related to the value of k, the qudit number and the dimension of the subsystems. Our results can be applied to detect the multipartite k-nonseparable states.

  2. Enhancement of optical Kerr effect in quantum-cascade lasers with multiple resonance levels.

    PubMed

    Bai, Jing; Citrin, D S

    2008-08-18

    In this paper, we investigated the optical Kerr lensing effect in quantum-cascade lasers with multiple resonance levels. The Kerr refractive index n2 is obtained through the third-order susceptibility at the fundamental frequency chi(3)( omega; omega, omega,-omega). Resonant two-photon processes are found to have almost equal contributions to chi(3)( omega; omega, omega,-omega) as the single-photon processes, which result in the predicted enhancement of the positive nonlinear (Kerr) refractive index, and thus may enhance mode-locking of quantum-cascade lasers. Moreover, we also demonstrate an isospectral optimization strategy for further improving n2 through the band-structure design, in order to boost the multimode performance of quantum-cascade lasers. Simulation results show that the optimized stepwise multiple-quantum-well structure has n2 approximately 10-8 cm2/W, a twofold enhancement over the original flat quantum-well structure. This leads to a refractive-index change (delta)n of about 0.01, which is at the upper bound of those reported for typical Kerr medium. This stronger Kerr refractive index may be important for quantum-cascade lasers ultimately to demonstrate self-mode-locking.

  3. Anisotropic exchange interaction induced by a single photon in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Chiappe, G.; Fernández-Rossier, J.; Louis, E.; Anda, E. V.

    2005-12-01

    We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K : spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.

  4. Quantum Cryptography Based on the Deutsch-Jozsa Algorithm

    NASA Astrophysics Data System (ADS)

    Nagata, Koji; Nakamura, Tadao; Farouk, Ahmed

    2017-09-01

    Recently, secure quantum key distribution based on Deutsch's algorithm using the Bell state is reported (Nagata and Nakamura, Int. J. Theor. Phys. doi: 10.1007/s10773-017-3352-4, 2017). Our aim is of extending the result to a multipartite system. In this paper, we propose a highly speedy key distribution protocol. We present sequre quantum key distribution based on a special Deutsch-Jozsa algorithm using Greenberger-Horne-Zeilinger states. Bob has promised to use a function f which is of one of two kinds; either the value of f( x) is constant for all values of x, or else the value of f( x) is balanced, that is, equal to 1 for exactly half of the possible x, and 0 for the other half. Here, we introduce an additional condition to the function when it is balanced. Our quantum key distribution overcomes a classical counterpart by a factor O(2 N ).

  5. Magnetic-flux-driven topological quantum phase transition and manipulation of perfect edge states in graphene tube.

    PubMed

    Lin, S; Zhang, G; Li, C; Song, Z

    2016-08-24

    We study the tight-binding model for a graphene tube with perimeter N threaded by a magnetic field. We show exactly that this model has different nontrivial topological phases as the flux changes. The winding number, as an indicator of topological quantum phase transition (QPT) fixes at N/3 if N/3 equals to its integer part [N/3], otherwise it jumps between [N/3] and [N/3] + 1 periodically as the flux varies a flux quantum. For an open tube with zigzag boundary condition, exact edge states are obtained. There exist two perfect midgap edge states, in which the particle is completely located at the boundary, even for a tube with finite length. The threading flux can be employed to control the quantum states: transferring the perfect edge state from one end to the other, or generating maximal entanglement between them.

  6. Spectral properties of finite two dimensional quantum dot arrays.

    NASA Astrophysics Data System (ADS)

    Cota, Ernesto; Ramírez, Felipe; Ulloa, Sergio E.

    1997-08-01

    Motivated by recent proposed geometries in cellular automata, we study arrays of four or five coupled quantum dots located at the corners and at the center of a square. We calculate the addition spectrum for dots with equal or different sizes at each site and compare with the case of linear arrays. We obtain the numerically exact solution for arrays with two electrons and study the properties of this system as a cell or building block of quantum dot cellular automata. We obtain the ``polarization" for each state and discuss its possible use as a two-state system or ``qubit," as proposed recently(C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62) 714, (1993). An extended Hubbard Hamiltonian is used which takes into account quantum confinement, intra- an inter-dot Coulomb interaction as well as tunneling between neighboring dots.

  7. Spectral properties of finite two dimensional quantum dot arrays.

    NASA Astrophysics Data System (ADS)

    Ramirez, Felipe; Cota, Ernesto; Ulloa, Sergio E.

    1997-03-01

    Motivated by recent proposed geometries in cellular automata, we study arrays of four or five coupled quantum dots located at the corners and at the center of a square. We calculate the addition spectrum for dots with equal or different sizes at each site and compare with the case of linear arrays. We obtain the numerically exact solution for arrays with two electrons and study the properties of this system as a cell or building block of quantum dot cellular automata. We obtain the ``polarization" for each state and discuss its possible use as a two-state system or ``qubit," as proposed recently(C. S. Lent, P. D. Tougaw, and W. Porod, Appl. Phys. Lett. 62) 714, (1993). An extended Hubbard Hamiltonian is used which takes into account quantum confinement, intra- an inter-dot Coulomb interaction as well as tunneling between neighboring dots.

  8. Exponentially-Biased Ground-State Sampling of Quantum Annealing Machines with Transverse-Field Driving Hamiltonians

    NASA Technical Reports Server (NTRS)

    Mandra, Salvatore

    2017-01-01

    We study the performance of the D-Wave 2X quantum annealing machine on systems with well-controlled ground-state degeneracy. While obtaining the ground state of a spin-glass benchmark instance represents a difficult task, the gold standard for any optimization algorithm or machine is to sample all solutions that minimize the Hamiltonian with more or less equal probability. Our results show that while naive transverse-field quantum annealing on the D-Wave 2X device can find the ground-state energy of the problems, it is not well suited in identifying all degenerate ground-state configurations associated to a particular instance. Even worse, some states are exponentially suppressed, in agreement with previous studies on toy model problems [New J. Phys. 11, 073021 (2009)]. These results suggest that more complex driving Hamiltonians are needed in future quantum annealing machines to ensure a fair sampling of the ground-state manifold.

  9. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.

    PubMed

    Decker, Manuel; Staude, Isabelle; Shishkin, Ivan I; Samusev, Kirill B; Parkinson, Patrick; Sreenivasan, Varun K A; Minovich, Alexander; Miroshnichenko, Andrey E; Zvyagin, Andrei; Jagadish, Chennupati; Neshev, Dragomir N; Kivshar, Yuri S

    2013-01-01

    Metamaterials, artificial electromagnetic media realized by subwavelength nano-structuring, have become a paradigm for engineering electromagnetic space, allowing for independent control of both electric and magnetic responses of the material. Whereas most metamaterials studied so far are limited to passive structures, the need for active metamaterials is rapidly growing. However, the fundamental question on how the energy of emitters is distributed between both (electric and magnetic) interaction channels of the metamaterial still remains open. Here we study simultaneous spontaneous emission of quantum dots into both of these channels and define the control parameters for tailoring the quantum-dot coupling to metamaterials. By superimposing two orthogonal modes of equal strength at the wavelength of quantum-dot photoluminescence, we demonstrate a sharp difference in their interaction with the magnetic and electric metamaterial modes. Our observations reveal the importance of mode engineering for spontaneous emission control in metamaterials, paving a way towards loss-compensated metamaterials and metamaterial nanolasers.

  10. Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene

    NASA Astrophysics Data System (ADS)

    Ferreira, Aires; Milletari, Mirco

    Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).

  11. Universal quantum computation with metaplectic anyons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Shawn X., E-mail: xingshan@math.ucsb.edu; Wang, Zhenghan, E-mail: zhenghwa@math.ucsb.edu, E-mail: zhenghwa@microsoft.com; Microsoft Research Station Q, University of California, Santa Barbara, California 93106

    2015-03-15

    We show that braidings of the metaplectic anyons X{sub ϵ} in SO(3){sub 2} = SU(2){sub 4} with their total charge equal to the metaplectic mode Y supplemented with projective measurements of the total charge of two metaplectic anyons are universal for quantum computation. We conjecture that similar universal anyonic computing models can be constructed for all metaplectic anyon systems SO(p){sub 2} for any odd prime p ≥ 5. In order to prove universality, we find new conceptually appealing universal gate sets for qutrits and qupits.

  12. The analytical approach to optimization of active region structure of quantum dot laser

    NASA Astrophysics Data System (ADS)

    Korenev, V. V.; Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2014-10-01

    Using the analytical approach introduced in our previous papers we analyse the possibilities of optimization of size and structure of active region of semiconductor quantum dot lasers emitting via ground-state optical transitions. It is shown that there are optimal length' dispersion and number of QD layers in laser active region which allow one to obtain lasing spectrum of a given width at minimum injection current. Laser efficiency corresponding to the injection current optimized by the cavity length is practically equal to its maximum value.

  13. Interpretation of quantum yields exceeding unity in photoelectrochemical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szklarczyk, M.; Allen, R.E.

    1986-10-20

    In photoelectrochemical systems involving light shining on a semiconductor interfaced with an electrolyte, the quantum yield as a function of photon frequency ..nu.. is observed to exhibit a peak at h..nu..roughly-equal2E/sub g/, where E/sub g/ is the band gap of the semiconductor. The maximum in this peak is sometimes found to exceed unity. We provide an interpretation involving surface states and inelastic electron-electron scattering. The theory indicates that the effect should be observable for p-type semiconductors, but not n-type.

  14. Probing scattering mechanisms with symmetric quantum cascade lasers.

    PubMed

    Deutsch, Christoph; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron M; Klang, Pavel; Kubis, Tillmann; Klimeck, Gerhard; Schuster, Manfred E; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2013-03-25

    A characteristic feature of quantum cascade lasers is their unipolar carrier transport. We exploit this feature and realize nominally symmetric active regions for terahertz quantum cascade lasers, which should yield equal performance with either bias polarity. However, symmetric devices exhibit a strongly bias polarity dependent performance due to growth direction asymmetries, making them an ideal tool to study the related scattering mechanisms. In the case of an InGaAs/GaAsSb heterostructure, the pronounced interface asymmetry leads to a significantly better performance with negative bias polarity and can even lead to unidirectionally working devices, although the nominal band structure is symmetric. The results are a direct experimental proof that interface roughness scattering has a major impact on transport/lasing performance.

  15. Local non-Calderbank-Shor-Steane quantum error-correcting code on a three-dimensional lattice

    NASA Astrophysics Data System (ADS)

    Kim, Isaac H.

    2011-05-01

    We present a family of non-Calderbank-Shor-Steane quantum error-correcting code consisting of geometrically local stabilizer generators on a 3D lattice. We study the Hamiltonian constructed from ferromagnetic interaction of overcomplete set of local stabilizer generators. The degenerate ground state of the system is characterized by a quantum error-correcting code whose number of encoded qubits are equal to the second Betti number of the manifold. These models (i) have solely local interactions; (ii) admit a strong-weak duality relation with an Ising model on a dual lattice; (iii) have topological order in the ground state, some of which survive at finite temperature; and (iv) behave as classical memory at finite temperature.

  16. Fiber-Coupled Cavity-QED Source of Identical Single Photons

    NASA Astrophysics Data System (ADS)

    Snijders, H.; Frey, J. A.; Norman, J.; Post, V. P.; Gossard, A. C.; Bowers, J. E.; van Exter, M. P.; Löffler, W.; Bouwmeester, D.

    2018-03-01

    We present a fully fiber-coupled source of high-fidelity single photons. An (In,Ga)As semiconductor quantum dot is embedded in an optical Fabry-Perot microcavity with a robust design and rigidly attached single-mode fibers, which enables through-fiber cross-polarized resonant laser excitation and photon extraction. Even without spectral filtering, we observe that the incident coherent light pulses are transformed into a stream of single photons with high purity (97%) and indistinguishability (90%), which is measured at an in-fiber brightness of 5% with an excellent cavity-mode-to-fiber coupling efficiency of 85%. Our results pave the way for fully fiber-integrated photonic quantum networks. Furthermore, our method is equally applicable to fiber-coupled solid-state cavity-QED-based photonic quantum gates.

  17. Practical Unitary Simulator for Non-Markovian Complex Processes

    NASA Astrophysics Data System (ADS)

    Binder, Felix C.; Thompson, Jayne; Gu, Mile

    2018-06-01

    Stochastic processes are as ubiquitous throughout the quantitative sciences as they are notorious for being difficult to simulate and predict. In this Letter, we propose a unitary quantum simulator for discrete-time stochastic processes which requires less internal memory than any classical analogue throughout the simulation. The simulator's internal memory requirements equal those of the best previous quantum models. However, in contrast to previous models, it only requires a (small) finite-dimensional Hilbert space. Moreover, since the simulator operates unitarily throughout, it avoids any unnecessary information loss. We provide a stepwise construction for simulators for a large class of stochastic processes hence directly opening the possibility for experimental implementations with current platforms for quantum computation. The results are illustrated for an example process.

  18. Ballistic Transport for Limit-Periodic Jacobi Matrices with Applications to Quantum Many-Body Problems

    NASA Astrophysics Data System (ADS)

    Fillman, Jake

    2017-03-01

    We study Jacobi matrices that are uniformly approximated by periodic operators. We show that if the rate of approximation is sufficiently rapid, then the associated quantum dynamics are ballistic in a rather strong sense; namely, the (normalized) Heisenberg evolution of the position operator converges strongly to a self-adjoint operator that is injective on the space of absolutely summable sequences. In particular, this means that all transport exponents corresponding to well-localized initial states are equal to one. Our result may be applied to a class of quantum many-body problems. Specifically, we establish a lower bound on the Lieb-Robinson velocity for an isotropic XY spin chain on the integers with limit-periodic couplings.

  19. Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise.

    PubMed

    Banaszek, Konrad; Dragan, Andrzej; Wasilewski, Wojciech; Radzewicz, Czesław

    2004-06-25

    We present an experiment demonstrating the entanglement enhanced capacity of a quantum channel with correlated noise, modeled by a fiber optic link exhibiting fluctuating birefringence. In this setting, introducing entanglement between two photons is required to maximize the amount of information that can be encoded into their joint polarization degree of freedom. We demonstrated this effect using a fiber-coupled source of entangled photon pairs based on spontaneous parametric down-conversion, and a linear-optics Bell state measurement. The obtained experimental classical capacity with entangled states is equal to 0.82+/-0.04 per a photon pair, and it exceeds approximately 2.5 times the theoretical upper limit when no quantum correlations are allowed.

  20. Suppression of Zeeman gradients by nuclear polarization in double quantum dots.

    PubMed

    Frolov, S M; Danon, J; Nadj-Perge, S; Zuo, K; van Tilburg, J W W; Pribiag, V S; van den Berg, J W G; Bakkers, E P A M; Kouwenhoven, L P

    2012-12-07

    We use electric dipole spin resonance to measure dynamic nuclear polarization in InAs nanowire quantum dots. The resonance shifts in frequency when the system transitions between metastable high and low current states, indicating the presence of nuclear polarization. We propose that the low and the high current states correspond to different total Zeeman energy gradients between the two quantum dots. In the low current state, dynamic nuclear polarization efficiently compensates the Zeeman gradient due to the g-factor mismatch, resulting in a suppressed total Zeeman gradient. We present a theoretical model of electron-nuclear feedback that demonstrates a fixed point in nuclear polarization for nearly equal Zeeman splittings in the two dots and predicts a narrowed hyperfine gradient distribution.

  1. Asymptotic states and the definition of the S-matrix in quantum gravity

    NASA Astrophysics Data System (ADS)

    Wiesendanger, C.

    2013-04-01

    Viewing gravitational energy-momentum p_G^\\mu as equal by observation, but different in essence from inertial energy-momentum p_I^\\mu naturally leads to the gauge theory of volume-preserving diffeomorphisms of an inner Minkowski space M4. The generalized asymptotic free scalar, Dirac and gauge fields in that theory are canonically quantized, the Fock spaces of stationary states are constructed and the gravitational limit—mapping the gravitational energy-momentum onto the inertial energy-momentum to account for their observed equality—is introduced. Next the S-matrix in quantum gravity is defined as the gravitational limit of the transition amplitudes of asymptotic in- to out-states in the gauge theory of volume-preserving diffeomorphisms. The so-defined S-matrix relates in- and out-states of observable particles carrying gravitational equal to inertial energy-momentum. Finally, generalized Lehmann-Symanzik-Zimmermann reduction formulae for scalar, Dirac and gauge fields are established which allow us to express S-matrix elements as the gravitational limit of truncated Fourier-transformed vacuum expectation values of time-ordered products of field operators of the interacting theory. Together with the generating functional of the latter established in Wiesendanger (2011 arXiv:1103.1012) any transition amplitude can in principle be computed consistently to any order in perturbative quantum gravity.

  2. Entanglement and Coherence in Quantum State Merging.

    PubMed

    Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M

    2016-06-17

    Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.

  3. Jack Polynomials as Fractional Quantum Hall States and the Betti Numbers of the ( k + 1)-Equals Ideal

    NASA Astrophysics Data System (ADS)

    Zamaere, Christine Berkesch; Griffeth, Stephen; Sam, Steven V.

    2014-08-01

    We show that for Jack parameter α = -( k + 1)/( r - 1), certain Jack polynomials studied by Feigin-Jimbo-Miwa-Mukhin vanish to order r when k + 1 of the coordinates coincide. This result was conjectured by Bernevig and Haldane, who proposed that these Jack polynomials are model wavefunctions for fractional quantum Hall states. Special cases of these Jack polynomials include the wavefunctions of Laughlin and Read-Rezayi. In fact, along these lines we prove several vanishing theorems known as clustering properties for Jack polynomials in the mathematical physics literature, special cases of which had previously been conjectured by Bernevig and Haldane. Motivated by the method of proof, which in the case r = 2 identifies the span of the relevant Jack polynomials with the S n -invariant part of a unitary representation of the rational Cherednik algebra, we conjecture that unitary representations of the type A Cherednik algebra have graded minimal free resolutions of Bernstein-Gelfand-Gelfand type; we prove this for the ideal of the ( k + 1)-equals arrangement in the case when the number of coordinates n is at most 2 k + 1. In general, our conjecture predicts the graded S n -equivariant Betti numbers of the ideal of the ( k + 1)-equals arrangement with no restriction on the number of ambient dimensions.

  4. Multi-party quantum private comparison based on the entanglement swapping of d-level cat states and d-level Bell states

    NASA Astrophysics Data System (ADS)

    Zhao-Xu, Ji; Tian-Yu, Ye

    2017-07-01

    In this paper, a novel multi-party quantum private comparison protocol with a semi-honest third party (TP) is proposed based on the entanglement swapping of d-level cat states and d-level Bell states. Here, TP is allowed to misbehave on his own, but will not conspire with any party. In our protocol, n parties employ unitary operations to encode their private secrets and can compare the equality of their private secrets within one time execution of the protocol. Our protocol can withstand both the outside attacks and the participant attacks on the condition that none of the QKD methods is adopted to generate keys for security. One party cannot obtain other parties' secrets except for the case that their secrets are identical. The semi-honest TP cannot learn any information about these parties' secrets except the end comparison result on whether all private secrets from n parties are equal.

  5. Regular and Chaotic Quantum Dynamics of Two-Level Atoms in a Selfconsistent Radiation Field

    NASA Technical Reports Server (NTRS)

    Konkov, L. E.; Prants, S. V.

    1996-01-01

    Dynamics of two-level atoms interacting with their own radiation field in a single-mode high-quality resonator is considered. The dynamical system consists of two second-order differential equations, one for the atomic SU(2) dynamical-group parameter and another for the field strength. With the help of the maximal Lyapunov exponent for this set, we numerically investigate transitions from regularity to deterministic quantum chaos in such a simple model. Increasing the collective coupling constant b is identical with 8(pi)N(sub 0)(d(exp 2))/hw, we observed for initially unexcited atoms a usual sharp transition to chaos at b(sub c) approx. equal to 1. If we take the dimensionless individual Rabi frequency a = Omega/2w as a control parameter, then a sequence of order-to-chaos transitions has been observed starting with the critical value a(sub c) approx. equal to 0.25 at the same initial conditions.

  6. Rapid prediction of chemical metabolism by human UDP-glucuronosyltransferase isoforms using quantum chemical descriptors derived with the electronegativity equalization method.

    PubMed

    Sorich, Michael J; McKinnon, Ross A; Miners, John O; Winkler, David A; Smith, Paul A

    2004-10-07

    This study aimed to evaluate in silico models based on quantum chemical (QC) descriptors derived using the electronegativity equalization method (EEM) and to assess the use of QC properties to predict chemical metabolism by human UDP-glucuronosyltransferase (UGT) isoforms. Various EEM-derived QC molecular descriptors were calculated for known UGT substrates and nonsubstrates. Classification models were developed using support vector machine and partial least squares discriminant analysis. In general, the most predictive models were generated with the support vector machine. Combining QC and 2D descriptors (from previous work) using a consensus approach resulted in a statistically significant improvement in predictivity (to 84%) over both the QC and 2D models and the other methods of combining the descriptors. EEM-derived QC descriptors were shown to be both highly predictive and computationally efficient. It is likely that EEM-derived QC properties will be generally useful for predicting ADMET and physicochemical properties during drug discovery.

  7. Stochastic thermodynamics of fluctuating density fields: Non-equilibrium free energy differences under coarse-graining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, T.; Lander, B.; Seifert, U.

    2013-11-28

    We discuss the stochastic thermodynamics of systems that are described by a time-dependent density field, for example, simple liquids and colloidal suspensions. For a time-dependent change of external parameters, we show that the Jarzynski relation connecting work with the change of free energy holds if the time evolution of the density follows the Kawasaki-Dean equation. Specifically, we study the work distributions for the compression and expansion of a two-dimensional colloidal model suspension implementing a practical coarse-graining scheme of the microscopic particle positions. We demonstrate that even if coarse-grained dynamics and density functional do not match, the fluctuation relations for themore » work still hold albeit for a different, apparent, change of free energy.« less

  8. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope.

    PubMed

    Feist, Armin; Echternkamp, Katharina E; Schauss, Jakob; Yalunin, Sergey V; Schäfer, Sascha; Ropers, Claus

    2015-05-14

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven 'quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  9. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Feist, Armin; Echternkamp, Katharina E.; Schauss, Jakob; Yalunin, Sergey V.; Schäfer, Sascha; Ropers, Claus

    2015-05-01

    Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained, representing the observation of a light-driven `quantum walk' coherently reshaping electron density in momentum space. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

  10. Parametric representation of open quantum systems and cross-over from quantum to classical environment.

    PubMed

    Calvani, Dario; Cuccoli, Alessandro; Gidopoulos, Nikitas I; Verrucchi, Paola

    2013-04-23

    The behavior of most physical systems is affected by their natural surroundings. A quantum system with an environment is referred to as open, and its study varies according to the classical or quantum description adopted for the environment. We propose an approach to open quantum systems that allows us to follow the cross-over from quantum to classical environments; to achieve this, we devise an exact parametric representation of the principal system, based on generalized coherent states for the environment. The method is applied to the s = 1/2 Heisenberg star with frustration, where the quantum character of the environment varies with the couplings entering the Hamiltonian H. We find that when the star is in an eigenstate of H, the central spin behaves as if it were in an effective magnetic field, pointing in the direction set by the environmental coherent-state angle variables (θ, ϕ), and broadened according to their quantum probability distribution. Such distribution is independent of ϕ, whereas as a function of θ is seen to get narrower as the quantum character of the environment is reduced, collapsing into a Dirac-δ function in the classical limit. In such limit, because ϕ is left undetermined, the Von Neumann entropy of the central spin remains finite; in fact, it is equal to the entanglement of the original fully quantum model, a result that establishes a relation between this latter quantity and the Berry phase characterizing the dynamics of the central spin in the effective magnetic field.

  11. Accuracy of quantum sensors measuring yield photon flux and photosynthetic photon flux

    NASA Technical Reports Server (NTRS)

    Barnes, C.; Tibbitts, T.; Sager, J.; Deitzer, G.; Bubenheim, D.; Koerner, G.; Bugbee, B.; Knott, W. M. (Principal Investigator)

    1993-01-01

    Photosynthesis is fundamentally driven by photon flux rather than energy flux, but not all absorbed photons yield equal amounts of photosynthesis. Thus, two measures of photosynthetically active radiation have emerged: photosynthetic photon flux (PPF), which values all photons from 400 to 700 nm equally, and yield photon flux (YPF), which weights photons in the range from 360 to 760 nm according to plant photosynthetic response. We selected seven common radiation sources and measured YPF and PPF from each source with a spectroradiometer. We then compared these measurements with measurements from three quantum sensors designed to measure YPF, and from six quantum sensors designed to measure PPF. There were few differences among sensors within a group (usually <5%), but YPF values from sensors were consistently lower (3% to 20%) than YPF values calculated from spectroradiometric measurements. Quantum sensor measurements of PPF also were consistently lower than PPF values calculated from spectroradiometric measurements, but the differences were <7% for all sources, except red-light-emitting diodes. The sensors were most accurate for broad-band sources and least accurate for narrow-band sources. According to spectroradiometric measurements, YPF sensors were significantly less accurate (>9% difference) than PPF sensors under metal halide, high-pressure sodium, and low-pressure sodium lamps. Both sensor types were inaccurate (>18% error) under red-light-emitting diodes. Because both YPF and PPF sensors are imperfect integrators, and because spectroradiometers can measure photosynthetically active radiation much more accurately, researchers should consider developing calibration factors from spectroradiometric data for some specific radiation sources to improve the accuracy of integrating sensors.

  12. Interference effects in a cavity for optical amplification

    NASA Astrophysics Data System (ADS)

    Cardimona, D. A.; Alsing, P. M.

    2009-08-01

    In space situational awareness scenarios, the objects needed to be characterized and identified are usually quite far away and quite dim. Thus, optical detectors need to be able to sense these very dim optical signals. Quantum interference in a three-level system can lead to amplification of optical signals. If we put a three-level system into a cavity tuned to the frequency of an incoming optical signal, we anticipate the amplification possibilities should be increased proportional to the quality factor of the cavity. Our vision is to utilize quantum dots in photonic crystal cavities, but as a stepping stone we first investigate a simple three-level system in a free-space optical cavity. We investigate quantum interference and classical interference effects when a three-level system interacts with both a cavity field mode and an external driving field mode. We find that under certain circumstances the cavity field evolves to be equal in magnitude to, but 180° out-of-phase with the external pump field when the pump field frequency equals the cavity frequency. At this point the resonance fluorescence from the atom in the cavity goes to zero due to a purely classical interference effect between the two out-of-phase fields. This is quite different from the quantum interference that occurs under the right circumstances, when the state populations are coherently driven into a linear combination that is decoupled from any applied field - and population is trapped in the excited states, thus allowing for a population inversion and an amplification of incoming optical signals.

  13. A multiple-scattering polaritonic-operator method for hybrid arrays of metal nanoparticles and quantum emitters

    NASA Astrophysics Data System (ADS)

    Chatzidakis, Georgios D.; Yannopapas, Vassilios

    2018-05-01

    We present a new technique for the study of hybrid collections of quantum emitters (atoms, molecules, quantum dots) with nanoparticles. The technique is based on a multiple-scattering polaritonic-operator formalism in conjunction with an electromagnetic coupled dipole method. Apart from collections of quantum emitters and nanoparticles, the method can equally treat the interaction of a collection of quantum emitters with a single nano-object of arbitrary shape in which case the nano-object is treated as a finite three-dimensional lattice of point scatterers. We have applied our method to the case of linear array (chain) of dimers of quantum emitters and metallic nanoparticles wherein the corresponding (geometrical and physical) parameters of the dimers are chosen so as the interaction between the emitter and the nanoparticle lies in the strong-coupling regime in order to enable the formation of plexciton states in the dimer. In particular, for a linear chain of dimers, we show that the corresponding light spectra reveal a multitude of plexciton modes resulting from the hybridization of the plexciton resonances of each individual dimer in a manner similar to the tight-binding description of electrons in solids.

  14. A holographic model for the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Lippert, Matthew; Meyer, René; Taliotis, Anastasios

    2015-01-01

    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ0(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an -invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.

  15. Perturbation expansions of stochastic wavefunctions for open quantum systems

    NASA Astrophysics Data System (ADS)

    Ke, Yaling; Zhao, Yi

    2017-11-01

    Based on the stochastic unravelling of the reduced density operator in the Feynman path integral formalism for an open quantum system in touch with harmonic environments, a new non-Markovian stochastic Schrödinger equation (NMSSE) has been established that allows for the systematic perturbation expansion in the system-bath coupling to arbitrary order. This NMSSE can be transformed in a facile manner into the other two NMSSEs, i.e., non-Markovian quantum state diffusion and time-dependent wavepacket diffusion method. Benchmarked by numerically exact results, we have conducted a comparative study of the proposed method in its lowest order approximation, with perturbative quantum master equations in the symmetric spin-boson model and the realistic Fenna-Matthews-Olson complex. It is found that our method outperforms the second-order time-convolutionless quantum master equation in the whole parameter regime and even far better than the fourth-order in the slow bath and high temperature cases. Besides, the method is applicable on an equal footing for any kind of spectral density function and is expected to be a powerful tool to explore the quantum dynamics of large-scale systems, benefiting from the wavefunction framework and the time-local appearance within a single stochastic trajectory.

  16. Magnetic moment of single layer graphene rings

    NASA Astrophysics Data System (ADS)

    Margulis, V. A.; Karpunin, V. V.; Mironova, K. I.

    2018-01-01

    Magnetic moment of single layer graphene rings is investigated. An analytical expression for the magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings is obtained. This expression has the oscillation character. The oscillation period is equal to one flux quanta.

  17. Surface energy from order parameter profile: At the QCD phase transition

    NASA Technical Reports Server (NTRS)

    Frei, Z.; Patkos, A.

    1989-01-01

    The order parameter profile between coexisting confined and plasma regions at the quantum chromodynamic (QCD) phase transition is constructed. The dimensionless combination of the surface energy (Sigma) and the correlation length (Zeta) is estimated to be Sigma Zeta 3 approximately equals 0.8.

  18. Thermal-Error Regime in High-Accuracy Gigahertz Single-Electron Pumping

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Rossi, A.; Giblin, S. P.; Fletcher, J. D.; Hudson, F. E.; Möttönen, M.; Kataoka, M.; Dzurak, A. S.

    2017-10-01

    Single-electron pumps based on semiconductor quantum dots are promising candidates for the emerging quantum standard of electrical current. They can transfer discrete charges with part-per-million (ppm) precision in nanosecond time scales. Here, we employ a metal-oxide-semiconductor silicon quantum dot to experimentally demonstrate high-accuracy gigahertz single-electron pumping in the regime where the number of electrons trapped in the dot is determined by the thermal distribution in the reservoir leads. In a measurement with traceability to primary voltage and resistance standards, the averaged pump current over the quantized plateau, driven by a 1-GHz sinusoidal wave in the absence of a magnetic field, is equal to the ideal value of e f within a measurement uncertainty as low as 0.27 ppm.

  19. Molecular spectrum of laterally coupled quantum rings under intense terahertz radiation.

    PubMed

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Laroze, David

    2017-09-05

    We study the influence of intense THz laser radiation and electric field on molecular states of laterally coupled quantum rings. Laser radiation shows the capability to dissociate quantum ring molecule and add 2-fold degeneracy to the molecular states at the fixed value of the overlapping size between rings. It is shown that coupled to decoupled molecular states phase transition points form almost a straight line with a slope equal to two. In addition, the electric field direction dependent energy spectrum shows unexpected oscillations, demonstrating strong coupling between molecular states. Besides, intraband absorption is considered, showing both blue and redshifts in its spectrum. The obtained results can be useful for the controlling of degeneracy of the discrete energy spectrum of nanoscale structures and in the tunneling effects therein.

  20. No information flow using statistical fluctuations and quantum cryptography

    NASA Astrophysics Data System (ADS)

    Larsson, Jan-Åke

    2004-04-01

    The communication protocol of Home and Whitaker [

    Phys. Rev. A 67, 022306 (2003)
    ] is examined in some detail, and found to work equally well using a separable state. The protocol is in fact completely classical, based on postselection of suitable experimental runs. The quantum-cryptography protocol proposed in the same publication is also examined, and this protocol uses entanglement, a strictly quantum property of the system. An individual eavesdropping attack on each qubit pair would be detected by the security test proposed in the mentioned paper. However, the key is provided by groups of qubits, and there exists a coherent attack, internal to these groups, that will go unnoticed in that security test. A modified test is proposed here that will ensure security, even against such a coherent attack.

  1. Probing the quantum coherence of a nanomechanical resonator using a superconducting qubit: II. Implementation

    NASA Astrophysics Data System (ADS)

    Blencowe, M. P.; Armour, A. D.

    2008-09-01

    We describe a possible implementation of the nanomechanical quantum superposition generation and detection scheme described in the preceding, companion paper (Armour A D and Blencowe M P 2008 New. J. Phys. 10 095004). The implementation is based on the circuit quantum electrodynamics (QED) set-up, with the addition of a mechanical degree of freedom formed out of a suspended, doubly-clamped segment of the superconducting loop of a dc SQUID located directly opposite the centre conductor of a coplanar waveguide (CPW). The relative merits of two SQUID based qubit realizations are addressed, in particular a capacitively coupled charge qubit and inductively coupled flux qubit. It is found that both realizations are equally promising, with comparable qubit-mechanical resonator mode as well as qubit-microwave resonator mode coupling strengths.

  2. Linear optics only allows every possible quantum operation for one photon or one port

    NASA Astrophysics Data System (ADS)

    Moyano-Fernández, Julio José; Garcia-Escartin, Juan Carlos

    2017-01-01

    We study the evolution of the quantum state of n photons in m different modes when they go through a lossless linear optical system. We show that there are quantum evolution operators U that cannot be built with linear optics alone unless the number of photons or the number of modes is equal to one. The evolution for single photons can be controlled with the known realization of any unitary proved by Reck, Zeilinger, Bernstein and Bertani. The evolution for a single mode corresponds to the trivial evolution in a phase shifter. We analyze these two cases and prove that any other combination of the number of photons and modes produces a Hilbert state too large for the linear optics system to give any desired evolution.

  3. Security bound of cheat sensitive quantum bit commitment.

    PubMed

    He, Guang Ping

    2015-03-23

    Cheat sensitive quantum bit commitment (CSQBC) loosens the security requirement of quantum bit commitment (QBC), so that the existing impossibility proofs of unconditionally secure QBC can be evaded. But here we analyze the common features in all existing CSQBC protocols, and show that in any CSQBC having these features, the receiver can always learn a non-trivial amount of information on the sender's committed bit before it is unveiled, while his cheating can pass the security check with a probability not less than 50%. The sender's cheating is also studied. The optimal CSQBC protocols that can minimize the sum of the cheating probabilities of both parties are found to be trivial, as they are practically useless. We also discuss the possibility of building a fair protocol in which both parties can cheat with equal probabilities.

  4. Calculating work in weakly driven quantum master equations: Backward and forward equations

    NASA Astrophysics Data System (ADS)

    Liu, Fei

    2016-01-01

    I present a technical report indicating that the two methods used for calculating characteristic functions for the work distribution in weakly driven quantum master equations are equivalent. One involves applying the notion of quantum jump trajectory [Phys. Rev. E 89, 042122 (2014), 10.1103/PhysRevE.89.042122], while the other is based on two energy measurements on the combined system and reservoir [Silaev et al., Phys. Rev. E 90, 022103 (2014), 10.1103/PhysRevE.90.022103]. These represent backward and forward methods, respectively, which adopt a very similar approach to that of the Kolmogorov backward and forward equations used in classical stochastic theory. The microscopic basis for the former method is also clarified. In addition, a previously unnoticed equality related to the heat is also revealed.

  5. Quantum Algorithms to Simulate Many-Body Physics of Correlated Fermions

    NASA Astrophysics Data System (ADS)

    Jiang, Zhang; Sung, Kevin J.; Kechedzhi, Kostyantyn; Smelyanskiy, Vadim N.; Boixo, Sergio

    2018-04-01

    Simulating strongly correlated fermionic systems is notoriously hard on classical computers. An alternative approach, as proposed by Feynman, is to use a quantum computer. We discuss simulating strongly correlated fermionic systems using near-term quantum devices. We focus specifically on two-dimensional (2D) or linear geometry with nearest-neighbor qubit-qubit couplings, typical for superconducting transmon qubit arrays. We improve an existing algorithm to prepare an arbitrary Slater determinant by exploiting a unitary symmetry. We also present a quantum algorithm to prepare an arbitrary fermionic Gaussian state with O (N2) gates and O (N ) circuit depth. Both algorithms are optimal in the sense that the numbers of parameters in the quantum circuits are equal to those describing the quantum states. Furthermore, we propose an algorithm to implement the 2D fermionic Fourier transformation on a 2D qubit array with only O (N1.5) gates and O (√{N }) circuit depth, which is the minimum depth required for quantum information to travel across the qubit array. We also present methods to simulate each time step in the evolution of the 2D Fermi-Hubbard model—again on a 2D qubit array—with O (N ) gates and O (√{N }) circuit depth. Finally, we discuss how these algorithms can be used to determine the ground-state properties and phase diagrams of strongly correlated quantum systems using the Hubbard model as an example.

  6. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy.

    PubMed

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  7. Linear and nonlinear ion-acoustic waves in nonrelativistic quantum plasmas with arbitrary degeneracy

    NASA Astrophysics Data System (ADS)

    Haas, Fernando; Mahmood, Shahzad

    2015-11-01

    Linear and nonlinear ion-acoustic waves are studied in a fluid model for nonrelativistic, unmagnetized quantum plasma with electrons with an arbitrary degeneracy degree. The equation of state for electrons follows from a local Fermi-Dirac distribution function and applies equally well both to fully degenerate and classical, nondegenerate limits. Ions are assumed to be cold. Quantum diffraction effects through the Bohm potential are also taken into account. A general coupling parameter valid for dilute and dense plasmas is proposed. The linear dispersion relation of the ion-acoustic waves is obtained and the ion-acoustic speed is discussed for the limiting cases of extremely dense or dilute systems. In the long-wavelength limit, the results agree with quantum kinetic theory. Using the reductive perturbation method, the appropriate Korteweg-de Vries equation for weakly nonlinear solutions is obtained and the corresponding soliton propagation is analyzed. It is found that soliton hump and dip structures are formed depending on the value of the quantum parameter for the degenerate electrons, which affect the phase velocities in the dispersive medium.

  8. Operational resource theory of total quantum coherence

    NASA Astrophysics Data System (ADS)

    Yang, Si-ren; Yu, Chang-shui

    2018-01-01

    Quantum coherence is an essential feature of quantum mechanics and is an important physical resource in quantum information. Recently, the resource theory of quantum coherence has been established parallel with that of entanglement. In the resource theory, a resource can be well defined if given three ingredients: the free states, the resource, the (restricted) free operations. In this paper, we study the resource theory of coherence in a different light, that is, we consider the total coherence defined by the basis-free coherence maximized among all potential basis. We define the distillable total coherence and the total coherence cost and in both the asymptotic regime and the single-copy regime show the reversible transformation between a state with certain total coherence and the state with the unit reference total coherence. Extensively, we demonstrate that the total coherence can also be completely converted to the total correlation with the equal amount by the free operations. We also provide the alternative understanding of the total coherence, respectively, based on the entanglement and the total correlation in a different way.

  9. Optimized and parallelized implementation of the electronegativity equalization method and the atom-bond electronegativity equalization method.

    PubMed

    Vareková, R Svobodová; Koca, J

    2006-02-01

    The most common way to calculate charge distribution in a molecule is ab initio quantum mechanics (QM). Some faster alternatives to QM have also been developed, the so-called "equalization methods" EEM and ABEEM, which are based on DFT. We have implemented and optimized the EEM and ABEEM methods and created the EEM SOLVER and ABEEM SOLVER programs. It has been found that the most time-consuming part of equalization methods is the reduction of the matrix belonging to the equation system generated by the method. Therefore, for both methods this part was replaced by the parallel algorithm WIRS and implemented within the PVM environment. The parallelized versions of the programs EEM SOLVER and ABEEM SOLVER showed promising results, especially on a single computer with several processors (compact PVM). The implemented programs are available through the Web page http://ncbr.chemi.muni.cz/~n19n/eem_abeem.

  10. Influence of Constraint in Parameter Space on Quantum Games

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Jun; Fang, Xi-Ming

    2004-04-01

    We study the influence of the constraint in the parameter space on quantum games. Decomposing SU(2) operator into product of three rotation operators and controlling one kind of them, we impose a constraint on the parameter space of the players' operator. We find that the constraint can provide a tuner to make the bilateral payoffs equal, so that the mismatch of the players' action at multi-equilibrium could be avoided. We also find that the game exhibits an intriguing structure as a function of the parameter of the controlled operators, which is useful for making game models.

  11. Calculation of transmission probability by solving an eigenvalue problem

    NASA Astrophysics Data System (ADS)

    Bubin, Sergiy; Varga, Kálmán

    2010-11-01

    The electron transmission probability in nanodevices is calculated by solving an eigenvalue problem. The eigenvalues are the transmission probabilities and the number of nonzero eigenvalues is equal to the number of open quantum transmission eigenchannels. The number of open eigenchannels is typically a few dozen at most, thus the computational cost amounts to the calculation of a few outer eigenvalues of a complex Hermitian matrix (the transmission matrix). The method is implemented on a real space grid basis providing an alternative to localized atomic orbital based quantum transport calculations. Numerical examples are presented to illustrate the efficiency of the method.

  12. Sudden death of entanglement and non-locality in two- and three-component quantum systems

    NASA Astrophysics Data System (ADS)

    Ann, Kevin

    2011-12-01

    Quantum entanglement and non-locality are non-classical characteristics of quantum states with phase coherence that are of central importance to physics, and relevant to the foundations of quantum mechanics and quantum information science. This thesis examines quantum entanglement and non-locality in two- and three-component quantum states with phase coherence when they are subject to statistically independent, classical, Markovian, phase noise in various combinations at the local and collective level. Because this noise reduces phase coherence, it can also reduce quantum entanglement and Bell non-locality. After introducing and contextualizing the research, the results are presented in three broad areas. The first area characterizes the relative time scales of decoherence and disentanglement in 2 x 2 and 3 x 3 quantum states, as well as the various subsystems of the two classes of entangled tripartite two-level quantum states. In all cases, it was found that disentanglement time scales are less than or equal to decoherence time scales. The second area examines the finite-time loss of entanglement, even as quantum state coherence is lost only asymptotically in time due to local dephasing noise, a phenomenon entitled "Entanglement Sudden Death" (ESD). Extending the initial discovery in the simplest 2 x 2 case, ESD is shown to exist in all other systems where mixed-state entanglement measures exist, the 2 x 3 and d x d systems, for finite d > 2. The third area concerns non-locality, which is a physical phenomenon independent of quantum mechanics and related to, though fundamentally different from, entanglement. Non-locality, as quantified by classes of Bell inequalities, is shown to be lost in finite time, even when decoherence occurs only asymptotically. This phenomenon was named "Bell Non-locality Sudden Death" (BNSD).

  13. Energy-constrained two-way assisted private and quantum capacities of quantum channels

    NASA Astrophysics Data System (ADS)

    Davis, Noah; Shirokov, Maksim E.; Wilde, Mark M.

    2018-06-01

    With the rapid growth of quantum technologies, knowing the fundamental characteristics of quantum systems and protocols is essential for their effective implementation. A particular communication setting that has received increased focus is related to quantum key distribution and distributed quantum computation. In this setting, a quantum channel connects a sender to a receiver, and their goal is to distill either a secret key or entanglement, along with the help of arbitrary local operations and classical communication (LOCC). In this work, we establish a general theory of energy-constrained, LOCC-assisted private and quantum capacities of quantum channels, which are the maximum rates at which an LOCC-assisted quantum channel can reliably establish a secret key or entanglement, respectively, subject to an energy constraint on the channel input states. We prove that the energy-constrained squashed entanglement of a channel is an upper bound on these capacities. We also explicitly prove that a thermal state maximizes a relaxation of the squashed entanglement of all phase-insensitive, single-mode input bosonic Gaussian channels, generalizing results from prior work. After doing so, we prove that a variation of the method introduced by Goodenough et al. [New J. Phys. 18, 063005 (2016), 10.1088/1367-2630/18/6/063005] leads to improved upper bounds on the energy-constrained secret-key-agreement capacity of a bosonic thermal channel. We then consider a multipartite setting and prove that two known multipartite generalizations of the squashed entanglement are in fact equal. We finally show that the energy-constrained, multipartite squashed entanglement plays a role in bounding the energy-constrained LOCC-assisted private and quantum capacity regions of quantum broadcast channels.

  14. Growing High-Quality InAs Quantum Dots for Infrared Lasers

    NASA Technical Reports Server (NTRS)

    Qiu, Yueming; Uhl, David

    2004-01-01

    An improved method of growing high-quality InAs quantum dots embedded in lattice-matched InGaAs quantum wells on InP substrates has been developed. InAs/InGaAs/InP quantum dot semiconductor lasers fabricated by this method are capable of operating at room temperature at wavelengths greater than or equal to 1.8 mm. Previously, InAs quantum dot lasers based on InP substrates have been reported only at low temperature of 77 K at a wavelength of 1.9 micrometers. In the present method, as in the prior method, one utilizes metalorganic vapor phase epitaxy to grow the aforementioned semiconductor structures. The development of the present method was prompted in part by the observation that when InAs quantum dots are deposited on an InGaAs layer, some of the InAs in the InGaAs layer becomes segregated from the layer and contributes to the formation of the InAs quantum dots. As a result, the quantum dots become highly nonuniform; some even exceed a critical thickness, beyond which they relax. In the present method, one covers the InGaAs layer with a thin layer of GaAs before depositing the InAs quantum dots. The purpose and effect of this thin GaAs layer is to suppress the segregation of InAs from the InGaAs layer, thereby enabling the InAs quantum dots to become nearly uniform (see figure). Devices fabricated by this method have shown near-room-temperature performance.

  15. Unconditionally secure commitment in position-based quantum cryptography.

    PubMed

    Nadeem, Muhammad

    2014-10-27

    A new commitment scheme based on position-verification and non-local quantum correlations is presented here for the first time in literature. The only credential for unconditional security is the position of committer and non-local correlations generated; neither receiver has any pre-shared data with the committer nor does receiver require trusted and authenticated quantum/classical channels between him and the committer. In the proposed scheme, receiver trusts the commitment only if the scheme itself verifies position of the committer and validates her commitment through non-local quantum correlations in a single round. The position-based commitment scheme bounds committer to reveal valid commitment within allocated time and guarantees that the receiver will not be able to get information about commitment unless committer reveals. The scheme works for the commitment of both bits and qubits and is equally secure against committer/receiver as well as against any third party who may have interests in destroying the commitment. Our proposed scheme is unconditionally secure in general and evades Mayers and Lo-Chau attacks in particular.

  16. Energy levels of a hydrogenic impurity in a parabolic quantum well with a magnetic field

    NASA Astrophysics Data System (ADS)

    Zang, J. X.; Rustgi, M. L.

    1993-07-01

    In this paper, we present a calculation of the energy levels of a hydrogenic impurity (or a hydrogenic atom) at the bottom of a one-dimensional parabolic quantum well with a magnetic field normal to the plane of the well. The finite-basis-set variational method is used to calculate the ground state and the excited states with major quantum number less than or equal to 3. The limit of small radial distance and the limit of great radial distance are considered to choose a set of proper basis functions. The results in the limit that the parabolic parameter α=0 are compared with the data of Rösner et al. [J. Phys. B 17, 29 (1984)]. The comparison shows that the present calculation is quite accurate. It is found that the energy levels increase with increasing parabolic parameter α and increase with increasing normalized magnetic-field strength γ except those levels with magnetic quantum number m<0 at small γ.

  17. Pulsed Rabi oscillations in quantum two-level systems: beyond the area theorem

    NASA Astrophysics Data System (ADS)

    Fischer, Kevin A.; Hanschke, Lukas; Kremser, Malte; Finley, Jonathan J.; Müller, Kai; Vučković, Jelena

    2018-01-01

    The area theorem states that when a short optical pulse drives a quantum two-level system, it undergoes Rabi oscillations in the probability of scattering a single photon. In this work, we investigate the breakdown of the area theorem as both the pulse length becomes non-negligible and for certain pulse areas. Using simple quantum trajectories, we provide an analytic approximation to the photon emission dynamics of a two-level system. Our model provides an intuitive way to understand re-excitation, which elucidates the mechanism behind the two-photon emission events that can spoil single-photon emission. We experimentally measure the emission statistics from a semiconductor quantum dot, acting as a two-level system, and show good agreement with our simple model for short pulses. Additionally, the model clearly explains our recent results (Fischer and Hanschke 2017 et al Nat. Phys.) showing dominant two-photon emission from a two-level system for pulses with interaction areas equal to an even multiple of π.

  18. Size-dependent energy levels of InSb quantum dots measured by scanning tunneling spectroscopy.

    PubMed

    Wang, Tuo; Vaxenburg, Roman; Liu, Wenyong; Rupich, Sara M; Lifshitz, Efrat; Efros, Alexander L; Talapin, Dmitri V; Sibener, S J

    2015-01-27

    The electronic structure of single InSb quantum dots (QDs) with diameters between 3 and 7 nm was investigated using atomic force microscopy (AFM) and scanning tunneling spectroscopy (STS). In this size regime, InSb QDs show strong quantum confinement effects which lead to discrete energy levels on both valence and conduction band states. Decrease of the QD size increases the measured band gap and the spacing between energy levels. Multiplets of equally spaced resonance peaks are observed in the tunneling spectra. There, multiplets originate from degeneracy lifting induced by QD charging. The tunneling spectra of InSb QDs are qualitatively different from those observed in the STS of other III-V materials, for example, InAs QDs, with similar band gap energy. Theoretical calculations suggest the electron tunneling occurs through the states connected with L-valley of InSb QDs rather than through states of the Γ-valley. This observation calls for better understanding of the role of indirect valleys in strongly quantum-confined III-V nanomaterials.

  19. Magnetic-Field-Assisted Terahertz Quantum Cascade Laser Operating up to 225 K

    NASA Technical Reports Server (NTRS)

    Wade, A.; Fedorov, G.; Smirnov, D.; Kumar, S.; Williams, B. S.; Hu, Q.; Reno, J. L.

    2008-01-01

    Advances in semiconductor bandgap engineering have resulted in the recent development of the terahertz quantum cascade laser1. These compact optoelectronic devices now operate in the frequency range 1.2-5 THz, although cryogenic cooling is still required2.3. Further progress towards the realization of devices operating at higher temperatures and emitting at longer wavelengths (sub-terahertz quantum cascade lasers) is difficult because it requires maintaining a population inversion between closely spaced electronic sub-bands (1 THz approx. equals 4 meV). Here, we demonstrate a magnetic-field-assisted quantum cascade laser based on the resonant-phonon design. By applying appropriate electrical bias and strong magnetic fields above 16 T, it is possible to achieve laser emission from a single device over a wide range of frequencies (0.68-3.33 THz). Owing to the suppression of inter-landau-level non-radiative scattering, the device shows magnetic field assisted laser action at 1 THz at temperatures up to 215 K, and 3 THz lasing up to 225 K.

  20. Quantum-state comparison and discrimination

    NASA Astrophysics Data System (ADS)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    2018-05-01

    We investigate the performance of discrimination strategy in the comparison task of known quantum states. In the discrimination strategy, one infers whether or not two quantum systems are in the same state on the basis of the outcomes of separate discrimination measurements on each system. In some cases with more than two possible states, the optimal strategy in minimum-error comparison is that one should infer the two systems are in different states without any measurement, implying that the discrimination strategy performs worse than the trivial "no-measurement" strategy. We present a sufficient condition for this phenomenon to happen. For two pure states with equal prior probabilities, we determine the optimal comparison success probability with an error margin, which interpolates the minimum-error and unambiguous comparison. We find that the discrimination strategy is not optimal except for the minimum-error case.

  1. Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode.

    PubMed

    Abellán, C; Amaya, W; Jofre, M; Curty, M; Acín, A; Capmany, J; Pruneri, V; Mitchell, M W

    2014-01-27

    We demonstrate a high bit-rate quantum random number generator by interferometric detection of phase diffusion in a gain-switched DFB laser diode. Gain switching at few-GHz frequencies produces a train of bright pulses with nearly equal amplitudes and random phases. An unbalanced Mach-Zehnder interferometer is used to interfere subsequent pulses and thereby generate strong random-amplitude pulses, which are detected and digitized to produce a high-rate random bit string. Using established models of semiconductor laser field dynamics, we predict a regime of high visibility interference and nearly complete vacuum-fluctuation-induced phase diffusion between pulses. These are confirmed by measurement of pulse power statistics at the output of the interferometer. Using a 5.825 GHz excitation rate and 14-bit digitization, we observe 43 Gbps quantum randomness generation.

  2. Quantum Theory of Wormholes

    NASA Astrophysics Data System (ADS)

    González-Díaz, Pedro F.

    We re-explore the effects of multiply-connected wormholes on ordinary matter at low energies. It is obtained that the path integral that describes these effects is given in terms of a Planckian probability distribution for the Coleman α-parameters, rather than a classical Gaussian distribution law. This implies that the path integral over all low-energy fields with the wormhole effective interactions can no longer vary continuously, and that the quantities α2 are interpretable as the momenta of a quantum field. Using the new result that, rather than being given in terms of the Coleman-Hawking probability, the Euclidean action must equal negative entropy, the model predicts a very small but still nonzero cosmological constant and quite reasonable values for the pion and neutrino masses. The divergence problems of Euclidean quantum gravity are also discussed in the light of the above results.

  3. The propagator of stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    Cavalleri, G.

    1981-01-01

    The "elementary propagator" for the position of a free charged particle subject to the zero-point electromagnetic field with Lorentz-invariant spectral density ~ω3 is obtained. The nonstationary process for the position is solved by the stationary process for the acceleration. The dispersion of the position elementary propagator is compared with that of quantum electrodynamics. Finally, the evolution of the probability density is obtained starting from an initial distribution confined in a small volume and with a Gaussian distribution in the velocities. The resulting probability density for the position turns out to be equal, to within radiative corrections, to ψψ* where ψ is the Kennard wave packet. If the radiative corrections are retained, the present result is new since the corresponding expression in quantum electrodynamics has not yet been found. Besides preceding quantum electrodynamics for this problem, no renormalization is required in stochastic electrodynamics.

  4. No information flow using statistical fluctuations and quantum cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsson, Jan-Aake

    2004-04-01

    The communication protocol of Home and Whitaker [Phys. Rev. A 67, 022306 (2003)] is examined in some detail, and found to work equally well using a separable state. The protocol is in fact completely classical, based on postselection of suitable experimental runs. The quantum-cryptography protocol proposed in the same publication is also examined, and this protocol uses entanglement, a strictly quantum property of the system. An individual eavesdropping attack on each qubit pair would be detected by the security test proposed in the mentioned paper. However, the key is provided by groups of qubits, and there exists a coherent attack,more » internal to these groups, that will go unnoticed in that security test. A modified test is proposed here that will ensure security, even against such a coherent attack.« less

  5. Polarization-dependent enhanced photoluminescence and polarization-independent emission rate of quantum dots on gold elliptical nanodisc arrays.

    PubMed

    Zhu, Qiangzhong; Zheng, Shupei; Lin, Shijie; Liu, Tian-Ran; Jin, Chongjun

    2014-07-07

    We have fabricated gold (Au) elliptical nanodisc (ND) arrays via three-beam interference lithography and electron beam deposition of gold. The enhanced photoluminescence intensity and emission rate of quantum dots (QDs) near to the Au elliptical NDs have been studied by tuning the nearest distance between quantum dots and Au elliptical NDs. We found that the photoluminescence intensity is polarization-dependent with the degree of polarization being equal to that of the light extinction of the Au elliptical NDs, while the emission rate is polarization-independent. This is resulted from the plasmon-coupled emission via the coupling between the QD dipole and the plasmon nano-antenna. Our experiments fully confirm the evidence of the plasmophore concept proposed recently in the interaction of the QDs with metal nanoparticles.

  6. Quantum Capacity under Adversarial Quantum Noise: Arbitrarily Varying Quantum Channels

    NASA Astrophysics Data System (ADS)

    Ahlswede, Rudolf; Bjelaković, Igor; Boche, Holger; Nötzel, Janis

    2013-01-01

    We investigate entanglement transmission over an unknown channel in the presence of a third party (called the adversary), which is enabled to choose the channel from a given set of memoryless but non-stationary channels without informing the legitimate sender and receiver about the particular choice that he made. This channel model is called an arbitrarily varying quantum channel (AVQC). We derive a quantum version of Ahlswede's dichotomy for classical arbitrarily varying channels. This includes a regularized formula for the common randomness-assisted capacity for entanglement transmission of an AVQC. Quite surprisingly and in contrast to the classical analog of the problem involving the maximal and average error probability, we find that the capacity for entanglement transmission of an AVQC always equals its strong subspace transmission capacity. These results are accompanied by different notions of symmetrizability (zero-capacity conditions) as well as by conditions for an AVQC to have a capacity described by a single-letter formula. In the final part of the paper the capacity of the erasure-AVQC is computed and some light shed on the connection between AVQCs and zero-error capacities. Additionally, we show by entirely elementary and operational arguments motivated by the theory of AVQCs that the quantum, classical, and entanglement-assisted zero-error capacities of quantum channels are generically zero and are discontinuous at every positivity point.

  7. Suppressed Kondo effect and Kosterlitz-Thouless-type phase transition induced by level difference in a triple dot device

    NASA Astrophysics Data System (ADS)

    Xiong, Yong-Chen; Huang, Hai-Ming; Zhao, Wen-Lei; Laref, Amel

    2017-10-01

    Quantum dot system provides an ideal platform for quantum information processing, within which to demonstrate the quantum states is one of the most important issue for quantum simulation and quantum computation. In this paper, we report a peculiar electron state in a parallel triple dot device where the Ruderman-Kittel-Kasuya-Yosida interaction is invalid when the level differences of the dots sweep into appropriate regime. This extraordinary tendency then results in an antiferromagnetic spin coupling between two of the dots and may lead to zero or full conductance, relying deeply on the relation of the two level spacings. e.g. when the level differences are kept equal, the Kondo effect is totally suppressed although the dots are triply occupied, since in this case a local inter-dot transport loop is found to play an important role in the transmission coefficient. By contrast, when the differences are retained symmetric, the Kondo peak reaches nearly to its unitary limit, owing to that the inter-dot transport process is significantly suppressed. To approach these problems, voltage controllable quantum phase transitions of Kosterlitz-Thouless type and first order are shown, and possible pictures related to the many-body effect and the effective Kondo model are given.

  8. Progress in design and fabrication of resonator quantum well infrared photodetectors (R-QWIP) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sun, Jason N.; Choi, Kwong-Kit; Olver, Kimberley A.; Fu, Richard X.

    2017-05-01

    Resonator-Quantum Well Infrared Photo detectors (R-QWIPs) are the next generation of QWIP detectors that use resonances to increase the quantum efficiency (QE). Recently, we are exploring R-QWIPs for broadband long wavelength applications. To achieve the expected performance, two optimized inductively coupled plasma (ICP) etching processes (selective and non-selective) are developed. Our selective ICP etching process has a nearly infinite selectivity of etching GaAs over Ga1-xAlxAs. By using the etching processes, two format (1Kx1K and 40x40) detectors with 25 μm pixel pitch were fabricated successfully. In despite of a moderate doping of 0.5 × 1018 cm-3 and a thin active layer thickness of 0.6 or 1.3 μm, we achieved a quantum efficiency 35% and 37% for 8 quantum wells and 19 quantum wells respectively. The temperature at which photocurrent equals dark current is about 66 K under F/2 optics for a cutoff wavelength up to 11 μm. The NEΔT of the FPAs is estimated to be 22 mK at 2 ms integration time and 60 K operating temperature. This good result thus exemplifies the advantages of R-QWIP.

  9. One-Dimensional Oscillator in a Box

    ERIC Educational Resources Information Center

    Amore, Paolo; Fernandez, Francisco M.

    2010-01-01

    We discuss a quantum-mechanical model of two particles that interact by means of a harmonic potential and are confined to a one-dimensional box with impenetrable walls. We apply perturbation theory to the cases of different and equal masses and analyse the symmetry of the states in the latter case. We compare the approximate perturbation results…

  10. Light, the universe and everything - 12 Herculean tasks for quantum cowboys and black diamond skiers

    NASA Astrophysics Data System (ADS)

    Agarwal, Girish; Allen, Roland E.; Bezděková, Iva; Boyd, Robert W.; Chen, Goong; Hanson, Ronald; Hawthorne, Dean L.; Hemmer, Philip; Kim, Moochan B.; Kocharovskaya, Olga; Lee, David M.; Lidström, Sebastian K.; Lidström, Suzy; Losert, Harald; Maier, Helmut; Neuberger, John W.; Padgett, Miles J.; Raizen, Mark; Rajendran, Surjeet; Rasel, Ernst; Schleich, Wolfgang P.; Scully, Marlan O.; Shchedrin, Gavriil; Shvets, Gennady; Sokolov, Alexei V.; Svidzinsky, Anatoly; Walsworth, Ronald L.; Weiss, Rainer; Wilczek, Frank; Willner, Alan E.; Yablonovitch, Eli; Zheludev, Nikolay

    2018-06-01

    The Winter Colloquium on the Physics of Quantum Electronics (PQE) has been a seminal force in quantum optics and related areas since 1971. It is rather mind-boggling to recognize how the concepts presented at these conferences have transformed scientific understanding and human society. In January 2017, the participants of PQE were asked to consider the equally important prospects for the future, and to formulate a set of questions representing some of the greatest aspirations in this broad field. The result is this multi-authored paper, in which many of the world's leading experts address the following fundamental questions: (1) What is the future of gravitational wave astronomy? (2) Are there new quantum phases of matter away from equilibrium that can be found and exploited - such as the time crystal? (3) Quantum theory in uncharted territory: What can we learn? (4) What are the ultimate limits for laser photon energies? (5) What are the ultimate limits to temporal, spatial and optical resolution? (6) What novel roles will atoms play in technology? (7) What applications lie ahead for nitrogen-vacancy centres in diamond? (8) What is the future of quantum coherence, squeezing and entanglement for enhanced super-resolution and sensing? (9) How can we solve (some of) humanity's biggest problems through new quantum technologies? (10) What new understanding of materials and biological molecules will result from their dynamical characterization with free-electron lasers? (11) What new technologies and fundamental discoveries might quantum optics achieve by the end of this century? (12) What novel topological structures can be created and employed in quantum optics?

  11. Modified n-level, n - 1-mode Tavis-Cummings model and algebraic Bethe ansatz

    NASA Astrophysics Data System (ADS)

    Skrypnyk, T.

    2018-01-01

    Using the quantum group technique we construct a one-parametric family of integrable modifications of the n-level, n-1 mode Tavis-Cummings Hamiltonian possessing an additional Stark-type term. We show that in the ‘quasiclassical’ limit the constructed Hamiltonian transforms into the integrable Hamiltonian of the quantum n-level, n-1 mode Tavis-Cummings model with the equal interaction strengths considered in Skrypnyk (2008 J. Phys. A: Math. Theor. 41 475202, 2009 J. Math. Phys. 50 103523). We diagonalize the constructed ‘modified’ Tavis-Cummings Hamiltonian and its second order integrals of motion using the nested Bethe ansatz.

  12. Schur polynomials and biorthogonal random matrix ensembles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tierz, Miguel

    The study of the average of Schur polynomials over a Stieltjes-Wigert ensemble has been carried out by Dolivet and Tierz [J. Math. Phys. 48, 023507 (2007); e-print arXiv:hep-th/0609167], where it was shown that it is equal to quantum dimensions. Using the same approach, we extend the result to the biorthogonal case. We also study, using the Littlewood-Richardson rule, some particular cases of the quantum dimension result. Finally, we show that the notion of Giambelli compatibility of Schur averages, introduced by Borodin et al. [Adv. Appl. Math. 37, 209 (2006); e-print arXiv:math-ph/0505021], also holds in the biorthogonal setting.

  13. Proceedings of the International Symposium on Quantum Biology and Quantum Pharmacology (14th) Held in Marineland, Florida on March 12-14 1987. Annual Sanibel Symposia (27th). Part 1.

    DTIC Science & Technology

    1987-01-01

    extension, though at a different rate. At the 6-31G** level, the C--O elon - gation in the three dimers is equal to 0.012 A and 0.014 A in the formic acid...will have vastly different counts of paths, even though they possess similar properties. An ex- ample is provided by civetone, a macrocyclic musk and a...sterol that possesses a de- cidedly musk -like odor as observed by Prelog and Ruicka [141. Both have a similar periphery and a similar musk odor, but

  14. Continuous-variable phase estimation with unitary and random linear disturbance

    NASA Astrophysics Data System (ADS)

    Delgado de Souza, Douglas; Genoni, Marco G.; Kim, M. S.

    2014-10-01

    We address the problem of continuous-variable quantum phase estimation in the presence of linear disturbance at the Hamiltonian level by means of Gaussian probe states. In particular we discuss both unitary and random disturbance by considering the parameter which characterizes the unwanted linear term present in the Hamiltonian as fixed (unitary disturbance) or random with a given probability distribution (random disturbance). We derive the optimal input Gaussian states at fixed energy, maximizing the quantum Fisher information over the squeezing angle and the squeezing energy fraction, and we discuss the scaling of the quantum Fisher information in terms of the output number of photons, nout. We observe that, in the case of unitary disturbance, the optimal state is a squeezed vacuum state and the quadratic scaling is conserved. As regards the random disturbance, we observe that the optimal squeezing fraction may not be equal to one and, for any nonzero value of the noise parameter, the quantum Fisher information scales linearly with the average number of photons. Finally, we discuss the performance of homodyne measurement by comparing the achievable precision with the ultimate limit imposed by the quantum Cramér-Rao bound.

  15. Asymmetry and coherence weight of quantum states

    NASA Astrophysics Data System (ADS)

    Bu, Kaifeng; Anand, Namit; Singh, Uttam

    2018-03-01

    The asymmetry of quantum states is an important resource in quantum information processing tasks such as quantum metrology and quantum communication. In this paper, we introduce the notion of asymmetry weight—an operationally motivated asymmetry quantifier in the resource theory of asymmetry. We study the convexity and monotonicity properties of asymmetry weight and focus on its interplay with the corresponding semidefinite programming (SDP) forms along with its connection to other asymmetry measures. Since the SDP form of asymmetry weight is closely related to asymmetry witnesses, we find that the asymmetry weight can be regarded as a (state-dependent) asymmetry witness. Moreover, some specific entanglement witnesses can be viewed as a special case of an asymmetry witness—which indicates a potential connection between asymmetry and entanglement. We also provide an operationally meaningful coherence measure, which we term coherence weight, and investigate its relationship to other coherence measures like the robustness of coherence and the l1 norm of coherence. In particular, we show that for Werner states in any dimension d all three coherence quantifiers, namely, the coherence weight, the robustness of coherence, and the l1 norm of coherence, are equal and are given by a single letter formula.

  16. Polar codes for achieving the classical capacity of a quantum channel

    NASA Astrophysics Data System (ADS)

    Guha, Saikat; Wilde, Mark

    2012-02-01

    We construct the first near-explicit, linear, polar codes that achieve the capacity for classical communication over quantum channels. The codes exploit the channel polarization phenomenon observed by Arikan for classical channels. Channel polarization is an effect in which one can synthesize a set of channels, by ``channel combining'' and ``channel splitting,'' in which a fraction of the synthesized channels is perfect for data transmission while the other fraction is completely useless for data transmission, with the good fraction equal to the capacity of the channel. Our main technical contributions are threefold. First, we demonstrate that the channel polarization effect occurs for channels with classical inputs and quantum outputs. We then construct linear polar codes based on this effect, and the encoding complexity is O(N log N), where N is the blocklength of the code. We also demonstrate that a quantum successive cancellation decoder works well, i.e., the word error rate decays exponentially with the blocklength of the code. For a quantum channel with binary pure-state outputs, such as a binary-phase-shift-keyed coherent-state optical communication alphabet, the symmetric Holevo information rate is in fact the ultimate channel capacity, which is achieved by our polar code.

  17. Microwave amplification with nanomechanical resonators.

    PubMed

    Massel, F; Heikkilä, T T; Pirkkalainen, J-M; Cho, S U; Saloniemi, H; Hakonen, P J; Sillanpää, M A

    2011-12-14

    The sensitive measurement of electrical signals is at the heart of modern technology. According to the principles of quantum mechanics, any detector or amplifier necessarily adds a certain amount of noise to the signal, equal to at least the noise added by quantum fluctuations. This quantum limit of added noise has nearly been reached in superconducting devices that take advantage of nonlinearities in Josephson junctions. Here we introduce the concept of the amplification of microwave signals using mechanical oscillation, which seems likely to enable quantum-limited operation. We drive a nanomechanical resonator with a radiation pressure force, and provide an experimental demonstration and an analytical description of how a signal input to a microwave cavity induces coherent stimulated emission and, consequently, signal amplification. This generic scheme, which is based on two linear oscillators, has the advantage of being conceptually and practically simpler than the Josephson junction devices. In our device, we achieve signal amplification of 25 decibels with the addition of 20 quanta of noise, which is consistent with the expected amount of added noise. The generality of the model allows for realization in other physical systems as well, and we anticipate that near-quantum-limited mechanical microwave amplification will soon be feasible in various applications involving integrated electrical circuits.

  18. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kreinberg, Sören; Chow, Weng W.; Wolters, Janik

    Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots (QDs) and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode (high β-factor). This paper demonstrates that the usual criterion for lasing with a conventional (low β-factor) cavity, that is, a sharp non-linearity in the input–output curve accompanied by noticeable linewidth narrowing, has to be reinforced by themore » equal-time second-order photon autocorrelation function to confirm lasing. The article also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high-β microcavities operating with QDs. In terms of consolidating the collected data and identifying the physics underlying laser action, both theory and experiment suggest a sole dependence on intracavity photon number. Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation, for devices ranging from light-emitting diodes (LEDs) and cavity-enhanced LEDs to lasers, lying on the same two curves: one for linewidth narrowing versus intracavity photon number and the other for g( 2)(0) versus intracavity photon number.« less

  19. Trajectories and traversal times in quantum tunneling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhi Hong.

    1989-01-01

    The classical concepts of trajectories and traversal times applied to quantum tunneling are discussed. By using the Wentzel-Kramers-Brillouin approximation, it is found that in a forbidden region of a multidimensional space the wave function can be described by two sets of trajectories, or equivalently by two sets of wave fronts. The trajectories belonging to different sets are mutually orthogonal. An extended Huygens construction is proposed to determine these wave fronts and trajectories. In contrast to the classical results in the allowed region, these trajectories couple to each other. However, if the incident wave is normal to the turning surface, themore » trajectories are found to be independent and can be determined by Newton's equations of motion with inverted potential and energy. The multidimensional tunneling theory is then applied to the scanning tunneling microscope to calculate the current density distribution and to derive the expressions for the lateral resolution and the surface corrugation amplitude. The traversal time in quantum tunneling, i.e. tunneling time, is found to depend on model calculations and simulations. Computer simulation of a wave packet tunneling through a square barrier is performed. Several approaches, including the phase method, Larmor clock, and time-dependent barrier model, are investigated. For a square barrier, two characteristic times are found: One is equal to the barrier width divided by the magnitude of the imaginary velocity; the other is equal to the decay length divided by the incident velocity. It is believed that the tunneling time can only be defined operationally.« less

  20. Cold Bose-Einstein condensates for surface reflection

    NASA Astrophysics Data System (ADS)

    Saba, M.; Leanhardt, A. E.; Pasquini, T. A.; Sanner, C.; Schirotzek, A.; Shin, Y.; Pritchard, D. E.; Ketterle, W.

    2004-05-01

    Atoms can be reflected from a solid surface in spite of the attraction provided by the Casimir-Polder potential if their de Broglie wavelength exceeds the range of the attractive potential, an effect known as quantum reflection and demonstrated for atomic beams hitting a surface at grazing angle [1]. Quantum reflection of atomic Bose-Einstein condensates would have important consequences for experiments and applications requiring manipulation of condensates close to surfaces. However, no matter how cold a condensate is when approaching a surface, the atoms will hit the surface with a kinetic energy appropriate to the healing length, an energy roughly equal to the chemical potential and determined by atom-atom interactions. We circumvented this limitation by building a loose trap for the condensate, so that the atomic cloud can be kept very dilute, reaching the large healing length required to observe quantum reflection [2]. The trap consisted of a small single coil with electric current running in it that pushes the atoms upward, balancing gravity downward. The gravito-magnetic trap had a mean trap frequency of 1 Hz, so that condensates could sit in the trap for several minutes and reach temperatures as low as 500 pK, the lowest temperature ever recorded. We will then discuss how these condensates, whose healing length equals the condensate size, behave when approached to a silicon surface. [1] F. Shimizu, Phys. Rev. Lett. 86, 987 (2001); [2] A. E. Leanhardt et al., Science 301, 1513 (2003)

  1. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

    DOE PAGES

    Kreinberg, Sören; Chow, Weng W.; Wolters, Janik; ...

    2017-02-28

    Measured and calculated results are presented for the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots (QDs) and the distinguishing feature of having a substantial fraction of spontaneous emission channeled into one cavity mode (high β-factor). This paper demonstrates that the usual criterion for lasing with a conventional (low β-factor) cavity, that is, a sharp non-linearity in the input–output curve accompanied by noticeable linewidth narrowing, has to be reinforced by themore » equal-time second-order photon autocorrelation function to confirm lasing. The article also shows that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high-β microcavities operating with QDs. In terms of consolidating the collected data and identifying the physics underlying laser action, both theory and experiment suggest a sole dependence on intracavity photon number. Evidence for this assertion comes from all our measured and calculated data on emission coherence and fluctuation, for devices ranging from light-emitting diodes (LEDs) and cavity-enhanced LEDs to lasers, lying on the same two curves: one for linewidth narrowing versus intracavity photon number and the other for g( 2)(0) versus intracavity photon number.« less

  2. Comparison of cross sections from the quasi-classical trajectory method and the j(z)-conserving centrifugal sudden approximation with accurate quantum results for an atom-rigid nonlinear polyatomic collision

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.

    1993-01-01

    We report the results of a series of calculations of state-to-state integral cross sections for collisions between O and nonvibrating H2O in the gas phase on a model nonreactive potential energy surface. The dynamical methods used include converged quantum mechanical scattering calculations, the j(z) conserving centrifugal sudden (j(z)-CCS) approximation, and quasi-classical trajectory (QCT) calculations. We consider three total energies 0.001, 0.002, and 0.005 E(h) and the nine initial states with rotational angular momentum less than or equal to 2 (h/2 pi). The j(z)-CCS approximation gives good results, while the QCT method can be quite unreliable for transitions to specific rotational sublevels. However, the QCT cross sections summed over final sublevels and averaged over initial sublevels are in better agreement with the quantum results.

  3. From Feynman rules to conserved quantum numbers, I

    NASA Astrophysics Data System (ADS)

    Nogueira, P.

    2017-05-01

    In the context of Quantum Field Theory (QFT) there is often the need to find sets of graph-like diagrams (the so-called Feynman diagrams) for a given physical model. If negative, the answer to the related problem 'Are there any diagrams with this set of external fields?' may settle certain physical questions at once. Here the latter problem is formulated in terms of a system of linear diophantine equations derived from the Lagrangian density, from which necessary conditions for the existence of the required diagrams may be obtained. Those conditions are equalities that look like either linear diophantine equations or linear modular (i.e. congruence) equations, and may be found by means of fairly simple algorithms that involve integer computations. The diophantine equations so obtained represent (particle) number conservation rules, and are related to the conserved (additive) quantum numbers that may be assigned to the fields of the model.

  4. Quantum deformations of conformal algebras with mass-like deformation parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frydryszak, Andrzej; Lukierski, Jerzy; Mozrzymas, Marek

    1998-12-15

    We recall the mathematical apparatus necessary for the quantum deformation of Lie algebras, namely the notions of coboundary Lie algebras, classical r-matrices, classical Yang-Baxter equations (CYBE), Froebenius algebras and parabolic subalgebras. Then we construct the quantum deformation of D=1, D=2 and D=3 conformal algebras, showing that this quantization introduce fundamental mass parameters. Finally we consider with more details the quantization of D=4 conformal algebra. We build three classes of sl(4,C) classical r-matrices, satisfying CYBE and depending respectively on 8, 10 and 12 generators of parabolic subalgebras. We show that only the 8-dimensional r-matrices allow to impose the D=4 conformal o(4,2){approx_equal}su(2,2)more » reality conditions. Weyl reflections and Dynkin diagram automorphisms for o(4,2) define the class of admissible bases for given classical r-matrices.« less

  5. Quantum oscillations of nitrogen atoms in uranium nitride

    NASA Astrophysics Data System (ADS)

    Aczel, A. A.; Granroth, G. E.; MacDougall, G. J.; Buyers, W. J. L.; Abernathy, D. L.; Samolyuk, G. D.; Stocks, G. M.; Nagler, S. E.

    2012-10-01

    The vibrational excitations of crystalline solids corresponding to acoustic or optic one-phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak and featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride, showing well-defined, equally spaced, high-energy vibrational modes in addition to the usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator and characterizes independent motions of light nitrogen atoms, each found in an octahedral cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization of one of the fundamental, exactly solvable problems in quantum mechanics. There are also practical implications, as the oscillator modes must be accounted for in the design of generation IV nuclear reactors that plan to use uranium nitride as a fuel.

  6. Quantum oscillations of nitrogen atoms in uranium nitride.

    PubMed

    Aczel, A A; Granroth, G E; Macdougall, G J; Buyers, W J L; Abernathy, D L; Samolyuk, G D; Stocks, G M; Nagler, S E

    2012-01-01

    The vibrational excitations of crystalline solids corresponding to acoustic or optic one-phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak and featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride, showing well-defined, equally spaced, high-energy vibrational modes in addition to the usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator and characterizes independent motions of light nitrogen atoms, each found in an octahedral cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization of one of the fundamental, exactly solvable problems in quantum mechanics. There are also practical implications, as the oscillator modes must be accounted for in the design of generation IV nuclear reactors that plan to use uranium nitride as a fuel.

  7. Sticky Spheres in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Penrose, M. D.; Penrose, O.; Stell, G.

    For a 3-dimensional system of hard spheres of diameter D and mass m with an added attractive square-well two-body interaction of width a and depth ɛ, let BD, a denote the quantum second virial coefficient. Let BD denote the quantum second virial coefficient for hard spheres of diameter D without the added attractive interaction. We show that in the limit a → 0 at constant α: = ℰma2/(2ħ2) with α < π2/8, \\[ B_{D, a} =B_D -a \\left(\\frac{\\tan\\surd (2\\alpha)}{\\surd (2\\alpha)} -1\\right) \\frac{d}{dD} B_D +o (a) . \\] The result is true equally for Boltzmann, Bose and Fermi statistics. The method of proof uses the mathematics of Brownian motion. For α > π2/8, we argue that the gaseous phase disappears in the limit a → 0, so that the second virial coefficient becomes irrelevant.

  8. Localization-delocalization transition in a system of quantum kicked rotors.

    PubMed

    Creffield, C E; Hur, G; Monteiro, T S

    2006-01-20

    The quantum dynamics of atoms subjected to pairs of closely spaced delta kicks from optical potentials are shown to be quite different from the well-known paradigm of quantum chaos, the single delta-kick system. We find the unitary matrix has a new oscillating band structure corresponding to a cellular structure of phase space and observe a spectral signature of a localization-delocalization transition from one cell to several. We find that the eigenstates have localization lengths which scale with a fractional power L approximately h(-0.75) and obtain a regime of near-linear spectral variances which approximate the "critical statistics" relation summation2(L) approximately or equal to chi(L) approximately 1/2 (1-nu)L, where nu approximately 0.75 is related to the fractal classical phase-space structure. The origin of the nu approximately 0.75 exponent is analyzed.

  9. Quantum Hall Effect near the Charge Neutrality Point in a Two-Dimensional Electron-Hole System

    NASA Astrophysics Data System (ADS)

    Gusev, G. M.; Olshanetsky, E. B.; Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.; Portal, J. C.

    2010-04-01

    We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity σxy≈0 and in a minimum of diagonal conductivity σxx at ν=νp-νn=0, where νn and νp are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole “snake states” propagating along the ν=0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.

  10. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    NASA Astrophysics Data System (ADS)

    Bahauddin, Shah Mohammad; Mehedi Faruk, Mir

    2016-09-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.

  11. Dispersion compensated mid-infrared quantum cascade laser frequency comb with high power output

    NASA Astrophysics Data System (ADS)

    Lu, Q. Y.; Manna, S.; Slivken, S.; Wu, D. H.; Razeghi, M.

    2017-04-01

    Chromatic dispersion control plays an underlying role in optoelectronics and spectroscopy owing to its enhancement to nonlinear interactions by reducing the phase mismatching. This is particularly important to optical frequency combs based on quantum cascade lasers which require negligible dispersions for efficient mode locking of the dispersed modes into equally spaced comb modes. Here, we demonstrated a dispersion compensated mid-IR quantum cascade laser frequency comb with high power output at room temperature. A low-loss dispersive mirror has been engineered to compensate the device's dispersion residue for frequency comb generation. Narrow intermode beating linewidths of 40 Hz in the comb-working currents were identified with a high power output of 460 mW and a broad spectral coverage of 80 cm-1. This dispersion compensation technique will enable fast spectroscopy and high-resolution metrology based on QCL combs with controlled dispersion and suppressed noise.

  12. Strong coupling and stimulated emission in single parabolic quantum well microcavity for terahertz cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzimis, A.; Savvidis, P. G.; Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete

    2015-09-07

    We report observation of strong light-matter coupling in an AlGaAs microcavity (MC) with an embedded single parabolic quantum well. The parabolic potential is achieved by varying aluminum concentration along the growth direction providing equally spaced energy levels, as confirmed by Brewster angle reflectivity from a reference sample without MC. It acts as an active region of the structure which potentially allows cascaded emission of terahertz (THz) light. Spectrally and time resolved pump-probe spectroscopy reveals characteristic quantum beats whose frequencies range from 0.9 to 4.5 THz, corresponding to energy separation between relevant excitonic levels. The structure exhibits strong stimulated nonlinear emissionmore » with simultaneous transition to weak coupling regime. The present study highlights the potential of such devices for creating cascaded relaxation of bosons, which could be utilized for THz emission.« less

  13. Quantum beats in conductance oscillations in graphene-based asymmetric double velocity wells and electrostatic wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lei; Department of Medical Physics, Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017; Li, Yu-Xian

    2014-01-14

    The transport properties in graphene-based asymmetric double velocity well (Fermi velocity inside the well less than that outside the well) and electrostatic well structures are investigated using the transfer matrix method. The results show that quantum beats occur in the oscillations of the conductance for asymmetric double velocity wells. The beating effect can also be found in asymmetric double electrostatic wells, but only if the widths of the two wells are different. The beat frequency for the asymmetric double well is exactly equal to the frequency difference between the oscillation rates in two isolated single wells with the same structuresmore » as the individual wells in the double well structure. A qualitative interpretation is proposed based on the fact that the resonant levels depend upon the sizes of the quantum wells. The beating behavior can provide a new way to identify the symmetry of double well structures.« less

  14. Divergence-free approach for obtaining decompositions of quantum-optical processes

    NASA Astrophysics Data System (ADS)

    Sabapathy, K. K.; Ivan, J. S.; García-Patrón, R.; Simon, R.

    2018-02-01

    Operator-sum representations of quantum channels can be obtained by applying the channel to one subsystem of a maximally entangled state and deploying the channel-state isomorphism. However, for continuous-variable systems, such schemes contain natural divergences since the maximally entangled state is ill defined. We introduce a method that avoids such divergences by utilizing finitely entangled (squeezed) states and then taking the limit of arbitrary large squeezing. Using this method, we derive an operator-sum representation for all single-mode bosonic Gaussian channels where a unique feature is that both quantum-limited and noisy channels are treated on an equal footing. This technique facilitates a proof that the rank-1 Kraus decomposition for Gaussian channels at its respective entanglement-breaking thresholds, obtained in the overcomplete coherent-state basis, is unique. The methods could have applications to simulation of continuous-variable channels.

  15. Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Zheng-Han; Jiang, Shang-Chi; Xiong, Xiang

    We report here the design and realization of a broadband, equal-intensity optical beam splitter with a dispersion-free binary geometric phase on a metasurface with unit cell consisting of two mirror-symmetric elements. We demonstrate experimentally that two identical beams can be efficiently generated with incidence of any polarization. The efficiency of the device reaches 80% at 1120 nm and keeps larger than 70% in the range of 1000–1400 nm. We suggest that this approach for generating identical, coherent beams have wide applications in diffraction optics and in entangled photon light source for quantum communication.

  16. Semiclassical description of hyperfine interaction in calculating chemically induced dynamic nuclear polarization in weak magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purtov, P.A.; Salikhov, K.M.

    1987-09-01

    Semiclassical HFI description is applicable to calculating the integral CIDNP effect in weak fields. The HFI has been calculated for radicals with sufficiently numerous magnetically equivalent nuclei (n greater than or equal to 5) in satisfactory agreement with CIDNP calculations based on quantum-mechanical description of radical-pair spin dynamics.

  17. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  18. Generalized non-equilibrium vertex correction method in coherent medium theory for quantum transport simulation of disordered nanoelectronics

    NASA Astrophysics Data System (ADS)

    Yan, Jiawei; Ke, Youqi

    In realistic nanoelectronics, disordered impurities/defects are inevitable and play important roles in electron transport. However, due to the lack of effective quantum transport method, the important effects of disorders remain poorly understood. Here, we report a generalized non-equilibrium vertex correction (NVC) method with coherent potential approximation to treat the disorder effects in quantum transport simulation. With this generalized NVC method, any averaged product of two single-particle Green's functions can be obtained by solving a set of simple linear equations. As a result, the averaged non-equilibrium density matrix and various important transport properties, including averaged current, disordered induced current fluctuation and the averaged shot noise, can all be efficiently computed in a unified scheme. Moreover, a generalized form of conditionally averaged non-equilibrium Green's function is derived to incorporate with density functional theory to enable first-principles simulation. We prove the non-equilibrium coherent potential equals the non-equilibrium vertex correction. Our approach provides a unified, efficient and self-consistent method for simulating non-equilibrium quantum transport through disorder nanoelectronics. Shanghaitech start-up fund.

  19. Quantum description of a field in macroscopic electrodynamics and photon properties in transparent media

    NASA Astrophysics Data System (ADS)

    Toptygin, I. N.

    2017-12-01

    Applying a quantum mechanical treatment to a high-frequency macroscopic electromagnetic field and radiative phenomena in a medium, we construct quantum operators for energy-momentum tensor components in dispersive media and find their eigenvalues, which are different in the Minkowski and Abraham representations. It is shown that the photon momentum in a medium resulting from the quantization of the vector potential differs from that defined from Abraham’s symmetric energy-momentum-tensor but is equal to the momentum defined from the Minkowski tensor. A similar result is obtained by calculating the intrinsic angular momentum (spin) of an electro-magnetic field in the medium. Only the Minkowski tensor leads to the experimentally confirmed spin values that are multiples of ħ, providing the grounds for choosing the Minkowski representation as the proper form for the momentum density of a transverse electromagnetic field in a transparent medium, in both classical and quantum descriptions of the field. The Abraham representation is unsuitable for this purpose and leads to contradictions. The conclusion drawn does not apply to quasistatic and static fields.

  20. First Detected Arrival of a Quantum Walker on an Infinite Line

    NASA Astrophysics Data System (ADS)

    Thiel, Felix; Barkai, Eli; Kessler, David A.

    2018-01-01

    The first detection of a quantum particle on a graph is shown to depend sensitively on the distance ξ between the detector and initial location of the particle, and on the sampling time τ . Here, we use the recently introduced quantum renewal equation to investigate the statistics of first detection on an infinite line, using a tight-binding lattice Hamiltonian with nearest-neighbor hops. Universal features of the first detection probability are uncovered and simple limiting cases are analyzed. These include the large ξ limit, the small τ limit, and the power law decay with the attempt number of the detection probability over which quantum oscillations are superimposed. For large ξ the first detection probability assumes a scaling form and when the sampling time is equal to the inverse of the energy band width nonanalytical behaviors arise, accompanied by a transition in the statistics. The maximum total detection probability is found to occur for τ close to this transition point. When the initial location of the particle is far from the detection node we find that the total detection probability attains a finite value that is distance independent.

  1. Grand Canonical adaptive resolution simulation for molecules with electrons: A theoretical framework based on physical consistency

    NASA Astrophysics Data System (ADS)

    Delle Site, Luigi

    2018-01-01

    A theoretical scheme for the treatment of an open molecular system with electrons and nuclei is proposed. The idea is based on the Grand Canonical description of a quantum region embedded in a classical reservoir of molecules. Electronic properties of the quantum region are calculated at constant electronic chemical potential equal to that of the corresponding (large) bulk system treated at full quantum level. Instead, the exchange of molecules between the quantum region and the classical environment occurs at the chemical potential of the macroscopic thermodynamic conditions. The Grand Canonical Adaptive Resolution Scheme is proposed for the treatment of the classical environment; such an approach can treat the exchange of molecules according to first principles of statistical mechanics and thermodynamic. The overall scheme is build on the basis of physical consistency, with the corresponding definition of numerical criteria of control of the approximations implied by the coupling. Given the wide range of expertise required, this work has the intention of providing guiding principles for the construction of a well founded computational protocol for actual multiscale simulations from the electronic to the mesoscopic scale.

  2. Behavior of the maximum likelihood in quantum state tomography

    NASA Astrophysics Data System (ADS)

    Scholten, Travis L.; Blume-Kohout, Robin

    2018-02-01

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) should not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.

  3. Complementarity between entanglement-assisted and quantum distributed random access code

    NASA Astrophysics Data System (ADS)

    Hameedi, Alley; Saha, Debashis; Mironowicz, Piotr; Pawłowski, Marcin; Bourennane, Mohamed

    2017-05-01

    Collaborative communication tasks such as random access codes (RACs) employing quantum resources have manifested great potential in enhancing information processing capabilities beyond the classical limitations. The two quantum variants of RACs, namely, quantum random access code (QRAC) and the entanglement-assisted random access code (EARAC), have demonstrated equal prowess for a number of tasks. However, there do exist specific cases where one outperforms the other. In this article, we study a family of 3 →1 distributed RACs [J. Bowles, N. Brunner, and M. Pawłowski, Phys. Rev. A 92, 022351 (2015), 10.1103/PhysRevA.92.022351] and present its general construction of both the QRAC and the EARAC. We demonstrate that, depending on the function of inputs that is sought, if QRAC achieves the maximal success probability then EARAC fails to do so and vice versa. Moreover, a tripartite Bell-type inequality associated with the EARAC variants reveals the genuine multipartite nonlocality exhibited by our protocol. We conclude with an experimental realization of the 3 →1 distributed QRAC that achieves higher success probabilities than the maximum possible with EARACs for a number of tasks.

  4. Behavior of the maximum likelihood in quantum state tomography

    DOE PAGES

    Blume-Kohout, Robin J; Scholten, Travis L.

    2018-02-22

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  5. Ultrashort electromagnetic pulse control of intersubband quantum well transitions

    PubMed Central

    2012-01-01

    We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π. PMID:22916956

  6. Ultrashort electromagnetic pulse control of intersubband quantum well transitions.

    PubMed

    Paspalakis, Emmanuel; Boviatsis, John

    2012-08-23

    : We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π.

  7. Optical nonlinearities of colloidal InP@ZnS core-shell quantum dots probed by Z-scan and two-photon excited emission

    NASA Astrophysics Data System (ADS)

    Wawrzynczyk, Dominika; Szeremeta, Janusz; Samoc, Marek; Nyk, Marcin

    2015-11-01

    Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation. The most significant value of two-photon absorption cross section σ2 for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ2Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.

  8. Behavior of the maximum likelihood in quantum state tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin J; Scholten, Travis L.

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  9. Minimal-memory realization of pearl-necklace encoders of general quantum convolutional codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Houshmand, Monireh; Hosseini-Khayat, Saied

    2011-02-15

    Quantum convolutional codes, like their classical counterparts, promise to offer higher error correction performance than block codes of equivalent encoding complexity, and are expected to find important applications in reliable quantum communication where a continuous stream of qubits is transmitted. Grassl and Roetteler devised an algorithm to encode a quantum convolutional code with a ''pearl-necklace'' encoder. Despite their algorithm's theoretical significance as a neat way of representing quantum convolutional codes, it is not well suited to practical realization. In fact, there is no straightforward way to implement any given pearl-necklace structure. This paper closes the gap between theoretical representation andmore » practical implementation. In our previous work, we presented an efficient algorithm to find a minimal-memory realization of a pearl-necklace encoder for Calderbank-Shor-Steane (CSS) convolutional codes. This work is an extension of our previous work and presents an algorithm for turning a pearl-necklace encoder for a general (non-CSS) quantum convolutional code into a realizable quantum convolutional encoder. We show that a minimal-memory realization depends on the commutativity relations between the gate strings in the pearl-necklace encoder. We find a realization by means of a weighted graph which details the noncommutative paths through the pearl necklace. The weight of the longest path in this graph is equal to the minimal amount of memory needed to implement the encoder. The algorithm has a polynomial-time complexity in the number of gate strings in the pearl-necklace encoder.« less

  10. Index Theory of One Dimensional Quantum Walks and Cellular Automata

    NASA Astrophysics Data System (ADS)

    Gross, D.; Nesme, V.; Vogts, H.; Werner, R. F.

    2012-03-01

    If a one-dimensional quantum lattice system is subject to one step of a reversible discrete-time dynamics, it is intuitive that as much "quantum information" as moves into any given block of cells from the left, has to exit that block to the right. For two types of such systems — namely quantum walks and cellular automata — we make this intuition precise by defining an index, a quantity that measures the "net flow of quantum information" through the system. The index supplies a complete characterization of two properties of the discrete dynamics. First, two systems S 1, S 2 can be "pieced together", in the sense that there is a system S which acts like S 1 in one region and like S 2 in some other region, if and only if S 1 and S 2 have the same index. Second, the index labels connected components of such systems: equality of the index is necessary and sufficient for the existence of a continuous deformation of S 1 into S 2. In the case of quantum walks, the index is integer-valued, whereas for cellular automata, it takes values in the group of positive rationals. In both cases, the map {S mapsto ind S} is a group homomorphism if composition of the discrete dynamics is taken as the group law of the quantum systems. Systems with trivial index are precisely those which can be realized by partitioned unitaries, and the prototypes of systems with non-trivial index are shifts.

  11. Work probability distribution for a ferromagnet with long-ranged and short-ranged correlations

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, J. K.; Kirkpatrick, T. R.; Sengers, J. V.

    2018-04-01

    Work fluctuations and work probability distributions are fundamentally different in systems with short-ranged versus long-ranged correlations. Specifically, in systems with long-ranged correlations the work distribution is extraordinarily broad compared to systems with short-ranged correlations. This difference profoundly affects the possible applicability of fluctuation theorems like the Jarzynski fluctuation theorem. The Heisenberg ferromagnet, well below its Curie temperature, is a system with long-ranged correlations in very low magnetic fields due to the presence of Goldstone modes. As the magnetic field is increased the correlations gradually become short ranged. Hence, such a ferromagnet is an ideal system for elucidating the changes of the work probability distribution as one goes from a domain with long-ranged correlations to a domain with short-ranged correlations by tuning the magnetic field. A quantitative analysis of this crossover behavior of the work probability distribution and the associated fluctuations is presented.

  12. Unbiased free energy estimates in fast nonequilibrium transformations using Gaussian mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procacci, Piero

    2015-04-21

    In this paper, we present an improved method for obtaining unbiased estimates of the free energy difference between two thermodynamic states using the work distribution measured in nonequilibrium driven experiments connecting these states. The method is based on the assumption that any observed work distribution is given by a mixture of Gaussian distributions, whose normal components are identical in either direction of the nonequilibrium process, with weights regulated by the Crooks theorem. Using the prototypical example for the driven unfolding/folding of deca-alanine, we show that the predicted behavior of the forward and reverse work distributions, assuming a combination of onlymore » two Gaussian components with Crooks derived weights, explains surprisingly well the striking asymmetry in the observed distributions at fast pulling speeds. The proposed methodology opens the way for a perfectly parallel implementation of Jarzynski-based free energy calculations in complex systems.« less

  13. On the degree conjecture for separability of multipartite quantum states

    NASA Astrophysics Data System (ADS)

    Hassan, Ali Saif M.; Joag, Pramod S.

    2008-01-01

    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.

  14. Characteristic operator functions for quantum input-plant-output models and coherent control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gough, John E.

    We introduce the characteristic operator as the generalization of the usual concept of a transfer function of linear input-plant-output systems to arbitrary quantum nonlinear Markovian input-output models. This is intended as a tool in the characterization of quantum feedback control systems that fits in with the general theory of networks. The definition exploits the linearity of noise differentials in both the plant Heisenberg equations of motion and the differential form of the input-output relations. Mathematically, the characteristic operator is a matrix of dimension equal to the number of outputs times the number of inputs (which must coincide), but with entriesmore » that are operators of the plant system. In this sense, the characteristic operator retains details of the effective plant dynamical structure and is an essentially quantum object. We illustrate the relevance to model reduction and simplification definition by showing that the convergence of the characteristic operator in adiabatic elimination limit models requires the same conditions and assumptions appearing in the work on limit quantum stochastic differential theorems of Bouten and Silberfarb [Commun. Math. Phys. 283, 491-505 (2008)]. This approach also shows in a natural way that the limit coefficients of the quantum stochastic differential equations in adiabatic elimination problems arise algebraically as Schur complements and amounts to a model reduction where the fast degrees of freedom are decoupled from the slow ones and eliminated.« less

  15. Large Exciton Energy Shifts by Reversible Surface Exchange in 2D II-VI Nanocrystals.

    PubMed

    Zhou, Yang; Wang, Fudong; Buhro, William E

    2015-12-09

    Reaction of n-octylamine-passivated {CdSe[n-octylamine](0.53±0.06)} quantum belts with anhydrous metal carboxylates M(oleate)2 (M = Cd, Zn) results in a rapid exchange of the L-type amine passivation for Z-type M(oleate)2 passivation. The cadmium-carboxylate derivative is determined to have the composition {CdSe[Cd(oleate)2](0.19±0.02)}. The morphologies and crystal structures of the quantum belts are largely unaffected by the exchange processes. Addition of n-octylamine or oleylamine to the M(oleate)2-passivated quantum belts removes M(oleate)2 and restores the L-type amine passivation. Analogous, reversible surface exchanges are also demonstrated for CdS quantum platelets. The absorption and emission spectra of the quantum belts and platelets are reversibly shifted to lower energy by M(oleate)2 passivation vs amine passivation. The largest shift of 140 meV is observed for the Cd(oleate)2-passivated CdSe quantum belts. These shifts are attributed entirely to changes in the strain states in the Zn(oleate)2-passivated nanocrystals, whereas changes in strain states and confinement dimensions contribute roughly equally to the shifts in the Cd(oleate)2-passivated nanocrystals. Addition of Cd(oleate)2, which electronically couples to the nanocrystal lattices, increases the effective thickness of the belts and platelets by approximately a half of a monolayer, thus increasing the confinement dimension.

  16. Equivalent Hamiltonian for the Lee model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, H. F.

    2008-03-15

    Using the techniques of quasi-Hermitian quantum mechanics and quantum field theory we use a similarity transformation to construct an equivalent Hermitian Hamiltonian for the Lee model. In the field theory confined to the V/N{theta} sector it effectively decouples V, replacing the three-point interaction of the original Lee model by an additional mass term for the V particle and a four-point interaction between N and {theta}. While the construction is originally motivated by the regime where the bare coupling becomes imaginary, leading to a ghost, it applies equally to the standard Hermitian regime where the bare coupling is real. In thatmore » case the similarity transformation becomes a unitary transformation.« less

  17. Wavelength-resonant surface-emitting semiconductor laser

    DOEpatents

    Brueck, Steven R. J.; Schaus, Christian F.; Osinski, Marek A.; McInerney, John G.; Raja, M. Yasin A.; Brennan, Thomas M.; Hammons, Burrell E.

    1989-01-01

    A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

  18. Experimental Determination of the Electric Dipole Moment Function of the X Pi-2 Hydroxyl Radical

    NASA Technical Reports Server (NTRS)

    Chackerian, C., Jr.; Goorvitch, D.; Abrams, M. C.; Davis, S. P.; Benidar, A.; Farrenq, R.; Guelachvili, G.; Strawa, Anthony W. (Technical Monitor)

    1995-01-01

    Laboratory infrared emission spectra of X 2piOH obtained with the Solar McMath FTS and the U. Paris (Orsay) FTS are used in an inversion procedure to experimentally determine the electric dipole moment function (EDMF) of the hydroxyl radical. The spectra produced at Kitt Peak show vibrational levels up to v = 10 and rotational lines in the range, -25.5 less than or equal to m less than or equal to 12.5. The following vibrational quantum number ranges were observed: for DELTA v = -1, v prime = 1 - 9, for DELTA v = -2, v prime = 2 - 10, and for DELTA v = - 3, v prime = 6 - 10. The spectra produced at Orsay show DELTA v = -1, with v prime = 1 - 4 and -22.5 less than or equal to m less than or equal to 9.5 as well as DELTA v = 0, with v prime= 1 - 3, and 9.5 less than or equal to m less than or equal to 25.5. The OH rovibrational wavefunctions used in the inversion procedure were calculated using a procedure which reproduces observed rotational constants with a high level of accuracy. Comparisons of our EDMF are made with previous experimental and theoretical work.

  19. Can the exciton--polariton be defined by its quantum properties?

    NASA Astrophysics Data System (ADS)

    Fonseca-Romero, Karen; Cipagauta, Gustavo; Suárez-Forero, Daniel; Vinck-Posada, Herbert; Rey-González, Rafael; Herrera, William; Rodriguez, Boris

    2013-03-01

    We discuss the defining properties of a polariton in the framework of a microcavity-quantum dot system, described by a simple fully quantum model which takes into account loses and pumping. We show that even in the strong coupling regime, and provided that the emitted light exhibit subpoissonian statistics, the density operator of the system can be so mixed that quantum matter-radiation correlations are absent. We suggest the inclusion of matter-radiation entanglement as a defining property of the polariton. The weak-coupling, strong-coupling and lasing regimes, usually identified through the photoluminescence of the emitted light, can be understood in terms of quantum properties of the system state (entanglement, mixedness and light correlation functions). Our numerical anaylisis reveals the fundamental role of detuning on the coherence properties of the emitted light and on entanglement. In this sense, there is no polariton near resonance, even in the strong coupling regime. We show that the ``best'' polariton (maximally entangled matter-light state) is found when the exciton pumping rate is equal to the photon decay rate, and the detuning is of the order of three times the value of the coupling constant. The authors acknowledge partial financial support from Dirección de Investigación - Sede Bogotá, Universidad Nacional de Colombia (DIB-UNAL) under project 12584.

  20. Alternative method of quantum state tomography toward a typical target via a weak-value measurement

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Dai, Hong-Yi; Yang, Le; Zhang, Ming

    2018-03-01

    There is usually a limitation of weak interaction on the application of weak-value measurement. This limitation dominates the performance of the quantum state tomography toward a typical target in the finite and high-dimensional complex-valued superposition of its basis states, especially when the compressive sensing technique is also employed. Here we propose an alternative method of quantum state tomography, presented as a general model, toward such typical target via weak-value measurement to overcome such limitation. In this model the pointer for the weak-value measurement is a qubit, and the target-pointer coupling interaction is no longer needed within the weak interaction limitation, meanwhile this interaction under the compressive sensing can be described with the Taylor series of the unitary evolution operator. The postselection state at the target is the equal superposition of all basis states, and the pointer readouts are gathered under multiple Pauli operator measurements. The reconstructed quantum state is generated from an optimization algorithm of total variation augmented Lagrangian alternating direction algorithm. Furthermore, we demonstrate an example of this general model for the quantum state tomography toward the planar laser-energy distribution and discuss the relations among some parameters at both our general model and the original first-order approximate model for this tomography.

  1. Observation of Mollow Triplets with Tunable Interactions in Double Lambda Systems of Individual Hole Spins.

    NASA Astrophysics Data System (ADS)

    Lagoudakis, K. G.; Fischer, K. A.; Sarmiento, T.; McMahon, P. L.; Radulaski, M.; Zhang, J. L.; Kelaita, Y.; Dory, C.; Mueller, K. M.; Vuckovic, J.

    Although individual spins in quantum dots have been extensively used as qubits, their investigation under strong resonant driving in view of accessing Mollow physics is still an open question. We have grown high quality positively charged quantum dots (QD) embedded in a planar microcavity that enable enhanced light matter interactions. Applying a strong magnetic field in the Voigt configuration, individual positively charged quantum dots provide a double lambda level structure. Using a combination of above band and resonant excitation, we observe the formation of Mollow triplets. We investigate the regime where the Mollow sideband splittings are equal to the Zeeman splitting; we observe strong interactions between the Mollow sidebands of the inner transitions and the outer transitions in the form of very clear anticrossings. We investigated these anticrossings and we were able to modify the observed anticrossing splittings on demand by rotating the polarization of the resonant laser. We also developed a quantum-optical model of our system that fully captures the experimentally observed spectra and provides insight on the complicated level structure that results from the strong driving of our positively charged quantum dot. The authors acknowledge financial support from the Army Research Office (Grant No. W911NF1310309) and support from the National Science Foundation, Division of Materials Research (Grant No. 1503759).

  2. Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Kaiser, Uwe; Sabir, Nadeem; Carrillo-Carrion, Carolina; del Pino, Pablo; Bossi, Mariano; Heimbrodt, Wolfram; Parak, Wolfgang J.

    2016-02-01

    Manganese-doped CdS/ZnS quantum dots have been used as energy donors in a Förster-like resonance energy transfer (FRET) process to enhance the effective lifetime of organic fluorophores. It was possible to tune the effective lifetime of the fluorophores by about six orders of magnitude from the nanosecond (ns) up to the millisecond (ms) region. Undoped and Mn-doped CdS/ZnS quantum dots functionalized with different dye molecules were selected as a model system for investigating the multiple energy transfer process and the specific interaction between Mn ions and the attached dye molecules. While the lifetime of the free dye molecules was about 5 ns, their linking to undoped CdS/ZnS quantum dots led to a long effective lifetime of about 150 ns, following a non-exponential transient. Manganese-doped core-shell quantum dots further enhanced the long-lasting decay time of the dye to several ms. This opens up a pathway to analyse different fluorophores in the time domain with equal spectral emissions. Such lifetime multiplexing would be an interesting alternative to the commonly used spectral multiplexing in fluorescence detection schemes.

  3. Photosynthetic Characteristics of Five Hardwood Species in a Mixed Stand

    Treesearch

    Shi-Jean S. Sung; Paul P. Kormanik; Stanley J. Zarnoch

    1999-01-01

    In 1998, photosythesis (Pn) was measured in cherrybark oak, green ash, swamp chestnut oak, sweetgum, and water hickory in a mixed stand established in February 1994. Based on the apparent quantum yield obtained from light response curves, cherrybark oak had the lowest Pn in August whereas sweetgum, green ash, and water hickory were equally active in Pn. Daily August...

  4. Renormalizing the Kinetic Energy Operator in Elementary Quantum Mechanics

    ERIC Educational Resources Information Center

    Coutinho, F. A. B.; Amaku, M.

    2009-01-01

    In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly…

  5. Length filtration of the separable states.

    PubMed

    Chen, Lin; Ðoković, Dragomir Ž

    2016-11-01

    We investigate the separable states ρ of an arbitrary multi-partite quantum system with Hilbert space [Formula: see text] of dimension d . The length L ( ρ ) of ρ is defined as the smallest number of pure product states having ρ as their mixture. The length filtration of the set of separable states, [Formula: see text], is the increasing chain [Formula: see text], where [Formula: see text]. We define the maximum length, [Formula: see text], critical length, L crit , and yet another special length, L c , which was defined by a simple formula in one of our previous papers. The critical length indicates the first term in the length filtration whose dimension is equal to [Formula: see text]. We show that in general d ≤ L c ≤ L crit ≤ L max ≤ d 2 . We conjecture that the equality L crit = L c holds for all finite-dimensional multi-partite quantum systems. Our main result is that L crit = L c for the bipartite systems having a single qubit as one of the parties. This is accomplished by computing the rank of the Jacobian matrix of a suitable map having [Formula: see text] as its range.

  6. Theoretical L-shell Coster-Kronig energies 11 or equal to z or equal to 103

    NASA Technical Reports Server (NTRS)

    Chen, M. H.; Crasemann, B.; Huang, K. N.; Aoyagi, M.; Mark, H.

    1976-01-01

    Relativistic relaxed-orbital calculations of L-shell Coster-Kronig transition energies have been performed for all possible transitions in atoms with atomic numbers. Hartree-Fock-Slater wave functions served as zeroth-order eigenfunctions to compute the expectation of the total Hamiltonian. A first-order approximation to the local approximation was thus included. Quantum-electrodynamic corrections were made. Each transition energy was computed as the difference between results of separate self-consistent-field calculations for the initial, singly ionized state and the final two-hole state. The following quantities are listed: total transition energy, 'electric' (Dirac-Hartree-Fock-Slater) contribution, magnetic and retardation contributions, and contributions due to vacuum polarization and self energy.

  7. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  8. Quantum transport under ac drive from the leads: A Redfield quantum master equation approach

    NASA Astrophysics Data System (ADS)

    Purkayastha, Archak; Dubi, Yonatan

    2017-08-01

    Evaluating the time-dependent dynamics of driven open quantum systems is relevant for a theoretical description of many systems, including molecular junctions, quantum dots, cavity-QED experiments, cold atoms experiments, and more. Here, we formulate a rigorous microscopic theory of an out-of-equilibrium open quantum system of noninteracting particles on a lattice weakly coupled bilinearly to multiple baths and driven by periodically varying thermodynamic parameters like temperature and chemical potential of the bath. The particles can be either bosonic or fermionic and the lattice can be of any dimension and geometry. Based on the Redfield quantum master equation under Born-Markov approximation, we derive a linear differential equation for an equal time two point correlation matrix, sometimes also called a single-particle density matrix, from which various physical observables, for example, current, can be calculated. Various interesting physical effects, such as resonance, can be directly read off from the equations. Thus, our theory is quite general and gives quite transparent and easy-to-calculate results. We validate our theory by comparing with exact numerical simulations. We apply our method to a generic open quantum system, namely, a double quantum dot coupled to leads with modulating chemical potentials. The two most important experimentally relevant insights from this are as follows: (i) Time-dependent measurements of current for symmetric oscillating voltages (with zero instantaneous voltage bias) can point to the degree of asymmetry in the system-bath coupling and (ii) under certain conditions time-dependent currents can exceed time-averaged currents by several orders of magnitude, and can therefore be detected even when the average current is below the measurement threshold.

  9. Faithful Squashed Entanglement

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Christandl, Matthias; Yard, Jon

    2011-09-01

    Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, it is strictly positive if and only if the state is entangled. We derive the lower bound on squashed entanglement from a lower bound on the quantum conditional mutual information which is used to define squashed entanglement. The quantum conditional mutual information corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing. The distance to the set of separable states is measured in terms of the LOCC norm, an operationally motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and classical communication (LOCC) between the parties. A similar result for the Frobenius or Euclidean norm follows as an immediate consequence. The result has two applications in complexity theory. The first application is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in LOCC or Euclidean norm. The second application concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC operations thereby providing a new characterisation of the complexity class QMA.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, Mariana; Manolopoulos, David E.; Ceriotti, Michele

    Two of the most successful methods that are presently available for simulating the quantum dynamics of condensed phase systems are centroid molecular dynamics (CMD) and ring polymer molecular dynamics (RPMD). Despite their conceptual differences, practical implementations of these methods differ in just two respects: the choice of the Parrinello-Rahman mass matrix and whether or not a thermostat is applied to the internal modes of the ring polymer during the dynamics. Here, we explore a method which is halfway between the two approximations: we keep the path integral bead masses equal to the physical particle masses but attach a Langevin thermostatmore » to the internal modes of the ring polymer during the dynamics. We justify this by showing analytically that the inclusion of an internal mode thermostat does not affect any of the established features of RPMD: thermostatted RPMD is equally valid with respect to everything that has actually been proven about the method as RPMD itself. In particular, because of the choice of bead masses, the resulting method is still optimum in the short-time limit, and the transition state approximation to its reaction rate theory remains closely related to the semiclassical instanton approximation in the deep quantum tunneling regime. In effect, there is a continuous family of methods with these properties, parameterised by the strength of the Langevin friction. Here, we explore numerically how the approximation to quantum dynamics depends on this friction, with a particular emphasis on vibrational spectroscopy. We find that a broad range of frictions approaching optimal damping give similar results, and that these results are immune to both the resonance problem of RPMD and the curvature problem of CMD.« less

  11. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine

    NASA Astrophysics Data System (ADS)

    Xu, Y. Y.; Chen, B.; Liu, J.

    2018-02-01

    Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model—a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.

  12. Achieving the classical Carnot efficiency in a strongly coupled quantum heat engine.

    PubMed

    Xu, Y Y; Chen, B; Liu, J

    2018-02-01

    Generally, the efficiency of a heat engine strongly coupled with a heat bath is less than the classical Carnot efficiency. Through a model-independent method, we show that the classical Carnot efficiency is achieved in a strongly coupled quantum heat engine. First, we present the first law of quantum thermodynamics in strong coupling. Then, we show how to achieve the Carnot cycle and the classical Carnot efficiency at strong coupling. We find that this classical Carnot efficiency stems from the fact that the heat released in a nonequilibrium process is balanced by the absorbed heat. We also analyze the restrictions in the achievement of the Carnot cycle. The first restriction is that there must be two corresponding intervals of the controllable parameter in which the corresponding entropies of the work substance at the hot and cold temperatures are equal, and the second is that the entropy of the initial and final states in a nonequilibrium process must be equal. Through these restrictions, we obtain the positive work conditions, including the usual one in which the hot temperature should be higher than the cold, and a new one in which there must be an entropy interval at the hot temperature overlapping that at the cold. We demonstrate our result through a paradigmatic model-a two-level system in which a work substance strongly interacts with a heat bath. In this model, we find that the efficiency may abruptly decrease to zero due to the first restriction, and that the second restriction results in the control scheme becoming complex.

  13. Rényi squashed entanglement, discord, and relative entropy differences

    NASA Astrophysics Data System (ADS)

    Seshadreesan, Kaushik P.; Berta, Mario; Wilde, Mark M.

    2015-10-01

    The squashed entanglement quantifies the amount of entanglement in a bipartite quantum state, and it satisfies all of the axioms desired for an entanglement measure. The quantum discord is a measure of quantum correlations that are different from those due to entanglement. What these two measures have in common is that they are both based upon the conditional quantum mutual information. In Berta et al (2015 J. Math. Phys. 56 022205), we recently proposed Rényi generalizations of the conditional quantum mutual information of a tripartite state on ABC (with C being the conditioning system), which were shown to satisfy some properties that hold for the original quantity, such as non-negativity, duality, and monotonicity with respect to local operations on the system B (with it being left open to show that the Rényi quantity is monotone with respect to local operations on system A). Here we define a Rényi squashed entanglement and a Rényi quantum discord based on a Rényi conditional quantum mutual information and investigate these quantities in detail. Taking as a conjecture that the Rényi conditional quantum mutual information is monotone with respect to local operations on both systems A and B, we prove that the Rényi squashed entanglement and the Rényi quantum discord satisfy many of the properties of the respective original von Neumann entropy based quantities. In our prior work (Berta et al 2015 Phys. Rev. A 91 022333), we also detailed a procedure to obtain Rényi generalizations of any quantum information measure that is equal to a linear combination of von Neumann entropies with coefficients chosen from the set \\{-1,0,1\\}. Here, we extend this procedure to include differences of relative entropies. Using the extended procedure and a conjectured monotonicity of the Rényi generalizations in the Rényi parameter, we discuss potential remainder terms for well known inequalities such as monotonicity of the relative entropy, joint convexity of the relative entropy, and the Holevo bound.

  14. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length a B to the fermion scattering length a 2D. We find a B ≃ 0.56a 2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less

  15. On the degree conjecture for separability of multipartite quantum states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Ali Saif M.; Joag, Pramod S.

    2008-01-15

    We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matricesmore » match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.« less

  16. Multipartite quantum correlations and local recoverability

    PubMed Central

    Wilde, Mark M.

    2015-01-01

    Characterizing genuine multipartite quantum correlations in quantum physical systems has historically been a challenging problem in quantum information theory. More recently, however, the total correlation or multipartite information measure has been helpful in accomplishing this goal, especially with the multipartite symmetric quantum (MSQ) discord (Piani et al. 2008 Phys. Rev. Lett. 100, 090502. (doi:10.1103/PhysRevLett.100.090502)) and the conditional entanglement of multipartite information (CEMI) (Yang et al. 2008 Phys. Rev. Lett. 101, 140501. (doi:10.1103/PhysRevLett.101.140501)). Here, we apply a recent and significant improvement of strong subadditivity of quantum entropy (Fawzi & Renner 2014 (http://arxiv.org/abs/1410.0664)) in order to develop these quantities further. In particular, we prove that the MSQ discord is nearly equal to zero if and only if the multipartite state for which it is evaluated is approximately locally recoverable after performing measurements on each of its systems. Furthermore, we prove that the CEMI is a faithful entanglement measure, i.e. it vanishes if and only if the multipartite state for which it is evaluated is a fully separable state. Along the way, we provide an operational interpretation of the MSQ discord in terms of the partial state distribution protocol, which in turn, as a special case, gives an interpretation for the original discord quantity. Finally, we prove an inequality that could potentially improve upon the Fawzi–Renner inequality in the multipartite context, but it remains an open question to determine whether this is so. PMID:27547097

  17. Center for Hybrid Communications and Networks

    DTIC Science & Technology

    2016-09-08

    Transmission loop experimental setup to study coded modulation and turbo equalization for metro and long-haul networks, 3) Experimental setup for...undertaking fundamental studies of QKD systems that use ( hyper -) entangled photon pairs or weak coherent states (WCS) as the quantum resources...onlinelibrary.wiley.com/doi/10.1002/047134608X.W8291/abstract] The real-time scope and AWG are also used in fiber-optics transmission loop experiment we

  18. Atomic Schroedinger cat-like states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez-Flores, Marco; Rosas-Ortiz, Oscar; Departamento de Fisica, Cinvestav, A.P. 14-740, Mexico D.F. 07000

    2010-10-11

    After a short overview of the basic mathematical structure of quantum mechanics we analyze the Schroedinger's antinomic example of a living and dead cat mixed in equal parts. Superpositions of Glauber kets are shown to approximate such macroscopic states. Then, two-level atomic states are used to construct mesoscopic kittens as appropriate linear combinations of angular momentum eigenkets for j = 1/2. Some general comments close the present contribution.

  19. A combined electronegativity equalization and electrostatic potential fit method for the determination of atomic point charges.

    PubMed

    Berente, Imre; Czinki, Eszter; Náray-Szabó, Gábor

    2007-09-01

    We report an approach for the determination of atomic monopoles of macromolecular systems using connectivity and geometry parameters alone. The method is appropriate also for the calculation of charge distributions based on the quantum mechanically determined wave function and does not suffer from the mathematical instability of other electrostatic potential fit methods. Copyright 2007 Wiley Periodicals, Inc.

  20. Geometrization of the Dirac theory of the electron

    NASA Technical Reports Server (NTRS)

    Fock, V.

    1977-01-01

    Using the concept of parallel displacement of a half vector, the Dirac equations are generally written in invariant form. The energy tensor is formed and both the macroscopic and quantum mechanic equations of motion are set up. The former have the usual form: divergence of the energy tensor equals the Lorentz force and the latter are essentially identical with those of the geodesic line.

  1. Complexity, action, and black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard

    In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  2. Complexity, action, and black holes

    DOE PAGES

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; ...

    2016-04-18

    In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume-Kohout, Robin J; Scholten, Travis L.

    Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint ρ ≥ 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) shouldmore » not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.« less

  4. Kibble Zurek mechanism of topological defect formation in quantum field theory with matrix product states

    NASA Astrophysics Data System (ADS)

    Gillman, Edward; Rajantie, Arttu

    2018-05-01

    The Kibble Zurek mechanism in a relativistic ϕ4 scalar field theory in D =(1 +1 ) is studied using uniform matrix product states. The equal time two point function in momentum space G2(k ) is approximated as the system is driven through a quantum phase transition at a variety of different quench rates τQ. We focus on looking for signatures of topological defect formation in the system and demonstrate the consistency of the picture that the two point function G2(k ) displays two characteristic scales, the defect density n and the kink width dK. Consequently, G2(k ) provides a clear signature for the formation of defects and a well defined measure of the defect density in the system. These results provide a benchmark for the use of tensor networks as powerful nonperturbative nonequilibrium methods for relativistic quantum field theory, providing a promising technique for the future study of high energy physics and cosmology.

  5. Quantum Monte Carlo studies of solvated systems

    NASA Astrophysics Data System (ADS)

    Schwarz, Kathleen; Letchworth Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2011-03-01

    Solvation qualitatively alters the energetics of diverse processes from protein folding to reactions on catalytic surfaces. An explicit description of the solvent in quantum-mechanical calculations requires both a large number of electrons and exploration of a large number of configurations in the phase space of the solvent. These problems can be circumvented by including the effects of solvent through a rigorous classical density-functional description of the liquid environment, thereby yielding free energies and thermodynamic averages directly, while eliminating the need for explicit consideration of the solvent electrons. We have implemented and tested this approach within the CASINO Quantum Monte Carlo code. Our method is suitable for calculations in any basis within CASINO, including b-spline and plane wave trial wavefunctions, and is equally applicable to molecules, surfaces, and crystals. For our preliminary test calculations, we use a simplified description of the solvent in terms of an isodensity continuum dielectric solvation approach, though the method is fully compatible with more reliable descriptions of the solvent we shall employ in the future.

  6. Double slit experiment with quantum detectors: mysteries, meanings, misinterpretations and measurement

    NASA Astrophysics Data System (ADS)

    Rameez-ul-Islam; Ikram, Manzoor; Hasan Mujtaba, Abid; Abbas, Tasawar

    2018-01-01

    We propose an idea for symmetric measurements through the famous double slit experiment (DSE) in a new detection scenario. The interferometric setup is complemented here with quantum detectors that switch to an arbitrary superposition after interaction with the arms of the DSE. The envisioned schematics cover the full measurement range, i.e. from the weak to the strong projective situation with selectivity being a smoothly tunable open option, and suggests an alternative methodology for weak measurements based on information overlap from DSE paths. The results, though generally in agreement with the quantum paradigm, raise many questions over the nature of probabilities, the absurdity of the common language for phenomena’s description in the theory and the boundary separating the projective/non-projective measurements, and the related misconceived interpretations. Further, the results impose certain constraints over the hidden variable theories as well as on the repercussions of the weak measurements. Although described as a thought experiment, the proposal can equally be implemented experimentally under a prevailing research scenario.

  7. Enhancement of the spontaneous emission in subwavelength quasi-two-dimensional waveguides and resonators

    NASA Astrophysics Data System (ADS)

    Tokman, Mikhail; Long, Zhongqu; AlMutairi, Sultan; Wang, Yongrui; Belkin, Mikhail; Belyanin, Alexey

    2018-04-01

    We consider a quantum-electrodynamic problem of the spontaneous emission from a two-dimensional (2D) emitter, such as a quantum well or a 2D semiconductor, placed in a quasi-2D waveguide or cavity with subwavelength confinement in one direction. We apply the Heisenberg-Langevin approach, which includes dissipation and fluctuations in the electron ensemble and in the electromagnetic field of a cavity on equal footing. The Langevin noise operators that we introduce do not depend on any particular model of dissipative reservoir and can be applied to any dissipation mechanism. Moreover, our approach is applicable to nonequilibrium electron systems, e.g., in the presence of pumping, beyond the applicability of the standard fluctuation-dissipation theorem. We derive analytic results for simple but practically important geometries: strip lines and rectangular cavities. Our results show that a significant enhancement of the spontaneous emission, by a factor of order 100 or higher, is possible for quantum wells and other 2D emitters in a subwavelength cavity.

  8. Secure uniform random-number extraction via incoherent strategies

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito; Zhu, Huangjun

    2018-01-01

    To guarantee the security of uniform random numbers generated by a quantum random-number generator, we study secure extraction of uniform random numbers when the environment of a given quantum state is controlled by the third party, the eavesdropper. Here we restrict our operations to incoherent strategies that are composed of the measurement on the computational basis and incoherent operations (or incoherence-preserving operations). We show that the maximum secure extraction rate is equal to the relative entropy of coherence. By contrast, the coherence of formation gives the extraction rate when a certain constraint is imposed on the eavesdropper's operations. The condition under which the two extraction rates coincide is then determined. Furthermore, we find that the exponential decreasing rate of the leaked information is characterized by Rényi relative entropies of coherence. These results clarify the power of incoherent strategies in random-number generation, and can be applied to guarantee the quality of random numbers generated by a quantum random-number generator.

  9. Electron-electron correlation in two-photon double ionization of He-like ions

    NASA Astrophysics Data System (ADS)

    Hu, S. X.

    2018-01-01

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.

  10. Unifying Physics

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2013-04-01

    Century old GR fails to unify quantum physics, nuclear force or distinguish between the mass of living bodies from inert mass. Probabilistic gravity [1] explains strong coupling (nuclear force). The natural log of the age of the universe, 10E60 in Planck times, equaling 137 (1/Alpha) extends physics to deeper science, if we stand on the shoulders of giants like Feynman and Gamow. Implications of [1] are that it is not the earth, but M and S numbers of the particles of the earth are remotely interacting with corresponding numbers of the particles of the moon and the sun respectively, neglecting other heavenly bodies in this short draft. This new physics is likely to enable creative scientific minds to throw light on a theoretical basis for an otherwise arbitrary cosmological constant, uniformity of microwave background, further vindication of Boltzmann, quantum informatics, Einstein’s later publicized views and more, eliminating the need to spend money for implicitly nonexistent quantum gravity and graviton.[4pt] [1] Journal of Physical Science and Applications 2 (7) (2012) 265-268.

  11. Geometric descriptions of entangled states by auxiliary varieties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holweck, Frederic; Luque, Jean-Gabriel; Thibon, Jean-Yves

    2012-10-15

    The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 Multiplication-Sign 2 Multiplication-Sign (n+ 1), for n Greater-Than-Or-Slanted-Equal-To 1, quantum systems and a new description with the 2 Multiplication-Sign 3 Multiplication-Sign 3 quantum system. Our results complete themore » approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.« less

  12. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electronmore » microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.« less

  13. A CCD-based reader combined with CdS quantum dot-labeled lateral flow strips for ultrasensitive quantitative detection of CagA

    NASA Astrophysics Data System (ADS)

    Gui, Chen; Wang, Kan; Li, Chao; Dai, Xuan; Cui, Daxiang

    2014-02-01

    Immunochromatographic assays are widely used to detect many analytes. CagA is proved to be associated closely with initiation of gastric carcinoma. Here, we reported that a charge-coupled device (CCD)-based test strip reader combined with CdS quantum dot-labeled lateral flow strips for quantitative detection of CagA was developed, which used 365-nm ultraviolet LED as the excitation light source, and captured the test strip images through an acquisition module. Then, the captured image was transferred to the computer and was processed by a software system. A revised weighted threshold histogram equalization (WTHE) image processing algorithm was applied to analyze the result. CdS quantum dot-labeled lateral flow strips for detection of CagA were prepared. One hundred sera samples from clinical patients with gastric cancer and healthy people were prepared for detection, which demonstrated that the device could realize rapid, stable, and point-of-care detection, with a sensitivity of 20 pg/mL.

  14. Continuous-time quantum Monte Carlo calculation of multiorbital vertex asymptotics

    NASA Astrophysics Data System (ADS)

    Kaufmann, Josef; Gunacker, Patrik; Held, Karsten

    2017-07-01

    We derive the equations for calculating the high-frequency asymptotics of the local two-particle vertex function for a multiorbital impurity model. These relate the asymptotics for a general local interaction to equal-time two-particle Green's functions, which we sample using continuous-time quantum Monte Carlo simulations with a worm algorithm. As specific examples we study the single-orbital Hubbard model and the three t2 g orbitals of SrVO3 within dynamical mean-field theory (DMFT). We demonstrate how the knowledge of the high-frequency asymptotics reduces the statistical uncertainties of the vertex and further eliminates finite-box-size effects. The proposed method benefits the calculation of nonlocal susceptibilities in DMFT and diagrammatic extensions of DMFT.

  15. Role of the kinematics of probing electrons in electron energy-loss spectroscopy of solid surfaces

    NASA Astrophysics Data System (ADS)

    Nazarov, V. U.; Silkin, V. M.; Krasovskii, E. E.

    2016-01-01

    Inelastic scattering of electrons incident on a solid surface is determined by two properties: (i) electronic response of the target system and (ii) the detailed quantum-mechanical motion of the projectile electron inside and in the vicinity of the target. We emphasize the equal importance of the second ingredient, pointing out the fundamental limitations of the conventionally used theoretical description of the electron energy-loss spectroscopy (EELS) in terms of the "energy-loss functions." Our approach encompasses the dipole and impact scattering as specific cases, with the emphasis on the quantum-mechanical treatment of the probe electron. Applied to the high-resolution EELS of Ag surface, our theory largely agrees with recent experiments, while some instructive exceptions are rationalized.

  16. Cryptanalysis of the Quantum Private Comparison Protocol Based on the Entanglement Swapping Between Three-Particle W-Class State and Bell State

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhang, Shi-Bin; Chang, Yan; Yang, Fan; Zhang, Yan

    2018-02-01

    Recently, Li et al. (Int. J. Theor. Phys. 55, 1710-1718, 2016) proposed a Quantum Private Comparison (QPC) protocol based on the Entanglement Swapping Between Three-Particle W-Class State and Bell State. Two parties can check whether their secret information is equal or not with the help of the semi-honest third party (TP). However in this paper, we will point out this kind of semi-honest TP is unreasonable. If we relax the constraint of the semi-honest TP, by using the fake signal attack, TP can know the whole secret information illegally. At last, we give our improvement, which can make this protocol more secure.

  17. Development of authentication code for multi-access optical code division multiplexing based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.

    2018-05-01

    One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.

  18. Nonclassicality of Photon-Added Displaced Thermal State via Quantum Phase-Space Distributions

    NASA Astrophysics Data System (ADS)

    Zhang, Ran; Meng, Xiang-Guo; Du, Chuan-Xun; Wang, Ji-Suo

    2018-02-01

    We introduce a new kind of nonclassical mixed state generated by adding arbitrary photons to a displaced thermal state, i.e., the photon-added displaced thermal state (PADTS), and obtain the normalization factor, which is simply related to two-variable Hermite polynomials. We also discuss the nonclassicality of the PADTS by considering quantum phase-space distributions. The results indicate that the value of the photon count statistics is maximum when the number of detected photons is equal to the number of added photons, and that the photon-added operation has a similar modulation effect with increasing displacement. Moreover, the negative volume of the Wigner function for the PADTS takes a maximal value for a specific photon-added number.

  19. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Magnetic Manipulation of Massless Dirac Fermions in Graphene Quantum Dot

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Pan, Hui; Xu, Huai-Zhe

    2010-12-01

    We have theoretically analyzed the quasibound states in a graphene quantum dot (GQD) with a magnetic flux Φ in the centre. It is shown that the two-fold time reversal degeneracy is broken and the quasibound states of GQD with positive/negative angular momentum shifted upwards / downwards with increasing the magnetic flux. The variation of the quasibound energy depends linearly on the magnetic flux, which is quite different from the parabolic relationship for Schrödinger electrons. The GQD's quasibound states spectrum shows an obvious Aharonov—Bohm (AB) oscillations with the magnetic flux. It is also shown that the quasibound state with energy equal to the barrier height becomes a bound state completely confined in GQD.

  20. Cryptanalysis of the Quantum Private Comparison Protocol Based on the Entanglement Swapping Between Three-Particle W-Class State and Bell State

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhang, Shi-Bin; Chang, Yan; Yang, Fan; Zhang, Yan

    2018-06-01

    Recently, Li et al. (Int. J. Theor. Phys. 55, 1710-1718, 2016) proposed a Quantum Private Comparison (QPC) protocol based on the Entanglement Swapping Between Three-Particle W-Class State and Bell State. Two parties can check whether their secret information is equal or not with the help of the semi-honest third party (TP). However in this paper, we will point out this kind of semi-honest TP is unreasonable. If we relax the constraint of the semi-honest TP, by using the fake signal attack, TP can know the whole secret information illegally. At last, we give our improvement, which can make this protocol more secure.

  1. Information Conservation is Fundamental: Recovering the Lost Information in Hawking Radiation

    NASA Astrophysics Data System (ADS)

    Zhang, Baocheng; Cai, Qing-Yu; Zhan, Ming-Sheng; You, Li

    2013-06-01

    In both classical and quantum world, information cannot appear or disappear. This fundamental principle, however, is questioned for a black hole, by the acclaimed "information loss paradox." Based on the conservation laws of energy, charge, and angular momentum, we recently show the total information encoded in the correlations among Hawking radiations equals exactly to the same amount previously considered lost, assuming the nonthermal spectrum of Parikh and Wilczek. Thus the information loss paradox can be falsified through experiments by detecting correlations, for instance, through measuring the covariances of Hawking radiations from black holes, such as the manmade ones speculated to appear in LHC experiments. The affirmation of information conservation in Hawking radiation will shine new light on the unification of gravity with quantum mechanics.

  2. Efficient Polar Coding of Quantum Information

    NASA Astrophysics Data System (ADS)

    Renes, Joseph M.; Dupuis, Frédéric; Renner, Renato

    2012-08-01

    Polar coding, introduced 2008 by Arıkan, is the first (very) efficiently encodable and decodable coding scheme whose information transmission rate provably achieves the Shannon bound for classical discrete memoryless channels in the asymptotic limit of large block sizes. Here, we study the use of polar codes for the transmission of quantum information. Focusing on the case of qubit Pauli channels and qubit erasure channels, we use classical polar codes to construct a coding scheme that asymptotically achieves a net transmission rate equal to the coherent information using efficient encoding and decoding operations and code construction. Our codes generally require preshared entanglement between sender and receiver, but for channels with a sufficiently low noise level we demonstrate that the rate of preshared entanglement required is zero.

  3. A Theoretical Approach to Selection of a Biologically Active Substance in Ultra-Low Doses for Effective Action on a Biological System.

    PubMed

    Boldyreva, Liudmila Borisovna

    2018-05-01

     An approach is offered to selecting a biologically active substance (BAS) in ultra-low dose for effective action on a biological system (BS). The technique is based on the assumption that BAS in ultra-low doses exerts action on BS by means of spin supercurrent emerging between the spin structure created by BAS, on the one hand, and the spin structure created by BS, on the other hand. According to modern quantum-mechanical concepts, these spin structures may be virtual particles pairs having precessing spin (that is, be essentially spin vortices in the physical vacuum) and created by the quantum entities that BAS and BS consist of. The action is effective provided there is equality of precession frequencies of spins in these spin structures.  In this work, some methods are considered for determining the precession frequencies of spins in virtual particles pairs: (1) determination of energy levels of quantum entities that BS and BAS consist of; (2) the use of spin-flip effect of the virtual particles pair spin, the effect being initiated by action of magnetic vector potential (the spin-flip effect takes place when the varied frequency of the magnetic vector potential equals the precession frequency of the spin); (3) determining the frequencies of photons effectively acting on BS.  It is shown that the effect of BAS in ultra-low doses on BS can be replaced by the effect of a beam of low-intensity photons, if the frequency of photons equals the precession frequency of spin in spin structures created by BS. Consequently, the color of bodies placed near a biological system is able to exert an effective action on the biological system: that is "color therapy" is possible. It is also supposed that the spin-flip effect may be used not only for determining the precession frequency of spin in spin structures created by BS but also for therapeutic action on biological systems. The Faculty of Homeopathy.

  4. Analysis of entanglement measures and LOCC maximized quantum Fisher information of general two qubit systems.

    PubMed

    Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali

    2014-06-24

    Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa.

  5. Analysis of Entanglement Measures and LOCC Maximized Quantum Fisher Information of General Two Qubit Systems

    PubMed Central

    Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali

    2014-01-01

    Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa. PMID:24957694

  6. Loop Quantization and Symmetry: Configuration Spaces

    NASA Astrophysics Data System (ADS)

    Fleischhack, Christian

    2018-06-01

    Given two sets S 1, S 2 and unital C *-algebras A_1, A_2 of functions thereon, we show that a map {σ : {S}_1 \\longrightarrow {S}_2} can be lifted to a continuous map \\barσ : spec A_1 \\longrightarrow spec A_2 iff σ^\\ast A_2 := σ^\\ast f | f \\in A_2 \\subseteq A_1. Moreover, \\bar σ is unique if existing, and injective iff σ^\\ast A_2 is dense. Then, we apply these results to loop quantum gravity and loop quantum cosmology. For all usual technical conventions, we decide whether the cosmological quantum configuration space is embedded into the gravitational one; indeed, both are spectra of some C *-algebras, say, A_cosm and A_grav, respectively. Typically, there is no embedding, but one can always get an embedding by the defining A_cosm := C^\\ast(σ^\\ast A_grav), where {σ} denotes the embedding between the classical configuration spaces. Finally, we explicitly determine {C^\\ast(σ^\\ast A_grav) in the homogeneous isotropic case for A_grav generated by the matrix functions of parallel transports along analytic paths. The cosmological quantum configuration space so equals the disjoint union of R and the Bohr compactification of R, appropriately glued together.

  7. Loop Quantization and Symmetry: Configuration Spaces

    NASA Astrophysics Data System (ADS)

    Fleischhack, Christian

    2018-04-01

    Given two sets S 1, S 2 and unital C *-algebras A_1, A_2 of functions thereon, we show that a map σ : S_1 \\longrightarrow S_2 can be lifted to a continuous map \\barσ : spec A_1 \\longrightarrow spec A_2 iff σ^\\ast A_2 := σ^\\ast f | f \\in A_2 \\subseteq A_1. Moreover, \\bar σ is unique if existing, and injective iff {σ^\\ast A_2 is dense. Then, we apply these results to loop quantum gravity and loop quantum cosmology. For all usual technical conventions, we decide whether the cosmological quantum configuration space is embedded into the gravitational one; indeed, both are spectra of some C *-algebras, say, A_cosm and A_grav, respectively. Typically, there is no embedding, but one can always get an embedding by the defining A_cosm := C^\\ast(σ^\\ast A_grav), where σ denotes the embedding between the classical configuration spaces. Finally, we explicitly determine C^\\ast(σ^\\ast A_grav) in the homogeneous isotropic case for A_grav generated by the matrix functions of parallel transports along analytic paths. The cosmological quantum configuration space so equals the disjoint union of R and the Bohr compactification of R , appropriately glued together.

  8. Optical nonlinearities of colloidal InP@ZnS core-shell quantum dots probed by Z-scan and two-photon excited emission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wawrzynczyk, Dominika; Szeremeta, Janusz; Samoc, Marek

    Spectrally resolved nonlinear optical properties of colloidal InP@ZnS core-shell quantum dots of various sizes were investigated with the Z-scan technique and two-photon fluorescence excitation method using a femtosecond laser system tunable in the range from 750 nm to 1600 nm. In principle, both techniques should provide comparable results and can be interchangeably used for determination of the nonlinear optical absorption parameters, finding maximal values of the cross sections and optimizing them. We have observed slight differences between the two-photon absorption cross sections measured by the two techniques and attributed them to the presence of non-radiative paths of absorption or relaxation.more » The most significant value of two-photon absorption cross section σ{sub 2} for 4.3 nm size InP@ZnS quantum dot was equal to 2200 GM, while the two-photon excitation action cross section σ{sub 2}Φ was found to be 682 GM at 880 nm. The properties of these cadmium-free colloidal quantum dots can be potentially useful for nonlinear bioimaging.« less

  9. Enhancement of photoluminescence from GaInNAsSb quantum wells upon annealing: improvement of material quality and carrier collection by the quantum well.

    PubMed

    Baranowski, M; Kudrawiec, R; Latkowska, M; Syperek, M; Misiewicz, J; Sarmiento, T; Harris, J S

    2013-02-13

    In this study we apply time resolved photoluminescence and contactless electroreflectance to study the carrier collection efficiency of a GaInNAsSb/GaAs quantum well (QW). We show that the enhancement of photoluminescence from GaInNAsSb quantum wells annealed at different temperatures originates not only from (i) the improvement of the optical quality of the GaInNAsSb material (i.e., removal of point defects, which are the source of nonradiative recombination) but it is also affected by (ii) the improvement of carrier collection by the QW region. The total PL efficiency is the product of these two factors, for which the optimal annealing temperatures are found to be ~700 °C and ~760 °C, respectively, whereas the optimal annealing temperature for the integrated PL intensity is found to be between the two temperatures and equals ~720 °C. We connect the variation of the carrier collection efficiency with the modification of the band bending conditions in the investigated structure due to the Fermi level shift in the GaInNAsSb layer after annealing.

  10. Exclusivity structures and graph representatives of local complementation orbits

    NASA Astrophysics Data System (ADS)

    Cabello, Adán; Parker, Matthew G.; Scarpa, Giannicola; Severini, Simone

    2013-07-01

    We describe a construction that maps any connected graph G on three or more vertices into a larger graph, H(G), whose independence number is strictly smaller than its Lovász number which is equal to its fractional packing number. The vertices of H(G) represent all possible events consistent with the stabilizer group of the graph state associated with G, and exclusive events are adjacent. Mathematically, the graph H(G) corresponds to the orbit of G under local complementation. Physically, the construction translates into graph-theoretic terms the connection between a graph state and a Bell inequality maximally violated by quantum mechanics. In the context of zero-error information theory, the construction suggests a protocol achieving the maximum rate of entanglement-assisted capacity, a quantum mechanical analogue of the Shannon capacity, for each H(G). The violation of the Bell inequality is expressed by the one-shot version of this capacity being strictly larger than the independence number. Finally, given the correspondence between graphs and exclusivity structures, we are able to compute the independence number for certain infinite families of graphs with the use of quantum non-locality, therefore highlighting an application of quantum theory in the proof of a purely combinatorial statement.

  11. Our (Represented) World: A Quantum-Like Object

    NASA Astrophysics Data System (ADS)

    Lambert-Mogiliansky, Ariane; Dubois, François

    It has been suggested that observed cognitive limitations may be an expression of the quantum-like structure of the mind. In this chapter we explore some implications of this hypothesis for learning i.e., for the construction of a representation of the world. For a quantum-like individual, there exists a multiplicity of mentally incompatible (Bohr complementary) but equally valid and complete representations (mental pictures) of the world. The process of learning i.e., of constructing a representation, involves two kinds of operations on the mental picture. The acquisition of new data which is modelled as a preparation procedure and the processing of data which is modelled as an introspective measurement operation. This process is shown not to converge to a single mental picture. Rather, it can evolve forever. We define a concept of entropy to capture relative intrinsic uncertainty. The analysis suggests a new perspective on learning. First, it implies that we must turn to double objectification as in Quantum Mechanics: the cognitive process is the primary object of learning. Second, it suggests that a representation of the world arises as the result of creative interplay between the mind and the environment.

  12. Quantum Anomalous Hall Effect in Low-buckled Honeycomb Lattice with In-plane Magnetization

    NASA Astrophysics Data System (ADS)

    Ren, Yafei; Pan, Hui; Yang, Fei; Li, Xin; Qiao, Zhenhua; Zhenhua Qiao's Group Team; Hui Pan's Group Team

    With out-of-plane magnetization, the quantum anomalous Hall effect has been extensively studied in quantum wells and two-dimensional atomic crystal layers. Here, we investigate the possibility of realizing quantum anomalous Hall effect (QAHE) in honeycomb lattices with in-plane magnetization. We show that the QAHE can only occur in low-buckled honeycomb lattice where both intrinsic and intrinsic Rashba spin-orbit coupling appear spontaneously. The extrinsic Rashba spin-orbit coupling is detrimental to this phase. In contrast to the out-of-plane magnetization induced QAHE, the QAHE from in-plane magnetization is achieved in the vicinity of the time reversal symmetric momenta at M points rather than Dirac points. In monolayer case, the QAHE can be characterized by Chern number  = +/- 1 whereas additional phases with Chern number  = +/- 2 appear in chiral stacked bilayer system. The Chern number strongly depends on the orientation of the magnetization. The bilayer system also provides additional tunability via out-of-plane electric field, which can reduce the critical magnetization strength required to induce QAHE. It can also lead to topological phase transitions from  = +/- 2 to +/- 1 and finally to 0 Equal contribution from Yafei Ren and Hui Pan.

  13. In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mombrú, Dominique; Romero, Mariano, E-mail: mromero@fq.edu.uy; Faccio, Ricardo, E-mail: rfaccio@fq.edu.uy

    In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. Inmore » addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of ~3–8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications. - Highlights: • In situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion. • Polyaniline charge carriers at the interface and charge interactions between quantum dots. • Easy extrapolation to sol-gel derived quantum dots into polymer host as potential electrode materials.« less

  14. High-fidelity gates in quantum dot spin qubits

    PubMed Central

    Koh, Teck Seng; Coppersmith, S. N.; Friesen, Mark

    2013-01-01

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet–triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning ϵ, which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound that is specific to the qubit-gate combination. We show that similar gate fidelities should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins. PMID:24255105

  15. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1/2 coupled to an arbitrary spin.

    PubMed

    Altintas, Ferdi; Müstecaplıoğlu, Özgür E

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1/2 and the other with an arbitrary spin (spin s), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  16. The ABC model of recombination reinterpreted: Impact on understanding carrier transport and efficiency droop in InGaN/GaN light emitting diodes

    NASA Astrophysics Data System (ADS)

    Hopkins, M. A.; Allsopp, D. W. E.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J.

    2017-12-01

    The efficiency of light emitting diodes (LEDs) remains a topic of great contemporary interest due to their potential to reduce the amount of energy consumed in lighting. The current consensus is that electrons and holes distribute themselves through the emissive region by a drift-diffusion process which results in a highly non-uniform distribution of the light emission and can reduce efficiency. In this paper, the measured variations in the external quantum efficiency of a range of InGaN/GaN LEDs with different numbers of quantum wells (QWs) are shown to compare closely with the predictions of a revised ABC model, in which it is assumed that the electrically injected electrons and holes are uniformly distributed through the multi-quantum well (MQW) region, or nearly so, and hence carrier recombination occurs equally in all the quantum wells. The implications of the reported results are that drift-diffusion plays a far lesser role in cross-well carrier transport than previously thought; that the dominant cause of efficiency droop is intrinsic to the quantum wells and that reductions in the density of non-radiative recombination centers in the MQW would enable the use of more QWs and thereby reduce Auger losses by spreading carriers more evenly across a wider emissive region.

  17. General formalism of local thermodynamics with an example: Quantum Otto engine with a spin-1 /2 coupled to an arbitrary spin

    NASA Astrophysics Data System (ADS)

    Altintas, Ferdi; Müstecaplıoǧlu, Ã.-zgür E.

    2015-08-01

    We investigate a quantum heat engine with a working substance of two particles, one with a spin-1 /2 and the other with an arbitrary spin (spin s ), coupled by Heisenberg exchange interaction, and subject to an external magnetic field. The engine operates in a quantum Otto cycle. Work harvested in the cycle and its efficiency are calculated using quantum thermodynamical definitions. It is found that the engine has higher efficiencies at higher spins and can harvest work at higher exchange interaction strengths. The role of exchange coupling and spin s on the work output and the thermal efficiency is studied in detail. In addition, the engine operation is analyzed from the perspective of local work and efficiency. We develop a general formalism to explore local thermodynamics applicable to any coupled bipartite system. Our general framework allows for examination of local thermodynamics even when global parameters of the system are varied in thermodynamic cycles. The generalized definitions of local and cooperative work are introduced by using mean field Hamiltonians. The general conditions for which the global work is not equal to the sum of the local works are given in terms of the covariance of the subsystems. Our coupled spin quantum Otto engine is used as an example of the general formalism.

  18. ANTIHYDROGEN PRODUCTION AND PRECISION SPECTROSCOPY WITH ATHENA/AD-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. HOLZSCHEITER; C. AMSLER; ET AL

    2000-11-01

    CPT invariance is a fundamental property of quantum field theories in flat space-time. Principal consequences include the predictions that particles and their antiparticles have equal masses and lifetimes, and equal and opposite electric charges and magnetic moments. It also follows that the fine structure, hyperfine structure, and Lamb shifts of matter and antimatter bound systems should be identical. It is proposed to generate new stringent tests of CPT using precision spectroscopy on antihydrogen atoms. An experiment to produce antihydrogen at rest has been approved for running at the Antiproton Decelerator (AD) at CERN. We describe the fundamental features of thismore » experiment and the experimental approach to the first phase of the program, the formation and identification of low energy antihydrogen.« less

  19. Quantum yield measurements of light-induced H₂ generation in a photosystem I-[FeFe]-H₂ase nanoconstruct.

    PubMed

    Applegate, Amanda M; Lubner, Carolyn E; Knörzer, Philipp; Happe, Thomas; Golbeck, John H

    2016-01-01

    The quantum yield for light-induced H2 generation was measured for a previously optimized bio-hybrid cytochrome c 6-crosslinked PSI(C13G)-1,8-octanedithiol-[FeFe]-H2ase(C97G) (PSI-H2ase) nanoconstruct. The theoretical quantum yield for the PSI-H2ase nanoconstruct is 0.50 molecules of H2 per photon absorbed, which equates to a requirement of two photons per H2 generated. Illumination of the PSI-H2ase nanoconstruct with visible light between 400 and 700 nm resulted in an average quantum yield of 0.10-0.15 molecules of H2 per photon absorbed, which equates to a requirement of 6.7-10 photons per H2 generated. A possible reason for the difference between the theoretical and experimental quantum yield is the occurrence of non-productive PSI(C13G)-1,8-octanedithiol-PSIC13G (PSI-PSI) conjugates, which would absorb light without generating H2. Assuming the thiol-Fe coupling is equally efficient at producing PSI-PSI conjugates as well as in producing PSI-H2ase nanoconstructs, the theoretical quantum yield would decrease to 0.167 molecules of H2 per photon absorbed, which equates to 6 photons per H2 generated. This value is close to the range of measured values in the current study. A strategy that purifies the PSI-H2ase nanoconstructs from the unproductive PSI-PSI conjugates or that incorporates different chemistries on the PSI and [FeFe]-H2ase enzyme sites could potentially allow the PSI-H2ase nanoconstruct to approach the expected theoretical quantum yield for light-induced H2 generation.

  20. N-Player Quantum Games in an EPR Setting

    PubMed Central

    Chappell, James M.; Iqbal, Azhar; Abbott, Derek

    2012-01-01

    The -player quantum games are analyzed that use an Einstein-Podolsky-Rosen (EPR) experiment, as the underlying physical setup. In this setup, a player’s strategies are not unitary transformations as in alternate quantum game-theoretic frameworks, but a classical choice between two directions along which spin or polarization measurements are made. The players’ strategies thus remain identical to their strategies in the mixed-strategy version of the classical game. In the EPR setting the quantum game reduces itself to the corresponding classical game when the shared quantum state reaches zero entanglement. We find the relations for the probability distribution for -qubit GHZ and W-type states, subject to general measurement directions, from which the expressions for the players’ payoffs and mixed Nash equilibrium are determined. Players’ payoff matrices are then defined using linear functions so that common two-player games can be easily extended to the -player case and permit analytic expressions for the Nash equilibrium. As a specific example, we solve the Prisoners’ Dilemma game for general . We find a new property for the game that for an even number of players the payoffs at the Nash equilibrium are equal, whereas for an odd number of players the cooperating players receive higher payoffs. By dispensing with the standard unitary transformations on state vectors in Hilbert space and using instead rotors and multivectors, based on Clifford’s geometric algebra (GA), it is shown how the N-player case becomes tractable. The new mathematical approach presented here has wide implications in the areas of quantum information and quantum complexity, as it opens up a powerful way to tractably analyze N-partite qubit interactions. PMID:22606258

  1. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    PubMed

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  2. Electronic properties of quasi one-dimensional quantum wire models under equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions in the presence of an in-plane magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papp, E.; Micu, C.; Racolta, D.

    In this paper one deals with the theoretical derivation of energy bands and of related wavefunctions characterizing quasi 1D semiconductor heterostructures, such as InAs quantum wire models. Such models get characterized this time by equal coupling strength superpositions of Rashba and Dresselhaus spin-orbit interactions of dimensionless magnitude a under the influence of in-plane magnetic fields of magnitude B. We found that the orientations of the field can be selected by virtue of symmetry requirements. For this purpose one resorts to spin conservations, but alternative conditions providing sensible simplifications of the energy-band formula can be reasonably accounted for. Besides the wavenumbermore » k relying on the 1D electron, one deals with the spin-like s=±1 factors in the front of the square root term of the energy. Having obtained the spinorial wavefunction, opens the way to the derivation of spin precession effects. For this purpose one resorts to the projections of the wavenumber operator on complementary spin states. Such projections are responsible for related displacements proceeding along the Ox-axis. This results in a 2D rotation matrix providing both the precession angle as well as the precession axis.« less

  3. Quantum Private Comparison of Equality Based on Five-Particle Cluster State

    NASA Astrophysics Data System (ADS)

    Chang, Yan; Zhang, Wen-Bo; Zhang, Shi-Bin; Wang, Hai-Chun; Yan, Li-Li; Han, Gui-Hua; Sheng, Zhi-Wei; Huang, Yuan-Yuan; Suo, Wang; Xiong, Jin-Xin

    2016-12-01

    A protocol for quantum private comparison of equality (QPCE) is proposed based on five-particle cluster state with the help of a semi-honest third party (TP). In our protocol, TP is allowed to misbehave on its own but can not conspire with either of two parties. Compared with most two-user QPCE protocols, our protocol not only can compare two groups of private information (each group has two users) in one execution, but also compare just two private information. Compared with the multi-user QPCE protocol proposed, our protocol is safer with more reasonable assumptions of TP. The qubit efficiency is computed and analyzed. Our protocol can also be generalized to the case of 2N participants with one TP. The 2N-participant protocol can compare two groups (each group has N private information) in one execution or just N private information. Supported by NSFC under Grant Nos. 61402058, 61572086, the Fund for Middle and Young Academic Leaders of CUIT under Grant No. J201511, the Science and Technology Support Project of Sichuan Province of China under Grant No. 2013GZX0137, the Fund for Young Persons Project of Sichuan Province of China under Grant No. 12ZB017, and the Foundation of Cyberspace Security Key Laboratory of Sichuan Higher Education Institutions under Grant No. szjj2014-074

  4. Two charges on plane in a magnetic field I. “Quasi-equal” charges and neutral quantum system at rest cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar-Ruiz, M.A., E-mail: mauricio.escobar@nucleares.unam.mx; Turbiner, A.V., E-mail: turbiner@nucleares.unam.mx

    Low-lying bound states for the problem of two Coulomb charges of finite masses on a plane subject to a constant magnetic field B perpendicular to the plane are considered. Major emphasis is given to two systems: two charges with the equal charge-to-mass ratio (quasi-equal charges) and neutral systems with concrete results for the hydrogen atom and two electrons (quantum dot). It is shown that for these two cases, when a neutral system is at rest (the center-of-mass momentum is zero), some outstanding properties occur: in double polar coordinates in CMS (R,ϕ) and relative (ρ,φ) coordinate systems (i) the eigenfunctions aremore » factorizable, all factors except for ρ-dependent are found analytically, they have definite relative angular momentum, (ii) dynamics in ρ-direction is the same for both systems being described by a funnel-type potential; (iii) at some discrete values of dimensionless magnetic fields b≤1 the system becomes quasi-exactly-solvable and a finite number of eigenfunctions in ρ are polynomials. The variational method is employed. Trial functions are based on combining for the phase of a wavefunction (a) the WKB expansion at large distances, (b) the perturbation theory at small distances (c) with a form of the known analytically (quasi-exactly-solvable) eigenfunctions. Such a form of trial function appears as a compact uniform approximation for lowest eigenfunctions. For the lowest states with relative magnetic quantum numbers s=0,1,2 this approximation gives not less than 7 s.d., 8 s.d., 9 s.d., respectively, for the total energy E(B) for magnetic fields 0.049a.u.« less

  5. Spectra of eigenstates in fermionic tensor quantum mechanics

    NASA Astrophysics Data System (ADS)

    Klebanov, Igor R.; Milekhin, Alexey; Popov, Fedor; Tarnopolsky, Grigory

    2018-05-01

    We study the O (N1)×O (N2)×O (N3) symmetric quantum mechanics of 3-index Majorana fermions. When the ranks Ni are all equal, this model has a large N limit which is dominated by the melonic Feynman diagrams. We derive an integral formula which computes the number of group invariant states for any set of Ni. It is non-vanishing only when each Ni is even. For equal ranks the number of singlets exhibits rapid growth with N : it jumps from 36 in the O (4 )3 model to 595 354 780 in the O (6 )3 model. We derive bounds on the values of energy, which show that they scale at most as N3 in the large N limit, in agreement with expectations. We also show that the splitting between the lowest singlet and non-singlet states is of order 1 /N . For N3=1 the tensor model reduces to O (N1)×O (N2) fermionic matrix quantum mechanics, and we find a simple expression for the Hamiltonian in terms of the quadratic Casimir operators of the symmetry group. A similar expression is derived for the complex matrix model with S U (N1)×S U (N2)×U (1 ) symmetry. Finally, we study the N3=2 case of the tensor model, which gives a more intricate complex matrix model whose symmetry is only O (N1)×O (N2)×U (1 ). All energies are again integers in appropriate units, and we derive a concise formula for the spectrum. The fermionic matrix models we studied possess standard 't Hooft large N limits where the ground state energies are of order N2, while the energy gaps are of order 1.

  6. Which Q-analogue of the squeezed oscillator?

    NASA Technical Reports Server (NTRS)

    Solomon, Allan I.

    1993-01-01

    The noise (variance squared) of a component of the electromagnetic field - considered as a quantum oscillator - in the vacuum is equal to one half, in appropriate units (taking Planck's constant and the mass and frequency of the oscillator all equal to 1). A practical definition of a squeezed state is one for which the noise is less than the vacuum value - and the amount of squeezing is determined by the appropriate ratio. Thus the usual coherent (Glauber) states are not squeezed, as they produce the same variance as the vacuum. However, it is not difficult to define states analogous to coherent states which do have this noise-reducing effect. In fact, they are coherent states in the more general group sense but with respect to groups other than the Heisenberg-Weyl Group which defines the Glauber states. The original, conventional squeezed state in quantum optics is that associated with the group SU(1,1). Just as the annihilation operator a of a single photon mode (and its hermitian conjugate a, the creation operator) generates the Heisenberg Weyl algebra, so the pair-photon operator a(sup 2) and its conjugate generates the algebra of the group SU(1,1). Another viewpoint, more productive from the calculational stance, is to note that the automorphism group of the Heisenberg-Weyl algebra is SU(1,1). Needless to say, each of these viewpoints generalizes differently to the quantum group context. Both are discussed. The following topics are addressed: conventional coherent and squeezed states; eigenstate definitions; exponential definitions; algebra (group) definitions; automorphism group definition; example: signal-to-noise ratio; q-coherent and q-squeezed states; M and P q-bosons; eigenstate definitions; exponential definitions; algebra (q-group) definitions; and automorphism q-group definition.

  7. Classicality condition on a system observable in a quantum measurement and a relative-entropy conservation law

    NASA Astrophysics Data System (ADS)

    Kuramochi, Yui; Ueda, Masahito

    2015-03-01

    We consider the information flow on a system observable X corresponding to a positive-operator-valued measure under a quantum measurement process Y described by a completely positive instrument from the viewpoint of the relative entropy. We establish a sufficient condition for the relative-entropy conservation law which states that the average decrease in the relative entropy of the system observable X equals the relative entropy of the measurement outcome of Y , i.e., the information gain due to measurement. This sufficient condition is interpreted as an assumption of classicality in the sense that there exists a sufficient statistic in a joint successive measurement of Y followed by X such that the probability distribution of the statistic coincides with that of a single measurement of X for the premeasurement state. We show that in the case when X is a discrete projection-valued measure and Y is discrete, the classicality condition is equivalent to the relative-entropy conservation for arbitrary states. The general theory on the relative-entropy conservation is applied to typical quantum measurement models, namely, quantum nondemolition measurement, destructive sharp measurements on two-level systems, a photon counting, a quantum counting, homodyne and heterodyne measurements. These examples except for the nondemolition and photon-counting measurements do not satisfy the known Shannon-entropy conservation law proposed by Ban [M. Ban, J. Phys. A: Math. Gen. 32, 1643 (1999), 10.1088/0305-4470/32/9/012], implying that our approach based on the relative entropy is applicable to a wider class of quantum measurements.

  8. In situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion as potential electrode materials for energy applications

    NASA Astrophysics Data System (ADS)

    Mombrú, Dominique; Romero, Mariano; Faccio, Ricardo; Castiglioni, Jorge; Mombrú, Alvaro W.

    2017-06-01

    In situ preparation of polyaniline-ceramic nanocomposites has recently demonstrated that the electrical properties are highly improved with respect to the typical ex situ preparations. In this report, we present for the first time, to the best of our knowledge, the in situ growth of titanium oxide quantum dots in polyaniline host via water vapor flow diffusion as an easily adaptable route to prepare other ceramic-polymer nanocomposites. The main relevance of this method is the possibility to prepare ceramic quantum dots from alkoxide precursors using water vapor flow into any hydrophobic polymer host and to achieve good homogeneity and size-control. In addition, we perform full characterization by means of high-resolution transmission electron microscopy, X-ray powder diffraction, small angle X-ray scattering, thermogravimetric and calorimetric analyses, confocal Raman microscopy and impedance spectroscopy analyses. The presence of the polymer host and interparticle Coulomb repulsive interactions was evaluated as an influence for the formation of 3-8 nm equally-sized quantum dots independently of the concentration. The polyaniline polaron population showed an increase for the quantum dots diluted regime and the suppression at the concentrated regime, ascribed to the formation of chemical bonds at the interface, which was confirmed by theoretical simulations. In agreement with the previous observation, the in situ growth of ceramic quantum dots in polyaniline host via water vapor flow diffusion could be very useful as a novel approach to prepare electrode materials for energy conversion and storage applications.

  9. Applied Mathematical Methods in Theoretical Physics

    NASA Astrophysics Data System (ADS)

    Masujima, Michio

    2005-04-01

    All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.

  10. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-04

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination.

  11. Tunneling contact IGZO TFTs with reduced saturation voltages

    NASA Astrophysics Data System (ADS)

    Wang, Longyan; Sun, Yin; Zhang, Xintong; Zhang, Lining; Zhang, Shengdong; Chan, Mansun

    2017-04-01

    We report a tunneling contact indium-gallium-zinc oxide (IGZO) thin film transistor (TFT) with a graphene interlayer technique in this paper. A Schottky junction is realized between a metal and IGZO with a graphene interlayer, leading to a quantum tunneling of the TFT transport in saturation regions. This tunneling contact enables a significant reduction in the saturation drain voltage Vdsat compared to that of the thermionic emission TFTs, which is usually equal to the gate voltage minus their threshold voltages. Measured temperature independences of the subthreshold swing confirm a transition from the thermionic emission to quantum tunneling transports depending on the gate bias voltages in the proposed device. The tunneling contact TFTs with the graphene interlayer have implications to reduce the power consumptions of certain applications such as the active matrix OLED display.

  12. Multi-party quantum key agreement with five-qubit brown states

    NASA Astrophysics Data System (ADS)

    Cai, Tao; Jiang, Min; Cao, Gang

    2018-05-01

    In this paper, we propose a multi-party quantum key agreement protocol with five-qubit brown states and single-qubit measurements. Our multi-party protocol ensures each participant to contribute equally to the agreement key. Each party performs three single-qubit unitary operations on three qubits of each brown state. Finally, by measuring brown states and decoding the measurement results, all participants can negotiate a shared secret key without classical bits exchange between them. With the analysis of security, our protocol demonstrates that it can resist against both outsider and participant attacks. Compared with other schemes, it also possesses a higher information efficiency. In terms of physical operation, it requires single-qubit measurements only which weakens the hardware requirements of participant and has a better operating flexibility.

  13. Broken symmetry in a two-qubit quantum control landscape

    NASA Astrophysics Data System (ADS)

    Bukov, Marin; Day, Alexandre G. R.; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj; Sels, Dries

    2018-05-01

    We analyze the physics of optimal protocols to prepare a target state with high fidelity in a symmetrically coupled two-qubit system. By varying the protocol duration, we find a discontinuous phase transition, which is characterized by a spontaneous breaking of a Z2 symmetry in the functional form of the optimal protocol, and occurs below the quantum speed limit. We study in detail this phase and demonstrate that even though high-fidelity protocols come degenerate with respect to their fidelity, they lead to final states of different entanglement entropy shared between the qubits. Consequently, while globally both optimal protocols are equally far away from the target state, one is locally closer than the other. An approximate variational mean-field theory which captures the physics of the different phases is developed.

  14. The Contradiction Between the Measurement Theory of Quantum Mechanics and the Theory that the Velocity of Any Particle Can Not be Larger than the Velocity of Light

    NASA Technical Reports Server (NTRS)

    Shen, Y.; Shen, Z. J.; Shen, G. T.; Yang, B. C.

    1996-01-01

    By the measurement theory of quantum mechanics and the method of Fourier transform,we proved that the wave function psi(x,y,z,t)= (8/((2(pi)(2L(exp (1/2)))(exp 3))(Phi(L,t,x)Phi(L,t,y)Phi(L,t,z)). According to the theory that the velocity of any particle can not be larger than the velocity of light and the Born interpretation, when absolute value of delta greater than (ct+ L),Phi(L,t,delta) = 0. But according to the calculation, we proved that for some delta, even if absolute value of delta is greater than (ct+L), Phi(L,t,delta) is not equal to 0.

  15. Work on a quantum dipole by a single-photon pulse.

    PubMed

    Valente, D; Brito, F; Ferreira, R; Werlang, T

    2018-06-01

    Energy transfer from a quantized field to a quantized dipole is investigated. We find that a single photon can transfer energy to a two-level dipole by inducing a dynamic Stark shift, going beyond the well-known absorption and emission processes. A quantum thermodynamical perspective allows us to unravel these two energy transfer mechanisms and to identify the former as a generalized work and the latter as a generalized heat. We show two necessary conditions for the generalized work transfer by a single photon to occur, namely, off-resonance and finite linewidth of the pulse. We also show that the generalized work performed by a single-photon pulse equals the reactive (dispersive) contribution of the work performed by a semiclassical pulse in the low-excitation regime.

  16. High power frequency comb based on mid-infrared quantum cascade laser at λ ∼ 9 μm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Q. Y.; Razeghi, M., E-mail: razeghi@eecs.northwestern.edu; Slivken, S.

    2015-02-02

    We investigate a frequency comb source based on a mid-infrared quantum cascade laser at λ ∼ 9 μm with high power output. A broad flat-top gain with near-zero group velocity dispersion has been engineered using a dual-core active region structure. This favors the locking of the dispersed Fabry-Pérot modes into equally spaced frequency lines via four wave mixing. A current range with a narrow intermode beating linewidth of 3 kHz is identified with a fast detector and spectrum analyzer. This range corresponds to a broad spectral coverage of 65 cm{sup −1} and a high power output of 180 mW for ∼176 comb modes.

  17. Can quantum transition state theory be defined as an exact t = 0+ limit?

    NASA Astrophysics Data System (ADS)

    Jang, Seogjoo; Voth, Gregory A.

    2016-02-01

    The definition of the classical transition state theory (TST) as a t → 0+ limit of the flux-side time correlation function relies on the assumption that simultaneous measurement of population and flux is a well defined physical process. However, the noncommutativity of the two measurements in quantum mechanics makes the extension of such a concept to the quantum regime impossible. For this reason, quantum TST (QTST) has been generally accepted as any kind of quantum rate theory reproducing the TST in the classical limit, and there has been a broad consensus that no unique QTST retaining all the properties of TST can be defined. Contrary to this widely held view, Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)] recently suggested that a true QTST can be defined as the exact t → 0+ limit of a certain kind of quantum flux-side time correlation function and that it is equivalent to the ring polymer molecular dynamics (RPMD) TST. This work seeks to question and clarify certain assumptions underlying these suggestions and their implications. First, the time correlation function used by HA as a starting expression is not related to the kinetic rate constant by virtue of linear response theory, which is the first important step in relating a t = 0+ limit to a physically measurable rate. Second, a theoretical analysis calls into question a key step in HA's proof which appears not to rely on an exact quantum mechanical identity. The correction of this makes the true t = 0+ limit of HA's QTST different from the RPMD-TST rate expression, but rather equal to the well-known path integral quantum transition state theory rate expression for the case of centroid dividing surface. An alternative quantum rate expression is then formulated starting from the linear response theory and by applying a recently developed formalism of real time dynamics of imaginary time path integrals [S. Jang, A. V. Sinitskiy, and G. A. Voth, J. Chem. Phys. 140, 154103 (2014)]. It is shown that the t → 0+ limit of the new rate expression vanishes in the exact quantum limit.

  18. Computation in generalised probabilisitic theories

    NASA Astrophysics Data System (ADS)

    Lee, Ciarán M.; Barrett, Jonathan

    2015-08-01

    From the general difficulty of simulating quantum systems using classical systems, and in particular the existence of an efficient quantum algorithm for factoring, it is likely that quantum computation is intrinsically more powerful than classical computation. At present, the best upper bound known for the power of quantum computation is that {{BQP}}\\subseteq {{AWPP}}, where {{AWPP}} is a classical complexity class (known to be included in {{PP}}, hence {{PSPACE}}). This work investigates limits on computational power that are imposed by simple physical, or information theoretic, principles. To this end, we define a circuit-based model of computation in a class of operationally-defined theories more general than quantum theory, and ask: what is the minimal set of physical assumptions under which the above inclusions still hold? We show that given only an assumption of tomographic locality (roughly, that multipartite states and transformations can be characterized by local measurements), efficient computations are contained in {{AWPP}}. This inclusion still holds even without assuming a basic notion of causality (where the notion is, roughly, that probabilities for outcomes cannot depend on future measurement choices). Following Aaronson, we extend the computational model by allowing post-selection on measurement outcomes. Aaronson showed that the corresponding quantum complexity class, {{PostBQP}}, is equal to {{PP}}. Given only the assumption of tomographic locality, the inclusion in {{PP}} still holds for post-selected computation in general theories. Hence in a world with post-selection, quantum theory is optimal for computation in the space of all operational theories. We then consider whether one can obtain relativized complexity results for general theories. It is not obvious how to define a sensible notion of a computational oracle in the general framework that reduces to the standard notion in the quantum case. Nevertheless, it is possible to define computation relative to a ‘classical oracle’. Then, we show there exists a classical oracle relative to which efficient computation in any theory satisfying the causality assumption does not include {{NP}}.

  19. Quantum Games under Decoherence

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming; Qiu, Daowen

    2016-02-01

    Quantum systems are easily influenced by ambient environments. Decoherence is generated by system interaction with external environment. In this paper, we analyse the effects of decoherence on quantum games with Eisert-Wilkens-Lewenstein (EWL) (Eisert et al., Phys. Rev. Lett. 83(15), 3077 1999) and Marinatto-Weber (MW) (Marinatto and Weber, Phys. Lett. A 272, 291 2000) schemes. Firstly, referring to the analytical approach that was introduced by Eisert et al. (Phys. Rev. Lett. 83(15), 3077 1999), we analyse the effects of decoherence on quantum Chicken game by considering different traditional noisy channels. We investigate the Nash equilibria and changes of payoff in specific two-parameter strategy set for maximally entangled initial states. We find that the Nash equilibria are different in different noisy channels. Since Unruh effect produces a decoherence-like effect and can be perceived as a quantum noise channel (Omkar et al., arXiv: 1408.1477v1), with the same two parameter strategy set, we investigate the influences of decoherence generated by the Unruh effect on three-player quantum Prisoners' Dilemma, the non-zero sum symmetric multiplayer quantum game both for unentangled and entangled initial states. We discuss the effect of the acceleration of noninertial frames on the the game's properties such as payoffs, symmetry, Nash equilibrium, Pareto optimal, dominant strategy, etc. Finally, we study the decoherent influences of correlated noise and Unruh effect on quantum Stackelberg duopoly for entangled and unentangled initial states with the depolarizing channel. Our investigations show that under the influence of correlated depolarizing channel and acceleration in noninertial frame, some critical points exist for an unentangled initial state at which firms get equal payoffs and the game becomes a follower advantage game. It is shown that the game is always a leader advantage game for a maximally entangled initial state and there appear some points at which the payoffs become zero.

  20. Large enhancement in photocurrent by Mn doping in CdSe/ZTO quantum dot sensitized solar cells.

    PubMed

    Pimachev, Artem; Poudyal, Uma; Proshchenko, Vitaly; Wang, Wenyong; Dahnovsky, Yuri

    2016-09-29

    We find a large enhancement in the efficiency of CdSe quantum dot sensitized solar cells by doping with manganese. In the presence of Mn impurities in relatively small concentrations (2.3%) the photoelectric current increases by up to 190%. The average photocurrent enhancement is about 160%. This effect cannot be explained by a light absorption mechanism because the experimental and theoretical absorption spectra demonstrate that there is no change in the absorption coefficient in the presence of the Mn impurities. To explain such a large increase in the injection current we propose a tunneling mechanism of electron injection from the quantum dot LUMO state to the Zn 2 SnO 4 (ZTO) semiconductor photoanode. The calculated enhancement is approximately equal to 150% which is very close to the experimental average value of 160%. The relative discrepancy between the calculated and experimentally measured ratios of the IPCE currents is only 6.25%. For other mechanisms (such as electron trapping, etc.) the remaining 6.25% cannot explain the large change in the experimental IPCE. Thus we have indirectly proved that electron tunneling is the major mechanism of photocurrent enhancement. This work proposes a new approach for a significant improvement in the efficiency of quantum dot sensitized solar cells.

  1. Deterministic photon-emitter coupling in chiral photonic circuits.

    PubMed

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  2. Deterministic photon-emitter coupling in chiral photonic circuits

    NASA Astrophysics Data System (ADS)

    Söllner, Immo; Mahmoodian, Sahand; Hansen, Sofie Lindskov; Midolo, Leonardo; Javadi, Alisa; Kiršanskė, Gabija; Pregnolato, Tommaso; El-Ella, Haitham; Lee, Eun Hye; Song, Jin Dong; Stobbe, Søren; Lodahl, Peter

    2015-09-01

    Engineering photon emission and scattering is central to modern photonics applications ranging from light harvesting to quantum-information processing. To this end, nanophotonic waveguides are well suited as they confine photons to a one-dimensional geometry and thereby increase the light-matter interaction. In a regular waveguide, a quantum emitter interacts equally with photons in either of the two propagation directions. This symmetry is violated in nanophotonic structures in which non-transversal local electric-field components imply that photon emission and scattering may become directional. Here we show that the helicity of the optical transition of a quantum emitter determines the direction of single-photon emission in a specially engineered photonic-crystal waveguide. We observe single-photon emission into the waveguide with a directionality that exceeds 90% under conditions in which practically all the emitted photons are coupled to the waveguide. The chiral light-matter interaction enables deterministic and highly directional photon emission for experimentally achievable on-chip non-reciprocal photonic elements. These may serve as key building blocks for single-photon optical diodes, transistors and deterministic quantum gates. Furthermore, chiral photonic circuits allow the dissipative preparation of entangled states of multiple emitters for experimentally achievable parameters, may lead to novel topological photon states and could be applied for directional steering of light.

  3. Enhanced spin figure of merit in an Aharonov-Bohm ring with a double quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xingfei; Qi, Fenghua; Jin, Guojun, E-mail: gjin@nju.edu.cn

    2014-04-21

    We theoretically investigate the thermoelectric effects in an Aharonov-Bohm ring with a serially coupled double quantum dot embedded in one arm. An external magnetic field is perpendicularly applied to the two dots. Using the nonequilibrium Green's function method in the linear-response regime, we calculate the charge and spin figures of merit. When the energy levels of the two quantum dots are equal and the system is connected to two normal leads, a large spin figure of merit (Z{sub s}T ≈ 4.5) accompanying with a small charge figure of merit (Z{sub c}T ≈ 0) can be generated due to the remarkable bipolar effect. Further, whenmore » the system is connected to two ferromagnetic leads, the spin figure of merit can reach even a higher value about 9. Afterwards, we find that Z{sub s}T is enhanced while Z{sub c}T is reduced in the coaction of the Aharonov-Bohm flux and Rashba spin-orbit coupling. It is argued that the bipolar effect is positive (negative) to spin (charge) figure of merit in the presence of level detuning of the two quantum dots and intradot Coulomb interactions, respectively. Also, we propose a possible experiment to verify our results.« less

  4. Ground-state phase diagram in the Kugel-Khomskii model with finite spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Koga, Akihisa; Nakauchi, Shiryu; Nasu, Joji

    2018-05-01

    We study ground-state properties in the Kugel-Khomskii model on the two-dimensional honeycomb lattice. Using the cluster mean-field approximations, we deal with the exchange and spin-orbit couplings on an equal footing. We then discuss the stability of the ferromagnetically ordered states against the nonmagnetic state, which is adiabatically connected to the quantum spin liquid state realized in a strong spin-orbit coupling limit.

  5. Action of Penetrating Radiation on Radio Parts,

    DTIC Science & Technology

    1984-05-24

    the formation of the pair of particles the electron - positron . This process is called the effect of the formation of electron- positron pairs. Pair...formation can occur during the absorption 7-quantum with the energy, greater than total rest energy of electron and positron (more than the doubled...rest energy of electron, equal to 2mc 2=!.02 MeV). Positron (unstable elementary DOC - 83167601 PAGE 9 particle) in turn interacts with the electron of

  6. Experimental Studies of Fundamental Problems in Quantum Optics

    DTIC Science & Technology

    1991-04-15

    from the Conselho Nacional de Desenvol- atom detunings, A, are fixed and equal to + 320, 0, -320, and vimento Cientifico e Tecnologico (Brazil). We...further that atomic gain or loss will affect the spec- Desenvolvimento Cientifico e Tecnologico (Brazil). 1i. D. Cresser, Phys. Rep. 94, 47 (1983...dressed-atom laser. Because the emission of volvimento Cientifico e Tecnol6gico (Brazil). We thank successive photons is correlated in the dressed-atom

  7. Three-body problem in d-dimensional space: Ground state, (quasi)-exact-solvability

    NASA Astrophysics Data System (ADS)

    Turbiner, Alexander V.; Miller, Willard; Escobar-Ruiz, M. A.

    2018-02-01

    As a straightforward generalization and extension of our previous paper [A. V. Turbiner et al., "Three-body problem in 3D space: Ground state, (quasi)-exact-solvability," J. Phys. A: Math. Theor. 50, 215201 (2017)], we study the aspects of the quantum and classical dynamics of a 3-body system with equal masses, each body with d degrees of freedom, with interaction depending only on mutual (relative) distances. The study is restricted to solutions in the space of relative motion which are functions of mutual (relative) distances only. It is shown that the ground state (and some other states) in the quantum case and the planar trajectories (which are in the interaction plane) in the classical case are of this type. The quantum (and classical) Hamiltonian for which these states are eigenfunctions is derived. It corresponds to a three-dimensional quantum particle moving in a curved space with special d-dimension-independent metric in a certain d-dependent singular potential, while at d = 1, it elegantly degenerates to a two-dimensional particle moving in flat space. It admits a description in terms of pure geometrical characteristics of the interaction triangle which is defined by the three relative distances. The kinetic energy of the system is d-independent; it has a hidden sl(4, R) Lie (Poisson) algebra structure, alternatively, the hidden algebra h(3) typical for the H3 Calogero model as in the d = 3 case. We find an exactly solvable three-body S3-permutationally invariant, generalized harmonic oscillator-type potential as well as a quasi-exactly solvable three-body sextic polynomial type potential with singular terms. For both models, an extra first order integral exists. For d = 1, the whole family of 3-body (two-dimensional) Calogero-Moser-Sutherland systems as well as the Tremblay-Turbiner-Winternitz model is reproduced. It is shown that a straightforward generalization of the 3-body (rational) Calogero model to d > 1 leads to two primitive quasi-exactly solvable problems. The extension to the case of non-equal masses is straightforward and is briefly discussed.

  8. High-fidelity gates in quantum dot spin qubits.

    PubMed

    Koh, Teck Seng; Coppersmith, S N; Friesen, Mark

    2013-12-03

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet-triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning [Symbol: see text], which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an f(opt)(g) that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound f(max) that is specific to the qubit-gate combination. We show that similar gate fidelities (~99:5%) should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins.

  9. Quantum state discrimination bounds for finite sample size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Audenaert, Koenraad M. R.; Mosonyi, Milan; Mathematical Institute, Budapest University of Technology and Economics, Egry Jozsef u 1., Budapest 1111

    2012-12-15

    In the problem of quantum state discrimination, one has to determine by measurements the state of a quantum system, based on the a priori side information that the true state is one of the two given and completely known states, {rho} or {sigma}. In general, it is not possible to decide the identity of the true state with certainty, and the optimal measurement strategy depends on whether the two possible errors (mistaking {rho} for {sigma}, or the other way around) are treated as of equal importance or not. Results on the quantum Chernoff and Hoeffding bounds and the quantum Stein'smore » lemma show that, if several copies of the system are available then the optimal error probabilities decay exponentially in the number of copies, and the decay rate is given by a certain statistical distance between {rho} and {sigma} (the Chernoff distance, the Hoeffding distances, and the relative entropy, respectively). While these results provide a complete solution to the asymptotic problem, they are not completely satisfying from a practical point of view. Indeed, in realistic scenarios one has access only to finitely many copies of a system, and therefore it is desirable to have bounds on the error probabilities for finite sample size. In this paper we provide finite-size bounds on the so-called Stein errors, the Chernoff errors, the Hoeffding errors, and the mixed error probabilities related to the Chernoff and the Hoeffding errors.« less

  10. Resource theory for work and heat

    NASA Astrophysics Data System (ADS)

    Sparaciari, Carlo; Oppenheim, Jonathan; Fritz, Tobias

    2017-11-01

    Several recent results on thermodynamics have been obtained using the tools of quantum information theory and resource theories. So far, the resource theories utilized to describe thermodynamics have assumed the existence of an infinite thermal reservoir, by declaring that thermal states at some background temperature come for free. Here, we propose a resource theory of quantum thermodynamics without a background temperature, so that no states at all come for free. We apply this resource theory to the case of many noninteracting systems and show that all quantum states are classified by their entropy and average energy, even arbitrarily far away from equilibrium. This implies that thermodynamics takes place in a two-dimensional convex set that we call the energy-entropy diagram. The answers to many resource-theoretic questions about thermodynamics can be read off from this diagram, such as the efficiency of a heat engine consisting of finite reservoirs, or the rate of conversion between two states. This allows us to consider a resource theory which puts work and heat on an equal footing, and serves as a model for other resource theories.

  11. Electron-electron correlation in two-photon double ionization of He-like ions [Counterintuitive electron correlation in two-photon double ionization of He-like ions

    DOE PAGES

    Hu, S. X.

    2018-01-18

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less

  12. Manipulation of ultracold Rb atoms using a single linearly chirped laser pulse.

    PubMed

    Collins, T A; Malinovskaya, S A

    2012-06-15

    At ultracold temperatures, atoms are free from thermal motion, which makes them ideal objects of investigations aiming to advance high-precision spectroscopy, metrology, quantum computation, producing Bose condensates, etc. The quantum state of ultracold atoms may be created and manipulated by making use of quantum control methods employing low-intensity pulses. We theoretically investigate population dynamics of ultracold Rb vapor induced by nanosecond linearly chirped pulses having kW/cm2 beam intensity and show a possibility of controllable population transfer between hyperfine (HpF) levels of 5(2)/S(1/2) state through Raman transitions. Satisfying the one-photon resonance condition with the lowest of the HpF states of 5(2)/P(1/2) or 5(2)/P(3/2) state allows us to enter the adiabatic region of population transfer at very low field intensities, such that corresponding Rabi frequencies are less than or equal to the HpF splitting. This methodology provides a robust way to create a specifically designed superposition state in Rb in the basis of HpF levels and perform state manipulation controllable on the picosecond-to-nanosecond time scale.

  13. Surface Acoustic Wave Study of Exciton Condensation in Bilayer Quantum Hall Systems

    NASA Astrophysics Data System (ADS)

    Pollanen, J.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    In bilayer two-dimensional electron systems (2DES) in GaAs a strongly correlated many-electron state forms at low temperature and high magnetic field when the total electron density nT becomes equal to the degeneracy of a single spin split Landau level. This state corresponds to a total filling factor νT = 1 and can be described in terms of pseudospin ferromagnetism, or equivalently, Bose condensation of bilayer excitons. We have simultaneously measured magneto-transport and the propagation of pulsed surface acoustic waves (SAWs) at a frequency of 747 MHz to explore the phase transition between two independent layers at νT = 1 / 2 + 1 / 2 and the correlated state at νT = 1 in a high quality double quantum well device. We tune through this transition by varying the total electron density in our device with front and backside electrostatic gates. We acknowledge funding provided by the Institute for Quantum Information and Matter, an NSF Physics Frontiers Center (NFS Grant PHY-1125565) with support of the Gordon and Betty Moore Foundation (GBMF-12500028).

  14. A non-Hermitian analysis of strongly correlated quantum systems

    NASA Astrophysics Data System (ADS)

    Nakamura, Yuichi; Hatano, Naomichi

    2006-03-01

    We study a non-Hermitian generalization of strongly correlated quantum systems in which the transfer energy of electrons is asymmetric. Hatano and Nelson[1] applied this technique to non-interacting random electron systems. They related a non-Hermitian critical point to the inverse localization length of the Hermitian systems. We here conjecture that we can obtain in the same way the correlation length of Hermitian interacting non-random systems[2]. We show for the Hubbard model and the antiferromagnetic XXZ model in one dimension that the non-Hermitian critical point of the ground state, where the energy gap vanishes, is equal to the inverse correlation length. We also show that the conjecture is consistent with numerical results for S=1/2 frustrated quantum spin chains with the nearest- and next-nearest-neighbor interactions including the Majumdar-Ghosh model[3]. [1] N. Hatano and D. R. Nelson, PRL 77 (1996) 570; PRB 56 (1997) 8651. [2] Y. Nakamura and N. Hatano, Physica B, accepted. [3] C. K. Majumdar and D. K. Ghosh, J. Phys. C3 (1970) 911; J. Math. Phys. 10 (1969) 1388, 1399.

  15. Electron-electron correlation in two-photon double ionization of He-like ions [Counterintuitive electron correlation in two-photon double ionization of He-like ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, S. X.

    Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding, strong-field–induced multi-electron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photo-induced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions [Li +, Be 2+, and C 4+] exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra asmore » the ionic charge increases, which is counterintuitive to the belief that the strongly correlated ground state and the strong Coulomb field of He-like ions should lead to more equal-energy sharing in photoionization. Lastly, these findings indicate that the final-state electron–electron correlation ultimately determines their energy sharing in TPDI.« less

  16. General theory for calculating disorder-averaged Green's function correlators within the coherent potential approximation

    NASA Astrophysics Data System (ADS)

    Zhou, Chenyi; Guo, Hong

    2017-01-01

    We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.

  17. Spin correlations in quantum wires

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  18. Theoretical study of charge and spin-resolved quantum transport in III-V semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Botha, Andre Erasmus

    2003-07-01

    This thesis is a theoretical investigation into the spin-resolved transport properties of III-V semiconductor quantum wells. Based on a modified 8 x 8 k · p matrix Hamiltonian, a theory is developed to study the recombination rate in type-II semi metallic quantum wells. The non-parabolicity of the energy band structure and its anisotropy is included via the interband matrix elements and the addition of an anisotropic crystal field potential (parameterized by delta). The effects of externally applied electric and magnetic fields are incorporated into the theory. The electric field is incorporated using a WKB-type approximation. In order to study the anisotropy, the magnetic field is incorporated so that it can be applied at an arbitrary angle theta, with respect to the crystallographic direction c[001]. The case of oblique tunneling (k|| ≠ 0), is also considered. Several interesting results, from calculations of the transmission coefficient, recombination rate, and electron-spin polarization, are presented and discussed for both n-type and p-type single and double quantum wells made from clean InAs and GaSb. For example, in the case of a 150 A wide GaSb/InAs/GaSb quantum well, with B = 4 T, and theta = pi/8, the two maxima in the electron-spin polarization, from the ground and first excited resonant states, are found to be approximately 75%, and 35%, respectively. As theta is varied, a maximum polarization is achieved for a given magnetic field, and this maximum depends on the value of the anisotropy parameter, delta. By using a more sophisticated 14 x 14 band k · p formalism, which explicitly takes into account the coupling between higher bands ( Gc15-Gu 15,Gc1-G u15 , and Gc1-Gc15 ), a theory is developed for the total zero-field spin-splitting and resulting electron-spin polarization in symmetric and asymmetric type-II quantum wells. This theory includes the non-parabolicity, non sphericity, and anisotropy of the energy band structure. The anisotropy in the band structure is introduced via the addition of an anisotropic crystal potential. In the case of an asymmetric GaSb/InAs/GaSb quantum well, it is predicted that the two contributions to the total spin-splitting will be roughly of equal importance. It is also shown that the polarization maxima and minima, for a given resonance state, may not be equal in magnitude. If the resonant state lies close to the forbidden energy gap, the transmission peaks for spin-up and spin-down are skewed. This feature may have potential applications in the design of spintronic filtering and switching devices, in which it is desirable to filter unpolarized electrons (with respect to energy and spin) in order to produce highly polarized, adjustable low-energy beams.

  19. Resilience of the quantum Rabi model in circuit QED

    NASA Astrophysics Data System (ADS)

    E Manucharyan, Vladimir; Baksic, Alexandre; Ciuti, Cristiano

    2017-07-01

    In circuit quantum electrodynamics (circuit QED), an artificial ‘circuit atom’ can couple to a quantized microwave radiation much stronger than its real atomic counterpart. The celebrated quantum Rabi model describes the simplest interaction of a two-level system with a single-mode boson field. When the coupling is large enough, the bare multilevel structure of a realistic circuit atom cannot be ignored even if the circuit is strongly anharmonic. We explored this situation theoretically for flux (fluxonium) and charge (Cooper pair box) type multi-level circuits tuned to their respective flux/charge degeneracy points. We identified which spectral features of the quantum Rabi model survive and which are renormalized for large coupling. Despite significant renormalization of the low-energy spectrum in the fluxonium case, the key quantum Rabi feature—nearly-degenerate vacuum consisting of an atomic state entangled with a multi-photon field—appears in both types of circuits when the coupling is sufficiently large. Like in the quantum Rabi model, for very large couplings the entanglement spectrum is dominated by only two, nearly equal eigenvalues, in spite of the fact that a large number of bare atomic states are actually involved in the atom-resonator ground state. We interpret the emergence of the two-fold degeneracy of the vacuum of both circuits as an environmental suppression of flux/charge tunneling due to their dressing by virtual low-/high-impedance photons in the resonator. For flux tunneling, the dressing is nothing else than the shunting of a Josephson atom with a large capacitance of the resonator. Suppression of charge tunneling is a manifestation of the dynamical Coulomb blockade of transport in tunnel junctions connected to resistive leads.

  20. Unconditional security from noisy quantum storage

    NASA Astrophysics Data System (ADS)

    Wehner, Stephanie

    2010-03-01

    We consider the implementation of two-party cryptographic primitives based on the sole physical assumption that no large-scale reliable quantum storage is available to the cheating party. An important example of such a task is secure identification. Here, Alice wants to identify herself to Bob (possibly an ATM machine) without revealing her password. More generally, Alice and Bob wish to solve problems where Alice holds an input x (e.g. her password), and Bob holds an input y (e.g. the password an honest Alice should possess), and they want to obtain the value of some function f(x,y) (e.g. the equality function). Security means that the legitimate users should not learn anything beyond this specification. That is, Alice should not learn anything about y and Bob should not learn anything about x, other than what they may be able to infer from the value of f(x,y). We show that any such problem can be solved securely in the noisy-storage model by constructing protocols for bit commitment and oblivious transfer, where we prove security against the most general attack. Our protocols can be implemented with present-day hardware used for quantum key distribution. In particular, no quantum storage is required for the honest parties. Our work raises a large number of immediate theoretical as well as experimental questions related to many aspects of quantum information science, such as for example understanding the information carrying properties of quantum channels and memories, randomness extraction, min-entropy sampling, as well as constructing small handheld devices which are suitable for the task of secure identification. [4pt] Full version available at arXiv:0906.1030 (theoretical) and arXiv:0911.2302 (practically oriented).

  1. Microscopic description of exciton polaritons in direct two-band semiconductors

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Trong; Mahler, Günter

    1999-07-01

    Based on a quantum electrodynamical formulation, a microscopic description of exciton polaritons in a two-band semiconductor is presented. We show that the interband exchange Coulomb interaction, responsible for the coupling of the exciton with the longitudinal part of the induced field, should be treated on equal footing together with the coupling to the transverse part of the induced field (the photon field). The constitutive relation is established to connect the current density with the total electric field of polaritons. The classical Maxwell equations are derived from the quantum representation of photons to get a closed system of equations. The temporal evolution for an initial excited exciton state is studied in detail and an anisotropic polariton vacuum Rabi splitting is shown to occur. A number of up-to-now unresolved discrepancies in the literature are clarified.

  2. Multi-party quantum key agreement protocol secure against collusion attacks

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Sun, Zhiwei; Sun, Xiaoqiang

    2017-07-01

    The fairness of a secure multi-party quantum key agreement (MQKA) protocol requires that all involved parties are entirely peer entities and can equally influence the outcome of the protocol to establish a shared key wherein no one can decide the shared key alone. However, it is found that parts of the existing MQKA protocols are sensitive to collusion attacks, i.e., some of the dishonest participants can collaborate to predetermine the final key without being detected. In this paper, a multi-party QKA protocol resisting collusion attacks is proposed. Different from previous QKA protocol resisting N-1 coconspirators or resisting 1 coconspirators, we investigate the general circle-type MQKA protocol which can be secure against t dishonest participants' cooperation. Here, t < N. We hope the results of the presented paper will be helpful for further research on fair MQKA protocols.

  3. The Problems in Experimental Foundation of Causal Mechanics

    NASA Astrophysics Data System (ADS)

    Parkhomov, A. G.

    Causal mechanics developed by N.A.Kozyrev (1958,1968) and based on the concept of active properties of time has been a subject for emotional scientific discussions for four decades running. An unusual combination of the attributes "emotional" and "scientific" refers not only to the fact that N.A.Kozyrev's theory provides insight into a number of "dark" effects and phenomena of science such as quantum nonlocality, violation of parity, asymmetry of the right-hand and l-hand in biological objects. The most important thing is that the theory infers the everyday correlation between all objects and processes in the universe — even the most widely spaced ones. What is most appealing is that the universal correlation results from a few simple postulates that are consistent with common sense. Equally important is that causal mechanics is consistent with both classic and quantum mechanics…

  4. Characterization of classical static noise via qubit as probe

    NASA Astrophysics Data System (ADS)

    Javed, Muhammad; Khan, Salman; Ullah, Sayed Arif

    2018-03-01

    The dynamics of quantum Fisher information (QFI) of a single qubit coupled to classical static noise is investigated. The analytical relation for QFI fixes the optimal initial state of the qubit that maximizes it. An approximate limit for the time of coupling that leads to physically useful results is identified. Moreover, using the approach of quantum estimation theory and the analytical relation for QFI, the qubit is used as a probe to precisely estimate the disordered parameter of the environment. Relation for optimal interaction time with the environment is obtained, and condition for the optimal measurement of the noise parameter of the environment is given. It is shown that all values, in the mentioned range, of the noise parameter are estimable with equal precision. A comparison of our results with the previous studies in different classical environments is made.

  5. Instability of quantum equilibrium in Bohm's dynamics

    PubMed Central

    Colin, Samuel; Valentini, Antony

    2014-01-01

    We consider Bohm's second-order dynamics for arbitrary initial conditions in phase space. In principle, Bohm's dynamics allows for ‘extended’ non-equilibrium, with initial momenta not equal to the gradient of phase of the wave function (as well as initial positions whose distribution departs from the Born rule). We show that extended non-equilibrium does not relax in general and is in fact unstable. This is in sharp contrast with de Broglie's first-order dynamics, for which non-standard momenta are not allowed and which shows an efficient relaxation to the Born rule for positions. On this basis, we argue that, while de Broglie's dynamics is a tenable physical theory, Bohm's dynamics is not. In a world governed by Bohm's dynamics, there would be no reason to expect to see an effective quantum theory today (even approximately), in contradiction with observation. PMID:25383020

  6. Space Age Spuds

    NASA Technical Reports Server (NTRS)

    2000-01-01

    American Ag-Tech International, Ltd. developed a system called Quantum Tubers through the Wisconsin Center for Space Automation and Robotics (a NASA-sponsored Commercial Space Center). Using computerization and technologies originally intended for growing plants in space, the company developed a growth chamber that accelerates plant growth and is free of plant pathogens. The chamber is used to grow minitubers, which serve as nuclear seed stock for potatoes. Using lighting technology, temperature and humidity controls, and automation technology, the minituber can be generated in one closed facility with out much labor handling. This means they can be grown year round in extreme environments. The system eliminates the need for multiple generations of seed and eliminates exposure to pathogens, disease and pests. The Quantum Tubers system can produce 10-20 million tubers throughout the year, about equal to the world's supply of this generation seed stock.

  7. The resolution of point sources of light as analyzed by quantum detection theory

    NASA Technical Reports Server (NTRS)

    Helstrom, C. W.

    1972-01-01

    The resolvability of point sources of incoherent light is analyzed by quantum detection theory in terms of two hypothesis-testing problems. In the first, the observer must decide whether there are two sources of equal radiant power at given locations, or whether there is only one source of twice the power located midway between them. In the second problem, either one, but not both, of two point sources is radiating, and the observer must decide which it is. The decisions are based on optimum processing of the electromagnetic field at the aperture of an optical instrument. In both problems the density operators of the field under the two hypotheses do not commute. The error probabilities, determined as functions of the separation of the points and the mean number of received photons, characterize the ultimate resolvability of the sources.

  8. [Mid-infrared distributed-feedback quantum cascade laser-based photoacoustic detection of trace methane gas].

    PubMed

    Tan, Song; Liu, Wan-feng; Wang, Li-jun; Zhang, Jin-chuan; Li, Lu; Liu, Jun-qi; Liu, Feng-qi; Wang, Zhan-guo

    2012-05-01

    There have been considerable interests in methane detection based on infrared absorption spectroscopy for industrial and environment monitoring. The authors report on the realization of photoacoustic detection of methane (CH4) using mid-infrared distributed-feedback quantum cascade laser (DFB-QCL). The absorption line at 1316.83 cm(-1) was selected for CH4 detection, which can be reached by the self-manufactured DFB-QCL source operating in pulsed mode near 7.6 microm at room-temperature. The CH4 gas is filled to a Helmholtz resonant photoacoustic cell, which was equipped with a commercial electret microphone. The DFB-QCL was operated at 234 Hz with an 80 mW optical peak power. A detection limit of 189 parts per billion in volume was derived when the signal-to-noise ratio equaled 1.

  9. Gigabit free-space multi-level signal transmission with a mid-infrared quantum cascade laser operating at room temperature.

    PubMed

    Pang, Xiaodan; Ozolins, Oskars; Schatz, Richard; Storck, Joakim; Udalcovs, Aleksejs; Navarro, Jaime Rodrigo; Kakkar, Aditya; Maisons, Gregory; Carras, Mathieu; Jacobsen, Gunnar; Popov, Sergei; Lourdudoss, Sebastian

    2017-09-15

    Gigabit free-space transmissions are experimentally demonstrated with a quantum cascaded laser (QCL) emitting at mid-wavelength infrared of 4.65 μm, and a commercial infrared photovoltaic detector. The QCL operating at room temperature is directly modulated using on-off keying and, for the first time, to the best of our knowledge, four- and eight-level pulse amplitude modulations (PAM-4, PAM-8). By applying pre- and post-digital equalizations, we achieve up to 3  Gbit/s line data rate in all three modulation configurations with a bit error rate performance of below the 7% overhead hard decision forward error correction limit of 3.8×10 -3 . The proposed transmission link also shows a stable operational performance in the lab environment.

  10. Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current.

    PubMed

    Stadler, P; Belzig, W; Rastelli, G

    2014-07-25

    We study the nonequilibrium steady state of a mechanical resonator in the quantum regime realized by a suspended carbon nanotube quantum dot in contact with two ferromagnets. Because of the spin-orbit interaction and/or an external magnetic field gradient, the spin on the dot couples directly to the flexural eigenmodes. Accordingly, the nanomechanical motion induces inelastic spin flips of the tunneling electrons. A spin-polarized current at finite bias voltage causes either heating or active cooling of the mechanical modes. We show that maximal cooling is achieved at resonant transport when the energy splitting between two dot levels of opposite spin equals the vibrational frequency. Even for weak electron-resonator coupling and moderate polarizations we can achieve ground-state cooling with a temperature of the leads, for instance, of T = 10 ω.

  11. Magnetic properties of graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Espinosa-Ortega, T.; Luk'yanchuk, I. A.; Rubo, Y. G.

    2013-05-01

    Using the tight-binding approximation we calculated the diamagnetic susceptibility of graphene quantum dots (GQDs) of different geometrical shapes and characteristic sizes of 2-10 nm, when the magnetic properties are governed by the electron edge states. Two types of edge states can be discerned: the zero-energy states (ZESs), located exactly at the zero-energy Dirac point, and the dispersed edge states (DESs), with the energy close but not exactly equal to zero. DESs are responsible for a temperature-independent diamagnetic response, while ZESs provide a temperature-dependent spin paramagnetism. Hexagonal, circular, and randomly shaped GQDs contain mainly DESs, and, as a result, they are diamagnetic. The edge states of the triangular GQDs are of ZES type. These dots reveal the crossover between spin paramagnetism, dominating for small dots and at low temperatures, and orbital diamagnetism, dominating for large dots and at high temperatures.

  12. Simulations of Quantum Dot Growth on Semiconductor Surfaces: Morphological Design of Sensor Concepts

    DTIC Science & Technology

    2008-12-01

    size equalization can be clearly illustrated during the growth process. In this work we develop a fast multiscale 3D kinetic Monte Carlo ( KMC ) QD...model will provide an attractive means for producing predictably ordered nanostructures. MODEL DESCRIPTION The 3D layer-by-layer KMC growth model...Voter, 2001) and KMC simulation experience (Pan et al., 2004; Pan et al., 2006; Meixner et al, 2003) in 2D, we therefore propose the following simple

  13. Polypyrrole and graphene quantum dots @ Prussian Blue hybrid film on graphite felt electrodes: Application for amperometric determination of l-cysteine.

    PubMed

    Wang, Lei; Tricard, Simon; Yue, Pengwei; Zhao, Jihua; Fang, Jian; Shen, Weiguo

    2016-03-15

    A novel polypyrrole (PPy) and graphene quantum dots (GQDs) @ Prussian Blue (PB) nanocomposite has been grafted on a graphite felt (GF) substrate (PPy/GQDs@PB/GF), and has been proven to be an efficient electrochemical sensor for the determination of l-cysteine (l-cys). GQDs, which were fabricated by carbonization of citric acid and adsorbed on GF surface ultrasonically, played an important role for promoting the synthesis process of PB via a spontaneous redox reaction between Fe(3+) and [Fe(CN)6](3-). The PPy film has been electro-polymerized to improve the electrochemical stability of the PPy/GQDs@PB/GF electrode. The as-prepared electrode was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (IR), X-ray diffraction (XRD) and electrochemical methods. It exhibited an excellent activity for the electrocatalytic oxidation of l-cys, with a detection sensitivity equal to 0.41 Amol(-1) L for a concentration range of 0.2-50 μmolL(-1), and equal to 0.15 Amol(-1) L for a concentration range of 50-1000 μmolL(-1). A low detection limit of 0.15 μmolL(-1), as well as a remarkable long-time stability and a negligible sensitivity to interfering analytes, were also ascertained. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Target electron collision effects on energy loss straggling of protons in an electron gas at any degeneracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barriga-Carrasco, Manuel D.

    2008-03-15

    The purpose of the present paper is to describe the effects of target electron collisions on proton energy loss straggling in plasmas at any degeneracy. Targets are considered fully ionized so electronic energy loss is only due to the free electrons. The analysis is focused on targets with electronic density around solid values n{sub e}{approx_equal}10{sup 23} cm{sup -3} and with temperature around T{approx_equal}10 eV; these targets are in the limit of weakly coupled electron gases. These types of plasma targets have not been studied extensively, though they are very important for inertial confinement fusion. The energy loss straggling is obtainedmore » from an exact quantum-mechanical evaluation, which takes into account the degeneracy of the target plasma, and later it is compared with common classical and degenerate approximations. Then electron collisions in the exact quantum-mechanical straggling calculation are considered. Now the energy loss straggling is enhanced for energies smaller than the energy before the maximum, then decreases around this maximum, and finally tends to the same values with respect to noncollisional calculation. Differences with the same results but not taking into account these collisions are as far as 17% in the cases analyzed. As an example, proton range distributions have been calculated to show the importance of an accurate energy straggling calculation.« less

  15. L'CO/LFIR Relations with CO Rotational Ladders of Galaxies Across the Herschel SPIRE Archive

    NASA Technical Reports Server (NTRS)

    Kamenetzky, J.; Rangwala, N.; Glenn, J.; Maloney, P. R.; Conley, A.

    2015-01-01

    We present a catalog of all CO (carbon monoxide) (J (total angular momentum quantum number) equals 1-0 through J equals 13-12), [CI], and [NII] lines available from extragalactic spectra from the Herschel SPIRE (Spectral and Photometric Imaging Receiver) Fourier Transform Spectrometer (FTS) archive combined with observations of the low-J CO lines from the literature and from the Arizona Radio Observatory. This work examines the relationships between L (sub FIR (Far Infra Red)), L prime (sub CO), and L (sub CO) / L (sub CO, 1-0). We also present a new method for estimating probability distribution functions (PDFs) from marginal signal-to-noise ratio Herschel FTS spectra, which takes into account the instrumental "ringing" and the resulting highly correlated nature of the spectra. The slopes of Log (L (sub FIR)) versus Log (L prime (sub CO)) are linear for all mid- to high-J CO lines. The mid- to high-J CO luminosity relative to CO J equals 1-0 increases with increasing L (sub FIR), indicating higher excitement of the molecular gas, though these ratios do not exceed approximately 100. The luminosities relative to CO J equals 1-0 remain relatively at from J equals 6-5 through J equals13-2, across many orders of magnitude of L (sub FIR). Qualitative comparisons to current theoretical models do not match these flat SLED (spectral line energy distributions) shapes, indicating the need for more comprehensive modeling of the excitation processes of warm molecular gas in nearby galaxies.

  16. Simulation of n-qubit quantum systems. I. Quantum registers and quantum gates

    NASA Astrophysics Data System (ADS)

    Radtke, T.; Fritzsche, S.

    2005-12-01

    During recent years, quantum computations and the study of n-qubit quantum systems have attracted a lot of interest, both in theory and experiment. Apart from the promise of performing quantum computations, however, these investigations also revealed a great deal of difficulties which still need to be solved in practice. In quantum computing, unitary and non-unitary quantum operations act on a given set of qubits to form (entangled) states, in which the information is encoded by the overall system often referred to as quantum registers. To facilitate the simulation of such n-qubit quantum systems, we present the FEYNMAN program to provide all necessary tools in order to define and to deal with quantum registers and quantum operations. Although the present version of the program is restricted to unitary transformations, it equally supports—whenever possible—the representation of the quantum registers both, in terms of their state vectors and density matrices. In addition to the composition of two or more quantum registers, moreover, the program also supports their decomposition into various parts by applying the partial trace operation and the concept of the reduced density matrix. Using an interactive design within the framework of MAPLE, therefore, we expect the FEYNMAN program to be helpful not only for teaching the basic elements of quantum computing but also for studying their physical realization in the future. Program summaryTitle of program:FEYNMAN Catalogue number:ADWE Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWE Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computers for which the program is designed:All computers with a license of the computer algebra system MAPLE [Maple is a registered trademark of Waterlo Maple Inc.] Operating systems or monitors under which the program has been tested:Linux, MS Windows XP Programming language used:MAPLE 9.5 (but should be compatible with 9.0 and 8.0, too) Memory and time required to execute with typical data:Storage and time requirements critically depend on the number of qubits, n, in the quantum registers due to the exponential increase of the associated Hilbert space. In particular, complex algebraic operations may require large amounts of memory even for small qubit numbers. However, most of the standard commands (see Section 4 for simple examples) react promptly for up to five qubits on a normal single-processor machine ( ⩾1GHz with 512 MB memory) and use less than 10 MB memory. No. of lines in distributed program, including test data, etc.: 8864 No. of bytes in distributed program, including test data, etc.: 493 182 Distribution format: tar.gz Nature of the physical problem:During the last decade, quantum computing has been found to provide a revolutionary new form of computation. The algorithms by Shor [P.W. Shor, SIAM J. Sci. Statist. Comput. 26 (1997) 1484] and Grover [L.K. Grover, Phys. Rev. Lett. 79 (1997) 325. [2

  17. Geometric metasurface enabling polarization independent beam splitting.

    PubMed

    Yoon, Gwanho; Lee, Dasol; Nam, Ki Tae; Rho, Junsuk

    2018-06-21

    A polarization independent holographic beam splitter that generates equal-intensity beams based on geometric metasurface is demonstrated. Although conventional geometric metasurfaces have the advantages of working over a broad frequency range and having intuitive design principles, geometric metasurfaces have the limitation that they only work for circular polarization. In this work, Fourier holography is used to overcome this limitation. A perfect overlap resulting from the origin-symmetry of the encoded image enables polarization independent operation of geometric metasurfaces. The designed metasurface beam splitter is experimentally demonstrated by using hydrogenated amorphous silicon, and the device performs consistent beam splitting regardless of incident polarizations as well as wavelengths. Our device can be applied to generate equal-intensity beams for entangled photon light sources in quantum optics, and the design approach provides a way to develop ultra-thin broadband polarization independent components for modern optics.

  18. Can particle-creation phenomena replace dark energy?

    NASA Astrophysics Data System (ADS)

    Debnath, Subhra; Sanyal, Abhik Kumar

    2011-07-01

    Particle creation at the expense of the gravitational field might be sufficient to explain the cosmic evolution history, without the need of dark energy at all. This phenomena has been investigated in a recent work by Lima et al (Class. Quantum Grav. 2008 25 205006) assuming particle creation at the cost of gravitational energy in the late Universe. However, the model does not satisfy the WMAP constraint on the matter-radiation equality (Steigman et al 2009 J. Cosmol. Astropart. Phys. JCAP06(2009)033). Here, we have suggested a model, in the same framework, which fits perfectly with SNIa data at low redshift as well as an early integrated Sachs-Wolfe effect on the matter-radiation equality determined by WMAP at high redshift. Such a model requires the presence of nearly 26% primeval matter in the form of baryons and cold dark matter.

  19. Wiedemann-Franz law and nonvanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, J.-Ph.; Tanatar, Makariy; Daou, R.

    2014-01-23

    The in-plane thermal conductivity kappa and electrical resistivity rho of the heavy-fermion metal YbRh2Si2 were measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through the field-tuned quantum critical point H-c, at which antiferromagnetic order ends. The thermal and electrical resistivities, w L0T/kappa and rho, show a linear temperature dependence below 1 K, typical of the non-Fermi-liquid behavior found near antiferromagnetic quantum critical points, but this dependence does not persist down to T = 0. Below a characteristic temperature T-star similar or equal to 0.35 K, which depends weakly on H, w(T)more » and rho(T) both deviate downward and converge as T -> 0. We propose that T-star marks the onset of short-range magnetic correlations, persisting beyond H-c. By comparing samples of different purity, we conclude that the Wiedemann-Franz law holds in YbRh2Si2, even at H-c, implying that no fundamental breakdown of quasiparticle behavior occurs in this material. The overall phenomenology of heat and charge transport in YbRh2Si2 is similar to that observed in the heavy-fermion metal CeCoIn5, near its own field-tuned quantum critical point.« less

  20. Relations between nonlinear Riccati equations and other equations in fundamental physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-10-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.

  1. Squeezing effects applied in nonclassical superposition states for quantum nanoelectronic circuits

    NASA Astrophysics Data System (ADS)

    Choi, Jeong Ryeol

    2017-06-01

    Quantum characteristics of a driven series RLC nanoelectronic circuit whose capacitance varies with time are studied using an invariant operator method together with a unitary transformation approach. In particular, squeezing effects and nonclassical properties of a superposition state composed of two displaced squeezed number states of equal amplitude, but 180° out of phase, are investigated in detail. We applied our developments to a solvable specific case obtained from a suitable choice of time-dependent parameters. The pattern of mechanical oscillation of the amount of charges stored in the capacitor, which are initially displaced, has exhibited more or less distortion due to the influence of the time-varying parameters of the system. We have analyzed squeezing effects of the system from diverse different angles and such effects are illustrated for better understanding. It has been confirmed that the degree of squeezing is not constant, but varies with time depending on specific situations. We have found that quantum interference occurs whenever the two components of the superposition meet together during the time evolution of the probability density. This outcome signifies the appearance of nonclassical features of the system. Nonclassicality of dynamical systems can be a potential resource necessary for realizing quantum information technique. Indeed, such nonclassical features of superposition states are expected to play a key role in upcoming information science which has attracted renewed attention recently.

  2. Single-photon absorption by single photosynthetic light-harvesting complexes

    NASA Astrophysics Data System (ADS)

    Chan, Herman C. H.; Gamel, Omar E.; Fleming, Graham R.; Whaley, K. Birgitta

    2018-03-01

    We provide a unified theoretical approach to the quantum dynamics of absorption of single photons and subsequent excitonic energy transfer in photosynthetic light-harvesting complexes. Our analysis combines a continuous mode < n > -photon quantum optical master equation for the chromophoric system with the hierarchy of equations of motion describing excitonic dynamics in presence of non-Markovian coupling to vibrations of the chromophores and surrounding protein. We apply the approach to simulation of absorption of single-photon coherent states by pigment-protein complexes containing between one and seven chromophores, and compare with results obtained by excitation using a thermal radiation field. We show that the values of excitation probability obtained under single-photon absorption conditions can be consistently related to bulk absorption cross-sections. Analysis of the timescale and efficiency of single-photon absorption by light-harvesting systems within this full quantum description of pigment-protein dynamics coupled to a quantum radiation field reveals a non-trivial dependence of the excitation probability and the excited state dynamics induced by exciton-phonon coupling during and subsequent to the pulse, on the bandwidth of the incident photon pulse. For bandwidths equal to the spectral bandwidth of Chlorophyll a, our results yield an estimation of an average time of ˜0.09 s for a single chlorophyll chromophore to absorb the energy equivalent of one (single-polarization) photon under irradiation by single-photon states at the intensity of sunlight.

  3. Novel Principles and the Charge-Symmetric Design of Dirac's Quantum Mechanics: I. Enhanced Eriksen's Theorem and the Universal Charge-Index Formalism for Dirac's Equation in (Strong) External Static Fields

    NASA Astrophysics Data System (ADS)

    Kononets, Yu. V.

    2016-12-01

    The presented enhanced version of Eriksen's theorem defines an universal transform of the Foldy-Wouthuysen type and in any external static electromagnetic field (ESEMF) reveals a discrete symmetry of Dirac's equation (DE), responsible for existence of a highly influential conserved quantum number—the charge index distinguishing two branches of DE spectrum. It launches the charge-index formalism (CIF) obeying the charge-index conservation law (CICL). Via its unique ability to manipulate each spectrum branch independently, the CIF creates a perfect charge-symmetric architecture of Dirac's quantum mechanics (DQM), which resolves all the riddles of the standard DE theory (SDET). Besides the abstract CIF algebra, the paper discusses: (1) the novel accurate charge-symmetric definition of the electric-current density; (2) DE in the true-particle representation, where electrons and positrons coexist on equal footing; (3) flawless "natural" scheme of second quantization; and (4) new physical grounds for the Fermi-Dirac statistics. As a fundamental quantum law, the CICL originates from the kinetic-energy sign conservation and leads to a novel single-particle physics in strong-field situations. Prohibiting Klein's tunneling (KT) in Klein's zone via the CICL, the precise CIF algebra defines a new class of weakly singular DE solutions, strictly confined in the coordinate space and experiencing the total reflection from the potential barrier.

  4. Environment-induced quantum coherence spreading of a qubit

    NASA Astrophysics Data System (ADS)

    Pozzobom, Mauro B.; Maziero, Jonas

    2017-02-01

    We make a thorough study of the spreading of quantum coherence (QC), as quantified by the l1-norm QC, when a qubit (a two-level quantum system) is subjected to noise quantum channels commonly appearing in quantum information science. We notice that QC is generally not conserved and that even incoherent initial states can lead to transitory system-environment QC. We show that for the amplitude damping channel the evolved total QC can be written as the sum of local and non-local parts, with the last one being equal to entanglement. On the other hand, for the phase damping channel (PDC) entanglement does not account for all non-local QC, with the gap between them depending on time and also on the qubit's initial state. Besides these issues, the possibility and conditions for time invariance of QC are regarded in the case of bit, phase, and bit-phase flip channels. Here we reveal the qualitative dynamical inequivalence between these channels and the PDC and show that the creation of system-environment entanglement does not necessarily imply the destruction of the qubit's QC. We also investigate the resources needed for non-local QC creation, showing that while the PDC requires initial coherence of the qubit, for some other channels non-zero population of the excited state (i.e., energy) is sufficient. Related to that, considering the depolarizing channel we notice the qubit's ability to act as a catalyst for the creation of joint QC and entanglement, without need for nonzero initial QC or excited state population.

  5. Mutually unbiased phase states, phase uncertainties, and Gauss sums

    NASA Astrophysics Data System (ADS)

    Planat, M.; Rosu, H.

    2005-10-01

    Mutually unbiased bases (MUBs), which are such that the inner product between two vectors in different orthogonal bases is a constant equal to 1/sqrt{d}, with d the dimension of the finite Hilbert space, are becoming more and more studied for applications such as quantum tomography and cryptography, and in relation to entangled states and to the Heisenberg-Weil group of quantum optics. Complete sets of MUBs of cardinality d+1 have been derived for prime power dimensions d=pm using the tools of abstract algebra. Presumably, for non prime dimensions the cardinality is much less. Here we reinterpret MUBs as quantum phase states, i.e. as eigenvectors of Hermitian phase operators generalizing those introduced by Pegg and Barnett in 1989. We relate MUB states to additive characters of Galois fields (in odd characteristic p) and to Galois rings (in characteristic 2). Quantum Fourier transforms of the components in vectors of the bases define a more general class of MUBs with multiplicative characters and additive ones altogether. We investigate the complementary properties of the above phase operator with respect to the number operator. We also study the phase probability distribution and variance for general pure quantum electromagnetic states and find them to be related to the Gauss sums, which are sums over all elements of the field (or of the ring) of the product of multiplicative and additive characters. Finally, we relate the concepts of mutual unbiasedness and maximal entanglement. This allows to use well studied algebraic concepts as efficient tools in the study of entanglement and its information aspects.

  6. Quantum circuit dynamics via path integrals: Is there a classical action for discrete-time paths?

    NASA Astrophysics Data System (ADS)

    Penney, Mark D.; Enshan Koh, Dax; Spekkens, Robert W.

    2017-07-01

    It is straightforward to compute the transition amplitudes of a quantum circuit using the sum-over-paths methodology when the gates in the circuit are balanced, where a balanced gate is one for which all non-zero transition amplitudes are of equal magnitude. Here we consider the question of whether, for such circuits, the relative phases of different discrete-time paths through the configuration space can be defined in terms of a classical action, as they are for continuous-time paths. We show how to do so for certain kinds of quantum circuits, namely, Clifford circuits where the elementary systems are continuous-variable systems or discrete systems of odd-prime dimension. These types of circuit are distinguished by having phase-space representations that serve to define their classical counterparts. For discrete systems, the phase-space coordinates are also discrete variables. We show that for each gate in the generating set, one can associate a symplectomorphism on the phase-space and to each of these one can associate a generating function, defined on two copies of the configuration space. For discrete systems, the latter association is achieved using tools from algebraic geometry. Finally, we show that if the action functional for a discrete-time path through a sequence of gates is defined using the sum of the corresponding generating functions, then it yields the correct relative phases for the path-sum expression. These results are likely to be relevant for quantizing physical theories where time is fundamentally discrete, characterizing the classical limit of discrete-time quantum dynamics, and proving complexity results for quantum circuits.

  7. Quantum Key Recycling with 8-state encoding (The Quantum One-Time Pad is more interesting than we thought)

    NASA Astrophysics Data System (ADS)

    Škorić, Boris; de Vries, Manon

    Perfect encryption of quantum states using the Quantum One-Time Pad (QOTP) requires two classical key bits per qubit. Almost-perfect encryption, with information-theoretic security, requires only slightly more than 1. We slightly improve lower bounds on the key length. We show that key length n+2log1ɛ suffices to encrypt n qubits in such a way that the cipherstate’s L1-distance from uniformity is upperbounded by ɛ. For a stricter security definition involving the ∞-norm, we prove sufficient key length n+logn+2log1ɛ+1+1nlog1δ+logln21-ɛ, where δ is a small probability of failure. Our proof uses Pauli operators, whereas previous results on the ∞-norm needed Haar measure sampling. We show how to QOTP-encrypt classical plaintext in a nontrivial way: we encode a plaintext bit as the vector ±(1,1,1)/3 on the Bloch sphere. Applying the Pauli encryption operators results in eight possible cipherstates which are equally spread out on the Bloch sphere. This encoding, especially when combined with the half-keylength option of QOTP, has advantages over 4-state and 6-state encoding in applications such as Quantum Key Recycling (QKR) and Unclonable Encryption (UE). We propose a key recycling scheme that is more efficient and can tolerate more noise than a recent scheme by Fehr and Salvail. For 8-state QOTP encryption with pseudorandom keys, we do a statistical analysis of the cipherstate eigenvalues. We present numerics up to nine qubits.

  8. Application of Pyrometry and IR-Thermography to High Surface Temperature Measurements

    DTIC Science & Technology

    2000-04-01

    infrared spectra. Pneumatic thermal detectors use the effect of pres- sure change in a gas chamber due to radiation The second group of quantum detectors ...application of photo conductive detectors is re- a good signal to noise ratio. Each detector has a stricted by the recombination noise due to the elec...tricity. The signal power equal to the noise power of the detector is called the noise equivalent power AE tAE (NEP). It strongly depends on the

  9. Bioethical pluralism and complementarity.

    PubMed

    Grinnell, Frederick; Bishop, Jeffrey P; McCullough, Laurence B

    2002-01-01

    This essay presents complementarity as a novel feature of bioethical pluralism. First introduced by Neils Bohr in conjunction with quantum physics, complementarity in bioethics occurs when different perspectives account for equally important features of a situation but are mutually exclusive. Unlike conventional approaches to bioethical pluralism, which attempt in one fashion or another to isolate and choose between different perspectives, complementarity accepts all perspectives. As a result, complementarity results in a state of holistic, dynamic tension, rather than one that yields singular or final moral judgments.

  10. Perspective: Quantum mechanical methods in biochemistry and biophysics.

    PubMed

    Cui, Qiang

    2016-10-14

    In this perspective article, I discuss several research topics relevant to quantum mechanical (QM) methods in biophysical and biochemical applications. Due to the immense complexity of biological problems, the key is to develop methods that are able to strike the proper balance of computational efficiency and accuracy for the problem of interest. Therefore, in addition to the development of novel ab initio and density functional theory based QM methods for the study of reactive events that involve complex motifs such as transition metal clusters in metalloenzymes, it is equally important to develop inexpensive QM methods and advanced classical or quantal force fields to describe different physicochemical properties of biomolecules and their behaviors in complex environments. Maintaining a solid connection of these more approximate methods with rigorous QM methods is essential to their transferability and robustness. Comparison to diverse experimental observables helps validate computational models and mechanistic hypotheses as well as driving further development of computational methodologies.

  11. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations.

    PubMed

    Karthick, N K; Kumbharkhane, A C; Joshi, Y S; Mahendraprabu, A; Shanmugam, R; Elangovan, A; Arivazhagan, G

    2017-05-05

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13 C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) CH⋯OC (EA), (EA) methylene CH⋯π electrons (CBZ) and (EA) methyl CH⋯Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (ε E ) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Molecular interactions in ethyl acetate-chlorobenzene binary solution: Dielectric, spectroscopic studies and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Karthick, N. K.; Kumbharkhane, A. C.; Joshi, Y. S.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-05-01

    Dielectric studies using Time Domain Reflectometry method has been carried out on the binary solution of Ethyl acetate (EA) with Chlorobenzene (CBZ) over the entire composition range. Spectroscopic (FTIR and 13C NMR) signatures of neat EA, CBZ and their equimolar binary solution have also been recorded. The results of the spectroscopic studies favour the presence of (CBZ) Csbnd H ⋯ Odbnd C (EA), (EA) methylene Csbnd H ⋯ π electrons (CBZ) and (EA) methyl Csbnd H ⋯ Cl (CBZ) contacts which have been validated using quantum chemical calculations. Dimerization of CBZ has been identified. Presence of β-clusters has been identified in all the solutions. Although EA and CBZ molecules have nearly equal molar volumes, CBZ molecules experience larger hindrance for the rotation than EA molecules. Very small excess dielectric constant (εE) values may be correlated with weak heteromolecular forces and/or closed heteromolecular association.

  13. Melt-growth dynamics in CdTe crystals

    DOE PAGES

    Zhou, X. W.; Ward, D. K.; Wong, B. M.; ...

    2012-06-01

    We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt growth dynamics and fine scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt → crystal transformation. Here, we demonstrate successful molecular dynamics simulations of melt growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during themore » melt growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical methods.« less

  14. Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties

    NASA Astrophysics Data System (ADS)

    Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong

    2018-03-01

    The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.

  15. A tensorial description of particle perception in black-hole physics

    NASA Astrophysics Data System (ADS)

    Barbado, Luis C.; Barceló, Carlos; Garay, Luis J.; Jannes, G.

    2016-09-01

    In quantum field theory in curved backgrounds, one typically distinguishes between objective, tensorial quantities such as the renormalized stress-energy tensor (RSET) and subjective, nontensorial quantities such as Bogoliubov coefficients which encode perception effects associated with the specific trajectory of a detector. In this work, we propose a way to treat both objective and subjective notions on an equal tensorial footing. For that purpose, we define a new tensor which we will call the perception renormalized stress-energy tensor (PeRSET). The PeRSET is defined as the subtraction of the RSET corresponding to two different vacuum states. Based on this tensor, we can define perceived energy densities and fluxes. The PeRSET helps us to have a more organized and systematic understanding of various results in the literature regarding quantum field theory in black hole spacetimes. We illustrate the physics encoded in this tensor by working out various examples of special relevance.

  16. Light atom quantum oscillations in UC and US

    DOE PAGES

    Yiu, Yuen; Aczel, Adam A.; Granroth, Garrett E.; ...

    2016-01-19

    High energy vibrational scattering in the binary systems UC and US is measured using time-of-flight inelastic neutron scattering. A clear set of well-defined peaks equally separated in energy is observed in UC, corresponding to harmonic oscillations of the light C atoms in a cage of heavy U atoms. The scattering is much weaker in US and only a few oscillator peaks are visible. We show how the difference between the materials can be understood by considering the neutron scattering lengths and masses of the lighter atoms. Monte Carlo ray tracing is used to simulate the scattering, with near quantitative agreementmore » with the data in UC, and some differences with US. The possibility of observing anharmonicity and anisotropy in the potentials of the light atoms is investigated in UC. Lastly, the observed data is well accounted for by considering each light atom as a single atom isotropic quantum harmonic oscillator.« less

  17. High speed and adaptable error correction for megabit/s rate quantum key distribution.

    PubMed

    Dixon, A R; Sato, H

    2014-12-02

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90-94% of the ideal secure key rate over all fibre distances from 0-80 km.

  18. Wormholes and the cosmological constant problem.

    NASA Astrophysics Data System (ADS)

    Klebanov, I.

    The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.

  19. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes.

    PubMed

    Chilton, Nicholas F; Collison, David; McInnes, Eric J L; Winpenny, Richard E P; Soncini, Alessandro

    2013-01-01

    Understanding the anisotropic electronic structure of lanthanide complexes is important in areas as diverse as magnetic resonance imaging, luminescent cell labelling and quantum computing. Here we present an intuitive strategy based on a simple electrostatic method, capable of predicting the magnetic anisotropy of dysprosium(III) complexes, even in low symmetry. The strategy relies only on knowing the X-ray structure of the complex and the well-established observation that, in the absence of high symmetry, the ground state of dysprosium(III) is a doublet quantized along the anisotropy axis with an angular momentum quantum number mJ=±(15)/2. The magnetic anisotropy axis of 14 low-symmetry monometallic dysprosium(III) complexes computed via high-level ab initio calculations are very well reproduced by our electrostatic model. Furthermore, we show that the magnetic anisotropy is equally well predicted in a selection of low-symmetry polymetallic complexes.

  20. High speed and adaptable error correction for megabit/s rate quantum key distribution

    PubMed Central

    Dixon, A. R.; Sato, H.

    2014-01-01

    Quantum Key Distribution is moving from its theoretical foundation of unconditional security to rapidly approaching real world installations. A significant part of this move is the orders of magnitude increases in the rate at which secure key bits are distributed. However, these advances have mostly been confined to the physical hardware stage of QKD, with software post-processing often being unable to support the high raw bit rates. In a complete implementation this leads to a bottleneck limiting the final secure key rate of the system unnecessarily. Here we report details of equally high rate error correction which is further adaptable to maximise the secure key rate under a range of different operating conditions. The error correction is implemented both in CPU and GPU using a bi-directional LDPC approach and can provide 90–94% of the ideal secure key rate over all fibre distances from 0–80 km. PMID:25450416

  1. Entanglement-enhanced Neyman-Pearson target detection using quantum illumination

    NASA Astrophysics Data System (ADS)

    Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H.

    2017-08-01

    Quantum illumination (QI) provides entanglement-based target detection---in an entanglement-breaking environment---whose performance is significantly better than that of optimum classical-illumination target detection. QI's performance advantage was established in a Bayesian setting with the target presumed equally likely to be absent or present and error probability employed as the performance metric. Radar theory, however, eschews that Bayesian approach, preferring the Neyman-Pearson performance criterion to avoid the difficulties of accurately assigning prior probabilities to target absence and presence and appropriate costs to false-alarm and miss errors. We have recently reported an architecture---based on sum-frequency generation (SFG) and feedforward (FF) processing---for minimum error-probability QI target detection with arbitrary prior probabilities for target absence and presence. In this paper, we use our results for FF-SFG reception to determine the receiver operating characteristic---detection probability versus false-alarm probability---for optimum QI target detection under the Neyman-Pearson criterion.

  2. Effet de l'énergie du faisceau d'ions servant à l'assistance du dépôt de matériaux organiques utilisés pour réaliser des diodes électroluminescentes

    NASA Astrophysics Data System (ADS)

    Antony, R.; Moliton, A.; Ratier, B.

    1998-06-01

    Light emitting diode based on the structure ITO/Alq3/Ca-Al lead to enhanced quantum efficiency when the Alq3 active layer is obtained by IBAD (Ion Beam Assisted Deposition): with Iodine ions, the optimization (quantum efficiency multiplied by a factor10) is obtained for an ion energy equal to 100eV. La réalisation de diodes électroluminescentes basées sur la structure ITO/Alq3/Ca-Al conduit à des performances améliorées lorsque le dépôt de la couche active Alq3 est effectué avec l'assistance d'un faisceau d'ions; l'optimisation (rendement quantique interne accru d'un ordre de grandeur) correspond à des ions Iode d'énergie 100eV.

  3. Electron Waiting Times in Mesoscopic Conductors

    NASA Astrophysics Data System (ADS)

    Albert, Mathias; Haack, Géraldine; Flindt, Christian; Büttiker, Markus

    2012-05-01

    Electron transport in mesoscopic conductors has traditionally involved investigations of the mean current and the fluctuations of the current. A complementary view on charge transport is provided by the distribution of waiting times between charge carriers, but a proper theoretical framework for coherent electronic systems has so far been lacking. Here we develop a quantum theory of electron waiting times in mesoscopic conductors expressed by a compact determinant formula. We illustrate our methodology by calculating the waiting time distribution for a quantum point contact and find a crossover from Wigner-Dyson statistics at full transmission to Poisson statistics close to pinch-off. Even when the low-frequency transport is noiseless, the electrons are not equally spaced in time due to their inherent wave nature. We discuss the implications for renewal theory in mesoscopic systems and point out several analogies with level spacing statistics and random matrix theory.

  4. Current transport properties and phase diagram of a Kitaev chain with long-range pairing

    NASA Astrophysics Data System (ADS)

    Giuliano, Domenico; Paganelli, Simone; Lepori, Luca

    2018-04-01

    We describe a method to probe the quantum phase transition between the short-range topological phase and the long-range topological phase in the superconducting Kitaev chain with long-range pairing, both exhibiting subgap modes localized at the edges. The method relies on the effects of the finite mass of the subgap edge modes in the long-range regime (which survives in the thermodynamic limit) on the single-particle scattering coefficients through the chain connected to two normal leads. Specifically, we show that, when the leads are biased at a voltage V with respect to the superconducting chain, the Fano factor is either zero (in the short-range correlated phase) or 2 e (in the long-range correlated phase). As a result, we find that the Fano factor works as a directly measurable quantity to probe the quantum phase transition between the two phases. In addition, we note a remarkable "critical fractionalization effect" in the Fano factor, which is exactly equal to e along the quantum critical line. Finally, we note that a dual implementation of our proposed device makes it suitable as a generator of large-distance entangled two-particle states.

  5. Stückelberg formulation of holography

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gomez, Cesar; Wintergerst, Nico

    2016-10-01

    We suggest that holography can be formulated in terms of the information capacity of the Stückelberg degrees of freedom that maintain gauge invariance of the theory in the presence of an information boundary. These Stückelbergs act as qubits that account for a certain fraction of quantum information. Their information capacity is measured by the ratio of the inverse Stückelberg energy gap to the size of the system. Systems with the smallest gap are maximally holographic. For massless gauge systems this information measure is universally equal to the inverse coupling evaluated at the systems' length scale. In this language it becomes very transparent why the Stückelberg information capacity of black holes saturates the Bekenstein bound and accounts for the entire information of the system. The physical reason is that the strength of quantum interaction is bounded from below by the gravitational coupling, which scales as area. Observing the striking similarity between the scalings of the energy gap of the boundary Stückelberg modes and the Bogoliubov modes of critical many-body systems, we establish a connection between holography and quantum criticality through the correspondence between these modes.

  6. Exact, E = 0, classical and quantum solutions for general power-law oscillators

    NASA Technical Reports Server (NTRS)

    Nieto, Michael Martin; Daboul, Jamil

    1995-01-01

    For zero energy, E = 0, we derive exact, classical and quantum solutions for all power-law oscillators with potentials V(r) = -gamma/r(exp nu), gamma greater than 0 and -infinity less than nu less than infinity. When the angular momentum is non-zero, these solutions lead to the classical orbits (p(t) = (cos mu(phi(t) - phi(sub 0)t))(exp 1/mu) with mu = nu/2 - 1 does not equal 0. For nu greater than 2, the orbits are bound and go through the origin. We calculate the periods and precessions of these bound orbits, and graph a number of specific examples. The unbound orbits are also discussed in detail. Quantum mechanically, this system is also exactly solvable. We find that when nu is greater than 2 the solutions are normalizable (bound), as in the classical case. Further, there are normalizable discrete, yet unbound, states. They correspond to unbound classical particles which reach infinity in a finite time. Finally, the number of space dimensions of the system can determine whether or not an E = 0 state is bound. These and other interesting comparisons to the classical system will be discussed.

  7. Optical parameters of diode lasers based on an InAsSb/InAsSbP heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astakhova, A. P.; Bez'yazychnaya, T. V.; Burov, L. I.

    2008-02-15

    The rates of radiative recombination (including transitions induced by enhanced luminescence) and nonradiative recombination, internal quantum yield of luminescence, and the matrix element for band-to-band optical transitions were determined for the first time for InAsSb/InAsSbP diode lasers oscillating at wavelengths of 3.1-3.2 {mu}m. It is established that the contribution of nonradiative recombination to the lasing threshold can be as large as 97%. The internal quantum yield of luminescence for the InAs{sub 0.97}Sb{sub 0.03} compound is no higher than 3%. Most likely, the nonradiative channel is formed with involvement of Auger recombination with the constant C = 4.2 Multiplication-Sign 10{sup -38}more » m{sup 6}s{sup -1} (T = 77 K). The studied samples of lasers feature relatively low optical losses {rho} = 900 m{sup -1} and internal quantum efficiency of emission at the level of 0.6. The spontaneous lifetime of nonequilibrium charge carriers as determined from the radiative-recombination rate is equal to 6 Multiplication-Sign 10{sup -8} s, which is consistent with known published data.« less

  8. Optical parameters of diode lasers based on an InAsSb/InAsSbP heterostructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astakhova, A. P.; Bez'yazychnaya, T. V.; Burov, L. I.

    2008-02-15

    The rates of radiative recombination (including transitions induced by enhanced luminescence) and nonradiative recombination, internal quantum yield of luminescence, and the matrix element for band-to-band optical transitions were determined for the first time for InAsSb/InAsSbP diode lasers oscillating at wavelengths of 3.1-3.2 {mu}m. It is established that the contribution of nonradiative recombination to the lasing threshold can be as large as 97%. The internal quantum yield of luminescence for the InAs{sub 0.97}Sb{sub 0.03} compound is no higher than 3%. Most likely, the nonradiative channel is formed with involvement of Auger recombination with the constant C = 4.2 x 10{sup -38}more » m{sup 6}s{sup -1} (T = 77 K). The studied samples of lasers feature relatively low optical losses {rho} = 900 m{sup -1} and internal quantum efficiency of emission at the level of 0.6. The spontaneous lifetime of nonequilibrium charge carriers as determined from the radiative-recombination rate is equal to 6 x 10{sup -8} s, which is consistent with known published data.« less

  9. Element distinctness revisited

    NASA Astrophysics Data System (ADS)

    Portugal, Renato

    2018-07-01

    The element distinctness problem is the problem of determining whether the elements of a list are distinct, that is, if x=(x_1,\\ldots ,x_N) is a list with N elements, we ask whether the elements of x are distinct or not. The solution in a classical computer requires N queries because it uses sorting to check whether there are equal elements. In the quantum case, it is possible to solve the problem in O(N^{2/3}) queries. There is an extension which asks whether there are k colliding elements, known as element k-distinctness problem. This work obtains optimal values of two critical parameters of Ambainis' seminal quantum algorithm (SIAM J Comput 37(1):210-239, 2007). The first critical parameter is the number of repetitions of the algorithm's main block, which inverts the phase of the marked elements and calls a subroutine. The second parameter is the number of quantum walk steps interlaced by oracle queries. We show that, when the optimal values of the parameters are used, the algorithm's success probability is 1-O(N^{1/(k+1)}), quickly approaching 1. The specification of the exact running time and success probability is important in practical applications of this algorithm.

  10. Constrained Unfolding of a Helical Peptide: Implicit versus Explicit Solvents.

    PubMed

    Bureau, Hailey R; Merz, Dale R; Hershkovits, Eli; Quirk, Stephen; Hernandez, Rigoberto

    2015-01-01

    Steered Molecular Dynamics (SMD) has been seen to provide the potential of mean force (PMF) along a peptide unfolding pathway effectively but at significant computational cost, particularly in all-atom solvents. Adaptive steered molecular dynamics (ASMD) has been seen to provide a significant computational advantage by limiting the spread of the trajectories in a staged approach. The contraction of the trajectories at the end of each stage can be performed by taking a structure whose nonequilibrium work is closest to the Jarzynski average (in naive ASMD) or by relaxing the trajectories under a no-work condition (in full-relaxation ASMD--namely, FR-ASMD). Both approaches have been used to determine the energetics and hydrogen-bonding structure along the pathway for unfolding of a benchmark peptide initially constrained as an α-helix in a water environment. The energetics are quite different to those in vacuum, but are found to be similar between implicit and explicit solvents. Surprisingly, the hydrogen-bonding pathways are also similar in the implicit and explicit solvents despite the fact that the solvent contact plays an important role in opening the helix.

  11. Functionalization of graphene oxide nanostructures improves photoluminescence and facilitates their use as optical probes in preclinical imaging

    NASA Astrophysics Data System (ADS)

    Prabhakar, Neeraj; Näreoja, Tuomas; von Haartman, Eva; Şen Karaman, Didem; Burikov, Sergey A.; Dolenko, Tatiana A.; Deguchi, Takahiro; Mamaeva, Veronika; Hänninen, Pekka E.; Vlasov, Igor I.; Shenderova, Olga A.; Rosenholm, Jessica M.

    2015-06-01

    Recently reported photoluminescent nanographene oxides (nGOs), i.e. nanographene oxidised with a sulfuric/nitric acid mixture (SNOx method), have tuneable photoluminescence and are scalable, simple and fast to produce optical probes. This material belongs to the vast class of photoluminescent carbon nanostructures, including carbon dots, nanodiamonds (NDs), graphene quantum dots (GQDs), all of which demonstrate a variety of properties that are attractive for biomedical imaging such as low toxicity and stable photoluminescence. In this study, the nGOs were organically surface-modified with poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) copolymers tagged with folic acid as the affinity ligand for cancer cells expressing folate receptors. The functionalization enhanced both the cellular uptake and quantum efficiency of the photoluminescence as compared to non-modified nGOs. The nGOs exhibited an excitation dependent photoluminescence that facilitated their detection with a wide range of microscope configurations. The functionalized nGOs were non-toxic, they were retained in the stained cell population over a period of 8 days and they were distributed equally between daughter cells. We have evaluated their applicability in in vitro and in vivo (chicken embryo CAM) models to visualize and track migratory cancer cells. The good biocompatibility and easy detection of the functionalized nGOs suggest that they could address the limitations faced with quantum dots and organic fluorophores in long-term in vivo biomedical imaging.Recently reported photoluminescent nanographene oxides (nGOs), i.e. nanographene oxidised with a sulfuric/nitric acid mixture (SNOx method), have tuneable photoluminescence and are scalable, simple and fast to produce optical probes. This material belongs to the vast class of photoluminescent carbon nanostructures, including carbon dots, nanodiamonds (NDs), graphene quantum dots (GQDs), all of which demonstrate a variety of properties that are attractive for biomedical imaging such as low toxicity and stable photoluminescence. In this study, the nGOs were organically surface-modified with poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) copolymers tagged with folic acid as the affinity ligand for cancer cells expressing folate receptors. The functionalization enhanced both the cellular uptake and quantum efficiency of the photoluminescence as compared to non-modified nGOs. The nGOs exhibited an excitation dependent photoluminescence that facilitated their detection with a wide range of microscope configurations. The functionalized nGOs were non-toxic, they were retained in the stained cell population over a period of 8 days and they were distributed equally between daughter cells. We have evaluated their applicability in in vitro and in vivo (chicken embryo CAM) models to visualize and track migratory cancer cells. The good biocompatibility and easy detection of the functionalized nGOs suggest that they could address the limitations faced with quantum dots and organic fluorophores in long-term in vivo biomedical imaging. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01403d

  12. Entropy of the Bose-Einstein-condensate ground state: Correlation versus ground-state entropy

    NASA Astrophysics Data System (ADS)

    Kim, Moochan B.; Svidzinsky, Anatoly; Agarwal, Girish S.; Scully, Marlan O.

    2018-01-01

    Calculation of the entropy of an ideal Bose-Einstein condensate (BEC) in a three-dimensional trap reveals unusual, previously unrecognized, features of the canonical ensemble. It is found that, for any temperature, the entropy of the Bose gas is equal to the entropy of the excited particles although the entropy of the particles in the ground state is nonzero. We explain this by considering the correlations between the ground-state particles and particles in the excited states. These correlations lead to a correlation entropy which is exactly equal to the contribution from the ground state. The correlations themselves arise from the fact that we have a fixed number of particles obeying quantum statistics. We present results for correlation functions between the ground and excited states in a Bose gas, so as to clarify the role of fluctuations in the system. We also report the sub-Poissonian nature of the ground-state fluctuations.

  13. Toward Efficient Design of Reversible Logic Gates in Quantum-Dot Cellular Automata with Power Dissipation Analysis

    NASA Astrophysics Data System (ADS)

    Sasamal, Trailokya Nath; Singh, Ashutosh Kumar; Ghanekar, Umesh

    2018-04-01

    Nanotechnologies, remarkably Quantum-dot Cellular Automata (QCA), offer an attractive perspective for future computing technologies. In this paper, QCA is investigated as an implementation method for designing area and power efficient reversible logic gates. The proposed designs achieve superior performance by incorporating a compact 2-input XOR gate. The proposed design for Feynman, Toffoli, and Fredkin gates demonstrates 28.12, 24.4, and 7% reduction in cell count and utilizes 46, 24.4, and 7.6% less area, respectively over previous best designs. Regarding the cell count (area cover) that of the proposed Peres gate and Double Feynman gate are 44.32% (21.5%) and 12% (25%), respectively less than the most compact previous designs. Further, the delay of Fredkin and Toffoli gates is 0.75 clock cycles, which is equal to the delay of the previous best designs. While the Feynman and Double Feynman gates achieve a delay of 0.5 clock cycles, equal to the least delay previous one. Energy analysis confirms that the average energy dissipation of the developed Feynman, Toffoli, and Fredkin gates is 30.80, 18.08, and 4.3% (for 1.0 E k energy level), respectively less compared to best reported designs. This emphasizes the beneficial role of using proposed reversible gates to design complex and power efficient QCA circuits. The QCADesigner tool is used to validate the layout of the proposed designs, and the QCAPro tool is used to evaluate the energy dissipation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B. -L.; Chang, L.; Ding, M.

    A symmetry-preserving truncation of the two-body light-quark bound-state problem in relativistic quantum field theory is used to calculate the leading-twist parton distribution amplitudes (PDAs) of scalar systems, both ground-state and radial excitations, and the radial excitations of vector mesons. Owing to the fact that the scale-independent leptonic decay constant of a scalar meson constituted from equal-mass valence-constituents vanishes, it is found that the PDA of a given scalar system possesses one more zero than that of an analogous vector meson. Consequently, whereas the mean light-front relative momentum of the valence-constituents within a vector meson is zero, that within a scalarmore » meson is large, an outcome which hints at a greater role for light-front angular momentum in systems classified as P-wave in quantum mechanical models. Values for the scale-dependent decay constants of ground-state scalar and vector systems are a by-product of this analysis, and they turn out to be roughly equal, viz. ≃ 0.2 GeV at an hadronic scale. In addition, it is confirmed that the dilation characterising ground-state PDAs is manifest in the PDAs of radial excitations too. The impact of SU(3)-flavour symmetry breaking is also considered. When compared with pseudoscalar states, it is a little stronger in scalar systems, but the size is nevertheless determined by the flavour-dependence of dynamical chiral symmetry breaking and the PDAs are still skewed toward the heavier valence-quark in asymmetric systems.« less

  15. Influence of damping on proton energy loss in plasmas of all degeneracies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barriga-Carrasco, Manuel D.

    2007-07-15

    The purpose of the present paper is to describe the effects of electron-electron collisions on the stopping power of plasmas of any degeneracy. Plasma targets are considered fully ionized so electronic stopping is only due to the free electrons. We focus our analysis on plasmas which electronic density is around solid values n{sub e}{approx_equal}10{sup 23} cm{sup -3} and which temperature is around T{approx_equal}10 eV; these plasmas are in the limit of weakly coupled plasmas. This type of plasma has not been studied extensively though it is very important for inertial confinement fusion. The electronic stopping is obtained from an exactmore » quantum mechanical evaluation, which takes into account the degeneracy of the target plasma, and later it is compared with common classical and degenerate approximations. Differences are around 30% in some cases which can produce bigger mistakes in further energy deposition and projectile range studies. Then we consider electron-electron collisions in the exact quantum mechanical electronic stopping calculation. Now the maximum stopping occurs at velocities smaller than for the calculations without considering collisions for all kinds of plasmas analyzed. The energy loss enhances for velocities smaller than the velocity at maximum while decreases for higher velocities. Latter effects are magnified with increasing collision frequency. Differences with the same results for the case of not taking into account collisions are around 20% in the analyzed cases.« less

  16. Analysis of wavelength-dependent photoisomerization quantum yields in bilirubins by fitting two exciton absorption bands

    NASA Astrophysics Data System (ADS)

    Mazzoni, M.; Agati, G.; Troup, G. J.; Pratesi, R.

    2003-09-01

    The absorption spectra of bilirubins were deconvoluted by two Gaussian curves of equal width representing the exciton bands of the non-degenerate molecular system. The two bands were used to study the wavelength dependence of the (4Z, 15Z) rightarrow (4Z, 15E) configurational photoisomerization quantum yield of the bichromophoric bilirubin-IXalpha (BR-IX), the intrinsically asymmetric bile pigment associated with jaundice and the symmetrically substituted bilirubins (bilirubin-IIIalpha and mesobilirubin-XIIIalpha), when they are irradiated in aqueous solution bound to human serum albumin (HSA). The same study was performed for BR-IX in ammoniacal methanol solution (NH4OH/MeOH). The quantum yields of the configurational photoprocesses were fitted with a combination function of the two Gaussian bands normalized to the total absorption, using the proportionality coefficients and a scaling factor as parameters. The decrease of the (4Z, 15Z) rightarrow (4Z, 15E) quantum yield with increasing wavelength, which occurs for wavelengths longer than the most probable Franck-Condon transition of the molecule, did not result in a unique function of the exciton absorptions. In particular we found two ranges corresponding to different exciton interactions with different proportionality coefficients and scaling factors. The wavelength-dependent photoisomerization of bilirubins was described as an abrupt change in quantum yield as soon as the resulting excitation was strongly localized in each chromophore. The change was correlated to a variation of the interaction between the two chromophores when the short-wavelength exciton absorption became vanishingly small. With the help of the circular dichroism (CD) spectrum of BR-IX in HSA, a small band was resolved in the bilirubin absorption spectrum, delivering part of the energy required for the (4Z, 15Z) rightarrow (4Z, 15E) photoisomerization of the molecule.

  17. Near-IR photon number resolving detector design

    NASA Astrophysics Data System (ADS)

    Bogdanski, Jan; Huntington, Elanor H.

    2013-05-01

    Photon-Number-Resolving-Detection (PNRD) capability is crucial for many Quantum-Information (QI) applications, e.g. for Coherent-State-Quantum-Computing, Linear-Optics-Quantum-Computing. In Quantum-Key-Distribution and Quantum-Secret-Sharing over 1310/1550 nm fiber, two other important, defense and information security related, QI applications, it's crucial for the information transmission security to guarantee that the information carriers (photons) are single. Thus a PNRD can provide an additional security level against eavesdropping. Currently, there are at least a couple of promising PNRD technologies in the Near-Infrared, but all of them require cryogenic cooling. Thus a compact, portable PNRD, based on commercial Avalanche-Photo-Diodes (APDs), could be a very useful instrument for many QI experiments. For an APD-based PNRD, it is crucial to measure the APD-current in the beginning of the avalanche. Thus an efficient cancellation of the APD capacitive spikes is a necessary condition for the very weak APD current measurement. The detector's principle is based on two commercial, pair-matched InGaAs/InP APDs, connected in series. It leads to a great cancelation of the capacitive spikes caused by the narrow (300 ps), differential gate-pulses of maximum 4V amplitude assuming that both pulses are perfectly matched in regards to their phases, amplitudes, and shapes. The cancellation scheme could be used for other APD-technologies, e.g. Silicon, extending the detection spectrum from visible to NIR. The design distinguishes itself from other, APD-based, schemes by its scalability feature and its computer controlled cancellation of the capacitive spikes. Furthermore, both APDs could be equally used for the detection purpose, which opens a possibility for the odd-even photon number parity detection.

  18. Convex geometry of quantum resource quantification

    NASA Astrophysics Data System (ADS)

    Regula, Bartosz

    2018-01-01

    We introduce a framework unifying the mathematical characterisation of different measures of general quantum resources and allowing for a systematic way to define a variety of faithful quantifiers for any given convex quantum resource theory. The approach allows us to describe many commonly used measures such as matrix norm-based quantifiers, robustness measures, convex roof-based measures, and witness-based quantifiers together in a common formalism based on the convex geometry of the underlying sets of resource-free states. We establish easily verifiable criteria for a measure to possess desirable properties such as faithfulness and strong monotonicity under relevant free operations, and show that many quantifiers obtained in this framework indeed satisfy them for any considered quantum resource. We derive various bounds and relations between the measures, generalising and providing significantly simplified proofs of results found in the resource theories of quantum entanglement and coherence. We also prove that the quantification of resources in this framework simplifies for pure states, allowing us to obtain more easily computable forms of the considered measures, and show that many of them are in fact equal on pure states. Further, we investigate the dual formulation of resource quantifiers, which provide a characterisation of the sets of resource witnesses. We present an explicit application of the results to the resource theories of multi-level coherence, entanglement of Schmidt number k, multipartite entanglement, as well as magic states, providing insight into the quantification of the four resources by establishing novel quantitative relations and introducing new quantifiers, such as a measure of entanglement of Schmidt number k which generalises the convex roof-extended negativity, a measure of k-coherence which generalises the \

  19. Hall and transverse even effects in the vicinity of a quantum critical point in Tm{sub 1-x}Yb{sub x}B{sub 12}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sluchanko, N. E., E-mail: nes@lt.gpi.ru; Azarevich, A. N.; Bogach, A. V.

    2012-09-15

    The angular, temperature, and magnetic field dependences of the resistance recorded in the Hall effect geometry are studied for the rare-earth dodecaboride Tm{sub 1-x}Yb{sub x}B{sub 12} solid solutions where the metal-insulator and antiferromagnetic-paramagnetic phase transitions are observed in the vicinity of the quantum critical point x{sub c} Almost-Equal-To 0.3. The measurements performed on high-quality single crystals in the temperature range 1.9-300 K for the first time have revealed the appearance of the second harmonic contribution, a transverse even effect in these fcc compounds near the quantum critical point. This contribution a is found to increase drastically both under the Tm-to-ytterbiummore » substitution in the range x > x{sub c} and with an increase in the external magnetic field. Moreover, as the Yb concentration x increases, a negative peak of a significant amplitude appears on the temperature dependences of the Hall coefficient R{sub H}(T) for the Tm{sup 1-x}Yb{sub x}B{sub 12} compounds, in contrast to the invariable behavior R{sub H}(T) Almost-Equal-To const found for TmB{sub 12}. The complicated activation-type behavior of the Hall coefficient is observed at intermediate temperatures for x {>=} 0.5 with activation energies E{sub g}/k{sub B} Almost-Equal-To 200 K and E{sub a}/k{sub B} 55-75 K, and the sign inversion of R{sub H}(T) is detected at liquid-helium temperatures in the coherent regime. Renormalization effects in the electron density of states induced by variation of the Yb concentration are analyzed. The anomalies of the charge transport in Tm{sub 1-x}Yb{sub x}B{sub 12} solid solutions in various regimes (charge gap formation, intra-gap many-body resonance, and coherent regime) are discussed in detail and the results are interpreted in terms of the electron phase separation effects in combination with the formation of nanosize clusters of rare earth ions in the cage-glass state of the studied dodecaborides. The data obtained allow concluding that the emergence of Yb-Yb dimers in the Tm{sub 1-x}Yb{sub x}B{sub 12} cage-glass matrix is the origin of the metal-insulator transition observed in the achetypal strongly correlated electron system of YbB{sub 12}.« less

  20. Quantum corrections for spinning particles in de Sitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fröb, Markus B.; Verdaguer, Enric, E-mail: mbf503@york.ac.uk, E-mail: enric.verdaguer@ub.edu

    We compute the one-loop quantum corrections to the gravitational potentials of a spinning point particle in a de Sitter background, due to the vacuum polarisation induced by conformal fields in an effective field theory approach. We consider arbitrary conformal field theories, assuming only that the theory contains a large number N of fields in order to separate their contribution from the one induced by virtual gravitons. The corrections are described in a gauge-invariant way, classifying the induced metric perturbations around the de Sitter background according to their behaviour under transformations on equal-time hypersurfaces. There are six gauge-invariant modes: two scalarmore » Bardeen potentials, one transverse vector and one transverse traceless tensor, of which one scalar and the vector couple to the spinning particle. The quantum corrections consist of three different parts: a generalisation of the flat-space correction, which is only significant at distances of the order of the Planck length; a constant correction depending on the undetermined parameters of the renormalised effective action; and a term which grows logarithmically with the distance from the particle. This last term is the most interesting, and when resummed gives a modified power law, enhancing the gravitational force at large distances. As a check on the accuracy of our calculation, we recover the linearised Kerr-de Sitter metric in the classical limit and the flat-space quantum correction in the limit of vanishing Hubble constant.« less

Top