Science.gov

Sample records for quantum leaps multiple

  1. Quantum leaps, bit by bit

    NASA Astrophysics Data System (ADS)

    Trabesinger, Andreas

    2017-03-01

    The promises of quantum computation are unique -- and so are the challenges. Progress in physics, mathematics, computer science and engineering have brought quantum computers to a point where they start to challenge their classical counterparts. By Andreas Trabesinger; illustration by Visual Science.

  2. Three Quantum Leaps in the Development of Information Security

    NASA Astrophysics Data System (ADS)

    Kaijser, Per

    2007-12-01

    This paper gives a coarse overview of the historical development of algorithms used for information security. It is shown that the development of these encryption algorithms has been made in small incremental steps for almost 2000 years until the latter part of the last century when three revolutionary inventions were made. The main properties of these new technologies, the public key encryption method, quantum cryptography and quantum computing are explained and demonstrates why they can be seen as quantum leaps in the development of information security.

  3. Sudden synchrony leaps accompanied by frequency multiplications in neuronal activity

    PubMed Central

    Vardi, Roni; Goldental, Amir; Guberman, Shoshana; Kalmanovich, Alexander; Marmari, Hagar; Kanter, Ido

    2013-01-01

    A classical view of neural coding relies on temporal firing synchrony among functional groups of neurons, however, the underlying mechanism remains an enigma. Here we experimentally demonstrate a mechanism where time-lags among neuronal spiking leap from several tens of milliseconds to nearly zero-lag synchrony. It also allows sudden leaps out of synchrony, hence forming short epochs of synchrony. Our results are based on an experimental procedure where conditioned stimulations were enforced on circuits of neurons embedded within a large-scale network of cortical cells in vitro and are corroborated by simulations of neuronal populations. The underlying biological mechanisms are the unavoidable increase of the neuronal response latency to ongoing stimulations and temporal or spatial summation required to generate evoked spikes. These sudden leaps in and out of synchrony may be accompanied by multiplications of the neuronal firing frequency, hence offering reliable information-bearing indicators which may bridge between the two principal neuronal coding paradigms. PMID:24198764

  4. Quantum Inferential Leaps: The Rhetoric of Physics.

    ERIC Educational Resources Information Center

    McPhail, Mark Lawrence

    1992-01-01

    Considers the epistemological implications of a changing understanding of reality, based on contemporary connections between rhetoric as epistemic (questioning underlying assumptions about modernist conceptualizations of science and language) and quantum physics (rejecting the notion of an objective reality existing independent of observers).…

  5. Taking a Quantum Leap in Cyber Deterrence

    DTIC Science & Technology

    2010-02-17

    frame an adversary‘s rationale and decision calculus. 82 Understanding a group‘s rationale helps frame a strategy for deterrence. Emanuel Adler ...to leverage against America. 8586 Adler adds that when deterrence culture in this context is driven by religious and ethnic- nationalist beliefs...Path to the Quantum Computer. New York: Alfred A. Knopf, 2003. Kapur, S. Paul. "Deterring Nuclear Terrorists." In Complex Deterrence: Strategy in

  6. Quantum leaps of black holes: Magnifying glasses of quantum gravity

    NASA Astrophysics Data System (ADS)

    Chakraborty, Sumanta; Lochan, Kinjalk

    2016-10-01

    We show using simple arguments, that the conceptual triad of a classical black hole, semi-classical Hawking emission and geometry quantization is inherently, mutually incompatible. Presence of any two explicitly violates the third. We argue that geometry quantization, if realized in nature, magnifies the quantum gravity features hugely to catapult them into the realm of observational possibilities. We also explore a quantum route towards extremality of the black holes.

  7. Underwater sonar image detection: A combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm

    PubMed Central

    Liu, Zhipeng

    2017-01-01

    This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method. PMID:28542266

  8. Underwater sonar image detection: A combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm.

    PubMed

    Wang, Xingmei; Liu, Shu; Liu, Zhipeng

    2017-01-01

    This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method.

  9. Multiplicative properties of quantum channels

    NASA Astrophysics Data System (ADS)

    Rahaman, Mizanur

    2017-08-01

    In this paper, we study the multiplicative behaviour of quantum channels, mathematically described by trace preserving, completely positive maps on matrix algebras. It turns out that the multiplicative domain of a unital quantum channel has a close connection to its spectral properties. A structure theorem (theorem 2.5), which reveals the automorphic property of an arbitrary unital quantum channel on a subalgebra, is presented. Various classes of quantum channels (irreducible, primitive, etc) are then analysed in terms of this stabilising subalgebra. The notion of the multiplicative index of a unital quantum channel is introduced, which measures the number of times a unital channel needs to be composed with itself for the multiplicative algebra to stabilise. We show that the maps that have trivial multiplicative domains are dense in completely bounded norm topology in the set of all unital completely positive maps. Some applications in quantum information theory are discussed.

  10. Endoatmospheric LEAP

    NASA Astrophysics Data System (ADS)

    Legters, G. R.; Lianos, D. P.; Brosch, R. G.

    1992-02-01

    The SDI-related Endoatmospheric ('ENDO') LEAP program is charged with the development of very lightweight hypersonic velocity kinetic-kill homing projectiles for ballistic missile warhead interception. ENDO LEAP design development efforts encompass vehicle configuration, electrooptic and mm-wave homing seekers, attitude-control systems, airframe materials and fabrication methods, inertial-measurement units, software and signal processing systems, and power and electronic systems. These hardware items will be extensively simulated and tested in state-of-the-art SDIO facilities.

  11. Journey in evolution of nuclear cardiology: will there be another quantum leap with the F-18-labeled myocardial perfusion tracers?

    PubMed

    Dilsizian, Vasken; Taillefer, Raymond

    2012-12-01

    The field of nuclear cardiac imaging has evolved from being rather subjective, more "art than a science," to a more objective, digital-based quantitative technique, providing insight into the physiological processes of cardiovascular disorders and predicting patient outcome. In a mere 4 decades of its clinical use, the technology used to image myocardial perfusion has made quantum leaps from planar to single-photon emission computed tomography (SPECT) and now to a more contemporary rapid SPECT, positron emission tomography (PET), and hybrid SPECT-computed tomography (CT) and PET-CT techniques. Meanwhile, radiotracers have flourished from potassium-43 and red blood cell-tagged blood pool imaging to thallium-201 and technetium-99m-labeled SPECT perfusion tracers along with rubidium-82, ammonia N-13, and more recently F-18 fluorine-labeled PET perfusion tracers. Concurrent with this expansion is the introduction of new quantitative methods and software for image processing, evaluation, and data interpretation. Technical advances, particularly in obtaining quantitative data, have led to a better understanding of the physiological mechanisms underlying cardiovascular diseases beyond discrete epicardial coronary artery disease to coronary vasomotor function in the early stages of the development of coronary atherosclerosis, hypertrophic cardiomyopathy, and dilated nonischemic cardiomyopathy. Progress in the areas of molecular and hybrid imaging are equally important areas of growth in nuclear cardiology. However, this paper focuses on the past and future of nuclear myocardial perfusion imaging and particularly perfusion tracers. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. Endoatmospheric LEAP

    DTIC Science & Technology

    2007-11-02

    Appror«* for puhks tmstj 19980527 160 PLEASE RETURN TO: BMD TECHNICAL INFORMATION CENTER ALLISTIC MISSILE DEFENSE ORGANIZATION 7100 DEFENSE...Design Conference, Irvine, CA Descriptors, Keywords: ENDO LEAP INTERCEPTOR Ballistic Missile Integration Technology Test Vehicle Pages: 00010...1215 PLEASE RETURN TO: 3MD TECHNICAL INFORMATION CEN"- ? ALÜSTIC MISSILE DEFENSE ORGANI7\\%] 7100 DEFENSE PENTAGON WASHINGTON D.C. 20301-7101

  13. Multiple-Quantum-Well Intersubband Infrared Detector

    NASA Technical Reports Server (NTRS)

    Borenstain, Shmuel I.

    1991-01-01

    Proposed multiple-quantum-well intersubband semiconductor device detects photons over broader range of wavelengths. Device is stack of substacks, each of which contains quantum-well layers sensitive to different narrow band of wavelengths. Bandwidth and detectivity increased.

  14. Franchise. Quantum leap.

    PubMed

    Mooney, Helen

    2008-05-15

    The Royal Marsden's chemotherapy unit in Kingston will not only treat its own patients who live locally, but also accept referrals from local GPs. The move is part of a trend by well-known hospitals to open franchises, led by the Moorfields Eye Hospital which has 11 satellite units, including one in Dubai. Franchising by specialist hospitals can increase services, raise income and expand their brand. It also allows specialist staff to work in a range of settings.

  15. Quantum internet using code division multiple access.

    PubMed

    Zhang, Jing; Liu, Yu-xi; Ozdemir, Sahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-01-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.

  16. Quantum internet using code division multiple access

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Liu, Yu-Xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-07-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.

  17. Quantum internet using code division multiple access

    PubMed Central

    Zhang, Jing; Liu, Yu-xi; Özdemir, Şahin Kaya; Wu, Re-Bing; Gao, Feifei; Wang, Xiang-Bin; Yang, Lan; Nori, Franco

    2013-01-01

    A crucial open problem inS large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels. PMID:23860488

  18. Multiple Multi-Qubit Quantum States Sharing

    NASA Astrophysics Data System (ADS)

    Qin, Hua-Wang; Dai, Yue-Wei

    2016-04-01

    A multiple multi-qubit quantum states sharing scheme is proposed, in which the dealer can share multiple multi-qubit quantum states among the participants through only one distribution and one recovery. The dealer encodes the secret quantum states into a special entangled state, and then distributes the particles of the entangled state to the participants. The participants perform the single-particle measurements on their particles, and can cooperate to recover the multiple multi-qubit quantum states. Compared to the existing schemes, our scheme is more efficient and more flexible in practice.

  19. Quantum hyperparallel algorithm for matrix multiplication

    NASA Astrophysics Data System (ADS)

    Zhang, Xin-Ding; Zhang, Xiao-Ming; Xue, Zheng-Yuan

    2016-04-01

    Hyperentangled states, entangled states with more than one degree of freedom, are considered as promising resource in quantum computation. Here we present a hyperparallel quantum algorithm for matrix multiplication with time complexity O(N2), which is better than the best known classical algorithm. In our scheme, an N dimensional vector is mapped to the state of a single source, which is separated to N paths. With the assistance of hyperentangled states, the inner product of two vectors can be calculated with a time complexity independent of dimension N. Our algorithm shows that hyperparallel quantum computation may provide a useful tool in quantum machine learning and “big data” analysis.

  20. Quantum hyperparallel algorithm for matrix multiplication.

    PubMed

    Zhang, Xin-Ding; Zhang, Xiao-Ming; Xue, Zheng-Yuan

    2016-04-29

    Hyperentangled states, entangled states with more than one degree of freedom, are considered as promising resource in quantum computation. Here we present a hyperparallel quantum algorithm for matrix multiplication with time complexity O(N(2)), which is better than the best known classical algorithm. In our scheme, an N dimensional vector is mapped to the state of a single source, which is separated to N paths. With the assistance of hyperentangled states, the inner product of two vectors can be calculated with a time complexity independent of dimension N. Our algorithm shows that hyperparallel quantum computation may provide a useful tool in quantum machine learning and "big data" analysis.

  1. Time-domain multiple-quantum NMR

    SciTech Connect

    Weitekamp, Daniel P.

    1982-11-01

    The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species.

  2. Multiple phase estimation in quantum cloning machines

    NASA Astrophysics Data System (ADS)

    Yao, Yao; Ge, Li; Xiao, Xing; Wang, Xiao-guang; Sun, Chang-pu

    2014-08-01

    Since the initial discovery of the Wootters-Zurek no-cloning theorem, a wide variety of quantum cloning machines have been proposed aiming at imperfect but optimal cloning of quantum states within its own context. Remarkably, most previous studies have employed the Bures fidelity or the Hilbert-Schmidt norm as the figure of merit to characterize the quality of the corresponding cloning scenarios. However, in many situations, what we truly care about is the relevant information about certain parameters encoded in quantum states. In this work, we investigate the multiple phase estimation problem in the framework of quantum cloning machines, from the perspective of quantum Fisher information matrix (QFIM). Focusing on the generalized d-dimensional equatorial states, we obtain the analytical formulas of QFIM for both universal quantum cloning machine (UQCM) and phase-covariant quantum cloning machine (PQCM), and prove that PQCM indeed performs better than UQCM in terms of QFIM. We highlight that our method can be generalized to arbitrary cloning schemes where the fidelity between the single-copy input and output states is input-state independent. Furthermore, the attainability of the quantum Cramér-Rao bound is also explicitly discussed.

  3. "Quantum Leap" in Photobiomodulation Therapy Ushers in a New Generation of Light-Based Treatments for Cancer and Other Complex Diseases: Perspective and Mini-Review.

    PubMed

    Santana-Blank, Luis; Rodríguez-Santana, Elizabeth; Santana-Rodríguez, Karin E; Reyes, Heberto

    2016-03-01

    Set within the context of the 2015 International Year of Light and Light-Based Technologies,and of a growing and aging world population with ever-rising healthcare needs, this perspective and mini-review focuses on photobiomodulation (PBM) therapy as an emerging, cost-effective, treatment option for cancer (i.e., solid tumors) and other complex diseases, particularly, of the eye (e.g., age-related macular degeneration, diabetic retinopathy, glaucoma, retinitis pigmentosa) and the central nervous system (e.g., Alzheimer's and Parkinson's disease). Over the last decades, primary and secondary mechanisms of PBM have been revealed. These include oxygen-dependent and oxygen-independent structural and functional action pathways. Signal and target characteristics determine biological outcome, which is optimal (or even positive) only within a given set of parameters. This study was a perspective and nonsystematic literature mini-review. Studies support what we describe as a paradigm shift or "quantum leap" in the understanding and use of light and its interaction with water and other relevant photo-cceptors to restore physiologic function. Based on existing evidence, it is argued that PBM therapy can raise the standard of care and improve the quality of life of patients for a fraction of the cost of many current approaches. PBM therapy can, therefore,benefit large, vulnerable population groups, including the elderly and the poor, whilehaving a major impact on medical practice and public finances.

  4. Asynchronous τ-leaping

    PubMed Central

    Blackwell, Kim T.

    2016-01-01

    Stochastic simulation of cell signaling pathways and genetic regulatory networks has contributed to the understanding of cell function; however, investigation of larger, more complicated systems requires computationally efficient algorithms. τ-leaping methods, which improve efficiency when some molecules have high copy numbers, either use a fixed leap size, which does not adapt to changing state, or recalculate leap size at a heavy computational cost. We present a hybrid simulation method for reaction-diffusion systems which combines exact stochastic simulation and τ-leaping in a dynamic way. Putative times of events are stored in a priority queue, which reduces the cost of each step of the simulation. For every reaction and diffusion channel at each step of the simulation the more efficient of an exact stochastic event or a τ-leap is chosen. This new approach removes the inherent trade-off between speed and accuracy in stiff systems which was present in all τ-leaping methods by allowing each reaction channel to proceed at its own pace. Both directions of reversible reactions and diffusion are combined in a single event, allowing bigger leaps to be taken. This improves efficiency for systems near equilibrium where forward and backward events are approximately equally frequent. Comparison with existing algorithms and behaviour for five test cases of varying complexity shows that the new method is almost as accurate as exact stochastic simulation, scales well for large systems, and for various problems can be significantly faster than τ-leaping. PMID:27036481

  5. Selectivity in multiple quantum nuclear magnetic resonance

    SciTech Connect

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  6. Infrared Multiple-Quantum-Well Phototransistor

    NASA Technical Reports Server (NTRS)

    Borenstain, Shmuel I.

    1992-01-01

    Proposed npn AlxGa1-xAs phototransistor incorporates multiple-quantum-well (MQW) infrared photodetector. Has n-doped contacts and is embedded between p-doped base region and n-doped collector region of transistor. Photocurrent amplified, and dark current suppressed.

  7. Subcarrier multiplexing multiple-input multiple-output quantum key distribution scheme with orthogonal quantum states

    NASA Astrophysics Data System (ADS)

    Xiao, Hailin; Zhang, Zhongshan

    2017-01-01

    Quantum key distribution (QKD) system is presently being developed for providing high-security transmission in future free-space optical communication links. However, current QKD technique restricts quantum secure communication to a low bit rate. To improve the QKD bit rate, we propose a subcarrier multiplexing multiple-input multiple-output quantum key distribution (SCM-MQKD) scheme with orthogonal quantum states. Specifically, we firstly present SCM-MQKD system model and drive symmetrical SCM-MQKD system into decoherence-free subspaces. We then utilize bipartite Werner and isotropic states to construct multiple parallel single photon with orthogonal quantum states that are invariant for unitary operations. Finally, we derive the density matrix and the capacity of SCM-MQKD system, respectively. Theoretical analysis and numerical results show that the capacity of SCM-MQKD system will increase {log _2}(N^2+1) times than that of single-photon QKD system.

  8. Multiple quantum phase transitions of plutonium compounds

    SciTech Connect

    Matsumoto, Munehisa; Yin, Quan; Otsuki, Junya; Savrasov, Sergey Y.

    2011-07-22

    We show by quantum Monte Carlo simulations of realistic Kondo lattice models derived from electronicstructure calculations that multiple quantum critical points can be realized in plutonium-based materials. We place representative systems, including PuCoGa5, on a realistic Doniach phase diagram and identify the regions where the magnetically mediated superconductivity could occur. The solution of an inverse problem to restore the quasiparticle renormalization factor for f electrons is shown to be sufficiently good to predict the trends among Sommerfeld coefficients and magnetism. A suggestion on the possible experimental verification for this scenario is given for PuAs.

  9. Quantum key distribution network for multiple applications

    NASA Astrophysics Data System (ADS)

    Tajima, A.; Kondoh, T.; Ochi, T.; Fujiwara, M.; Yoshino, K.; Iizuka, H.; Sakamoto, T.; Tomita, A.; Shimamura, E.; Asami, S.; Sasaki, M.

    2017-09-01

    The fundamental architecture and functions of secure key management in a quantum key distribution (QKD) network with enhanced universal interfaces for smooth key sharing between arbitrary two nodes and enabling multiple secure communication applications are proposed. The proposed architecture consists of three layers: a quantum layer, key management layer and key supply layer. We explain the functions of each layer, the key formats in each layer and the key lifecycle for enabling a practical QKD network. A quantum key distribution-advanced encryption standard (QKD-AES) hybrid system and an encrypted smartphone system were developed as secure communication applications on our QKD network. The validity and usefulness of these systems were demonstrated on the Tokyo QKD Network testbed.

  10. Spin-orbit interaction in multiple quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2015-01-07

    In this paper, we investigate how the structure of multiple quantum wells affects spin-orbit interactions. To increase the interface-related Rashba spin splitting and the strength of the interface-related Rashba spin-orbit interaction, we designed three kinds of multiple quantum wells. We demonstrate that the structure of the multiple quantum wells strongly affected the interface-related Rashba spin-orbit interaction, increasing the interface-related Rashba spin splitting to up to 26% larger in multiple quantum wells than in a stepped quantum well. We also show that the cubic Dresselhaus spin-orbit interaction similarly influenced the spin relaxation time of multiple quantum wells and that of a stepped quantum well. The increase in the interface-related Rashba spin splitting originates from the relationship between interface-related Rashba spin splitting and electron probability density. Our results suggest that multiple quantum wells can be good candidates for spintronic devices.

  11. Multiple Exciton Generation in Semiconductor Quantum Dots.

    PubMed

    Beard, Matthew C

    2011-06-02

    Multiple exciton generation in quantum dots (QDs) has been intensively studied as a way to enhance solar energy conversion by utilizing the excess energy in the absorbed photons. Among other useful properties, quantum confinement can both increase Coulomb interactions that drive the MEG process and decrease the electron-phonon coupling that cools hot excitons in bulk semiconductors. However, variations in the reported enhanced quantum yields (QYs) have led to disagreements over the role that quantum confinement plays. The enhanced yield of excitons per absorbed photon is deduced from a dynamical signature in the transient absorption or transient photoluminescence and is ascribed to the creation of biexcitons. Extraneous effects such as photocharging are partially responsible for the observed variations. When these extraneous effects are reduced, the MEG efficiency, defined in terms of the number of additional electron-hole pairs produced per additional band gap of photon excitation, is about two times better in PbSe QDs than that in bulk PbSe. Thin films of electronically coupled QDs have shown promise in simple photon-to-electron conversion architectures. If the MEG efficiency can be further enhanced and charge separation and transport can be optimized within QD films, then QD solar cells can lead to third-generation solar energy conversion technologies.

  12. Semidirect Products of C*-Quantum Groups: Multiplicative Unitaries Approach

    NASA Astrophysics Data System (ADS)

    Meyer, Ralf; Roy, Sutanu; Woronowicz, Stanisław Lech

    2017-04-01

    C*-quantum groups with projection are the noncommutative analogues of semidirect products of groups. Radford's Theorem about Hopf algebras with projection suggests that any C*-quantum group with projection decomposes uniquely into an ordinary C*-quantum group and a "braided" C*-quantum group. We establish this on the level of manageable multiplicative unitaries.

  13. MULTIPLE-QUANTUM NMR IN SOLIDS

    SciTech Connect

    Yen, Y-S.

    1982-11-01

    Time domain multiple-quantum (MQ) nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for spectral simplification and for providing new information on molecular dynamics. In this thesis, applications of MQ NMR are presented and show distinctly the advantages of this method over the conventional single-quantum NMR. Chapter 1 introduces the spin Hamiltonians, the density matrix formalism and some basic concepts of MQ NMR spectroscopy. In chapter 2, {sup 14}N double-quantum coherence is observed with high sensitivity in isotropic solution, using only the magnetization of bound protons. Spin echoes are used to obtain the homogeneous double-quantum spectrum and to suppress a large H{sub 2}O solvent signal. Chapter 3 resolves the main difficulty in observing high MQ transitions in solids. Due to the profusion of spin transitions in a solid, individual lines are unresolved. Excitation and detection of high quantum transitions by normal schemes are thus difficult. To ensure that overlapping lines add constructively and thereby to enhance sensitivity, time-reversal pulse sequences are used to generate all lines in phase. Up to 22-quantum {sup 1}H absorption in solid adamantane is observed. A time dependence study shows an increase in spin correlations as the excitation time increased. In chapter 4, a statistical theory of MQ second moments is developed for coupled spins of spin I = 1/2. The model reveals that the ratio of the average dipolar coupling to the rms value largely determines the dependence of second moments on the number of quanta. The results of this model are checked against computer-calculated and experimental second moments, and show good agreement. A simple scheme is proposed in chapter 5 for sensitivity improvement in a MQ experiment. The scheme involves acquiring all of the signal energy available in the detection period by applying pulsed spinlocking and sampling between pulses. Using this technique on polycrystalline adamantane, a large

  14. Multiple network alignment on quantum computers

    NASA Astrophysics Data System (ADS)

    Daskin, Anmer; Grama, Ananth; Kais, Sabre

    2014-12-01

    Comparative analyses of graph-structured datasets underly diverse problems. Examples of these problems include identification of conserved functional components (biochemical interactions) across species, structural similarity of large biomolecules, and recurring patterns of interactions in social networks. A large class of such analyses methods quantify the topological similarity of nodes across networks. The resulting correspondence of nodes across networks, also called node alignment, can be used to identify invariant subgraphs across the input graphs. Given graphs as input, alignment algorithms use topological information to assign a similarity score to each -tuple of nodes, with elements (nodes) drawn from each of the input graphs. Nodes are considered similar if their neighbors are also similar. An alternate, equivalent view of these network alignment algorithms is to consider the Kronecker product of the input graphs and to identify high-ranked nodes in the Kronecker product graph. Conventional methods such as PageRank and HITS (Hypertext-Induced Topic Selection) can be used for this purpose. These methods typically require computation of the principal eigenvector of a suitably modified Kronecker product matrix of the input graphs. We adopt this alternate view of the problem to address the problem of multiple network alignment. Using the phase estimation algorithm, we show that the multiple network alignment problem can be efficiently solved on quantum computers. We characterize the accuracy and performance of our method and show that it can deliver exponential speedups over conventional (non-quantum) methods.

  15. EDITORIAL: Quanta and leaps

    NASA Astrophysics Data System (ADS)

    Dobson, Ken

    2000-11-01

    oscillating light `waves' had to be quantized as well. Several articles in this issue of Physics Education celebrate the first year of the quantum, 1900. I am grateful and beholden to Board Member and co-editor Gren Ireson for his contacts and nomination of the various contributors. It does seem strange, however, a full century after its discovery full of its amazing success that the essential quantum nature of practically everything is still kept hidden from school students, in the UK at least. Let's see what happens in the coming century. Now for another quantum leap. This is the last issue of Physics Education that I shall have the honour of editing. In fact, I shall leap into historical obscurity as the very last honorary editor. Great efforts by your Editorial Board - over a fair number of years! - have resulted in a radical reorganizing of both the journal and the way it is produced. It's been an interesting five years, a time of falling numbers but quite radical innovations in post-16 physics education. IoPP and the IoP are working together to revitalize what may have been seen by many as a staid if respectable and authoritative publication. We shall keep the authority and even respectability but hope to liven things up a bit. The new editor is Kerry Parker of Sheffield College. She will take on a stronger role than I and my predecessors have had, and will be working at IoPP in Bristol two days a week. There are many obvious advantages in this, and I look forward to seeing the new design and approach that will start with the January 2000 issue. So, it's goodbye from me - and also from the unsung heroine of Physics Education for even longer. Managing Editor Dr Jill Membrey has been doing the really hard work at Bristol for many years, but is now moving on to other things at IoPP. I am extremely grateful for the highly professional care and support she has provided for myself and the Editorial Board over the years. The new Managing Editor is Andrea Pomroy, who arrives at

  16. Study of correlations in molecular motion by multiple quantum NMR

    NASA Astrophysics Data System (ADS)

    Tang, J. H.

    1981-11-01

    The theoretical background of spin Hamiltonians, the density matrix formalism of multiple quantum NMR are discussed as well as creation and detection of multiple quantum coherence by multiple pulse sequence. Prototype multiple quantum spectra of oriented benzene are presented. Redfield relaxation theory and the application of multiple quantum NMR to the study of correlations in fluctuations are considered. An oriented methyl group relaxed by paramagnetic impurities is examined and possible correlated motion between two coupled methyl groups is investigated by multiple quantum NMR. For a six spin system it is shown that the four quantum spectrum is sensitive to two body correlations, and serves a ready test of correlated motion. The spin lattice dynamics of orienting or tunneling methyl groups (CH3 and CD3) at low temperatures and the anisotropic spin lattice relaxation of deuterated hexamethylbenzene, caused by the sixfold reorientation of the molecules are described as well as NMR spectrometers.

  17. Quantum Leap: Vocational Education Reform.

    ERIC Educational Resources Information Center

    Groves, Cecil L.

    1985-01-01

    Discusses recent technological advances, especially in computers and telecommunications, and their impact on the workplace. Highlights the need for educational reform in vocational/technical programs reflecting a systems-oriented approach rooted in the sciences. Discusses the future role of the private sector in education. (HB)

  18. A Great LEAP Forward.

    ERIC Educational Resources Information Center

    Harrison, John A.

    1998-01-01

    In 1996, a Winston-Salem principal closed a failing alternative school and developed a new program dedicated to helping at-risk kids succeed. The result was LEAP (Learning and Acceleration Program) Academy, a school that helps academically unstable middle-school students catch up to their peers by completing two years of academic course work in…

  19. A Great LEAP Forward.

    ERIC Educational Resources Information Center

    Harrison, John A.

    1998-01-01

    In 1996, a Winston-Salem principal closed a failing alternative school and developed a new program dedicated to helping at-risk kids succeed. The result was LEAP (Learning and Acceleration Program) Academy, a school that helps academically unstable middle-school students catch up to their peers by completing two years of academic course work in…

  20. Multiple-state quantum Otto engine, 1D box system

    SciTech Connect

    Latifah, E.; Purwanto, A.

    2014-03-24

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  1. Multiple-state quantum Otto engine, 1D box system

    NASA Astrophysics Data System (ADS)

    Latifah, E.; Purwanto, A.

    2014-03-01

    Quantum heat engines produce work using quantum matter as their working substance. We studied adiabatic and isochoric processes and defined the general force according to quantum system. The processes and general force are used to evaluate a quantum Otto engine based on multiple-state of one dimensional box system and calculate the efficiency. As a result, the efficiency depends on the ratio of initial and final width of system under adiabatic processes.

  2. Multiple-Particle Interference and Quantum Error Correction

    NASA Astrophysics Data System (ADS)

    Steane, Andrew

    1996-11-01

    The concept of multiple-particle interference is discussed, using insights provided by the classical theory of error correcting codes. This leads to a discussion of error correction in a quantum communication channel or a quantum computer. Methods of error correction in the quantum regime are presented, and their limitations assessed. A quantum channel can recover from arbitrary decoherence of x qubits if K bits of quantum information are encoded using n quantum bits, where K/n can be greater than 1 - 2H (2x/n), but must be less than 1 - 2H (x/n). This implies exponential reduction of decoherence with only a polynomial increase in the computing resources required. Therefore quantum computation can be made free of errors in the presence of physically realistic levels of decoherence. The methods also allow isolation of quantum communication from noise and evesdropping (quantum privacy amplification).

  3. Efficient quantum transmission in multiple-source networks.

    PubMed

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-04-02

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency.

  4. Efficient Quantum Transmission in Multiple-Source Networks

    PubMed Central

    Luo, Ming-Xing; Xu, Gang; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun

    2014-01-01

    A difficult problem in quantum network communications is how to efficiently transmit quantum information over large-scale networks with common channels. We propose a solution by developing a quantum encoding approach. Different quantum states are encoded into a coherent superposition state using quantum linear optics. The transmission congestion in the common channel may be avoided by transmitting the superposition state. For further decoding and continued transmission, special phase transformations are applied to incoming quantum states using phase shifters such that decoders can distinguish outgoing quantum states. These phase shifters may be precisely controlled using classical chaos synchronization via additional classical channels. Based on this design and the reduction of multiple-source network under the assumption of restricted maximum-flow, the optimal scheme is proposed for specially quantized multiple-source network. In comparison with previous schemes, our scheme can greatly increase the transmission efficiency. PMID:24691590

  5. Quantum broadcasting multiple blind signature with constant size

    NASA Astrophysics Data System (ADS)

    Xiao, Min; Li, Zhenli

    2016-09-01

    Using quantum homomorphic signature in quantum network, we propose a quantum broadcasting multiple blind signature scheme. Different from classical signature and current quantum signature schemes, the multi-signature proposed in our scheme is not generated by simply putting the individual signatures together, but by aggregating the individual signatures based on homomorphic property. Therefore, the size of the multi-signature is constant. Furthermore, based on a wide range of investigation for the security of existing quantum signature protocols, our protocol is designed to resist possible forgery attacks against signature and message from the various attack sources and disavowal attacks from participants.

  6. Quantum cosmological perturbations of multiple fluids

    NASA Astrophysics Data System (ADS)

    Peter, Patrick; Pinto-Neto, N.; Vitenti, Sandro D. P.

    2016-01-01

    The formalism to treat quantization and evolution of cosmological perturbations of multiple fluids is described. We first construct the Lagrangian for both the gravitational and matter parts, providing the necessary relevant variables and momenta leading to the quadratic Hamiltonian describing linear perturbations. The final Hamiltonian is obtained without assuming any equations of motions for the background variables. This general formalism is applied to the special case of two fluids, having in mind the usual radiation and matter mix which made most of our current Universe history. Quantization is achieved using an adiabatic expansion of the basis functions. This allows for an unambiguous definition of a vacuum state up to the given adiabatic order. Using this basis, we show that particle creation is well defined for a suitable choice of vacuum and canonical variables, so that the time evolution of the corresponding quantum fields is unitary. This provides constraints for setting initial conditions for an arbitrary number of fluids and background time evolution. We also show that the common choice of variables for quantization can lead to an ill-defined vacuum definition. Our formalism is not restricted to the case where the coupling between fields is small, but is only required to vary adiabatically with respect to the ultraviolet modes, thus paving the way to consistent descriptions of general models not restricted to single-field (or fluid).

  7. Secure Multiparty Quantum Computation for Summation and Multiplication

    NASA Astrophysics Data System (ADS)

    Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics.

  8. Secure Multiparty Quantum Computation for Summation and Multiplication

    PubMed Central

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2016-01-01

    As a fundamental primitive, Secure Multiparty Summation and Multiplication can be used to build complex secure protocols for other multiparty computations, specially, numerical computations. However, there is still lack of systematical and efficient quantum methods to compute Secure Multiparty Summation and Multiplication. In this paper, we present a novel and efficient quantum approach to securely compute the summation and multiplication of multiparty private inputs, respectively. Compared to classical solutions, our proposed approach can ensure the unconditional security and the perfect privacy protection based on the physical principle of quantum mechanics. PMID:26792197

  9. LEAP 1992: Conference summary

    SciTech Connect

    Dover, C.B.

    1992-12-01

    We present a summary of the many new results in antiproton ([bar p]) physics presented at the LEAP '92 conference, in the areas of meson spectroscopy, [bar N]N scattering, annihilation and spin observables, strangeness and charm production, [bar N] annihilation in nuclei, atomic physics with very low energy [bar p]'s, the exploration of fundamental symmetries and interactions with [bar p] (CP, T, CPT, gravitation), and the prospects for new [bar p] facilities at ultralow energies or energies above the LEAR regime ([ge] 2 GeV/c).

  10. LEAP 1992: Conference summary

    SciTech Connect

    Dover, C.B.

    1992-12-01

    We present a summary of the many new results in antiproton ({bar p}) physics presented at the LEAP `92 conference, in the areas of meson spectroscopy, {bar N}N scattering, annihilation and spin observables, strangeness and charm production, {bar N} annihilation in nuclei, atomic physics with very low energy {bar p}`s, the exploration of fundamental symmetries and interactions with {bar p} (CP, T, CPT, gravitation), and the prospects for new {bar p} facilities at ultralow energies or energies above the LEAR regime ({ge} 2 GeV/c).

  11. Quantum filtering for multiple diffusive and Poissonian measurements

    NASA Astrophysics Data System (ADS)

    Emzir, Muhammad F.; Woolley, Matthew J.; Petersen, Ian R.

    2015-09-01

    We provide a rigorous derivation of a quantum filter for the case of multiple measurements being made on a quantum system. We consider a class of measurement processes which are functions of bosonic field operators, including combinations of diffusive and Poissonian processes. This covers the standard cases from quantum optics, where homodyne detection may be described as a diffusive process and photon counting may be described as a Poissonian process. We obtain a necessary and sufficient condition for any pair of such measurements taken at different output channels to satisfy a commutation relationship. Then, we derive a general, multiple-measurement quantum filter as an extension of a single-measurement quantum filter. As an application we explicitly obtain the quantum filter corresponding to homodyne detection and photon counting at the output ports of a beam splitter.

  12. Imaging Quantum Confinement in Multiple Graphene Quantum Dots

    NASA Astrophysics Data System (ADS)

    Wong, Dillon; Velasco, Jairo; Lee, Juwon; Rodriguez-Nieva, Joaquin; Kahn, Salman; Vo, Phong; Tsai, Hsinzon; Taniguchi, Takashi; Watanabe, Kenji; Zettl, Alex; Wang, Feng; Levitov, Leonid; Crommie, Michael

    Quantum dots provide a useful means for controlling the electronic and spin degrees of freedom of mesoscale and nanoscale materials. Here we demonstrate a new method for fabricating interacting graphene quantum dots that is compatible with electrostatic gating and visualization by way of scanning tunneling microscopy (STM). Using this new technique we have created and spatially characterized systems of two or more interacting quantum dots. Our results show that it is possible to engineer electronic wave functions in graphene with a high degree of spatial control.

  13. Effect of Multiple Scattering in a Quantum Well

    NASA Astrophysics Data System (ADS)

    Sheng, Hanyu; Chua, Soo-Jin; Sinkkonen, Juha

    This paper gives a potentially useful application to quantum well of the theory of scattering in the Born approximation. The simple formulae for multiple scattering in a quantum well of double barrier structure are derived. The multiple scattering parameter is the complex mean free path. We show that the amplitude of the coherent wave will be exponentially attenuated and the phase of the wave will be delayed because of the scattering.

  14. Frequency domain quantum optimal control under multiple constraints

    NASA Astrophysics Data System (ADS)

    Shu, Chuan-Cun; Ho, Tak-San; Xing, Xi; Rabitz, Herschel

    2016-03-01

    Optimal control of quantum systems with complex constrained external fields is one of the longstanding theoretical and numerical challenges at the frontier of quantum control research. Here, we present a theoretical method that can be utilized to optimize the control fields subject to multiple constraints while guaranteeing monotonic convergence towards desired physical objectives. This optimization method is formulated in the frequency domain in line with the current ultrafast pulse shaping technique, providing the possibility for performing quantum optimal control simulations and experiments in a unified fashion. For illustrations, this method is successfully employed to perform multiple constraint spectral-phase-only optimization for maximizing resonant multiphoton transitions with desired pulses.

  15. Computer studies of multiple-quantum spin dynamics

    SciTech Connect

    Murdoch, J.B.

    1982-11-01

    The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.

  16. Study of correlations in molecular motion by multiple quantum NMR

    SciTech Connect

    Tang, J.H.

    1981-11-01

    Nuclear magnetic resonance is a very useful tool for characterizing molecular configurations through the measurement of transition frequencies and dipolar couplings. The measurement of spectral lineshapes, spin-lattice relaxation times, and transverse relaxation times also provide us with valuable information about correlations in molecular motion. The new technique of multiple quantum nuclear magnetic resonance has numerous advantages over the conventional single quantum NMR techniques in obtaining information about static and dynamic interactions of coupled spin systems. In the first two chapters, the theoretical background of spin Hamiltonians and the density matrix formalism of multiple quantum NMR is discussed. The creation and detection of multiple quantum coherence by multiple pulse sequence are discussed. Prototype multiple quantum spectra of oriented benzene are presented. Redfield relaxation theory and the application of multiple quantum NMR to the study of correlations in fluctuations are presented. A specific example of an oriented methyl group relaxed by paramagnetic impurities is studied in detail. The study of possible correlated motion between two coupled methyl groups by multiple quantum NMR is presented. For a six spin system it is shown that the four-quantum spectrum is sensitive to two-body correlations, and serves a ready test of correlated motion. The study of the spin-lattice dynamics of orienting or tunneling methyl groups (CH/sub 3/ and CD/sub 3/) at low temperatures is presented. The anisotropic spin-lattice relaxation of deuterated hexamethylbenzene, caused by the sixfold reorientation of the molecules, is investigated, and the NMR spectrometers and other experimental details are discussed.

  17. Quantum search with multiple walk steps per oracle query

    NASA Astrophysics Data System (ADS)

    Wong, Thomas G.; Ambainis, Andris

    2015-08-01

    We identify a key difference between quantum search by discrete- and continuous-time quantum walks: a discrete-time walk typically performs one walk step per oracle query, whereas a continuous-time walk can effectively perform multiple walk steps per query while only counting query time. As a result, we show that continuous-time quantum walks can outperform their discrete-time counterparts, even though both achieve quadratic speedups over their corresponding classical random walks. To provide greater equity, we allow the discrete-time quantum walk to also take multiple walk steps per oracle query while only counting queries. Then it matches the continuous-time algorithm's runtime, but such that it is a cubic speedup over its corresponding classical random walk. This yields a greater-than-quadratic speedup for quantum search over its corresponding classical random walk.

  18. cuTauLeaping: A GPU-Powered Tau-Leaping Stochastic Simulator for Massive Parallel Analyses of Biological Systems

    PubMed Central

    Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo

    2014-01-01

    Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae. PMID:24663957

  19. cuTauLeaping: a GPU-powered tau-leaping stochastic simulator for massive parallel analyses of biological systems.

    PubMed

    Nobile, Marco S; Cazzaniga, Paolo; Besozzi, Daniela; Pescini, Dario; Mauri, Giancarlo

    2014-01-01

    Tau-leaping is a stochastic simulation algorithm that efficiently reconstructs the temporal evolution of biological systems, modeled according to the stochastic formulation of chemical kinetics. The analysis of dynamical properties of these systems in physiological and perturbed conditions usually requires the execution of a large number of simulations, leading to high computational costs. Since each simulation can be executed independently from the others, a massive parallelization of tau-leaping can bring to relevant reductions of the overall running time. The emerging field of General Purpose Graphic Processing Units (GPGPU) provides power-efficient high-performance computing at a relatively low cost. In this work we introduce cuTauLeaping, a stochastic simulator of biological systems that makes use of GPGPU computing to execute multiple parallel tau-leaping simulations, by fully exploiting the Nvidia's Fermi GPU architecture. We show how a considerable computational speedup is achieved on GPU by partitioning the execution of tau-leaping into multiple separated phases, and we describe how to avoid some implementation pitfalls related to the scarcity of memory resources on the GPU streaming multiprocessors. Our results show that cuTauLeaping largely outperforms the CPU-based tau-leaping implementation when the number of parallel simulations increases, with a break-even directly depending on the size of the biological system and on the complexity of its emergent dynamics. In particular, cuTauLeaping is exploited to investigate the probability distribution of bistable states in the Schlögl model, and to carry out a bidimensional parameter sweep analysis to study the oscillatory regimes in the Ras/cAMP/PKA pathway in S. cerevisiae.

  20. Evolution of multiple quantum coherences with scaled dipolar Hamiltonian

    NASA Astrophysics Data System (ADS)

    Sánchez, Claudia M.; Buljubasich, Lisandro; Pastawski, Horacio M.; Chattah, Ana K.

    2017-08-01

    In this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters. In all cases, a strong dependence between the evolution rate and the weighting factor is observed. Remarkably, all the curves appeared overlapped in a single trend when plotted against the self-time, a new time scale that includes the scaling factor into the evolution time. In other words, the spin system displayed always the same quantum evolution, slowed down as the scaling factor decreases, confirming the high performance of the new pulse sequence.

  1. Remote Entanglement by Coherent Multiplication of Concurrent Quantum Signals.

    PubMed

    Roy, Ananda; Jiang, Liang; Stone, A Douglas; Devoret, Michel

    2015-10-09

    Concurrent remote entanglement of distant, noninteracting quantum entities is a crucial function for quantum information processing. In contrast with the existing protocols which employ the addition of signals to generate entanglement between two remote qubits, the continuous variable protocol we present is based on the multiplication of signals. This protocol can be straightforwardly implemented by a novel Josephson junction mixing circuit. Our scheme would be able to generate provable entanglement even in the presence of practical imperfections: finite quantum efficiency of detectors and undesired photon loss in current state-of-the-art devices.

  2. Optimum testing of multiple hypotheses in quantum detection theory

    NASA Technical Reports Server (NTRS)

    Yuen, H. P.; Kennedy, R. S.; Lax, M.

    1975-01-01

    The problem of specifying the optimum quantum detector in multiple hypotheses testing is considered for application to optical communications. The quantum digital detection problem is formulated as a linear programming problem on an infinite-dimensional space. A necessary and sufficient condition is derived by the application of a general duality theorem specifying the optimum detector in terms of a set of linear operator equations and inequalities. Existence of the optimum quantum detector is also established. The optimality of commuting detection operators is discussed in some examples. The structure and performance of the optimal receiver are derived for the quantum detection of narrow-band coherent orthogonal and simplex signals. It is shown that modal photon counting is asymptotically optimum in the limit of a large signaling alphabet and that the capacity goes to infinity in the absence of a bandwidth limitation.

  3. Multiple quantum magic-angle spinning using rotary resonance excitation

    NASA Astrophysics Data System (ADS)

    Vosegaard, Thomas; Florian, Pierre; Massiot, Dominique; Grandinetti, Philip J.

    2001-03-01

    We have discovered rotary resonances between rf field strength, ω1, and magic-angle spinning (MAS) frequency, ωR, which dramatically enhance the sensitivity of triple quantum preparation and mixing in the multiple-quantum MAS experiment, particularly for quadrupolar nuclei having low gyromagnetic ratios or experiencing strong quadrupole couplings. Triple quantum excitation efficiency minima occur when 2ω1=nωR, where n is an integer, with significant maxima occurring between these minima. For triple quantum mixing we observe maxima when ω1=nωR. In both preparation and mixing the pulse lengths required to reach maxima exceed one rotor period. We have combined these rotary resonance conditions into a new experiment called FASTER MQ-MAS, and have experimentally demonstrated a factor of 3 enhancement in sensitivity in comparison to conventional MQ-MAS.

  4. Multiple Quantum Wells for P T -Symmetric Phononic Crystals

    NASA Astrophysics Data System (ADS)

    Poshakinskiy, A. V.; Poddubny, A. N.; Fainstein, A.

    2016-11-01

    We demonstrate that the parity-time symmetry for sound is realized in laser-pumped multiple-quantum-well structures. Breaking of the parity-time symmetry for the phonons with wave vectors corresponding to the Bragg condition makes the structure a highly selective acoustic wave amplifier. Single-mode distributed feedback phonon lasing is predicted for structures with realistic parameters.

  5. Multinomial tau-leaping method for stochastic kinetic simulations

    NASA Astrophysics Data System (ADS)

    Pettigrew, Michel F.; Resat, Haluk

    2007-02-01

    We introduce the multinomial tau-leaping (MτL) method for general reaction networks with multichannel reactant dependencies. The MτL method is an extension of the binomial tau-leaping method where efficiency is improved in several ways. First, τ-leaping steps are determined simply and efficiently using a priori information and Poisson distribution-based estimates of expectation values for reaction numbers over a tentative τ-leaping step. Second, networks are partitioned into closed groups of reactions and corresponding reactants in which no group reactant set is found in any other group. Third, product formation is factored into upper-bound estimation of the number of times a particular reaction occurs. Together, these features allow larger time steps where the numbers of reactions occurring simultaneously in a multichannel manner are estimated accurately using a multinomial distribution. Furthermore, we develop a simple procedure that places a specific upper bound on the total reaction number to ensure non-negativity of species populations over a single multiple-reaction step. Using two disparate test case problems involving cellular processes—epidermal growth factor receptor signaling and a lactose operon model—we show that the τ-leaping based methods such as the MτL algorithm can significantly reduce the number of simulation steps thus increasing the numerical efficiency over the exact stochastic simulation algorithm by orders of magnitude.

  6. Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements

    NASA Astrophysics Data System (ADS)

    Chia, A.; Wiseman, H. M.

    2011-07-01

    Feedback control engineers have been interested in multiple-input-multiple-output (MIMO) extensions of single-input-single-output (SISO) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.70.548 70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensive use of vector-operator algebra.

  7. A SiGe/Si multiple quantum well avalanche photodetector

    NASA Astrophysics Data System (ADS)

    Sun, Po-Hsing; Chang, Shu-Tong; Chen, Yu-Chun; Lin, Hongchin

    2010-10-01

    The present work investigates the performance of APDs with a SiGe/Si multi-quantum well (MQW) structure, which was fabricated using ultrahigh-vacuum chemical vapor deposition (UHV/CVD). Absorption of radiation and avalanche multiplication occur in both SiGe/Si MQW and the i-SiGe layer. Intense photoluminescence (PL) from strained, epitaxial SiGe alloys grown using UHV/CVD was reported with multiple SiGe/Si MQW and i-SiGe layer. It was found that the avalanche multiplication occurred at about 7 V, when exceeding 7 V, the responsiveness and quantum efficiency rapidly increased. An APD consisting of an epitaxial SiGe/Si MQW as the active absorption layer with intense response in the 800-1500 nm wavelength range is also demonstrated.

  8. Detection of electromagnetic radiation using micromechanical multiple quantum wells structures

    DOEpatents

    Datskos, Panagiotis G [Knoxville, TN; Rajic, Slobodan [Knoxville, TN; Datskou, Irene [Knoxville, TN

    2007-07-17

    An apparatus and method for detecting electromagnetic radiation employs a deflectable micromechanical apparatus incorporating multiple quantum wells structures. When photons strike the quantum-well structure, physical stresses are created within the sensor, similar to a "bimetallic effect." The stresses cause the sensor to bend. The extent of deflection of the sensor can be measured through any of a variety of conventional means to provide a measurement of the photons striking the sensor. A large number of such sensors can be arranged in a two-dimensional array to provide imaging capability.

  9. A Big LEAP for Texas

    ERIC Educational Resources Information Center

    Phillips, Loraine; Roach, David; Williamson, Celia

    2014-01-01

    In Texas, educators working to coordinate the efforts of fifty community colleges, thirty-eight universities, and six university systems are bringing the resources of the Association of American Colleges and Universities (AAC&U) Liberal Education and America's Promise (LEAP) initiative to bear in order to ensure that the state's nearly 1.5…

  10. A Big LEAP for Texas

    ERIC Educational Resources Information Center

    Phillips, Loraine; Roach, David; Williamson, Celia

    2014-01-01

    In Texas, educators working to coordinate the efforts of fifty community colleges, thirty-eight universities, and six university systems are bringing the resources of the Association of American Colleges and Universities (AAC&U) Liberal Education and America's Promise (LEAP) initiative to bear in order to ensure that the state's nearly 1.5…

  11. Multiple-junction quantum cascade photodetectors for thermophotovoltaic energy conversion.

    PubMed

    Yin, Jian; Paiella, Roberto

    2010-01-18

    The use of intersubband transitions in quantum cascade structures for thermophotovoltaic energy conversion is investigated numerically. The intrinsic cascading scheme, spectral agility, and design flexibility of these structures make them ideally suited to the development of high efficiency multiple-junction thermophotovoltaic detectors. A specific implementation of this device concept is designed, based on bound-to-continuum intersubband transitions in large-conduction-band-offset In(0.7)Ga(0.3)As/AlAs(0.8)Sb(0.2) quantum wells. The device electrical characteristics in the presence of thermal radiation from a blackbody source at 1300 K are calculated, from which a maximum extracted power density of 1.4 W/cm(2) is determined. This value compares favorably with the present state-of-the-art in interband thermophotovoltaic energy conversion, indicating that quantum cascade photodetectors may provide a promising approach to improve energy extraction from thermal sources.

  12. Controllable multiple-quantum transitions in a T-shaped small quantum dot-ring system

    NASA Astrophysics Data System (ADS)

    Chen, Xiongwen; Chen, Baoju; Song, Kehui; Zhou, Guanghui

    2016-05-01

    Based on the tight-binding model and the slave boson mean field approximation, we investigate the electron transport properties in a small quantum dot (QD)-ring system. Namely, a strongly correlated QD not only attaches directly to two normal metallic electrodes, but also forms a magnetic control Aharonov-Bohm quantum ring with a few noninteracting QDs. We show that the parity effect, the Kondo effect, and the multiple Fano effects coexist in our system. Moreover, the parities, defined by the odd- and even-numbered energy levels in this system, can be switched by adjusting magnetic flux phase ϕ located at the center of the quantum ring, which induces multiple controllable Fano-interference energy pathways. Therefore, the constructive and destructive multi-Fano interference transition, the Kondo and Fano resonance transition at the Fermi level, the Fano resonance and ani-resonance transition are realized in the even parity system. They can also be observed in the odd parity system when one adjusts the phase ϕ and the gate voltage Vg applied to the noninteracting QDs. The multi-quantum transitions determine some interesting transport properties such as the current switch and its multi-flatsteps, the differential conductance switch at zero bias voltage and its oscillation or quantization at the low bias voltage. These results may be useful for the observation of multiple quantum effect interplays experimentally and the design of controllable QD-based device.

  13. Evolution of multiple quantum coherences with scaled dipolar Hamiltonian.

    PubMed

    Sánchez, Claudia M; Buljubasich, Lisandro; Pastawski, Horacio M; Chattah, Ana K

    2017-08-01

    In this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters. In all cases, a strong dependence between the evolution rate and the weighting factor is observed. Remarkably, all the curves appeared overlapped in a single trend when plotted against the self-time, a new time scale that includes the scaling factor into the evolution time. In other words, the spin system displayed always the same quantum evolution, slowed down as the scaling factor decreases, confirming the high performance of the new pulse sequence. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Improvement of a quantum broadcasting multiple blind signature scheme based on quantum teleportation

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qiu, Daowen; Zou, Xiangfu

    2016-06-01

    Recently, a broadcasting multiple blind signature scheme based on quantum teleportation has been proposed for the first time. It is claimed to have unconditional security and properties of quantum multiple signature and quantum blind signature. In this paper, we analyze the security of the protocol and show that each signatory can learn the signed message by a single-particle measurement and the signed message can be modified at random by any attacker according to the scheme. Furthermore, there are some participant attacks and external attacks existing in the scheme. Finally, we present an improved scheme and show that it can resist all of the mentioned attacks. Additionally, the secret keys can be used again and again, making it more efficient and practical.

  15. Teleportation: The Impossible Leap

    NASA Astrophysics Data System (ADS)

    Darling, David

    2005-05-01

    An authoritative, entertaining examination of the ultimate thrill ride Until recently the stuff of sci-fi fiction and Star Trek reruns, teleportation has become a reality-for subatomic particles at least. In this eye-opening book, science author David Darling follows the remarkable evolution of teleportation, visiting the key labs that have cradled this cutting-edge science and relating the all-too-human stories behind its birth. He ties in the fast emerging fields of cryptography and quantum computing, tackles some thorny philosophical questions (for instance, can a soul be teleported?), and asks when and how humans may be able to "beam up."

  16. Multiple Potts models coupled to two-dimensional quantum gravity

    NASA Astrophysics Data System (ADS)

    Baillie, C. F.; Johnston, D. A.

    1992-07-01

    We perform Monte Carlo simulations using the Wolff cluster algorithm of multiple q=2, 3, 4 state Potts models on dynamical phi-cubed graphs of spherical topology in order to investigate the c>1 region of two-dimensional quantum gravity. Contrary to naive expectation we find no obvious signs of pathological behaviour for c>1. We discuss the results in the light of suggestions that have been made for a modified DDK ansatz for c>1.

  17. A broadcasting multiple blind signature scheme based on quantum GHZ entanglement

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Chen, Hong; Gao, Yan; Zhuang, Honglin; Lian, Haigang; Han, Zhengping; Yu, Peng; Kong, Xiangze; Wen, Xiaojun

    2014-09-01

    Using the correlation of the GHZ triplet states, a broadcasting multiple blind signature scheme is proposed. Different from classical multiple signature and current quantum signature schemes, which could only deliver either multiple signature or unconditional security, our scheme guarantees both by adopting quantum key preparation, quantum encryption algorithm and quantum entanglement. Our proposed scheme has the properties of multiple signature, blindness, non-disavowal, non-forgery and traceability. To the best of our knowledge, we are the first to propose the broadcasting multiple blind signature of quantum cryptography.

  18. Taking the Leap

    ERIC Educational Resources Information Center

    Tretter, Thomas

    2012-01-01

    Teachers strive to engage students in rich and varied experiences involving exploration. These experiences should be accessible to all types of learners (e.g., visual, kinesthetic, mathematically inclined), offering multiple pathways for engagement at different levels of sophistication and accommodating both conceptual and computational…

  19. Taking the Leap

    ERIC Educational Resources Information Center

    Tretter, Thomas

    2012-01-01

    Teachers strive to engage students in rich and varied experiences involving exploration. These experiences should be accessible to all types of learners (e.g., visual, kinesthetic, mathematically inclined), offering multiple pathways for engagement at different levels of sophistication and accommodating both conceptual and computational…

  20. Multiple Exciton Generation in PbSe Quantum Dots and Quantum Dot Solar Cells

    SciTech Connect

    Beard, M. C.; Semonin, O. E.; Nozik, A. J.; Midgett, A. G.; Luther, J. M.

    2012-01-01

    Multiple exciton generation in quantum dots (QDs) has been intensively studied as a way to enhance solar energy conversion by channeling the excess photon energy (energy greater than the bandgap) to produce multiple electron-hole pairs. Among other useful properties, quantum confinement can both increase Coulomb interactions that drive the MEG process and decrease the electron-phonon coupling that cools hot-excitons in bulk semiconductors. We have demonstrated that MEG in PbSe QDs is about two times as efficient at producing multiple electron-hole pairs than bulk PbSe. I will discuss our recent results investigating MEG in PbSe, PbS and PbSxSe1-x, which exhibits an interesting size-dependence of the MEG efficiency. Thin films of electronically coupled PbSe QDs have shown promise in simple photon-to-electron conversion architectures with power conversion efficiencies above 5%. We recently reported an enhancement in the photocurrent resulting from MEG in PbSe QD-based solar cells. We find that the external quantum efficiency (spectrally resolved ratio of collected charge carriers to incident photons) peaked at 114% in the best devices measured, with an internal quantum efficiency of 130%. These results demonstrate that MEG charge carriers can be collected in suitably designed QD solar cells. We compare our results to transient absorption measurements and find reasonable agreement.

  1. The biomechanics of leaping in gibbons.

    PubMed

    Channon, A J; Crompton, R H; Günther, M M; D'Août, K; Vereecke, E E

    2010-11-01

    Gibbons are skilled brachiators but they are also highly capable leapers, crossing distances in excess of 10 m in the wild. Despite this impressive performance capability, no detailed biomechanical studies of leaping in gibbons have been undertaken to date. We measured ground reaction forces and derived kinematic parameters from high-speed videos during gibbon leaps in a captive zoo environment. We identified four distinct leap types defined by the number of feet used during take-off and the orientation of the trunk, orthograde single-footed, orthograde two-footed, orthograde squat, and pronograde single-footed leaps. The center of mass trajectories of three of the four leap types were broadly similar, with the pronograde single-footed leaps exhibiting less vertical displacement of the center of mass than the other three types. Mechanical energy at take-off was similar in all four leap types. The ratio of kinetic energy to mechanical energy was highest in pronograde single-footed leaps and similar in the other three leap types. The highest mechanical work and power were generated during orthograde squat leaps. Take-off angle decreased with take-off velocity and the hind limbs showed a proximal to distal extension sequence during take-off. In the forelimbs, the shoulder joints were always flexed at take-off, while the kinematics of the distal joints (elbow and wrist joints) were variable between leaps. It is possible that gibbons may utilize more metabolically expensive orthograde squat leaps when a safe landing is uncertain, while more rapid (less expensive) pronograde single-footed leaps might be used during bouts of rapid locomotion when a safe landing is more certain. © 2010 Wiley-Liss, Inc.

  2. Incompatible multiple consistent sets of histories and measures of quantumness

    NASA Astrophysics Data System (ADS)

    Halliwell, J. J.

    2017-07-01

    In the consistent histories approach to quantum theory probabilities are assigned to histories subject to a consistency condition of negligible interference. The approach has the feature that a given physical situation admits multiple sets of consistent histories that cannot in general be united into a single consistent set, leading to a number of counterintuitive or contrary properties if propositions from different consistent sets are combined indiscriminately. An alternative viewpoint is proposed in which multiple consistent sets are classified according to whether or not there exists any unifying probability for combinations of incompatible sets which replicates the consistent histories result when restricted to a single consistent set. A number of examples are exhibited in which this classification can be made, in some cases with the assistance of the Bell, Clauser-Horne-Shimony-Holt, or Leggett-Garg inequalities together with Fine's theorem. When a unifying probability exists logical deductions in different consistent sets can in fact be combined, an extension of the "single framework rule." It is argued that this classification coincides with intuitive notions of the boundary between classical and quantum regimes and in particular, the absence of a unifying probability for certain combinations of consistent sets is regarded as a measure of the "quantumness" of the system. The proposed approach and results are closely related to recent work on the classification of quasiprobabilities and this connection is discussed.

  3. Thermodynamics of quantum systems with multiple conserved quantities

    NASA Astrophysics Data System (ADS)

    Guryanova, Yelena; Popescu, Sandu; Short, Anthony J.; Silva, Ralph; Skrzypczyk, Paul

    2016-07-01

    Recently, there has been much progress in understanding the thermodynamics of quantum systems, even for small individual systems. Most of this work has focused on the standard case where energy is the only conserved quantity. Here we consider a generalization of this work to deal with multiple conserved quantities. Each conserved quantity, which, importantly, need not commute with the rest, can be extracted and stored in its own battery. Unlike the standard case, in which the amount of extractable energy is constrained, here there is no limit on how much of any individual conserved quantity can be extracted. However, other conserved quantities must be supplied, and the second law constrains the combination of extractable quantities and the trade-offs between them. We present explicit protocols that allow us to perform arbitrarily good trade-offs and extract arbitrarily good combinations of conserved quantities from individual quantum systems.

  4. Thermodynamics of quantum systems with multiple conserved quantities

    PubMed Central

    Guryanova, Yelena; Popescu, Sandu; Short, Anthony J.; Silva, Ralph; Skrzypczyk, Paul

    2016-01-01

    Recently, there has been much progress in understanding the thermodynamics of quantum systems, even for small individual systems. Most of this work has focused on the standard case where energy is the only conserved quantity. Here we consider a generalization of this work to deal with multiple conserved quantities. Each conserved quantity, which, importantly, need not commute with the rest, can be extracted and stored in its own battery. Unlike the standard case, in which the amount of extractable energy is constrained, here there is no limit on how much of any individual conserved quantity can be extracted. However, other conserved quantities must be supplied, and the second law constrains the combination of extractable quantities and the trade-offs between them. We present explicit protocols that allow us to perform arbitrarily good trade-offs and extract arbitrarily good combinations of conserved quantities from individual quantum systems. PMID:27384384

  5. Robust Multiple-Range Coherent Quantum State Transfer

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng

    2016-07-01

    We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise.

  6. Robust Multiple-Range Coherent Quantum State Transfer.

    PubMed

    Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng

    2016-07-01

    We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise.

  7. Robust Multiple-Range Coherent Quantum State Transfer

    PubMed Central

    Chen, Bing; Peng, Yan-Dong; Li, Yong; Qian, Xiao-Feng

    2016-01-01

    We propose a multiple-range quantum communication channel to realize coherent two-way quantum state transport with high fidelity. In our scheme, an information carrier (a qubit) and its remote partner are both adiabatically coupled to the same data bus, i.e., an N-site tight-binding chain that has a single defect at the center. At the weak interaction regime, our system is effectively equivalent to a three level system of which a coherent superposition of the two carrier states constitutes a dark state. The adiabatic coupling allows a well controllable information exchange timing via the dark state between the two carriers. Numerical results show that our scheme is robust and efficient under practically inevitable perturbative defects of the data bus as well as environmental dephasing noise. PMID:27364891

  8. Assessing sustainability of Lifestyle Education for Activity Program (LEAP).

    PubMed

    Saunders, R P; Pate, R R; Dowda, M; Ward, D S; Epping, J N; Dishman, R K

    2012-04-01

    Sustained intervention effects are needed for positive health impacts in populations; however, few published examples illustrate methods for assessing sustainability in health promotion programs. This paper describes the methods for assessing sustainability of the Lifestyle Education for Activity Program (LEAP). LEAP was a comprehensive school-based intervention that targeted change in instructional practices and the school environment to promote physical activity (PA) in high school girls. Previous reports indicated that significantly more girls in the intervention compared with control schools reported engaging in vigorous PA, and positive long-term effects on vigorous PA also were observed for girls in schools that most fully implemented and maintained the intervention 3 years following the active intervention. In this paper, the seven steps used to assess sustainability in LEAP are presented; these steps provide a model for assessing sustainability in health promotion programs in other settings. Unique features of the LEAP sustainability model include assessing sustainability of changes in instructional practices and the environment, basing assessment on an essential element framework that defined complete and acceptable delivery at the beginning of the project, using multiple data sources to assess sustainability, and assessing implementation longitudinally.

  9. Assessing sustainability of Lifestyle Education for Activity Program (LEAP)

    PubMed Central

    Saunders, R. P.; Pate, R. R.; Dowda, M.; Ward, D. S.; Epping, J. N.; Dishman, R. K.

    2012-01-01

    Sustained intervention effects are needed for positive health impacts in populations; however, few published examples illustrate methods for assessing sustainability in health promotion programs. This paper describes the methods for assessing sustainability of the Lifestyle Education for Activity Program (LEAP). LEAP was a comprehensive school-based intervention that targeted change in instructional practices and the school environment to promote physical activity (PA) in high school girls. Previous reports indicated that significantly more girls in the intervention compared with control schools reported engaging in vigorous PA, and positive long-term effects on vigorous PA also were observed for girls in schools that most fully implemented and maintained the intervention 3 years following the active intervention. In this paper, the seven steps used to assess sustainability in LEAP are presented; these steps provide a model for assessing sustainability in health promotion programs in other settings. Unique features of the LEAP sustainability model include assessing sustainability of changes in instructional practices and the environment, basing assessment on an essential element framework that defined complete and acceptable delivery at the beginning of the project, using multiple data sources to assess sustainability, and assessing implementation longitudinally. PMID:22156233

  10. On the Rule for Leap Year.

    PubMed

    Wylie, C C

    1956-05-11

    Harold F. Gray, of Corning, Calif., has called my attention to an error in the note "On the rule for leap year" [Science 123, 544 (30 Mar. 1956)]. In the sixth paragraph of the article (page 545), the end of the second sentence should read ". . . the century years 1800, 1900, and 2100 are not divisible by 400 and, hence, are not leap years; but 2000 is divisible by 400 and, hence, is a leap year."

  11. Quantum canonical ensemble and correlation femtoscopy at fixed multiplicities

    NASA Astrophysics Data System (ADS)

    Akkelin, S. V.; Sinyukov, Yu. M.

    2016-07-01

    Identical particle correlations at fixed multiplicity are considered by means of quantum canonical ensemble of finite systems. We calculate one-particle momentum spectra and two-particle Bose-Einstein correlation functions in the ideal gas by using a recurrence relation for the partition function. Within such a model we investigate the validity of the thermal Wick's theorem and its applicability for decomposition of the two-particle distribution function. The dependence of the Bose-Einstein correlation parameters on the average momentum of the particle pair is also investigated. Specifically, we present the analytical formulas that allow one to estimate the effect of suppressing the correlation functions in a finite canonical system. The results can be used for the femtoscopy analysis of the A +A and p +p collisions with selected (fixed) multiplicity.

  12. Dr. Sadik: ICPD was a "quantum leap".

    PubMed

    Sadik, N

    1994-09-01

    Excerpts are presented from the Secretary-General's closing statement to delegates at the 1994 International Conference on Population and Development. Overall, she holds that the conference was extremely successful. Issues were discussed in such a manner that people were able to defend their principles, yet allow the free expression of differing points of view, with the knowledge that the ultimate objective was action. The resultant program of action truly has the potential to change the world. The conference highlit the many differences of culture, belief, and background between peoples and nations, but also the common values. The twenty-year plan contains highly specific goals and recommendations in the areas of infant and maternal mortality, education, and reproductive health and family planning. At the end of the highly worthwhile UN process of consensus-building, nothing limits the freedom of nations to act individually within the bounds of their laws and cultures. Everything in the program, however, encourages nations to act together for their common interest. The conference and its achievement are truly historic. Implementation of the program of action over the next twenty years will bring women into the mainstream of development, reduce the level of unwanted pregnancy, protect women from the results of unsafe abortion, protect adolescent health and encourage safe behavior, combat HIV/AIDS, promote education for all, and protect and promote familial integrity. On abortion, the Secretary-General finds the ultimate conclusion to be satisfactory. Countries will concentrate upon unsafe abortion as a serious and preventable health problem, not consider it to be a means of family planning. Poverty was recognized as the most formidable enemy of choice. Finally, the speaker stresses the need for commitment to turn plan of action goals into reality.

  13. Copernicus: a quantum leap in Earth Observation

    NASA Astrophysics Data System (ADS)

    Aschbacher, Josef

    2015-04-01

    Copernicus is the most ambitious, most comprehensive Earth observation system world-wide. It aims at giving decision-makers better information to act upon, at global, continental, national and regional level. The European Union (EU) leads the overall programme, while the European Space Agency (ESA) coordinates the space component. Similar to meteorology, satellite data is combined with data from airborne and ground sensors to provide a holistic view of the state of the planet. All these data are fed into a range of thematic information services designed to benefit the environment and to support policy-makers and other stakeholders to make decisions, coordinate policy areas, and formulate strategies relating to the environment. Moreover, the data will also be used for predicting future climate trends. Never has such a comprehensive Earth-observation based system been in place before. It will be fully integrated into an informed decision making process, thus enabling economic and social benefits through better access to information globally. A key feature of Copernicus is the free and open data policy of the Sentinel satellite data. This will enable that Earth observation based information enters completely new domains of daily life. High quality, regularly updated satellite observations become available for basically everyone. To ensure universal access new ground segment and data access concepts need to be developed. As more data are made available, better decisions can made, more business will be created and science and research can be achieved through the upcoming Sentinel data.

  14. Quantum transport in multiple-barrier resonant-tunneling devices

    NASA Astrophysics Data System (ADS)

    Newaz, A. K. M.

    I have studied experimentally the quantum transport in multiple-barrier resonant-tunneling devices, namely double-barrier resonant-tunneling diodes (DBRTD) and triple-barrier resonant-tunneling diodes (TBRTD), to understand the tunneling processes in multiple-barrier resonant structures. We have performed various types of transport measurements, such as current, conductance, resonant magnetotunneling spectroscopy and shot noise measurements at low temperature (T=4.2K). To test the validity of the in-plane momentum conservation rule when electrons tunnel through a multiple-barrier resonant-tunneling device, I have studied in details the current and conductance with and without magnetic field perpendicular to the interfaces. We have found conclusive evidence that though this conservation rule governs the tunneling processes in DBRTD, the conservation rule breaks down in TBRTD. In addition, I have observed profound effect of nonparabolicity in the tunneling processes. By measuring the shot noise in TBRTDs at low temperature, I have found that the shot noise in a TBRTD is reduced over the Poissonian value, 2 eI, whenever the differential conductance is positive and is enhanced over 2eI when the differential conductance is negative. This behavior, although qualitatively similar to that found in DBRTD, differs from it in important details. In TBRTDs the noise reduction is considerably greater than that predicted by a semiclassical model, and the enhancement does not correlate with the strength of the negative differential conductance. Moreover, I have not observed any signature of the effect of the coherent tunneling on the shot noise suppression in coherently coupled TBRTDs. This suggests that the phase coherence does not have any effect on the shot noise suppression. On the other hand, the failure of a semiclassical model to explain shot noise suppression suggests an incomplete understanding of the noise properties of multiple-barrier heterostructures and a need for

  15. Establishing High Expectations through the LEAP Clinic.

    ERIC Educational Resources Information Center

    Conderman, Greg; Snider, Vicki E.; Crawford, Donald

    1997-01-01

    The Learning Enhancement and Progression (LEAP) clinic is an eight-week summer extension to the University of Wisconsin (Eau Claire) teacher education program. The LEAP clinic has provided remedial instruction to more than 600 school-age children over the last 15 years. Five components involved are advanced preparation; teacher training;…

  16. Science. Grade 11. LEAP: Instructional Strategies Guide.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge.

    The Louisiana Educational Assessment Program (LEAP) Grade 11 Test is designed to measure proficiency in four subject areas including English, mathematics, social studies, and science. This guide for science is intended to provide a description of the way in which specific skill areas are assessed on the LEAP test and instructional considerations…

  17. Coherent nanocavity structures for enhancement in internal quantum efficiency of III-nitride multiple quantum wells

    SciTech Connect

    Kim, T.; Liu, B.; Smith, R.; Athanasiou, M.; Gong, Y.; Wang, T.

    2014-04-21

    A “coherent” nanocavity structure has been designed on two-dimensional well-ordered InGaN/GaN nanodisk arrays with an emission wavelength in the green spectral region, leading to a massive enhancement in resonance mode in the green spectra region. By means of a cost-effective nanosphere lithography technique, we have fabricated such a structure on an InGaN/GaN multiple quantum well epiwafer and have observed the “coherent” nanocavity effect, which leads to an enhanced spontaneous emission (SE) rate. The enhanced SE rate has been confirmed by time resolved photoluminescence measurements. Due to the coherent nanocavity effect, we have achieved a massive improvement in internal quantum efficiency with a factor of 88, compared with the as-grown sample, which could be significant to bridge the “green gap” in solid-state lighting.

  18. Electron-interface phonon interaction in multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Sun, J. P.; Teng, H. B.; Haddad, G. I.; Stroscio, M. A.

    1998-08-01

    Intersubband relaxation rates due to electron interactions with the interface phonons are evaluated for multiple quantum well structures designed for step quantum well lasers operating at mid-infrared to submillimetre wavelengths. The interface phonon modes and electron-phonon interaction Hamiltonians for the structures are derived using the transfer matrix method, based on the macroscopic dielectric continuum model, whereas the electron wavefunctions are obtained by solving the Schrödinger equation. Fermi's golden rule is employed to calculate the electron relaxation rates between the subbands in these structures. The relaxation rates for two different structures are examined and compared with those calculated using the bulk phonon modes and the Fröhlich interaction Hamiltonian. The sum rule for the relationship between the form factors of the various localized phonon modes and the bulk phonon modes is verified. The results obtained in this work illustrate that the transfer matrix method provides a convenient way for deriving the properties of the interface phonon modes in different structures of current interest and that, for preferential electron relaxation in intersubband laser structures, the effects of the interface phonon modes are significant and should be considered for optimal design of these laser structures.

  19. Rank-based model selection for multiple ions quantum tomography

    NASA Astrophysics Data System (ADS)

    Guţă, Mădălin; Kypraios, Theodore; Dryden, Ian

    2012-10-01

    The statistical analysis of measurement data has become a key component of many quantum engineering experiments. As standard full state tomography becomes unfeasible for large dimensional quantum systems, one needs to exploit prior information and the ‘sparsity’ properties of the experimental state in order to reduce the dimensionality of the estimation problem. In this paper we propose model selection as a general principle for finding the simplest, or most parsimonious explanation of the data, by fitting different models and choosing the estimator with the best trade-off between likelihood fit and model complexity. We apply two well established model selection methods—the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)—two models consisting of states of fixed rank and datasets such as are currently produced in multiple ions experiments. We test the performance of AIC and BIC on randomly chosen low rank states of four ions, and study the dependence of the selected rank with the number of measurement repetitions for one ion states. We then apply the methods to real data from a four ions experiment aimed at creating a Smolin state of rank 4. By applying the two methods together with the Pearson χ2 test we conclude that the data can be suitably described with a model whose rank is between 7 and 9. Additionally we find that the mean square error of the maximum likelihood estimator for pure states is close to that of the optimal over all possible measurements.

  20. Quantum teleportation scheme by selecting one of multiple output ports

    NASA Astrophysics Data System (ADS)

    Ishizaka, Satoshi; Hiroshima, Tohya

    2009-04-01

    The scheme of quantum teleportation, where Bob has multiple (N) output ports and obtains the teleported state by simply selecting one of the N ports, is thoroughly studied. We consider both the deterministic version and probabilistic version of the teleportation scheme aiming to teleport an unknown state of a qubit. Moreover, we consider two cases for each version: (i) the state employed for the teleportation is fixed to a maximally entangled state and (ii) the state is also optimized as well as Alice’s measurement. We analytically determine the optimal protocols for all the four cases and show the corresponding optimal fidelity or optimal success probability. All these protocols can achieve the perfect teleportation in the asymptotic limit of N→∞ . The entanglement properties of the teleportation scheme are also discussed.

  1. Multiple particle production processes in the light'' of quantum optics

    SciTech Connect

    Friedlander, E.M.

    1990-09-01

    Ever since the observation that high-energy nuclear active'' cosmic-ray particles create bunches of penetrating particles upon hitting targets, a controversy has raged about whether these secondaries are created in a single act'' or whether many hadrons are just the result of an intra-nuclear cascade, yielding one meson in every step. I cannot escape the impression that: the latter kind of model appeals naturally as a consequence of an innate bio-morphism in our way of thinking and that in one guise or another it has tenaciously survived to this day, also for hadron-hadron collisions, via multi-peripheral models to the modern parton shower approach. Indeed, from the very beginning of theoretical consideration of multiparticle production, the possibility of many particles arising from a single hot'' system has been explored, with many fruitful results, not the least of which are the s{sup 1/4} dependence of the mean produced particle multiplicity and the thermal'' shape of the P{sub T} spectra. An important consequence of the thermodynamical-hydrodynamical models is that particle emission is treated in analogy to black-body radiation, implying for the secondaries a set of specific Quantum-Statistical properties, very similar to those observed in quantum optics. From here on I shall try to review a number of implications and applications of this QS analogy in the study of multiplicity distributions of the produced secondaries. I will touch only in passing another very important topic of this class, the Bose-Einstein two-particle correlations.

  2. Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor

    NASA Astrophysics Data System (ADS)

    Qin, Zhongzhong; Cao, Leiming; Wang, Hailong; Marino, A. M.; Zhang, Weiping; Jing, Jietai

    2014-07-01

    Quantum correlations and entanglement shared among multiple quantum modes are important for both fundamental science and the future development of quantum technologies. This development will also require an efficient quantum interface between multimode quantum light sources and atomic ensembles, which makes it necessary to implement multimode quantum light sources that match the atomic transitions. Here, we report on such a source that provides a method for generating quantum correlated beams that can be extended to a large number of modes by using multiple four-wave mixing (FWM) processes in hot rubidium vapor. Experimentally, we show that two cascaded FWM processes produce strong quantum correlations between three bright beams but not between any two of them. In addition, the intensity-difference squeezing is enhanced with the cascaded system to -7.0±0.1 dB from the -5.5±0.1/-4.5±0.1 dB squeezing obtained with only one FWM process. One of the main advantages of our system is that as the number of quantum modes increases, so does the total degree of quantum correlations. The proposed method is also immune to phase instabilities due to its phase insensitive nature, can easily be extended to multiple modes, and has potential applications in the production of multiple quantum correlated images.

  3. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    NASA Astrophysics Data System (ADS)

    Makhov, Dmitry V.; Glover, William J.; Martinez, Todd J.; Shalashilin, Dmitrii V.

    2014-08-01

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  4. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics.

    PubMed

    Makhov, Dmitry V; Glover, William J; Martinez, Todd J; Shalashilin, Dmitrii V

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as "cloning," in analogy to the "spawning" procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, "trains," as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  5. Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics

    SciTech Connect

    Makhov, Dmitry V.; Shalashilin, Dmitrii V.; Glover, William J.; Martinez, Todd J.

    2014-08-07

    We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.

  6. Irreducible Tensor Operators and Multiple-Quantum NMR.

    NASA Astrophysics Data System (ADS)

    Hutchison, Wayne Douglas

    The aim of the work detailed in this thesis, is to provide a concise, and illuminating, mathematical description of multiple quantum nuclear magnetic resonance (MQNMR) experiments, on essentially isolated (non-coupled) nuclei. The treatment used is based on irreducible tensor operators, which form an orthonormal basis set. Such operators can be used to detail the state of the nuclear ensemble (density matrix) during every stage, preparation, evolution and detection, of a MQNMR experiment. Moreover, such operators can be also used to provide a rigorous analysis of pulsed NMR experiments, on oriented nuclei at low temperatures, where the initial density matrix is far from trivial. The specific topics dealt with in this thesis are as follows. In the first place the properties of irreducible tensor operators are discussed in some detail. In particular, symmetric and anti-symmetric combinations of tensor operators are introduced, to reflect the Hermitian nature of the nuclear Hamiltonian and density matrix. Secondly, the creation of multipolar nuclear states using hard, non-selective rf pulses, is detailed for spin I = 1, 3/2, 2 and 5/2 nuclei, subject to an axially symmetric quadrupole interaction. Results are also given for general I. Thirdly, some experimental results, verifying the production of a triple quantum NMR state, for the I = 3/2 ^{23}Na nuclei in a single crystal of NaIO_4 are presented and discussed. Fourthly, the treatment of MQNMR experiments is extended to the low temperature regime where the initial density matrix includes Fano statistical tensors other than rank one. In particular, it is argued that MQNMR techniques could be used to enhance the anisotropy of gamma-ray emission from oriented nuclei at low temperatures. Fifthly, the effect of a more general quadrupole Hamiltonian (including an asymmetry term) on MQNMR experiments is considered for spins I = 1 and 3/2. In particular, it is shown that double quantum states evolve to give longitudinal NMR

  7. Experimental realization of entanglement in multiple degrees of freedom between two quantum memories.

    PubMed

    Zhang, Wei; Ding, Dong-Sheng; Dong, Ming-Xin; Shi, Shuai; Wang, Kai; Liu, Shi-Long; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2016-11-14

    Entanglement in multiple degrees of freedom has many benefits over entanglement in a single one. The former enables quantum communication with higher channel capacity and more efficient quantum information processing and is compatible with diverse quantum networks. Establishing multi-degree-of-freedom entangled memories is not only vital for high-capacity quantum communication and computing, but also promising for enhanced violations of nonlocality in quantum systems. However, there have been yet no reports of the experimental realization of multi-degree-of-freedom entangled memories. Here we experimentally established hyper- and hybrid entanglement in multiple degrees of freedom, including path (K-vector) and orbital angular momentum, between two separated atomic ensembles by using quantum storage. The results are promising for achieving quantum communication and computing with many degrees of freedom.

  8. Experimental realization of entanglement in multiple degrees of freedom between two quantum memories

    PubMed Central

    Zhang, Wei; Ding, Dong-Sheng; Dong, Ming-Xin; Shi, Shuai; Wang, Kai; Liu, Shi-Long; Li, Yan; Zhou, Zhi-Yuan; Shi, Bao-Sen; Guo, Guang-Can

    2016-01-01

    Entanglement in multiple degrees of freedom has many benefits over entanglement in a single one. The former enables quantum communication with higher channel capacity and more efficient quantum information processing and is compatible with diverse quantum networks. Establishing multi-degree-of-freedom entangled memories is not only vital for high-capacity quantum communication and computing, but also promising for enhanced violations of nonlocality in quantum systems. However, there have been yet no reports of the experimental realization of multi-degree-of-freedom entangled memories. Here we experimentally established hyper- and hybrid entanglement in multiple degrees of freedom, including path (K-vector) and orbital angular momentum, between two separated atomic ensembles by using quantum storage. The results are promising for achieving quantum communication and computing with many degrees of freedom. PMID:27841274

  9. Navy Terrier LEAP Third-Stage Propulsion,

    DTIC Science & Technology

    1994-11-01

    Ballistic Missile Defense Defense Organization (BMDO)/Navy Terrier Organization (BMDO). The initial program Lightweight Exoatmospheric Projectile (LEAP...and results of component- and system- ( Lightweight Exo-Atmospheric Projectile) LEAP level testing to qualify the stage for the flight flight...pressure of 2000 psi, providing an average 7.0,..I thrust of approximately 1600 lbf. The case has composite skirts and aluminum end rings that interface

  10. The extraordinary athletic performance of leaping gibbons

    PubMed Central

    Channon, Anthony J.; Usherwood, James R.; Crompton, Robin H.; Günther, Michael M.; Vereecke, Evie E.

    2012-01-01

    The distance that animals leap depends on their take-off angle and velocity. The velocity is generated solely by mechanical work during the push-off phase of standing-start leaps. Gibbons are capable of exceptional leaping performance, crossing gaps in the forest canopy exceeding 10 m, yet possess none of the adaptations possessed by specialist leapers synonymous with maximizing mechanical work. To understand this impressive performance, we recorded leaps of the gibbons exceeding 3.7 m. Gibbons perform more mass-specific work (35.4 J kg−1) than reported for any other species to date, accelerating to 8.3 ms−1 in a single movement and redefining our estimates of work performance by animals. This energy (enough for a 3.5 m vertical leap) is 60 per cent higher than that achieved by galagos, which are renowned for their remarkable leaping performance. The gibbons' unusual morphology facilitates a division of labour among the hind limbs, forelimbs and trunk, resulting in modest power requirements compared with more specialized leapers. PMID:21831879

  11. The extraordinary athletic performance of leaping gibbons.

    PubMed

    Channon, Anthony J; Usherwood, James R; Crompton, Robin H; Günther, Michael M; Vereecke, Evie E

    2012-02-23

    The distance that animals leap depends on their take-off angle and velocity. The velocity is generated solely by mechanical work during the push-off phase of standing-start leaps. Gibbons are capable of exceptional leaping performance, crossing gaps in the forest canopy exceeding 10 m, yet possess none of the adaptations possessed by specialist leapers synonymous with maximizing mechanical work. To understand this impressive performance, we recorded leaps of the gibbons exceeding 3.7 m. Gibbons perform more mass-specific work (35.4 J kg(-1)) than reported for any other species to date, accelerating to 8.3 ms(-1) in a single movement and redefining our estimates of work performance by animals. This energy (enough for a 3.5 m vertical leap) is 60 per cent higher than that achieved by galagos, which are renowned for their remarkable leaping performance. The gibbons' unusual morphology facilitates a division of labour among the hind limbs, forelimbs and trunk, resulting in modest power requirements compared with more specialized leapers.

  12. Multiple-quantum spin coherence in the ground state of alkali atomic vapors

    NASA Astrophysics Data System (ADS)

    Xu, J. D.; Wäautckerle, G.; Mehring, M.

    1997-01-01

    Two-dimensional (2D) multiple-quantum coherence is reported for the hyperfine ground state of rubidium and cesium atoms by applying multiple radio-frequency pulses to the optically polarized atoms. Calculations of 1D and 2D multiple quantum coherences were performed with a general theory for an arbitrary high spin system by using irreducible tensor operators. The experimental results compare very well with the calculations.

  13. Hot carrier cooling mechanisms in multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Conibeer, Gavin; Zhang, Yi; Bremner, Stephen; Shrestha, Santosh

    2017-02-01

    The Hot Carrier solar cell has the potential to yield a very high efficiency, well over 50% under 1 sun. Multiple quantum wells have been shown to have significantly slow hot carrier cooling rates than bulk material and are thus a promising candidate for hot carrier solar cell absorbers. However, the mechanism(s) by which hot carrier cooling is restricted is not clear. In this paper is presented a systematic study of carrier cooling rates in GaAs/AlAs MQW with either varying barrier or varying well thickness. These allow an investigation as to whether the mechanisms of either a reduction in hot carrier diffusion; a localisation of phonons emitted by hot carriers; or mini-gaps in the MQW phonon dispersion are primarily responsible for reduced carrier cooling rates. With the conclusion that the interfaces between QW and barrier are primarily responsible for reducing carrier cooling rates through a mechanism of phonon confinement leading to phonon bottleneck restriction of phonon decay and hence re-heating of hot carriers. Some aspects of the consequent affect on the use of MQW as absorbers in a real hot carrier cell are discussed.

  14. Near-infrared hybrid plasmonic multiple quantum well nanowire lasers.

    PubMed

    Wang, Jiamin; Wei, Wei; Yan, Xin; Zhang, Jinnan; Zhang, Xia; Ren, Xiaomin

    2017-04-17

    The lasing characteristics of hybrid plasmonic AlGaAs/GaAs multiple quantum well (MQW) nanowire (NW) lasers beyond diffraction limit have been investigated by 3D finite-difference time-domain simulations. The results show that the hybrid plasmonic MQW NW has lower threshold gain over a broad diameter range in comparison with its photonic counterpart. Beyond the diffraction limit, the hybrid plasmonic MQW NW has a lowest threshold gain of 788 cm-1 at a diameter of 130 nm, and a cutoff diameter of 80 nm, half that of the photonic lasers. In comparison with the hybrid plasmonic core-shell NWs, the hybrid plasmonic MQW NWs exhibit significantly lower threshold gain, higher Purcell factor, and smaller cutoff diameter, which are attributed to the superior overlap between the hybrid plasmonic modes and gain medium, as well as a stronger optical confinement due to the grating-like effect of MQW structures. Moreover, the hybrid plasmonic MQW NW has a lower threshold gain than that of the core-shell NW over a broad wavelength range. The hybrid plasmonic MQW NW structure is promising for ultrasmall and low-consumption near-infrared nanolasers.

  15. Project LEAP: The Labor Education Achievement Program. A Program To Improve the Literacy Level and Productivity of the Workforce. Final Project Report. April 1, 1991-September 30, 1992.

    ERIC Educational Resources Information Center

    Metropolitan Baltimore Council of AFL-CIO Unions, MD.

    Maryland's Labor Education Achievement Program (LEAP) worked with a wide diversity of union workers in multiple industries and within numerous private companies and public agencies over a dispersed geographic area. Staff development included a workshop for local coordinators and a teacher inservice training session. LEAP provided…

  16. Single-photon quantum router with multiple output ports

    PubMed Central

    Yan, Wei-Bin; Fan, Heng

    2014-01-01

    The routing capability is a requisite in quantum network. Although the quantum routing of signals has been investigated in various systems both in theory and experiment, the general form of quantum routing with many output terminals still needs to be explored. Here we propose a scheme to achieve the multi-channel quantum routing of the single photons in a waveguide-emitter system. The channels are composed by the waveguides and are connected by intermediate two-level emitters. By adjusting the intermediate emitters, the output channels of the input single photons can be controlled. This is demonstrated in the cases of one output channel, two output channels and the generic N output channels. The results show that the multi-channel quantum routing of single photons can be well achieved in the proposed system. This offers a scheme for the experimental realization of general quantum routing of single photons. PMID:24769619

  17. Single-photon quantum router with multiple output ports.

    PubMed

    Yan, Wei-Bin; Fan, Heng

    2014-04-28

    The routing capability is a requisite in quantum network. Although the quantum routing of signals has been investigated in various systems both in theory and experiment, the general form of quantum routing with many output terminals still needs to be explored. Here we propose a scheme to achieve the multi-channel quantum routing of the single photons in a waveguide-emitter system. The channels are composed by the waveguides and are connected by intermediate two-level emitters. By adjusting the intermediate emitters, the output channels of the input single photons can be controlled. This is demonstrated in the cases of one output channel, two output channels and the generic N output channels. The results show that the multi-channel quantum routing of single photons can be well achieved in the proposed system. This offers a scheme for the experimental realization of general quantum routing of single photons.

  18. Multiple energy scales at a quantum critical point.

    PubMed

    Gegenwart, P; Westerkamp, T; Krellner, C; Tokiwa, Y; Paschen, S; Geibel, C; Steglich, F; Abrahams, E; Si, Q

    2007-02-16

    We report thermodynamic measurements in a magnetic-field-driven quantum critical point of a heavy fermion metal, YbRh2Si2. The data provide evidence for an energy scale in the equilibrium excitation spectrum that is in addition to the one expected from the slow fluctuations of the order parameter. Both energy scales approach zero as the quantum critical point is reached, thereby providing evidence for a new class of quantum criticality.

  19. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory

    PubMed Central

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-01-01

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996

  20. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.

    PubMed

    Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can

    2015-10-15

    Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.

  1. Experimental investigation of quantum entropic uncertainty relations for multiple measurements in pure diamond.

    PubMed

    Xing, Jian; Zhang, Yu-Ran; Liu, Shang; Chang, Yan-Chun; Yue, Jie-Dong; Fan, Heng; Pan, Xin-Yu

    2017-05-31

    One unique feature of quantum mechanics is the Heisenberg uncertainty principle, which states that the outcomes of two incompatible measurements cannot simultaneously achieve arbitrary precision. In an information-theoretic context of quantum information, the uncertainty principle can be formulated as entropic uncertainty relations with two measurements for a quantum bit (qubit) in two-dimensional system. New entropic uncertainty relations are studied for a higher-dimensional quantum state with multiple measurements, and the uncertainty bounds can be tighter than that expected from two measurements settings and cannot result from qubits system with or without a quantum memory. Here we report the first room-temperature experimental testing of the entropic uncertainty relations with three measurements in a natural three-dimensional solid-state system: the nitrogen-vacancy center in pure diamond. The experimental results confirm the entropic uncertainty relations for multiple measurements. Our result represents a more precise demonstrating of the fundamental uncertainty principle of quantum mechanics.

  2. Optimized multiple quantum MAS lineshape simulations in solid state NMR

    NASA Astrophysics Data System (ADS)

    Brouwer, William J.; Davis, Michael C.; Mueller, Karl T.

    2009-10-01

    The majority of nuclei available for study in solid state Nuclear Magnetic Resonance have half-integer spin I>1/2, with corresponding electric quadrupole moment. As such, they may couple with a surrounding electric field gradient. This effect introduces anisotropic line broadening to spectra, arising from distinct chemical species within polycrystalline solids. In Multiple Quantum Magic Angle Spinning (MQMAS) experiments, a second frequency dimension is created, devoid of quadrupolar anisotropy. As a result, the center of gravity of peaks in the high resolution dimension is a function of isotropic second order quadrupole and chemical shift alone. However, for complex materials, these parameters take on a stochastic nature due in turn to structural and chemical disorder. Lineshapes may still overlap in the isotropic dimension, complicating the task of assignment and interpretation. A distributed computational approach is presented here which permits simulation of the two-dimensional MQMAS spectrum, generated by random variates from model distributions of isotropic chemical and quadrupole shifts. Owing to the non-convex nature of the residual sum of squares (RSS) function between experimental and simulated spectra, simulated annealing is used to optimize the simulation parameters. In this manner, local chemical environments for disordered materials may be characterized, and via a re-sampling approach, error estimates for parameters produced. Program summaryProgram title: mqmasOPT Catalogue identifier: AEEC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEEC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3650 No. of bytes in distributed program, including test data, etc.: 73 853 Distribution format: tar.gz Programming language: C, OCTAVE Computer: UNIX

  3. LEAP: the Large European Array for Pulsars

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Janssen, G. H.; Karuppusamy, R.; Kramer, M.; Lee, K. J.; Liu, K.; McKee, J.; Perrodin, D.; Purver, M.; Sanidas, S.; Smits, R.; Stappers, B. W.

    2016-02-01

    The Large European Array for Pulsars (LEAP) is an experiment that harvests the collective power of Europe's largest radio telescopes in order to increase the sensitivity of high-precision pulsar timing. As part of the ongoing effort of the European Pulsar Timing Array, LEAP aims to go beyond the sensitivity threshold needed to deliver the first direct detection of gravitational waves. The five telescopes presently included in LEAP are the Effelsberg Telescope, the Lovell Telescope at Jodrell Bank, the Nançay Radio Telescope, the Sardinia Radio Telescope and the Westerbork Synthesis Radio Telescope. Dual polarization, Nyquist-sampled time series of the incoming radio waves are recorded and processed offline to form the coherent sum, resulting in a tied-array telescope with an effective aperture equivalent to a 195-m diameter circular dish. All observations are performed using a bandwidth of 128 MHz centred at a frequency of 1396 MHz. In this paper, we present the design of the LEAP experiment, the instrumentation, the storage and transfer of data and the processing hardware and software. In particular, we present the software pipeline that was designed to process the Nyquist-sampled time series, measure the phase and time delays between each individual telescope and a reference telescope and apply these delays to form the tied-array coherent addition. The pipeline includes polarization calibration and interference mitigation. We also present the first results from LEAP and demonstrate the resulting increase in sensitivity, which leads to an improvement in the pulse arrival times.

  4. Multiple Quantum Well-Based Modulating Retroreflectors for Inter- and Intra-Spacecraft Communications

    DTIC Science & Technology

    2006-01-01

    Multiple quantum well-based modulating retroreflectors for inter- and intra-spacecraft communication Peter G. Goetz, William S. Rabinovich, G...is presented. Keywords: Free-space optics, modulating retroreflector , multiple quantum well, radiation tolerance, FSO, MQW, MRR 1. INTRODUCTION...RETRO-REFLECTORS (MRRS) A MRR couples a passive optical retroreflector such as a corner-cube or a cat’s eye retroreflector with an electro-optic

  5. A quantum-inspired genetic algorithm based on probabilistic coding for multiple sequence alignment.

    PubMed

    Huo, Hong-Wei; Stojkovic, Vojislav; Xie, Qiao-Luan

    2010-02-01

    Quantum parallelism arises from the ability of a quantum memory register to exist in a superposition of base states. Since the number of possible base states is 2(n), where n is the number of qubits in the quantum memory register, one operation on a quantum computer performs what an exponential number of operations on a classical computer performs. The power of quantum algorithms comes from taking advantages of quantum parallelism. Quantum algorithms are exponentially faster than classical algorithms. Genetic optimization algorithms are stochastic search algorithms which are used to search large, nonlinear spaces where expert knowledge is lacking or difficult to encode. QGMALIGN--a probabilistic coding based quantum-inspired genetic algorithm for multiple sequence alignment is presented. A quantum rotation gate as a mutation operator is used to guide the quantum state evolution. Six genetic operators are designed on the coding basis to improve the solution during the evolutionary process. The experimental results show that QGMALIGN can compete with the popular methods, such as CLUSTALX and SAGA, and performs well on the presenting biological data. Moreover, the addition of genetic operators to the quantum-inspired algorithm lowers the cost of overall running time.

  6. Leaping of a flexible loop on water

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Young; Yang, Eun Jin; Lee, Min-Hee; Shin, Bongsu

    2008-11-01

    Small aquatic arthropods, such as water striders and fishing spiders, are able to leap on water to a height several times their body length. We study a simple model using a floating flexible loop to provide fundamental understanding and mimicking principle of the leaping on water. Motion of a loop, initially bent into an ellipse from equilibrium circular shape using a thin thread, is visualized with a high speed camera upon cutting the thread with a laser. We find that the loop may merely oscillate while afloat, penetrate into the water, or soar into air depending on the hydrophobicity, the bending stiffness, the weight and the degree of initial deflection of the loop. We also construct a scaling law for the leaping height by balancing the initial elastic bending energy with the loop's translational and vibrational energy and a loss imparted to the water in the forms of interfacial, kinetic and viscous energy.

  7. Multiple surface plasmons in an unbounded quantum plasma half-space

    SciTech Connect

    Palade, D. I.

    2016-07-15

    The propagation of surface plasmons on a quantum plasma half-space in the absence of any external confinement is investigated. By means of the Quantum Hydrodynamic Model in the electrostatic limit, it is found that the equilibrium density profile is a smooth continuous function which, in the linear regime, supports multiple non-normal surface modes. Defining a spectrum function and using a cutting condition, the dispersion relations of these modes and their relevance for realistic dynamics are computed. It is found that the multiple surface plasmons present a significant red-shift with respect to the case of fully bounded quantum plasmas.

  8. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120%

    PubMed Central

    Davis, Nathaniel J. L. K.; Böhm, Marcus L.; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C.; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C.

    2015-01-01

    Multiple-exciton generation—a process in which multiple charge-carrier pairs are generated from a single optical excitation—is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley–Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation. PMID:26411283

  9. Multiple-exciton generation in lead selenide nanorod solar cells with external quantum efficiencies exceeding 120.

    PubMed

    Davis, Nathaniel J L K; Böhm, Marcus L; Tabachnyk, Maxim; Wisnivesky-Rocca-Rivarola, Florencia; Jellicoe, Tom C; Ducati, Caterina; Ehrler, Bruno; Greenham, Neil C

    2015-09-28

    Multiple-exciton generation-a process in which multiple charge-carrier pairs are generated from a single optical excitation-is a promising way to improve the photocurrent in photovoltaic devices and offers the potential to break the Shockley-Queisser limit. One-dimensional nanostructures, for example nanorods, have been shown spectroscopically to display increased multiple exciton generation efficiencies compared with their zero-dimensional analogues. Here we present solar cells fabricated from PbSe nanorods of three different bandgaps. All three devices showed external quantum efficiencies exceeding 100% and we report a maximum external quantum efficiency of 122% for cells consisting of the smallest bandgap nanorods. We estimate internal quantum efficiencies to exceed 150% at relatively low energies compared with other multiple exciton generation systems, and this demonstrates the potential for substantial improvements in device performance due to multiple exciton generation.

  10. Building Math Fluency for Students with Developmental Disabilities and Attentional Difficulties Using "Great Leaps Math"

    ERIC Educational Resources Information Center

    Jolivette, Kristine; Lingo, Amy S.; Houchins, David E.; Barton-Arwood, Sally M.; Shippen, Margaret E.

    2006-01-01

    The effects of a fluency building math program on addition and subtraction computational skills were evaluated using a multiple probe across subjects design. Two students with developmental disabilities and one student with attentional difficulties participated in a supplemental intervention using the Great Leaps Math program. Analyses indicated…

  11. The LEAP Challenge: Education for a World of Unscripted Problems

    ERIC Educational Resources Information Center

    Liberal Education, 2015

    2015-01-01

    This article was adapted from "The LEAP Challenge: Education for a World of Unscripted Problems," a folio distributed at the opening plenary session of the 2015 annual meeting of the Association of American Colleges and Universities at which the LEAP Challenge was formally launched. Liberal Education and America's Promise (LEAP) prepares…

  12. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet

    NASA Astrophysics Data System (ADS)

    Gärttner, Martin; Bohnet, Justin G.; Safavi-Naini, Arghavan; Wall, Michael L.; Bollinger, John J.; Rey, Ana Maria

    2017-08-01

    Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems.

  13. Quantum teleportation of multiple degrees of freedom of a single photon.

    PubMed

    Wang, Xi-Lin; Cai, Xin-Dong; Su, Zu-En; Chen, Ming-Cheng; Wu, Dian; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2015-02-26

    Quantum teleportation provides a 'disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.

  14. Quantum teleportation of multiple degrees of freedom of a single photon

    NASA Astrophysics Data System (ADS)

    Wang, Xi-Lin; Cai, Xin-Dong; Su, Zu-En; Chen, Ming-Cheng; Wu, Dian; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2015-02-01

    Quantum teleportation provides a `disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.

  15. Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion.

    PubMed

    Nozik, A J

    2005-10-03

    Huge amounts of carbon-free energy will be required during the coming decades in order to stabilize atmospheric CO2 to acceptable levels. Solar energy is the largest source of non-carbonaceous energy and can be used to produce both electricity and fuel. However, the ratio of the areal cost to the conversion efficiency for devices converting solar photons to electricity or fuel must be reduced by at least 1 order of magnitude from the present values; this requires large increases in the cell efficiency and large reductions in the cost per unit area. We have shown how semiconductor quantum dots may greatly increase photon conversion efficiencies by producing multiple excitons from a single photon. This is possible because quantization of energy levels in quantum dots slows the cooling of hot excitons, promotes multiple exciton generation, and lowers the photon energy threshold for this process. Quantum yields of 300% for exciton formation in PbSe quantum dots have been reported at photon energies 3.8 times the HOMO-LUMO transition energy, indicating the formation of three excitons/photon for all photoexcited quantum dots. Similar high quantum yields have also been reported for PbS quantum dots. A new model for this effect that is based on a coherent superposition of multiple excitonic states has been proposed.

  16. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    NASA Astrophysics Data System (ADS)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  17. The Leap from Patterns to Formulas

    ERIC Educational Resources Information Center

    Beigie, Darin

    2011-01-01

    Initial exposure to algebraic thinking involves the critical leap from working with numbers to thinking with variables. The transition to thinking mathematically using variables has many layers, and for all students an abstraction that is clear in one setting may be opaque in another. Geometric counting and the resulting algebraic patterns provide…

  18. The Leap from Patterns to Formulas

    ERIC Educational Resources Information Center

    Beigie, Darin

    2011-01-01

    Initial exposure to algebraic thinking involves the critical leap from working with numbers to thinking with variables. The transition to thinking mathematically using variables has many layers, and for all students an abstraction that is clear in one setting may be opaque in another. Geometric counting and the resulting algebraic patterns provide…

  19. The Impossible Capture: Towards a Leaping Methodology

    ERIC Educational Resources Information Center

    Zaliwska, Zofia

    2016-01-01

    I offer Klein's "Leap into the void" as an entrée into exploring the complexities of qualitative research in education. In exposing the ways in which performance photography/documentation performs on the boundaries of representation, Klein helps us to think about representation and dissemination differently. Through this article I will…

  20. The Impossible Capture: Towards a Leaping Methodology

    ERIC Educational Resources Information Center

    Zaliwska, Zofia

    2016-01-01

    I offer Klein's "Leap into the void" as an entrée into exploring the complexities of qualitative research in education. In exposing the ways in which performance photography/documentation performs on the boundaries of representation, Klein helps us to think about representation and dissemination differently. Through this article I will…

  1. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots

    SciTech Connect

    Gao, Jianbo; Fidler, Andrew F.; Klimov, Victor I.

    2015-09-08

    In carrier multiplication, the absorption of a single photon results in two or more electron–hole pairs. Quantum dots are promising materials for implementing carrier multiplication principles in real-life technologies. So far, however, most of research in this area has focused on optical studies of solution samples with yet to be proven relevance to practical devices. We report ultra-fast electro-optical studies of device-grade films of electronically coupled quantum dots that allow us to observe multiplication directly in the photocurrent. Our studies help rationalize previous results from both optical spectroscopy and steady-state photocurrent measurements and also provide new insights into effects of electric field and ligand treatments on multiexciton yields. Importantly, we demonstrate that using appropriate chemical treatments of the films, extra charges produced by carrier multiplication can be extracted from the quantum dots before they are lost to Auger recombination and hence can contribute to photocurrent of practical devices.

  2. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots

    PubMed Central

    Gao, Jianbo; Fidler, Andrew F.; Klimov, Victor I.

    2015-01-01

    In carrier multiplication, the absorption of a single photon results in two or more electron–hole pairs. Quantum dots are promising materials for implementing carrier multiplication principles in real-life technologies. So far, however, most of research in this area has focused on optical studies of solution samples with yet to be proven relevance to practical devices. Here we report ultrafast electro-optical studies of device-grade films of electronically coupled quantum dots that allow us to observe multiplication directly in the photocurrent. Our studies help rationalize previous results from both optical spectroscopy and steady-state photocurrent measurements and also provide new insights into effects of electric field and ligand treatments on multiexciton yields. Importantly, we demonstrate that using appropriate chemical treatments of the films, extra charges produced by carrier multiplication can be extracted from the quantum dots before they are lost to Auger recombination and hence can contribute to photocurrent of practical devices. PMID:26345390

  3. Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network

    SciTech Connect

    Grudka, Andrzej; Horodecki, Pawel

    2010-06-15

    We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since the effects are especially visible at high noise they suggest that quantum information effects may be particularly helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative borderline between superadditivities of bipartite and multipartite systems.

  4. NASA Adds Leap Second to Master Clock

    NASA Image and Video Library

    2017-09-28

    On Dec. 31, 2016, official clocks around the world will add a leap second just before midnight Coordinated Universal Time — which corresponds to 6:59:59 p.m. EST. NASA missions will also have to make the switch, including the Solar Dynamics Observatory, or SDO, which watches the sun 24/7. Clocks do this to keep in sync with Earth's rotation, which gradually slows down over time. When the dinosaurs roamed Earth, for example, our globe took only 23 hours to make a complete rotation. In space, millisecond accuracy is crucial to understanding how satellites orbit. "SDO moves about 1.9 miles every second," said Dean Pesnell, the project scientist for SDO at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "So does every other object in orbit near SDO. We all have to use the same time to make sure our collision avoidance programs are accurate. So we all add a leap second to the end of 2016, delaying 2017 by one second." The leap second is also key to making sure that SDO is in sync with the Coordinated Universal Time, or UTC, used to label each of its images. SDO has a clock that counts the number of seconds since the beginning of the mission. To convert that count to UTC requires knowing just how many leap seconds have been added to Earth-bound clocks since the mission started. When the spacecraft wants to provide a time in UTC, it calls a software module that takes into consideration both the mission's second count and the number of leap seconds — and then returns a time in UTC.

  5. Lightweight Exoatmospheric Projectile (LEAP) test program. Supplemental environmental assessment

    NASA Astrophysics Data System (ADS)

    1992-06-01

    The proposed action is to modify previously planned Lightweight Exoatmospheric Projectile (LEAP) Test Program activities (LEAP EA, July 1991, Ref 32) at White Sands Missile Range (WSMR), New Mexico; Kwajalein Missile Range (KMR), U.S. Army Kwajalein Atoll (USAKA); and Wake Island. The proposed action includes modifications of flight trajectories for LEAP flights 3, 5, and 6. Two additional flights, LEAP-X and LEAP-7 have been added to the program. LEAP-X is a single rocket test flight from KMR and LEAP-7 is a two-rocket test flight from KMR and Wake Island. Component/assembly ground tests will take place at Orbital Sciences Corporation (OSC), Space Data Division (SDD), Chandler, Arizona; Phillips Laboratory, Edwards Air Force Base, California; Rocketdyne Division of Rockwell International; Boeing Aerospace and Electronics, Kent, Washington; Hughes Aircraft Corporation, Missile Systems Group, Canoga Park California; Aerojet, Sacramento, California; and Thiokol Corporation, Elkton, Maryland.

  6. Physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics

    NASA Astrophysics Data System (ADS)

    Song, Xue-Ke; Ai, Qing; Qiu, Jing; Deng, Fu-Guo

    2016-05-01

    Three-level quantum systems, which possess some unique characteristics beyond two-level ones, such as electromagnetically induced transparency, coherent trapping, and Raman scatting, play important roles in solid-state quantum information processing. Here, we introduce an approach to implement the physically feasible three-level transitionless quantum driving with multiple Schrödinger dynamics (MSDs). It can be used to control accurately population transfer and entanglement generation for three-level quantum systems in a nonadiabatic way. Moreover, we propose an experimentally realizable hybrid architecture, based on two nitrogen-vacancy-center ensembles coupled to a transmission line resonator, to realize our transitionless scheme which requires fewer physical resources and simple procedures, and it is more robust against environmental noises and control parameter variations than conventional adiabatic passage techniques. All these features inspire the further application of MSDs on robust quantum information processing in experiment.

  7. High Efficiency Quantum Dot Solar Cells Based on Multiple Exciton Generation

    SciTech Connect

    Breeze, Alison

    2011-04-15

    The objective of this project was to demonstrate that efficient multiple exciton generation observed in quantum dot materials could be harvested in nanostructured solar cells to dramatically improve the maximum power efficiency obtainable in photovoltaic modules. This proposal aimed to develop a high efficiency solar cell through a combination of quantum dot materials, nanostructured surfaces and atomic layer deposition for fabricating conformal and ultrathin films.

  8. Band-edge absorption coefficients from photoluminescence in semiconductor multiple quantum wells

    NASA Technical Reports Server (NTRS)

    Kost, Alan; Zou, Yao; Dapkus, P. D.; Garmire, Elsa; Lee, H. C.

    1989-01-01

    A novel approach to determining absorption coefficients in thin films using luminescence is described. The technique avoids many of the difficulties typically encountered in measurements of thin samples, Fabry-Perot effects, for example, and can be applied to a variety of materials. The absorption edge for GaAs/AlGaAs multiple quantum well structures, with quantum well widths ranging from 54 to 193 A is examined. Urbach (1953) parameters and excitonic linewidths are tabulated.

  9. Photoconductivity of InGaN/GaN multiple quantum well heterostructures

    NASA Astrophysics Data System (ADS)

    Baranovskiy, M. V.; Glinskii, G. F.

    2013-08-01

    Photocurrent and photoconductivity of InGaN/GaN multiple quantum well heterostructures as a function of applied reverse bias is investigated. Optical excitation was carried out in blue and violet regions of the spectrum, and temperature was ranging from 10 to 300 K. We observed characteristic features related to consequently moving space charge boundary through the quantum wells. For each quantum well there is a range of reverse bias with negative differential conductivity when excited by blue light. Frequency and temperature measurements revealed the presence of at least two different mechanisms that determine the photoconductivity of the structures.

  10. Decoherence of multiple quantum coherences generated from a dipolar ordered state

    NASA Astrophysics Data System (ADS)

    González, C. E.; Segnorile, H. H.; Zamar, R. C.

    2011-01-01

    Starting from the hypothesis that the decay of coherent signals observed in H1 NMR experiments is driven by quantum interference, irreversible decoherence, and nonidealities in the experiment, we design an experiment to isolate and identify the irreversible attenuation of multiple-quantum coherences toward quasiequilibrium states of dipolar order in nematic liquid crystals (LCs). The experiment combines the well-known “magic sandwich” pulse sequence with preparation of dipolar ordered states and encoding of multiple-quantum coherences. The spin system composed of the dipole-coupled protons of a LC molecule provides an example of a small cluster of strongly interacting spins. We study decoherence rates under a sequence that reverses time evolution with the secular dipolar Hamiltonian to compensate coherent evolution of a closed quantum system. In this way, the time scale is made evident where irreversible decoherence takes place, providing insight into the nature of the processes responsible for the attainment of quasiequilibrium. The behavior of single- and double-quantum-coherence amplitudes with reversal time is interpreted as evidence of the quantum character (as opposed to stochastic character) of the processes that drive irreversible decoherence. The experimental method proposed is useful for probing the action of the environment on materials with quantum information processing potential.

  11. A probabilistic coding based quantum genetic algorithm for multiple sequence alignment.

    PubMed

    Huo, Hongwei; Xie, Qiaoluan; Shen, Xubang; Stojkovic, Vojislav

    2008-01-01

    This paper presents an original Quantum Genetic algorithm for Multiple sequence ALIGNment (QGMALIGN) that combines a genetic algorithm and a quantum algorithm. A quantum probabilistic coding is designed for representing the multiple sequence alignment. A quantum rotation gate as a mutation operator is used to guide the quantum state evolution. Six genetic operators are designed on the coding basis to improve the solution during the evolutionary process. The features of implicit parallelism and state superposition in quantum mechanics and the global search capability of the genetic algorithm are exploited to get efficient computation. A set of well known test cases from BAliBASE2.0 is used as reference to evaluate the efficiency of the QGMALIGN optimization. The QGMALIGN results have been compared with the most popular methods (CLUSTALX, SAGA, DIALIGN, SB_PIMA, and QGMALIGN) results. The QGMALIGN results show that QGMALIGN performs well on the presenting biological data. The addition of genetic operators to the quantum algorithm lowers the cost of overall running time.

  12. Design of protein function leaps by directed domain interface evolution

    PubMed Central

    Huang, Jin; Koide, Akiko; Makabe, Koki; Koide, Shohei

    2008-01-01

    Most natural proteins performing sophisticated tasks contain multiple domains where an active site is located at the domain interface. Comparative structural analyses suggest that major leaps in protein function occur through gene recombination events that connect two or more protein domains to generate a new active site, frequently occurring at the newly created domain interface. However, such functional leaps by combination of unrelated domains have not been directly demonstrated. Here we show that highly specific and complex protein functions can be generated by joining a low-affinity peptide-binding domain with a functionally inert second domain and subsequently optimizing the domain interface. These directed evolution processes dramatically enhanced both affinity and specificity to a level unattainable with a single domain, corresponding to >500-fold and >2,000-fold increases of affinity and specificity, respectively. An x-ray crystal structure revealed that the resulting “affinity clamp” had clamshell architecture as designed, with large additional binding surface contributed by the second domain. The affinity clamps having a single-nanomolar dissociation constant outperformed a monoclonal antibody in immunochemical applications. This work establishes evolutionary paths from isolated domains with primitive function to multidomain proteins with sophisticated function and introduces a new protein-engineering concept that allows for the generation of highly functional affinity reagents to a predefined target. The prevalence and variety of natural interaction domains suggest that numerous new functions can be designed by using directed domain interface evolution. PMID:18445649

  13. Design of protein function leaps by directed domain interface evolution.

    PubMed

    Huang, Jin; Koide, Akiko; Makabe, Koki; Koide, Shohei

    2008-05-06

    Most natural proteins performing sophisticated tasks contain multiple domains where an active site is located at the domain interface. Comparative structural analyses suggest that major leaps in protein function occur through gene recombination events that connect two or more protein domains to generate a new active site, frequently occurring at the newly created domain interface. However, such functional leaps by combination of unrelated domains have not been directly demonstrated. Here we show that highly specific and complex protein functions can be generated by joining a low-affinity peptide-binding domain with a functionally inert second domain and subsequently optimizing the domain interface. These directed evolution processes dramatically enhanced both affinity and specificity to a level unattainable with a single domain, corresponding to >500-fold and >2,000-fold increases of affinity and specificity, respectively. An x-ray crystal structure revealed that the resulting "affinity clamp" had clamshell architecture as designed, with large additional binding surface contributed by the second domain. The affinity clamps having a single-nanomolar dissociation constant outperformed a monoclonal antibody in immunochemical applications. This work establishes evolutionary paths from isolated domains with primitive function to multidomain proteins with sophisticated function and introduces a new protein-engineering concept that allows for the generation of highly functional affinity reagents to a predefined target. The prevalence and variety of natural interaction domains suggest that numerous new functions can be designed by using directed domain interface evolution.

  14. High charge-carrier mobility enables exploitation of carrier multiplication in quantum-dot films

    PubMed Central

    Sandeep, C. S. Suchand; Cate, Sybren ten; Schins, Juleon M.; Savenije, Tom J.; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J.; Siebbeles, Laurens D. A.

    2013-01-01

    Carrier multiplication, the generation of multiple electron–hole pairs by a single photon, is of great interest for solar cells as it may enhance their photocurrent. This process has been shown to occur efficiently in colloidal quantum dots, however, harvesting of the generated multiple charges has proved difficult. Here we show that by tuning the charge-carrier mobility in quantum-dot films, carrier multiplication can be optimized and may show an efficiency as high as in colloidal dispersion. Our results are explained quantitatively by the competition between dissociation of multiple electron–hole pairs and Auger recombination. Above a mobility of ~1 cm2 V−1 s−1, all charges escape Auger recombination and are quantitatively converted to free charges, offering the prospect of cheap quantum-dot solar cells with efficiencies in excess of the Shockley–Queisser limit. In addition, we show that the threshold energy for carrier multiplication is reduced to twice the band gap of the quantum dots. PMID:23974282

  15. Joint source-channel coding for a quantum multiple access channel

    NASA Astrophysics Data System (ADS)

    Wilde, Mark M.; Savov, Ivan

    2012-11-01

    Suppose that two senders each obtain one share of the output of a classical, bivariate, correlated information source. They would like to transmit the correlated source to a receiver using a quantum multiple access channel. In prior work, Cover, El Gamal and Salehi provided a combined source-channel coding strategy for a classical multiple access channel which outperforms the simpler ‘separation’ strategy where separate codebooks are used for the source coding and the channel coding tasks. In this paper, we prove that a coding strategy similar to the Cover-El Gamal-Salehi strategy and a corresponding quantum simultaneous decoder allow for the reliable transmission of a source over a quantum multiple access channel, as long as a set of information inequalities involving the Holevo quantity hold.

  16. Surface Passivation by Quantum Exclusion Using Multiple Layers

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    2013-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes a plurality M of doped layers, where M is an integer greater than 1. The dopant sheet densities in the M doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. M-1 interleaved layers provided between the M doped layers are not deliberately doped (also referred to as "undoped layers"). Structures with M=2, M=3 and M=4 have been demonstrated and exhibit improved passivation.

  17. Reliability assessment of multiple quantum well avalanche photodiodes

    NASA Technical Reports Server (NTRS)

    Yun, Ilgu; Menkara, Hicham M.; Wang, Yang; Oguzman, Isamil H.; Kolnik, Jan; Brennan, Kevin F.; May, Gray S.; Wagner, Brent K.; Summers, Christopher J.

    1995-01-01

    The reliability of doped-barrier AlGaAs/GsAs multi-quantum well avalanche photodiodes fabricated by molecular beam epitaxy is investigated via accelerated life tests. Dark current and breakdown voltage were the parameters monitored. The activation energy of the degradation mechanism and median device lifetime were determined. Device failure probability as a function of time was computed using the lognormal model. Analysis using the electron beam induced current method revealed the degradation to be caused by ionic impurities or contamination in the passivation layer.

  18. Controlled quantum perfect teleportation of multiple arbitrary multi-qubit states

    NASA Astrophysics Data System (ADS)

    Shi, Runhua; Huang, Liusheng; Yang, Wei; Zhong, Hong

    2011-12-01

    We present an efficient controlled quantum perfect teleportation scheme. In our scheme, multiple senders can teleport multiple arbitrary unknown multi-qubit states to a single receiver via a previously shared entanglement state with the help of one or more controllers. Furthermore, our scheme has a very good performance in the measurement and operation complexity, since it only needs to perform Bell state and single-particle measurements and to apply Controlled-Not gate and other single-particle unitary operations. In addition, compared with traditional schemes, our scheme needs less qubits as the quantum resources and exchanges less classical information, and thus obtains higher communication efficiency.

  19. Room-Temperature Photocurrent Spectroscopy of GaAs/GaAlAs Multiple Quantum Wells,

    DTIC Science & Technology

    1994-11-15

    Hailong , Wang Qiuning, et al. DO..... ... . .I C- DTIC ~ELECTIEE 199|11O9034 19950109 034Ditiuinnlmed NAIC- ID(RS)T-0385-94 AOSSI.O •z [ A Si8 eol1Y de...MULTIPLE QUANTUM WELLS 5y: Duan Hailong , Wang Qiuning, et al. English pages: 12 Source: Bandaoti Xuebao, Vol. 12, Nr. 7, July 1991, pp. 399-4O4...TEMPERATURE PHOTOCURRENT SPECTROSCOPY OF GaAs/GaAlAs MULTIPLE QUANTUM WELLS DUAN HAILONG , WANG QIUNING, WU RONGHAN, ZENG YIPING and KONG MEIYING

  20. Learning in Leaps and Bounds

    ERIC Educational Resources Information Center

    Pica, Rae

    2006-01-01

    Gardner's theory of multiple intelligences (1993) identifies several ways of "learning and knowing." Among these are the logical/mathematical and linguistic intelligence--the two most validated by society and on which all standardized tests are based. Therefore, physical education specialist are facing more pressure than ever to advocate for their…

  1. Learning in Leaps and Bounds

    ERIC Educational Resources Information Center

    Pica, Rae

    2006-01-01

    Gardner's theory of multiple intelligences (1993) identifies several ways of "learning and knowing." Among these are the logical/mathematical and linguistic intelligence--the two most validated by society and on which all standardized tests are based. Therefore, physical education specialist are facing more pressure than ever to advocate for their…

  2. Single-loop multiple-pulse nonadiabatic holonomic quantum gates

    NASA Astrophysics Data System (ADS)

    Herterich, Emmi; Sjöqvist, Erik

    2016-11-01

    Nonadiabatic holonomic quantum computation provides the means to perform fast and robust quantum gates by utilizing the resilience of non-Abelian geometric phases to fluctuations of the path in state space. While the original scheme [E. Sjöqvist et al., New J. Phys. 14, 103035 (2012), 10.1088/1367-2630/14/10/103035] needs two loops in the Grassmann manifold (i.e., the space of computational subspaces of the full state space) to generate an arbitrary holonomic one-qubit gate, we propose single-loop one-qubit gates that constitute an efficient universal set of holonomic gates when combined with an entangling holonomic two-qubit gate. Our one-qubit gate is realized by dividing the loop into path segments, each of which is generated by a Λ -type Hamiltonian. We demonstrate that two path segments are sufficient to realize arbitrary single-loop holonomic one-qubit gates. We describe how our scheme can be implemented experimentally in a generic atomic system exhibiting a three-level Λ -coupling structure by utilizing carefully chosen laser pulses.

  3. Leap Seconds or Not? Status Report

    NASA Astrophysics Data System (ADS)

    Seidelmann, P. Kenneth

    2009-05-01

    The question of redefining the UTC Time Scale has been under consideration by the ITU-R Study Group 7A since 1999. The current definition requires that UTC -UT1 agree within 0.9 second and that this be accomplished by the introduction of leap seconds. The proposed change would eliminate the leap seconds. The DDA gave a report to the AAS Council on 3 January 2006 urging that "no action be taken” to allow time to evaluate the technical merit and potential impact of the change. An IAU Report of August 2006 said there is no strong consensus at the IAU for, or against, the change. The AAS leap second committee report of 12 December 2007 indicated that the concerns of the astronomical community are sociological rather that technical. There was virtually no response to an item in the AAS Newsletter in 2008 asking for comments on the proposed change. Hence, the conclusion is drawn that the astronomical community does not have an opinion concerning the change. The US has no official position concerning the recommendation. NASA favors the change, if given 5 years advanced notice. DoD is developing a position. NSF has no position. The State Department has not taken an official position on the issue. At the ITU-R Study Group 7A meeting in October 2008 the recommendation for the change to eliminate leap seconds was considered. A report on the considerations gives a history of the process without a discussion of the pros or cons for the recommendation. The United Kingdom and China objected to the recommended change. Two objections are sufficient to stop the recommended change at that meeting, but the recommendation can be brought up again at the next meeting. The BIPM is pressing for the change, and now they may seek to avoid the ITU-R somehow.

  4. Model for neural signaling leap statistics

    NASA Astrophysics Data System (ADS)

    Chevrollier, Martine; Oriá, Marcos

    2011-03-01

    We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T = 37.5°C, awaken regime) and Lévy statistics (T = 35.5°C, sleeping period), characterized by rare events of long range connections.

  5. Simultaneous nano-tracking of multiple motor proteins via spectral discrimination of quantum dots

    PubMed Central

    Kakizuka, Taishi; Ikezaki, Keigo; Kaneshiro, Junichi; Fujita, Hideaki; Watanabe, Tomonobu M.; Ichimura, Taro

    2016-01-01

    Simultaneous nanometric tracking of multiple motor proteins was achieved by combining multicolor fluorescent labeling of target proteins and imaging spectroscopy, revealing dynamic behaviors of multiple motor proteins at the sub-diffraction-limit scale. Using quantum dot probes of distinct colors, we experimentally verified the localization precision to be a few nanometers at temporal resolution of 30 ms or faster. One-dimensional processive movement of two heads of a single myosin molecule and multiple myosin molecules was successfully traced. Furthermore, the system was modified for two-dimensional measurement and applied to tracking of multiple myosin molecules. Our approach is useful for investigating cooperative movement of proteins in supramolecular nanomachinery. PMID:27446684

  6. Characteristics of AlGaAs/GaAs multiple quantum well infrared detectors

    NASA Technical Reports Server (NTRS)

    Janousek, Bruce K.; Rosenbluth, Mary L.; Oloughlin, Michael J.; Bloss, Walter L.; Deluccia, Frank J.; Kanter, Helmut; Perry, L. Elaine; Daugherty, Michael J.

    1990-01-01

    Researchers fabricated and characterized several AlGaAs/GaAs multiple quantum well infrared detectors to evaluate the ultimate performance of these devices for low infrared background applications. The detectors were designed to have a single bound state in the quantum well and the first excited state in the continuum above the AlGaAs conduction band edge. The difference in energy between the two levels, as determined by the quantum well width and aluminum mole fraction in the barrier, was chosen such that peak absorption would occur near 8 microns. The initial structures studied comprised 50 periods with 40 A well widths and 300 A Al(0.28)Ga(0.72)As barriers. The performance of these detectors are summarized. To better interpret these results and design optimized detectors, researchers modeled both the detector noise and tunneling currents. The noise model correctly predicts that multiple quantum well detectors will, indeed, exhibit noise lower than full shot noise. The tunneling current model predicts the dark current versus bias for any choice of design parameters in a multiple quantum well detector. This model predicts a substantially reduced dark current (x 10(exp 04)) for samples with 400 A barriers. To evaluate structures with thicker barriers, researchers fabricated and characterized detectors with 400 A and 500 A barriers; a comparison of detector dark currents is shown. These results are consistent with the predictions of the dark current model.

  7. Precision Control of Multiple Quantum Cascade Lasers for Calibration Systems

    SciTech Connect

    Taubman, Matthew S.; Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-15

    We present a precision, digitally interfaced current controller for quantum cascade lasers, with demonstrated DC and modulated temperature coefficients of 1- 2 ppm/ºC and 15 ppm/ºC respectively. High linearity digital to analog converters (DACs) together with an ultra-precision voltage reference, produce highly stable, precision voltages. These are in turn selected by a low charge-injection multiplexer (MUX) chip, which are then used to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller while ensuring protection of controller and all lasers during operation, standby and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  8. Surface Passivation by Quantum Exclusion Using Multiple Layers

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E. (Inventor)

    2015-01-01

    A semiconductor device has a multilayer doping to provide improved passivation by quantum exclusion. The multilayer doping includes at least two doped layers fabricated using MBE methods. The dopant sheet densities in the doped layers need not be the same, but in principle can be selected to be the same sheet densities or to be different sheet densities. The electrically active dopant sheet densities are quite high, reaching more than 1.times.10.sup.14 cm.sup.-2, and locally exceeding 10.sup.22 per cubic centimeter. It has been found that silicon detector devices that have two or more such dopant layers exhibit improved resistance to degradation by UV radiation, at least at wavelengths of 193 nm, as compared to conventional silicon p-on-n devices.

  9. Precision control of multiple quantum cascade lasers for calibration systems

    SciTech Connect

    Taubman, Matthew S. Myers, Tanya L.; Pratt, Richard M.; Stahl, Robert D.; Cannon, Bret D.

    2014-01-15

    We present a precision, 1-A, digitally interfaced current controller for quantum cascade lasers, with demonstrated temperature coefficients for continuous and 40-kHz full-depth square-wave modulated operation, of 1–2 ppm/ °C and 15 ppm/ °C, respectively. High precision digital to analog converters (DACs) together with an ultra-precision voltage reference produce highly stable, precision voltages, which are selected by a multiplexer (MUX) chip to set output currents via a linear current regulator. The controller is operated in conjunction with a power multiplexing unit, allowing one of three lasers to be driven by the controller, while ensuring protection of controller and all lasers during operation, standby, and switching. Simple ASCII commands sent over a USB connection to a microprocessor located in the current controller operate both the controller (via the DACs and MUX chip) and the power multiplexer.

  10. Multiple-User Quantum Information Theory for Optical Communication Channels

    DTIC Science & Technology

    2008-06-01

    detection uses 6 spatial modes with (from top to bottom) 1 ≤ q ≤ 3. ( d ) Wideband, multiple- spatial -mode capacities (in bits per second) for the scalar...detection imply that their wideband multiple- spatial -mode capacities bear the follow- ing relationship, Chom(P ) = 1 2 Chet (4P ). (2.22) Thus, only two... spatial modes, but we have only plotted the spectra for 1 ≤ q ≤ 6. In Fig. 2-4( d ) we have plotted the heterodyne detection, homodyne detection, and

  11. Quantum circuits for -multiplication with subquadratic gate count

    NASA Astrophysics Data System (ADS)

    Kepley, Shane; Steinwandt, Rainer

    2015-07-01

    One of the most cost-critical operations when applying Shor's algorithm to binary elliptic curves is the underlying field arithmetic. Here, we consider binary fields in polynomial basis representation, targeting especially field sizes as used in elliptic curve cryptography. Building on Karatsuba's algorithm, our software implementation automatically synthesizes a multiplication circuit with the number of -gates being bounded by for any given reduction polynomial of degree . If an irreducible trinomial of degree exists, then a multiplication circuit with a total gate count of is available.

  12. Interface and photoluminescence characteristics of graphene-(GaN/InGaN){sub n} multiple quantum wells hybrid structure

    SciTech Connect

    Wang, Liancheng E-mail: lzq@semi.ac.cn; Liu, Zhiqiang E-mail: lzq@semi.ac.cn Tian, Ying Dong; Yi, Xiaoyan; Wang, Junxi; Li, Jinmin; Wang, Guohong; Zhang, Zi-Hui E-mail: lzq@semi.ac.cn

    2016-04-14

    The effects of graphene on the optical properties of active system, e.g., the InGaN/GaN multiple quantum wells, are thoroughly investigated and clarified. Here, we have investigated the mechanisms accounting for the photoluminescence reduction for the graphene covered GaN/InGaN multiple quantum wells hybrid structure. Compared to the bare multiple quantum wells, the photoluminescence intensity of graphene covered multiple quantum wells showed a 39% decrease after excluding the graphene absorption losses. The responsible mechanisms have been identified with the following factors: (1) the graphene two dimensional hole gas intensifies the polarization field in multiple quantum wells, thus steepening the quantum well band profile and causing hole-electron pairs to further separate; (2) a lower affinity of graphene compared to air leading to a weaker capability to confine the excited hot electrons in multiple quantum wells; and (3) exciton transfer through non-radiative energy transfer process. These factors are theoretically analysed based on advanced physical models of semiconductor devices calculations and experimentally verified by varying structural parameters, such as the indium fraction in multiple quantum wells and the thickness of the last GaN quantum barrier spacer layer.

  13. Interface and photoluminescence characteristics of graphene-(GaN/InGaN)n multiple quantum wells hybrid structure

    NASA Astrophysics Data System (ADS)

    Wang, Liancheng; Liu, Zhiqiang; Zhang, Zi-Hui; Tian, Ying Dong; Yi, Xiaoyan; Wang, Junxi; Li, Jinmin; Wang, Guohong

    2016-04-01

    The effects of graphene on the optical properties of active system, e.g., the InGaN/GaN multiple quantum wells, are thoroughly investigated and clarified. Here, we have investigated the mechanisms accounting for the photoluminescence reduction for the graphene covered GaN/InGaN multiple quantum wells hybrid structure. Compared to the bare multiple quantum wells, the photoluminescence intensity of graphene covered multiple quantum wells showed a 39% decrease after excluding the graphene absorption losses. The responsible mechanisms have been identified with the following factors: (1) the graphene two dimensional hole gas intensifies the polarization field in multiple quantum wells, thus steepening the quantum well band profile and causing hole-electron pairs to further separate; (2) a lower affinity of graphene compared to air leading to a weaker capability to confine the excited hot electrons in multiple quantum wells; and (3) exciton transfer through non-radiative energy transfer process. These factors are theoretically analysed based on advanced physical models of semiconductor devices calculations and experimentally verified by varying structural parameters, such as the indium fraction in multiple quantum wells and the thickness of the last GaN quantum barrier spacer layer.

  14. Impact ionization can explain carrier multiplication in PbSe quantum dots.

    PubMed

    Franceschetti, A; An, J M; Zunger, A

    2006-10-01

    The efficiency of conventional solar cells is limited because the excess energy of absorbed photons converts to heat instead of producing electron-hole pairs. Recently, efficient carrier multiplication has been observed in semiconductor quantum dots. In this process, a single, high-energy photon generates multiple electron-hole pairs. Rather exotic mechanisms have been proposed to explain the efficiency of carrier multiplication in PbSe quantum dots. Using atomistic pseudopotential calculations, we show here that the more conventional impact ionization mechanism, whereby a photogenerated electron-hole pair decays into a biexciton in a process driven by Coulomb interactions between the carriers, can explain both the rate (<1 ps) and the energy threshold ( approximately 2.2 times the band gap) of carrier multiplication, without the need to invoke alternative mechanisms.

  15. Intersubband Transition in GaN/InGaN Multiple Quantum Wells

    PubMed Central

    Chen, G.; Wang, X. Q.; Rong, X.; Wang, P.; Xu, F. J.; Tang, N.; Qin, Z. X.; Chen, Y. H.; Shen, B.

    2015-01-01

    Utilizing the growth temperature controlled epitaxy, high quality GaN/In0.15Ga0.85N multiple quantum wells designed for intersubband transition (ISBT) as novel candidates in III-nitride infrared device applications have been experimentally realized for the first time. Photo-absorption originated from the ISBT has been successfully observed at infrared regime covering the 3–5 μm atmosphere window, where the central absorption wavelength is modulated by adjusting the quantum well width. With increasing the quantum well thickness, the ISBT center wave length blue shifts at thickness less than 2.8 nm and then redshifts with further increase of the well thickness. The non-monotonic trend is most likely due to the polarization induced asymmetric shape of the quantum wells. PMID:26089133

  16. Multi-bands photoconductive response in AlGaN/GaN multiple quantum wells

    SciTech Connect

    Chen, G.; Rong, X.; Xu, F. J.; Tang, N.; Wang, X. Q. Shen, B.; Fu, K.; Zhang, B. S.; Hashimoto, H.; Yoshikawa, A.; Ge, W. K.

    2014-04-28

    Based on the optical transitions among the quantum-confined electronic states in the conduction band, we have fabricated multi-bands AlGaN/GaN quantum well infrared photodetectors. Crack-free AlGaN/GaN multiple quantum wells (MQWs) with atomically sharp interfaces have been achieved by inserting an AlN interlayer, which releases most of the tensile strain in the MQWs grown on the GaN underlayer. With significant reduction of dark current by using thick AlGaN barriers, photoconductive responses are demonstrated due to intersubband transition in multiple regions with center wavelengths of 1.3, 2.3, and 4 μm, which shows potential applications on near infrared detection.

  17. Control of coherence transfer via tunneling in quadruple and multiple quantum dots

    NASA Astrophysics Data System (ADS)

    Tian, Si-Cong; Xing, En-Bo; Wan, Ren-Gang; Wang, Chun-Liang; Wang, Li-Jie; Shu, Shi-Li; Tong, Cun-Zhu; Wang, Li-Jun

    2016-12-01

    Transfer and manipulation of coherence among the ground state and indirect exciton states via tunneling in quadruple and multiple quantum dots is analyzed. By applying suitable amplitudes and sequences of the pump and tunneling pulses, a complete transfer of coherence or an arbitrary distribution of coherence of multiple states can be realized. The method, which is an adiabatic passage process, is different from previous works on quantum dot molecules in the way that the population can transfer from the ground state to the indirect exciton states without populating the direct exciton state, and thus no spontaneous emission occurs. This investigation can provide further insight to help the experimental development of coherence transfer in semiconductor structures, and may have potential applications in quantum information processing.

  18. Modulating retroreflector architecture using multiple quantum wells for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Gilbreath, G. Charmaine; Rabinovich, William S.; Mahon, Rita; Corson, Michael R.; Kline, John F.; Resnick, Joshua H.; Merk, H. C.; Vilcheck, Michael J.

    1998-12-01

    In this paper, we describe a demonstration using a Multiple Quantum Well modulator combined with an optical retroreflector which supported a high speed free space optical data link. Video images were transmitted over an 859 nanometer link at a rate of 460 kilo bits per second, where rate of modulation was limited by demonstration hardware, not the modulator. Reflection architectures for the modulator were used although transmission architectures have also been investigated but are not discussed in this paper. The modulator was a GaAs/Al0.3Ga0.7As quantum well which was designed and fabricated for use as a shutter at the Naval Research Laboratory. We believe these are the first results reported demonstrating a high speed free space optical data link using multiple quantum well shutters combined with retroreflectors for viable free space optical communications.

  19. Quantum Optimal Multiple Assignment Scheme for Realizing General Access Structure of Secret Sharing

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryutaroh

    The multiple assignment scheme is to assign one or more shares to single participant so that any kind of access structure can be realized by classical secret sharing schemes. We propose its quantum version including ramp secret sharing schemes. Then we propose an integer optimization approach to minimize the average share size.

  20. The Application of Leap Motion in Astronaut Virtual Training

    NASA Astrophysics Data System (ADS)

    Qingchao, Xie; Jiangang, Chao

    2017-03-01

    With the development of computer vision, virtual reality has been applied in astronaut virtual training. As an advanced optic equipment to track hand, Leap Motion can provide precise and fluid tracking of hands. Leap Motion is suitable to be used as gesture input device in astronaut virtual training. This paper built an astronaut virtual training based Leap Motion, and established the mathematics model of hands occlusion. At last the ability of Leap Motion to handle occlusion was analysed. A virtual assembly simulation platform was developed for astronaut training, and occlusion gesture would influence the recognition process. The experimental result can guide astronaut virtual training.

  1. Generation of Multiple Excitons in Ag2S Quantum Dots: Single High-Energy versus Multiple-Photon Excitation.

    PubMed

    Sun, Jingya; Yu, Weili; Usman, Anwar; Isimjan, Tayirjan T; DGobbo, Silvano; Alarousu, Erkki; Takanabe, Kazuhiro; Mohammed, Omar F

    2014-02-20

    We explored biexciton generation via carrier multiplication (or multiple-exciton generation) by high-energy photons and by multiple-photon absorption in Ag2S quantum dots (QDs) using femtosecond broad-band transient absorption spectroscopy. Irrespective of the size of the QDs and how the multiple excitons are generated in the Ag2S QDs, two distinct characteristic time constants of 9.6-10.2 and 135-175 ps are obtained for the nonradiative Auger recombination of the multiple excitons, indicating the existence of two binding excitons, namely, tightly bound and weakly bound excitons. More importantly, the lifetimes of multiple excitons in Ag2S QDs were about 1 and 2 orders of magnitude longer than those of comparable size PbS QDs and single-walled carbon nanotubes, respectively. This result is significant because it suggests that by utilizing an appropriate electron acceptor, there is a higher possibility to extract multiple electron-hole pairs in Ag2S QDs, which should improve the performance of QD-based solar cell devices.

  2. An optimized quantum information splitting scheme with multiple controllers

    NASA Astrophysics Data System (ADS)

    Jiang, Min

    2016-12-01

    We propose an efficient scheme for splitting multi-qudit information with cooperative control of multiple agents. Each controller is assigned one controlling qudit, and he can monitor the state sharing of all multi-qudit information. Compared with the existing schemes, our scheme requires less resource consumption and approaches higher communication efficiency. In addition, our proposal involves only generalized Bell-state measurement, single-qudit measurement, one-qudit gates and a unitary-reduction operation, which makes it flexible and achievable for physical implementation.

  3. Coherent manipulation of valley states at multiple charge configurations of a silicon quantum dot device.

    PubMed

    Schoenfield, Joshua S; Freeman, Blake M; Jiang, HongWen

    2017-07-05

    Qubits based on silicon quantum dots are emerging as leading candidates for the solid-state implementation of quantum information processing. In silicon, valley states represent a degree of freedom in addition to spin and charge. Characterizing and controlling valley states is critical for the encoding and read-out of electrons-in-silicon-based qubits. Here, we report the coherent manipulation of a qubit, which is based on the two valley states of an electron confined in a silicon quantum dot. We carry out valley qubit operations at multiple charge configurations of the double quantum dot device. The dependence of coherent oscillations on pulse excitation level and duration allows us to map out the energy dispersion as a function of detuning as well as the phase coherence time of the valley qubit. The coherent manipulation also provides a method of measuring valley splittings that are too small to probe with conventional methods.Silicon quantum dots provide a promising platform for quantum computing based on manipulation of electron degrees of freedom in a well-characterized environment. Here, the authors demonstrate coherent control of electron valley states, yielding an accurate determination of the valley splitting.

  4. Multiplicative logarithmic corrections to quantum criticality in three-dimensional dimerized antiferromagnets

    NASA Astrophysics Data System (ADS)

    Qin, Yan Qi; Normand, B.; Sandvik, Anders W.; Meng, Zi Yang

    2015-12-01

    We investigate the quantum phase transition in an S =1 /2 dimerized Heisenberg antiferromagnet in three spatial dimensions. By performing large-scale quantum Monte Carlo simulations and detailed finite-size scaling analyses, we obtain high-precision results for the quantum critical properties at the transition from the magnetically disordered dimer-singlet phase to the antiferromagnetically ordered Néel phase. This transition breaks O(N ) symmetry with N =3 in D =3 +1 dimensions. This is the upper critical dimension, where multiplicative logarithmic corrections to the leading mean-field critical properties are expected; we extract these corrections, establishing their precise forms for both the zero-temperature staggered magnetization ms and the Néel temperature TN. We present a scaling ansatz for TN, including logarithmic corrections, which agrees with our data and indicates exact linearity with ms, implying a complete decoupling of quantum and thermal fluctuation effects even arbitrarily close to the quantum critical point. We also demonstrate the predicted N -independent leading and subleading logarithmic corrections in the size dependence of the staggered magnetic susceptibility. These logarithmic scaling forms have not previously been identified or verified by unbiased numerical methods, and we discuss their relevance to experimental studies of dimerized quantum antiferromagnets such as TlCuCl3.

  5. Multiplicative logarithmic corrections to quantum criticality in three-dimensional dimerized antiferromagnets

    NASA Astrophysics Data System (ADS)

    Qin, Yanqi; Normand, Bruce; Sandvik, Anders; Meng, Zi Yang

    We investigate the quantum phase transition in an S=1/2 dimerized Heisenberg antiferromagnet in three spatial dimensions. By means of quantum Monte Carlo simulations and finite-size scaling analyses, we get high-precision results for the quantum critical properties at the transition from the magnetically disordered dimer-singlet phase to the ordered Neel phase. This transition breaks O(N) symmetry with N=3 in D=3+1 dimensions. This is the upper critical dimension, where multiplicative logarithmic corrections to the leading mean-field critical properties are expected; we extract these corrections, establishing their precise forms for both the zero-temperature staggered magnetization, ms, and the Neel temperature, TN. We present a scaling ansatz for TN, including logarithmic corrections, which agrees with our data and indicates exact linearity with ms, implying a complete decoupling of quantum and thermal fluctuation effects close to the quantum critical point. These logarithmic scaling forms have not previously identified or verified by unbiased numerical methods and we discuss their relevance to experimental studies of dimerized quantum antiferromagnets such as TlCuCl3. Ref.: arXiv:1506.06073

  6. High performance red-emitting multiple layer InGaN/GaN quantum dot lasers

    NASA Astrophysics Data System (ADS)

    Frost, Thomas; Hazari, Arnab; Aiello, Anthony; Zunaid Baten, Md; Yan, Lifan; Mirecki-Millunchick, Joanna; Bhattacharya, Pallab

    2016-03-01

    InGaN/GaN self-organized quantum dots can provide useful advantages over quantum wells for the realization of long-wavelength visible light sources because the dots are formed by strain relaxation. A III-nitride based laser emitting in the red (λ ˜ 630 nm), which has not been demonstrated with quantum wells, would be useful for a host of applications. We have investigated the epitaxy and characteristics of self-organized InGaN/GaN multiple layer quantum dots grown by plasma-assisted molecular beam epitaxy and have optimized their properties by tuning the growth parameters. Red-emitting (λ ˜ 630 nm) quantum dots have radiative lifetime ˜2.5 ns and internal quantum efficiency greater than 50%. Edge-emitting red-lasers with multi-dot layers in the active region exhibit an extremely low threshold current density of 1.6 kA/cm2, a high temperature coefficient T0 = 240 K, and a large differential gain dg/dn = 9 × 10-17 cm2.

  7. Quadrupole-Echo Techniques in Multiple-Quantum-Filtered NMR Spectroscopy of Heterogeneous Systems

    NASA Astrophysics Data System (ADS)

    Eliav, U.; Navon, G.

    Multiple-quantum-filtered quadrupole-echo pulse sequences for spin I = 1 and I = {3}/{2} are suggested. A general condition for obtaining simultaneously Zeeman and quadrupolar echo is formulated. A theoretical analysis of the various pulse sequences was performed on the basis of second-order perturbation approximation of the Liouville equation for the density matrix. The extent of refocusing as a function of the ratio of the residual quadrupolar interaction and the relaxation rates was calculated. Experimental results are presented for 2H and 23Na in cartilage as an example of a heterogeneous system with residual quadrupolar interaction. The difference between relaxation times measured by the multiple-quantum-filtered echo techniques and those measured by conventional multiple-quantum-filtered NMR spectroscopy is a simple diagnostic of anisotropic motion that leads to a residual quadrupolar interaction. The results of the echo experiments are compared with the relaxation times computed on the basis of lineshape analysis of double-quantum-filtered spectra of a heterogeneous system.

  8. Measuring correlations of cold-atom systems using multiple quantum probes

    NASA Astrophysics Data System (ADS)

    Streif, Michael; Buchleitner, Andreas; Jaksch, Dieter; Mur-Petit, Jordi

    2016-11-01

    We present a nondestructive method to probe a complex quantum system using multiple-impurity atoms as quantum probes. Our protocol provides access to different equilibrium properties of the system by changing its coupling to the probes. In particular, we show that measurements with two probes reveal the system's nonlocal two-point density correlations, for probe-system contact interactions. We illustrate our findings with analytic and numerical calculations for the Bose-Hubbard model in the weakly and strongly interacting regimes, under conditions relevant to ongoing experiments in cold-atom systems.

  9. Excitonic localization at macrostep edges in AlGaN/AlGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Hou, Mengjun; Qin, Zhixin; Zhang, Lisheng; Han, Tianyang; Wang, Mingxing; Xu, Fujun; Wang, Xinqiang; Yu, Tongjun; Fang, Zheyu; Shen, Bo

    2017-04-01

    Double peaks at wavelength of 276 and 290 nm are observed for AlGaN/AlGaN multiple quantum wells (MQWs). Cathodoluminescence (CL) mappings identify that the emission at 290 nm originates from the macrostep edges. Potential minima induced by local variation of QW thickness and Ga incorporation are found along the step edges, where quantum wires (QWRs) are formed. The lateral advance rate of macrostep (∼310 nm/h) is obtained by investigating the distribution of QWRs. Temperature-dependent CL spectrum suggest that thermal quenching for 290 nm emission is dramatically suppressed compared with that for conventional QWs emission, which shows excitonic localization characteristics of QWRs.

  10. Multiple-quantum cross-polarization in MAS NMR of quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Ashbrook, Sharon E.; Brown, Steven P.; Wimperis, Stephen

    1998-05-01

    Using 27Al ( I=5/2) NMR of aluminium acetylacetonate, we show that it is possible to cross-polarize from a spin I=1/2 nucleus ( 1H) directly to the central triple-quantum transition of a half-integer quadrupolar nucleus ( 27Al) in a powdered sample under MAS conditions. The optimum conditions for this multiple-quantum cross-polarization (MQCP) are investigated experimentally and compared with existing theoretical results. The new technique is applied to the recently introduced two-dimensional MQMAS experiment for recording high-resolution NMR spectra of half-integer quadrupolar nuclei.

  11. Pulsed field gradient multiple-quantum MAS NMR spectroscopy of half-integer spin quadrupolar nuclei

    NASA Astrophysics Data System (ADS)

    Fyfe, C. A.; Skibsted, J.; Grondey, H.; Meyer zu Altenschildesche, H.

    1997-12-01

    Pulsed field gradients (PFGs) have been applied to select coherence transfer pathways in multiple-quantum (MQ) MAS NMR spectra of half-integer spin quadrupolar nuclei in rigid solids. 27Al triple-quantum (3Q) MAS NMR spectra of the aluminophosphate molecular sieves VPI-5 and AlPO 4-18 have been used to demonstrate the selection of the (0)→(3)→(-1) coherence transfer pathway using PFGs and no phase cycling. Compared to MQMAS experiments that employ phase cycling schemes, the main advantage of the PFG-MQMAS technique is its simplicity, which should facilitate the combination of MQMAS with other pulse sequences.

  12. Possibility of multiple tunnelling current peaks in a coupled quantum well system

    NASA Astrophysics Data System (ADS)

    Luis, D.; Díaz, J. P.; Capuj, N. E.; Cruz, H.

    2000-07-01

    In this work, we have numerically integrated in space and time the effective-mass nonlinear Schrödinger equation for an electron wave packet in a bilayer electron system. Considering both Hartree and exchange-correlation potentials, we have calculated the tunnelling rates between the two quantum wells when an external bias is applied in the double quantum well system. Due to the nonlinear effective-mass equation, it is found that the charge dynamically trapped in both wells produces a reaction field which modifies the system resonant condition. At different electronic sheet densities, we have shown the possibility of having multiple resonant tunnelling peaks in a bilayer electron system.

  13. A practical multiple reflection technique for improving the quantum efficiency of photomultiplier tubes.

    PubMed

    Oke, J B; Schild, R E

    1968-04-01

    A technique is described by which multiple reflection techniques can be used to increase the quantum efficiency of some end-on photomultiplier tubes in the red and near ir. The method can be used in practice for astronomical and other applications where field lens imaging on the cathode is required and where small cathodes are desirable. Tests of a group of unselected production model S-20 and S-1 photomultiplier tubes show quantum efficiency gains as high as factors of 3.8 and 1.8, respectively, at practical operating wavelengths.

  14. Accurate implementation of leaping in space: The spatial partitioned-leaping algorithm

    NASA Astrophysics Data System (ADS)

    Iyengar, Krishna A.; Harris, Leonard A.; Clancy, Paulette

    2010-03-01

    There is a great need for accurate and efficient computational approaches that can account for both the discrete and stochastic nature of chemical interactions as well as spatial inhomogeneities and diffusion. This is particularly true in biology and nanoscale materials science, where the common assumptions of deterministic dynamics and well-mixed reaction volumes often break down. In this article, we present a spatial version of the partitioned-leaping algorithm, a multiscale accelerated-stochastic simulation approach built upon the τ-leaping framework of Gillespie. We pay special attention to the details of the implementation, particularly as it pertains to the time step calculation procedure. We point out conceptual errors that have been made in this regard in prior implementations of spatial τ-leaping and illustrate the manifestation of these errors through practical examples. Finally, we discuss the fundamental difficulties associated with incorporating efficient exact-stochastic techniques, such as the next-subvolume method, into a spatial leaping framework and suggest possible solutions.

  15. Singlet fission in pentacene through multiple exciton quantum states

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyong; Zimmerman, Paul; Musgrave, Charles

    2010-03-01

    Multi-exciton generation (MEG) has been reported for several materials and may dramatically increase solar cell efficiency. Singlet fission is the molecular analogue of MEG and has been observed in various systems, including tetracene and pentacene, however, no fundamental mechanism for singlet fission has yet been described, although it may govern MEG processes in a variety of materials. Because photoexcited states have single-exciton character, singlet fission to produce a pair of triplet excitons must involve an intermediate state that: (1) exhibits multi-exciton (ME) character, (2) is accessible from S1 and satisfies the fission energy requirement, and (3) efficiently dissociates into multiple electron-hole pairs. Here, we use sophisticated ab initio calculations to show that singlet fission in pentacene proceeds through a dark state (D) of ME character that lies just below S1, satisfies the fission energy requirement (ED>2ET0), and splits into two triplets (2xT0). In tetracene, D lies just above S1, consistent with the observation that singlet fission is thermally activated in tetracene. Rational design of photovoltaic systems that exploit singlet fission will require ab initio analysis of ME states such as D.

  16. Carrier multiplication detected through transient photocurrent in device-grade films of lead selenide quantum dots

    DOE PAGES

    Gao, Jianbo; Fidler, Andrew F.; Klimov, Victor I.

    2015-09-08

    In carrier multiplication, the absorption of a single photon results in two or more electron–hole pairs. Quantum dots are promising materials for implementing carrier multiplication principles in real-life technologies. So far, however, most of research in this area has focused on optical studies of solution samples with yet to be proven relevance to practical devices. We report ultra-fast electro-optical studies of device-grade films of electronically coupled quantum dots that allow us to observe multiplication directly in the photocurrent. Our studies help rationalize previous results from both optical spectroscopy and steady-state photocurrent measurements and also provide new insights into effects ofmore » electric field and ligand treatments on multiexciton yields. Importantly, we demonstrate that using appropriate chemical treatments of the films, extra charges produced by carrier multiplication can be extracted from the quantum dots before they are lost to Auger recombination and hence can contribute to photocurrent of practical devices.« less

  17. Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Crisp, Ryan W.; Gu, Jing; Chernomordik, Boris D.; Pach, Gregory F.; Marshall, Ashley R.; Turner, John A.; Beard, Matthew C.

    2017-04-01

    Multiple exciton generation (MEG) in quantum dots (QDs) has the potential to greatly increase the power conversion efficiency in solar cells and in solar-fuel production. During the MEG process, two electron-hole pairs (excitons) are created from the absorption of one high-energy photon, bypassing hot-carrier cooling via phonon emission. Here we demonstrate that extra carriers produced via MEG can be used to drive a chemical reaction with quantum efficiency above 100%. We developed a lead sulfide (PbS) QD photoelectrochemical cell that is able to drive hydrogen evolution from aqueous Na2S solution with a peak external quantum efficiency exceeding 100%. QD photoelectrodes that were measured all demonstrated MEG when the incident photon energy was larger than 2.7 times the bandgap energy. Our results demonstrate a new direction in exploring high-efficiency approaches to solar fuels.

  18. Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%

    DOE PAGES

    Yan, Yong; Crisp, Ryan W.; Gu, Jing; ...

    2017-04-03

    Multiple exciton generation (MEG) in quantum dots (QDs) has the potential to greatly increase the power conversion efficiency in solar cells and in solar-fuel production. During the MEG process, two electron-hole pairs (excitons) are created from the absorption of one high-energy photon, bypassing hot-carrier cooling via phonon emission. Here we demonstrate that extra carriers produced via MEG can be used to drive a chemical reaction with quantum efficiency above 100%. We developed a lead sulfide (PbS) QD photoelectrochemical cell that is able to drive hydrogen evolution from aqueous Na2S solution with a peak external quantum efficiency exceeding 100%. QD photoelectrodesmore » that were measured all demonstrated MEG when the incident photon energy was larger than 2.7 times the bandgap energy. Finally, our results demonstrate a new direction in exploring high-efficiency approaches to solar fuels.« less

  19. Code-division multiple-access multiuser demodulator by using quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Otsubo, Yosuke; Inoue, Jun-ichi; Nagata, Kenji; Okada, Masato

    2014-07-01

    We examine the average-case performance of a code-division multiple-access (CDMA) multiuser demodulator in which quantum fluctuations are utilized to demodulate the original message within the context of Bayesian inference. The quantum fluctuations are built into the system as a transverse field in the infinite-range Ising spin glass model. We evaluate the performance measurements by using statistical mechanics. We confirm that the CDMA multiuser modulator using quantum fluctuations achieve roughly the same performance as the conventional CDMA multiuser modulator through thermal fluctuations on average. We also find that the relationship between the quality of the original information retrieval and the amplitude of the transverse field is somehow a "universal feature" in typical probabilistic information processing, viz., in image restoration, error-correcting codes, and CDMA multiuser demodulation.

  20. Highly efficient multiple-layer CdS quantum dot sensitized III-V solar cells.

    PubMed

    Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Tsai, Yu-Lin; Lin, Wein-Yi; Kuo, Hao-Chung; Yu, Peichen

    2014-02-01

    In this review, the concept of utilization of solar spectrum in order to increase the solar cell efficiency is discussed. Among the three mechanisms, down-shifting effect is investigated in detail. Organic dye, rare-earth minerals and quantum dots are three most popular down-shift materials. While the enhancement of solar cell efficiency was not clearly observed in the past, the advances in quantum dot fabrication have brought strong response out of the hybrid platform of a quantum dot solar cell. A multiple layer structure, including PDMS as the isolation layer, is proposed and demonstrated. With the help of pulse spray system, precise control can be achieved and the optimized concentration can be found.

  1. Parametric Investigation of Si1-xGex/Si Multiple Quantum Well Growth

    NASA Astrophysics Data System (ADS)

    Thompson, Phillip; Godbey, David; Hobart, Karl; Glaser, Evan; Kennedy, Thomas; Twigg, Mark; Simons, David

    1994-04-01

    Si0.8Ge0.2/Si multiple quantum wells (3 nm/30 nm) have been grown by molecular beam epitaxy and have been characterized using photoluminescence (PL), secondary ion mass spectrometry, and transmission electron microscopy. A parametric investigation relating the growth conditions to the PL was carried out. The existence of phonon-resolved band-edge PL appears to be strongly related to the background impurity concentration. The connection between phonon-resolved band-edge PL and higher substrate growth temperatures is probably due to the temperature-dependent incorporation of impurities. In the as-grown samples a correlation of the broad PL with platelet density in the quantum wells was observed. The broad PL may be associated with Cr at the platelets since a high temperature ( 710° C) anneal extinguished the broad PL and caused a reduction in the Cr found in the quantum wells, but had no effect on the platelet density.

  2. Code-division multiple-access multiuser demodulator by using quantum fluctuations.

    PubMed

    Otsubo, Yosuke; Inoue, Jun-Ichi; Nagata, Kenji; Okada, Masato

    2014-07-01

    We examine the average-case performance of a code-division multiple-access (CDMA) multiuser demodulator in which quantum fluctuations are utilized to demodulate the original message within the context of Bayesian inference. The quantum fluctuations are built into the system as a transverse field in the infinite-range Ising spin glass model. We evaluate the performance measurements by using statistical mechanics. We confirm that the CDMA multiuser modulator using quantum fluctuations achieve roughly the same performance as the conventional CDMA multiuser modulator through thermal fluctuations on average. We also find that the relationship between the quality of the original information retrieval and the amplitude of the transverse field is somehow a "universal feature" in typical probabilistic information processing, viz., in image restoration, error-correcting codes, and CDMA multiuser demodulation.

  3. Assessing Sustainability of Lifestyle Education for Activity Program (LEAP)

    ERIC Educational Resources Information Center

    Saunders, R. P.; Pate, R. R.; Dowda, M.; Ward, D. S.; Epping, J. N.; Dishman, R. K.

    2012-01-01

    Sustained intervention effects are needed for positive health impacts in populations; however, few published examples illustrate methods for assessing sustainability in health promotion programs. This paper describes the methods for assessing sustainability of the Lifestyle Education for Activity Program (LEAP). LEAP was a comprehensive…

  4. Including Leap Year in the Canonical Birthday Problem

    ERIC Educational Resources Information Center

    Nandor, M. J.

    2004-01-01

    The greatest benefit of including leap year in the calculation is not to increase precision, but to show students that a problem can be solved without such presumption. A birthday problem is analyzed showing that calculating a leap-year birthday probability is not a frivolous computation.

  5. The Leap Challenge: Transforming for Students, Essential for Liberal Education

    ERIC Educational Resources Information Center

    Schneider, Carol Geary

    2015-01-01

    At the centennial annual meeting of the "Association of American Colleges & Universities" (AAC&U) in January 2015, there was an announcement to participants of the release of the "LEAP Challenge." The key concept at the center of the LEAP Challenge is that all college students need to prepare to contribute in a world…

  6. The Leap Challenge: Transforming for Students, Essential for Liberal Education

    ERIC Educational Resources Information Center

    Schneider, Carol Geary

    2015-01-01

    At the centennial annual meeting of the "Association of American Colleges & Universities" (AAC&U) in January 2015, there was an announcement to participants of the release of the "LEAP Challenge." The key concept at the center of the LEAP Challenge is that all college students need to prepare to contribute in a world…

  7. The Great Leap Forward: Anatomy of a Central Planning Disaster

    ERIC Educational Resources Information Center

    Li, Wei; Yang, Dennis Tao

    2005-01-01

    The Great Leap Forward disaster, characterized by a collapse in grain production and a widespread famine in China between 1959 and 1961, is found attributable to a systemic failure in central planning. Wishfully expecting a great leap in agricultural productivity from collectivization, the Chinese government accelerated its aggressive…

  8. Ready, Set, Leap![R]. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "Ready, Set, Leap!"[R] is a comprehensive preschool curriculum that focuses on early reading skills such as phonemic awareness, letter knowledge, and letter-sound correspondence using multi-sensory technology that incorporates touch, sight, and sound. The "Ready, Set, Leap!"[R] curriculum is available in English and Spanish.…

  9. Project LEAP (lunar ecosystem and architectural prototype)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    University of Houston's The Sasakawa International Center for Space Architecture is pursuing research and design studies for permanent lunar settlements. One such study, Project LEAP, has produced staged growth concepts for a habitat to support lunar mining operations. The principal purpose assumed for the development is to produce liquid oxygen and hydrogen propellant for Advanced Space Transportation System and future orbital infrastructure consumption use. The base has been designed to grow over a ten year period from an initial six-person crew occupancy to an advanced facility capable of accommodating as many as one hundred and fifty people. Evolutionary growth stages would rely increasingly upon acquisition, processing and utilization of lunar materials to optimize self-sufficiency. Project LEAP's study objectives have sought to identify incremental site development and facility requirements; to identify candidate site development and construction options; to propose site layout and habitat design/growth concepts; and to survey requirements to achieve a high level of self-sufficiency. As an ongoing research and development program, the project has evolved from research and data collection for concept and design through three dimensional solids computer modeling. The University of Houston project is funded through the advanced Missions Office of the Johnson Space Center. Project representatives are guests of the Johnson Space Center at this conference.

  10. Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules.

    PubMed

    Krasnoshchekov, Sergey V; Stepanov, Nikolay F

    2013-11-14

    In the theory of anharmonic vibrations of a polyatomic molecule, mixing the zero-order vibrational states due to cubic, quartic and higher-order terms in the potential energy expansion leads to the appearance of more-or-less isolated blocks of states (also called polyads), connected through multiple resonances. Such polyads of states can be characterized by a common secondary integer quantum number. This polyad quantum number is defined as a linear combination of the zero-order vibrational quantum numbers, attributed to normal modes, multiplied by non-negative integer polyad coefficients, which are subject to definition for any particular molecule. According to Kellman's method [J. Chem. Phys. 93, 6630 (1990)], the corresponding formalism can be conveniently described using vector algebra. In the present work, a systematic consideration of polyad quantum numbers is given in the framework of the canonical Van Vleck perturbation theory (CVPT) and its numerical-analytic operator implementation for reducing the Hamiltonian to the quasi-diagonal form, earlier developed by the authors. It is shown that CVPT provides a convenient method for the systematic identification of essential resonances and the definition of a polyad quantum number. The method presented is generally suitable for molecules of significant size and complexity, as illustrated by several examples of molecules up to six atoms. The polyad quantum number technique is very useful for assembling comprehensive basis sets for the matrix representation of the Hamiltonian after removal of all non-resonance terms by CVPT. In addition, the classification of anharmonic energy levels according to their polyad quantum numbers provides an additional means for the interpretation of observed vibrational spectra.

  11. High-resolution absorptive intermolecular multiple-quantum coherence NMR spectroscopy under inhomogeneous fields

    NASA Astrophysics Data System (ADS)

    Lin, Meijin; Lin, Yanqin; Chen, Xi; Cai, Shuhui; Chen, Zhong

    2012-01-01

    Intermolecular multiple-quantum coherence (iMQC) is capable of improving NMR spectral resolution using a 2D shearing manipulation method. A pulse sequence termed CT-iDH, which combines intermolecular double-quantum filter (iDQF) with a modified constant-time (CT) scheme, is designed to achieve fast acquisition of high-resolution intermolecular zero-quantum coherences (iZQCs) and intermolecular double-quantum coherences (iDQCs) spectra without strong coupling artifacts. Furthermore, double-absorption lineshapes are first realized in 2D intermolecular multi-quantum coherences (iMQCs) spectra under inhomogeneous fields through a combination of iZQC and iDQC signals to double the resolution without loss of sensitivity. Theoretically the spectral linewidth can be further reduced by half compared to original iMQC high-resolution spectra. Several experiments were performed to test the feasibility of the new method and the improvements are evaluated quantitatively. The study suggests potential applications for in vivo spectroscopy.

  12. Reversed polarized emission in highly strained a -plane GaN/AlN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Mata, R.; Cros, A.; Budagosky, J. A.; Molina-Sánchez, A.; Garro, N.; García-Cristóbal, A.; Renard, J.; Founta, S.; Gayral, B.; Bellet-Amalric, E.; Bougerol, C.; Daudin, B.

    2010-09-01

    The polarization of the emission from a set of highly strained a -plane GaN/AlN multiple quantum wells of varying well widths has been studied. A single photoluminescence peak is observed that shifts to higher energies as the quantum well thickness decreases due to quantum confinement. The emitted light is linearly polarized. For the thinnest samples the preferential polarization direction is perpendicular to the wurtzite c axis with a degree of polarization that decreases with increasing well width. However, for the thickest well the preferred polarization direction is parallel to the c axis. Raman scattering, x-ray diffraction, and transmission electron microscopy studies have been performed to determine the three components of the strain tensor in the active region. Moreover, the experimental results have been compared with the strain values computed by means of a model based on the elastic continuum theory. A high anisotropic compressive in-plane strain has been found, namely, -0.6% and -2.8% along the in-plane directions [11¯00] and [0001], respectively, for the thickest quantum well. The oscillator strength of the lowest optical transition has been calculated within the framework of a multiband envelope function model for various quantum well widths and strain values. The influence of confinement and strain on the degree of polarization is discussed and compared with experiment considering various sets of material parameters.

  13. Towards an understanding of hot carrier cooling mechanisms in multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Conibeer, Gavin; Zhang, Yi; Bremner, Stephen P.; Shrestha, Santosh

    2017-09-01

    Multiple quantum wells have been shown significantly reduced hot carrier cooling rates compared to bulk material and are thus a promising candidate for hot carrier solar cell absorbers. However, the mechanism(s) by which hot carrier cooling is restricted is not clear. A systematic study of carrier cooling rates in GaAs/AlAs multiple quantum wells (MQWs) with either varying barrier thickness or varying well thickness is presented in this paper. These allow an investigation as to whether the mechanisms of either a modification in hot carrier diffusion or a localisation of phonons emitted by hot carriers are primarily responsible for reduced carrier cooling rates. With the conclusion that for the structures investigated the situation is rather more complex with both carrier mobility to modify hot carrier diffusion, different diffusion rates for electrons and holes and reflection and localisation of phonons to enhance phonon bottleneck all playing their parts in modulating phonon reabsorption and hot carrier behaviour.

  14. Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory.

    PubMed

    Zhang, Jun; Zhang, Yang; Yu, Chang-shui

    2015-06-29

    The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. As applications, three incompatible measurements on Werner state and Horodecki's bound entangled state are investigated in details.

  15. Multiple-quantum NMR studies of spin clusters in liquid crystals and zeolites

    SciTech Connect

    Pearson, J. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1991-07-01

    This work will describe the use of MQ NMR to study spin clusters in anisotropic materials. A technique known as multiple-quantum spin counting was used to determine average spin cluster sizes liquid crystalline materials and in faujacitic zeolites containing aromatic hydrocarbons. The first half of the thesis will describe MQ NMR and the MQ spin counting technique, and the second half of the thesis will describe the actual experiments and their results.

  16. Entropic Uncertainty Relation and Information Exclusion Relation for multiple measurements in the presence of quantum memory

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhang, Yang; Yu, Chang-Shui

    2015-06-01

    The Heisenberg uncertainty principle shows that no one can specify the values of the non-commuting canonically conjugated variables simultaneously. However, the uncertainty relation is usually applied to two incompatible measurements. We present tighter bounds on both entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. As applications, three incompatible measurements on Werner state and Horodecki’s bound entangled state are investigated in details.

  17. Resonant enhancement of the photocurrent in multiple-quantum-well photovoltaic devices

    SciTech Connect

    Raisky, O.Y.; Wang, W.B.; Alfano, R.R.; Reynolds, C.L. Jr.; Stampone, D.V.; Focht, M.W.

    1999-01-01

    Sequential resonant tunneling is proposed to enhance the photocurrent and reduce recombination losses in photovoltaic devices based on multiple-quantum-well (MQW) heterostructures. An InGaAsP/InP MQW {ital p{endash}i{endash}n} diode with built-in sequential resonant tunneling has been fabricated, and demonstrates an increase in the photocurrent and reduction in photoluminescence intensity. These effects are attributed to the resonance tunneling effect. {copyright} {ital 1999 American Institute of Physics.}

  18. Homo- and Heteronuclear Multiple-Quantum Filters for Measurement of NMR Isotope Shifts

    NASA Astrophysics Data System (ADS)

    Wooten, E. W.; Dua, R. K.; Dotson, G. D.; Woodard, R. W.

    The measurement of NMR isotope shifts as mechanistic probes can be complicated by mixtures of isotopomers. Homo- and heteronuclear NMR techniques based on multiple-quantum filtration are presented and shown to be a useful aid in measuring such shifts. The effects of 1H/ 2H substitution and 16O/ 18O substitution on the nuclear shielding of 1H, 13C, and 31P in a multiply labeled phosphoenolpyruvate are measured and interpreted qualitatively in terms of their rovibrational origins.

  19. R-leaping: accelerating the stochastic simulation algorithm by reaction leaps.

    PubMed

    Auger, Anne; Chatelain, Philippe; Koumoutsakos, Petros

    2006-08-28

    A novel algorithm is proposed for the acceleration of the exact stochastic simulation algorithm by a predefined number of reaction firings (R-leaping) that may occur across several reaction channels. In the present approach, the numbers of reaction firings are correlated binomial distributions and the sampling procedure is independent of any permutation of the reaction channels. This enables the algorithm to efficiently handle large systems with disparate rates, providing substantial computational savings in certain cases. Several mechanisms for controlling the accuracy and the appearance of negative species are described. The advantages and drawbacks of R-leaping are assessed by simulations on a number of benchmark problems and the results are discussed in comparison with established methods.

  20. R-leaping: Accelerating the stochastic simulation algorithm by reaction leaps

    NASA Astrophysics Data System (ADS)

    Auger, Anne; Chatelain, Philippe; Koumoutsakos, Petros

    2006-08-01

    A novel algorithm is proposed for the acceleration of the exact stochastic simulation algorithm by a predefined number of reaction firings (R-leaping) that may occur across several reaction channels. In the present approach, the numbers of reaction firings are correlated binomial distributions and the sampling procedure is independent of any permutation of the reaction channels. This enables the algorithm to efficiently handle large systems with disparate rates, providing substantial computational savings in certain cases. Several mechanisms for controlling the accuracy and the appearance of negative species are described. The advantages and drawbacks of R-leaping are assessed by simulations on a number of benchmark problems and the results are discussed in comparison with established methods.

  1. Transmission coefficients for chemical reactions with multiple states: role of quantum decoherence.

    PubMed

    de la Lande, Aurélien; Řezáč, Jan; Lévy, Bernard; Sanders, Barry C; Salahub, Dennis R

    2011-03-23

    Transition-state theory (TST) is a widely accepted paradigm for rationalizing the kinetics of chemical reactions involving one potential energy surface (PES). Multiple PES reaction rate constants can also be estimated within semiclassical approaches provided the hopping probability between the quantum states is taken into account when determining the transmission coefficient. In the Marcus theory of electron transfer, this hopping probability was historically calculated with models such as Landau-Zener theory. Although the hopping probability is intimately related to the question of the transition from the fully quantum to the semiclassical description, this issue is not adequately handled in physicochemical models commonly in use. In particular, quantum nuclear effects such as decoherence or dephasing are not present in the rate constant expressions. Retaining the convenient semiclassical picture, we include these effects through the introduction of a phenomenological quantum decoherence function. A simple modification to the usual TST rate constant expression is proposed: in addition to the electronic coupling, a characteristic decoherence time τ(dec) now also appears as a key parameter of the rate constant. This new parameter captures the idea that molecular systems, although intrinsically obeying quantum mechanical laws, behave semiclassically after a finite but nonzero amount of time (τ(dec)). This new degree of freedom allows a fresh look at the underlying physics of chemical reactions involving more than one quantum state. The ability of the proposed formula to describe the main physical lines of the phenomenon is confirmed by comparison with results obtained from density functional theory molecular dynamics simulations for a triplet to singlet transition within a copper dioxygen adduct relevant to the question of dioxygen activation by copper monooxygenases.

  2. Significant internal quantum efficiency enhancement of GaN/AlGaN multiple quantum wells emitting at ~350 nm via step quantum well structure design

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Sun, Haiding; AJia, Idris A.; Roqan, Iman S.; Zhang, Daliang; Dai, Jiangnan; Chen, Changqing; Feng, Zhe Chuan; Li, Xiaohang

    2017-06-01

    Significant internal quantum efficiency (IQE) enhancement of GaN/AlGaN multiple quantum wells (MQWs) emitting at ~350 nm was achieved via a step quantum well (QW) structure design. The MQW structures were grown on AlGaN/AlN/sapphire templates by metal-organic chemical vapor deposition (MOCVD). High resolution x-ray diffraction (HR-XRD) and scanning transmission electron microscopy (STEM) were performed, showing sharp interface of the MQWs. Weak beam dark field imaging was conducted, indicating a similar dislocation density of the investigated MQWs samples. The IQE of GaN/AlGaN MQWs was estimated by temperature dependent photoluminescence (TDPL). An IQE enhancement of about two times was observed for the GaN/AlGaN step QW structure, compared with conventional QW structure. Based on the theoretical calculation, this IQE enhancement was attributed to the suppressed polarization-induced field, and thus the improved electron-hole wave-function overlap in the step QW.

  3. Electric field dependent Electroreflectance of GaAs/AlGaAs multiple quantum well Bragg structure at second quantum state

    NASA Astrophysics Data System (ADS)

    Nakarmi, Mim; Shakya, Naresh; Chaldyshev, Vladimir

    Electroreflectance Spectroscopy was employed to study the effect of electric field on the excitonic transitions in a GaAs/AlGaAs multiple quantum well (MQW) Bragg structure. The sample used in this experiment consists of 60 periods of quantum well structures with GaAs well layer (~13 nm) and AlGaAs barrier layer (~94 nm), grown by molecular beam expitaxy on a semi-insulating GaAs substrate. The sample structure was designed to coincide the Bragg resonance peak with the x(e2-hh2) exciton transitions. We observed a significant enhancement of excitonic feature around the x(e2-hh2) exciton transition due to the double resonance along with the sharp features of x(e1-hh1) and x(e1-lh1) ground state exciton transitions by tuning the angle of incidence of the light. We will present the results on electric field dependent electroreflectance measurements of this structure and discuss the effect of electric field on the first and second energy states.

  4. Internal quantum efficiency improvement of InGaN/GaN multiple quantum well green light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Xu, M.; Wang, H.

    2016-01-01

    In recent years, GaN-based light-emitting diode (LED) has been widely used in various applications, such as RGB lighting system, full-colour display and visible-light communication. However, the internal quantum efficiency (IQE) of green LEDs is significantly lower than that of other visible spectrum LED. This phenomenon is called "green gap". This paper briefly describes the physical mechanism of the low IQE for InGaN/GaN multiple quantum well (MQW) green LED at first. The IQE of green LED is limited by the defects and the internal electric field in MQW. Subsequently, we discuss the recent progress in improving the IQE of green LED in detail. These strategies can be divided into two categories. Some of these methods were proposed to enhance crystal quality of InGaN/GaN MQW with high In composition and low density of defects by modifying the growth conditions. Other methods focused on increasing electron-hole wave function overlap by eliminating the polarization effect.

  5. Third generation photovoltaics based on multiple exciton generation in quantum confined semiconductors.

    PubMed

    Beard, Matthew C; Luther, Joseph M; Semonin, Octavi E; Nozik, Arthur J

    2013-06-18

    Improving the primary photoconversion process in a photovoltaiccell by utilizing the excess energy that is otherwise lost as heat can lead to an increase in the overall power conversion efficiency (PCE). Semiconductor nanocrystals (NCs) with at least one dimension small enough to produce quantum confinement effects provide new ways of controlling energy flow not achievable in thin film or bulk semiconductors. Researchers have developed various strategies to incorporate these novel structures into suitable solar conversion systems. Some of these methods could increase the PCE past the Shockley-Queisser (SQ) limit of ∼33%, making them viable "third generation photovoltaic" (TGPV) cell architectures. Surpassing the SQ limit for single junction solar cells presents both a scientific and a technological challenge, and the use of semiconductor NCs to enhance the primary photoconversion process offers a promising potential solution. The NCs are synthesized via solution phase chemical reactions producing stable colloidal solutions, where the reaction conditions can be modified to produce a variety of shapes, compositions, and structures. The confinement of the semiconductor NC in one dimension produces quantum films, wells, or discs. Two-dimensional confinement leads to quantum wires or rods (QRs), and quantum dots (QDs) are three-dimensionally confined NCs. The process of multiple exciton generation (MEG) converts a high-energy photon into multiple electron-hole pairs. Although many studies have demonstrated that MEG is enhanced in QDs compared with bulk semiconductors, these studies have either used ultrafast spectroscopy to measure the photon-to-exciton quantum yields (QYs) or theoretical calculations. Implementing MEG in a working solar cell has been an ongoing challenge. In this Account, we discuss the status of MEG research and strategies towards implementing MEG in working solar cells. Recently we showed an external quantum efficiency for photocurrent of greater

  6. Ultrafast Optical Studies of Multiple Exciton Generation in Lead Chalcogenide Quantum Dots

    NASA Astrophysics Data System (ADS)

    Midgett, Aaron G.

    2011-12-01

    Providing affordable, clean energy is one of the major challenges facing society today, and one of the promising solutions is third generation solar energy conversion. Present day, first and second-generation solar cells can at most convert each absorbed photon into a single electron hole pair, thereby establishing a theoretical limit to the power conversion efficiency. The process of multiple exciton generation (MEG) in semiconductor quantum dots increases that theoretical efficiency from 33% to 42% by utilizing the excess energy of high energy photons that is otherwise wasted as heat to excite a second electron-hole pair, thereby boosting the potential photocurrent. This thesis explores the benefits of MEG in quantum confined systems and shows that quantum dots are more efficient at generating multiple excitons from a single photon than bulk semiconductors. The variations in optical measurements of MEG have raised skepticism and brought into question the validity of these experiments. The two important questions that this thesis attempts to address are (1) what are the enhanced QYs in isolated PbSe QDs and (2) does quantum confinement enhance MEG over bulk semiconductors. Experimental variations in the enhanced QYs are partially explained by the production of a long-lived photocharged state that increases the apparent photon-to-exciton QYs. A procedure is detailed that decreases the possibility of producing this charged state. By studying the production of these states, conditions are found that minimize their effect and produce less variation in the reported QYs. Variations in the MEG efficiency were studied in films of chemically treated PbSe quantum dots where a different mechanism was responsible for an apparent decrease of the measured QYs. Finally, for the first time, a quantum dot size-dependence in the MEG efficiency was found in colloidal PbSe, PbS, and PbSxSe1-x quantum dot solutions and is attributed to the increased Coulomb interaction in materials

  7. Multiple quantum phase transitions and superconductivity in Ce-based heavy fermions.

    PubMed

    Weng, Z F; Smidman, M; Jiao, L; Lu, Xin; Yuan, H Q

    2016-09-01

    Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.

  8. Analyses and improvement of a broadcasting multiple blind signature scheme based on quantum GHZ entanglement

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Qiu, Daowen; Zou, Xiangfu; Mateus, Paulo

    2017-06-01

    A broadcasting multiple blind signature scheme based on quantum GHZ entanglement has been presented recently. It is said that the scheme's unconditional security is guaranteed by adopting quantum key preparation, quantum encryption algorithm and quantum entanglement. In this paper, we prove that each signatory can get the signed message just by an intercept-resend attack. Then, we show there still exist some participant attacks and external attacks. Specifically, we verify the message sender Alice can impersonate each signatory to sign the message at will, and so is the signature collector Charlie. Also, we demonstrate that the receiver Bob can forge the signature successfully, and with respect to the external attacks, the eavesdropper Eve can modify the signature at random. Besides, we discover Eve can change the signed message at random, and Eve can impersonate Alice as the message sender without being discovered. In particular, we propose an improved scheme based on the original one and show that it is secure against not only the attacks mentioned above but also some collusion attacks.

  9. Characterization of Pairwise Correlations from Multiple Quantum Correlated Beams Generated from Cascaded Four-Wave Mixing Processes

    PubMed Central

    Wang, Hailong; Cao, Leiming; Jing, Jietai

    2017-01-01

    We theoretically characterize the performance of the pairwise correlations (PCs) from multiple quantum correlated beams based on the cascaded four-wave mixing (FWM) processes. The presence of the PCs with quantum corre- lation in these systems can be verified by calculating the degree of intensity difference squeezing for any pair of all the output fields. The quantum correlation characteristics of all the PCs under different cascaded schemes are also discussed in detail and the repulsion effect between PCs in these cascaded FWM processes is theoretically predicted. Our results open the way for the classification and application of quantum states generated from the cascaded FWM processes. PMID:28071759

  10. Influence of metalorganic precursors flow interruption timing on green InGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Dmukauskas, M.; Kadys, A.; Malinauskas, T.; Grinys, T.; Reklaitis, I.; Badokas, K.; Skapas, M.; Tomašiūnas, R.; Dobrovolskas, D.; Stanionytė, S.; Pietzonka, I.; Strassburg, M.; Lugauer, H.-J.

    2016-12-01

    The paper reports on fully strained green light emitting InGaN/GaN multiple quantum wells, grown by metalorganic vapor phase epitaxy, using metal precursor multiple flow interruptions during InGaN quantum well growth. Optimization of the interruption timing (pulse t 1  =  20 s, pause t 2  =  12 s) lets us reach the integrated photoluminescence enhancement for the growth at temperature 780 ºC. The enhancement, as a function of pause duration, appeared to be pulse duration dependent: a lower enhancement can be achieved using shorter pulses with optimized relatively shorter pauses. Indium evaporation during the interruption time was interpreted as the main issue to keep the layers intact. Quantum wells revealing the highest photoluminescence enhancement were inspected for interface quality, layer thickness, growth speed, strain, surface morphology and roughness by TEM, XRD and AFM techniques, and compared with the one grown in the conventional mode.

  11. Enhancement of spectral editing efficacy of multiple quantum filters in in vivo proton magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Hyeonjin; Thompson, Richard B.; Allen, Peter S.

    2012-10-01

    The performance of multiple quantum filters (MQFs) can be disappointing when the background signal also arises from coupled spins. Moreover, at 3.0 T and even higher fields the majority of the spin systems of key brain metabolites fall into the strong-coupling regime. In this manuscript we address comprehensively, the importance of the phase of the multiple quantum coherence-generating pulse (MQ-pulse) in the design of MQFs, using both product operator and numerical analysis, in both zero and double quantum filter designs. The theoretical analyses were experimentally validated with the examples of myo-inositol editing and the separation of glutamate from glutamine. The results demonstrate that the phase of the MQ-pulse per se provides an additional spectral discrimination mechanism based on the degree of coupling beyond the conventional level-of-coherence approach of MQFs. To obtain the best spectral discrimination of strongly-coupled spin systems, therefore, the phase of the MQ-pulse must be included in the portfolio of the sequence parameters to be optimized.

  12. Enhancement of spectral editing efficacy of multiple quantum filters in in vivo proton magnetic resonance spectroscopy.

    PubMed

    Kim, Hyeonjin; Thompson, Richard B; Allen, Peter S

    2012-10-01

    The performance of multiple quantum filters (MQFs) can be disappointing when the background signal also arises from coupled spins. Moreover, at 3.0 T and even higher fields the majority of the spin systems of key brain metabolites fall into the strong-coupling regime. In this manuscript we address comprehensively, the importance of the phase of the multiple quantum coherence-generating pulse (MQ-pulse) in the design of MQFs, using both product operator and numerical analysis, in both zero and double quantum filter designs. The theoretical analyses were experimentally validated with the examples of myo-inositol editing and the separation of glutamate from glutamine. The results demonstrate that the phase of the MQ-pulse per se provides an additional spectral discrimination mechanism based on the degree of coupling beyond the conventional level-of-coherence approach of MQFs. To obtain the best spectral discrimination of strongly-coupled spin systems, therefore, the phase of the MQ-pulse must be included in the portfolio of the sequence parameters to be optimized.

  13. Polarizabilities of Impurity Doped Quantum Dots Under Pulsed Field: Role of Multiplicative White Noise

    NASA Astrophysics Data System (ADS)

    Saha, Surajit; Ghosh, Manas

    2016-02-01

    We perform a rigorous analysis of the profiles of a few diagonal and off-diagonal components of linear ( α xx , α yy , α xy , and α yx ), first nonlinear ( β xxx , β yyy , β xyy , and β yxx ), and second nonlinear ( γ xxxx , γ yyyy , γ xxyy , and γ yyxx ) polarizabilities of quantum dots exposed to an external pulsed field. Simultaneous presence of multiplicative white noise has also been taken into account. The quantum dot contains a dopant represented by a Gaussian potential. The number of pulse and the dopant location have been found to fabricate the said profiles through their interplay. Moreover, a variation in the noise strength also contributes evidently in designing the profiles of above polarizability components. In general, the off-diagonal components have been found to be somewhat more responsive to a variation of noise strength. However, we have found some exception to the above fact for the off-diagonal β yxx component. The study projects some pathways of achieving stable, enhanced, and often maximized output of linear and nonlinear polarizabilities of doped quantum dots driven by multiplicative noise.

  14. Determination Of The Third Order Nonlinearity As A Function Of Quantum Well Width In Gaas/A1Gaas Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Derstine, M. W.; Grider, D. E.; Lehman, J. A.; Ruden, P. P.; Peyghambarian, Nasser

    1988-05-01

    We present a study of the dependence of the magnitude of optical nonlinearities of GaAs/AlGaAs multiple quantum wells on quantum well thickness. Using four-wave mixing and nonlinear absorption measurements the refractive nonlinearity was determined in 17 samples grown by MOCVD and MBE. We find a small variation (less tban a factor of three) in the change in refractive index per photoexcited carrier for well sizes between 50 A and 300 A. or bulk GaAs.

  15. Optimization of carrier multiplication for more effcient solar cells: the case of Sn quantum dots.

    PubMed

    Allan, Guy; Delerue, Christophe

    2011-09-27

    We present calculations of impact ionization rates, carrier multiplication yields, and solar-power conversion efficiencies in solar cells based on quantum dots (QDs) of a semimetal, α-Sn. Using these results and previous ones on PbSe and PbS QDs, we discuss a strategy to select QDs with the highest carrier multiplication rate for more efficient solar cells. We suggest using QDs of materials with a close to zero band gap and a high multiplicity of the bands in order to favor the relaxation of photoexcited carriers by impact ionization. Even in that case, the improvement of the maximum solar-power conversion efficiency appears to be a challenging task.

  16. Electroluminescence property improvement by adjusting quantum wells' position relative to p-doped region in InGaN/GaN multiple-quantum-well light emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, P.; Zhao, D. G.; Jiang, D. S.; Long, H.; Li, M.; Yang, J.; Zhu, J. J.; Liu, Z. S.; Li, X. J.; Liu, W.; Li, X.; Liang, F.; Liu, J. P.; Zhang, B. S.; Yang, H.

    2017-03-01

    The hole distribution and electroluminescence property improvement by adjusting the relative position between quantum wells and p-doped region in InGaN/GaN multiple-quantum-well structures are experimentally and theoretically investigated. Five designed samples with different barrier layer parameters of multiple-quantum-well structure are grown by MOCVD and then fabricated into devices. The electroluminescence properties of these samples are measured and compared. It is found that the output electroluminescence intensity of samples is enhanced if the position of quantum wells shifts towards p-side, while the output power is reduced if their position is shifted towards the n-side. The theoretical calculation of characteristics of these devices using the simulation program APSYS agrees well with the experimental data, illustrating that the effect of relative position between p-doped region and quantum wells on the improvement of hole distribution and electroluminescence performance is significant, especially for InGaN/GaN multiple-quantum-well devices operated under high injection condition.

  17. Multiple exciton generation in films of electronically coupled PbSe quantum dots.

    PubMed

    Luther, Joseph M; Beard, Matthew C; Song, Qing; Law, Matt; Ellingson, Randy J; Nozik, Arthur J

    2007-06-01

    We study multiple exciton generation (MEG) in electronically coupled films of PbSe quantum dots (QDs) employing ultrafast time-resolved transient absorption spectroscopy. We demonstrate that the MEG efficiency in PbSe does not decrease when the QDs are treated with hydrazine, which has been shown to greatly enhance carrier transport in PbSe QD films by decreasing the interdot distance. The quantum yield is measured and compared to previously reported values for electronically isolated QDs suspended in organic solvents at approximately 4 and 4.5 times the effective band gap. A slightly modified analysis is applied to extract the MEG efficiency and the absorption cross section of each sample at the pump wavelength. We compare the absorption cross sections of our samples to that of bulk PbSe. We find that both the biexciton lifetime and the absorption cross section increase in films relative to isolated QDs in solution.

  18. Demonstration of InGaN-based orange LEDs with hybrid multiple-quantum-wells structure

    NASA Astrophysics Data System (ADS)

    Iida, Daisuke; Niwa, Kazumasa; Kamiyama, Satoshi; Ohkawa, Kazuhiro

    2016-11-01

    We demonstrate the effectiveness of a hybrid multiple-quantum-wells (MQWs) structure in InGaN-based orange light-emitting diodes (LEDs) grown by metalorganic vapor phase epitaxy. The hybrid MQWs-LED is composed of orange InGaN double QWs and a blue-green InGaN single QW. Using the hybrid MQWs structure, the orange LEDs exhibited electroluminescence spectra with narrow full widths at half maximum of 51 nm at 20 mA. The light output power and external quantum efficiency of the InGaN-based orange LEDs were 0.23 mW and 0.6%, respectively, at 20 mA.

  19. Engineering Efficiency Droop in InGaN/GaN Multiple Quantum Well LEDs

    NASA Astrophysics Data System (ADS)

    Puttaswamy, Yashvanth; Sundaresan, Sasi; Yalavarthi, Krishna; Ahmed, Shaikh

    2012-02-01

    In this work, we address the technologically important issue of efficiency droop pronounced in InGaN/GaN multiple quantum well (QW) LEDs. A two-fold modeling approach is employed where: 1) the NEMO 3-D tool is used to compute the atomistic strain fields and associated polarization potentials in the active region, and 2) the outputs from NEMO 3-D are then coupled to the Synopsys TCAD tool to determine the terminal electrical and optical properties of the device. Next, a series of numerical experiments are performed that mainly aims to improve the efficiency droop without compromising the internal quantum efficiency (IQE) of the device. These include:1) varying the QW thickness, 2) employing different configurations of tri-material barriers, 3) varying the molar concentration of the barrier materials, and 4) varying the doping density in the barrier region.

  20. The role of the fano resonance in multiple exciton generation in quantum dots

    NASA Astrophysics Data System (ADS)

    Oksengendler, B. L.; Marasulov, M. B.; Nikiforov, V. N.

    2016-02-01

    The phenomenon of interference between two pathways of electron transfer from the valence to the conduction band at a quantum dot is considered. The first way is the conventional "valence band-conduction band" transition, while the second is the transition via a virtual two-electron state on the Tamm level in a quantum dot (QD) followed by the Auger effect, which ejects one electron from the Tamm level to the conduction band. In the case of a coherent addition of these ionization pathways, the Fano resonance can take place, this leading to an increase in the coefficient of photon absorption. This results in increasing internal efficiency of light conversion and can provide a basis for increasing the efficiency of solar cells due to the phenomenon of multiple exciton generation.

  1. Nonequilibrium high-frequency noise and responsivity in multiple quantum well infrared photodetectors

    SciTech Connect

    Ershov, M.

    2001-06-01

    A theory of the nonequilibrium high-frequency noise and responsivity in multiple quantum well infrared photodetectors (QWIPs) is presented. The nonequilibrium regime dominates at frequencies higher than the inverse characteristic response time of the injecting contact. The nonequilibrium generation{endash}recombination (GR) noise and responsivity are determined by the fast component of the transient current (primary current) in response to impulse excitation. The nonequilibrium GR noise power and responsivity are lower than their low-frequency values due to the cutoff of the injection from the emitter at high frequencies. Analytical formulas for the noise and responsivity are obtained. These expressions are consistent with the conventional formulas of the standard model of unipolar photoconductors if the transit time across the QWIP is longer than the capture time by the quantum wells. {copyright} 2001 American Institute of Physics.

  2. Birefringence in the transparency region of GaAs/AlAs multiple quantum wells

    SciTech Connect

    Sirenko, A.A.; Etchegoin, P.; Fainstein, A.; Eberl, K.; Cardona, M.

    1999-09-01

    Birefringence measurements for in-plane propagation of light below the absorption edge in GaAs/AlAs multiple quantum wells (MQW{close_quote}s) are reported for different well/barrier widths. A remarkable drop in the low-frequency limit of the birefringence has been observed for MQW structures with small periods and ascribed to the presence of local fields. The temperature dependence of the birefringence is also studied and complementary results in InP quantum dot structures are also presented. The latter exhibit a strong resonant birefringence, which can be explained by the reduced dimensionality in the joint density of states for optical transitions in the dots. {copyright} {ital 1999} {ital The American Physical Society}

  3. Protected quantum computation with multiple resonators in ultrastrong coupling circuit QED.

    PubMed

    Nataf, Pierre; Ciuti, Cristiano

    2011-11-04

    We investigate theoretically the dynamical behavior of a qubit obtained with the two ground eigenstates of an ultrastrong coupling circuit-QED system consisting of a finite number of Josephson fluxonium atoms inductively coupled to a transmission line resonator. We show a universal set of quantum gates by using multiple transmission line resonators (each resonator represents a single qubit). We discuss the intrinsic "anisotropic" nature of noise sources for fluxonium artificial atoms. Through a master equation treatment with colored noise and many-level dynamics, we prove that, for a general class of anisotropic noise sources, the coherence time of the qubit and the fidelity of the quantum operations can be dramatically improved in an optimal regime of ultrastrong coupling, where the ground state is an entangled photonic "cat" state.

  4. Scale-estimation of quantum coherent energy transport in multiple-minima systems.

    PubMed

    Farrow, Tristan; Vedral, Vlatko

    2014-07-01

    A generic and intuitive model for coherent energy transport in multiple minima systems coupled to a quantum mechanical bath is shown. Using a simple spin-boson system, we illustrate how a generic donor-acceptor system can be brought into resonance using a narrow band of vibrational modes, such that the transfer efficiency of an electron-hole pair (exciton) is made arbitrarily high. Coherent transport phenomena in nature are of renewed interest since the discovery that a photon captured by the light-harvesting complex (LHC) in photosynthetic organisms can be conveyed to a chemical reaction centre with near-perfect efficiency. Classical explanations of the transfer use stochastic diffusion to model the hopping motion of a photo-excited exciton. This accounts inadequately for the speed and efficiency of the energy transfer measured in a series of recent landmark experiments. Taking a quantum mechanical perspective can help capture the salient features of the efficient part of that transfer. To show the versatility of the model, we extend it to a multiple minima system comprising seven-sites, reminiscent of the widely studied Fenna-Matthews-Olson (FMO) light-harvesting complex. We show that an idealised transport model for multiple minima coupled to a narrow-band phonon can transport energy with arbitrarily high efficiency.

  5. Scale-estimation of quantum coherent energy transport in multiple-minima systems

    PubMed Central

    Farrow, Tristan; Vedral, Vlatko

    2014-01-01

    A generic and intuitive model for coherent energy transport in multiple minima systems coupled to a quantum mechanical bath is shown. Using a simple spin-boson system, we illustrate how a generic donor-acceptor system can be brought into resonance using a narrow band of vibrational modes, such that the transfer efficiency of an electron-hole pair (exciton) is made arbitrarily high. Coherent transport phenomena in nature are of renewed interest since the discovery that a photon captured by the light-harvesting complex (LHC) in photosynthetic organisms can be conveyed to a chemical reaction centre with near-perfect efficiency. Classical explanations of the transfer use stochastic diffusion to model the hopping motion of a photo-excited exciton. This accounts inadequately for the speed and efficiency of the energy transfer measured in a series of recent landmark experiments. Taking a quantum mechanical perspective can help capture the salient features of the efficient part of that transfer. To show the versatility of the model, we extend it to a multiple minima system comprising seven-sites, reminiscent of the widely studied Fenna-Matthews-Olson (FMO) light-harvesting complex. We show that an idealised transport model for multiple minima coupled to a narrow-band phonon can transport energy with arbitrarily high efficiency. PMID:24980547

  6. LEAP: A Computer Course for Gifted Students. Manila.

    ERIC Educational Resources Information Center

    Scruggs, Patricia; Johnson, Paul

    1985-01-01

    Learning Enrichment Activities Program (LEAP) is designed to offer intellectually challenging computer activities for gifted and talented children (grades 7-12) in Manila. Computer enrichment activities were designed according to an adaptation of the Enrichment Triad model. (CL)

  7. Terahertz study of ultrafast carrier dynamics in InGaN/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Porte, H. P.; Turchinovich, D.; Cooke, D. G.; Jepsen, P. Uhd

    2009-11-01

    Ultrafast carrier dynamics in InGaN/GaN multiple quantum wells is measured by time-resolved terahertz spectroscopy. The built-in piezoelectric field is initially screened by photoexcited, polarized carriers, and is gradullay restored as the carriers recombine. We observe a nonexponential decay of the carrier density. Time-integrated photoluminescence spectra have shown a complete screening of the built-in piezoelectric field at high excitation fluences. We also observe that the terahertz conductivity spectra differs from simple Drude conductivity, describing the response of free carriers, and are well fitted by the Drude-Smith model.

  8. Phosphor-free white light-emitting diode with laterally distributed multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Park, Il-Kyu; Kim, Ja-Yeon; Kwon, Min-Ki; Cho, Chu-Young; Lim, Jae-Hong; Park, Seong-Ju

    2008-03-01

    A phosphor-free white light-emitting diode (LED) was fabricated with laterally distributed blue and green InGaN /GaN multiple quantum wells (MQWs) grown by a selective area growth method. Photoluminescence and electroluminescence (EL) spectra of the LED showed emission peaks corresponding to the individual blue and green MQWs. The integrated EL intensity ratio of green to blue emission varied from 2.5 to 6.5 with the injection current below 300mA, but remained constant at high injection currents above 300mA. The stability of the emission color at high currents is attributed to parallel carrier injection into both MQWs.

  9. Sensitivity Enhancement in Static Solid-State NMR Experiments VIA Single and Multiple Quantum Dipolar Coherences

    PubMed Central

    Gopinath, T.; Veglia, Gianluigi

    2012-01-01

    We present a new method to enhance the sensitivity in static solid-state NMR for a gain in signal-to-noise ratio up to 40%. This sensitivity enhancement is different from the corresponding solution NMR sensitivity enhancement schemes and is achieved by combining single and multiple quantum dipolar coherences. While this new approach is demonstrated for the PISEMA (polarization inversion spin exchange at magic angle) experiment, it can be generalized to the other separated local field experiments for solid-state NMR spectroscopy. This method will have a direct impact on solid-state NMR spectroscopy of liquid crystals as well as membrane proteins aligned in lipid membranes. PMID:19351170

  10. Sensitivity Enhancement in Multiple-Quantum NMR Experiments with CPMG Detection

    NASA Astrophysics Data System (ADS)

    Lim, Kwang Hun; Nguyen, Tuan; Mazur, Tanya; Wemmer, David E.; Pines, Alexander

    2002-07-01

    We present a modified multiple-quantum (MQ) experiment, which implements the Carr-Purcell-Meiboom-Gill (CPMG) detection scheme in the static MQ NMR experiment proposed by W. S. Warren et al. (1980, J. Chem. Phys.73, 2084-2099) and exploited further by O. N. Antzutkin and R. Tycko (1999, J. Chem. Phys.110, 2749-2752). It is demonstrated that a significant enhancement in the sensitivity can be achieved by acquiring echo trains in the MQ experiments for static powder samples. The modified scheme employing the CPMG detection was superior to the original MQ experiment, in particular for the carbonyl carbon with a very large chemical shift anisotropy.

  11. Highly accurate tau-leaping methods with random corrections.

    PubMed

    Hu, Yucheng; Li, Tiejun

    2009-03-28

    We aim to construct higher order tau-leaping methods for numerically simulating stochastic chemical kinetic systems in this paper. By adding a random correction to the primitive tau-leaping scheme in each time step, we greatly improve the accuracy of the tau-leaping approximations. This gain in accuracy actually comes from the reduction in the local truncation error of the scheme in the order of tau, the marching time step size. While the local truncation error of the primitive tau-leaping method is O(tau(2)) for all moments, our Poisson random correction tau-leaping method, in which the correction term is a Poisson random variable, can reduce the local truncation error for the mean to O(tau(3)), and both Gaussian random correction tau-leaping methods, in which the correction term is a Gaussian random variable, can reduce the local truncation error for both the mean and covariance to O(tau(3)). Numerical results demonstrate that these novel methods more accurately capture crucial properties such as the mean and variance than existing methods for simulating chemical reaction systems. This work constitutes a first step to construct high order numerical methods for simulating jump processes. With further refinement and appropriately modified step-size selection procedures, the random correction methods should provide a viable way of simulating chemical reaction systems accurately and efficiently.

  12. Dynamic light-matter coupling across multiple spatial dimensions in a quantum dots-in-a-well heterostructure

    SciTech Connect

    Prasankumar, Rohit P; Taylor, Antoinette J; Chow, W W; Attaluri, R S; Shenoi, R

    2009-01-01

    Semiconductor heterostructures incorporating multiple degrees of spatial confinement have recently attracted substantial interest for photonic applications. One example is the quantum dots-in-a-well (DWELL) heterostructure, consisting of zero-dimensional quantum dots embedded in a two-dimensional quantum well and surrounded by three-dimensional bulk material. This structure offers several advantages over conventional photonic devices while providing a model system for the study of light-matter interactions across multiple spatial dimensions. Here, we use ultrafast differential transmission spectroscopy2 to temporally and spectrally resolve density-dependent carrier dynamics in a DWELL heterostructure. We observe excitation-dependent shifts of the quantum dot energy levels at low densities, while at high densities we observe an anomalous induced absorption at the quantum dot excited state that is correlated to quantum well population dynamics. These studies of density-dependent light-matter interactions across multiple coupled spatial dimensions provide clues to the underlying physics governing quantum dot properties, with important implications for DWELL-based photonic devices.

  13. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.

    PubMed

    Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang

    2014-06-01

    We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).

  14. [LEAP (Lantus Early Access Programme) in Sarajevo].

    PubMed

    Heljić, Bećir; Velija-Asimi, Zelija; Bureković, Azra; Buturović, Belma; Cerić, Armana; Horozić, Bosanko; Sakambet, Dijana; Dizdarević-Bostandzić, Amela; Surković, Ismana; Hasanbegović, Snjezana; Stevanović, Dragan

    2005-01-01

    LEAP is multicentric study in phase IV. The first aim was to affirm Lantus efficacy and safety in every day practice, in local conditions. The second aims were to verify therapy successful by measuring fast blood glucose (FBG) and HbA1c and to estimate patients' pleasure. Duration of study was 2 months. Lantus was administrated subcutaneously daily. Doses were individual. HbA1c was measured at the begining of therapy and at the last control. Blood glucose was measured every day. The study included patients who did not reach the control of glycemy, or patients with frequent hypoglycemic crysis, older then 6 year. LEAP study in Sarajevo included 114 patients. Fifty four patients (47%) were men, and 60 (53%) were women. 46% diabetics have type 1 of diabetes mellitus and 54% have type 2 diabetes mellitus. The results of study demonstrated statistically significant decreasing of FBG and HbA1c in both groups (I group--patients younger than 18 years and II group--patients older than 18 years), p<0.05. FBG in I group on the start of Lantus therapy was 9.9+/-3.9 mmol/l but on ending control was 8.7+/-4.4 mmol/l (p<0.05). HbA1c on start of therapy was 9.4+/-1.9%, but on end control was 8.0+/-1.8% (p<0.05). FBG in II group on start was 13.6+/-4.7 mmol/l but on finish was 7.3+/-2.9 mmol/l (p<0.01). HbA1c on start was 9.3+/-1.8% and on end was 7.2+/-1.2% (p<0.01). These results showed that the Lantus is very efficacious for good glycoregulation. Just for two months, HbA1c decreased for 2%. Undesirable effects were not registered. We concluded that Lantus is very safe. Most patients (89%) were satisfied with therapy.

  15. Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?

    ERIC Educational Resources Information Center

    Burford, Anna M.; Wilson, Harold O.

    This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…

  16. A Quantum Leap : Innovation in the Evolving Digital Library

    SciTech Connect

    Luce, R. E.

    2002-01-01

    It is an honor to give the Lazerow lecture tonight and to discuss digital library developments from the perspective of working at a national laboratory. Tonight I would like to consider what lies ahead given the evolution in scientific research, how that impacts the development of digital libraries, and finally, look at some of the challenges ahead of us. I'm particularly interested in giving this talk tonight because it provides an opportunity to talk to those of you who are students. You represent the next generation of professionals who will to confront some of the challenges I will outline tonight, as well as those of you who are the mentors and teachers of the next generation. The two roles are pivotal in terms of the challenges on the horizon. Most of you are familiar with the information literacy challenges we face as a nation. As the library director of a national laboratory's science library, I am also acutely aware that we also have a real problem with the lack of scientific literacy within the general population in this country and it has a corresponding impact on decision-making in a technological society. Those of us engaged in supporting scientific research, or just generally interested, should be concerned about this fact because science and technology are at the foundation of our success as a nation in the 20th Century. For our nation to continue to be successful in the 21st Century, we will need to improve on the state of scientific literacy.

  17. Artificial Intelligence in Business: Technocrat Jargon or Quantum Leap?

    ERIC Educational Resources Information Center

    Burford, Anna M.; Wilson, Harold O.

    This paper addresses the characteristics and applications of artificial intelligence (AI) as a subsection of computer science, and briefly describes the most common types of AI programs: expert systems, natural language, and neural networks. Following a brief presentation of the historical background, the discussion turns to an explanation of how…

  18. Carbon nanotube enables quantum leap in oil recovery

    SciTech Connect

    Ito, Masaei; Noguchi, Toru; Ueki, Hiroyuki; Takeuchi, Kenji; Endo, Morinobu

    2011-09-15

    Highlights: {yields} A novel sealing material based on a CNT-rubber composite was developed for use in oilfield. {yields} Solved the critical issues of dispersion and bonding on CNT-rubber composites. {yields} Clarified the mechanism of nano network reinforcement using test data. -- Abstract: A novel sealing material based on a CNT-rubber composite was developed for use in producing oil from deep, hot reservoirs. Fully dispersed and better bondings are two critical advances that enhance its mechanical properties. Authors solved the critical issues and clarified the mechanism of nano network reinforcement using test data. The resulting sealing solution underwent field tests around the world, and it marks a rare success story for the use of nanotechnology in the oilfield.

  19. Quantum Leap--A Teacher and a Consultant Exchange Jobs.

    ERIC Educational Resources Information Center

    Lier, Jacquie; Bufe, Bruce

    1993-01-01

    To gain appreciation for each others' perspectives, a Mississippi language arts consultant and a third-grade teacher from Iowa traded jobs for a year. As a consultant, the teacher found that classroom teachers were more interested in whole-language instruction practicalities than in theory. As a teacher, the consultant learned that classroom…

  20. The leap from ROI to SROI: Farther than expected?

    PubMed

    Gargani, John

    2017-10-01

    Social return on investment (SROI) is a popular method for evaluating the impact that organizations have on society and the environment. It has its roots in finance, where return on investment (ROI) is used to evaluate investments. Over the past ten years, SROI has made the leap from a tool for building private wealth to one that advances the public good. Has it landed us in a better place? To answer the question, I describe the general approach to financial analysis, how it is applied to financial decisions, and how it has been adapted to evaluate impact. I then consider the strengths and weaknesses of SROI, and suggest how, by pushing beyond the constraints of financial analysis, it can give stakeholders voice and provide evidence of success from diverse perspectives. Along the way, I propose a conceptual model for value, a foundational concept in SROI that has been criticized by some as underdeveloped, and I include a technical appendix that identifies potential sources of statistical bias in SROI estimates. I conclude by acknowledging our growing need to incorporate efficiency as one of multiple success criteria and the role that SROI-properly implemented-can play. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. LEAP. The Educational Effects of LEAP and Enhanced Services in Cleveland. Ohio's Learning, Earning, and Parenting Program for Teenage Parents on Welfare.

    ERIC Educational Resources Information Center

    Long, David; And Others

    This report presents new findings on the effectiveness of Ohio's Learning, Earning, and Parenting (LEAP) Program in Cleveland as well as initial results from the Cleveland Student Parent Demonstration, a special project undertaken as part of the LEAP evaluation. LEAP is a statewide initiative that uses financial incentives and penalties to promote…

  2. Quantum confinement in semiconductor nanofilms: Optical spectra and multiple exciton generation

    NASA Astrophysics Data System (ADS)

    Khmelinskii, Igor; Makarov, Vladimir I.

    2016-04-01

    We report optical absorption and photoluminescence (PL) spectra of Si and SnO2 nanocrystalline films in the UV-vis-NIR range, featuring discrete bands resulting from transverse quantum confinement, observed in the optical spectra of nanofilms for the first time ever. The film thickness ranged from 3.9 to 12.2 nm, depending on the material. The results are interpreted within the particle-in-a-box model, with infinite walls. The calculated values of the effective electron mass are independent on the film thickness and equal to 0.17mo (Si) and 0.21mo (SnO2), with mo the mass of the free electron. The second calculated model parameter, the quantum number n of the HOMO (valence band), was also thickness-independent: 8.00 (Si) and 7.00 (SnO2). The transitions observed in absorption all start at the level n and correspond to Δn = 1, 2, 3, …. The photoluminescence bands exhibit large Stokes shifts, shifting to higher energies with increased excitation energy. In effect, nanolayers of Si, an indirect-gap semiconductor, behave as a direct-gap semiconductor, as regards the transverse-quantized level system. A prototype Si-SnO2 nanofilm photovoltaic cell demonstrated photoelectron quantum yields achieving 2.5, showing clear evidence of multiple exciton generation, for the first time ever in a working nanofilm device.

  3. Size dependence of carrier dynamics and carrier multiplication in PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Nootz, Gero; Padilha, Lazaro A.; Levina, Larissa; Sukhovatkin, Vlad; Webster, Scott; Brzozowski, Lukasz; Sargent, Edward H.; Hagan, David J.; van Stryland, Eric W.

    2011-04-01

    The time dynamics of the photoexcited carriers and carrier-multiplication efficiencies in PbS quantum dots (QDs) are investigated. In particular, we report on the carrier dynamics, including carrier multiplication, as a function of QD size and compare them to the bulk value. We show that the intraband 1P→1S decay becomes faster for smaller QDs, in agreement with the absence of a phonon bottleneck. Furthermore, as the size of the QDs decreases, the energy threshold for carrier multiplication shifts from the bulk value to higher energies. However, the energy threshold shift is smaller than the band-gap shift and, therefore, for the smallest QDs, the threshold approaches 2.35 Eg, which is close to the theoretical energy conservation limit of twice the band gap. We also show that the carrier-multiplication energy efficiency increases with decreasing QD size. By comparing to theoretical models, our results suggest that impact ionization is sufficient to explain carrier multiplication in QDs.

  4. Gain properties of doped GaAs/AlGaAs multiple quantum well avalanche photodiode structures

    NASA Technical Reports Server (NTRS)

    Menkara, H. M.; Wagner, B. K.; Summers, C. J.

    1995-01-01

    A comprehensive characterization has been made of the static and dynamical response of conventional and multiple quantum well (MQW) avalanche photodiodes (APDs). Comparison of the gain characteristics at low voltages between the MQW and conventional APDs show a direct experimental confirmation of a structure-induced carrier multiplication due to interband impact ionization. Similar studies of the bias dependence of the excess noise characteristics show that the low-voltage gain is primarily due to electron ionization in the MQW-APDS, and to both electron and hole ionization in the conventional APDS. For the doped MQW APDS, the average gain per stage was calculated by comparing gain data with carrier profile measurements, and was found to vary from 1.03 at low bias to 1.09 near avalanche breakdown.

  5. Resonant optical properties of AlGaAs/GaAs multiple-quantum-well based Bragg structure at the second quantum state

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Maharjan, N.; Liu, Z.; Nakarmi, M. L.; Chaldyshev, V. V.; Kundelev, E. V.; Poddubny, A. N.; Vasil'ev, A. P.; Yagovkina, M. A.; Shakya, N. M.

    2017-03-01

    An AlGaAs/GaAs multiple-quantum-well based resonant Bragg structure was designed to match the optical Bragg resonance with the exciton-polariton resonance at the second quantum state in the GaAs quantum wells. The sample structure with 60 periods of AlGaAs/GaAs quantum wells was grown on a semi-insulating GaAs substrate by molecular beam epitaxy. Angle- and temperature-dependent photoluminescence, optical reflectance, and electro-reflectance spectroscopies were employed to study the resonant optical properties of the Bragg structure. Broad and enhanced optical and electro-reflectance features were observed when the Bragg resonance was tuned to the second quantum state of the GaAs quantum well excitons, manifesting a strong light-matter interaction. From the electro-optical experiments, we found the electro-reflectance features related to the transitions of x(e2-hh2) and x(e2-hh1) excitons. The excitonic transition x(e2-hh1), which is prohibited at zero electric field, was allowed by a DC bias due to the brake of symmetry and increased overlap of the electron and hole wave functions caused by the electric field. By tuning the Bragg resonance frequency, we have observed the electro-reflectance feature related to the second quantum state up to room temperature, which evidences a robust light-matter interaction in the resonant Bragg structure.

  6. The effect of substrate compliance on the biomechanics of gibbon leaps.

    PubMed

    Channon, Anthony J; Günther, Michael M; Crompton, Robin H; D'Août, Kristiaan; Preuschoft, Holger; Vereecke, Evie E

    2011-02-15

    The storage and recovery of elastic strain energy in the musculoskeletal systems of locomoting animals has been extensively studied, yet the external environment represents a second potentially useful energy store that has often been neglected. Recent studies have highlighted the ability of orangutans to usefully recover energy from swaying trees to minimise the cost of gap crossing. Although mechanically similar mechanisms have been hypothesised for wild leaping primates, to date no such energy recovery mechanisms have been demonstrated biomechanically in leapers. We used a setup consisting of a forceplate and two high-speed video cameras to conduct a biomechanical analysis of captive gibbons leaping from stiff and compliant poles. We found that the gibbons minimised pole deflection by using different leaping strategies. Two leap types were used: slower orthograde leaps and more rapid pronograde leaps. The slower leaps used a wider hip joint excursion to negate the downward movement of the pole, using more impulse to power the leap, but with no increase in work done on the centre of mass. Greater hip excursion also minimised the effective leap distance during orthograde leaps. The more rapid leaps conversely applied peak force earlier in stance where the pole was effectively stiffer, minimising deflection and potential energy loss. Neither leap type appeared to usefully recover energy from the pole to increase leap performance, but the gibbons demonstrated an ability to best adapt their leap biomechanics to counter the negative effects of the compliant pole.

  7. Upper bounds on the error probabilities and asymptotic error exponents in quantum multiple state discrimination

    SciTech Connect

    Audenaert, Koenraad M. R.; Mosonyi, Milán

    2014-10-01

    We consider the multiple hypothesis testing problem for symmetric quantum state discrimination between r given states σ₁, …, σ{sub r}. By splitting up the overall test into multiple binary tests in various ways we obtain a number of upper bounds on the optimal error probability in terms of the binary error probabilities. These upper bounds allow us to deduce various bounds on the asymptotic error rate, for which it has been hypothesized that it is given by the multi-hypothesis quantum Chernoff bound (or Chernoff divergence) C(σ₁, …, σ{sub r}), as recently introduced by Nussbaum and Szkoła in analogy with Salikhov's classical multi-hypothesis Chernoff bound. This quantity is defined as the minimum of the pairwise binary Chernoff divergences min{sub jquantum Chernoff bound is always achieved.

  8. Investigation of Photoluminescence and Photocurrent in InGaAsP/InP Strained Multiple Quantum Well Heterostructures

    NASA Technical Reports Server (NTRS)

    Raisky, O. Y.; Wang, W. B.; Alfano, R. R.; Reynolds, C. L., Jr.; Swaminathan, V.

    1997-01-01

    Multiple quantum well InGaAsP/InP p-i-n laser heterostructures with different barrier thicknesses have been investigated using photoluminescence (PL) and photocurrent (PC) measurements. The observed PL spectrum and peak positions are in good agreement with those obtained from transfer matrix calculations. Comparing the measured quantum well PC with calculated carrier escape rates, the photocurrent changes are found to be governed by the temperature dependence of the electron escape time.

  9. New "Tau-Leap" Strategy for Accelerated Stochastic Simulation.

    PubMed

    Ramkrishna, Doraiswami; Shu, Che-Chi; Tran, Vu

    2014-12-10

    The "Tau-Leap" strategy for stochastic simulations of chemical reaction systems due to Gillespie and co-workers has had considerable impact on various applications. This strategy is reexamined with Chebyshev's inequality for random variables as it provides a rigorous probabilistic basis for a measured τ-leap thus adding significantly to simulation efficiency. It is also shown that existing strategies for simulation times have no probabilistic assurance that they satisfy the τ-leap criterion while the use of Chebyshev's inequality leads to a specified degree of certainty with which the τ-leap criterion is satisfied. This reduces the loss of sample paths which do not comply with the τ-leap criterion. The performance of the present algorithm is assessed, with respect to one discussed by Cao et al. (J. Chem. Phys.2006, 124, 044109), a second pertaining to binomial leap (Tian and Burrage J. Chem. Phys.2004, 121, 10356; Chatterjee et al. J. Chem. Phys.2005, 122, 024112; Peng et al. J. Chem. Phys.2007, 126, 224109), and a third regarding the midpoint Poisson leap (Peng et al., 2007; Gillespie J. Chem. Phys.2001, 115, 1716). The performance assessment is made by estimating the error in the histogram measured against that obtained with the so-called stochastic simulation algorithm. It is shown that the current algorithm displays notably less histogram error than its predecessor for a fixed computation time and, conversely, less computation time for a fixed accuracy. This computational advantage is an asset in repetitive calculations essential for modeling stochastic systems. The importance of stochastic simulations is derived from diverse areas of application in physical and biological sciences, process systems, and economics, etc. Computational improvements such as those reported herein are therefore of considerable significance.

  10. Theory of multiple quantum dot formation in strained-layer heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Du, Lin; Maroudas, Dimitrios

    2016-07-01

    We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial film surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of "QD pairs" or "double QDs" and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.

  11. Theory of multiple quantum dot formation in strained-layer heteroepitaxy

    SciTech Connect

    Du, Lin; Maroudas, Dimitrios

    2016-07-11

    We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial film surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of “QD pairs” or “double QDs” and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.

  12. Optically induced excitonic electroabsorption in a periodically delta-doped InGaAs/GaAs multiple quantum well structure

    NASA Technical Reports Server (NTRS)

    Larsson, A.; Maserjian, J.

    1991-01-01

    Large optically induced Stark shifts have been observed in a periodically delta-doped InGaAs/GaAs multiple quantum well structure. With an excitation intensity of 10 mW/sq cm, an absolute quantum well absorption change of 7000/cm was measured with a corresponding differential absorption change as high as 80 percent. The associated maximum change in the quantum well refractive index is 0.04. This material is promising for device development for all-optical computing and signal processing.

  13. Studies of heteronuclear dipolar interactions between spin-1/2 and quadrupolar nuclei by using REDOR during multiple quantum evolution

    NASA Astrophysics Data System (ADS)

    Pruski, M.; Bailly, A.; Lang, D. P.; Amoureux, J.-P.; Fernandez, C.

    1999-06-01

    A new technique for measurements of dipolar interactions in rotating solids is presented that combines the capabilities of multiple quantum magic angle spinning (MQMAS) with the rotational echo double resonance (REDOR). It employs the dipolar recoupling between spin-1/2 ( I) and quadrupolar ( S) nuclei by applying a series of π pulses to the I spins. In contrast to the previously reported MQ-REDOR method, the recoupling sequence is applied during the triple quantum, rather than single quantum evolution. As the dipolar effect is enhanced by the MQ coherence order, this new technique exhibits improved sensitivity toward weak dipolar interactions.

  14. The rigorous stochastic matrix multiplication scheme for the calculations of reduced equilibrium density matrices of open multilevel quantum systems

    NASA Astrophysics Data System (ADS)

    Chen, Xin

    2014-04-01

    Understanding the roles of the temporary and spatial structures of quantum functional noise in open multilevel quantum molecular systems attracts a lot of theoretical interests. I want to establish a rigorous and general framework for functional quantum noises from the constructive and computational perspectives, i.e., how to generate the random trajectories to reproduce the kernel and path ordering of the influence functional with effective Monte Carlo methods for arbitrary spectral densities. This construction approach aims to unify the existing stochastic models to rigorously describe the temporary and spatial structure of Gaussian quantum noises. In this paper, I review the Euclidean imaginary time influence functional and propose the stochastic matrix multiplication scheme to calculate reduced equilibrium density matrices (REDM). In addition, I review and discuss the Feynman-Vernon influence functional according to the Gaussian quadratic integral, particularly its imaginary part which is critical to the rigorous description of the quantum detailed balance. As a result, I establish the conditions under which the influence functional can be interpreted as the average of exponential functional operator over real-valued Gaussian processes for open multilevel quantum systems. I also show the difference between the local and nonlocal phonons within this framework. With the stochastic matrix multiplication scheme, I compare the normalized REDM with the Boltzmann equilibrium distribution for open multilevel quantum systems.

  15. The rigorous stochastic matrix multiplication scheme for the calculations of reduced equilibrium density matrices of open multilevel quantum systems

    SciTech Connect

    Chen, Xin

    2014-04-21

    Understanding the roles of the temporary and spatial structures of quantum functional noise in open multilevel quantum molecular systems attracts a lot of theoretical interests. I want to establish a rigorous and general framework for functional quantum noises from the constructive and computational perspectives, i.e., how to generate the random trajectories to reproduce the kernel and path ordering of the influence functional with effective Monte Carlo methods for arbitrary spectral densities. This construction approach aims to unify the existing stochastic models to rigorously describe the temporary and spatial structure of Gaussian quantum noises. In this paper, I review the Euclidean imaginary time influence functional and propose the stochastic matrix multiplication scheme to calculate reduced equilibrium density matrices (REDM). In addition, I review and discuss the Feynman-Vernon influence functional according to the Gaussian quadratic integral, particularly its imaginary part which is critical to the rigorous description of the quantum detailed balance. As a result, I establish the conditions under which the influence functional can be interpreted as the average of exponential functional operator over real-valued Gaussian processes for open multilevel quantum systems. I also show the difference between the local and nonlocal phonons within this framework. With the stochastic matrix multiplication scheme, I compare the normalized REDM with the Boltzmann equilibrium distribution for open multilevel quantum systems.

  16. Multiple functional UV devices based on III-Nitride quantum wells for biological warfare agent detection

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Savage, Susan; Persson, Sirpa; Noharet, Bertrand; Junique, Stéphane; Andersson, Jan Y.; Liuolia, Vytautas; Marcinkevicius, Saulius

    2009-02-01

    We have demonstrated surface normal detecting/filtering/emitting multiple functional ultraviolet (UV) optoelectronic devices based on InGaN/GaN, InGaN/AlGaN and AlxGa1-xN/AlyGa1-yN multiple quantum well (MQW) structures with operation wavelengths ranging from 270 nm to 450 nm. Utilizing MQW structure as device active layer offers a flexibility to tune its long cut-off wavelength in a wide UV range from solar-blind to visible by adjusting the well width, well composition and barrier height. Similarly, its short cut-off wavelength can be adjusted by using a GaN or AlGaN block layer on a sapphire substrate when the device is illuminated from its backside, which further provides an optical filtering effect. When a current injects into the device under forward bias the device acts as an UV light emitter, whereas the device performs as a typical photodetector under reverse biases. With applying an alternating external bias the device might be used as electroabsorption modulator due to quantum confined Stark effect. In present work fabricated devices have been characterized by transmission/absorption spectra, photoresponsivity, electroluminescence, and photoluminescence measurements under various forward and reverse biases. The piezoelectric effect, alloy broadening and Stokes shift between the emission and absorption spectra in different InGaN- and AlGaN-based QW structures have been investigated and compared. Possibilities of monolithic or hybrid integration using such multiple functional devices for biological warfare agents sensing application have also be discussed.

  17. Vertical transportation systems embedded on shuffled frog leaping algorithm for manufacturing optimisation problems in industries.

    PubMed

    Aungkulanon, Pasura; Luangpaiboon, Pongchanun

    2016-01-01

    Response surface methods via the first or second order models are important in manufacturing processes. This study, however, proposes different structured mechanisms of the vertical transportation systems or VTS embedded on a shuffled frog leaping-based approach. There are three VTS scenarios, a motion reaching a normal operating velocity, and both reaching and not reaching transitional motion. These variants were performed to simultaneously inspect multiple responses affected by machining parameters in multi-pass turning processes. The numerical results of two machining optimisation problems demonstrated the high performance measures of the proposed methods, when compared to other optimisation algorithms for an actual deep cut design.

  18. LEAP: Biomarker Inference Through Learning and Evaluating Association Patterns

    PubMed Central

    Jiang, Xia; Neapolitan, Richard E.

    2015-01-01

    Single nucleotide polymorphism (SNP) high-dimensional datasets are available due to Genome Wide Association Studies (GWAS). Such data provide researchers opportunities to investigate the complex genetic basis of diseases. Much of genetic risk might be due to undiscovered epistatic interactions, which are interactions in which several genes combined affect disease. Research aimed at discovering interacting SNPs from GWAS datasets proceeded in two directions. First, tools were developed to evaluate candidate interactions. Second, algorithms were developed to search over the space of candidate interactions. Another problem when learning interacting SNPs, which has not received much attention, is evaluating how likely it is that the learned SNPs are associated with the disease. A complete system should provide this information as well. We develop such a system. Our system, called LEAP, includes a new heuristic search algorithm for learning interacting SNPs, and a Bayesian network based algorithm for computing the probability of their association. We evaluated the performance of LEAP using 100 1000 SNP simulated datasets, each of which contains 15 SNPs involved in interactions. When learning interacting SNPs from these datasets, LEAP outperformed 7 others methods. Furthermore, only SNPs involved in interactions were found to be probable. We also used LEAP to analyze real Alzheimer's disease and breast cancer GWAS datasets. We obtained interesting and new results from the Alzheimer's dataset, but limited results from the breast cancer dataset. We conclude that our results support that LEAP is a useful tool for extracting candidate interacting SNPs from high-dimensional datasets and determining their probability. PMID:25677188

  19. Improved characteristics of ultraviolet AlGaN multiple-quantum-well laser diodes with step-graded quantum barriers close to waveguide layers

    NASA Astrophysics Data System (ADS)

    Cai, Xuefen; Li, Shuping; Kang, Junyong

    2016-09-01

    Ultraviolet AlGaN multiple-quantum-well laser diodes (LDs) with step-graded quantum barriers (QBs) instead of conventional first and last QBs close to waveguide layers are proposed. The characteristics of this type of laser diodes are numerically investigated by using the software PICS3D and it is found that the performances of these LDs are greatly improved. The results indicates that the structure with step-graded QBs exhibits higher output light power, slope efficiency and emission intensity, as well as lower series resistance and threshold current density under the identical condition, compared with conventional LD structure.

  20. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes

    SciTech Connect

    Quan, Zhijue Wang, Li Zheng, Changda; Liu, Junlin; Jiang, Fengyi

    2014-11-14

    The roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well (MQW) light-emitting diodes are investigated by numerical simulation. The simulation results show that V-shaped pits cannot only screen dislocations, but also play an important role on promoting hole injection into the MQWs. It is revealed that the injection of holes into the MQW via the sidewalls of the V-shaped pits is easier than via the flat region, due to the lower polarization charge densities in the sidewall structure with lower In concentration and (10–11)-oriented semi-polar facets.

  1. Quantum-well intermixing for the control of second-order nonlinear effects in AlGaAs multiple-quantum-well waveguides.

    PubMed

    Street, M W; Whitbread, N D; Hutchings, D C; Arnold, J M; Marsh, J H; Aitchison, J S; Kennedy, G T; Sibbett, W

    1997-11-01

    We present experimental evidence to demonstrate the feasibility of a promising new quasi-phase-matching technique in AlGaAs multiple-quantum-well waveguides. Non-phase-matched second-harmonic-generation measurements indicate that, for sub-half-bandgap excitation near 1.5 microm , quantum-well intermixing by impurity-free vacancy disordering results in a reduction of the nonlinear susceptibility chi((2))(zxy) (~340 pm/V) by 17%. Relatively low intermixed waveguide losses, and the high spatial resolution of the impurity-free vacancy disordering process, suggest that periodic intermixing along the direction of propagation should lead to useful frequency-conversion efficiencies.

  2. Quantum Chemically Estimated Abraham Solute Parameters Using Multiple Solvent-Water Partition Coefficients and Molecular Polarizability.

    PubMed

    Liang, Yuzhen; Xiong, Ruichang; Sandler, Stanley I; Di Toro, Dominic M

    2017-09-05

    Polyparameter Linear Free Energy Relationships (pp-LFERs), also called Linear Solvation Energy Relationships (LSERs), are used to predict many environmentally significant properties of chemicals. A method is presented for computing the necessary chemical parameters, the Abraham parameters (AP), used by many pp-LFERs. It employs quantum chemical calculations and uses only the chemical's molecular structure. The method computes the Abraham E parameter using density functional theory computed molecular polarizability and the Clausius-Mossotti equation relating the index refraction to the molecular polarizability, estimates the Abraham V as the COSMO calculated molecular volume, and computes the remaining AP S, A, and B jointly with a multiple linear regression using sixty-five solvent-water partition coefficients computed using the quantum mechanical COSMO-SAC solvation model. These solute parameters, referred to as Quantum Chemically estimated Abraham Parameters (QCAP), are further adjusted by fitting to experimentally based APs using QCAP parameters as the independent variables so that they are compatible with existing Abraham pp-LFERs. QCAP and adjusted QCAP for 1827 neutral chemicals are included. For 24 solvent-water systems including octanol-water, predicted log solvent-water partition coefficients using adjusted QCAP have the smallest root-mean-square errors (RMSEs, 0.314-0.602) compared to predictions made using APs estimated using the molecular fragment based method ABSOLV (0.45-0.716). For munition and munition-like compounds, adjusted QCAP has much lower RMSE (0.860) than does ABSOLV (4.45) which essentially fails for these compounds.

  3. Multiple quantum oscillation frequencies in YBa2Cu3O6+δ and bilayer splitting

    NASA Astrophysics Data System (ADS)

    Garcia-Aldea, David; Chakravarty, Sudip

    2010-10-01

    Experiments have revealed multiple quantum oscillation frequencies in underdoped high-temperature superconductor YBa2Cu3O6+δ, corresponding to approximately 10% doping, which contains CuO bilayers in the unit cell. These unit cells are further coupled along the c-axis by a tunneling matrix element. A model of the energy dispersion that has its roots in the previously determined electronic structure, combined with twofold commensurate density waves, reveals multiple electron and hole pockets. To the extent that quasiparticles of the reconstructed Fermi surface have finite residues, however small, the formation of Landau levels is the cause of these oscillations, and the bilayer splitting and warping of the electronic dispersion along the direction perpendicular to the CuO-planes are firm consequences. The goal here is to explore this possibility from various directions and provide a better understanding of the rapidly developing experimental situation involving multiple frequencies. An important conclusion is that bilayer splitting is considerably renormalized from the value obtained from band structure calculations. It would be extremely interesting to perform these experiments for higher values of doping. We roughly expect the splitting of the frequencies to increase with doping, but the full picture may be more complex because the density wave order parameter is also expected to decrease with doping, vanishing around the middle of the superconducting dome.

  4. Auxiliary-field quantum Monte Carlo calculations with multiple-projector pseudopotentials

    NASA Astrophysics Data System (ADS)

    Ma, Fengjie; Zhang, Shiwei; Krakauer, Henry

    2017-04-01

    We have implemented recently developed multiple-projector pseudopotentials into the plane-wave-based auxiliary-field quantum Monte Carlo (pw-AFQMC) method. Multiple-projector pseudopotentials can yield smaller plane-wave cutoffs while maintaining or improving transferability. This reduces the computational cost of pw-AFQMC, increasing its reach to larger and more complicated systems. We discuss the use of nonlocal pseudopotentials in the separable Kleinman-Bylander form, and the implementation in pw-AFQMC of the multiple-projector optimized norm-conserving pseudopotential ONCVPSP of Hamann. The accuracy of the method is first demonstrated by equation-of-state calculations of the ionic insulator NaCl and more strongly correlated metal Cu. The method is then applied to calibrate the accuracy of density-functional theory (DFT) predictions of the phase stability of recently discovered high temperature and pressure superconducting sulfur hydride systems. We find that DFT results are in good agreement with pw-AFQMC, due to the near cancellation of electron-electron correlation effects between different structures.

  5. Strong multiple-capture effect in slow Ar^17+-Ar collisions: a quantum mechanical analysis

    NASA Astrophysics Data System (ADS)

    Salehzadeh, Arash; Kirchner, Tom

    2012-10-01

    A recent X-ray spectroscopy experiment on 255 keV Ar^17+-Ar collisions [1] provided evidence for strong multiple-electron capture --- a feature that is supported by classical trajectory Monte Carlo calculations for similar collision systems [2]. We have coupled a quantum-mechanical independent-electron model calculation for the Ar^17+-Ar system with (semi-) phenomenological Auger and radiative cascade models to test these findings. The capture calculations are performed using the basis generator method and include single-particle states on the projectile up to the 10th shell. The cross sections obtained for shell-specific multiple capture are fed into a stabilization scheme proposed in Ref. [3] in order to obtain n-specific cross sections for apparent single (and double) capture that in turn are fed into a radiative cascade code [1] to obtain X-ray emission intensities that can be compared with the experimental data. Good agreement is found for the Lyman series from n=3 to n=7 if the multiple-capture contributions are included, whereas calculations that ignore them are in stark conflict with the data. [4pt] [1] M. Trassinelli et al., J. Phys. B 45, 085202 (2012)[0pt] [2] S. Otranto and R. Olson, Phys. Rev. A 83, 032710 (2011)[0pt] [3] R. Ali et al., Phys. Rev A 49, 3586 (1994).

  6. Niels Bohr and the Third Quantum Revolution

    NASA Astrophysics Data System (ADS)

    Scharff Goldhaber, Alfred

    2013-04-01

    In the history of science few developments can rival the discovery of quantum mechanics, with its series of abrupt leaps in unexpected directions stretching over a quarter century. The result was a new world, even more strange than any previously imagined subterranean (or in this case submicroscopic) kingdom. Niels Bohr made the third of these leaps (following Planck and Einstein) when he realized that still-new quantum ideas were essential to account for atomic structure: Rutherford had deduced, using entirely classical-physics principles, that the positive charge in an atom is contained in a very small kernel or nucleus. This made the atom an analogue to the solar system. Classical physics implied that negatively charged electrons losing energy to electromagnetic radiation would ``dive in'' to the nucleus in a very short time. The chemistry of such tiny atoms would be trivial, and the sizes of solids made from these atoms would be much too small. Bohr initially got out of this dilemma by postulating that the angular momentum of an electron orbiting about the nucleus is quantized in integer multiples of the reduced quantum constant = h/2π. Solving for the energy of such an orbit in equilibrium immediately produces the famous Balmer formula for the frequencies of visible light radiated from hydrogen as an electron jumps from any particular orbit to another of lower energy. There remained mysteries requiring explanation or at least exploration, including two to be discussed here: 1. Rutherford used classical mechanics to compute the trajectory and hence the scattering angle of an α particle impinging on a small positively charged target. How could this be consistent with Bohr's quantization of particle orbits about the nucleus? 2. Bohr excluded for his integer multiples of the value 0. How can one justify this exclusion, necessary to bar tiny atoms of the type mentioned earlier?

  7. Niels Bohr and the Third Quantum Revolution

    NASA Astrophysics Data System (ADS)

    Goldhaber, Alfred

    2013-04-01

    In the history of science few developments can rival the discovery of quantum mechanics, with its series of abrupt leaps in unexpected directions stretching over a quarter century. The result was a new world, even more strange than any previously imagined subterranean (or in this case submicroscopic) kingdom. Niels Bohr made the third of these leaps (following Planck and Einstein) when he realized that still-new quantum ideas were essential to account for atomic structure: Rutherford had deduced, using entirely classical-physics principles, that the positive charge in an atom is contained in a very small kernel or nucleus. This made the atom an analogue to the solar system. Classical physics implied that negatively charged electrons losing energy to electromagnetic radiation would ``dive in'' to the nucleus in a very short time. The chemistry of such tiny atoms would be trivial, and the sizes of solids made from these atoms would be much too small. Bohr initially got out of this dilemma by postulating that the angular momentum of an electron orbiting about the nucleus is quantized in integer multiples of the reduced quantum constant ℏ = h/2 π. Solving for the energy of such an orbit in equilibrium immediately produces the famous Balmer formula for the frequencies of visible light radiated from hydrogen as an electron jumps from any particular orbit to another of lower energy. There remained mysteries requiring explanation or at least exploration, including two to be discussed here: 1. Rutherford used classical mechanics to compute the trajectory and hence the scattering angle of an α particle impinging on a small positively charged target. How could this be consistent with Bohr's quantization of particle orbits about the nucleus? 2. Bohr excluded for his integer multiples of ℏ the value 0. How can one justify this exclusion, necessary to bar tiny atoms of the type mentioned earlier?

  8. Time-Resolved Photoluminescence Studies of InGaN/AlGaN Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Zeng, K. C.; Smith, M.; Lin, J. Y.; Jiang, H. X.; Robert, J. C.; Piner, E. L.; McIntosh, F. G.; Bahbahani, M.; Bedair, S. M.; Zavada, J.

    1997-03-01

    Picosecond time-resolved photoluminescence (PL) spectroscopy has been employed to study the dynamic processes of optical transitions in InGaN/AlGaN multiple quantum wells (MQW) grown by metal-organic chemical vapor deposition (MOCVD). The dynamical behavior of the PL emission reveals that the main emission line in these MQW is the combination of the localized exciton and a band-to-impurity emission lines. The spectral lineshape and the recombination dynamics of the localized exciton and of the band-to-impurity transitions have been systematically investigated at different temperatures and excitation intensities and for MQW with different structures and growth conditions. From these studies, important parameters, including the localization energy and the recombination lifetimes of the localized excitons in InGaN/AlGaN quantum wells, the well width fluctuation, alloy compositions in the well and the barrier materials, and the band offset between InGaN and AlGaN can be deduced. Comparing with time-resolved PL results of InGaN/GaN and GaN/AlGaN MQW, important effects of interface on the optical properties of the III-nitride MQW have been evaluated. Implications of our results to device applications will be discussed.

  9. Thin-Wall GaN/InAlN Multiple Quantum Well Tubes.

    PubMed

    Durand, Christophe; Carlin, Jean-François; Bougerol, Catherine; Gayral, Bruno; Salomon, Damien; Barnes, Jean-Paul; Eymery, Joël; Butté, Raphaël; Grandjean, Nicolas

    2017-06-14

    Thin-wall tubes composed of nitride semiconductors (III-N compounds) based on GaN/InAlN multiple quantum wells (MQWs) are fabricated by metal-organic vapor-phase epitaxy in a simple and full III-N approach. The synthesis of such MQW-tubes is based on the growth of N-polar c-axis vertical GaN wires surrounded by a core-shell MQW heterostructure followed by in situ selective etching using controlled H2/NH3 annealing at 1010 °C to remove the inner GaN wire part. After this process, well-defined MQW-based tubes having nonpolar m-plane orientation exhibit UV light near 330 nm up to room temperature, consistent with the emission of GaN/InAlN MQWs. Partially etched tubes reveal a quantum-dotlike signature originating from nanosized GaN residuals present inside the tubes. The possibility to fabricate in a simple way thin-wall III-N tubes composed of an embedded MQW-based active region offering controllable optical emission properties constitutes an important step forward to develop new nitride devices such as emitters, detectors or sensors based on tubelike nanostructures.

  10. Efficient Red Perovskite Light-Emitting Diodes Based on Solution-Processed Multiple Quantum Wells.

    PubMed

    Zhang, Shuting; Yi, Chang; Wang, Nana; Sun, Yan; Zou, Wei; Wei, Yingqiang; Cao, Yu; Miao, Yanfeng; Li, Renzhi; Yin, Yao; Zhao, Ni; Wang, Jianpu; Huang, Wei

    2017-06-01

    This paper reports a facile and scalable process to achieve high performance red perovskite light-emitting diodes (LEDs) by introducing inorganic Cs into multiple quantum well (MQW) perovskites. The MQW structure facilitates the formation of cubic CsPbI3 perovskites at low temperature, enabling the Cs-based QWs to provide pure and stable red electroluminescence. The versatile synthesis of MQW perovskites provides freedom to control the crystallinity and morphology of the emission layer. It is demonstrated that the inclusion of chloride can further improve the crystallization and consequently the optical properties of the Cs-based MQW perovskites, inducing a low turn-on voltage of 2.0 V, a maximum external quantum efficiency of 3.7%, a luminance of ≈440 cd m(-2) at 4.0 V. These results suggest that the Cs-based MQW LED is among the best performing red perovskite LEDs. Moreover, the LED device demonstrates a record lifetime of over 5 h under a constant current density of 10 mA cm(-2) . This work suggests that the MQW perovskites is a promising platform for achieving high performance visible-range electroluminescence emission through high-throughput processing methods, which is attractive for low-cost lighting and display applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Wang, Nana; Cheng, Lu; Ge, Rui; Zhang, Shuting; Miao, Yanfeng; Zou, Wei; Yi, Chang; Sun, Yan; Cao, Yu; Yang, Rong; Wei, Yingqiang; Guo, Qiang; Ke, You; Yu, Maotao; Jin, Yizheng; Liu, Yang; Ding, Qingqing; di, Dawei; Yang, Le; Xing, Guichuan; Tian, He; Jin, Chuanhong; Gao, Feng; Friend, Richard H.; Wang, Jianpu; Huang, Wei

    2016-11-01

    Organometal halide perovskites can be processed from solutions at low temperatures to form crystalline direct-bandgap semiconductors with promising optoelectronic properties. However, the efficiency of their electroluminescence is limited by non-radiative recombination, which is associated with defects and leakage current due to incomplete surface coverage. Here we demonstrate a solution-processed perovskite light-emitting diode (LED) based on self-organized multiple quantum wells (MQWs) with excellent film morphologies. The MQW-based LED exhibits a very high external quantum efficiency of up to 11.7%, good stability and exceptional high-power performance with an energy conversion efficiency of 5.5% at a current density of 100 mA cm-2. This outstanding performance arises because the lower bandgap regions that generate electroluminescence are effectively confined by perovskite MQWs with higher energy gaps, resulting in very efficient radiative decay. Surprisingly, there is no evidence that the large interfacial areas between different bandgap regions cause luminescence quenching.

  12. Characteristics of nanoporous InGaN/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Wang, W. J.; Yang, G. F.; Chen, P.; Yu, Z. G.; Liu, B.; Xie, Z. L.; Xiu, X. Q.; Wu, Z. L.; Xu, F.; Xu, Z.; Hua, X. M.; Zhao, H.; Han, P.; Shi, Y.; Zhang, R.; Zheng, Y. D.

    2014-07-01

    The nanoporous InGaN/GaN multiple quantum wells (MQWs) has been fabricated through rapid thermal annealing (RTA) and inductively coupled plasma (ICP) dry etching process using self-assembled Ni nanoporous masks. In comparison with the as-grown planar InGaN/GaN MQWs, both internal quantum efficiency and light extraction efficiency for nanoporous InGaN/GaN MQWs are increased, which can be concluded from the photoluminescence (PL) measurements. The thermal activation energy of nanoporous structure (107.44 meV) is significantly higher than that of the as-grown sample (33.02 meV) from temperature-dependent PL measurement, indicating that carriers are well confined and the non-radiative recombination caused by the dislocations and other defects has been reduced. Besides, enhanced light scattering in the disordered nanoporous system can further increase the output emission intensity. The enhanced performance of nanoporous InGaN/GaN MQWs reveals its promising applications for high-efficiency light-emitting devices.

  13. Enhanced carrier multiplication in engineered quasi-type-II quantum dots

    PubMed Central

    Cirloganu, Claudiu M.; Padilha, Lazaro A.; Lin, Qianglu; Makarov, Nikolay S.; Velizhanin, Kirill A.; Luo, Hongmei; Robel, Istvan; Pietryga, Jeffrey M.; Klimov, Victor I.

    2014-01-01

    One process limiting the performance of solar cells is rapid cooling (thermalization) of hot carriers generated by higher-energy solar photons. In principle, the thermalization losses can be reduced by converting the kinetic energy of energetic carriers into additional electron-hole pairs via carrier multiplication (CM). While being inefficient in bulk semiconductors this process is enhanced in quantum dots, although not sufficiently high to considerably boost the power output of practical devices. Here we demonstrate that thick-shell PbSe/CdSe nanostructures can show almost a fourfold increase in the CM yield over conventional PbSe quantum dots, accompanied by a considerable reduction of the CM threshold. These structures enhance a valence-band CM channel due to effective capture of energetic holes into long-lived shell-localized states. The attainment of the regime of slowed cooling responsible for CM enhancement is indicated by the development of shell-related emission in the visible observed simultaneously with infrared emission from the core. PMID:24938462

  14. Hot exciton cooling and multiple exciton generation in PbSe quantum dots.

    PubMed

    Kumar, Manoj; Vezzoli, Stefano; Wang, Zilong; Chaudhary, Varun; Ramanujan, Raju V; Gurzadyan, Gagik G; Bruno, Annalisa; Soci, Cesare

    2016-11-16

    Multiple exciton generation (MEG) is a promising process to improve the power conversion efficiency of solar cells. PbSe quantum dots (QDs) have shown reasonably high MEG quantum yield (QY), although the photon energy threshold for this process is still under debate. One of the reasons for this inconsistency is the complicated competition of MEG and hot exciton cooling, especially at higher excited states. Here, we investigate MEG QY and the origin of the photon energy threshold for MEG in PbSe QDs of three different sizes by studying the transient absorption (TA) spectra, both at the band gap (near infrared, NIR) and far from the band gap energy (visible range). The comparison of visible TA spectra and dynamics for different pump wavelengths, below, around and above the MEG threshold, provides evidence of the role of the Σ transition in slowing down the exciton cooling process that can help MEG to take over the phonon relaxation process. The universality of this behavior is confirmed by studying QDs of three different sizes. Moreover, our results suggest that MEG QY can be determined by pump-probe experiments probed above the band gap.

  15. Influence of annealing and surfactant on InGaAsN/GaAs multiple quantum well

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Park, J. Y.; Cuong, T. V.; Kim, H. G.; Lee, H. J.; Suh, E.-K.; Hong, C.-H.

    2004-07-01

    Influence of antimony (Sb) as a surfactant and annealing on the structural and optical properties of InGaAsN/GaAs multiple quantum-well (MQW) grown by metalorganic chemical vapor deposition (MOCVD) is studied. It was found that an increase in compressive strain from an analysis of the satellite peaks in high-resolution X-ray diffraction was observed with increasing interruption time and annealing temperature. The photocurrent (PC) peak of as-grown MQW is blue-shifted with introduction time of excess Sb flux during growth interruption process. It seems to be due to the improvement of structure properties at interface by a surfactant suppressing surface diffusion phenomenon. After annealing process, the PC peak is blue-shifted with increasing annealing temperature for all samples. It seems to be related with the compressive strain and QW intermixing.

  16. Bound states for multiple Dirac-δ wells in space-fractional quantum mechanics

    SciTech Connect

    Tare, Jeffrey D. Esguerra, Jose Perico H.

    2014-01-15

    Using the momentum-space approach, we obtain bound states for multiple Dirac-δ wells in the framework of space-fractional quantum mechanics. Introducing first an attractive Dirac-comb potential, i.e., Dirac comb with strength −g (g > 0), in the space-fractional Schrödinger equation we show that the problem of obtaining eigenenergies of a system with N Dirac-δ wells can be reduced to a problem of obtaining the eigenvalues of an N × N matrix. As an illustration we use the present matrix formulation to derive expressions satisfied by the bound-state energies of N = 1, 2, 3 delta wells. We also obtain the corresponding wave functions and express them in terms of Fox's H-function.

  17. Exciton effects in the index of refraction of multiple quantum wells and superlattices

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.; Leburton, J. P.

    1986-01-01

    Theoretical calculations of the index of refraction of multiple quantum wells and superlattices are presented. The model incorporates both the bound and continuum exciton contributions for the gamma region transitions. In addition, the electronic band structure model has both superlattice and bulk alloy properties. The results indicate that large light-hole masses, i.e., of about 0.23, produced by band mixing effects, are required to account for the experimental data. Furthermore, it is shown that superlattice effects rapidly decrease for energies greater than the confining potential barriers. Overall, the theoretical results are in very good agreement with the experimental data and show the importance of including exciton effects in the index of refraction.

  18. Phonon-Induced Dephasing of Excitons in Semiconductor Quantum Dots: Multiple Exciton Generation, Fission, and Luminescence

    NASA Astrophysics Data System (ADS)

    Madrid, Angeline; Kim, Hyeon-Deuk; Habenicht, Bradley; Prezhdo, Oleg

    2010-03-01

    Phonon-induced dephasing processes that govern optical line widths, multiple exciton (ME) generation (MEG), and ME fission (MEF) in semiconductor quantum dots (QDs) are investigated by ab initio molecular dynamics simulation. Using Si QDs as an example, we propose that MEF occurs by phonon-induced dephasing and, for the first time, estimate its time scale to be 100 fs. In contrast, luminescence and MEG dephasing times are all sub-10 fs. Generally, dephasing is faster for higher-energy and higher-order excitons and increased temperatures. MEF is slow because it is facilitated only by low-frequency acoustic modes. Luminescence and MEG couple to both acoustic and optical modes of the QD, as well as ligand vibrations. The detailed atomistic simulation of the dephasing processes advances understanding of exciton dynamics in QDs and other nanoscale materials.

  19. Effective mobility for sequential carrier transport in multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Toprasertpong, Kasidit; Goodnick, Stephen M.; Nakano, Yoshiaki; Sugiyama, Masakazu

    2017-08-01

    We investigate a theoretical model for effective carrier mobility to comprehensively describe the behavior of the perpendicular carrier transport across multiple quantum well (MQW) structures under applied electric field. The analytical expressions of effective mobilities for thermionic emission, direct tunneling, and thermally assisted tunneling are derived based on the quasithermal equilibrium approximation and the semiclassical approach. Effective electron and hole mobilities in InGaAs/GaAsP MQWs predicted from our model are in good agreement with the experimental results obtained from the carrier time-of-flight measurement near room temperature. With this concept, the complicated carrier dynamics inside MQWs can be simplified to an effective mobility, an equivalent parameter that is more straightforward to handle and can be easily incorporated in the conventional drift-diffusion model.

  20. Ultraviolet laser and photodetector of CdZnS/ZnS multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Tauchi, T.; Yamada, Y.; Ohno, T.; Mullins, J. T.; Masumoto, Y.

    1993-09-01

    Ultraviolet (UV) lasers have been constructed for the first time from multiple quantum well (MQW) heterostructures of CdxZn1-xS/ZnS (x=0.11-0.31) strained-layer superlattices. Stimulated emission can be observed either under optical pumping at RT or under pulsed injection at 30 K in the spectral range of 357-390 nm. Structures of the laser were fabricated by the gaseous low-pressure MOCVD method. A spectral narrowing in the emission spectrum with increasing current in the UV injection diode was clearly observed in the vicinity of 375 nm at 30 K. An UV photodetector has been successfully prepared from this MQW system, in which a spectral responsivity at 366 nm exhibits a high efficiency of about 60 mA/W.

  1. Ultraviolet laser and photodetector of CdZnS/ZnS multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Tauchi, T.; Yamada, Y.; Ohno, T.; Mullins, J. T.; Masumoto, Y.

    1993-09-01

    Ultraviolet (UV) lasers have been constructed for the first time from multiple quantum well (MQW) heterostructures of Cd xZn 1- xS/ZnS ( x=0.11-0.31) strained-layer superlattices. Stimulated emission can be observed either under optical pumping at RT or under pulsed injection at 30 K in the spectral range of 357-390 nm. Structures of the laser were fabricated by the gaseous low-pressure MOCVD method. A spectral narrowing in the emission spectrum with increasing current in the UV injection diode was clearly observed in the vicinity of 375 nm at 30 K. An UV photodetector has been successfully prepared from this MQW system, in which a spectral responsivity at 366 nm exhibits a high efficiency of about 60 mA/W.

  2. Order dependence of the profile of the intensities of multiple-quantum coherences

    SciTech Connect

    Lundin, A. A.; Zobov, V. E.

    2015-05-15

    A modification of the widespread phenomenological model theory of multiple-quantum (MQ) nuclear magnetic resonance spectra of a single cluster of correlated spins has been developed. In contrast to the mentioned theory, the size distribution of such clusters has been consistently taken into account. To obtain the distribution, solutions for the amplitudes of the expansion in the complete set of orthogonal operators are used. Expressions specifying the dependence of the profile of the intensities of MQ coherences on their number n (order) have been obtained. The total form of the dependence has been evaluated by means of the numerical implementation of the resulting expressions. The asymptotic expressions for large n values (wings of the spectrum) have been obtained analytically by the saddle-point method. It has been shown that the dependence under study has a Gaussian central part and exponential wings. The results obtained are in agreement with the previous calculations for some model systems and existing experimental data.

  3. Oxidation effects on cleaved multiple quantum well surfaces in air observed by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Howells, S.; Gallagher, M. J.; Chen, T.; Pax, P.; Sarid, D.

    1992-08-01

    The paper presents the first atomic force microscopy (AFM) images of cleaved InGaAs/InP multiple quantum wells and compares them with scanning tunneling microscopy (STM) images taken of the same heterostructure. The images were stable in air for over a day. Based on these results, it is proposed that the mechanism for contrast in the images is due to an oxide layer that grows primarily on the InGaAs wells and not on the InP barriers. Both STM and AFM clearly resolve the individual wells of the heterostructure, although STM measured a larger corrugation than an AFM. STM also exhibited superior lateral resolution of about 2 nm, while AFM had a lateral resolution of approximately 6 nm.

  4. Phase separation in InGaN/GaN multiple quantum wells

    SciTech Connect

    McCluskey, M.D.; Romano, L.T.; Krusor, B.S.; Bour, D.P.; Johnson, N.M.; Brennan, S.

    1998-04-01

    Evidence is presented for phase separation in In{sub 0.27}Ga{sub 0.73}N/GaN multiple quantum wells. After annealing for 40 h at a temperature of 950{degree}C, the absorption threshold at 2.95 eV is replaced by a broad peak at 2.65 eV. This peak is attributed to the formation of In-rich InGaN phases in the active region. X-ray diffraction measurements show a shift in the diffraction peaks toward GaN, consistent with the formation of an In-poor phase. A diffraction peak corresponding to an In-rich phase is also present in the annealed material. Nanoscale In-rich InGaN precipitates are observed by transmission electron microscopy and energy dispersive x-ray chemical analysis. {copyright} {ital 1998 American Institute of Physics.}

  5. Design of a datapath for single-flux-quantum microprocessors with multiple ALUs

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Kondo, T.; Kawamoto, T.; Kamiya, Y.; Fujiwara, K.; Yamanashi, Y.; Akimoto, A.; Fujimaki, A.; Yoshikawa, N.; Terai, H.; Yorozu, S.

    2005-10-01

    We have demonstrated the components of datapath toward single-flux-quantum microprocessors based on our new architecture called the forwarding architecture. In the forwarding architecture, we improve the performance by utilizing multiple ALUs to conceal the inefficiency of bit-serial processing. The key components of the datapath are a register file and cascaded ALUs. We have designed the register file to hold four bit-serial data with two read ports and one write port. In each ALU, we have implemented six functionalities: addition, subtraction, logical AND, OR and Exclusive OR operations, and comparison with zero. We have tested the register file and the ALU using high-speed on-chip testing, and confirmed the correct operations up to 18 GHz and 23 GHz, respectively.

  6. Effects of dead zones in multiple-quantum-well binary-phase modulators on optical interconnections.

    PubMed

    Inbar, H; Taghizadeh, M R

    1998-02-10

    We investigate the effects of inactive regions [dead zones (DZ's)] in multiple-quantum-well binary-phase modulators used for free-space dynamic optical interconnection applications. Results, however, have implications for other types of pixelated spatial light modulators (SLM's). To our knowledge, the effects of DZ's in SLM's have not before been thoroughly studied in a context other than optical correlation. We investigate the DZ's (considered to be either opaque or transmissive) as a feature that may be exploited in system design, calculating light efficiency and fidelity as a function of DZ fractional width. It is shown that in particular cases an appropriate choice of DZ width would lead to an optical interconnection with substantially improved cross-talk performance.

  7. Bound states for multiple Dirac-δ wells in space-fractional quantum mechanics

    SciTech Connect

    Tare, Jeffrey D. Esguerra, Jose Perico H.

    2014-01-15

    Using the momentum-space approach, we obtain bound states for multiple Dirac-δ wells in the framework of space-fractional quantum mechanics. Introducing first an attractive Dirac-comb potential, i.e., Dirac comb with strength −g (g > 0), in the space-fractional Schrödinger equation we show that the problem of obtaining eigenenergies of a system with N Dirac-δ wells can be reduced to a problem of obtaining the eigenvalues of an N × N matrix. As an illustration we use the present matrix formulation to derive expressions satisfied by the bound-state energies of N = 1, 2, 3 delta wells. We also obtain the corresponding wave functions and express them in terms of Fox's H-function.

  8. Exciton effects in the index of refraction of multiple quantum wells and superlattices

    NASA Technical Reports Server (NTRS)

    Kahen, K. B.; Leburton, J. P.

    1986-01-01

    Theoretical calculations of the index of refraction of multiple quantum wells and superlattices are presented. The model incorporates both the bound and continuum exciton contributions for the gamma region transitions. In addition, the electronic band structure model has both superlattice and bulk alloy properties. The results indicate that large light-hole masses, i.e., of about 0.23, produced by band mixing effects, are required to account for the experimental data. Furthermore, it is shown that superlattice effects rapidly decrease for energies greater than the confining potential barriers. Overall, the theoretical results are in very good agreement with the experimental data and show the importance of including exciton effects in the index of refraction.

  9. Flat pancake distant dipolar fields for enhancement of intermolecular multiple-quantum coherence signals.

    PubMed

    Cai, Congbo; Lin, Yulan; Cai, Shuhui; Sun, Huijun; Zhong, Jianhui; Chen, Zhong

    2012-03-07

    Intermolecular multiple-quantum coherences (iMQCs) originated from distant dipolar field (DDF) possess some appealing unique properties for magnetic resonance imaging (MRI). DDF is usually induced with continuous wave (i.e., sine- or square-wave) magnetization modulation in the whole sample. In this article, a spatially localized and enhanced DDF was optimally tailored in a thin slice with an adiabatic inversion pulse. Evidence was provided to show that careful tailoring of the spatially localized DDF can generate highly efficient iMQC signals, with more than two-fold enhancement compared to the conventional sine-wave magnetization modulation method, and 1.5 times of that with the square-wave modulation under the similar condition. Theoretical predictions, simulation results, and experimental verifications agree well with each other. Practical implementation of this approach for efficient iMQC MRI was explored. © 2012 American Institute of Physics

  10. Germanium-tin multiple quantum well on silicon avalanche photodiode for photodetection at two micron wavelength

    NASA Astrophysics Data System (ADS)

    Dong, Yuan; Wang, Wei; Lee, Shuh Ying; Lei, Dian; Gong, Xiao; Khai Loke, Wan; Yoon, Soon-Fatt; Liang, Gengchiau; Yeo, Yee-Chia

    2016-09-01

    We report the demonstration of a germanium-tin multiple quantum well (Ge0.9Sn0.1 MQW)-on-Si avalanche photodiode (APD) for light detection near the 2 μm wavelength range. The measured spectral response covers wavelengths from 1510 to 2003 nm. An optical responsivity of 0.33 A W-1 is achieved at 2003 nm due to the internal avalanche gain. In addition, a thermal coefficient of breakdown voltage is extracted to be 0.053% K-1 based on the temperature-dependent dark current measurement. As compared to the traditional 2 μm wavelength APDs, the Si-based APD is promising for its small excess noise factor, less stringent demand on temperature stability, and its compatibility with silicon technology.

  11. Probing degradation in complex engineering silicones by 1H multiple quantum NMR

    SciTech Connect

    Maxwell, R S; Chinn, S C; Giuliani, J; Herberg, J L

    2007-09-05

    Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.

  12. Analytical modeling of the resolution of photorefractive multiple quantum well spatial light modulators

    NASA Astrophysics Data System (ADS)

    Abeeluck, A. K.; Garmire, E.; Canoglu, E.

    2000-11-01

    An analytical model that includes lateral drift of photocarriers is developed to explain the experimental resolution of photorefractive multiple quantum well (MQW) devices. The model is in excellent agreement with a phenomenological fit proposed earlier and it follows a small intensity modulation model closely. Charge distributions with and without lateral drift of carriers at the MQW interfaces are assumed in order to calculate the peak diffraction efficiency as a function of grating period. An effective mobility-lifetime product is used to account for the effect of lateral drift in the MQW region. It is shown that good agreement with experiment is obtained when lateral drift is taken into account. Moreover, the model is applied to the study of design tradeoff between resolution, sensitivity, and diffraction efficiency which are all of crucial importance in the performance of practical devices.

  13. Quantum

    NASA Astrophysics Data System (ADS)

    Elbaz, Edgard

    This book gives a new insight into the interpretation of quantum mechanics (stochastic, integral paths, decoherence), a completely new treatment of angular momentum (graphical spin algebra) and an introduction to Fermion fields (Dirac equation) and Boson fields (e.m. and Higgs) as well as an introduction to QED (quantum electrodynamics), supersymmetry and quantum cosmology.

  14. Strain-balanced InGaN/GaN multiple quantum wells

    SciTech Connect

    Van Den Broeck, D. M.; Hosalli, A. M.; Bedair, S. M.; Bharrat, D.; El-Masry, N. A.

    2014-07-21

    InGaN/GaN multiple quantum well (MQW) structures suffer from a high amount of compressive strain in the InGaN wells and the accompanied piezoelectric field resulting in both a blue shift in emission and a reduction of emission intensity. We report the growth of In{sub x}Ga{sub 1−x}N/GaN “strain-balanced” multiple quantum wells (SBMQWs) grown on thick In{sub y}Ga{sub 1−y}N templates for x > y by metal organic chemical vapor deposition. SBMQWs consist of alternating layers of In{sub x}Ga{sub 1−x}N wells and GaN barriers under compressive and tensile stress, respectively, which have been lattice matched to a thick In{sub y}Ga{sub 1−y}N template. Growth of the In{sub y}Ga{sub 1−y}N template is also detailed in order to achieve thick, relaxed In{sub y}Ga{sub 1−y}N grown on GaN without the presence of V-grooves. When compared to conventional In{sub x}Ga{sub 1−x}N/GaN MQWs grown on GaN, the SBMQW structures exhibit longer wavelength emission and higher emission intensity for the same InN mole fraction due to a reduction in the well strain and piezoelectric field. By matching the average lattice constant of the MQW active region to the lattice constant of the In{sub y}Ga{sub 1−y}N template, essentially an infinite number of periods can be grown using the SBMQW growth method without relaxation-related effects. SBMQWs can be utilized to achieve longer wavelength emission in light emitting diodes without the use of excess indium and can be advantageous in addressing the “green gap.”.

  15. Multiple excitons and the electron phonon bottleneck in semiconductor quantum dots: An ab initio perspective

    NASA Astrophysics Data System (ADS)

    Prezhdo, Oleg V.

    2008-07-01

    The article presents the current perspective on the nature of photoexcited states in semiconductor quantum dots (QDs). The focus is on multiple excitons and photo-induced electron-phonon dynamics in PbSe and CdSe QDs, and the advocated view is rooted in the results of ab initio studies in both energy and time domains. As a new type of material, semiconductor QDs represent the borderline between chemistry and physics, exhibiting both molecular and bulk-like properties. Similar to atoms and molecules, the electronic spectra of QD show discrete bands. Just as bulk semiconductors, QDs comprise multiple copies of the elementary unit cell, and are characterized by valence and conduction bands. The electron-phonon coupling in QDs is weaker than in molecules, but stronger than in bulk semiconductors. Unlike either material, the QD properties can be tuned continuously by changing QD size and shape. The molecular and bulk points of view often lead to contradicting conclusions. For example, the molecular view suggests that the excitations in QDs should exhibit strong electron-correlation (excitonic) effects, and that the electron-phonon relaxation should be slow due to the discrete nature of the optical bands and the mismatch of the electronic energy gaps with vibrational frequencies. In contrast, a finite-size limit of bulk properties indicates that the kinetic energy of quantum confinement should be significantly greater than excitonic effects and that the electron-phonon relaxation inside the quasi-continuous bands should be efficient. Such qualitative differences have generated heated discussions in the literature. The great potential of QDs for a variety of applications, including photovoltaics, spintronics, lasers, light-emitting diodes, and field-effect transistors makes it crutual to settle the debates. By synthesizing different viewpoints and presenting a unified atomistic picture of the excited state processes, our ab initio analysis clarifies the controversies

  16. Iii-V Compound Multiple Quantum Well Based Modulator and Switching Devices.

    NASA Astrophysics Data System (ADS)

    Hong, Songcheol

    A general formalism to study the absorption and photocurrent in multiple quantum well is provided with detailed consideration of quantum confined Stark shift, exciton binding energy, line broadening, tunneling, polarization, and strain effects. Results on variation of exciton size, binding energies and transition energies as a function electric field and well size have been presented. Inhomogeneous line broadening of exciton lines due to interface roughness, alloy disorder and well to well size fluctuation is calculated. The potential of material tailoring by introducing strain for specific optical response is discussed. Theoretical and experimental results on excitonic and band-to-band absorption spectra in strained multi-quantum well structures are shown. I also report on polarization dependent optical absorption for excitonic and interband transitions in lattice matched and strained multiquantum well structures in presence of transverse electric field. Photocurrent in a p-i(MQW)-n diode with monochromatic light is examined with respect to different temperatures and intensities. The negative resistance of I-V characteristic of the p-i-n diode is based on the quantum confined Stark effect of the heavy hole excitonic transition in a multiquantum well. This exciton based photocurrent characteristic allows efficient switching. A general purpose low power optical logic device using the controller-modulator concept bas been proposed and realized. The controller is a heterojunction phototransistor with multiquantum wells in the base-collector depletion region. This allows an amplified photocurrent controlled voltage feedback with low light intensity levels. Detailed analysis of the sensitivity of this device in various modes of operation is studied. Studies are also presented on the cascadability of the device as well as its integrating -thresholding properties. A multiquantum well heterojunction bipolar transistor (MHBT), which has N^+ -p^+-i(MQW)-N structure has been

  17. Optical Properties of GaN Nanorods Containing a Single or Multiple InGaN Quantum Wells

    NASA Astrophysics Data System (ADS)

    Zhuang, Yi D.; Lis, Szymon; Bruckbauer, Jochen; O'Kane, Simon E. J.; Shields, Philip A.; Edwards, Paul R.; Sarma, Jayanta; Martin, Robert W.; Allsopp, Duncan W. E.

    2013-08-01

    Measurements of light emission from GaN nanorods of diameter between 80 and 350 nm, containing either a three-well multiple InGaN quantum well or a single quantum well, have been performed by photoluminescence (PL) and cathodoluminescence (CL) hyperspectral imaging. The PL underwent a Stark shift to the blue as the nanorod diameter was reduced, indicating substantial relaxation of the compressive strain in the quantum wells. The intensity of the nanorod emission per unit area can exceed that of the planar starting material. The CL measurements revealed that the wavelength of the quantum well emission varied with radial position in the nanorod. Simulations by a modal expansion method revealed that the light extraction efficiency varies with radial position and the variation is dependent on nanorod diameter. Finite difference time domain simulations showed that Bloch mode formation in the buffer layer below the nanorods impacts on the light extraction.

  18. Taking Immersive VR Leap in Training of Landing Signal Officers.

    PubMed

    Greunke, Larry; Sadagic, Amela

    2016-04-01

    A major training device used to train all Landing Signal Officers (LSOs) for several decades has been the Landing Signal Officer Trainer, Device 2H111. This simulator, located in Oceana, VA, is contained within a two story tall room; it consists of several large screens and a physical rendition of the actual instruments used by LSOs in their operational environment. The young officers who serve in this specialty will typically encounter this system for only a short period of formal instruction (six one-hour long sessions), leaving multiple gaps in training. While experience with 2H111 is extremely valuable for all LSO officers, the amount of time they can spend using this training device is undeniably too short. The need to provide LSOs with an unlimited number of training opportunities unrestricted by location and time, married with recent advancements in commercial off the shelf (COTS) immersive technologies, provided an ideal platform to create a lightweight training solution that would fill those gaps and extend beyond the capabilities currently offered in the 2H111 simulator. This paper details our efforts on task analysis, surveying of user domain, mapping of 2H111 training capabilities to new prototype system to ensure its support of major training objectives of 2H111, design and development of prototype training system, and a feasibility study that included tests of technical system performance and informal testing with trainees at the LSO Schoolhouse. The results achieved in this effort indicate that the time for LSO training to make the leap to immersive VR has decidedly come.

  19. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    SciTech Connect

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason M.

    2015-02-08

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 µm) at a 10 Hz repetition rate.

  20. Long term operation of high quantum efficiency GaAs(Cs,O) photocathodes using multiple recleaning by atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Orlov, D. A.; Krantz, C.; Wolf, A.; Jaroshevich, A. S.; Kosolobov, S. N.; Scheibler, H. E.; Terekhov, A. S.

    2009-09-01

    Atomic hydrogen, produced by thermal dissociation of H2 molecules inside a hot tungsten capillary, is shown to be an efficient tool for multiple recleaning of degraded surfaces of high quantum efficiency transmission-mode GaAs photocathodes within an ultrahigh vacuum (UHV) multichamber photoelectron gun. Ultraviolet quantum yield photoemission spectroscopy has been used to study the removal of surface pollutants and the degraded (Cs,O)-activation layer during the cleaning procedure. For photocathodes grown by the liquid-phase epitaxy technique, the quantum efficiency is found to be stable at about 20% over a large number of atomic hydrogen cleaning cycles. A slow degradation of the quantum efficiency is observed for photocathodes grown by metal-organic chemical vapor deposition, although they reached a higher initial quantum efficiency of about 30%-35%. Study of the spatial distributions of photoluminescence intensity on these photocathodes proved that this overall degradation is likely due to insertion of a dislocation network into the mechanically strained photocathode heterostructures during multiple heating cycles and is not due to the atomic hydrogen treatment itself.

  1. High Contrast Fabry-Perot Multiple Quantum Well Modulators and Systems.

    NASA Astrophysics Data System (ADS)

    Cheung, Siu Kwan

    Multiple Quantum Well (MQW) symmetric Fabry-Perot optical modulators, which utilize field-induced changes in optical absorption and index of refraction due to the Quantum Confined Stark Effect (QCSE), are presented using InGaAs/GaAs system. An on/off contrast ratio exceeding 1200:1 has been obtained using MBE-grown symmetric Fabry -Perot structure which consists of two AlAs/GaAs quarter -wavelength dielectric mirrors and an InGaAs/GaAs rectangular MQW cavity. A tuning range of about 10 nm has been observed for an applied voltage change of ~15 V. Theoretical and experimental studies, including the excitonic absorption in MQW layers, QCSE, optical characterization and device performance, and system modeling are presented. Analytic expressions have been obtained for the optimal design of the symmetric Fabry-Perot modulators. The calculations are based on the optical transfer matrix and the two effective interfaces approach under the plane wave approximation. Optical characterizations and measurements using Spectrophotometer, Variable Angle Spectroscopic Ellipsometry (VASE) and computer -controlled Argon-pumped Ti:Sapphire laser measuring setup are described. Comparisons between theoretical and experimental results indicate a 0.037% deviation of the Fabry-Perot mode for the nontunable structure with projected dynamic range of 38.7 dB and a 0.2% deviation for the tunable modulator from the calculated results. The good matchings of the experimental and calculated Fabry-Perot modes indicate the validity of the theoretical models. Related applications, including the design and performance study of Heterostructure Acoustic Charge Transport Spatial Light Modulators (HACT/SLMs), tunable narrowband optical filters and reflectivity-tunable vertical surface emitting laser structures, are also presented.

  2. Phase control of Goos-Hänchen shift via biexciton coherence in a multiple quantum well

    NASA Astrophysics Data System (ADS)

    Asadpour, Seyyed Hossein; Nasehi, Rajab; Soleimani, H. Rahimpour; Mahmoudi, M.

    2015-09-01

    The behavior of the Goos-Hänchen (GH) shifts of the reflected and transmitted probe and signal pulses through a cavity containing four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al0.3Ga0.7As barriers is theoretically discussed. The biexciton coherence set up by two coupling fields can induce the destructive interference to control the absorption and gain properties of probe field under appropriate conditions. It is realized that for the specific values of the intensities and the relative phase of applied fields, the simultaneous negative or positive GH shift in the transmitted and reflected light beam can be obtained via amplification in a probe light. It is found that by adjusting the controllable parameters, the GH shifts can be switched between the large positive and negative values in the medium. Moreover, the effect of exciton spin relaxation on the GH shift has also been discussed. We find that the exciton spin relaxation can manipulate the behavior of GH shift in the reflected and transmitted probe beam through the cavity. We show that by controlling the incident angles of probe beam and under certain conditions, the GH shifts in the reflected and transmitted probe beams can become either negative or positive corresponding to the superluminal or subluminal light propagation. Our proposed model may supply a new prospect in technological applications for the light amplification in optical sensors working on quantum coherence impacts in solid-state systems.

  3. Why Is the Year 2000 a Leap Year?

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.

    2000-01-01

    The study of leap year and its development offers an interesting real-world situation for students to exercise qualitative reasoning about operations on decimals. Presents an activity in which students investigate time measurement by studying a variety of calendars, past and present. (ASK)

  4. 27 CFR 9.117 - Stags Leap District.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Stags Leap District. 9.117 Section 9.117 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas §...

  5. That was LEAP 05! or Antiproton Physics in a Nutshell

    NASA Astrophysics Data System (ADS)

    Kienle, Paul

    2005-10-01

    A personally flavored review of selected topics of LEAP 05 is given, with focus on some recent interesting developments in low and medium energy antiproton physics, such as fundamental symmetries and antihydrogen, antihadron-hadron systems, antiproton-proton annihilation, nuclear structure studies with antiprotons, and the FAIR facility for antiproton and ion research.

  6. Multinomial Tau-Leaping Method for Stochastic Kinetic Simulations

    SciTech Connect

    Pettigrew, Michel F.; Resat, Haluk

    2007-02-28

    We introduce the multinomial tau-leaping (MtL) method, an improved version of the binomial tau-leaping method, for general reaction networks. Improvements in efficiency are achieved in several ways. Firstly, tau-leaping steps are determined simply and efficiently using a-prior information. Secondly, networks are partitioned into closed groups of reactions and corresponding reactants in which no group reactant or reaction is found in any other group. Thirdly, product formation is factored into upper bound estimation of the number of times a particular reaction occurs. Together, these features allow for larger time steps where the numbers of reactions occurring simultaneously in a multi-channel manner are estimated accurately using a multinomial distribution. Using a wide range of test case problems of scientific and practical interest involving cellular processes, such as epidermal growth factor receptor signaling and lactose operon model incorporating gene transcription and translation, we show that tau-leaping based methods like the MtL algorithm can significantly reduce the number of simulation steps thus increasing the numerical efficiency over the exact stochastic simulation algorithm by orders of magnitude. Furthermore, the simultaneous multi-channel representation capability of the MtL algorithm makes it a candidate for FPGA implementation or for parallelization in parallel computing environments.

  7. Lower Extremity Biomechanical Demands During Saut de Chat Leaps.

    PubMed

    Jarvis, Danielle N; Kulig, Kornelia

    2016-12-01

    In dance, high demands are placed on the lower extremity joints during jumping tasks. The purpose of this study was to compare biomechanical demands placed on the lower extremity joints during the takeoff and landing phases of saut de chat leaps.

  8. Analysis of Nickel Silicides by SIMS and LEAP

    SciTech Connect

    Ronsheim, Paul; McMurray, Jeff; Flaitz, Philip; Parks, Christopher

    2007-09-26

    Ni-silicides formed by a variety of processing techniques were studied with secondary ion mass spectroscopy (SIMS) and local electrode atom probe (LEAP registered ) analysis. SIMS provided 1-D chemical analysis over an approximately 60 micron diameter area. LEAP provided 3-D atom identities and locations over an approximately 100-150 nm diameter area. It was determined that the 200 deg. C drive-in anneal results in a Ni{sub 3}Si{sub 2} phase, which is converted to NiSi at temperatures between 360 deg. C-400 deg. C. LEAP detects no As or Pt segregation after the 200 deg. C drive-in anneal, but did quantify As segregation of up to 7% of the material composition just inside the NiSi-Si interface after the phase-formation anneal. The presence of oxygen at the interface results in a silicide chemical surface roughness of up to 3.5 nm as compared to 0.5 nm with a clean, non-oxidized surface. Silicide stability was demonstrated over the phase-formation-temperature range of 360 deg. C - 400 deg. C including when a second rapid thermal anneal step was used. LEAP analysis was also able to quantify the surface roughness of the interface as a function of anneal temperature and the non-uniform Pt and As distribution across the silicide surface as viewed in 2-D surface projection.

  9. Ready, Set, Leap![R]. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2008

    2008-01-01

    "Ready, Set, Leap!"[R] is a preschool curriculum that focuses on early reading skills, such as phonemic awareness, letter knowledge, and letter-sound correspondence, using multisensory technology that incorporates touch, sight, and sound. Teachers may adopt either a theme-based or a literature-based teaching approach, and for each…

  10. Study of multiple InAs/GaAs quantum-well structures by electroreflectance spectroscopy

    SciTech Connect

    Bolshakov, A. S. Chaldyshev, V. V. Babichev, A. V.; Kudryashov, D. A.; Gudovskikh, A. S.; Morozov, I. A.; Sobolev, M. S.; Nikitina, E. V.

    2015-11-15

    A periodic Bragg heterostructure with three ultrathin InAs/GaAs quantum wells in a period is fabricated and studied. The splitting energy of exciton transitions in quantum wells is determined by the electroreflectance- spectroscopy method and numerical quantum-mechanical calculation. The significant influence of interference effects on individual peak areas in the electroreflectance spectrum is detected.

  11. Sorting photon wave packets using temporal-mode interferometry based on multiple-stage quantum frequency conversion

    NASA Astrophysics Data System (ADS)

    Reddy, D. V.; Raymer, M. G.; McKinstrie, C. J.

    2015-01-01

    All classical and quantum technologies that encode in and retrieve information from optical fields rely on the ability to selectively manipulate orthogonal field modes of light. Such manipulation can be achieved with high selectivity for polarization modes and transverse-spatial modes. For the time-frequency degree of freedom, this could efficiently be achieved for a limited choice of approximately orthogonal modes, i.e., nonoverlapping bins in time or frequency. We recently proposed a method that surmounts the selectivity barrier for sorting arbitrary orthogonal temporal modes [Opt. Lett. 39, 2924 (2014)., 10.1364/OL.39.002924] using cascaded interferometric quantum frequency conversion in nonlinear optical media. We call this method temporal-mode interferometry, as it has a close resemblance to the well-known separated-fields atomic interferometry method introduced by Ramsey. The method has important implications for quantum memories, quantum dense coding, quantum teleportation, and quantum key distribution. Here we explore the inner workings of the method in detail, and extend it to multiple stages with a concurrent asymptotic convergence of temporal-mode selectivity to unity. We also complete our analysis of pump-chirp compensation to counter pump-induced nonlinear phase modulation in four-wave mixing implementations.

  12. Controllably releasing long-lived quantum memory for photonic polarization qubit into multiple spatially-separate photonic channels

    NASA Astrophysics Data System (ADS)

    Chen, Lirong; Xu, Zhongxiao; Zeng, Weiqing; Wen, Yafei; Li, Shujing; Wang, Hai

    2016-09-01

    We report an experiment in which long-lived quantum memories for photonic polarization qubits (PPQs) are controllably released into any one of multiple spatially-separate channels. The PPQs are implemented with an arbitrarily-polarized coherent signal light pulses at the single-photon level and are stored in cold atoms by means of electromagnetic-induced-transparency scheme. Reading laser pulses propagating along the direction at a small angle relative to quantum axis are applied to release the stored PPQs into an output channel. By changing the propagating directions of the read laser beam, we controllably release the retrieved PPQs into 7 different photonic output channels, respectively. At a storage time of δt = 5 μs, the least quantum-process fidelity in 7 different output channels is ~89%. At one of the output channels, the measured maximum quantum-process fidelity for the PPQs is 94.2% at storage time of δt = 0.85 ms. At storage time of 6 ms, the quantum-process fidelity is still beyond the bound of 78% to violate the Bell’s inequality. The demonstrated controllable release of the stored PPQs may extend the capabilities of the quantum information storage technique.

  13. Controllably releasing long-lived quantum memory for photonic polarization qubit into multiple spatially-separate photonic channels

    PubMed Central

    Chen, Lirong; Xu, Zhongxiao; Zeng, Weiqing; Wen, Yafei; Li, Shujing; Wang, Hai

    2016-01-01

    We report an experiment in which long-lived quantum memories for photonic polarization qubits (PPQs) are controllably released into any one of multiple spatially-separate channels. The PPQs are implemented with an arbitrarily-polarized coherent signal light pulses at the single-photon level and are stored in cold atoms by means of electromagnetic-induced-transparency scheme. Reading laser pulses propagating along the direction at a small angle relative to quantum axis are applied to release the stored PPQs into an output channel. By changing the propagating directions of the read laser beam, we controllably release the retrieved PPQs into 7 different photonic output channels, respectively. At a storage time of δt = 5 μs, the least quantum-process fidelity in 7 different output channels is ~89%. At one of the output channels, the measured maximum quantum-process fidelity for the PPQs is 94.2% at storage time of δt = 0.85 ms. At storage time of 6 ms, the quantum-process fidelity is still beyond the bound of 78% to violate the Bell’s inequality. The demonstrated controllable release of the stored PPQs may extend the capabilities of the quantum information storage technique. PMID:27667262

  14. LEAP - A Large Area GRB Polarimeter for the ISS

    NASA Astrophysics Data System (ADS)

    McConnell, Mark L.; Baring, Matthew G.; Bloser, Peter F.; Briggs, Michael Stephen; Connaughton, Valerie; Dwyer, Joseph; Gaskin, Jessica; Grove, J. Eric; Gunji, Shuichi; Hartmann, Dieter; Hayashida, Kiyoshi; Hill, Joanne E.; Kippen, R. Marc; Kishimoto, Shunji; Kishimoto, Yuji; Krizmanic, John F.; Lundman, Christoffer; Mattingly, David; McBreen, Sheila; Meegan, Charles A.; Mihara, Tatehiro; Nakamori, Takeshi; Pearce, Mark; Phlips, Bernard; Preece, Robert D.; Produit, Nicolas; Ryan, James M.; Ryde, Felix; Sakamoto, Takanori; Strickman, Mark Samuel; Sturner, Steven J.; Takahashi, Hiromitsu; Toma, Kenji; Vestrand, W. Thomas; Wilson-Hodge, Colleen A.; yatsu, Yoichi; Yonetoku, Daisuke; Zhang, Bing

    2017-08-01

    The LargE Area burst Polarimeter (LEAP) is a mission concept for a wide FOV Compton scatter polarimeter instrument that would be mounted as an external payload on the International Space Station (ISS) in 2022. It has recently been proposed as an astrophysics Mission of Opportunity (MoO), with the primary objective of measuring polarization of the prompt emission of Gamma Ray Bursts (GRBs). It will achieve its science objectives with a simple mission design that features a single instrument based entirely on well-established, flight-proven scintillator-photomultiplier tube (PMT) technologies. LEAP will provide GRB polarization measurements from 30-500 keV and GRB spectroscopy from 5 keV up to 5 MeV, and will self-sufficiently provide the source localization that is required for analysis of the polarization data. The instrument consists of 9 independent polarimeter modules and associated electronics. Each module is a 12 x 12 array of independent plastic and CsI(Tl) scintillator elements, each with individual PMT readout, to identify and measure Compton scatter events. It will provide coverage of GRB spectra over a range that includes most values of Ep. With a total geometric scintillator area of 5000 cm2, LEAP will provide a total effective area for polarization (double scatter) events of ~500 cm2. LEAP will trigger on >200 GRBs within its FOV during a two-year mission. At least 120 GRBs will have sufficient counts to enable localization with an error of <10°. LEAP will detect (in a 2-year mission) ~75 GRBs with a Minimum Detectable Polarization (MDP) better than 30%. If GRBs are polarized at levels >50%, as suggested by published results, LEAP will provide definitive polarization measurements on ~100 GRBs. These data will allow LEAP to differentiate between the intrinsic and geometric classes of GRB models and further distinguish between two geometric models at the 95% confidence level. Detailed time-resolved and/or energy-resolved studies will be conducted for the

  15. Creativity and the Quantum Theory.

    ERIC Educational Resources Information Center

    Goswami, Amit

    1988-01-01

    The idea that creative acts are quantum jumps in the brain's mechanism is explored. Descriptions of the creative process that support the central role of sudden and discontinuous leaps of thought are cited from various philosophers and scientists. Distinctions between the functions of the brain and of computers are drawn. (VW)

  16. Optically detected magnetic resonance study of a type-II GaAs/AlAs multiple quantum well

    NASA Astrophysics Data System (ADS)

    van Kesteren, H. W.; Cosman, E. C.; Greidanus, F. J. A. M.; Dawson, P.; Moore, K. J.; Foxon, C. T.

    1988-07-01

    In a type-II GaAs/AlAs multiple quantum well three optically detected magnetic resonance lines and two level anticrossings were observed. Two of the resonance lines and the two level anticrossings are in agreement with the electronic level scheme of the heavy-hole exciton. The third resonance line is in accordance with a magnetic spin resonance of an unbound electron. These optically detected magnetic resonance measurements open up the possibility to obtain detailed information about the excitons in and the band structure of type-II quantum wells.

  17. Thermal degradation in a trimodal PDMS network by 1H Multiple Quantum NMR

    SciTech Connect

    Giuliani, J R; Gjersing, E L; Chinn, S C; Jones, T V; Wilson, T S; Alviso, C T; Herberg, J L; Pearson, M A; Maxwell, R S

    2007-06-06

    Thermal degradation of a filled, crosslinked siloxane material synthesized from PDMS chains of three different average molecular weights and with two different crosslinking species has been studied by {sup 1}H Multiple Quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting Residual Dipolar Coupling (<{Omega}{sub d}>) values of 200 Hz and 600 Hz, corresponding to chains with high average molecular weight between crosslinks and chains with low average molecular weight between crosslinks or near the multifunctional crosslinking sites. Characterization of the <{Omega}{sub d}> values and changes in <{Omega}{sub d}> distributions present in the material were studied as a function of time at 250 C and indicates significant time dependent degradation. For the domains with low <{Omega}{sub d}>, a broadening in the distribution was observed with aging time. For the domain with high <{Omega}{sub d}>, increases in both the mean <{Omega}{sub d}> and the width in <{Omega}{sub d}> were observed with increasing aging time. Isothermal Thermal Gravimetric Analysis (TGA) reveals a 3% decrease in weight over 20 hours of aging at 250 C. Degraded samples also were analyzed by traditional solid state {sup 1}H NMR techniques and offgassing products were identified by Solid Phase MicroExtraction followed by Gas Chromatography-Mass Spectrometry (SPME GC-MS). The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and post-curing crosslinking that both contribute to embrittlement.

  18. Thermal degradation in a trimodal poly(dimethylsiloxane) network studied by (1)H multiple quantum NMR.

    PubMed

    Giuliani, Jason R; Gjersing, Erica L; Chinn, Sarah C; Jones, Ticora V; Wilson, Thomas S; Alviso, Cynthia T; Herberg, Julie L; Pearson, Mark A; Maxwell, Robert S

    2007-11-15

    Thermal degradation of a filled, cross-linked siloxane material synthesized from poly(dimethylsiloxane) chains of three different average molecular weights and with two different cross-linking species has been studied by (1)H multiple quantum (MQ) NMR methods. Multiple domains of polymer chains were detected by MQ NMR exhibiting residual dipolar coupling () values of 200 and 600 Hz, corresponding to chains with high average molecular weight between cross-links and chains with low average molecular weight between cross-links or near the multifunctional cross-linking sites. Characterization of the values and changes in distributions present in the material were studied as a function of time at 250 degrees C and indicate significant time-dependent degradation. For the domains with low , a broadening in the distribution was observed with aging time. For the domain with high , increases in both the mean and the width in were observed with increasing aging time. Isothermal thermal gravimetric analysis reveals a 3% decrease in weight over 20 h of aging at 250 degrees C. Degraded samples also were analyzed by traditional solid-state (1)H NMR techniques, and off-gassing products were identified by solid-phase microextraction followed by gas chromatography-mass spectrometry. The results, which will be discussed here, suggest that thermal degradation proceeds by complex competition between oxidative chain scissioning and postcuring cross-linking that both contribute to embrittlement.

  19. Investigation of enzymatic C-P bond formation using multiple quantum HCP nuclear magnetic resonance spectroscopy.

    PubMed

    Hu, Kaifeng; Werner, Williard J; Allen, Kylie D; Wang, Susan C

    2015-04-01

    The biochemical mechanism for the formation of the C-P-C bond sequence found in l-phosphinothricin, a natural product with antibiotic and herbicidal activity, remains unclear. To obtain further insight into the catalytic mechanism of PhpK, the P-methyltransferase responsible for the formation of the second C-P bond in l-phosphinothricin, we utilized a combination of stable isotopes and two-dimensional nuclear magnetic resonance spectroscopy. Exploiting the newly emerged Bruker QCI probe (Bruker Corp.), we specifically designed and ran a (13) C-(31) P multiple quantum (1) H-(13) C-(31) P (HCP) experiment in (1) H-(31) P two-dimensional mode directly on a PhpK-catalyzed reaction mixture using (13) CH3 -labeled methylcobalamin as the methyl group donor. This method is particularly advantageous because minimal sample purification is needed to maximize product visualization. The observed 3:1:1:3 multiplet specifically and unequivocally illustrates direct bond formation between (13) CH3 and (31) P. Related nuclear magnetic resonance experiments based upon these principles may be designed for the study of enzymatic and/or synthetic chemical reaction mechanisms.

  20. Barrier potential design criteria in multiple-quantum-well-based solar-cell structures

    NASA Technical Reports Server (NTRS)

    Mohaidat, Jihad M.; Shum, Kai; Wang, W. B.; Alfano, R. R.

    1994-01-01

    The barrier potential design criteria in multiple-quantum-well (MQW)-based solar-cell structures is reported for the purpose of achieving maximum efficiency. The time-dependent short-circuit current density at the collector side of various MQW solar-cell structures under resonant condition was numerically calculated using the time-dependent Schroedinger equation. The energy efficiency of solar cells based on the InAs/Ga(y)In(1-y)As and GaAs/Al(x)Ga(1-x)As MQW structues were compared when carriers are excited at a particular solar-energy band. Using InAs/Ga(y)In(1-y)As MQW structures it is found that a maximum energy efficiency can be achieved if the structure is designed with barrier potential of about 450 meV. The efficiency is found to decline linearly as the barrier potential increases for GaAs/Al(x)Ga(1-x)As MQW-structure-based solar cells.

  1. Strained germanium-tin multiple quantum well microdisk resonators towards a light source on silicon

    NASA Astrophysics Data System (ADS)

    Shang, Colleen K.; Chen, Robert; Gupta, Suyog; Huang, Yi-Chiau; Huo, Yijie; Sanchez, Errol; Kim, Yihwan; Kamins, Theodore I.; Saraswat, Krishna C.; Harris, James S.

    2015-02-01

    Although the development of a monolithically-integrated, silicon-compatible light source has been traditionally limited by the indirect band gaps of Group IV materials, germanium-tin (Ge1-xSnx) is predicted to exhibit direct band gap behavior. In pseudomorphic conditions with materials of smaller lattice constant, the accumulation of compressive strain in Ge1-xSnx counteracts this behavior to prevent the direct band gap transition. One possible approach to compensate for this compressive strain is to introduce tensile strain into the system, which can be achieved by applying an external stressing agent to post-fabricated devices. We describe a suspended Ge0:922Sn0:078 multiple quantum well microdisk resonator cavity strained by 140 nm of highly compressively stressed silicon nitride. Raman shifts and photoluminescence redshifts indicate that an additional 0.23-0.30% strain can be induced in these microdisks with this approach. The ability to tune the optical performance of these resonator structures by strain engineering has the potential to enable the development of low threshold Ge1-xSnx-based lasers on Si.

  2. Germanium-tin interdiffusion in strained Ge/GeSn multiple-quantum-well structure

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Dong, Yuan; Zhou, Qian; Tok, Eng Soon; Yeo, Yee-Chia

    2016-06-01

    The thermal stability and germanium-tin (Ge-Sn) interdiffusion properties were studied in epitaxial Ge/GeSn multiple-quantum-well (MQW) structure. No obvious interdiffusion was observed for annealing temperatures of 300 °C or below, while observable interdiffusion occurred for annealing temperatures of 380 °C and above. High-resolution x-ray diffraction was used to obtain the interdiffusion coefficient by analyzing the decrease rate of Ge/GeSn periodic satellite peaks. The interdiffusion coefficient is much higher, and the activation enthalpy of 1.21 eV is substantially lower in Ge/GeSn MQW structure than that previously reported in silicon-germanium (Si-Ge) systems. When the annealing temperature is increased to above 500 °C, Ge-Sn interdiffusion becomes severe. Some small pits appear on the surface, which should be related to Sn out-diffusion to the Ge cap layer, followed by Sn desorption from the top surface. This work provides insights into the Ge-Sn interdiffusion and Sn segregation behaviors in Ge/GeSn MQW structure, and the thermal budget that may be used for fabrication of devices comprising Ge/GeSn heterostructures.

  3. Barrier potential design criteria in multiple-quantum-well-based solar-cell structures

    NASA Technical Reports Server (NTRS)

    Mohaidat, Jihad M.; Shum, Kai; Wang, W. B.; Alfano, R. R.

    1994-01-01

    The barrier potential design criteria in multiple-quantum-well (MQW)-based solar-cell structures is reported for the purpose of achieving maximum efficiency. The time-dependent short-circuit current density at the collector side of various MQW solar-cell structures under resonant condition was numerically calculated using the time-dependent Schroedinger equation. The energy efficiency of solar cells based on the InAs/Ga(y)In(1-y)As and GaAs/Al(x)Ga(1-x)As MQW structues were compared when carriers are excited at a particular solar-energy band. Using InAs/Ga(y)In(1-y)As MQW structures it is found that a maximum energy efficiency can be achieved if the structure is designed with barrier potential of about 450 meV. The efficiency is found to decline linearly as the barrier potential increases for GaAs/Al(x)Ga(1-x)As MQW-structure-based solar cells.

  4. Ultrafast biexciton spectroscopy in semiconductor quantum dots: evidence for early emergence of multiple-exciton generation

    PubMed Central

    Choi, Younghwan; Sim, Sangwan; Lim, Seong Chu; Lee, Young Hee; Choi, Hyunyong

    2013-01-01

    Understanding multiple-exciton generation (MEG) in quantum dots (QDs) requires in-depth measurements of transient exciton dynamics. Because MEG typically faces competing ultrafast energy-loss intra-band relaxation, it is of central importance to investigate the emerging time-scale of the MEG kinetics. Here, we present ultrafast spectroscopic measurements of the MEG in PbS QDs via probing the ground-state biexciton transients. Specifically, we directly compare the biexciton spectra with the single-exciton ones before and after the intra-band relaxation. Early emergence of MEG is evidenced by observing transient Stark shift and quasi-instantaneous linewidth broadening, both of which take place before the intra-band relaxation. Photon-density-dependent study shows that the broadened biexciton linewidth strongly depends on the MEG-induced extra-exciton generation. Long after the intra-band relaxation, the biexciton broadening is small and the single-exciton state filling is dominant. PMID:24220495

  5. Formation mechanism of highly luminescent silica capsules incorporating multiple hydrophobic quantum dots with various emission wavelengths.

    PubMed

    Li, Chunliang; Murase, Norio

    2013-12-01

    A synthesis process was reconsidered for encapsulating hydrophobic quantum dots (QDs) into silica capsules with high photoluminescent (PL) efficiency. The process comprises three steps: silanization of QD surfaces, seed formation by assembly of the QDs, and coating of the QD seeds with a silica shell. Analysis of the encapsulation mechanism enabled this process to be adapted for application to CdSe-based core-shell QDs with various organic ligands such as oleic acid and with various emission wavelengths. Formation of the seeds is the key step in synthesizing the silica capsules, so that they have high PL efficiency. Due to the differences in QD size and in the affinity of the ligands on their surfaces, the concentration of QDs used in the synthesis must be optimized to maximize emission efficiency. Contrary to an initial assumption, several ligands remained on the QD surfaces even after the QDs were transferred from organic solution to water. This greatly affected the size and PL efficiency of the seeds. Judicious selection of the conditions for seed and silica capsule synthesis resulted in seeds with PL efficiency greater than 70% and in silica capsules encapsulating multiple CdSe/CdZnS QDs with PL efficiency as high as 41%. Silica capsules incorporating QDs with various emission peak wavelengths from green to red were also prepared. The process presented serves as a guideline for encapsulating various types of hydrophobic QDs into silica capsules for biological tagging applications.

  6. Modeling and simulation of magnetic resonance imaging based on intermolecular multiple quantum coherences

    NASA Astrophysics Data System (ADS)

    Cai, Congbo; Dong, Jiyang; Cai, Shuhui; Cheng, En; Chen, Zhong

    2006-11-01

    Intermolecular multiple quantum coherences (iMQCs) have many potential applications since they can provide interaction information between different molecules within the range of dipolar correlation distance, and can provide new contrast in magnetic resonance imaging (MRI). Because of the non-localized property of dipolar field, and the non-linear property of the Bloch equations incorporating the dipolar field term, the evolution behavior of iMQC is difficult to deduce strictly in many cases. In such cases, simulation studies are very important. Simulation results can not only give a guide to optimize experimental conditions, but also help analyze unexpected experimental results. Based on our product operator matrix and the K-space method for dipolar field calculation, the MRI simulation software was constructed, running on Windows operation system. The non-linear Bloch equations are calculated by a fifth-order Cash-Karp Runge-Kutta formulism. Computational time can be efficiently reduced by separating the effects of chemical shifts and strong gradient field. Using this software, simulation of different kinds of complex MRI sequences can be done conveniently and quickly on general personal computers. Some examples were given. The results were discussed.

  7. Optical modes within III-nitride multiple quantum well microdisk cavities

    NASA Astrophysics Data System (ADS)

    Mair, R. A.; Zeng, K. C.; Lin, J. Y.; Jiang, H. X.; Zhang, B.; Dai, L.; Botchkarev, A.; Kim, W.; Morkoç, H.; Khan, M. A.

    1998-03-01

    Optical resonance modes have been observed in optically pumped microdisk cavities fabricated from 50 Å/50 Å GaN/AlxGa1-xN(x˜0.07) and 45 Å/45 Å InxGa1-xN/GaN(x˜0.15) multiple quantum well structures. Microdisks, approximately 9 μm in diameter and regularly spaced every 50 μm, were formed by an ion beam etch process. Individual disks were pumped at 300 and 10 K with 290 nm laser pulses focused to a spot size much smaller than the disk diameter. Optical modes corresponding to (i) the radial mode type with a spacing of 49-51 meV (both TE and TM) and (ii) the Whispering Gallery mode with a spacing of 15-16 meV were observed in the GaN microdisk cavities. The spacings of these modes are consistent with those expected for modes within a resonant cavity of cylindrical symmetry, refractive index, and dimensions of the microdisks under investigation. The GaN-based microdisk cavity is compared with its GaAs counterpart and implications regarding future GaN-based microdisk lasers are discussed.

  8. Recombination Pathways in Green InGaN/GaN Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Lin, Tao; Kuo, Hao Chung; Jiang, Xiao Dong; Feng, Zhe Chuan

    2017-02-01

    This paper reports the transient photoluminescence (PL) properties of an InGaN/GaN multiple quantum well (MQW) light-emitting diode (LED) with green emission. Recombination of localized excitons was proved to be the main microscopic mechanism of green emission in the sample. The PL dynamics were ascribed to two pathways of the exciton recombination, corresponding to the fast decay and the slow decay, respectively. The origins of slow decay and fast decay were assigned to local compositional fluctuations of indium and thickness variations of InGaN layers, respectively. Furthermore, the contributions of two decay pathways to the green PL were found to vary at different emission photon energy. The fraction of fast decay pathway decreased with decreasing photon energy. The slow radiative PL from deep localized exciton recombination suffered less suppression from non-radiative delocalization process, for the higher requested activation energy. All these results supported a clear microscopy mechanism of excitation-emission process of the green MQW LED structure.

  9. Recombination Pathways in Green InGaN/GaN Multiple Quantum Wells.

    PubMed

    Lin, Tao; Kuo, Hao Chung; Jiang, Xiao Dong; Feng, Zhe Chuan

    2017-12-01

    This paper reports the transient photoluminescence (PL) properties of an InGaN/GaN multiple quantum well (MQW) light-emitting diode (LED) with green emission. Recombination of localized excitons was proved to be the main microscopic mechanism of green emission in the sample. The PL dynamics were ascribed to two pathways of the exciton recombination, corresponding to the fast decay and the slow decay, respectively. The origins of slow decay and fast decay were assigned to local compositional fluctuations of indium and thickness variations of InGaN layers, respectively. Furthermore, the contributions of two decay pathways to the green PL were found to vary at different emission photon energy. The fraction of fast decay pathway decreased with decreasing photon energy. The slow radiative PL from deep localized exciton recombination suffered less suppression from non-radiative delocalization process, for the higher requested activation energy. All these results supported a clear microscopy mechanism of excitation-emission process of the green MQW LED structure.

  10. Optimization of TCR and heat transport in group-IV multiple-quantum-well microbolometers

    NASA Astrophysics Data System (ADS)

    Morea, Matthew; Gu, Kevin; Savikhin, Victoria; Fenrich, Colleen S.; Pop, Eric; Harris, James S.

    2016-09-01

    Group-IV semiconductors have the opportunity to have an equivalent or better temperature coefficient of resistance (TCR) than other microbolometer thermistor materials. By using multiple-quantum-well (MQW) structures, their TCR values can be optimized due to a confinement of carriers. Through two approaches - an activation energy approximation and a custom Monte Carlo transfer matrix method - we simulated this effect for a combination of Group-IV semiconductors and their alloys (e.g., SiGe and GeSn) to find the highest possible TCR, while keeping in mind the critical thicknesses of such layers in a MQW epitaxial stack. We calculated the TCR for a critical-thickness-limited Ge0.8Sn0.2/Ge MQW device to be about -1.9 %/K. Although this TCR is lower than similar SiGe/Si MQW thermistors, GeSn offers possible advantages in terms of fabricating suspended devices with its interesting etch-stop properties shown in previous literature. Furthermore, using finite element modeling of heat transport, we looked at another key bolometer parameter: the thermal time constant. The dimensions of a suspended Ge microbolometer's supporting legs were fine-tuned for a target response time of 5 ms, incorporating estimations for the size effects of the nanowire-like legs on thermal conductivity.

  11. Electroabsorption modulators based on bulk GaN films and GaN/AlGaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Kao, Chen-Kai; Bhattacharyya, Anirban; Thomidis, Christos; Paiella, Roberto; Moustakas, Theodore D.

    2011-04-01

    Ultraviolet electroabsorption modulators based on bulk GaN films and on GaN/AlGaN multiple quantum wells were developed and characterized. In both types of devices, the absorption edge at room temperature is dominated by excitonic effects and can be strongly modified through the application of an external electric field. In the bulk devices, the applied voltage causes a broadening and quenching of the excitonic absorption, leading to enhanced transmission. In the quantum-well devices, the external field partially cancels the built-in polarization-induced electric fields in the well layers, thereby increasing the absorption. Unlike optical modulators based on smaller-bandgap zinc blende semiconductors, the bulk devices here are shown to provide similar performance levels as the quantum well devices, which is mainly a consequence of the uniquely large exciton binding energies of nitride semiconductors.

  12. VIS-UV ZnCdO/ZnO multiple quantum well nanowires and the quantification of Cd diffusion.

    PubMed

    Lopez-Ponce, M; Nakamura, A; Suzuki, M; Temmyo, J; Agouram, S; Martínez-Tomás, M C; Muñoz-Sanjosé, V; Lefebvre, P; Ulloa, J M; Muñoz, E; Hierro, A

    2014-06-27

    We report on the growth and microstructure analysis of high Cd content ZnCdO/ZnO multiple quantum wells (MQW) within a nanowire. Heterostructures consisting of ten wells with widths from 0.7 to 10 nm are demonstrated, and show photoluminescence emissions ranging from 3.03 to 1.97 eV. The wells with thicknesses ≦̸2 nm have high radiative efficiencies compared to the thickest ones, consistent with the presence of quantum confinement. However, a nanometric analysis of the Cd profile along the heterostructures shows the presence of Cd diffusion from the ZnCdO well to the ZnO barrier. This phenomenon modifies the band structure and the optical properties of the heterostructure, and is considered in order to correctly identify quantum effects in the ZnCdO/ZnO MQWs.

  13. Design and Synthesis of Antiblinking and Antibleaching Quantum Dots in Multiple Colors via Wave Function Confinement.

    PubMed

    Cao, Hujia; Ma, Junliang; Huang, Lin; Qin, Haiyan; Meng, Renyang; Li, Yang; Peng, Xiaogang

    2016-12-07

    Single-molecular spectroscopy reveals that photoluminescence (PL) of a single quantum dot blinks, randomly switching between bright and dim/dark states under constant photoexcitation, and quantum dots photobleach readily. These facts cast great doubts on potential applications of these promising emitters. After ∼20 years of efforts, synthesis of nonblinking quantum dots is still challenging, with nonblinking quantum dots only available in red-emitting window. Here we report synthesis of nonblinking quantum dots covering most part of the visible window using a new synthetic strategy, i.e., confining the excited-state wave functions of the core/shell quantum dots within the core quantum dot and its inner shells (≤ ∼5 monolayers). For the red-emitting ones, the new synthetic strategy yields nonblinking quantum dots with small sizes (∼8 nm in diameter) and improved nonblinking properties. These new nonblinking quantum dots are found to be antibleaching. Results further imply that the PL blinking and photobleaching of quantum dots are likely related to each other.

  14. Photoinduced Single- and Multiple- Electron Dynamics Processes Enhanced by Quantum Confinement in Lead Halide Perovskite Quantum Dots.

    PubMed

    Vogel, Dayton Jon; Kryjevski, Andrei; Inerbaev, Talgat M; Kilin, Dmitri S

    2017-03-21

    Methyl-ammonium lead iodide perovskite (MAPbI3) is a promising material for photovoltaic devices. A modification of the MAPbI3 into confined nanostructures is expected to further increase efficiency of solar energy conversion. Photo-excited dynamic processes in a MAPbI3 quantum dot (QD) have been modeled by many-body perturbation theory and nonadiabatic dynamics. A photoexcitation is followed by either exciton cooling (EC), its radiative (RR) or non-radiative recombination (NRR), or multi-exciton generation (MEG) processes. Computed times of these processes fall in the order of MEG < EC < RR < NRR, where MEG is in the order of a few femtoseconds, EC at the picosecond range while RR and NRR are in the order of nanoseconds. Computed timescales indicate which electronic transition pathways can contribute to increase in charge collection efficiency. Simulated mechanism relaxation rates show that quantum confinement promotes MEG in MAPbI3 QDs.

  15. Photoinduced Single- and Multiple-Electron Dynamics Processes Enhanced by Quantum Confinement in Lead Halide Perovskite Quantum Dots

    DOE PAGES

    Vogel, Dayton J.; Kryjevski, Andrei; Inerbaev, Talgat; ...

    2017-03-21

    Methylammonium lead iodide perovskite (MAPbI3) is a promising material for photovoltaic devices. A modification of MAPbI3 into confined nanostructures is expected to further increase efficiency of solar energy conversion. Photoexcited dynamic processes in a MAPbI3 quantum dot (QD) have been modeled by many-body perturbation theory and nonadiabatic dynamics. A photoexcitation is followed by either exciton cooling (EC), its radiative (RR) or nonradiative recombination (NRR), or multiexciton generation (MEG) processes. Computed times of these processes fall in the order of MEG < EC < RR < NRR, where MEG is on the order of a few femtoseconds, EC is in themore » picosecond range, while RR and NRR are on the order of nanoseconds. Computed time scales indicate which electronic transition pathways can contribute to increase in charge collection efficiency. Simulated mechanisms of relaxation and their rates show that quantum confinement promotes MEG in MAPbI3 QDs.« less

  16. Properties of multiple quantum wells and their use in high-speed detectors and modulators

    NASA Technical Reports Server (NTRS)

    Bhattacharya, Pallab

    1988-01-01

    Quantum well systems lattice matched to GaAs and InP have emerged as important materials for use in long wavelength optoelectronic devices. Intrinsic problems associated with the growth of these quantum wells by molecular beam epitaxy are discussed and the luminescence properties of state-of-art quantum wells, using novel growth techniques are described. Finally, the properties of detectors, modulators and integrated devices made with these heterojunction materials are described and discussed.

  17. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes

    SciTech Connect

    Mehnke, Frank Kuhn, Christian; Guttmann, Martin; Reich, Christoph; Kolbe, Tim; Rass, Jens; Wernicke, Tim; Kueller, Viola; Knauer, Arne; Lapeyrade, Mickael; Einfeldt, Sven; Weyers, Markus; Kneissl, Michael

    2014-08-04

    The design and Mg-doping profile of AlN/Al{sub 0.7}Ga{sub 0.3}N electron blocking heterostructures (EBH) for AlGaN multiple quantum well (MQW) light emitting diodes (LEDs) emitting below 250 nm was investigated. By inserting an AlN electron blocking layer (EBL) into the EBH, we were able to increase the quantum well emission power and significantly reduce long wavelength parasitic luminescence. Furthermore, electron leakage was suppressed by optimizing the thickness of the AlN EBL while still maintaining sufficient hole injection. Ultraviolet (UV)-C LEDs with very low parasitic luminescence (7% of total emission power) and external quantum efficiencies of 0.19% at 246 nm have been realized. This concept was applied to AlGaN MQW LEDs emitting between 235 nm and 263 nm with external quantum efficiencies ranging from 0.002% to 0.93%. After processing, we were able to demonstrate an UV-C LED emitting at 234 nm with 14.5 μW integrated optical output power and an external quantum efficiency of 0.012% at 18.2 A/cm{sup 2}.

  18. Quantum dynamics of hydrogen interacting with single-walled carbon nanotubes: multiple H-atom adsorbates.

    PubMed

    McAfee, Jason L; Poirier, Bill

    2011-02-21

    In a previous paper [J. L. McAfee and B. Poirier, J. Chem. Phys. 130, 064701 (2009)], using spin-polarized density functional theory (DFT), the authors reported a binding energy of 0.755 eV, for a single hydrogen atom adsorbed on a pristine (unrelaxed) (5,5) single-walled carbon nanotube (SWNT) substrate. A full three-dimensional (3D) potential energy surface (PES) for the SWNT-H system was also developed, and used in a quantum dynamics calculation to compute all rovibrational bound states, and associated equatorial and longitudinal adsorbate migration rates. A highly pronounced preference for the latter migration pathway at ambient temperatures was observed. In this work, we extend the aforementioned study to include multiple H-atom adsorbates. Extensive DFT calculations are performed, in order to ascertain the most relevant dynamical pathways. For two adsorbates, the SWNT-H-H system is found to exhibit highly site-specific binding, as well as long-range correlation and pronounced binding energy enhancement. The latter effect is even more pronounced in the full-hydrogenation limit, increasing the per-adsorbate binding energy to 2.6 eV. To study migration dynamics, a single-hole model is developed, for which the binding energy drops to 2.11 eV. A global 3D PES is developed for the hole migration model, using 40 radial × 18 cylindrical ab initio geometries, fit to a Fourier basis with radially dependent expansion coefficients (rms error 4.9 meV). As compared with the single-adsorbate case, the hole migration PES does not exhibit separate chemisorption and physisorption wells. The barrier to longitudinal migration is also found to be much lower. Quantum dynamics calculations for all rovibrational states are then performed (using a mixed spectral basis/phase-space optimized discrete variable representation), and used to compute longitudinal migration rates. Ramifications for the use of SWNTs as potential hydrogen storage materials are discussed.

  19. Flowing versus Static Conditions for Measuring Multiple Exciton Generation in PbSe Quantum Dots

    SciTech Connect

    Midgett, Aaron G.; Hillhouse, Hugh W.; Hughes, Barbara K.; Nozik, Arthur J.; Beard, Matthew C.

    2010-09-22

    Recent reports question the validity of pulsed fs-laser experiments for measuring the photon-to-exciton quantum yields (QYs) that result from multiple exciton generation (MEG). The repetitive nature of these experiments opens up an alternative relaxation pathway that may produce artificially high results. We present transient-absorption (TA) data for 4.6 and 6.6 nm diameter PbSe quantum dots (QDs) at a variety of pump photon energies. The data are collected under laminar flow conditions with volumetric flow rates ranging from 0 to 150 mL/min (resulting in Reynolds numbers up to 460). The results are modeled with a spatially resolved population balance of generation, recombination, convective replacement, and accumulation of long-lived excited QDs. By comparing the simulations and experiments, the steady-state population of the long-lived QD-excited states and their kinetics are determined for different experimental conditions. We also improve upon reported photon-to-exciton QYs for PbSe QDs. We find differences in the observed TA dynamics between flowing and static conditions that depend upon photon fluence, pump photon energy, and quality of the QD surfaces. For excitation energies below 2 Eg, independent of QD size or photon fluence, we observe no flow rate dependence in the TA dynamics. At excitation energies of hν > 3 Eg, we observe differences between static and flowing conditions that are most pronounced for high photon fluences. At 3.7 Eg and for 4.6 nm PbSe QDs we find a QY of 1.2 ± 0.1 and at 4.5 Eg the QY is 1.55 ± 0.05. With 6.6 nm QDs excited at 4.7 Eg we observe no difference between static and flowing conditions and find a QY of 1.61 ± 0.05. We also find that by treating the surface of QDs, we can decrease the charging probability (Pg ≈ 5 × 10-5) by a factor of 3-4. The observed variations suggest that different QD samples vary regarding their susceptibility to the

  20. Ultrafast carrier capture and Auger recombination in single GaN/InGaN multiple quantum well nanowires

    DOE PAGES

    Boubanga-Tombet, Stephane; Wright, Jeremy B.; Lu, Ping; ...

    2016-11-04

    Ultrafast optical microscopy is an important tool for examining fundamental phenomena in semiconductor nanowires with high temporal and spatial resolution. In this paper, we used this technique to study carrier dynamics in single GaN/InGaN core–shell nonpolar multiple quantum well nanowires. We find that intraband carrier–carrier scattering is the main channel governing carrier capture, while subsequent carrier relaxation is dominated by three-carrier Auger recombination at higher densities and bimolecular recombination at lower densities. Finally, the Auger constants in these nanowires are approximately 2 orders of magnitude lower than in planar InGaN multiple quantum wells, highlighting their potential for future light-emitting devices.

  1. Ultrafast carrier capture and Auger recombination in single GaN/InGaN multiple quantum well nanowires

    SciTech Connect

    Boubanga-Tombet, Stephane; Wright, Jeremy B.; Lu, Ping; Williams, Michael R. C.; Li, Changyi; Wang, George T.; Prasankumar, Rohit P.

    2016-11-04

    Ultrafast optical microscopy is an important tool for examining fundamental phenomena in semiconductor nanowires with high temporal and spatial resolution. In this paper, we used this technique to study carrier dynamics in single GaN/InGaN core–shell nonpolar multiple quantum well nanowires. We find that intraband carrier–carrier scattering is the main channel governing carrier capture, while subsequent carrier relaxation is dominated by three-carrier Auger recombination at higher densities and bimolecular recombination at lower densities. Finally, the Auger constants in these nanowires are approximately 2 orders of magnitude lower than in planar InGaN multiple quantum wells, highlighting their potential for future light-emitting devices.

  2. Monolithic strained-InGaAsP multiple-quantum-well lasers with integrated electroabsorption modulators for active mode locking

    NASA Astrophysics Data System (ADS)

    Sato, Kenji; Wakita, Koichi; Kotaka, Isamu; Kondo, Yasuhiro; Yamamoto, Mitsuo; Takada, Atsushi

    1994-07-01

    Active mode locking by monolithic lasers with integrated electroabsorption modulators using strained-InGaAsP multiple quantum wells is described. The electroabsorption modulator acts as a short optical gate when a sinusoidal voltage is driven at a deep bias point. Pulse widths as short as 2 ps have been obtained at a repetition rate of 16.3 GHz for a 2.5-mm-long monolithic laser.

  3. Plasma Heating in Highly Excited GaN/AlGaN Multiple Quantum Wells

    SciTech Connect

    Botchkarev, A; Chow, W W; Jiang, H X; Lin, J Y; Mair, R; Morkoc, H; Zeng, K C

    1998-10-09

    Plasma Heating in Highly Excited GaN/AIGaN Multiple Quantum @@lvEu Wells w f + 1998 %p, K. C. Zeng, R. Mair, J. Y. Liz and H. X. Jiang a) ` fabrication and understanding of MQW lasers [2-5]. For the design of these lasers, one on RT optical studies. Our results revealed that in the GaN/AIGaN MQWS, plasma heating strongly effects the carrier distribution between the confined and unconfined band-to-band and fke excitonic transitions [7]. In the MQW sample under low the unconfined states as determined from the band structure. sample under high Lxc, we varied the excitation intensity by one order of magnitude from 0.110 to IO. The carrier density is estimated to be about N=1012/cm2 (at UC= 0.1 Io) to 1013/cm2 (at 1=== l.). We plotted the PL spectra for four representative excitation fimction of injected carrier density N (open squares). The ratio starts at a value of about 18% for N=1012/cm2 (& = O. lb), and reaches a value over 64 `XO for N=1013/cm2 (& = regions is a loss to optical gain. The carrier density is ve~ high in our experiment and an electron-hole plasma (EHP) state is expected. Because the carrier transfer process plasma temperature. The laser pump energy is about 4.3 eV, which is far above the energy band gap of the sample studied here. This may result in a hot carrier population carrier densities and plasma temperatures. Using a phenomenological expression based The calculated ratio of carriers in the unconfked to the confined states (Ima~ kf) as a finction of carrier density at different temperatures are plotted in Fig. 3 (solid lines). The figure shows that the experiment results can only be explained by plasma heating of the injected carriers at high & ( TP > TJ. The transparency carrier densities for GaN/AIXGal.XN MQW structures with well thickness from 2 to 4 nm were calculated to be around 1x 1012/cm2 [10]. It is thus obvious from Fig. 3 that under high carrier injection density above the transparency density, the plasma temperature, TP, is no

  4. Leap Before You Look: Information Gathering In the PUCCINI Planner

    NASA Technical Reports Server (NTRS)

    Golden, Keith; Lau, Sonie (Technical Monitor)

    1998-01-01

    Most of the work in planning with incomplete information takes a "look before you leap" perspective: Actions must be guaranteed to have their intended effects before they can be executed. We argue that this approach is impossible to follow in many real-world domains. The agent may not have enough information to ensure that an action will have a given effect in advance of executing it. This paper describes PUCCINI, a partial order planner used to control the Internet Softbot (Etzioni & Weld 1994). PUCCINI takes a different approach to coping with incomplete information: "Leap before you look!" PUCCINI doesn't require actions to be known to have the desired effects before execution. However, it still maintains soundness, by requiring the effects to be verified eventually. We discuss how this is achieved using a simple generalization of causal links.

  5. The role of phases and their interplay in molecular vibrational quantum computing with multiple qubits

    NASA Astrophysics Data System (ADS)

    Troppmann, Ulrike; Gollub, Caroline; de Vivie-Riedle, Regina

    2006-06-01

    Within the scope of molecular quantum computing with vibrational qubits, we analyse the impact of phases that are present during the quantum computation processes. While the phase relation in superposition states and its temporal evolution are crucial to any implementation of quantum computing, we elucidate the special challenge that emerges for phase control of qubits encoded in molecular vibrational eigenstates. Phase correctly prepared superposition states in general exist only for a finite time and with the inherent entanglement in molecular vibrational qubit systems their development displays a complex pattern. We show that the free relative phase evolution in such qubit systems can be utilized for the implementation of quantum phase gates. Moreover, a practical experimental realization of phase correct quantum gates acting on molecular vibrational qubits could be accomplished by a decomposition into laser-induced population transfer and free evolution phase gates. This concept adds to the flexibility in the implementation of quantum gate sequences and algorithms. A modification, where only a reduced number of selected relative phases needs to be adjusted, will make this scheme more robust and versatile. Finally, we also disclose and discuss another key feature for the implementation of phase correct quantum gates, i.e. the dependence of the quantum gate fidelity on the absolute or carrier-envelope phase of the driving femtosecond laserfield.

  6. Performance analysis of quantum access network using code division multiple access model

    NASA Astrophysics Data System (ADS)

    Hu, Linxi; Yang, Can; He, Guangqiang

    2017-06-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61475099 and 61102053), the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (Grant No. KF201405), the Open Fund of IPOC (BUPT) (Grant No. IPOC2015B004), and the Program of State Key Laboratory of Information Security (Grant No. 2016-MS-05).

  7. Time domain terahertz spectroscopy of semiconductor bulk and multiple quantum wells structures

    NASA Astrophysics Data System (ADS)

    Chen, Yue

    A time-domain terahertz spectroscopic system with high source power (average power > 10 nW) and high signal-to- noise ratio (>104) was developed and used to study ultrafast electronic processes in semiconductor structures. The physics of the spectroscopy, the theoretical basis of the interferometry, the model of the electron-electromagnetic field interaction, and the principle of experimental data processing are presented. The first direct measurement of the intervalley scattering time in In 0.53Ga0.47As was performed. The intervalley scattering time constants obtained were τLΓ = 35 fs and τLΓ = 450 fs. The spectroscopic data showed that at low carrier density the carrier- carrier scattering is unimportant. The intervalley deformation potential was obtained from the measured intervalley scattering time constant τ LΓ. The transient conductivity was obtained using time-domain terahertz spectroscopy. The frequency dependent terahertz spectroscopy enabled us to uniquely determine the transient mobility and density. The transient electron mobility is ~5200 cm2/Vs, which is less than the Hall mobility. For large photocarrier densities, this discrepancy is attributed to the additional momentum relaxation associated with electron-hole scattering. Using pump pulses with wavelength of 810 run, the electron trapping time in low-temperature-grown GaAs was accurately determined. The measured trapping time is slightly larger than that observed from a band-edge pump- probe measurements. We argue that the terahertz technique provides the most reliable measure of carrier lifetime due to the unique interaction. The carrier dynamics of low-temperature-grown InGaAs bulk and InGaAs/InAlAs multiple quantum wells were investigated. We were able to differentiate the two dominant mechanisms in the electron decay process, trapping and recombination. A trapping time as fast as 1.3-2.6 ps was observed for photo-excited electrons. The effects of Be-doping and growth temperature on the

  8. A leap forward with UTK s Cray XC30

    SciTech Connect

    Fahey, Mark R

    2014-01-01

    This paper shows a significant productivity leap for several science groups and the accomplishments they have made to date on Darter - a Cray XC30 at the University of Tennessee Knoxville. The increased productivity is due to faster processors and interconnect combined in a new generation from Cray, and yet it still has a very similar programming environment as compared to previous generations of Cray machines that makes porting easy.

  9. Multiple-path Quantum Interference Effects in a Double-Aharonov-Bohm Interferometer.

    PubMed

    Yang, Xf; Liu, Ys

    2010-05-22

    We investigate quantum interference effects in a double-Aharonov-Bohm (AB) interferometer consisting of five quantum dots sandwiched between two metallic electrodes in the case of symmetric dot-electrode couplings by the use of the Green's function equation of motion method. The analytical expression for the linear conductance at zero temperature is derived to interpret numerical results. A three-peak structure in the linear conductance spectrum may evolve into a double-peak structure, and two Fano dips (zero conductance points) may appear in the quantum system when the energy levels of quantum dots in arms are not aligned with one another. The AB oscillation for the magnetic flux threading the double-AB interferometer is also investigated in this paper. Our results show the period of AB oscillation can be converted from 2π to π by controlling the difference of the magnetic fluxes threading the two quantum rings.

  10. Optical Control of Intersubband Absorption in a Multiple Quantum Well-Embedded Semiconductor Microcravity

    NASA Technical Reports Server (NTRS)

    Liu, Ansheng; Ning, Cun-Zheng

    2000-01-01

    Optical intersubband response of a multiple quantum well (MQW)-embedded microcavity driven by a coherent pump field is studied theoretically. The n-type doped MQW structure with three subbands in the conduction band is sandwiched between a semi-infinite medium and a distributed Bragg reflector (DBR). A strong pump field couples the two upper subbands and a weak field probes the two lower subbands. To describe the optical response of the MQW-embedded microcavity, we adopt a semi-classical nonlocal response theory. Taking into account the pump-probe interaction, we derive the probe-induced current density associated with intersubband transitions from the single-particle density-matrix formalism. By incorporating the current density into the Maxwell equation, we solve the probe local field exactly by means of Green's function technique and the transfer-matrix method. We obtain an exact expression for the probe absorption coefficient of the microcavity. For a GaAs/Al(sub x)Ga(sub 1-x)As MQW structure sandwiched between a GaAs/AlAs DBR and vacuum, we performed numerical calculations of the probe absorption spectra for different parameters such as pump intensity, pump detuning, and cavity length. We find that the probe spectrum is strongly dependent on these parameters. In particular, we find that the combination of the cavity effect and the Autler-Townes effect results in a triplet in the optical spectrum of the MQW system. The optical absorption peak value and its location can be feasibly controlled by varying the pump intensity and detuning.

  11. The Kaye effect revisited: High speed imaging of leaping shampoo

    NASA Astrophysics Data System (ADS)

    Versluis, Michel; Blom, Cock; van der Meer, Devaraj; van der Weele, Ko; Lohse, Detlef

    2003-11-01

    When a visco-elastic fluid such as shampoo or shower gel is poured onto a flat surface the fluid piles up forming a heap on which rather irregular combinations of fluid buckling, coiling and folding are observed. Under specific conditions a string of fluid leaps from the heap and forms a steady jet fed by the incoming stream. Momentum transfer of the incoming jet, combined with the shear-thinning properties of the fluid, lead to a spoon-like dimple in the highly viscous fluid pool in which the jet recoils. The jet can be stable for several seconds. This effect is known as the Kaye effect. In order to reveal its mechanism we analyzed leaping shampoo through high-speed imaging. We studied the jet formation, jet stability and jet disruption mechanisms. We measured the velocity of both the incoming and recoiled jet, which was found to be thicker and slower. By inclining the surface on which the fluid was poured we observed jets leaping at upto five times.

  12. RESEARCH NOTE An improved leap-frog rotational algorithm

    NASA Astrophysics Data System (ADS)

    Svanberg, Marcus

    A new implicit leap-frog algorithm for the integration of rigid body rotational motion is presented. Orientations are represented by quaternions and the algorithm is compared with three existing leap-frog integrators, by solving the classical equations of motion for a (H O) cluster. We find that the present scheme exhibits superior energy conservation properties, especially for integration times of about 10 ps or longer. Contrary to previous algorithms, the present one behaves as a true Verlet integrator, where the degree of energy conservation is independent of the length of the trajectory. The method is similar to the implicit scheme proposed by D. Fincham (1992, Molec. Simulation, 8, 165), with the difference that selfconsistent quaternions, as well as their time derivatives, are obtained by iteration at the mid-timestep instead of after the complete timestep. A slight modification of either the explicit or the implicit leap-frog rotational algorithm in existing molecular dynamics programs may thus lead to significant improvements of energy conservation, as long as this property is not dominated by other sources such as errors due to potential truncation. It is demonstrated that the present algorithm can be used with timesteps as large as 4 fs in water simulations, and still produce stable trajectories of 10 ns duration. 2 20

  13. Multiple quantum filtered 23Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i

    PubMed Central

    Eykyn, Thomas R.; Aksentijević, Dunja; Aughton, Karen L.; Southworth, Richard; Fuller, William; Shattock, Michael J.

    2015-01-01

    We investigate the potential of multiple quantum filtered (MQF) 23Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32 ± 6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the 23Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM3SA mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered 23Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation. PMID:26196304

  14. Multiple quantum filtered (23)Na NMR in the Langendorff perfused mouse heart: Ratio of triple/double quantum filtered signals correlates with [Na]i.

    PubMed

    Eykyn, Thomas R; Aksentijević, Dunja; Aughton, Karen L; Southworth, Richard; Fuller, William; Shattock, Michael J

    2015-09-01

    We investigate the potential of multiple quantum filtered (MQF) (23)Na NMR to probe intracellular [Na]i in the Langendorff perfused mouse heart. In the presence of Tm(DOTP) shift reagent the triple quantum filtered (TQF) signal originated largely from the intracellular sodium pool with a 32±6% contribution of the total TQF signal arising from extracellular sodium, whilst the rank 2 double-quantum filtered signal (DQF), acquired with a 54.7° flip-angle pulse, originated exclusively from the extracellular sodium pool. Given the different cellular origins of the (23)Na MQF signals we propose that the TQF/DQF ratio can be used as a semi-quantitative measure of [Na]i in the mouse heart. We demonstrate a good correlation of this ratio with [Na]i measured with shift reagent at baseline and under conditions of elevated [Na]i. We compare the measurements of [Na]i using both shift reagent and TQF/DQF ratio in a cohort of wild type mouse hearts and in a transgenic PLM(3SA) mouse expressing a non-phosphorylatable form of phospholemman, showing a modest but measurable elevation of baseline [Na]i. MQF filtered (23)Na NMR is a potentially useful tool for studying normal and pathophysiological changes in [Na]i, particularly in transgenic mouse models with altered Na regulation.

  15. Correlation between the structural and cathodoluminescence properties in InGaN/GaN multiple quantum wells with large number of quantum wells

    SciTech Connect

    Yang, Jing; Zhao, Degang Jiang, Desheng; Chen, Ping; Zhu, Jianjun; Liu, Zongshun; Le, Lingcong; He, Xiaoguang; Li, Xiaojing; Wang, Hui; Yang, Hui; Jahn, Uwe

    2014-09-01

    Cathodoluminescence (CL) characteristics on 30-period InGaN/GaN multiple quantum well (MQW) solar cell structures are investigated, revealing the relationship between optical and structural properties of the MQW structures with a large number of quantum wells. In the bottom MQW layers, a blueshift of CL peak along the growth direction is found and attributed to the decrease of indium content due to the compositional pulling effect. An obvious split of emission peak and a redshift of the main emission energy are found in the top MQW layers when the MQW grows above the critical layer thickness. They are attributed to the segregation of In-rich InGaN clusters rather than the increase of indium content in quantum well layer. The MQW structure is identified to consist of two regions: a strained one in the bottom, where the indium content is gradually decreased, and a partly relaxed one in the top with segregated In-rich InGaN clusters.

  16. Continuous-variable quantum teleportation with non-Gaussian entangled states generated via multiple-photon subtraction and addition

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Hou, Li-Li; Chen, Xian-Feng; Xu, Xue-Fen

    2015-06-01

    We theoretically analyze the Einstein-Podolsky-Rosen (EPR) correlation, the quadrature squeezing, and the continuous-variable quantum teleportation when considering non-Gaussian entangled states generated by applying multiple-photon subtraction and multiple-photon addition to a two-mode squeezed vacuum state (TMSVs). Our results indicate that in the case of the multiple-photon-subtracted TMSVs with symmetric operations, the corresponding EPR correlation, the two-mode squeezing degree, the sum squeezing, and the fidelity of teleporting a coherent state or a squeezed vacuum state can be enhanced for any squeezing parameter r and these enhancements increase with the number of subtracted photons in the low-squeezing regime, while asymmetric multiple-photon subtractions will generally reduce these quantities. For the multiple-photon-added TMSVs, although it holds stronger entanglement, its EPR correlation, two-mode squeezing, sum squeezing, and the fidelity of a coherent state are always smaller than that of the TMSVs. Only when considering the case of teleporting a squeezed vacuum state does the symmetric photon addition make somewhat of an improvement in the fidelity for large-squeezing parameters. In addition, we analytically prove that a one-mode multiple-photon-subtracted TMSVs is equivalent to that of the one-mode multiple-photon-added one. And one-mode multiple-photon operations will diminish the above four quantities for any squeezing parameter r .

  17. In-plane commensurate GaN/AlN junctions: Single-layer composite structures, single and multiple quantum wells and quantum dots

    NASA Astrophysics Data System (ADS)

    Onen, A.; Kecik, D.; Durgun, E.; Ciraci, S.

    2017-04-01

    In-plane composite structures constructed of the stripes or core/shells of single-layer GaN and AlN, which are joined commensurately, display a diversity of electronic properties that can be tuned by the size of their constituents. In heterostructures, the dimensionality of the electrons changes from two dimensional (2D) to one dimensional (1D) upon their confinements in wide constituent stripes, leading to the type-I band alignment and hence multiple quantum well structure in the direct space. The δ doping of one wide stripe by another narrow stripe results in local narrowing or widening of the band gap. A single quantum well structure is acquired from the finite-size AlN-GaN-AlN junctions. In a patterned array of GaN/AlN core/shells, the dimensionality of the electronic states is reduced from two dimensional to zero dimensional, forming multiple quantum dots in large GaN cores, while 2D electrons propagate in multiply connected AlN shell as if they are in a supercrystal. A consistent and detailed discussion of the effects of confinement in momentum and direct spaces is provided. As a result of confinement, the variation of the band gap in the direct space is found to be rather different from the edges of the conduction and valence bands inferred from the band edges of constituent 2D single-layer GaN and AlN. Even if all the results in this study pertain to the free-standing single-layer composite structures, the effects of the different substrates over which these composites can grow are examined in detail. This study unveils the potential of composite structures in designing novel nanomaterials. These predictions are obtained from first-principles calculations based on density functional theory on 2D GaN and AlN compound semiconductors which were synthesized recently.

  18. 19F single-quantum and 19F-33S heteronuclear multiple-quantum coherence NMR of SF6 in thermotropic nematogens and in the gas phase.

    PubMed

    Tervonen, Henri; Saunavaara, Jani; Ingman, L Petri; Jokisaari, Jukka

    2006-08-24

    (19)F single-quantum (SQC) and (19)F-(33)S heteronuclear multiple-quantum coherence (HMQC) NMR spectroscopy of sulfur hexafluoride (SF(6)) dissolved in thermotropic liquid crystals (TLCs) were used to investigate the properties of TLCs. On one hand, environmental effects on the NMR parameters of SF(6), (19)F nuclear shielding, (19)F-(33)S spin-spin coupling, secondary isotope effects of sulfur on (19)F shielding, and the self-diffusion coefficient in the direction of the external magnetic field were studied as well. The temperature dependence of the (19)F shielding of SF(6) in TLCs was modeled with a function that takes into account the properties of both TLC and SF(6). It appears that the TLC environment deforms the electronic system of SF(6) so that the (19)F shielding tensor becomes slightly anisotropic, with the anisotropy being from -0.5 to -1.4 ppm, depending upon the TLC solvent. On the contrary, no sign of residual dipolar coupling between (19)F and (33)S was found, meaning that the so-called deformational effects, which arise from the interaction between vibrational and reorientational motions of the molecule, on the geometry of the molecule are insignificant. Diffusion activation energies, E(a), were determined from the temperature dependence of the self-diffusion coefficients. In each TLC, E(a) increases when moving from an isotropic phase to a nematic phase. The spin-spin coupling constant, J((19)F,(33)S), increases by ca. 10 Hz when moving from the gas phase to TLC solutions. The secondary isotope shifts of (19)F shielding are practically independent of TLC solvent and temperature. For the first time, (19)F-(33)S heteronuclear multiple-quantum NMR spectra were recorded for SF(6) in the gas phase and in a liquid-crystalline solution.

  19. High efficiency InGaN/GaN light emitting diodes with asymmetric triangular multiple quantum wells

    SciTech Connect

    Chang, Chiao-Yun; Li, Hen; Lu, Tien-Chang

    2014-03-03

    In this study, we demonstrated high efficiency InGaN/GaN light emitting diodes (LEDs) with asymmetric triangular multiple quantum wells (MQWs). Asymmetric triangular MQWs not only contribute to uniform carrier distribution in InGaN/GaN MQWs but also yield a low Auger recombination rate. In addition, asymmetric triangular MQWs with gallium face-oriented inclination band profiles can be immune from the polarization charge originating from typical c-plane InGaN/GaN quantum well structures. In the experiment, LEDs incorporated with asymmetric triangular MQWs with gallium face-oriented inclination band profiles exhibited a 60.0% external quantum efficiency at 20 mA and a 27.0% efficiency droop at 100 mA (corresponding to a current density of 69 A/cm{sup 2}), which accounted for an 11.7% efficiency improvement and a 31.1% droop reduction compared with symmetric square quantum well structure LEDs.

  20. LEAP Phase II, Net Energy Gain From Laser Fields in Vacuum

    SciTech Connect

    Barnes, C.D.; Colby, E.R.; Plettner, T.; /SLAC /Stanford U., Appl. Mech. Dept.

    2005-09-27

    The current Laser Electron Acceleration Program (LEAP) seeks to modulate the energy of an electron bunch by interaction of the electrons with a copropagating pair of crossed laser beams at 800 nm. We present an optical injector design for a LEAP cell so that it can be used to give net energy gain to an electron bunch. Unique features of the design are discussed which will allow this net energy gain and which will also provide a robust signature for the LEAP interaction.

  1. Multiple Metamagnetic Quantum Criticality in Sr_{3}Ru_{2}O_{7}.

    PubMed

    Tokiwa, Y; Mchalwat, M; Perry, R S; Gegenwart, P

    2016-06-03

    Bilayer strontium ruthenate Sr_{3}Ru_{2}O_{7} displays pronounced non-Fermi liquid behavior at magnetic fields around 8 T, applied perpendicular to the ruthenate planes, which previously has been associated with an itinerant metamagnetic quantum critical end point (QCEP). We focus on the magnetic Grüneisen parameter Γ_{H}, which is the most direct probe to characterize field-induced quantum criticality. We confirm quantum critical scaling due to a putative two-dimensional QCEP near 7.845(5) T, which is masked by two ordered phases A and B, identified previously by neutron scattering. In addition, we find evidence for a QCEP at 7.53(2) T and determine the quantum critical regimes of both instabilities and the effect of their superposition.

  2. Multiple Metamagnetic Quantum Criticality in Sr3 Ru2 O7

    NASA Astrophysics Data System (ADS)

    Tokiwa, Y.; Mchalwat, M.; Perry, R. S.; Gegenwart, P.

    2016-06-01

    Bilayer strontium ruthenate Sr3 Ru2 O7 displays pronounced non-Fermi liquid behavior at magnetic fields around 8 T, applied perpendicular to the ruthenate planes, which previously has been associated with an itinerant metamagnetic quantum critical end point (QCEP). We focus on the magnetic Grüneisen parameter ΓH, which is the most direct probe to characterize field-induced quantum criticality. We confirm quantum critical scaling due to a putative two-dimensional QCEP near 7.845(5) T, which is masked by two ordered phases A and B , identified previously by neutron scattering. In addition, we find evidence for a QCEP at 7.53(2) T and determine the quantum critical regimes of both instabilities and the effect of their superposition.

  3. Simultaneous SU(2) rotations on multiple quantum dot exciton qubits using a single shaped pulse

    NASA Astrophysics Data System (ADS)

    Mathew, Reuble; Yang, Hong Yi Shi; Hall, Kimberley C.

    2015-10-01

    Recent experimental demonstration of a parallel (π ,2 π ) single qubit rotation on excitons in two distant quantum dots [Nano Lett. 13, 4666 (2013), 10.1021/nl4018176] is extended in numerical simulations to the design of pulses for more general quantum state control, demonstrating the feasibility of full SU(2) rotations of each exciton qubit. Our results show that simultaneous high-fidelity quantum control is achievable within the experimentally accessible parameter space for commercial Fourier-domain pulse shaping systems. The identification of a threshold of distinguishability for the two quantum dots (QDs) for achieving high-fidelity parallel rotations, corresponding to a difference in transition energies of ˜0.25 meV , points to the possibility of controlling more than 10 QDs with a single shaped optical pulse.

  4. Optimizing the multiple quantum well thickness of an InGaN blue light emitting diode

    NASA Astrophysics Data System (ADS)

    Xu, Bing; Zhao, Jun Liang; Wang, Shu Guo; Dai, Hai Tao; Yu, Sheng-Fu; Lin, Ray-Ming; Chu, Fu-Chuan; Huang, Chou-Hsiung; Sun, Xiao Wei

    2013-03-01

    InGaN/GaN blue light emitting diodes with varied quantum well thickness from 2.4 nm to 3.6 nm are fabricated and characterized by atmosphere pressure metalorganic chemical vapor deposition (AP-MOCVD). Experimental results show that the exciton localization effect is enhanced from 21.76 to 23.48 by increasing the quantum well thickness from 2.4 nm to 2.7 nm. However, with the further increase of quantum well thickness, the exciton localization effect becomes weaker. Meanwhile, the peak wavelength of electroluminescence redshift with the increase of well thickness due to the larger quantum confined Stark effect (QCSE). In addition, the efficiency droop can be improved by increasing the well thickness.

  5. Michaelis-Menten speeds up tau-leaping under a wide range of conditions.

    PubMed

    Wu, Sheng; Fu, Jin; Cao, Yang; Petzold, Linda

    2011-04-07

    This paper examines the benefits of Michaelis-Menten model reduction techniques in stochastic tau-leaping simulations. Results show that although the conditions for the validity of the reductions for tau-leaping remain the same as those for the stochastic simulation algorithm (SSA), the reductions result in a substantial speed-up for tau-leaping under a different range of conditions than they do for SSA. The reason of this discrepancy is that the time steps for SSA and for tau-leaping are determined by different properties of system dynamics.

  6. Michaelis–Menten speeds up tau-leaping under a wide range of conditions

    PubMed Central

    Wu, Sheng; Fu, Jin; Cao, Yang; Petzold, Linda

    2011-01-01

    This paper examines the benefits of Michaelis–Menten model reduction techniques in stochastic tau-leaping simulations. Results show that although the conditions for the validity of the reductions for tau-leaping remain the same as those for the stochastic simulation algorithm (SSA), the reductions result in a substantial speed-up for tau-leaping under a different range of conditions than they do for SSA. The reason of this discrepancy is that the time steps for SSA and for tau-leaping are determined by different properties of system dynamics. PMID:21476748

  7. Quantum Darwinism

    SciTech Connect

    Zurek, Wojciech H

    2008-01-01

    Quantum Darwinism - proliferation, in the environment, of multiple records of selected states of the system (its information-theoretic progeny) - explains how quantum fragility of individual state can lead to classical robustness of their multitude.

  8. Optically controlled reflection modulator using GaAs-AlGaAs n-i-p-i/multiple-quantum-well structures

    NASA Technical Reports Server (NTRS)

    Law, K.-K.; Simes, R. J.; Coldren, L. A.; Gossard, A. C.; Maserjian, J.

    1989-01-01

    An optically controlled reflection modulator has been demonstrated that consists of a combination of a GaAs-AlGaAs n-i-p-i doping structure with a multiple-quantum-well structures on top of a distributed Bragg reflector, all grown by MBE. A modulation of approximately 60 percent is obtained on the test structure, corresponding to a differential change of absorption coefficient in the quantum wells of approximately 7500/cm. Changes in reflectance can be observed with a control beam power as low as 1.5 microW. This device structure has the potential of being developed as an optically addressed spatial light modulator for optical information processing.

  9. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory.

    PubMed

    Parigi, Valentina; D'Ambrosio, Vincenzo; Arnold, Christophe; Marrucci, Lorenzo; Sciarrino, Fabio; Laurat, Julien

    2015-07-13

    The full structuration of light in the transverse plane, including intensity, phase and polarization, holds the promise of unprecedented capabilities for applications in classical optics as well as in quantum optics and information sciences. Harnessing special topologies can lead to enhanced focusing, data multiplexing or advanced sensing and metrology. Here we experimentally demonstrate the storage of such spatio-polarization-patterned beams into an optical memory. A set of vectorial vortex modes is generated via liquid crystal cell with topological charge in the optic axis distribution, and preservation of the phase and polarization singularities is demonstrated after retrieval, at the single-photon level. The realized multiple-degree-of-freedom memory can find applications in classical data processing but also in quantum network scenarios where structured states have been shown to provide promising attributes, such as rotational invariance.

  10. Picosecond excitonic absorption recovery of 100 nm GaAs/AlGaAs narrow multiple quantum-well wires

    NASA Astrophysics Data System (ADS)

    Tackeuchi, Atsushi; Kitada, Hideki; Arimoto, Hiroshi; Sugiyama, Yoshihiro; Endoh, Akira; Nakata, Yoshiaki; Inata, Tsuguo; Muto, Shunichi

    1991-08-01

    We report the time-resolved absorption measurement of narrow multiple quantum-well (MQW) wires to investigate their fast recoveries from excitonic absorption bleaching. Wires down to 130 nm were fabricated from MQWs using focused ion beam lithography and electron cyclotron-resonance chlorine-plasma etching. In this structure, the photoexcited carriers diffuse toward the sidewalls and recombine on the surface of the sidewalls. We show that the strong optical nonlinearity of excitons is preserved, even in wires of 130 nm width, and having a fast recovery time in the picosecond region. We also briefly discuss the possibility of making quantum wires which have a faster recovery time and larger optical nonlinearity.

  11. Multiple Exciton Generation Solar Cells Using CdSe Quantum Dots

    NASA Astrophysics Data System (ADS)

    Gebreselassie, Haftom Mesfin; Sharma, R. B.; Chander, Nikhil

    2011-10-01

    Experimental and Simulation works of Nanostructured Solar Cells Using CdSe Quantum Dots have been analyzed and investigated. CdSe quantum dots have been synthesized from non coordinating and high boiling solvent Octadecene and a series of increasing CdSe particle sizes are produced. The synthesized CdSe quantum dots are highly examined under a Transmission Electron Microscope and four images of different sizes of CdSe quantum dots (5.8 nm, 6.4 nm, 7.0 nm and 7.7 nm) have been obtained. A 1.1×1.1 cm2 TiO2 electrode is prepared using indium tin oxide conducting glass and TiO2 nanoparticles. The Oleic acid terminated CdSe quantum dots are separated from the octadecene by using 100% ethanol and centrifuge machine of spin about 4000 rpm until the shaking gave no longer suspension. The CdSe quantum dot (5.8 nm) was adsorbed on TiO2 photoelectrode and used as sensitizer. The relationship of Bandgap energy, Emission wavelength with respect to quantum dot size have been simulated and investigated. In this paper work, a sandwich type cell configuration which is made up of TiO2 photoelectrode, graphite coated counter electrode, an electrolyte of iodine and potassium iodide have been used. This sandwich type cell has been exposed to sun light and we have achieved 0.32 V and 0.2 mA cm-2 of potential difference and current respectively.

  12. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 10{sup 18 }cm{sup −3} was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  13. Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions

    SciTech Connect

    Hammersley, S.; Dawson, P.; Kappers, M. J.; Massabuau, F. C.-P.; Sahonta, S.-L.; Oliver, R. A.; Humphreys, C. J.

    2015-09-28

    InGaN-based light emitting diodes and multiple quantum wells designed to emit in the green spectral region exhibit, in general, lower internal quantum efficiencies than their blue-emitting counter parts, a phenomenon referred to as the “green gap.” One of the main differences between green-emitting and blue-emitting samples is that the quantum well growth temperature is lower for structures designed to emit at longer wavelengths, in order to reduce the effects of In desorption. In this paper, we report on the impact of the quantum well growth temperature on the optical properties of InGaN/GaN multiple quantum wells designed to emit at 460 nm and 530 nm. It was found that for both sets of samples increasing the temperature at which the InGaN quantum well was grown, while maintaining the same indium composition, led to an increase in the internal quantum efficiency measured at 300 K. These increases in internal quantum efficiency are shown to be due reductions in the non-radiative recombination rate which we attribute to reductions in point defect incorporation.

  14. Strong electronic interaction and multiple quantum Hall ferromagnetic phases in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Datta, Biswajit; Dey, Santanu; Samanta, Abhisek; Agarwal, Hitesh; Borah, Abhinandan; Watanabe, Kenji; Taniguchi, Takashi; Sensarma, Rajdeep; Deshmukh, Mandar M.

    2017-02-01

    Quantum Hall effect provides a simple way to study the competition between single particle physics and electronic interaction. However, electronic interaction becomes important only in very clean graphene samples and so far the trilayer graphene experiments are understood within non-interacting electron picture. Here, we report evidence of strong electronic interactions and quantum Hall ferromagnetism seen in Bernal-stacked trilayer graphene. Due to high mobility ~500,000 cm2 V-1 s-1 in our device compared to previous studies, we find all symmetry broken states and that Landau-level gaps are enhanced by interactions; an aspect explained by our self-consistent Hartree-Fock calculations. Moreover, we observe hysteresis as a function of filling factor and spikes in the longitudinal resistance which, together, signal the formation of quantum Hall ferromagnetic states at low magnetic field.

  15. Strong electronic interaction and multiple quantum Hall ferromagnetic phases in trilayer graphene.

    PubMed

    Datta, Biswajit; Dey, Santanu; Samanta, Abhisek; Agarwal, Hitesh; Borah, Abhinandan; Watanabe, Kenji; Taniguchi, Takashi; Sensarma, Rajdeep; Deshmukh, Mandar M

    2017-02-20

    Quantum Hall effect provides a simple way to study the competition between single particle physics and electronic interaction. However, electronic interaction becomes important only in very clean graphene samples and so far the trilayer graphene experiments are understood within non-interacting electron picture. Here, we report evidence of strong electronic interactions and quantum Hall ferromagnetism seen in Bernal-stacked trilayer graphene. Due to high mobility ∼500,000 cm(2 )V(-1 )s(-1) in our device compared to previous studies, we find all symmetry broken states and that Landau-level gaps are enhanced by interactions; an aspect explained by our self-consistent Hartree-Fock calculations. Moreover, we observe hysteresis as a function of filling factor and spikes in the longitudinal resistance which, together, signal the formation of quantum Hall ferromagnetic states at low magnetic field.

  16. Strong electronic interaction and multiple quantum Hall ferromagnetic phases in trilayer graphene

    PubMed Central

    Datta, Biswajit; Dey, Santanu; Samanta, Abhisek; Agarwal, Hitesh; Borah, Abhinandan; Watanabe, Kenji; Taniguchi, Takashi; Sensarma, Rajdeep; Deshmukh, Mandar M.

    2017-01-01

    Quantum Hall effect provides a simple way to study the competition between single particle physics and electronic interaction. However, electronic interaction becomes important only in very clean graphene samples and so far the trilayer graphene experiments are understood within non-interacting electron picture. Here, we report evidence of strong electronic interactions and quantum Hall ferromagnetism seen in Bernal-stacked trilayer graphene. Due to high mobility ∼500,000 cm2 V−1 s−1 in our device compared to previous studies, we find all symmetry broken states and that Landau-level gaps are enhanced by interactions; an aspect explained by our self-consistent Hartree–Fock calculations. Moreover, we observe hysteresis as a function of filling factor and spikes in the longitudinal resistance which, together, signal the formation of quantum Hall ferromagnetic states at low magnetic field. PMID:28216666

  17. Mechanical characterization of densely welded Apache Leap tuff

    SciTech Connect

    Fuenkajorn, K.; Daemen, J.J.K.

    1991-06-01

    An empirical criterion is formulated to describe the compressive strength of the densely welded Apache Leap tuff. The criterion incorporates the effects of size, L/D ratio, loading rate and density variations. The criterion improves the correlation between the test results and the failure envelope. Uniaxial and triaxial compressive strengths, Brazilian tensile strength and elastic properties of the densely welded brown unit of the Apache Leap tuff have been determined using the ASTM standard test methods. All tuff samples are tested dry at room temperature (22 {plus_minus} 2{degrees}C), and have the core axis normal to the flow layers. The uniaxial compressive strength is 73.2 {plus_minus} 16.5 MPa. The Brazilian tensile strength is 5.12 {plus_minus} 1.2 MPa. The Young`s modulus and Poisson`s ratio are 22.6 {plus_minus} 5.7 GPa and 0.20 {plus_minus} 0.03. Smoothness and perpendicularity do not fully meet the ASTM requirements for all samples, due to the presence of voids and inclusions on the sample surfaces and the sample preparation methods. The investigations of loading rate, L/D radio and cyclic loading effects on the compressive strength and of the size effect on the tensile strength are not conclusive. The Coulomb strength criterion adequately represents the failure envelope of the tuff under confining pressures from 0 to 62 MPa. Cohesion and internal friction angle are 16 MPa and 43 degrees. The brown unit of the Apache Leap tuff is highly heterogeneous as suggested by large variations of the test results. The high intrinsic variability of the tuff is probably caused by the presence of flow layers and by nonuniform distributions of inclusions, voids and degree of welding. Similar variability of the properties has been found in publications on the Topopah Spring tuff at Yucca Mountain. 57 refs., 32 figs., 29 tabs.

  18. Efficiency enhancement of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Lin; Lin, Chien-Chung; Han, Hau-Vei; Chen, Hsin-Chu; Chen, Kuo-Ju; Lai, Wei-Chi; Sheu, Jin-Kong; Lai, Fang-I.; Yu, Peichen; Kuo, Hao-Chung

    2013-03-01

    In recent year, InGaN-based alloy was also considered for photovoltaic devices owing to the distinctive material properties which are benefit photovoltaic performance. However, the Indium tin oxide (ITO) layer on top, which plays a role of transparent conductive oxide (TCO), can absorb UV photons without generating photocurrent. Also, the thin absorber layer in the device, which is consequent result after compromising with limited crystal quality, has caused insufficient light absorption. In this report, we propose an approach for solving these problems. A hybrid design of InGaN/GaN multiple quantum wells (MQWs) solar cells combined with colloidal CdS quantum dots (QDs) and back side distributed Bragg reflectors (DBRs) has been demonstrated. CdS QDs provide down-conversion effect at UV regime to avoid absorption of ITO. Moreover, CdS QDs also exhibit anti-reflective feature. DBRs at the back side have effectively reflected the light back into the absorber layer. CdS QDs enhance the external quantum efficiency (EQE) for light with wavelength shorter than 400 nm, while DBRs provide a broad band enhancement in EQE, especially within the region of 400 nm ~ 430 nm in wavelength. CdS QDs effectively achieved a power conversion efficiency enhancement as high as 7.2% compared to the device without assistance of CdS QDs. With the participation of DBRs, the power conversion efficiency enhancement has been further boosted to 14%. We believe that the hybrid design of InGaN/GaN MQWs solar cells with QDs and DBRs can be a method for high efficiency InGaN/GaN MQWs solar cells.

  19. A core-multiple shell nanostructure enabling concurrent upconversion and quantum cutting for photon management.

    PubMed

    Shao, Wei; Chen, Guanying; Ohulchanskyy, Tymish Y; Yang, Chunhui; Ågren, Hans; Prasad, Paras N

    2017-02-02

    Photon management enables the manipulation of the number of input photons by conversion of two or more light quanta into one (upconversion) or vice versa (quantum cutting). Simultaneous realization of both these processes in a single unit provides unique opportunities of efficient utilization of photons throughout a broad spectral range. Yet, concurrent realization of these two parallel optical processes in one single unit remains elusive, limiting its impact on many existing or possible future applications such as for panchromatic photovoltaics. Here, we describe an epitaxial active core/inert shell/active shell/inert shell fluoride nanostructure to implement upconversion and quantum cutting within spatially confined and isolated rare-earth-doped active domains. The core area transforms infrared photons through trivalent erbium (Er(3+)) ions into three- and two-photon upconverted visible and near infrared luminescence, while the second shell domain splits an excitation photon into two near infrared photons through cooperative quantum cutting from one trivalent terbium ion (Tb(3+)) to two trivalent ytterbium ions (Yb(3+)). The inert layer in between the active domains is able to effectively suppress the destructive interference between upconversion and quantum cutting, while the outermost inert shell is able to eliminate surface-related quenching. This design enables the colloidal core/multishell nanoparticles to have an upconversion quantum yield of ∼1.6%, and to have a luminescence yield of the quantum cutting process as high as ∼130%. This work constitutes a solid step for flexible photon management in a single nanostructure, and has an implication for photonic applications beyond photovoltaics.

  20. Photogalvanic effects for interband transition in p-Si0.5Ge0.5/Si multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Wei, C. M.; Cho, K. S.; Chen, Y. F.; Peng, Y. H.; Chiu, C. W.; Kuan, C. H.

    2007-12-01

    Circular photogalvanic effect (CPGE) and linear photogalvanic effect for interband transition have been observed simultaneously in Si0.5Ge0.5/Si multiple quantum wells. The signature of the CPGE is evidenced by the change of its sign upon reversing the radiation helicity. It is found that the observed CPGE photocurrent is an order of magnitude greater than that obtained for intersubband transition. The dependences of the CPGE on the angle of incidence and the excitation intensities can be well interpreted based on its characteristics. The large signal of spin generation observed here at room temperature should be very useful for the realization of practical application of spintronics.

  1. An optically detectable CO2 sensor utilizing polyethylenimine and starch functionalized InGaN/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Shih, H. Y.; Chen, J. Y.; Tan, W. J.; Chen, Y. F.

    2013-07-01

    An optically detectable gas sensor based on the high surface sensitivity of functionalized polyethylenimine/starch In0.15Ga0.85N/GaN strained semiconductor multiple quantum wells (MQWs) has been developed. Due to the excellent piezoelectricity of the MQWs, the change of surface charges caused by chemical interaction can introduce a strain and induce an internal field. In turn, it tilts the energy levels of the MQWs and modifies the optical properties. Through the measurement of the changes in photoluminescence as well as Raman scattering spectra under different concentrations of carbon dioxide gas, we demonstrate the feasibility and high sensitivity of the sensors derived from our methodology.

  2. Quantum-noise quenching in the correlated spontaneous-emission laser as a multiplicative noise process. I. A geometrical argument

    SciTech Connect

    Schleich, W.; Scully, M.O.

    1988-02-15

    We show, via simple geometrical arguments, the quantum-noise quenching in a correlated (spontaneous) emission laser (CEL). This noise quenching is a consequence of the correlation between noise sources which results in a multiplicative noise process. The steady-state distribution for the phase difference between the two electric fields in a CEL is compared and contrasted to that of a standard phase-locked laser. Noise quenching is shown to occur in the case of the CEL via an explicit solution of the Fokker-Planck equation.

  3. Multiple-wavelength operation of electroabsorption intensity modulator array fabricated using the one-step quantum well intermixing process

    NASA Astrophysics Data System (ADS)

    Ng, S. L.; Lim, H. S.; Lam, Y. L.; Chan, Y. C.; Ooi, B. S.; Aimez, V.; Beauvais, J.; Beerens, J.

    2002-09-01

    Multiple-wavelength selective channel electroabsorption intensity modulators have been fabricated on a single InGaAs/InGaAsP chip using a one-step quantum well intermixing process. This technique was demonstrated for tailoring the intensity modulator operating wavelength by incorporating low-energy (360 keV) phosphorus ions implantation induced disordering process with gray-mask lithography technology. A modulation depth of -15 dB has been measured from these devices with a voltage swing of -4.5 V.

  4. Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells

    SciTech Connect

    Li, Zhi; Kang, Junjie; Li, Hongjian; Liu, Zhiqiang Yi, Xiaoyan Wang, Guohong; Wei Wang, Bo; Chuan Feng, Zhe; Hsiang Weng, Yu; Lee, Yueh-Chien

    2014-02-28

    The effect of carrier localization in InGaN/GaN multiple quantum wells (MQWs) light-emitting diodes is investigated by photoluminescence (PL) and time-resolved PL (TRPL) measurements. PL results show that two peaks obtained by Gaussian fitting both relate to the emission from localized states. By fitting the TRPL lifetimes at various emission energies, two localization depths corresponding to the In-rich regions and quasi-MQWs regions are obtained. Using a model we proposed, we suggest that compositional fluctuations of In content and variation of well width are responsible for carrier localization in In-rich regions and quasi-MQWs regions, respectively.

  5. Time-dependent multiple scattering approach for a single finger-gate in a Rashba-type quantum channel .

    NASA Astrophysics Data System (ADS)

    Wang, Lu-Yao

    2006-03-01

    We consider a Rashba-type quantum channel (RQC) consisting of one AC-biased finger-gates (FG) that orient perpendicularly and located above the RQC. Such an AC-biased FG gives rise to a local time-modulation in the Rashba coupling parameter, and generates a dc spin current (SC). A static potential is located inside or outside the FG in the RQC and the backscattering effect is studied. We use analytical time-dependent multiple scattering approach to treat the effect of the SC suppression due to a static potential in the RQC.

  6. Hydrogen cluster/network in tobermorite as studied by multiple-quantum spin counting {sup 1}H NMR

    SciTech Connect

    Mogami, Yuuki; Yamazaki, Satoru; Matsuno, Shinya; Matsui, Kunio; Noda, Yasuto; Takegoshi, K.

    2014-12-15

    Proton multiple-quantum (MQ) spin-counting experiment has been employed to study arrangement of hydrogen atoms in 9 Å/11 Å natural/synthetic tobermorites. Even though all tobermorite samples give similar characterless, broad static-powder {sup 1}H NMR spectra, their MQ spin-counting spectra are markedly different; higher quanta in 11 Å tobermorite do not grow with the MQ excitation time, while those in 9 Å one do. A statistical analysis of the MQ results recently proposed [26] is applied to show that hydrogens align in 9 Å tobermorite one dimensionally, while in 11 Å tobermorite they exist as a cluster of 5–8 hydrogen atoms.

  7. Long Wavelength Multiple Quantum Well Lasers for High-Speed Modulation Applications

    DTIC Science & Technology

    1992-02-01

    Laboratory Air Force Systems Command Griffiss Air Force Base , NY 13441-5700 This report has been reviewed by the Rome Laboratory Public Affairs Office (PA...this document. 3 2. Technical Report 2.1 Introduction Early work on quantum well lasers for 1.3g.m operation was almost exclusively based upon LPE, and...InGaAlAs based (graded-index separate confinement heterostructure) GRIN-SCH quantum well laser at 1.3gm was among the first of a small number of papers

  8. Astronaut John Young leaps from lunar surface to salute flag

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, leaps from the lunar surface as he salutes the U.S. Flag at the Descartes landing site during the first Apollo 16 extravehicular activity (EVA-1). Astronaut Charles M. Duke Jr., lunar module pilot, took this picture. The Lunar Module (LM) 'Orion' is on the left. The Lunar Roving Vehicle is parked beside the LM. The object behind Young in the shade of the LM is the Far Ultraviolet Camera/Spectrograph. Stone Mountain dominates the background in this lunar scene.

  9. Kinetics of leaping primates: influence of substrate orientation and compliance.

    PubMed

    Demes, B; Jungers, W L; Gross, T S; Fleagle, J G

    1995-04-01

    Our current knowledge about the forces leapers generate and absorb is very limited and based exclusively on rigid force platform measurements. In their natural environments, however, leapers take off and land on branches and tree trunks, and these may be compliant. We evaluated the influence of substrate properties on leaping kinetics in prosimian leapers by using a combined field and laboratory approach. Tree sway and the timing of takeoffs relative to the movements of trees were documented for animals under natural conditions in Madagascar. Field data collected on three species (Indri indri, Propithecus diadema, Propithecus verreauxi) indicate that in the majority of takeoffs, the substrate sways and the animals takeoff before the elastic rebound of the substrate. This implies that force is "wasted" to deform supports. Takeoff and landing forces were measured in an experimental setting with a compliant force pole at the Duke University Primate Center. Forces were recorded for 2 Propithecus verreauxi and 3 Hapalemur griseus. Peak takeoff forces were 9.6 (P. verreauxi) and 10.3 (H. griseus) times body weight, whereas peak landing forces were 6.7 (P. verreauxi) and 8.4 (H. griseus) times body weight. As part of the impulse generated does not translate into leaping distance but is used to deform the pole, greater effort is required to reach a given target substrate, and, consequently, takeoff forces are high. The landing forces, on the other hand, are damped by the pole/substrate yield that increases the time available for deceleration. Our results contrast with previous studies of leaping forces recorded with rigid platform measuring systems that usually report higher landing than takeoff forces. We conclude that 1) Leapers generate and are exposed to exceptionally high locomotory forces. The takeoff forces are higher than the landing forces when using compliant supports, indicating that the takeoff rather than the landing may be critical in interpreting leaping

  10. Effect of well layer thickness on quantum and energy conversion efficiencies for InGaN/GaN multiple quantum well solar cells

    NASA Astrophysics Data System (ADS)

    Miyoshi, Makoto; Tsutsumi, Tatsuya; Kabata, Tomoki; Mori, Takuma; Egawa, Takashi

    2017-03-01

    We investigated the effect of well layer thicknesses on the external quantum efficiency (EQE) and energy conversion efficiency (ECE) for InGaN/GaN multiple quantum well (MQW) solar cells grown on sapphire substrates by metalorganic chemical vapor deposition. The results indicated that EQE and ECE have maximum values at a specific well thickness. When the well thickness is sufficiently thin, EQE and ECE increase with an increase in the well thickness owing to an increase in light absorption. Then, once the well thickness surpasses a critical thickness, EQE and ECE begin to decrease owing to the influence of nonradiative recombination processes, which was indicated by the static and dynamic photoluminescence analyses. The critical well thickness probably depends not only on the MQW design but also on growth conditions. Further, we confirmed that the increased total thickness of the stacked well layers leads to increased light absorption and thereby contributes to the improvement of solar cell performance. A high short circuit current density of 1.34 mA/cm2 and a high ECE of 1.31% were achieved for a InGaN/GaN MQW solar cell with a 3.2-nm-thick InGaN well with total well thickness of 115 nm.

  11. Carrier Localization Effects in InGaN/GaN Multiple-Quantum-Wells LED Nanowires: Luminescence Quantum Efficiency Improvement and "Negative" Thermal Activation Energy.

    PubMed

    Bao, Wei; Su, Zhicheng; Zheng, Changcheng; Ning, Jiqiang; Xu, Shijie

    2016-09-30

    Two-dimensional InGaN/GaN multiple-quantum-wells (MQW) LED structure was nanotextured into quasi-one-dimensional nanowires (NWs) with different average diameters with a combination approach of Ni nanoislands as mask + dry etching. Such nanotexturing bring out several appealing effects including deeper localization of carriers and significant improvement in quantum efficiency (e.g., from 4.76% of the planar MQW structure to 12.5% of the 160 nm MQW NWs) of light emission in the whole interested temperature range from 4 K to 300 K. With the aid of localized-state ensemble (LSE) luminescence model, the photoluminescence spectra of the samples are quantitatively interpreted in the entire temperature range. In terms of distinctive temperature dependence of photoluminescence from these samples, a concept of "negative" thermal activation energy is tentatively proposed for the MQW NWs samples. These findings could lead to a deeper insight into the physical nature of localization and luminescence mechanism of excitons in InGaN/GaN nanowires.

  12. Carrier Localization Effects in InGaN/GaN Multiple-Quantum-Wells LED Nanowires: Luminescence Quantum Efficiency Improvement and “Negative” Thermal Activation Energy

    NASA Astrophysics Data System (ADS)

    Bao, Wei; Su, Zhicheng; Zheng, Changcheng; Ning, Jiqiang; Xu, Shijie

    2016-09-01

    Two-dimensional InGaN/GaN multiple-quantum-wells (MQW) LED structure was nanotextured into quasi-one-dimensional nanowires (NWs) with different average diameters with a combination approach of Ni nanoislands as mask + dry etching. Such nanotexturing bring out several appealing effects including deeper localization of carriers and significant improvement in quantum efficiency (e.g., from 4.76% of the planar MQW structure to 12.5% of the 160 nm MQW NWs) of light emission in the whole interested temperature range from 4 K to 300 K. With the aid of localized-state ensemble (LSE) luminescence model, the photoluminescence spectra of the samples are quantitatively interpreted in the entire temperature range. In terms of distinctive temperature dependence of photoluminescence from these samples, a concept of “negative” thermal activation energy is tentatively proposed for the MQW NWs samples. These findings could lead to a deeper insight into the physical nature of localization and luminescence mechanism of excitons in InGaN/GaN nanowires.

  13. Carrier Localization Effects in InGaN/GaN Multiple-Quantum-Wells LED Nanowires: Luminescence Quantum Efficiency Improvement and “Negative” Thermal Activation Energy

    PubMed Central

    Bao, Wei; Su, Zhicheng; Zheng, Changcheng; Ning, Jiqiang; Xu, Shijie

    2016-01-01

    Two-dimensional InGaN/GaN multiple-quantum-wells (MQW) LED structure was nanotextured into quasi-one-dimensional nanowires (NWs) with different average diameters with a combination approach of Ni nanoislands as mask + dry etching. Such nanotexturing bring out several appealing effects including deeper localization of carriers and significant improvement in quantum efficiency (e.g., from 4.76% of the planar MQW structure to 12.5% of the 160 nm MQW NWs) of light emission in the whole interested temperature range from 4 K to 300 K. With the aid of localized-state ensemble (LSE) luminescence model, the photoluminescence spectra of the samples are quantitatively interpreted in the entire temperature range. In terms of distinctive temperature dependence of photoluminescence from these samples, a concept of “negative” thermal activation energy is tentatively proposed for the MQW NWs samples. These findings could lead to a deeper insight into the physical nature of localization and luminescence mechanism of excitons in InGaN/GaN nanowires. PMID:27686154

  14. Molecularly Engineered Organic-Inorganic Hybrid Perovskite with Multiple Quantum Well Structure for Multicolored Light-Emitting Diodes

    PubMed Central

    Hu, Hongwei; Salim, Teddy; Chen, Bingbing; Lam, Yeng Ming

    2016-01-01

    Organic-inorganic hybrid perovskites have the potential to be used as a new class of emitters with tunable emission, high color purity and good ease of fabrication. Recent studies have so far been focused on three-dimensional (3D) perovskites, such as CH3NH3PbBr3 and CH3NH3PbI3 for green and infrared emission. Here, we explore a new series of hybrid perovskite emitters with a general formula of (C4H9NH3)2(CH3NH3)n−1PbnI3n+1 (where n = 1, 2, 3), which possesses a multiple quantum well structure. The quantum well thickness of these materials is adjustable through simple molecular engineering which results in a continuously tunable bandgap and emission spectra. Deep saturated red emission was obtained with a peak external quantum efficiency of 2.29% and a maximum luminance of 214 cd/m2. Green and blue LEDs were also demonstrated through halogen substitutions in these hybrid perovskites. We expect these results to open up the way towards high performance perovskite LEDs through molecular-structure engineering of these perovskite emitters. PMID:27633084

  15. Multiple Andreev reflections in s -wave superconductor-quantum dot-topological superconductor tunnel junctions and Majorana bound states

    NASA Astrophysics Data System (ADS)

    Golub, Anatoly

    2015-05-01

    We calculate the current as a function of applied voltage in a nontopological s -wave superconductor-quantum dot-topological superconductor (TS) tunnel junction. We consider the type of TS which hosts two Majorana bound states (MBSs) at the ends of a semiconductor quantum wire or of a chain of magnetic atoms in the proximity with an s -wave superconductor. We find that the I -V characteristic of such a system in the regime of big voltages has a typical two-dot shape and is ornamented by peaks of multiple Andreev reflections. We also consider the other options when the zero-energy states are created by disorder (hereby Shiba states) or by Andreev zero-energy bound states at the surface of a quantum dot and a superconductor. The later are obtained by tuning the magnetic field to a specific value. Unlike the last two cases the MBS I -V curves are robust to change the magnetic field. Therefore, the magnetic-field dependence of the tunneling current can serve as a unique signature for the presence of a MBS.

  16. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

    PubMed

    Ten Cate, Sybren; Sandeep, C S Suchand; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J; Schins, Juleon M; Siebbeles, Laurens D A

    2015-02-17

    CONSPECTUS: In a conventional photovoltaic device (solar cell or photodiode) photons are absorbed in a bulk semiconductor layer, leading to excitation of an electron from a valence band to a conduction band. Directly after photoexcitation, the hole in the valence band and the electron in the conduction band have excess energy given by the difference between the photon energy and the semiconductor band gap. In a bulk semiconductor, the initially hot charges rapidly lose their excess energy as heat. This heat loss is the main reason that the theoretical efficiency of a conventional solar cell is limited to the Shockley-Queisser limit of ∼33%. The efficiency of a photovoltaic device can be increased if the excess energy is utilized to excite additional electrons across the band gap. A sufficiently hot charge can produce an electron-hole pair by Coulomb scattering on a valence electron. This process of carrier multiplication (CM) leads to formation of two or more electron-hole pairs for the absorption of one photon. In bulk semiconductors such as silicon, the energetic threshold for CM is too high to be of practical use. However, CM in nanometer sized semiconductor quantum dots (QDs) offers prospects for exploitation in photovoltaics. CM leads to formation of two or more electron-hole pairs that are initially in close proximity. For photovoltaic applications, these charges must escape from recombination. This Account outlines our recent progress in the generation of free mobile charges that result from CM in QDs. Studies of charge carrier photogeneration and mobility were carried out using (ultrafast) time-resolved laser techniques with optical or ac conductivity detection. We found that charges can be extracted from photoexcited PbS QDs by bringing them into contact with organic electron and hole accepting materials. However, charge localization on the QD produces a strong Coulomb attraction to its counter charge in the organic material. This limits the production

  17. The Uses of Literacy Theory: The Great Leap and the Rhetoric of Retreat.

    ERIC Educational Resources Information Center

    Daniell, Beth

    During the late 1970s, English studies journals began to include various versions of, and proposals built upon, the Great Leap theory of literacy. Advocates of this theory claimed that literacy itself actually caused a "great leap" in human cognition and that the language of literate persons was essentially different from the language of…

  18. The Systems Test Architect: Enabling The Leap From Testable To Tested

    DTIC Science & Technology

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. THE SYSTEMS TEST ...ARCHITECT: ENABLING THE LEAP FROM TESTABLE TO TESTED by Javier A. Rinaldi September 2016 Thesis Advisor: Oleg Yakimenko Second Reader...REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE THE SYSTEMS TEST ARCHITECT: ENABLING THE LEAP FROM TESTABLE TO TESTED 5

  19. 34 CFR 692.4 - What definitions apply to the LEAP Program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 4 2011-07-01 2011-07-01 false What definitions apply to the LEAP Program? 692.4... the LEAP Program? The following definitions apply to the regulations in this part: (a) The definitions...). (b) The definitions of the following terms under 34 CFR part 668: Academic year (§ 668.2)....

  20. 34 CFR 692.4 - What definitions apply to the LEAP Program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 34 Education 4 2012-07-01 2012-07-01 false What definitions apply to the LEAP Program? 692.4... the LEAP Program? The following definitions apply to the regulations in this part: (a) The definitions...). (b) The definitions of the following terms under 34 CFR part 668: Academic year (§ 668.2)....

  1. 34 CFR 692.4 - What definitions apply to the LEAP Program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 34 Education 4 2013-07-01 2013-07-01 false What definitions apply to the LEAP Program? 692.4... the LEAP Program? The following definitions apply to the regulations in this part: (a) The definitions...). (b) The definitions of the following terms under 34 CFR part 668: Academic year (§ 668.2)....

  2. 34 CFR 692.4 - What definitions apply to the LEAP Program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 4 2014-07-01 2014-07-01 false What definitions apply to the LEAP Program? 692.4... the LEAP Program? The following definitions apply to the regulations in this part: (a) The definitions...). (b) The definitions of the following terms under 34 CFR part 668: Academic year (§ 668.2)....

  3. Listing of Education in Archaeological Programs: The LEAP Clearinghouse 1990-1991 Summary Report.

    ERIC Educational Resources Information Center

    Knoll, Patricia C., Ed.

    This is the second catalog of the National Park Service's Listing of Education in Archaeological Programs (LEAP). It consists of the information incorporated into the LEAP computerized database between 1990 and 1991. The database is a listing of federal, state, local, and private projects promoting public awareness of U.S. archaeology including…

  4. Use of external cavity quantum cascade laser compliance voltage in real-time trace gas sensing of multiple chemicals

    NASA Astrophysics Data System (ADS)

    Phillips, Mark C.; Taubman, Matthew S.; Kriesel, Jason

    2015-01-01

    We describe a prototype trace gas sensor designed for real-time detection of multiple chemicals. The sensor uses an external cavity quantum cascade laser (ECQCL) swept over its tuning range of 940-1075 cm-1 (9.30-10.7 μm) at a 10 Hz repetition rate. The sensor was designed for operation in multiple modes, including gas sensing within a multi-pass Heriott cell and intracavity absorption sensing using the ECQCL compliance voltage. In addition, the ECQCL compliance voltage was used to reduce effects of long-term drifts in the ECQCL output power. The sensor was characterized for noise, drift, and detection of chemicals including ammonia, methanol, ethanol, isopropanol, Freon- 134a, Freon-152a, and diisopropyl methylphosphonate (DIMP). We also present use of the sensor for mobile detection of ammonia downwind of cattle facilities, in which concentrations were recorded at 1-s intervals.

  5. Quantum Locality in Game Strategy

    NASA Astrophysics Data System (ADS)

    Melo-Luna, Carlos A.; Susa, Cristian E.; Ducuara, Andrés F.; Barreiro, Astrid; Reina, John H.

    2017-03-01

    Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players’ input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.

  6. Quantum Locality in Game Strategy

    PubMed Central

    Melo-Luna, Carlos A.; Susa, Cristian E.; Ducuara, Andrés F.; Barreiro, Astrid; Reina, John H.

    2017-01-01

    Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players’ input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage. PMID:28327567

  7. Quantum Locality in Game Strategy.

    PubMed

    Melo-Luna, Carlos A; Susa, Cristian E; Ducuara, Andrés F; Barreiro, Astrid; Reina, John H

    2017-03-22

    Game theory is a well established branch of mathematics whose formalism has a vast range of applications from the social sciences, biology, to economics. Motivated by quantum information science, there has been a leap in the formulation of novel game strategies that lead to new (quantum Nash) equilibrium points whereby players in some classical games are always outperformed if sharing and processing joint information ruled by the laws of quantum physics is allowed. We show that, for a bipartite non zero-sum game, input local quantum correlations, and separable states in particular, suffice to achieve an advantage over any strategy that uses classical resources, thus dispensing with quantum nonlocality, entanglement, or even discord between the players' input states. This highlights the remarkable key role played by pure quantum coherence at powering some protocols. Finally, we propose an experiment that uses separable states and basic photon interferometry to demonstrate the locally-correlated quantum advantage.

  8. Time dependent solution for acceleration of tau-leaping

    SciTech Connect

    Fu, Jin; Wu, Sheng; Petzold, Linda R.

    2013-02-15

    The tau-leaping method is often effective for speeding up discrete stochastic simulation of chemically reacting systems. However, when fast reactions are involved, the speed-up for this method can be quite limited. One way to address this is to apply a stochastic quasi-steady state assumption. However we must be careful when using this assumption. If the fast subsystem cannot reach a steady distribution fast enough, the quasi-steady-state assumption will propagate error into the simulation. To avoid these errors, we propose to use the time dependent solution rather than the quasi-steady-state. Generally speaking, the time dependent solution is not easy to derive for an arbitrary network. However, for some common motifs we do have time dependent solutions. We derive the time dependent solutions for these motifs, and then show how they can be used with tau-leaping to achieve substantial speed-ups, including for a realistic model of blood coagulation. Although the method is complicated, we have automated it.

  9. Leaps in the Dark - The making of scientific reputations

    NASA Astrophysics Data System (ADS)

    Waller, John

    2004-12-01

    In Leaps in the Dark , John Waller presents another collection of revelations from the world of science. He considers experiments in which the scientists' awareness was not perhaps as keen as they might have claimed in retrospect; he investigates the jealousy and opposition that scientific ideas can provoke; he celebrates the scientists who were wrong, but for very good reasons; and he demonstrates how national interest can affect scientists and their theories. The result is an entertaining and highly readable re-examination of scientific discoveries and reputations from the Renaissance to the twentieth century. The tales in Leaps in the Dark range across a wide historical field, from a seventeenth-century witch-finder, Joseph Glanvill, to Sir Robert Watson-Watt, the self-proclaimed 'Father of radar'. Each story underscores the rich, fascinating complexity of scientific discovery. Writing in a clear and engaging style, and skilfully weaving history in with the science, John Waller brings these scientists to life, illustrating how their work and their discoveries influenced their careers and the wider world around them.

  10. Time dependent solution for acceleration of tau-leaping

    NASA Astrophysics Data System (ADS)

    Fu, Jin; Wu, Sheng; Petzold, Linda R.

    2013-02-01

    The tau-leaping method is often effective for speeding up discrete stochastic simulation of chemically reacting systems. However, when fast reactions are involved, the speed-up for this method can be quite limited. One way to address this is to apply a stochastic quasi-steady state assumption. However we must be careful when using this assumption. If the fast subsystem cannot reach a steady distribution fast enough, the quasi-steady-state assumption will propagate error into the simulation. To avoid these errors, we propose to use the time dependent solution rather than the quasi-steady-state. Generally speaking, the time dependent solution is not easy to derive for an arbitrary network. However, for some common motifs we do have time dependent solutions. We derive the time dependent solutions for these motifs, and then show how they can be used with tau-leaping to achieve substantial speed-ups, including for a realistic model of blood coagulation. Although the method is complicated, we have automated it.

  11. Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities

    NASA Astrophysics Data System (ADS)

    Corfdir, P.; Levrat, J.; Rossbach, G.; Butté, R.; Feltin, E.; Carlin, J.-F.; Christmann, G.; Lefebvre, P.; Ganière, J.-D.; Grandjean, N.; Deveaud-Plédran, B.

    2012-06-01

    We report on the direct observation of biexcitons in a III-nitride based multiple quantum well microcavity operating in the strong light-matter coupling regime by means of nonresonant continuous wave and time-resolved photoluminescence at low temperature. First, the biexciton dynamics is investigated for the bare active medium (multiple quantum wells alone) evidencing localization on potential fluctuations due to alloy disorder and thermalization between both localized and free excitonic and biexcitonic populations. Then, the role of biexcitons is considered for the full microcavity: in particular, we observe that for specific detunings the bottom of the lower polariton branch is directly fed by the radiative dissociation of either cavity biexcitons or excitons mediated by one LO-phonon. Accordingly, minimum polariton lasing thresholds are observed, when the bottom of the lower polariton branch corresponds in energy to the exciton or cavity biexciton first LO-phonon replica. This singular observation highlights the role of excitonic molecules in the polariton condensate formation process as being a more efficient relaxation channel when compared to the usually assumed acoustical phonon emission one.

  12. Bandgaps and band offsets in strain-compensated InGaAs/InGaAsP multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Ma, Chunsheng; Jin, Zhi; Tian, Fengshou; Yang, Ningguo; Yang, Shuren; Liu, Shiyong

    1998-08-01

    In terms of the parameter interpolation principle, calculations are performed for bandgaps and band offsets in strain-compensated InzGa1-zAs/InxGa1-xAsyP1-y multiple quantum well structures on InP. Relations between strains and material compositions in InzGa1-zAs wells and InxGa1-xAsyP1-y barriers are analyzed, and relative ranges of strains are evaluated. Bandgaps of InzGa1-zAs wells and InxGa1-xAsyP1-y barriers for heavy- and light-holes are studied, and relative ranges of bandgaps are estimated. Dependence of band offsets of conduction band and valence band for heavy- and light-holes on strain compensation between InzGa1-zAs wells and InxGa1-xAsyP1-y barriers is investigated, and variation of band offsets versus strain compensation is discussed. The computed results show that strains, bandgaps and band offsets are functions of material compositions, strain compensation changes the band offsets, and hence modifies the band structures and improves the features of strain- compensated multiple quantum well optoelectronic devices.

  13. Suppression of surface recombination in surface plasmon coupling with an InGaN/GaN multiple quantum well sample.

    PubMed

    Wang, Hsiang-Chen; Yu, Xuan-Yu; Chueh, Yu-Lun; Malinauskas, Tadas; Jarasiunas, Kestutis; Feng, Shih-Wei

    2011-09-26

    Temperature-dependent picosecond non-degenerate four-wave-mixing experiments were performed to explore the carrier dynamics in an InGaN/GaN multiple quantum well sample, in which light emission enhancement with surface plasmon (SP) coupling has been identified. In the time-resolved photoluminescence results, we can identify the faster carrier decay time of the sample with surface plasmon coupling. The faster decay time is due to this sample's ability to create additional channels for effective carrier recombination. In the four-wave-mixing results, a slower grating decay time of the sample with surface plasmon coupling was measured. The diffusion coefficients and surface recombination velocities of photo-created carriers were estimated by modeling the decay rate of transient grating signals. For the sample for which surface plasmon coupling exists, smaller diffusion coefficients and slower surface recombination velocities can be estimated when the temperatures are above 150 K. The carriers coupling with some SP modes is not the only mechanism contributing to emission enhancement. In the InGaN/GaN multiple quantum well sample, surface recombination suppressed by SP coupling is another factor for increased light emission efficiency. © 2011 Optical Society of America

  14. Split-Inteins for Simultaneous, site-specific conjugation of Quantum Dots to multiple protein targets In vivo

    PubMed Central

    2011-01-01

    Background Proteins labelled with Quantum Dots (QDs) can be imaged over long periods of time with ultrahigh spatial and temporal resolution, yielding important information on the spatiotemporal dynamics of proteins within live cells or in vivo. However one of the major problems regarding the use of QDs for biological imaging is the difficulty of targeting QDs onto proteins. We have recently developed a DnaE split intein-based method to conjugate Quantum Dots (QDs) to the C-terminus of target proteins in vivo. In this study, we expand this approach to achieve site-specific conjugation of QDs to two or more proteins simultaneously with spectrally distinguishable QDs for multiparameter imaging of cellular functions. Results Using the DnaE split intein we target QDs to the C-terminus of paxillin and show that paxillin-QD conjugates become localized at focal adhesions allowing imaging of the formation and dissolution of these complexes. We go on to utilize a different split intein, namely Ssp DnaB mini-intein, to demonstrate N-terminal protein tagging with QDs. Combination of these two intein systems allowed us to simultaneously target two distinct proteins with spectrally distinguishable QDs, in vivo, without any cross talk between the two intein systems. Conclusions Multiple target labeling is a unique feature of the intein based methodology which sets it apart from existing tagging methodologies in that, given the large number of characterized split inteins, the number of individual targets that can be simultaneously tagged is only limited by the number of QDs that can be spectrally distinguished within the cell. Therefore, the intein-mediated approach for simultaneous, in vivo, site-specific (N- and C-terminus) conjugation of Quantum Dots to multiple protein targets opens up new possibilities for bioimaging applications and offers an effective system to target QDs and other nanostructures to intracellular compartments as well as specific molecular complexes. PMID

  15. Influence of temperature on the mechanism of carrier injection in light-emitting diodes based on InGaN/GaN multiple quantum wells

    SciTech Connect

    Prudaev, I. A. Golygin, I. Yu.; Shirapov, S. B.; Romanov, I. S.; Khludkov, S. S.; Tolbanov, O. P.

    2013-10-15

    The experimental current-voltage characteristics and dependences of the external quantum yield on the current density of light-emitting diodes based on InGaN/GaN multiple quantum wells for the wide temperature range T = 10-400 K are presented. It is shown that, at low-temperatures T < 100 K, the injection of holes into the quantum wells occurs from localized acceptor states. The low-temperature injection of electrons into p-GaN occurs due to quasi-ballistic transport in the region of multiple quantum wells. An increase in temperature leads to an increase in the current which is governed by thermally activated hole and electron injection from the allowed bands of GaN.

  16. Ultrafast Supercontinuum Spectroscopy of Carrier Multiplication and Biexcitonic Effects in Excited States of PbS Quantum Dots

    SciTech Connect

    Sfeir M. Y.; Gesuele, F.; Koh, W.-K.; Murray, C.B.; Heinz, T.F.; Wong, C.W.

    2012-06-01

    We examine the population dynamics of multiple excitons in PbS quantum dots using spectrally resolved ultrafast supercontinuum transient absorption (SC-TA) measurements. We simultaneously probe the first three excitonic transitions. The transient spectra show the presence of bleaching of absorption for the 1S{sub h}-1S{sub e} transition, as well as transients associated with the 1P{sub h}-1P{sub e} transition. We examine signatures of carrier multiplication (multiple excitons arising from a single absorbed photon) from analysis of the bleaching features in the limit of low absorbed photon numbers (multiple-exciton generation is discussed both in terms of the ratio between early- to long-time transient absorption signals and of a broadband global fit to the data. Analysis of the population dynamics shows that bleaching associated with biexciton population is red shifted with respect to the single exciton feature, which is in accordance with a positive binding energy for the biexciton.

  17. Dynamic light-matter coupling across multiple spatial dimensions in a quantum dots-in-a-well heterostructure

    SciTech Connect

    Prasankumar, Rohit P; Taylor, Antoinette J

    2009-01-01

    Ultrafast density-dependent optical spectroscopic measurements on a quantum dots-in-a-well heterostructure reveal several distinctive phenomena, most notably a strong coupling between the quantum well population and light absorption at the quantum dot excited state.

  18. Picture this: The value of multiple visual representations for student learning of quantum concepts in general chemistry

    NASA Astrophysics Data System (ADS)

    Allen, Emily Christine

    Mental models for scientific learning are often defined as, "cognitive tools situated between experiments and theories" (Duschl & Grandy, 2012). In learning, these cognitive tools are used to not only take in new information, but to help problem solve in new contexts. Nancy Nersessian (2008) describes a mental model as being "[loosely] characterized as a representation of a system with interactive parts with representations of those interactions. Models can be qualitative, quantitative, and/or simulative (mental, physical, computational)" (p. 63). If conceptual parts used by the students in science education are inaccurate, then the resulting model will not be useful. Students in college general chemistry courses are presented with multiple abstract topics and often struggle to fit these parts into complete models. This is especially true for topics that are founded on quantum concepts, such as atomic structure and molecular bonding taught in college general chemistry. The objectives of this study were focused on how students use visual tools introduced during instruction to reason with atomic and molecular structure, what misconceptions may be associated with these visual tools, and how visual modeling skills may be taught to support students' use of visual tools for reasoning. The research questions for this study follow from Gilbert's (2008) theory that experts use multiple representations when reasoning and modeling a system, and Kozma and Russell's (2005) theory of representational competence levels. This study finds that as students developed greater command of their understanding of abstract quantum concepts, they spontaneously provided additional representations to describe their more sophisticated models of atomic and molecular structure during interviews. This suggests that when visual modeling with multiple representations is taught, along with the limitations of the representations, it can assist students in the development of models for reasoning about

  19. 'Size leap' algorithm: an efficient extraction of the longest common motifs from a molecular sequence set. Application to the DNA sequence reconstruction.

    PubMed

    Danckaert, A; Chappey, C; Hazout, S

    1991-10-01

    We propose a new method, called 'size leap' algorithm, of search for motifs of maximum size and common to two fragments at least. It allows the creation of a reduced database of motifs from a set of sequences whose size obeys the series of Fibonacci numbers. The convenience lies in the efficiency of the motif extraction. It can be applied in the establishment of overlap regions for DNA sequence reconstruction and multiple alignment of biological sequences. The method of complete DNA sequence reconstruction by extraction of the longest motifs ('anchor motifs') is presented as an application of the size leap algorithm. The details of a reconstruction from three sequenced fragments are given as an example.

  20. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides

    SciTech Connect

    Wang, Yongjin Zhu, Guixia; Gao, Xumin; Yang, Yongchao; Yuan, Jialei; Shi, Zheng; Zhu, Hongbo; Cai, Wei

    2016-04-18

    We propose, fabricate, and characterize the on-chip integration of suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) device and multiple waveguides on the same GaN-on-silicon platform. The integrated devices are fabricated via a wafer-level process and exhibit selectable functionalities for diverse applications. As the suspended p-n junction InGaN/GaN MQWs device operates under a light emitting diode (LED) mode, part of the light emission is confined and guided by the suspended waveguides. The in-plane propagation along the suspended waveguides is measured by a micro-transmittance setup. The on-chip data transmission is demonstrated for the proof-of-concept photonic integration. As the suspended p-n junction InGaN/GaN MQWs device operates under photodiode mode, the light is illuminated on the suspended waveguides with the aid of the micro-transmittance setup and, thus, coupled into the suspended waveguides. The guided light is finally sensed by the photodiode, and the induced photocurrent trace shows a distinct on/off switching performance. These experimental results indicate that the on-chip photonic integration is promising for the development of sophisticated integrated photonic circuits in the visible wavelength region.

  1. On-chip photonic system using suspended p-n junction InGaN/GaN multiple quantum wells device and multiple waveguides

    NASA Astrophysics Data System (ADS)

    Wang, Yongjin; Zhu, Guixia; Cai, Wei; Gao, Xumin; Yang, Yongchao; Yuan, Jialei; Shi, Zheng; Zhu, Hongbo

    2016-04-01

    We propose, fabricate, and characterize the on-chip integration of suspended p-n junction InGaN/GaN multiple quantum wells (MQWs) device and multiple waveguides on the same GaN-on-silicon platform. The integrated devices are fabricated via a wafer-level process and exhibit selectable functionalities for diverse applications. As the suspended p-n junction InGaN/GaN MQWs device operates under a light emitting diode (LED) mode, part of the light emission is confined and guided by the suspended waveguides. The in-plane propagation along the suspended waveguides is measured by a micro-transmittance setup. The on-chip data transmission is demonstrated for the proof-of-concept photonic integration. As the suspended p-n junction InGaN/GaN MQWs device operates under photodiode mode, the light is illuminated on the suspended waveguides with the aid of the micro-transmittance setup and, thus, coupled into the suspended waveguides. The guided light is finally sensed by the photodiode, and the induced photocurrent trace shows a distinct on/off switching performance. These experimental results indicate that the on-chip photonic integration is promising for the development of sophisticated integrated photonic circuits in the visible wavelength region.

  2. Quantum Bio-Informatics II From Quantum Information to Bio-Informatics

    NASA Astrophysics Data System (ADS)

    Accardi, L.; Freudenberg, Wolfgang; Ohya, Masanori

    2009-02-01

    The problem of quantum-like representation in economy cognitive science, and genetics / L. Accardi, A. Khrennikov and M. Ohya -- Chaotic behavior observed in linea dynamics / M. Asano, T. Yamamoto and Y. Togawa -- Complete m-level quantum teleportation based on Kossakowski-Ohya scheme / M. Asano, M. Ohya and Y. Tanaka -- Towards quantum cybernetics: optimal feedback control in quantum bio informatics / V. P. Belavkin -- Quantum entanglement and circulant states / D. Chruściński -- The compound Fock space and its application in brain models / K. -H. Fichtner and W. Freudenberg -- Characterisation of beam splitters / L. Fichtner and M. Gäbler -- Application of entropic chaos degree to a combined quantum baker's map / K. Inoue, M. Ohya and I. V. Volovich -- On quantum algorithm for multiple alignment of amino acid sequences / S. Iriyama and M. Ohya --Quantum-like models for decision making in psychology and cognitive science / A. Khrennikov -- On completely positive non-Markovian evolution of a d-level system / A. Kossakowski and R. Rebolledo -- Measures of entanglement - a Hilbert space approach / W. A. Majewski -- Some characterizations of PPT states and their relation / T. Matsuoka -- On the dynamics of entanglement and characterization ofentangling properties of quantum evolutions / M. Michalski -- Perspective from micro-macro duality - towards non-perturbative renormalization scheme / I. Ojima -- A simple symmetric algorithm using a likeness with Introns behavior in RNA sequences / M. Regoli -- Some aspects of quadratic generalized white noise functionals / Si Si and T. Hida -- Analysis of several social mobility data using measure of departure from symmetry / K. Tahata ... [et al.] -- Time in physics and life science / I. V. Volovich -- Note on entropies in quantum processes / N. Watanabe -- Basics of molecular simulation and its application to biomolecules / T. Ando and I. Yamato -- Theory of proton-induced superionic conduction in hydrogen-bonded systems

  3. Shapiro steps observed in a dc superconducting quantum interference device with multiple junctions in each arm

    NASA Astrophysics Data System (ADS)

    Chen, L.; Chen, P.; Ong, C. K.

    2002-02-01

    A high-Tc dc superconducting quantum interference device (SQUID) with three Josephson junctions (JJs) in series in each of its arms has been fabricated. Its Shapiro steps were studied using microwave (rf) radiation of 10 GHz and weak magnetic fields. The appearance of giant Shapiro steps and of some of half-integer steps was observed. Separation between the adjacent Shapiro steps could be tuned by rf magnetic fields and small external dc magnetic fields. This phenomenon was analyzed by phase locking the JJs in the SQUID.

  4. Deterministic coupling of a system of multiple quantum dots to a single photonic cavity mode

    NASA Astrophysics Data System (ADS)

    Lyasota, A.; Jarlov, C.; Gallo, P.; Rudra, A.; Dwir, B.; Kapon, E.

    2017-07-01

    We fabricated and studied a system comprising four site-controlled semiconductor quantum dots (QDs) embedded in a linear photonic crystal membrane cavity. The excellent position control and small spectral broadening permit coupling of the emission of all four QDs to the same photonic cavity modes. This is corroborated by co-polarization of the QD and cavity emission lines, as well as reduction in decay time, both with characteristic dependence on QD-cavity energy detuning. Scaling up to larger QD systems is discussed.

  5. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    SciTech Connect

    Xu, Ming Jaffré, Alexandre Alvarez, José Kleider, Jean-Paul Boutchich, Mohamed; Jittrong, Apichat; Chokamnuai, Thitipong; Panyakeow, Somsak; Kanjanachuchai, Songphol

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  6. Leaping Behavior of Ayu and Its Relation to Depth of Pool

    NASA Astrophysics Data System (ADS)

    Mabuchi, Kazumi; Hiramatsu, Ken; Itagaki, Hiroshi

    Leaping behavior of Ayu (Plecoglossus altivelis altivelis), which is often seen in a pool-type fishway and groundsel, is discussed using video-recording of their migration above and below the water surface. The video was recorded through four types of experiments/observation prepared to clarify their leaping characteristics, i.e., 1) laboratory experiment using a testing flume, 2) on-site experiment using a slope temporary installed in an irrigation canal, 3) on-site experiment in an existing fish laddar and 4) field survey at a pool of groundsel. As a result, though many of the Ayu seem to accerelate toward the water surface just before leaping, their swiming speed varies widely and speedup and slowdown are repeated inconsitently, which would appear that the accerelation does not contribute directly to the leaping. It also becomes apparent that the swim required for the leap is within an extremely short period just below the water surface. In addition, the angle and the height of the leap finally attained depend on the depth of the pool and the fish tends to remain in the pool when the depth is too large. It indicates that the pool-depth of 20cm might be enough for Ayu to leap over small falls, which was conventionally considered insufficient.

  7. Nonpolar and semipolar InGaN/GaN multiple-quantum-well solar cells with improved carrier collection efficiency

    NASA Astrophysics Data System (ADS)

    Huang, Xuanqi; Fu, Houqiang; Chen, Hong; Zhang, Xiaodong; Lu, Zhijian; Montes, Jossue; Iza, Michael; DenBaars, Steven P.; Nakamura, Shuji; Zhao, Yuji

    2017-04-01

    We demonstrate the nonpolar and semipolar InGaN/GaN multiple-quantum-well (MQW) solar cells grown on the nonpolar m-plane and semipolar ( 20 2 ¯ 1 ) plane bulk GaN substrates. The optical properties and photovoltaic performance of the nonpolar and semipolar InGaN solar cells were systematically studied, and the results were compared to the conventional polar c-plane devices. The absorption spectra, current density-voltage (J-V) characteristics, external quantum efficiency (EQE), and internal quantum efficiency (IQE) were measured for nonpolar m-plane, semipolar ( 20 2 ¯ 1 ) plane, and polar c-plane InGaN/GaN MQW solar cells. Nonpolar m-plane InGaN/GaN MQW solar cells showed the best performance across all devices, with a high open-circuit voltage of 2.32 V, a low bandgap-voltage offset of 0.59 V, and the highest EQE and IQE. In contrast, the polar c-plane device showed the lowest EQE despite the highest absorption spectra. This huge difference is attributed to the better carrier transport and collection on nonpolar m-plane devices due to the reduced polarization effects, which were further confirmed by bias-dependent EQE measurements and energy band diagram simulations. This study demonstrates the high potential of nonpolar and semipolar InGaN solar cells and can serve as guidance for the future design and fabrication of high efficiency III-nitride solar cells.

  8. Leaping shampoo glides on a lubricating air layer.

    PubMed

    Lee, S; Li, E Q; Marston, J O; Bonito, A; Thoroddsen, S T

    2013-06-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.

  9. Whole chromosome aneuploidy: big mutations drive adaptation by phenotypic leap

    PubMed Central

    Chen, Guangbo; Rubinstein, Boris; Li, Rong

    2012-01-01

    Despite its wide existence, the adaptive role of aneuploidy (the abnormal state of having unequal number of different chromosomes) has been a subject of debate. Cellular aneuploidy has been associated with enhanced resistance to stress, whereas on the organismal level it is detrimental to multi-cellular species. Certain aneuploid karyotypes are deleterious for specific environments, but karyotype diversity in a population potentiates adaptive evolution. To reconcile these paradoxical observations, this review distinguishes the role of aneuploidy in cellular versus organismal evolution. Further, it proposes a population genetics perspective to examine the behavior of aneuploidy on a populational versus individual level. By altering the copy number of a significant portion of the genome, aneuploidy introduces large phenotypic leap that enables small cell populations to explore a wide phenotypic landscape, from which adaptive traits can be selected. The production of chromosome number variation can be further increased by stress- or mutation-induced chromosomal instability, fueling rapid cellular adaptation. PMID:22926916

  10. Leaping shampoo glides on a lubricating air layer

    NASA Astrophysics Data System (ADS)

    Lee, S.; Li, E. Q.; Marston, J. O.; Bonito, A.; Thoroddsen, S. T.

    2013-06-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.

  11. Giant leaps and minimal branes in multidimensional flux landscapes

    NASA Astrophysics Data System (ADS)

    Brown, Adam R.; Dahlen, Alex

    2011-07-01

    There is a standard story about decay in multidimensional flux landscapes: that from any state, the fastest decay is to take a small step, discharging one flux unit at a time; that fluxes with the same coupling constant are interchangeable; and that states with N units of a given flux have the same decay rate as those with -N. We show that this standard story is false. The fastest decay is a giant leap that discharges many different fluxes in unison; this decay is mediated by a “minimal” brane that wraps the internal manifold and exhibits behavior not visible in the effective theory. We discuss the implications for the cosmological constant problem.

  12. Femtosecond Pulse Distortion by Diffraction from Semi-insulating Multiple Quantum Wells

    NASA Astrophysics Data System (ADS)

    Brubaker, R. M.; Dinu, M.; Nolte, D. D.; Melloch, M. R.; Weiner, A. M.

    1996-03-01

    We have performed nondegenerate four-wave mixing of ultrafast pulses from photorefractive quantum wells.(Q. Wang, R. M. Brubaker, D. D. Nolte and M. R. Melloch, J. Opt. Soc. Am. 9), 1626 (1992) This work is a first step towards performing dynamic femtosecond pulse shaping.(A. M. Weiner, Prog. Quant. Electr. 19), 161 (1995) The pulse shape is changed by the amplitude and phase of gratings written by an above-gap laser in steady-state. We use electric field cross-correlation measurements to detect the change in pulse shape. The gratings are formed by space charge gratings trapped at deep level defects. For pulse shaping, a diffraction spectrum is desired to be flat over 10 nm to minimize pulse distortion. The spectrum depends on the distribution of oscillator strength, which is a sensitive function of the quantum well parameters. We show that diffraction of a pulse with a center wavelength displaced from the diffraction peak results in significant pulse broadening by over a factor of two.

  13. Graphene Quantum Dots Downregulate Multiple Multidrug-Resistant Genes via Interacting with Their C-Rich Promoters.

    PubMed

    Luo, Chao; Li, Yanfang; Guo, Lijuan; Zhang, Fangwei; Liu, Hui; Zhang, Jiali; Zheng, Jing; Zhang, Jingyan; Guo, Shouwu

    2017-07-27

    Multidrug resistance (MDR) is the major factor in the failure of many forms of chemotherapy, mostly due to the increased efflux of anticancer drugs that mediated by ATP-binding cassette (ABC) transporters. Therefore, inhibiting ABC transporters is one of effective methods of overcoming MDR. However, high enrichment of ABC transporters in cells and their broad substrate spectra made to circumvent MDR are almost insurmountable by a single specific ABC transporter inhibitor. Here, this study demonstrates that graphene quantum dots (GQDs) could downregulate the expressions of P-glycoprotein, multidrug resistance protein MRP1, and breast cancer resistance protein genes via interacting with C-rich regions of their promoters. This is the first example that a single reagent could suppress multiple MDR genes, suggesting that it will be possible to target multiple ABC transporters simultaneously with a single reagent. The inhibitory ability of the GQDs to these drug-resistant genes is validated further by reversing the doxorubicin resistance of MCF-7/ADR cells. Notably, GQDs have superb chemical and physical properties, unique structure, low toxicity, and high biocompatibility; hence, their capability of inhibiting multiple drug-resistant genes holds great potential in cancer therapy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells

    DOE PAGES

    Valdueza-Felip, Sirona; Naranjo, Fernando B.; Gonzalez-Herraez, Miguel; ...

    2012-01-15

    We report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In{sub 0.9}Ga{sub 0.1}N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-{mu}m-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at {proportional_to}0.73 eV with a full width at half maximum of {proportional_to}86 meV. The InN layer displays an S-shape evolution of the emission peak energy with temperature,more » explained in terms of carrier localization. A carrier localization energy of {proportional_to}12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of {proportional_to}16%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)« less

  15. Infrared photoluminescence of high In-content InN/InGaN multiple-quantum-wells

    DOE PAGES

    Valdueza-Felip, Sirona; Naranjo, Fernando B.; Gonzalez-Herraez, Miguel; ...

    2012-01-15

    We report on the thermal evolution of the photoluminescence (PL) from high In-content InN/In{sub 0.9}Ga{sub 0.1}N multiple-quantum wells (MQWs) synthesized by plasma-assisted molecular-beam epitaxy on GaN-on-sapphire templates. The structural quality and the well/barrier thickness uniformity in the MQW structure are assessed by X-ray diffraction and transmission electron microscopy measurements. PL results are compared with the luminescence from a 1-{mu}m-thick InN reference sample. In both cases, the dominant low-temperature (5 K) PL emission peaks at {proportional{sub to}}0.73 eV with a full width at half maximum of {proportional{sub to}}86 meV. The InN layer displays an S-shape evolution of the emission peak energymore » with temperature, explained in terms of carrier localization. A carrier localization energy of {proportional{sub to}}12 meV is estimated for the InN layer, in good agreement with the expected carrier concentration. In the case of the MQW structure, an enhancement of the carrier localization associated to the piezoelectric field results in an improved thermal stability of the PL intensity, reaching an internal quantum efficiency of {proportional{sub to}}16%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)« less

  16. Enhanced power conversion efficiency in InGaN-based solar cells via graded composition multiple quantum wells.

    PubMed

    Tsai, Yu-Lin; Wang, Sheng-Wen; Huang, Jhih-Kai; Hsu, Lung-Hsing; Chiu, Ching-Hsueh; Lee, Po-Tsung; Yu, Peichen; Lin, Chien-Chung; Kuo, Hao-Chung

    2015-11-30

    This work demonstrates the enhanced power conversion efficiency (PCE) in InGaN/GaN multiple quantum well (MQWs) solar cells with gradually decreasing indium composition in quantum wells (GQWs) toward p-GaN as absorber. The GQW can improve the fill factor from 42% to 62% and enhance the short current density from 0.8 mA/cm2 to 0.92 mA/cm2, as compares to the typical MQW solar cells. As a result, the PCE is boosted from 0.63% to 1.11% under AM1.5G illumination. Based on simulation and experimental results, the enhanced PCE can be attributed to the improved carrier collection in GQW caused by the reduction of potential barriers and piezoelectric polarization induced fields near the p-GaN layer. The presented concept paves a way toward highly efficient InGaN-based solar cells and other GaN-related MQW devices.

  17. Multiple environment single system quantum mechanical/molecular mechanical (MESS-QM/MM) calculations. 1. Estimation of polarization energies

    DOE PAGES

    Sodt, Alexander J.; Mei, Ye; Konig, Gerhard; ...

    2014-10-16

    In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consistent field (SCF) energy; whereas the other scheme, termed MESS-H, employs a Newton–Raphson correction using an approximate inverse electronic Hessian of the QM region (which is constructed only once). Both schemes are extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completelymore » avoided at each configuration. Here, they produce reasonably accurate QM/MM polarization energies: MESS-E can predict the polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and solvated β-alanine, using the M06-2X or ωB97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/mol for these two cases and for the oxyluciferin–luciferase complex, if the approximate inverse electronic Hessians are constructed with sufficient accuracy.« less

  18. Control of Multiple Exciton Generation and Electron-Phonon Coupling by Interior Nanospace in Hyperstructured Quantum Dot Superlattice.

    PubMed

    Chang, I-Ya; Kim, DaeGwi; Hyeon-Deuk, Kim

    2017-09-20

    The possibility of precisely manipulating interior nanospace, which can be adjusted by ligand-attaching down to the subnanometer regime, in a hyperstructured quantum dot (QD) superlattice (QDSL) induces a new kind of collective resonant coupling among QDs and opens up new opportunities for developing advanced optoelectric and photovoltaic devices. Here, we report the first real-time dynamics simulations of the multiple exciton generation (MEG) in one-, two-, and three-dimensional (1D, 2D, and 3D) hyperstructured H-passivated Si QDSLs, accounting for thermally fluctuating band energies and phonon dynamics obtained by finite-temperature ab initio molecular dynamics simulations. We computationally demonstrated that the MEG was significantly accelerated, especially in the 3D QDSL compared to the 1D and 2D QDSLs. The MEG acceleration in the 3D QDSL was almost 1.9 times the isolated QD case. The dimension-dependent MEG acceleration was attributed not only to the static density of states but also to the dynamical electron-phonon couplings depending on the dimensionality of the hyperstructured QDSL, which is effectively controlled by the interior nanospace. Such dimension-dependent modifications originated from the short-range quantum resonance among component QDs and were intrinsic to the hyperstructured QDSL. We propose that photoexcited dynamics including the MEG process can be effectively controlled by only manipulating the interior nanospace of the hyperstructured QDSL without changing component QD size, shape, compositions, ligand, etc.

  19. InGaN/GaN multiple quantum well for fast scintillation application: radioluminescence and photoluminescence study.

    PubMed

    Hospodková, Alice; Nikl, Martin; Pacherová, Oliva; Oswald, Jiří; Brůža, Petr; Pánek, Dalibor; Foltynski, Bartosz; Hulicius, Eduard; Beitlerová, Alena; Heuken, Michael

    2014-11-14

    We prepare InGaN/GaN multiple quantum well (MQW) structure by metal-organic vapour phase epitaxy and characterize it by fine XRD measurements. We demonstrate its suitability for scintillator application including a unique measurement of wavelength-resolved scintillation response under nanosecond pulse soft x-ray source in extended dynamical and time scales. The photoluminescence and radioluminescence were measured: we have shown that the ratio of the intensity of quantum well (QW) exciton luminescence to the intensity of the yellow luminescence (YL) band IQW/IYL depends strongly on the type and intensity of excitation. Slower scintillation decay measured at YL band maximum confirmed the presence of several radiative recombination centres responsible for wide YL band, which also partially overlap with the QW peak. Further improvements of the structure are suggested, but even the presently reported decay characteristics of the excitonic emission in MQW are better compared to the currently widely used single crystal YAP:Ce or YAG:Ce scintillators. Thus, such a type of a semiconductor scintillator is highly promising for fast detection of soft x-ray and related beam diagnostics.

  20. InGaN/GaN multiple quantum well for fast scintillation application: radioluminescence and photoluminescence study

    NASA Astrophysics Data System (ADS)

    Hospodková, Alice; Nikl, Martin; Pacherová, Oliva; Oswald, Jiří; Brůža, Petr; Pánek, Dalibor; Foltynski, Bartosz; Hulicius, Eduard; Beitlerová, Alena; Heuken, Michael

    2014-11-01

    We prepare InGaN/GaN multiple quantum well (MQW) structure by metal-organic vapour phase epitaxy and characterize it by fine XRD measurements. We demonstrate its suitability for scintillator application including a unique measurement of wavelength-resolved scintillation response under nanosecond pulse soft x-ray source in extended dynamical and time scales. The photoluminescence and radioluminescence were measured: we have shown that the ratio of the intensity of quantum well (QW) exciton luminescence to the intensity of the yellow luminescence (YL) band IQW/IYL depends strongly on the type and intensity of excitation. Slower scintillation decay measured at YL band maximum confirmed the presence of several radiative recombination centres responsible for wide YL band, which also partially overlap with the QW peak. Further improvements of the structure are suggested, but even the presently reported decay characteristics of the excitonic emission in MQW are better compared to the currently widely used single crystal YAP:Ce or YAG:Ce scintillators. Thus, such a type of a semiconductor scintillator is highly promising for fast detection of soft x-ray and related beam diagnostics.

  1. Photoexcited electron and hole dynamics in semiconductor quantum dots: phonon-induced relaxation, dephasing, multiple exciton generation and recombination

    NASA Astrophysics Data System (ADS)

    Hyeon-Deuk, Kim; Prezhdo, Oleg V.

    2012-09-01

    Photoexcited dynamics of electrons and holes in semiconductor quantum dots (QD), including phonon-induced relaxation, multiple exciton generation, fission and recombination (MEG, MEF and MER), were simulated by combining ab initio time-dependent density functional theory and non-adiabatic molecular dynamics. These nonequilibrium phenomena govern the optical properties and photoexcited dynamics of QDs, determining the branching between electronic processes and thermal energy losses. Our approach accounts for QD size and shape as well as defects, core-shell distribution, surface ligands and charge trapping, which significantly influence the properties of photoexcited QDs. The method creates an explicit time-domain representation of photoinduced processes and describes various kinetic regimes owing to the non-perturbative treatment of quantum dynamics. QDs of different sizes and materials, with and without ligands, are considered. The simulations provide direct evidence that the high-frequency ligand modes on the QD surface play a pivotal role in the electron-phonon relaxation, MEG, MEF and MER. The insights reported here suggest novel routes for controlling the photoinduced processes in semiconductor QDs and lead to new design principles for increasing the efficiencies of photovoltaic devices.

  2. Three Temperature Regimes in Superconducting Photon Detectors: Quantum, Thermal and Multiple Phase-Slips as Generators of Dark Counts

    PubMed Central

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol’tsman, Gregory; Bezryadin, Alexey

    2015-01-01

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced. PMID:25988591

  3. Three temperature regimes in superconducting photon detectors: quantum, thermal and multiple phase-slips as generators of dark counts.

    PubMed

    Murphy, Andrew; Semenov, Alexander; Korneev, Alexander; Korneeva, Yulia; Gol'tsman, Gregory; Bezryadin, Alexey

    2015-05-19

    We perform measurements of the switching current distributions of three w ≈ 120 nm wide, 4 nm thick NbN superconducting strips which are used for single-photon detectors. These strips are much wider than the diameter of the vortex cores, so they are classified as quasi-two-dimensional (quasi-2D). We discover evidence of macroscopic quantum tunneling by observing the saturation of the standard deviation of the switching distributions at temperatures around 2 K. We analyze our results using the Kurkijärvi-Garg model and find that the escape temperature also saturates at low temperatures, confirming that at sufficiently low temperatures, macroscopic quantum tunneling is possible in quasi-2D strips and can contribute to dark counts observed in single photon detectors. At the highest temperatures the system enters a multiple phase-slip regime. In this range single phase-slips are unable to produce dark counts and the fluctuations in the switching current are reduced.

  4. Separation of isotropic chemical and second-order quadrupolar shifts by multiple-quantum double rotation NMR.

    PubMed

    Hung, Ivan; Wong, Alan; Howes, Andy P; Anupõld, Tiit; Samoson, Ago; Smith, Mark E; Holland, Diane; Brown, Steven P; Dupree, Ray

    2009-04-01

    Using a two-dimensional multiple-quantum (MQ) double rotation (DOR) experiment the contributions of the chemical shift and quadrupolar interaction to isotropic resonance shifts can be completely separated. Spectra were acquired using a three-pulse triple-quantum z-filtered pulse sequence and subsequently sheared along both the nu(1) and nu(2) dimensions. The application of this method is demonstrated for both crystalline (RbNO(3)) and amorphous samples (vitreous B(2)O(3)). The existence of the two rubidium isotopes ((85)Rb and (87)Rb) allows comparison of results for two nuclei with different spins (I=3/2 and 5/2), as well as different dipole and quadrupole moments in a single chemical compound. Being only limited by homogeneous line broadening and sample crystallinity, linewidths of approximately 0.1 and 0.2 ppm can be measured for (87)Rb in the quadrupolar and chemical shift dimensions, enabling highly accurate determination of the isotropic chemical shift and the quadrupolar product, P(Q). For vitreous B(2)O(3), the use of MQDOR allows the chemical shift and electric field gradient distributions to be directly determined-information that is difficult to obtain otherwise due to the presence of second-order quadrupolar broadening.

  5. An approach to high efficiencies using GaAs/GaInNAs multiple quantum well and superlattice solar cell

    NASA Astrophysics Data System (ADS)

    Courel, Maykel; Rimada, Julio C.; Hernández, Luis

    2012-09-01

    A new type of photovoltaic device where GaAs/GaInNAs multiple quantum wells (MQW) or superlattice (SL) are inserted in the i-region of a GaAs p-i-n solar cell (SC) is presented. The results suggest the device can reach record efficiencies for single-junction solar cells. A theoretical model is developed to study the performance of this device. The conversion efficiency as a function of wells width and depth is modeled for MQW solar cells. It is shown that the MQW solar cells reach high conversion efficiency values. A study of the SL solar cell viability is also presented. The conditions for resonant tunneling are established by the matrix transfer method for a superlattice with variable quantum wells width. The effective density of states and the absorption coefficient for SL structure are calculated in order to determinate the J-V characteristic. The influence of superlattice length on the conversion efficiency is researched, showing a better performance when width and cluster numbers are increased. The SL solar cell conversion efficiency is compared with the maximum conversion efficiency obtained for the MQW solar cell and shows an efficiency enhancement.

  6. Piezoelectric Effects on the Optical Properties of GaN/Al(x)Ga(1-x)N Multiple Quantum Wells

    SciTech Connect

    Botchkarev, A.; Chow, W.W.; Jiang, H.X.; Kim, H.S.; Lin, J.Y.; Morkoc, H.

    1998-11-10

    Piezoelectric effects on the optical properties of GaN/AlGaN multiple quantum wells (MQWS) have been investigated by picosecond time-resolved photoluminescence (PL) measurements. For MQWS with well thickness 30 and 40 the excitonic transition peak positions at 10 K in continuous wave (CW) spectra are red-shifted with respect to the GaN epilayer by 17 meV and 57 meV, respectively. The time-resolved PL spectra of the 30 and 40 well MQWS reveal that the excitonic transition is in fact blue-shifted at early delay times due to quantum confinement of carriers. The spectral peak position shifts toward lower energies as the delay time increases and becomes red-shifted at longer delay times. We have demonstrated that the results described above is due to the presence of the piezoelectric field in the GaN wells of GaN/AlGaN MQWS subject to elastic strain together with screening of the photoexcited carriers. By comparing experimental and calculation results, we conclude that the piezoelectric field strength in GaN/Al.15G~.85N MQWS has a lower limit value of about 560 kV/cm: The electron and hole wave function distributions have also been obtained. The implication of our findings on the practical applications of GaN based optoelectronic devices is also discussed.

  7. Multiple environment single system quantum mechanical/molecular mechanical (MESS-QM/MM) calculations. 1. Estimation of polarization energies

    SciTech Connect

    Sodt, Alexander J.; Mei, Ye; Konig, Gerhard; Tao, Peng; Steele, Ryan P.; Brooks, Bernard R.; Shao, Yihan

    2014-10-16

    In combined quantum mechanical/molecular mechanical (QM/MM) free energy calculations, it is often advantageous to have a frozen geometry for the quantum mechanical (QM) region. For such multiple-environment single-system (MESS) cases, two schemes are proposed here for estimating the polarization energy: the first scheme, termed MESS-E, involves a Roothaan step extrapolation of the self-consistent field (SCF) energy; whereas the other scheme, termed MESS-H, employs a Newton–Raphson correction using an approximate inverse electronic Hessian of the QM region (which is constructed only once). Both schemes are extremely efficient, because the expensive Fock updates and SCF iterations in standard QM/MM calculations are completely avoided at each configuration. Here, they produce reasonably accurate QM/MM polarization energies: MESS-E can predict the polarization energy within 0.25 kcal/mol in terms of the mean signed error for two of our test cases, solvated methanol and solvated β-alanine, using the M06-2X or ωB97X-D functionals; MESS-H can reproduce the polarization energy within 0.2 kcal/mol for these two cases and for the oxyluciferin–luciferase complex, if the approximate inverse electronic Hessians are constructed with sufficient accuracy.

  8. Nonlinear absorption properties of AlGaAs/GaAs multiple quantum wells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lee, Hsing-Chung; Kost, A.; Kawase, M.; Hariz, A.; Dapkus, P. Daniel

    1988-01-01

    The nonlinear absorption properties of the excitonic resonances associated with multiple quantum wells (MQWs) in AlGaAs/GaAs grown by metalorganic chemical vapor deposition are reported. The dependence of the saturation properties on growth parameters, especially growth temperature, and the well width are described. The minimum measured saturation intensity for these materials is 250 W/sq cm, the lowest reported value to date. The low saturation intensities are the result of excellent minority carrier properties. A systematic study of minority carrier lifetimes in quantum wells are reported. Lifetimes range from 50-350 ns depending on growth temperature and well width. When corrected for lateral diffusion effects and the measured minority carrier lifetime, the saturation data suggest that saturation intensities as low as 2.3 W/sq cm can be achieved in this system. The first measurements of the dependence of the exciton area and the magnitude of the excitonic absorption on well width are prsented. The growth of MQW structures on transparent GaP substrates is demonstrated and the electroabsorption properties of these structures are reviewed.

  9. Nonlinear absorption properties of AlGaAs/GaAs multiple quantum wells grown by metalorganic chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Lee, Hsing-Chung; Kost, A.; Kawase, M.; Hariz, A.; Dapkus, P. Daniel

    1988-01-01

    The nonlinear absorption properties of the excitonic resonances associated with multiple quantum wells (MQWs) in AlGaAs/GaAs grown by metalorganic chemical vapor deposition are reported. The dependence of the saturation properties on growth parameters, especially growth temperature, and the well width are described. The minimum measured saturation intensity for these materials is 250 W/sq cm, the lowest reported value to date. The low saturation intensities are the result of excellent minority carrier properties. A systematic study of minority carrier lifetimes in quantum wells are reported. Lifetimes range from 50-350 ns depending on growth temperature and well width. When corrected for lateral diffusion effects and the measured minority carrier lifetime, the saturation data suggest that saturation intensities as low as 2.3 W/sq cm can be achieved in this system. The first measurements of the dependence of the exciton area and the magnitude of the excitonic absorption on well width are prsented. The growth of MQW structures on transparent GaP substrates is demonstrated and the electroabsorption properties of these structures are reviewed.

  10. Carrier localization in InN/InGaN multiple-quantum wells with high In-content

    NASA Astrophysics Data System (ADS)

    Valdueza-Felip, S.; Rigutti, L.; Naranjo, F. B.; Ruterana, P.; Mangeney, J.; Julien, F. H.; González-Herráez, M.; Monroy, E.

    2012-08-01

    We study the carrier localization in InN/In0.9Ga0.1N multiple-quantum-wells (MQWs) and bulk InN by means of temperature-dependent photoluminescence and pump-probe measurements at 1.55 μm. The S-shaped thermal evolution of the emission energy of the InN film is attributed to carrier localization at structural defects with an average localization energy of ˜12 meV. Carrier localization is enhanced in the MQWs due to well/barrier thickness and ternary alloy composition fluctuations, leading to a localization energy above 35 meV and longer carrier relaxation time. As a result, the luminescence efficiency in the MQWs is improved by a factor of five over bulk InN.

  11. Atmospheric-pressure epitaxial growth technique of a multiple quantum well by mist chemical vapor deposition based on Leidenfrost droplets

    NASA Astrophysics Data System (ADS)

    Kawaharamura, Toshiyuki; Dang, Giang T.; Nitta, Noriko

    2016-10-01

    A multiple quantum well α-Fe2O3/α-Ga2O3 with parallel and coherent formation of uniform and highly single-crystalline layers on a sapphire substrate has been fabricated by open-air atmospheric-pressure solution-processed mist chemical vapor deposition (Mist CVD). This report demonstrates that complicated structures with atomic-level control can be fabricated even in non-vacuum conditions by the Mist CVD. This can be achieved via the precise control of the precursor flow and ambient temperature combined with the formation of mist droplets of the special Leidenfrost state, which increased the atomic migration length by 108 times more than that of traditional vacuum techniques. This work could be a milestone in the transformation from vacuum to non-vacuum thin film deposition techniques towards a green and sustainable industry.

  12. Optical bistability and multistability in a defect slab doped by GaAs/AlGaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin

    2016-05-01

    We proposed a new model for controlling the optical bistability (OB) and optical multistability (OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al0.3 Ga0.7As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.

  13. Low-temperature pulsed sputtering growth of InGaN multiple quantum wells for photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Arakawa, Yasuaki; Ueno, Kohei; Noguchi, Hidenari; Ohta, Jitsuo; Fujioka, Hiroshi

    2017-03-01

    We investigated the potential of low-temperature pulsed sputtering deposition (PSD) for the fabrication of high-In-composition thick InGaN multiple quantum wells (MQWs). Low-temperature PSD growth allowed the growth of a 100-period 1.2-nm-thick In0.3Ga0.7N MQW on GaN bulk crystals without apparent lattice relaxation. We fabricated a nitride-based photovoltaic device using 100-period In0.3Ga0.7N MQW absorption layers and obtained a clear photovoltaic response with an open-circuit voltage of 1.24 V, a short-circuit current density of 1.76 mA·cm‑2, and a maximum output power density of 1.10 mW·cm‑2 under 1 sun with air mass 1.5 illumination.

  14. Membrane-type photonic integration of InGaN/GaN multiple-quantum-well diodes and waveguide

    NASA Astrophysics Data System (ADS)

    Gao, Xumin; Bai, Dan; Cai, Wei; Xu, Yin; Yuan, Jialei; Yang, Yongchao; Zhu, Guixia; Cao, Xun; Zhu, Hongbo; Wang, Yongjin

    2017-02-01

    We report here a membrane-type integration of InGaN/GaN multiple-quantum-well diodes (MQWDs) with a waveguide to build a highly integrated photonic system to perform functionalities on a GaN-on-silicon platform. Suspended MQWDs can be used as either for light-emitting diode (LED) or photodiode. In the fabricated photonic system, part of the LED emission is coupled into a suspended waveguide, and the guided light laterally propagates along the waveguide and is finally sensed by the photodiode. The photonic system can detect the in-plane guided light and the external incident light simultaneously. Planar optical communication experimentally demonstrates that the proof-of-concept monolithic photonic integration system can achieve the in-plane visible light communication. This work paves the way towards novel active electro-optical sensing systems and planar optical communication in the visible range.

  15. Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies

    SciTech Connect

    Tholouli, Eleni; Hoyland, Judith A.; Di Vizio, Dolores; O'Connell, Fionnuala; MacDermott, Sarah A.; Twomey, David; Levenson, Richard; Yin, John A. Liu; Golub, Todd R.; Loda, Massimo; Byers, Richard . E-mail: r.byers@manchester.ac.uk

    2006-09-22

    Gene expression mapping using microarray analysis has identified useful gene signatures for predicting outcome. However, little of this has been translated into clinically effective diagnostic tools as microarrays require high quality fresh-frozen tissue samples. We describe a methodology of multiplexed in situ hybridization (ISH) using a novel combination of quantum dot (QD)-labeled oligonucleotide probes and spectral imaging analysis in routinely processed, formalin-fixed paraffin embedded human biopsies. The conditions for QD-ISH were optimized using a poly d(T) oligonucleotide in decalcified bone marrow samples. Single and multiplex QD-ISH was performed in samples with acute leukemia and follicular lymphoma using oligonucleotide probes for myeloperoxidase, bcl-2, survivin, and XIAP. Spectral imaging was used for post hybridization tissue analysis, enabling separation of spatially colocalized signals. The method allows quantitative characterization of multiple gene expression using non-bleaching fluorochromes. This is expected to facilitate multiplex in situ transcript detection in routinely processed human clinical tissue.

  16. Quantum dynamical response of ultracold few-boson ensembles in finite optical lattices to multiple interaction quenches

    NASA Astrophysics Data System (ADS)

    Neuhaus-Steinmetz, J.; Mistakidis, S. I.; Schmelcher, P.

    2017-05-01

    The correlated nonequilibrium quantum dynamics following a multiple interaction quench protocol for few-bosonic ensembles confined in finite optical lattices is investigated. The quenches give rise to an interwell tunneling and excite the cradle and a breathing mode. Several tunneling pathways open during the time interval of increased interactions, while only a few occur when the system is quenched back to its original interaction strength. The cradle mode, however, persists during and in between the quenches, while the breathing mode possesses distinct frequencies. The occupation of excited bands is explored in detail revealing a monotonic behavior with increasing quench amplitude and a nonlinear dependence on the duration of the application of the quenched interaction strength. Finally, a periodic population transfer between momenta for quenches of increasing interaction is observed, with a power-law frequency dependence on the quench amplitude. Our results open the possibility to dynamically manipulate various excited modes of the bosonic system.

  17. Resonant enhancement of second order sideband generation for intraexcitonic transitions in GaAs/AlGaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Wagner, M.; Schneider, H.; Winnerl, S.; Helm, M.; Roch, T.; Andrews, A. M.; Schartner, S.; Strasser, G.

    2009-06-01

    We present an experimental study on efficient second order sideband generation in symmetric undoped GaAs/AlGaAs multiple quantum wells. A near-infrared laser tuned to excitonic interband transitions is mixed with an in-plane polarized terahertz beam from a free-electron laser. The terahertz beam is tuned either to the intraexcitonic heavy-hole 1s-2p transition or to the interexcitonic heavy-hole light-hole transition. We find strong evidence that the intraexcitonic transition is of paramount influence on n =±2 sideband generation, leading to an order-of-magnitude resonant enhancement of the conversion efficiency up to 0.1% at low temperature. At room temperature, the efficiency drops only by a factor of 7 for low terahertz powers.

  18. Extended defects in InGaAs/InGaAs strain-balanced multiple quantum wells for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Nasi, Lucia; Ferrari, Claudio; Lazzarini, Laura; Salviati, Giancarlo; Tundo, Stefania; Mazzer, Massimo; Clarke, Graham; Rohr, Carsten

    2002-12-01

    Different strain-balanced InGaAs/InGaAs multiple quantum wells (MQWs) were grown on (001) InP changing the In composition in the wells/barriers in order to extend the absorption edge beyond 2 μm for thermophotovoltaic applications. The strain increase in the structures results in the formation of isolated highly defected regions taking their origin from lateral layer thickness modulations. Experimental results are consistent with the existence of a critical elastic energy density for the development of MQW waviness. An empirical model for predicting the maximum number of layers that can be grown without modulations as a function of the strain energy stored in the MQW period is presented.

  19. Sensitivity enhancement in static solid-state NMR experiments via single- and multiple-quantum dipolar coherences.

    PubMed

    Gopinath, T; Veglia, Gianluigi

    2009-04-29

    We present a new method for enhancing the sensitivity in static solid-state NMR experiments for a gain in signal-to-noise ratio of up to 40%. This sensitivity enhancement is different from the corresponding solution NMR sensitivity enhancement schemes and is achieved by combining single- and multiple-quantum dipolar coherences. While this new approach is demonstrated for the polarization inversion spin exchange at magic angle (PISEMA) experiment, it can be generalized to the other separated local field experiments for solid-state NMR spectroscopy. This method will have a direct impact on solid-state NMR spectroscopy of liquid crystals as well as of membrane proteins aligned in lipid membranes.

  20. SIMQUADNMR: a program for simulation and interpretation of multiple quantum-filtered NMR spectra of quadrupolar nuclei.

    PubMed

    D'Amelio, Nicola; Gaggelli, Elena; Molteni, Elena; Valensin, Gianni

    2005-01-01

    In this paper, we present a computer program which simulates NMR multiple quantum-filtered spectra of quadrupolar nuclei as a function of physical parameters, of the type of experiment and experimental conditions. The program works by solving relaxation theory equations for the given system, and it can be useful in order to plan the ideal conditions to set up specific experiments or to give a physical interpretation of experimental results. The program allows to independently follow the dependence of individual coherences and relaxation rates as a function of up to 50 parameters regarding the physical properties of the system under investigation, sample conditions and instrumental setup making it an helpful tool also for teaching purposes.

  1. Degenerate four-wave mixing in room-temperature GaAs/GaAlAs multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Miller, D. A. B.; Chemla, D. S.; Eilenberger, D. J.; Smith, P. W.; Gossard, A. C.; Wiegman, W.

    1983-06-01

    Degenerate four-wave mixing (DFWM) is of current interest both for practical applications (e.g., phase conjugation) and as a physical probe. DFWM makes it possible to detect very small nonlinear changes in refraction. In connection with the present investigation, the first observations of DFWM in GaAs/GaAlAs multiple quantum well structures (MQW's) at room temperature are reported. By combining DFWM and nonlinear absorption results, a direct measurement of the nonlinear refraction near the band gap of the MQW is conducted. The obtained value is compared with previous estimates. The measurements are of practical importance for possible low-power optical devices compatible with laser diodes based either on DFWM, nonlinear refraction (such as optical bistability) of nonlinear absorption. The MQW samples were grown by molecular beam epitaxy (MBE) on GaAs substrates, with the MQW layers sandwiched between GaAlAs cap layers which are transparent at the considered wavelengths.

  2. Accelerating the Gillespie τ-Leaping Method Using Graphics Processing Units

    PubMed Central

    Komarov, Ivan; D’Souza, Roshan M.; Tapia, Jose-Juan

    2012-01-01

    The Gillespie τ-Leaping Method is an approximate algorithm that is faster than the exact Direct Method (DM) due to the progression of the simulation with larger time steps. However, the procedure to compute the time leap τ is quite expensive. In this paper, we explore the acceleration of the τ-Leaping Method using Graphics Processing Unit (GPUs) for ultra-large networks ( reaction channels). We have developed data structures and algorithms that take advantage of the unique hardware architecture and available libraries. Our results show that we obtain a performance gain of over 60x when compared with the best conventional implementations. PMID:22715366

  3. Devices based on InGaN/GaN multiple quantum well for scintillator and detector applications

    NASA Astrophysics Data System (ADS)

    Hospodková, Alice; Pangrác, Jiří; Kuldová, Karla; Nikl, Martin; Pacherová, Oliva; Oswald, Jiří; Hubáček, Tomáš; Zíková, Markéta; Brůža, Petr; Pánek, Dalibor; Blažek, Karel; Ledoux, Gilles; Dujardin, Christophe; Heuken, Michael; Hulicius, Eduard

    2016-02-01

    Fast scintillators are necessary for electron microscopes, as well as in many other application fields like medical diagnostics and therapy and fundamental science. InGaN/GaN multiple quantum well structures (QW) are perspective candidates due to strong exciton binding energy, high quantum efficiency, short decay time in order of ns and good radiation resistance. The aim of our work is to prepare scintillator structure with fast luminescence response and high intensity of light. InGaN/GaN multiple QW structures described here were prepared by metal-organic vapour phase epitaxy and characterized by high resolution X-ray diffraction measurements. We demonstrate structure suitability for scintillator application including a unique measurement of wavelength-resolved scintillation response under nanosecond pulse soft X-ray source in extended dynamical and time scales. The photo-, radio- and cathodo-luminescence (PL, RL, CL) were measured. We observed double peak luminescence governed by different recombination mechanisms: i) exciton in QW and ii) related to defects. We have shown that for obtaining fast and intensive luminescence response proper structure design is required. The radioluminescence decay time of QW exciton maximum decreased 4 times from 16 ns to 4 ns when the QW thickness was decreased from 2.4 nm to 2 nm. We have proved suitability of InGaN/GaN structures for fast scintillator application for electron or other particle radiation detection. For x-ray detection the fast scintillation response would be hard to achieve due to the dominant slow defect luminescence maximum.

  4. Optimized selective lactate excitation with a refocused multiple-quantum filter

    NASA Astrophysics Data System (ADS)

    Holbach, Mirjam; Lambert, Jörg; Johst, Sören; Ladd, Mark E.; Suter, Dieter

    2015-06-01

    Selective detection of lactate signals in in vivo MR spectroscopy with spectral editing techniques is necessary in situations where strong lipid or signals from other molecules overlap the desired lactate resonance in the spectrum. Several pulse sequences have been proposed for this task. The double-quantum filter SSel-MQC provides very good lipid and water signal suppression in a single scan. As a major drawback, it suffers from significant signal loss due to incomplete refocussing in situations where long evolution periods are required. Here we present a refocused version of the SSel-MQC technique that uses only one additional refocussing pulse and regains the full refocused lactate signal at the end of the sequence.

  5. Frequency up-conversion in nonpolar a-plane GaN/AlGaN based multiple quantum wells optimized for applications with silicon solar cells

    SciTech Connect

    Radosavljević, S.; Radovanović, J. Milanović, V.; Tomić, S.

    2014-07-21

    We have described a method for structural parameters optimization of GaN/AlGaN multiple quantum well based up-converter for silicon solar cells. It involves a systematic tuning of individual step quantum wells by use of the genetic algorithm for global optimization. In quantum well structures, the up-conversion process can be achieved by utilizing nonlinear optical effects based on intersubband transitions. Both single and double step quantum wells have been tested in order to maximize the second order susceptibility derived from the density matrix formalism. The results obtained for single step wells proved slightly better and have been further pursued to obtain a more complex design, optimized for conversion of an entire range of incident photon energies.

  6. Self-powered smart window controlled by a high open-circuit voltage InGaN/GaN multiple quantum well solar cell.

    PubMed

    Wu, Chia-Ching; Liou, Jian-Chiun; Diao, Chien-Chen

    2015-08-14

    A self-powered complementary electrochromic device (CECD) driven by a high open-circuit voltage InGaN/GaN multiple quantum well (MQW) solar cell has been designed. The coloration and bleaching time of the system were 5 and 8 s, respectively.

  7. Initial Experiments with the Leap Motion as a User Interface in Robotic Endonasal Surgery.

    PubMed

    Travaglini, T A; Swaney, P J; Weaver, Kyle D; Webster, R J

    The Leap Motion controller is a low-cost, optically-based hand tracking system that has recently been introduced on the consumer market. Prior studies have investigated its precision and accuracy, toward evaluating its usefulness as a surgical robot master interface. Yet due to the diversity of potential slave robots and surgical procedures, as well as the dynamic nature of surgery, it is challenging to make general conclusions from published accuracy and precision data. Thus, our goal in this paper is to explore the use of the Leap in the specific scenario of endonasal pituitary surgery. We use it to control a concentric tube continuum robot in a phantom study, and compare user performance using the Leap to previously published results using the Phantom Omni. We find that the users were able to achieve nearly identical average resection percentage and overall surgical duration with the Leap.

  8. Leap and strike kinetics of an acoustically 'hunting' barn owl (Tyto alba).

    PubMed

    Usherwood, James R; Sparkes, Emily L; Weller, Renate

    2014-09-01

    Barn owls are effective hunters of small rodents. One hunting technique is a leap from the ground followed by a brief flight and a plummeting 'strike' onto an acoustically targeted - and potentially entirely hidden - prey. We used forceplate measurements to derive kinetics of the leap and strike. Leaping performance was similar to reported values for guinea fowl. This is likely achieved despite the owl's considerably smaller size because of its relatively long legs and use of wing upstroke. Strikes appear deliberately forceful: impulses could have been spread over larger periods during greater deflections of the centre of mass, as observed in leaping and an alighting landing measurement. The strike, despite forces around 150 times that of a mouse body weight, is not thought to be crucial to the kill; rather, forceful strikes may function primarily to enable rapid penetration of leaf litter or snow cover, allowing grasping of hidden prey. © 2014. Published by The Company of Biologists Ltd.

  9. Initial Experiments with the Leap Motion as a User Interface in Robotic Endonasal Surgery

    PubMed Central

    Travaglini, T. A.; Swaney, P. J.; Weaver, Kyle D.; Webster, R. J.

    2016-01-01

    The Leap Motion controller is a low-cost, optically-based hand tracking system that has recently been introduced on the consumer market. Prior studies have investigated its precision and accuracy, toward evaluating its usefulness as a surgical robot master interface. Yet due to the diversity of potential slave robots and surgical procedures, as well as the dynamic nature of surgery, it is challenging to make general conclusions from published accuracy and precision data. Thus, our goal in this paper is to explore the use of the Leap in the specific scenario of endonasal pituitary surgery. We use it to control a concentric tube continuum robot in a phantom study, and compare user performance using the Leap to previously published results using the Phantom Omni. We find that the users were able to achieve nearly identical average resection percentage and overall surgical duration with the Leap. PMID:26752501

  10. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity.

    PubMed

    Krause, A; Neitz, S; Mägert, H J; Schulz, A; Forssmann, W G; Schulz-Knappe, P; Adermann, K

    2000-09-01

    We report the isolation and characterization of a novel human peptide with antimicrobial activity, termed LEAP-1 (liver-expressed antimicrobial peptide). Using a mass spectrometric assay detecting cysteine-rich peptides, a 25-residue peptide containing four disulfide bonds was identified in human blood ultrafiltrate. LEAP-1 expression was predominantly detected in the liver, and, to a much lower extent, in the heart. In radial diffusion assays, Gram-positive Bacillus megaterium, Bacillus subtilis, Micrococcus luteus, Staphylococcus carnosus, and Gram-negative Neisseria cinerea as well as the yeast Saccharomyces cerevisiae dose-dependently exhibited sensitivity upon treatment with synthetic LEAP-1. The discovery of LEAP-1 extends the known families of mammalian peptides with antimicrobial activity by its novel disulfide motif and distinct expression pattern.

  11. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion.

    PubMed

    Beard, Matthew C; Johnson, Justin C; Luther, Joseph M; Nozik, Arthur J

    2015-06-28

    Both multiple exciton generation (MEG) in semiconductor nanocrystals and singlet fission (SF) in molecular chromophores have the potential to greatly increase the power conversion efficiency of solar cells for the production of solar electricity (photovoltaics) and solar fuels (artificial photosynthesis) when used in solar photoconverters. MEG creates two or more excitons per absorbed photon, and SF produces two triplet states from a single singlet state. In both cases, multiple charge carriers from a single absorbed photon can be extracted from the cell and used to create higher power conversion efficiencies for a photovoltaic cell or a cell that produces solar fuels, like hydrogen from water splitting or reduced carbon fuels from carbon dioxide and water (analogous to biological photosynthesis). The similarities and differences in the mechanisms and photoconversion cell architectures between MEG and SF are discussed.

  12. Multiple exciton generation in quantum dots versus singlet fission in molecular chromophores for solar photon conversion

    SciTech Connect

    Beard, M. C.; Johnson, J. C.; Luther, J. M.; Nozik, A. J.

    2015-05-18

    Both multiple exciton generation (MEG) in semiconductor nanocrystals and singlet fission (SF) in molecular chromophores have the potential to greatly increase the power conversion efficiency of solar cells for the production of solar electricity (photovoltaics) and solar fuels (artificial photosynthesis) when used in solar photoconverters. MEG creates two or more excitons per absorbed photon, and SF produces two triplet states from a single singlet state. In both cases, multiple charge carriers from a single absorbed photon can be extracted from the cell and used to create higher power conversion efficiencies for a photovoltaic cell or a cell that produces solar fuels, like hydrogen from water splitting or reduced carbon fuels from carbon dioxide and water (analogous to biological photosynthesis). The similarities and differences in the mechanisms and photoconversion cell architectures between MEG and SF are discussed.

  13. Multicolor Quantum Dot-Based Chemical Nose for Rapid and Array-Free Differentiation of Multiple Proteins.

    PubMed

    Xu, Qinfeng; Zhang, Yihong; Tang, Bo; Zhang, Chun-yang

    2016-02-16

    Nanomaterial-based differential sensors (e.g., chemical nose) have shown great potential for identification of multiple proteins because of their modulatable recognition and transduction capability but with the limitation of array separation, single-channel read-out, and long incubation time. Here, we develop a multicolor quantum dot (QD)-based multichannel sensing platform for rapid identification of multiple proteins in an array-free format within 1 min. A protein-binding dye of bromophenol blue (BPB) is explored as an efficient reversible quencher of QDs, and the mixture of BPB with multicolor QDs may generate the quenched QD-BPB complexes. The addition of proteins will disrupt the QD-BPB complexes as a result of the competitive protein-BPB binding, inducing the separation of BPB from the QDs and the generation of distinct fluorescence patterns. The multicolor patterns may be collected at a single-wavelength excitation and differentiated by a linear discriminant analysis (LDA). This multichannel sensing platform allows for the discrimination of ten proteins and seven cell lines with the fastest response rate reported to date, holding great promise for rapid and high-throughput medical diagnostics.

  14. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions

    SciTech Connect

    Zhang, Feng; Ikeda, Masao Liu, Jianping; Zhang, Shuming; Zhou, Kun; Yang, Hui; Liu, Zongshun

    2015-07-21

    Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.

  15. Next Generation Photovoltaics Based on Multiple Exciton Generation in Quantum Dot Solar Cells

    NASA Astrophysics Data System (ADS)

    Nozik, Arthur J.

    Next Generation solar cells based onMultiple Exciton Generation (MEG) in semiconductorquantum dots (QDs) are described. This application of QDs depends upon efficient MEG in QDs incorporated into PV cells, followed by efficient exciton splitting into free electrons and holes and their efficient separation and collection in the cell contacts to produce multiple free carriers per absorbed photon. Using time-resolved transient absorption, bleaching, photoluminescence and THz spectroscopy, MEG has been initially confirmed in several Group IV-VI, III-V, II-VI, and IV colloidal semiconductor QDs. Some controversy using these techniques have now been attributed to effects of the variable of the QD surface chemisty and under certain conditions to artifacts arising from long-lived trapping of photoinduced charge; in our opinion these controversies have been resolved and are discussed here. Furthermore, various photovoltaic cell architectures utilizing QDs have recently been constructed and the photocurrent and photovoltage characterisitics have been studied. These photocurrent measurements provide a more direct measurement of MEG since the photogenerated carriers are counted directly via the current, and they are very consistent with the QYs of MEG reported using the proper spectroscopic techniques; thus, these new photocurrent measurements confirm the existence of enhanced exciton and carrier multiplication in QDs. The past work and prognosis for QD-based Next Generation PV cells based on MEG are discussed.

  16. The Operational Feasibility of the Leadership Evaluation and Analysis Program (LEAP)

    DTIC Science & Technology

    1977-03-01

    conditions and mission requirements. As an organizational/management development type program, the LEAP is unique in that it utilizes a decentralized, self...operational feasi- bility of the LEAP through pilot application by Marine Corps units under actual field conditions . A pilot-evaluation study was conducted at...organizational/management development COD) type programs presently being used in the Navy, Army, and Air Force (Forbes, 1976; Shaum, 1976; Hackman

  17. Quantum Darwinism

    NASA Astrophysics Data System (ADS)

    Zurek, Wojciech Hubert

    2009-03-01

    Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.

  18. An ultrafast spectroscopic and quantum mechanical investigation of multiple emissions in push-pull pyridinium derivatives bearing different electron donors.

    PubMed

    Carlotti, B; Benassi, E; Cesaretti, A; Fortuna, C G; Spalletti, A; Barone, V; Elisei, F

    2015-08-28

    A joint experimental and theoretical approach, involving state-of-the-art femtosecond fluorescence up-conversion measurements and quantum mechanical computations including vibronic effects, was employed to get a deep insight into the excited state dynamics of two cationic dipolar chromophores (Donor-π-Acceptor(+)) where the electron deficient portion is a N-methyl pyridinium and the electron donor a trimethoxyphenyl or a pyrene, respectively. The ultrafast spectroscopic investigation, and the time resolved area normalised emission spectra in particular, revealed a peculiar multiple emissive behaviour and allowed the distinct emitting states to be remarkably distinguished from solvation dynamics, occurring in water in a similar timescale. The two and three emissions experimentally detected for the trimethoxyphenyl and pyrene derivatives, respectively, were associated with specific local emissive minima in the potential energy surface of S1 on the ground of quantum-mechanical calculations. A low polar and planar Locally Excited (LE) state together with a highly polar and Twisted Intramolecular Charge Transfer (TICT) state is identified to be responsible for the dual emission of the trimethoxyphenyl compound. Interestingly, the more complex photobehaviour of the pyrenyl derivative was explained considering the contribution to the fluorescence coming not only from the LE and TICT states but also from a nearly Planar Intramolecular Charge Transfer (PICT) state, with both the TICT and the PICT generated from LE by progressive torsion around the quasi-single bond between the methylpyridinium and the ethene bridge. These findings point to an interconversion between rotamers for the pyrene compound taking place in its excited state against the Non-equilibrated Excited Rotamers (NEER) principle.

  19. Field-Induced Multiple Reentrant Quantum Phase Transitions in Randomly Dimerized Antiferromagnetic S=1/2 Heisenberg Chains

    NASA Astrophysics Data System (ADS)

    Hida, Kazuo

    2006-07-01

    The multiple reentrant quantum phase transitions in the S=1/2 antiferromagnetic Heisenberg chains with random bond alternation in the magnetic field are investigated by the density matrix renormalization group method combined with interchain mean field approximation. It is assumed that odd numbered bonds are antiferromagnetic with strength J and even numbered bonds can take the values JS and JW (JS > J > JW > 0) randomly with the probabilities p and 1- p, respectively. The pure version ( p=0 and 1) of this model has a spin gap but exhibits a field-induced antiferromagnetism in the presence of interchain coupling if Zeeman energy due to the magnetic field exceeds the spin gap. For 0 < p < 1, antiferromagnetism is induced by randomness at the small field region where the ground state is disordered due to the spin gap in the pure version. At the same time, this model exhibits randomness-induced plateaus at several values of magnetization. The antiferromagnetism is destroyed on the plateaus. As a consequence, we find a series of reentrant quantum phase transitions between transverse antiferromagnetic phases and disordered plateau phases with the increase of magnetic field for a moderate strength of interchain coupling. Above the main plateaus, the magnetization curve consists of a series of small plateaus and jumps between them. It is also found that antiferromagnetism is induced by infinitesimal interchain coupling at the jumps between the small plateaus. We conclude that this antiferromagnetism is supported by the mixing of low-lying excited states by the staggered interchain mean field even though the spin correlation function is short ranged in the ground state of each chain.

  20. A multi-objective shuffled frog leaping algorithm for in-core fuel management optimization

    NASA Astrophysics Data System (ADS)

    Arshi, S. Safaei; Zolfaghari, A.; Mirvakili, S. M.

    2014-10-01

    The efficient operation and in-core fuel management of PWRs are of utmost importance. In the present work, a core reload optimization using Shuffled Frog Leaping (SFL) algorithm is addressed and mapped on nuclear fuel loading pattern optimization. SFL is one of the latest meta-heuristic optimization algorithms which is used for solving the discrete optimization problems and inspired from social behavior of frogs. The algorithm initiates the search from an initial population and carries forward to draw out an optimum result. This algorithm employs the use of memetic evolution by exchanging ideas between the members of the population in each local search. The local search of SFL is similar to particle swarm optimization (PSO) and applying shuffling process accomplishes the information exchange between several local searches to obtain an overall optimum result. To evaluate the proposed technique, Shekel's Foxholes and a VVER-1000 reactor are used as test cases to illustrate performance of SFL. Among numerous neutronic and thermal-hydraulic objectives necessary for a fuel management problem to reach an overall optimum, this paper deals with two neutronic objectives, i.e., maximizing effective multiplication factor and flattening power distribution in the core, to evaluate the capability of applying SFL algorithm for a fuel management problem. The results, convergence rate and reliability of the method are quite promising and show the potential and efficiency of the technique for other optimization applications in the nuclear engineering field.