Chaos in Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Mitchell, G. E.
1997-11-01
Recent developments have led to a new appreciation of the significance of Random Matrix Theory (RMT). The Bohigas conjecture(O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52), 1 (1984). assumes a generic connection between RMT and the spectral fluctuations of quantum analogs of classically chaotic systems. Level statistics are now used as a signature of chaos. RMT has been applied to a large number and variety of physical systems.(T. Guhr, A. Müller, and H. A. Weidenmüller, Phys. Reports (to be published).) The theory was originally developed by Wigner and Dyson to describe the fluctuation properties of nuclear resonances. It is impressive that a theory developed for the nucleus has been applied to complex atoms and molecules. The successful description of the properties of disordered solids is more surprising. The successful description of the elastomechanical eigenfrequencies of irregularly shaped quartz crystals and of the eigenmodes of microwaves in two-dimensional superconducting cavities suggests a near universality of RMT.
Measuring entanglement entropy in a quantum many-body system
NASA Astrophysics Data System (ADS)
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M.; Eric Tai, M.; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-01
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
Measuring entanglement entropy in a quantum many-body system.
Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus
2015-12-01
Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.
On microstates counting in many body polymer quantum systems
Chacon-Acosta, Guillermo; Morales-Tecotl, Hugo A.; Dagdug, Leonardo
2011-10-14
Polymer quantum systems are mechanical models quantized in a similar way as loop quantum gravity but in which loops/graphs resembling polymers are replaced by discrete sets of points. Such systems have allowed to study in a simpler context some novel aspects of loop quantum gravity. Although thermal aspects play a crucial role in cosmology and black hole physics little attention has been given to the thermostatistics of many body polymer quantum systems. In this work we explore how the features of a one-dimensional effective polymer gas, affect its microstate counting and hence the corresponding thermodynamical quantities.
Measuring entanglement entropy in a quantum many-body system
NASA Astrophysics Data System (ADS)
Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus
2016-05-01
The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.
Dynamic Stabilization of a Quantum Many-Body Spin System
NASA Astrophysics Data System (ADS)
Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.
2013-08-01
We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.
Dynamic stabilization of a quantum many-body spin system.
Hoang, T M; Gerving, C S; Land, B J; Anquez, M; Hamley, C D; Chapman, M S
2013-08-30
We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis. PMID:24033006
Boundary driven open quantum many-body systems
Prosen, Tomaž
2014-01-08
In this lecture course I outline a simple paradigm of non-eqjuilibrium quantum statistical physics, namely we shall study quantum lattice systems with local, Hamiltonian (conservative) interactions which are coupled to the environment via incoherent processes only at the system's boundaries. This is arguably the simplest nontrivial context where one can study far from equilibrium steady states and their transport properties. We shall formulate the problem in terms of a many-body Markovian master equation (the so-called Lindblad equation, and some of its extensions, e.g. the Redfield eqaution). The lecture course consists of two main parts: Firstly, and most extensively we shall present canonical Liouville-space many-body formalism, the so-called 'third quantization' and show how it can be implemented to solve bi-linear open many-particle problems, the key peradigmatic examples being the XY spin 1/2 chains or quasi-free bosonic (or harmonic) chains. Secondly, we shall outline several recent approaches on how to approach exactly solvable open quantum interacting many-body problems, such as anisotropic Heisenberg ((XXZ) spin chain or fermionic Hubbard chain.
Periodically driven ergodic and many-body localized quantum systems
Ponte, Pedro; Chandran, Anushya; Papić, Z.; Abanin, Dmitry A.
2015-02-15
We study dynamics of isolated quantum many-body systems whose Hamiltonian is switched between two different operators periodically in time. The eigenvalue problem of the associated Floquet operator maps onto an effective hopping problem. Using the effective model, we establish conditions on the spectral properties of the two Hamiltonians for the system to localize in energy space. We find that ergodic systems always delocalize in energy space and heat up to infinite temperature, for both local and global driving. In contrast, many-body localized systems with quenched disorder remain localized at finite energy. We support our conclusions by numerical simulations of disordered spin chains. We argue that our results hold for general driving protocols, and discuss their experimental implications.
Classical simulation of quantum many-body systems
NASA Astrophysics Data System (ADS)
Huang, Yichen
Classical simulation of quantum many-body systems is in general a challenging problem for the simple reason that the dimension of the Hilbert space grows exponentially with the system size. In particular, merely encoding a generic quantum many-body state requires an exponential number of bits. However, condensed matter physicists are mostly interested in local Hamiltonians and especially their ground states, which are highly non-generic. Thus, we might hope that at least some physical systems allow efficient classical simulation. Starting with one-dimensional (1D) quantum systems (i.e., the simplest nontrivial case), the first basic question is: Which classes of states have efficient classical representations? It turns out that this question is quantitatively related to the amount of entanglement in the state, for states with "little entanglement'' are well approximated by matrix product states (a data structure that can be manipulated efficiently on a classical computer). At a technical level, the mathematical notion for "little entanglement'' is area law, which has been proved for unique ground states in 1D gapped systems. We establish an area law for constant-fold degenerate ground states in 1D gapped systems and thus explain the effectiveness of matrix-product-state methods in (e.g.) symmetry breaking phases. This result might not be intuitively trivial as degenerate ground states in gapped systems can be long-range correlated. Suppose an efficient classical representation exists. How can one find it efficiently? The density matrix renormalization group is the leading numerical method for computing ground states in 1D quantum systems. However, it is a heuristic algorithm and the possibility that it may fail in some cases cannot be completely ruled out. Recently, a provably efficient variant of the density matrix renormalization group has been developed for frustration-free 1D gapped systems. We generalize this algorithm to all (i.e., possibly frustrated) 1D
Excited state quantum phase transitions in many-body systems
Caprio, M.A. Cejnar, P.; Iachello, F.
2008-05-15
Phenomena analogous to ground state quantum phase transitions have recently been noted to occur among states throughout the excitation spectra of certain many-body models. These excited state phase transitions are manifested as simultaneous singularities in the eigenvalue spectrum (including the gap or level density), order parameters, and wave function properties. In this article, the characteristics of excited state quantum phase transitions are investigated. The finite-size scaling behavior is determined at the mean-field level. It is found that excited state quantum phase transitions are universal to two-level bosonic and fermionic models with pairing interactions.
Quantum phase transition in strongly correlated many-body system
NASA Astrophysics Data System (ADS)
You, Wenlong
The past decade has seen a substantial rejuvenation of interest in the study of quantum phase transitions (QPTs), driven by experimental advance on the cuprate superconductors, the heavy fermion materials, organic conductors, Quantum Hall effect, Fe-As based superconductors and other related compounds. It is clear that strong electronic interactions play a crucial role in the systems of current interest, and simple paradigms for the behavior of such systems near quantum critical points remain unclear. Furthermore, the rapid progress in Feshbach resonance and optical lattice provides a flexible platform to study QPT. Quantum Phase Transition (QPT) describes the non-analytic behaviors of the ground-state properties in a many-body system by varying a physical parameter at absolute zero temperature - such as magnetic field or pressure, driven by quantum fluctuations. Such quantum phase transitions can be first-order phase transition or continuous. The phase transition is usually accompanied by a qualitative change in the nature of the correlations in the ground state, and describing this change shall clearly be one of our major interests. We address this issue from three prospects in a few strong correlated many-body systems in this thesis, i.e., identifying the ordered phases, studying the properties of different phases, characterizing the QPT points. In chapter 1, we give an introduction to QPT, and take one-dimensional XXZ model as an example to illustrate the QPT therein. Through this simple example, we would show that when the tunable parameter is varied, the system evolves into different phases, across two quantum QPT points. The distinct phases exhibit very different behaviors. Also a schematic phase diagram is appended. In chapter 2, we are engaged in research on ordered phases. Originating in the work of Landau and Ginzburg on second-order phase transition, the spontaneous symmetry breaking induces nonzero expectation of field operator, e.g., magnetization M
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration.
Characterizing and quantifying frustration in quantum many-body systems.
Giampaolo, S M; Gualdi, G; Monras, A; Illuminati, F
2011-12-23
We present a general scheme for the study of frustration in quantum systems. We introduce a universal measure of frustration for arbitrary quantum systems and we relate it to a class of entanglement monotones via an exact inequality. If all the (pure) ground states of a given Hamiltonian saturate the inequality, then the system is said to be inequality saturating. We introduce sufficient conditions for a quantum spin system to be inequality saturating and confirm them with extensive numerical tests. These conditions provide a generalization to the quantum domain of the Toulouse criteria for classical frustration-free systems. The models satisfying these conditions can be reasonably identified as geometrically unfrustrated and subject to frustration of purely quantum origin. Our results therefore establish a unified framework for studying the intertwining of geometric and quantum contributions to frustration. PMID:22243147
Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Roscilde, Tommaso
2016-08-01
Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically measurable and computable as the difference between the static fluctuations and the static susceptibility of the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted estimators of "quantumness" of observables (both as a feature as well as a resource), such as the Wigner-Yanase skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex quantum systems.
Localization and glassy dynamics of many-body quantum systems.
Carleo, Giuseppe; Becca, Federico; Schiró, Marco; Fabrizio, Michele
2012-01-01
When classical systems fail to explore their entire configurational space, intriguing macroscopic phenomena like aging and glass formation may emerge. Also closed quanto-mechanical systems may stop wandering freely around the whole Hilbert space, even if they are initially prepared into a macroscopically large combination of eigenstates. Here, we report numerical evidences that the dynamics of strongly interacting lattice bosons driven sufficiently far from equilibrium can be trapped into extremely long-lived inhomogeneous metastable states. The slowing down of incoherent density excitations above a threshold energy, much reminiscent of a dynamical arrest on the verge of a glass transition, is identified as the key feature of this phenomenon. We argue that the resulting long-lived inhomogeneities are responsible for the lack of thermalization observed in large systems. Such a rich phenomenology could be experimentally uncovered upon probing the out-of-equilibrium dynamics of conveniently prepared quantum states of trapped cold atoms which we hereby suggest.
Quantum effects in many-body gravitating systems
NASA Astrophysics Data System (ADS)
Golovko, V. A.
2005-07-01
A hierarchy of equations for equilibrium reduced density matrices obtained earlier is used to consider systems of spinless bosons bound by forces of gravity alone. The systems are assumed to be at absolute zero of temperature under conditions of Bose condensation. In this case, a peculiar interplay of quantum effects and of very weak gravitational interaction between microparticles occurs. As a result, there can form spatially bounded equilibrium structures macroscopic in size, both immobile and rotating. The size of a structure is inversely related to the number of particles in the structure. When the number of particles is relatively small the size can be enormous, whereas if this number equals Avogadro's number the radius of the structure is about 30 cm in the case that the structure consists of hydrogen atoms. The rotating objects have the form of rings and exhibit superfluidity. An atmosphere that can be captured by tiny celestial bodies from the ambient medium is considered too. The thickness of the atmosphere decreases as its mass increases. If short-range intermolecular forces are taken into account, the results obtained hold for excited states whose lifetime can however be very long. The results of the paper can be utilized for explaining the first stage of formation of celestial bodies from interstellar and even intergalactic gases.
Dissipative effects in dipolar, quantum many-body systems
NASA Astrophysics Data System (ADS)
Safavi-Naini, Arghavan; Capogrosso-Sansone, Barbara; Rey, Ana Maria
2015-03-01
We use Quantum Monte Carlo simulations, by the Worm algorithm, to study the ground state phase diagram of two-dimensional, dipolar lattice bosons where each site is coupled, via density operators, to an external reservoir. A recent related study of the XXZ model with ohmic coupling to an external reservoir reported the existence of a bath-induced Bose metal phase in the ground state phase diagram away from half filling, and a Luttinger liquid and a charge density wave at half-filling. Our work extends this methodology to higher dimensional systems with long-range interactions. In the case of hard-core bosons, our method can be applied to experimental systems featuring dipolar fermionic molecules in the presence of losses. This work utilized the Janus supercomputer, which is supported by the NSF (award number CNS-0821794) and the University of Colorado Boulder, and is a joint effort with the University of Colorado Denver and the National Center for Atmospheric Research, as well as OU Supercomputing Center for Education and Research (OSCER) at the University of Oklahoma. NIST, JILA-NSF-PFC-1125844, NSF-PIF-1211914, NSF-PHY11-25915, ARO, ARO-DARPA-OLE, AFOSR, AFOSR-MURI.
Preparing ground states of quantum many-body systems on a quantum computer
NASA Astrophysics Data System (ADS)
Poulin, David
2009-03-01
The simulation of quantum many-body systems is a notoriously hard problem in condensed matter physics, but it could easily be handled by a quantum computer [4,1]. There is however one catch: while a quantum computer can naturally implement the dynamics of a quantum system --- i.e. solve Schr"odinger's equation --- there was until now no general method to initialize the computer in a low-energy state of the simulated system. We present a quantum algorithm [5] that can prepare the ground state and thermal states of a quantum many-body system in a time proportional to the square-root of its Hilbert space dimension. This is the same scaling as required by the best known algorithm to prepare the ground state of a classical many-body system on a quantum computer [3,2]. This provides strong evidence that for a quantum computer, preparing the ground state of a quantum system is in the worst case no more difficult than preparing the ground state of a classical system. 1 D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation and statistical zero knowledge, Proc. 35th Annual ACM Symp. on Theo. Comp., (2003), p. 20. F. Barahona, On the computational complexity of ising spin glass models, J. Phys. A. Math. Gen., 15 (1982), p. 3241. C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, Strengths and weaknessess of quantum computing, SIAM J. Comput., 26 (1997), pp. 1510--1523, quant-ph/9701001. S. Lloyd, Universal quantum simulators, Science, 273 (1996), pp. 1073--1078. D. Poulin and P. Wocjan, Preparing ground states of quantum many-body systems on a quantum computer, 2008, arXiv:0809.2705.
Schrieffer-Wolff transformation for quantum many-body systems
Bravyi, Sergey; DiVincenzo, David P.; Loss, Daniel
2011-10-15
The Schrieffer-Wolff (SW) method is a version of degenerate perturbation theory in which the low-energy effective Hamiltonian H{sub eff} is obtained from the exact Hamiltonian by a unitary transformation decoupling the low-energy and high-energy subspaces. We give a self-contained summary of the SW method with a focus on rigorous results. We begin with an exact definition of the SW transformation in terms of the so-called direct rotation between linear subspaces. From this we obtain elementary proofs of several important properties of H{sub eff} such as the linked cluster theorem. We then study the perturbative version of the SW transformation obtained from a Taylor series representation of the direct rotation. Our perturbative approach provides a systematic diagram technique for computing high-order corrections to H{sub eff}. We then specialize the SW method to quantum spin lattices with short-range interactions. We establish unitary equivalence between effective low-energy Hamiltonians obtained using two different versions of the SW method studied in the literature. Finally, we derive an upper bound on the precision up to which the ground state energy of the nth-order effective Hamiltonian approximates the exact ground state energy. - Highlights: > The Schrieffer-Wolff transformation is specialized to quantum spin lattices with short-range interactions. > We provide a diagram technique for computing high-order corrections to the effective low-energy Hamiltonian. > We derive a rigorous bound on the error up to which the nth-order effective low-energy dynamics approximates the exact dynamics.
Theory of entropy production in quantum many-body systems
NASA Astrophysics Data System (ADS)
Solano-Carrillo, E.; Millis, A. J.
2016-06-01
We define the entropy operator as the negative of the logarithm of the density matrix, give a prescription for extracting its thermodynamically measurable part, and discuss its dynamics. For an isolated system we derive the first, second, and third laws of thermodynamics. For weakly coupled subsystems of an isolated system, an expression for the long-time limit of the expectation value of the rate of change of the thermodynamically measurable part of the entropy operator is derived and interpreted in terms of entropy production and entropy transport terms. The interpretation is justified by comparison to the known expression for the entropy production in an aged classical Markovian system with Gaussian fluctuations and by a calculation of the current-induced entropy production in a conductor with electron-phonon scattering.
A quantum many-body spin system in an optical lattice clock.
Martin, M J; Bishof, M; Swallows, M D; Zhang, X; Benko, C; von-Stecher, J; Gorshkov, A V; Rey, A M; Ye, Jun
2013-08-01
Strongly interacting quantum many-body systems arise in many areas of physics, but their complexity generally precludes exact solutions to their dynamics. We explored a strongly interacting two-level system formed by the clock states in (87)Sr as a laboratory for the study of quantum many-body effects. Our collective spin measurements reveal signatures of the development of many-body correlations during the dynamical evolution. We derived a many-body Hamiltonian that describes the experimental observation of atomic spin coherence decay, density-dependent frequency shifts, severely distorted lineshapes, and correlated spin noise. These investigations open the door to further explorations of quantum many-body effects and entanglement through use of highly coherent and precisely controlled optical lattice clocks. PMID:23929976
Shortcuts to adiabaticity in quantum many-body systems: a quantum dynamical microscope
NASA Astrophysics Data System (ADS)
Del Campo, Adolfo
2014-03-01
The evolution of a quantum system induced by a shortcut to adiabaticity mimics the adiabatic dynamics without the requirement of slow driving. Engineering it involves diagonalizing the instantaneous Hamiltonian of the system and results in the need of auxiliary non-local interactions for matter-waves. Here experimentally realizable driving protocols are found for a large class of single-particle, many-body, and non-linear systems without demanding the spectral properties as an input. The method is applied to the expansion of a trapped ultracold gas which spatially scales up the size of the cloud while conserving the quantum correlations of the initial many-body state. This shortcut to adiabatic expansions acts as a quantum dynamical microscope.
Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems.
Werner, A H; Jaschke, D; Silvi, P; Kliesch, M; Calarco, T; Eisert, J; Montangero, S
2016-06-10
Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies.
Positive Tensor Network Approach for Simulating Open Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Werner, A. H.; Jaschke, D.; Silvi, P.; Kliesch, M.; Calarco, T.; Eisert, J.; Montangero, S.
2016-06-01
Open quantum many-body systems play an important role in quantum optics and condensed matter physics, and capture phenomena like transport, the interplay between Hamiltonian and incoherent dynamics, and topological order generated by dissipation. We introduce a versatile and practical method to numerically simulate one-dimensional open quantum many-body dynamics using tensor networks. It is based on representing mixed quantum states in a locally purified form, which guarantees that positivity is preserved at all times. Moreover, the approximation error is controlled with respect to the trace norm. Hence, this scheme overcomes various obstacles of the known numerical open-system evolution schemes. To exemplify the functioning of the approach, we study both stationary states and transient dissipative behavior, for various open quantum systems ranging from few to many bodies.
Measuring entanglement entropy of a generic many-body system with a quantum switch.
Abanin, Dmitry A; Demler, Eugene
2012-07-13
Entanglement entropy has become an important theoretical concept in condensed matter physics because it provides a unique tool for characterizing quantum mechanical many-body phases and new kinds of quantum order. However, the experimental measurement of entanglement entropy in a many-body system is widely believed to be unfeasible, owing to the nonlocal character of this quantity. Here, we propose a general method to measure the entanglement entropy. The method is based on a quantum switch (a two-level system) coupled to a composite system consisting of several copies of the original many-body system. The state of the switch controls how different parts of the composite system connect to each other. We show that, by studying the dynamics of the quantum switch only, the Rényi entanglement entropy of the many-body system can be extracted. We propose a possible design of the quantum switch, which can be realized in cold atomic systems. Our work provides a route towards testing the scaling of entanglement in critical systems as well as a method for a direct experimental detection of topological order.
Physics in one dimension: theoretical concepts for quantum many-body systems.
Schönhammer, K
2013-01-01
Various sophisticated approximation methods exist for the description of quantum many-body systems. It was realized early on that the theoretical description can simplify considerably in one-dimensional systems and various exact solutions exist. The focus in this introductory paper is on fermionic systems and the emergence of the Luttinger liquid concept.
Quantum Correlations, Separability, and Quantum Coherence Length in Equilibrium Many-Body Systems
NASA Astrophysics Data System (ADS)
Malpetti, Daniele; Roscilde, Tommaso
2016-09-01
Nonlocality is a fundamental trait of quantum many-body systems, both at the level of pure states, as well as at the level of mixed states. Because of nonlocality, mixed states of any two subsystems are correlated in a stronger way than what can be accounted for by considering the correlated probabilities of occupying some microstates. In the case of equilibrium mixed states, we explicitly build two-point quantum correlation functions, which capture the specific, superior correlations of quantum systems at finite temperature, and which are directly accessible to experiments when correlating measurable properties. When nonvanishing, these correlation functions rule out a precise form of separability of the equilibrium state. In particular, we show numerically that quantum correlation functions generically exhibit a finite quantum coherence length, dictating the characteristic distance over which degrees of freedom cannot be considered as separable. This coherence length is completely disconnected from the correlation length of the system—as it remains finite even when the correlation length of the system diverges at finite temperature—and it unveils the unique spatial structure of quantum correlations.
NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER
DeMille, David; LeHur, Karyn
2013-11-27
Rapid progress in nanotechnology and naofabrication techniques has ushered in a new era of quantum transport experiments. This has in turn heightened the interest in theoretical understanding of nonequilibrium dynamics of strongly correlated quantum systems. This project has advanced the frontiers of understanding in this area along several fronts. For example, we showed that under certain conditions, quantum impurities out of equilibrium can be reformulated in terms of an effective equilibrium theory; this makes it possible to use the gamut of tools available for quantum systems in equilibrium. On a different front, we demonstrated that the elastic power of a transmitted microwave photon in circuit QED systems can exhibit a many-body Kondo resonance. We also showed that under many circumstances, bipartite fluctuations of particle number provide an effective tool for studying many-body physics—particularly the entanglement properties of a many-body system. This implies that it should be possible to measure many-body entanglement in relatively simple and tractable quantum systems. In addition, we studied charge relaxation in quantum RC circuits with a large number of conducting channels, and elucidated its relation to Kondo models in various regimes. We also extended our earlier work on the dynamics of driven and dissipative quantum spin-boson impurity systems, deriving a new formalism that makes it possible to compute the full spin density matrix and spin-spin correlation functions beyond the weak coupling limit. Finally, we provided a comprehensive analysis of the nonequilibrium transport near a quantum phase transition in the case of a spinless dissipative resonant-level model. This project supported the research of two Ph.D. students and two postdoctoral researchers, whose training will allow them to further advance the field in coming years.
Editorial: Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Cazalilla, M. A.; Rigol, M.
2010-05-01
The dynamics and thermalization of classical systems have been extensively studied in the past. However, the corresponding quantum phenomena remain, to a large extent, uncharted territory. Recent experiments with ultracold quantum gases have at last allowed exploration of the coherent dynamics of isolated quantum systems, as well as observation of non-equilibrium phenomena that challenge our current understanding of the dynamics of quantum many-body systems. These experiments have also posed many new questions. How can we control the dynamics to engineer new states of matter? Given that quantum dynamics is unitary, under which conditions can we expect observables of the system to reach equilibrium values that can be predicted by conventional statistical mechanics? And, how do the observables dynamically approach their statistical equilibrium values? Could the approach to equilibrium be hampered if the system is trapped in long-lived metastable states characterized, for example, by a certain distribution of topological defects? How does the dynamics depend on the way the system is perturbed, such as changing, as a function of time and at a given rate, a parameter across a quantum critical point? What if, conversely, after relaxing to a steady state, the observables cannot be described by the standard equilibrium ensembles of statistical mechanics? How would they depend on the initial conditions in addition to the other properties of the system, such as the existence of conserved quantities? The search for answers to questions like these is fundamental to a new research field that is only beginning to be explored, and to which researchers with different backgrounds, such as nuclear, atomic, and condensed-matter physics, as well as quantum optics, can make, and are making, important contributions. This body of knowledge has an immediate application to experiments in the field of ultracold atomic gases, but can also fundamentally change the way we approach and
Quasiparticle engineering and entanglement propagation in a quantum many-body system.
Jurcevic, P; Lanyon, B P; Hauke, P; Hempel, C; Zoller, P; Blatt, R; Roos, C F
2014-07-10
The key to explaining and controlling a range of quantum phenomena is to study how information propagates around many-body systems. Quantum dynamics can be described by particle-like carriers of information that emerge in the collective behaviour of the underlying system, the so-called quasiparticles. These elementary excitations are predicted to distribute quantum information in a fashion determined by the system's interactions. Here we report quasiparticle dynamics observed in a quantum many-body system of trapped atomic ions. First, we observe the entanglement distributed by quasiparticles as they trace out light-cone-like wavefronts. Second, using the ability to tune the interaction range in our system, we observe information propagation in an experimental regime where the effective-light-cone picture does not apply. Our results will enable experimental studies of a range of quantum phenomena, including transport, thermalization, localization and entanglement growth, and represent a first step towards a new quantum-optic regime of engineered quasiparticles with tunable nonlinear interactions.
Isolated many-body quantum systems far from equilibrium: Relaxation process and thermalization
Torres-Herrera, E. J.; Santos, Lea F.
2014-10-15
We present an overview of our recent numerical and analytical results on the dynamics of isolated interacting quantum systems that are taken far from equilibrium by an abrupt perturbation. The studies are carried out on one-dimensional systems of spins-1/2, which are paradigmatic models of many-body quantum systems. Our results show the role of the interplay between the initial state and the post-perturbation Hamiltonian in the relaxation process, the size of the fluctuations after equilibration, and the viability of thermalization.
Quantum thermalization through entanglement in an isolated many-body system.
Kaufman, Adam M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Preiss, Philipp M; Greiner, Markus
2016-08-19
Statistical mechanics relies on the maximization of entropy in a system at thermal equilibrium. However, an isolated quantum many-body system initialized in a pure state remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We experimentally studied the emergence of statistical mechanics in a quantum state and observed the fundamental role of quantum entanglement in facilitating this emergence. Microscopy of an evolving quantum system indicates that the full quantum state remains pure, whereas thermalization occurs on a local scale. We directly measured entanglement entropy, which assumes the role of the thermal entropy in thermalization. The entanglement creates local entropy that validates the use of statistical physics for local observables. Our measurements are consistent with the eigenstate thermalization hypothesis.
Quantum thermalization through entanglement in an isolated many-body system.
Kaufman, Adam M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Schittko, Robert; Preiss, Philipp M; Greiner, Markus
2016-08-19
Statistical mechanics relies on the maximization of entropy in a system at thermal equilibrium. However, an isolated quantum many-body system initialized in a pure state remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We experimentally studied the emergence of statistical mechanics in a quantum state and observed the fundamental role of quantum entanglement in facilitating this emergence. Microscopy of an evolving quantum system indicates that the full quantum state remains pure, whereas thermalization occurs on a local scale. We directly measured entanglement entropy, which assumes the role of the thermal entropy in thermalization. The entanglement creates local entropy that validates the use of statistical physics for local observables. Our measurements are consistent with the eigenstate thermalization hypothesis. PMID:27540168
Fluctuations and Stochastic Processes in One-Dimensional Many-Body Quantum Systems
Stimming, H.-P.; Mauser, N. J.; Mazets, I. E.
2010-07-02
We study the fluctuation properties of a one-dimensional many-body quantum system composed of interacting bosons and investigate the regimes where quantum noise or, respectively, thermal excitations are dominant. For the latter, we develop a semiclassical description of the fluctuation properties based on the Ornstein-Uhlenbeck stochastic process. As an illustration, we analyze the phase correlation functions and the full statistical distributions of the interference between two one-dimensional systems, either independent or tunnel-coupled, and compare with the Luttinger-liquid theory.
Equivalent dynamical complexity in a many-body quantum and collective human system
NASA Astrophysics Data System (ADS)
Johnson, Neil F.; Ashkenazi, Josef; Zhao, Zhenyuan; Quiroga, Luis
2011-03-01
Proponents of Complexity Science believe that the huge variety of emergent phenomena observed throughout nature, are generated by relatively few microscopic mechanisms. Skeptics however point to the lack of concrete examples in which a single mechanistic model manages to capture relevant macroscopic and microscopic properties for two or more distinct systems operating across radically different length and time scales. Here we show how a single complexity model built around cluster coalescence and fragmentation, can cross the fundamental divide between many-body quantum physics and social science. It simultaneously (i) explains a mysterious recent finding of Fratini et al. concerning quantum many-body effects in cuprate superconductors (i.e. scale of 10-9 - 10-4 meters and 10-12 - 10-6 seconds), (ii) explains the apparent universality of the casualty distributions in distinct human insurgencies and terrorism (i.e. scale of 103 - 106 meters and 104 - 108 seconds), (iii) shows consistency with various established empirical facts for financial markets, neurons and human gangs and (iv) makes microscopic sense for each application. Our findings also suggest that a potentially productive shift can be made in Complexity research toward the identification of equivalent many-body dynamics in both classical and quantum regimes.
Thermopower as a tool to investigate many-body effects in quantum systems
Kristinsdóttir, L. H.; Bengtsson, J.; Reimann, S. M.; Wacker, A.; Linke, H.
2014-08-25
Measuring the thermopower of a confined quantum system reveals important information about its excitation spectrum. Our simulations show how this kind of transport spectroscopy is able to extract a clear signal for the onset of Wigner localization in a nanowire segment. This demonstrates that thermopower measurements provide a tool for investigating complex many-body quantum effects, which is less intrusive than the usual charge-stability diagram as no high source-drain bias is required. While the effect is most pronounced for weak tunnel coupling and low temperatures, the excited states also significantly affect the thermopower spectrum at moderate temperature, adding distinct features to the characteristic thermopower lineshape.
NASA Astrophysics Data System (ADS)
Balz, Ben N.; Reimann, Peter
2016-06-01
We demonstrate equilibration of isolated many-body systems in the sense that, after initial transients have died out, the system behaves practically indistinguishable from a time-independent steady state, i.e., non-negligible deviations are unimaginably rare in time. Measuring the distinguishability in terms of quantum mechanical expectation values, results of this type have been previously established under increasingly weak assumptions about the initial disequilibrium, the many-body Hamiltonian, and the considered observables. Here, we further extend these results with respect to generalized distinguishability measures which fully take into account the fact that the actually observed, primary data are not expectation values but rather the probabilistic occurrence of different possible measurement outcomes.
Editorial: Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Cazalilla, M. A.; Rigol, M.
2010-05-01
The dynamics and thermalization of classical systems have been extensively studied in the past. However, the corresponding quantum phenomena remain, to a large extent, uncharted territory. Recent experiments with ultracold quantum gases have at last allowed exploration of the coherent dynamics of isolated quantum systems, as well as observation of non-equilibrium phenomena that challenge our current understanding of the dynamics of quantum many-body systems. These experiments have also posed many new questions. How can we control the dynamics to engineer new states of matter? Given that quantum dynamics is unitary, under which conditions can we expect observables of the system to reach equilibrium values that can be predicted by conventional statistical mechanics? And, how do the observables dynamically approach their statistical equilibrium values? Could the approach to equilibrium be hampered if the system is trapped in long-lived metastable states characterized, for example, by a certain distribution of topological defects? How does the dynamics depend on the way the system is perturbed, such as changing, as a function of time and at a given rate, a parameter across a quantum critical point? What if, conversely, after relaxing to a steady state, the observables cannot be described by the standard equilibrium ensembles of statistical mechanics? How would they depend on the initial conditions in addition to the other properties of the system, such as the existence of conserved quantities? The search for answers to questions like these is fundamental to a new research field that is only beginning to be explored, and to which researchers with different backgrounds, such as nuclear, atomic, and condensed-matter physics, as well as quantum optics, can make, and are making, important contributions. This body of knowledge has an immediate application to experiments in the field of ultracold atomic gases, but can also fundamentally change the way we approach and
μ -symmetry breaking: An algebraic approach to finding mean fields of quantum many-body systems
NASA Astrophysics Data System (ADS)
Higashikawa, Sho; Ueda, Masahito
2016-07-01
One of the most fundamental problems in quantum many-body systems is the identification of a mean field in spontaneous symmetry breaking which is usually made in a heuristic manner. We propose a systematic method of finding a mean field based on the Lie algebra and the dynamical symmetry by introducing a class of symmetry-broken phases which we call μ -symmetry breaking. We show that for μ -symmetry breaking the quadratic part of an effective Lagrangian of Nambu-Goldstone modes can be block-diagonalized and that homotopy groups of topological excitations can be calculated systematically.
Rahman Prize Talk: Pushing the frontier in the simulation of correlated quantum many body systems
NASA Astrophysics Data System (ADS)
Troyer, Matthias
Amazing progress in the simulation of correlated quantum many body systems has been achieved in the past two decades by combining significant advances in new algorithms with efficient implementations on ever faster supercomputers. This has enabled the accurate simulation of an increasing number of problems and helped settle many open questions. I will review a selection of results that my collaborators and I have worked on, from quantum phase transitions in quantum magnets, over supersolidity of bosons in lattice models and Helium-4 to recent simulations of correlated fermions and quantum gases. I will then provide an outlook to the future and discuss how in the short term analog quantum simulators can help tackle problems for which no efficient simulation algorithms exist and how in the longer term quantum computers can be used to solve many of the still open questions in the field. I will finally connect to the topic of the remainder of this symposium by touching on how the design of new topological materials will help in the construction of these quantum computers.
NASA Astrophysics Data System (ADS)
Popkov, Vladislav; Salerno, Mario
2013-06-01
In this paper we discuss the properties of the reduced density matrix of quantum many body systems with permutational symmetry and present basic quantification of the entanglement in terms of the von Neumann (VNE), Renyi and Tsallis entropies. In particular, we show, on the specific example of the spin 1/2 Heisenberg model, how the RDM acquires a block diagonal form with respect to the quantum number k fixing the polarization in the subsystem conservation of Sz and with respect to the irreducible representations of the Sn group. Analytical expression for the RDM elements and for the RDM spectrum are derived for states of arbitrary permutational symmetry and for arbitrary polarizations. The temperature dependence and scaling of the VNE across a finite temperature phase transition is discussed and the RDM moments and the Rényi and Tsallis entropies calculated both for symmetric ground states of the Heisenberg chain and for maximally mixed states.
NASA Astrophysics Data System (ADS)
Popkov, Vladislav; Salerno, Mario
2012-11-01
In this paper we discuss the properties of the reduced density matrix of quantum many body systems with permutational symmetry and present basic quantification of the entanglement in terms of the von Neumann (VNE), Renyi and Tsallis entropies. In particular, we show, on the specific example of the spin 1/2 Heisenberg model, how the RDM acquires a block diagonal form with respect to the quantum number k fixing the polarization in the subsystem conservation of Sz and with respect to the irreducible representations of the Sn group. Analytical expression for the RDM elements and for the RDM spectrum are derived for states of arbitrary permutational symmetry and for arbitrary polarizations. The temperature dependence and scaling of the VNE across a finite temperature phase transition is discussed and the RDM moments and the Rényi and Tsallis entropies calculated both for symmetric ground states of the Heisenberg chain and for maximally mixed states.
The Interplay of Localization and Interactions in Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Iyer, Shankar
systems with high energy density (i.e., far from the usual low energy limit of condensed matter physics). Recent theoretical and numerical work indicates that localization can survive in this regime, provided that interactions are sufficiently weak. Stronger interactions can destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition is relevant to questions of thermalization in isolated quantum systems: it separates a many-body localized phase, in which localization prevents transport and thermalization, from a conducting ("ergodic") phase in which the usual assumptions of quantum statistical mechanics hold. Here, we present evidence that many-body localization also occurs in quasiperiodic systems that lack true disorder.
Preparing Ground States of Quantum Many-Body Systems on a Quantum Computer
Poulin, David; Wocjan, Pawel
2009-04-03
Preparing the ground state of a system of interacting classical particles is an NP-hard problem. Thus, there is in general no better algorithm to solve this problem than exhaustively going through all N configurations of the system to determine the one with lowest energy, requiring a running time proportional to N. A quantum computer, if it could be built, could solve this problem in time {radical}(N). Here, we present a powerful extension of this result to the case of interacting quantum particles, demonstrating that a quantum computer can prepare the ground state of a quantum system as efficiently as it does for classical systems.
Quantum phase transitions in the collective degrees of freedom: nuclei and other many-body systems
NASA Astrophysics Data System (ADS)
Cejnar, Pavel; Stránský, Pavel
2016-08-01
Quantum phase transitions (QPTs) represent a quickly developing subject of theoretical and experimental research. Nuclear physics contributed to the formation of the QPT concept in the 1970s and remains an area where new viewpoints and original approaches to criticality in many-body systems can be created. In this review, we present a comprehensible introduction to the subject, with an emphasis on the role of nuclear physics, and point out some specific features of QPTs in the systems that exhibit an effective separation of some collective degrees of freedom. The focus on collectivity, which stems from the nuclear context, is an essential ingredient of our treatise. It leads to some consequences that find application in nuclei as well as in a wide spectrum of non-nuclear systems.
Seniority in quantum many-body systems. I. Identical particles in a single shell
Van Isacker, P.
2014-10-15
A discussion of the seniority quantum number in many-body systems is presented. The analysis is carried out for bosons and fermions simultaneously but is restricted to identical particles occupying a single shell. The emphasis of the paper is on the possibility of partial conservation of seniority which turns out to be a peculiar property of spin-9/2 fermions but prevalent in systems of interacting bosons of any spin. Partial conservation of seniority is at the basis of the existence of seniority isomers, frequently observed in semi-magic nuclei, and also gives rise to peculiar selection rules in one-nucleon transfer reactions. - Highlights: • Unified derivation of conditions for the total and partial conservation of seniority. • General analysis of the partial conservation of seniority in boson systems. • Why partial conservation of seniority is crucial for seniority isomers in nuclei. • The effect of partial conservation of seniority on one-nucleon transfer intensities.
Liu, Wenyuan; Wang, Chao; Li, Yanbin; Lao, Yuyang; Han, Yongjian; Guo, Guang-Can; Zhao, Yong-Hua; He, Lixin
2015-03-01
Tensor network states (TNS) methods combined with the Monte Carlo (MC) technique have been proven a powerful algorithm for simulating quantum many-body systems. However, because the ground state energy is a highly non-linear function of the tensors, it is easy to get stuck in local minima when optimizing the TNS of the simulated physical systems. To overcome this difficulty, we introduce a replica-exchange molecular dynamics optimization algorithm to obtain the TNS ground state, based on the MC sampling technique, by mapping the energy function of the TNS to that of a classical mechanical system. The method is expected to effectively avoid local minima. We make benchmark tests on a 1D Hubbard model based on matrix product states (MPS) and a Heisenberg J1-J2 model on square lattice based on string bond states (SBS). The results show that the optimization method is robust and efficient compared to the existing results.
Powerlaw Decays and Thermalization in Isolated Many-Body Quantum Systems
NASA Astrophysics Data System (ADS)
Tavora, Marco; Torres-Herrera, E. J.; Santos, Lea
2016-05-01
We propose a new criterion for thermalization in isolated many-body quantum systems. It is based on the powerlaw behavior of the survival probability at long times. The value of the powerlaw exponent depends on the shape and filling of the energy distribution of the initial state. Exponents larger than or equal to 2 correspond to ergodic filling and consequent thermalization. We show that the algebraic behavior, which occurs in both integrable and chaotic systems, may be caused by bounds in the spectrum or by the presence of correlations between the eigenstates of the Hamiltonian. Numerical and analytical results as well as comparisons with existing rigorous mathematical derivations are presented. Our focus are on initial states that can be prepared experimentally using cold atoms in optical lattices. NSF Grant No. DMR-1147430.
Ideal Classical Solitons as a Limit to a Quantum Many-Body System
NASA Astrophysics Data System (ADS)
Gardiner, Simon; Billam, Tom; Helm, John; Holdaway, David; Weiss, Christoph
2013-05-01
Classical solitons arise as solutions to the one-dimensional nonlinear Schrodinger equation i ∂/∂ t ψ (x , t) = -1/2 ∂2/∂x2 ψ (x , t) - | ψ (x , t) |2 ψ (x , t) , which can be seen as a one-dimensional limiting case of the Gross-Pitaevskii equation, that has been so successful in describing the collective properties and dynamics of atomic Bose-Einstein condensates, for attractively interacting atoms. Solitons are robust to collisions, which makes them of significant interest for matter wave interferometry. We will examine how closely one can approach the one-dimensional, unconfined, classical field description assumed by exact classical soliton solutions, when the physical system exists in three spatial dimensions, and is an interacting quantum many-body system. We gratefully acknowledge the support of the UK EPSRC, Grant EP/G056781/1.
Spectrum of quantum transfer matrices via classical many-body systems
NASA Astrophysics Data System (ADS)
Gorsky, A.; Zabrodin, A.; Zotov, A.
2014-01-01
In this paper we clarify the relationship between inhomogeneous quantum spin chains and classical integrable many-body systems. It provides an alternative (to the nested Bethe ansatz) method for computation of spectra of the spin chains. Namely, the spectrum of the quantum transfer matrix for the inhomogeneous n -invariant XXX spin chain on N sites with twisted boundary conditions can be found in terms of velocities of particles in the rational N -body Ruijsenaars-Schneider model. The possible values of the velocities are to be found from intersection points of two Lagrangian submanifolds in the phase space of the classical model. One of them is the Lagrangian hyperplane corresponding to fixed coordinates of all N particles and the other one is an N -dimensional Lagrangian submanifold obtained by fixing levels of N classical Hamiltonians in involution. The latter are determined by eigenvalues of the twist matrix. To support this picture, we give a direct proof that the eigenvalues of the Lax matrix for the classical Ruijsenaars-Schneider model, where velocities of particles are substituted by eigenvalues of the spin chain Hamiltonians, calculated through the Bethe equations, coincide with eigenvalues of the twist matrix, with certain multiplicities. We also prove a similar statement for the n Gaudin model with N marked points (on the quantum side) and the Calogero-Moser system with N particles (on the classical side). The realization of the results obtained in terms of branes and supersymmetric gauge theories is also discussed.
Goldmann, E. Jahnke, F.; Lorke, M.; Frauenheim, T.
2014-06-16
The saturation behaviour of optical gain with increasing excitation density is an important factor for laser device performance. For active materials based on self-organized InGaAs/GaAs quantum dots, we study the interplay between structural properties of the quantum dots and many-body effects of excited carriers in the optical properties via a combination of tight-binding and quantum-kinetic calculations. We identify regimes where either phase-space filling or excitation-induced dephasing dominates the saturation behavior of the optical gain. The latter can lead to the emergence of a negative differential material gain.
NASA Astrophysics Data System (ADS)
Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji
2016-04-01
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet-Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems.
Dynamics of isolated quantum systems: many-body localization and thermalization
NASA Astrophysics Data System (ADS)
Torres-Herrera, E. Jonathan; Tavora, Marco; Santos, Lea F.
2016-05-01
We show that the transition to a many-body localized phase and the onset of thermalization can be inferred from the analysis of the dynamics of isolated quantum systems taken out of equilibrium abruptly. The systems considered are described by one-dimensional spin-1/2 models with static random magnetic fields and by power-law band random matrices. We find that the short-time decay of the survival probability of the initial state is faster than exponential for sufficiently strong perturbations. This initial evolution does not depend on whether the system is integrable or chaotic, disordered or clean. At long-times, the dynamics necessarily slows down and shows a power-law behavior. The value of the power-law exponent indicates whether the system will reach thermal equilibrium or not. We present how the properties of the spectrum, structure of the initial state, and number of particles that interact simultaneously affect the value of the power-law exponent. We also compare the results for the survival probability with those for few-body observables. EJTH aknowledges financial support from PRODEP-SEP and VIEP-BUAP, Mexico.
NASA Astrophysics Data System (ADS)
Rispoli, Matthew; Lukin, Alexander; Ma, Ruichao; Preiss, Philipp; Tai, M. Eric; Islam, Rajibul; Greiner, Markus
2015-05-01
Ultracold atoms in optical lattices provide a versatile tool box for observing the emergence of strongly correlated physics in quantum systems. Dynamic control of optical potentials on the single-site level allows us to prepare and probe many-body quantum states through local Hamiltonian engineering. We achieve these high precision levels of optical control through spatial light modulation with a DMD (digital micro-mirror device). This allows for both arbitrary beam shaping and aberration compensation in our imaging system to produce high fidelity optical potentials. We use these techniques to control state initialization, Hamiltonian dynamics, and measurement in experiments investigating low-dimensional many-body physics - from one-dimensional correlated quantum walks to characterizing entanglement.
NASA Astrophysics Data System (ADS)
Lavalle, Catia; Rigol, Marcos; Muramatsu, Alejandro
2005-08-01
The cover picture of the current issue, taken from the Feature Article [1], depicts the evolution of local density (a) and its quantum fluctuations (b) in trapped fermions on one-dimensional optical lattices. As the number of fermions in the trap is increased, figure (a) shows the formation of a Mott-insulating plateau (local density equal to one) whereas the quantum fluctuations - see figure (b) - are strongly suppressed, but nonzero. For a larger number of fermions new insulating plateaus appear (this time with local density equal to two), but no density fluctuations. Regions with non-constant density are metallic and exhibit large quantum fluctuations of the density.The first author Catia Lavalle is a Postdoc at the University of Stuttgart. She works in the field of strongly correlated quantum systems by means of Quantum Monte Carlo methods (QMC). While working on her PhD thesis at the University of Stuttgart, she developed a new QMC technique that allows to study dynamical properties of the t-J model.
Olmos, Beatriz; Lesanovsky, Igor; Garrahan, Juan P
2014-10-01
We explore the relaxation dynamics of quantum many-body systems that undergo purely dissipative dynamics through non-classical jump operators that can establish quantum coherence. Our goal is to shed light on the differences in the relaxation dynamics that arise in comparison to systems evolving via classical rate equations. In particular, we focus on a scenario where both quantum and classical dissipative evolution lead to a stationary state with the same values of diagonal or "classical" observables. As a basis for illustrating our ideas we use spin systems whose dynamics becomes correlated and complex due to dynamical constraints, inspired by kinetically constrained models (KCMs) of classical glasses. We show that in the quantum case the relaxation can be orders of magnitude slower than the classical one due to the presence of quantum coherences. Aspects of these idealized quantum KCMs become manifest in a strongly interacting Rydberg gas under electromagnetically induced transparency (EIT) conditions in an appropriate limit. Beyond revealing a link between this Rydberg gas and the rather abstract dissipative KCMs of quantum glassy systems, our study sheds light on the limitations of the use of classical rate equations for capturing the non-equilibrium behavior of this many-body system. PMID:25375478
Efficient and feasible state tomography of quantum many-body systems
NASA Astrophysics Data System (ADS)
Ohliger, M.; Nesme, V.; Eisert, J.
2013-01-01
We present a novel method for performing quantum state tomography for many-particle systems, which are particularly suitable for estimating the states in lattice systems such as of ultra-cold atoms in optical lattices. We show that the need to measure a tomographically complete set of observables can be overcome by letting the state evolve under some suitably chosen random circuits followed by the measurement of a single observable. We generalize known results about the approximation of unitary two-designs, i.e. certain classes of random unitary matrices, by random quantum circuits and connect our findings to the theory of quantum compressed sensing. We show that for ultra-cold atoms in optical lattices established experimental techniques such as optical super-lattices, laser speckles and time-of-flight measurements are sufficient to perform fully certified, assumption-free tomography. This is possible without the need to address single sites in any step of the procedure. Combining our approach with tensor network methods—in particular, the theory of matrix product states—we identify situations where the effort of reconstruction is even constant in the number of lattice sites, allowing, in principle, to perform tomography on large-scale systems readily available in present experiments.
Dynamical scaling in infinitely correlated many-body systems through a quantum phase transition
NASA Astrophysics Data System (ADS)
Acevedo, Oscar Leonardo; Quiroga, Luis; Rodriguez, Ferney Javier; Johnson, Neil
2013-03-01
We assess dynamical scaling of many two-level systems (TLSs) infinitely correlated, either through a mediating radiation mode as in the Dicke Model, or through a direct interaction between TLSs as in the Lipkin-Meshkov-Glick model. Those models are characterized by the presence of a Quantum Phase Transition (QPT) in the thermodynamic limit, and they belong to the same universality class. The assessment is done by means of exact computational simulations of finite-size systems under linear rampings of the interaction parameter crossing the quantum critical point. Our results exhibit significant differences with respect to previous works on dynamical scaling across QPTs in the near-adiabatic regime, which have focused on spin-chain models where correlation lengths can be defined. We have confirmed that in infinitely correlated models an effective system size can play the role of the correlation length in traditional scaling arguments. However, due to the infinite correlation among TLSs, the standard Kibble-Zurek mechanism is not realized as the system cannot fully enter an adiabatic evolution during the ordered phase. Also, in the two-level approximation, a suitable deviation from the standard Landau-Zener protocol must be performed in order to obtain scaling collapse.
Transport of quantum excitations coupled to spatially extended nonlinear many-body systems
NASA Astrophysics Data System (ADS)
Iubini, Stefano; Boada, Octavi; Omar, Yasser; Piazza, Francesco
2015-11-01
The role of noise in the transport properties of quantum excitations is a topic of great importance in many fields, from organic semiconductors for technological applications to light-harvesting complexes in photosynthesis. In this paper we study a semi-classical model where a tight-binding Hamiltonian is fully coupled to an underlying spatially extended nonlinear chain of atoms. We show that the transport properties of a quantum excitation are subtly modulated by (i) the specific type (local versus non-local) of exciton-phonon coupling and by (ii) nonlinear effects of the underlying lattice. We report a non-monotonic dependence of the exciton diffusion coefficient on temperature, in agreement with earlier predictions, as a direct consequence of the lattice-induced fluctuations in the hopping rates due to long-wavelength vibrational modes. A standard measure of transport efficiency confirms that both nonlinearity in the underlying lattice and off-diagonal exciton-phonon coupling promote transport efficiency at high temperatures, preventing the Zeno-like quench observed in other models lacking an explicit noise-providing dynamical system.
Short- and long-time dynamics of isolated many-body quantum systems
NASA Astrophysics Data System (ADS)
Tavora, Marco; Torres-Herrera, Jonathan; Ferreira Dos Santos, Lea
We show our results for the relaxation process of isolated interacting quantum spin chains in the integrable and chaotic regimes. The dynamics of the survival probability (the probability for finding the system still in its initial state at later times) and of few-body observables are analyzed. Different time scales are considered. While the short-time evolution is determined by the shape of the weighted energy distribution of the initial state, the long-time behavior depends on the bounds of the spectrum. Both numerical and analytical results are presented as well as comparisons with existing rigorous mathematical derivations. We consider initial states that can be prepared in experiments with cold atoms in optical lattices. Nsf Grant No. DMR-1147430.
Hernández-Rojas, Javier; Calvo, Florent; Noya, Eva Gonzalez
2015-03-10
The semiclassical method of quantum thermal baths by colored noise thermostats has been used to simulate various atomic systems in the molecular and bulk limits, at finite temperature and in moderately to strongly anharmonic regimes. In all cases, the method performs relatively well against alternative approaches in predicting correct energetic properties, including in the presence of phase changes, provided that vibrational delocalization is not too strong-neon appearing already as an upper limiting case. In contrast, the dynamical behavior inferred from global indicators such as the root-mean-square bond length fluctuation index or the vibrational spectrum reveals more marked differences caused by zero-point energy leakage, except in the case of isolated molecules with well separated vibrational modes. To correct for such deficiencies and reduce the undesired transfer among modes, empirical modifications of the noise power spectral density were attempted to better describe thermal equilibrium but still failed when used as semiclassical preparation for microcanonical trajectories. PMID:26579740
Georgescu, Ionut; Deckman, Jason; Fredrickson, Laura J; Mandelshtam, Vladimir A
2011-05-01
A new method, here called thermal Gaussian molecular dynamics (TGMD), for simulating the dynamics of quantum many-body systems has recently been introduced [I. Georgescu and V. A. Mandelshtam, Phys. Rev. B 82, 094305 (2010)]. As in the centroid molecular dynamics (CMD), in TGMD the N-body quantum system is mapped to an N-body classical system. The associated both effective Hamiltonian and effective force are computed within the variational Gaussian wave-packet approximation. The TGMD is exact for the high-temperature limit, accurate for short times, and preserves the quantum canonical distribution. For a harmonic potential and any form of operator Â, it provides exact time correlation functions C(AB)(t) at least for the case of B, a linear combination of the position, x, and momentum, p, operators. While conceptually similar to CMD and other quantum molecular dynamics approaches, the great advantage of TGMD is its computational efficiency. We introduce the many-body implementation and demonstrate it on the benchmark problem of calculating the velocity time auto-correlation function for liquid para-hydrogen, using a system of up to N = 2592 particles. PMID:21548675
Controlling the Dynamics of an Open Many-Body Quantum System with Localized Dissipation
NASA Astrophysics Data System (ADS)
Barontini, G.; Labouvie, R.; Stubenrauch, F.; Vogler, A.; Guarrera, V.; Ott, H.
2013-01-01
We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative potential as a function of the dissipation strength observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the experiment for different parameters of the electron beam and we compare our results with a simple theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We finally demonstrate the link between our dissipative dynamics and the measurement of the density distribution of the BEC allowing for a generalized definition of the Zeno effect. Because of the high degree of control on every parameter, our system is a promising candidate for the engineering of fully governable open quantum systems.
Gauging Quantum States: From Global to Local Symmetries in Many-Body Systems
NASA Astrophysics Data System (ADS)
Haegeman, Jutho; Van Acoleyen, Karel; Schuch, Norbert; Cirac, J. Ignacio; Verstraete, Frank
2015-01-01
We present an operational procedure to transform global symmetries into local symmetries at the level of individual quantum states, as opposed to typical gauging prescriptions for Hamiltonians or Lagrangians. We then construct a compatible gauging map for operators, which preserves locality and reproduces the minimal coupling scheme for simple operators. By combining this construction with the formalism of projected entangled-pair states (PEPS), we can show that an injective PEPS for the matter fields is gauged into a G -injective PEPS for the combined gauge-matter system, which potentially has topological order. We derive the corresponding parent Hamiltonian, which is a frustration-free gauge-theory Hamiltonian closely related to the Kogut-Susskind Hamiltonian at zero coupling constant. We can then introduce gauge dynamics at finite values of the coupling constant by applying a local filtering operation. This scheme results in a low-parameter family of gauge-invariant states of which we can accurately probe the phase diagram, as we illustrate by studying a Z2 gauge theory with Higgs matter.
Zhang, Tianyuan; Evangelista, Francesco A
2016-09-13
In this work we propose a novel approach to solve the Schrödinger equation which combines projection onto the ground state with a path-filtering truncation scheme. The resulting projector configuration interaction (PCI) approach realizes a deterministic version of the full configuration interaction quantum Monte Carlo (FCIQMC) method [Booth, G. H.; Thom, A. J. W.; Alavi, A. J. Chem. Phys. 2009, 131, 054106]. To improve upon the linearized imaginary-time propagator, we develop an optimal projector scheme based on an exponential Chebyshev expansion in the limit of an infinite imaginary time step. After writing the exact projector as a path integral in determinant space, we introduce a path filtering procedure that truncates the size of the determinantal basis and approximates the Hamiltonian. The path filtering procedure is controlled by one real threshold that determines the accuracy of the PCI energy and is not biased toward any determinant. Therefore, the PCI approach can equally well describe static and dynamic electron correlation effects. This point is illustrated in benchmark computations on N2 at both equilibrium and stretched geometries. In both cases, the PCI achieves chemical accuracy with wave functions that contain less than 0.5% determinants of full CI space. We also report computations on the ground state of C2 with up to quaduple-ζ basis sets and wave functions as large as 200 million determinants, which allow a direct comparison of the PCI, FCIQMC, and density matrix renormalization group (DMRG) methods. The size of the PCI wave function grows modestly with the number of unoccupied orbitals, and its accuracy may be tuned to match that of FCIQMC and DMRG. PMID:27464301
Many-body localization in the quantum random energy model
NASA Astrophysics Data System (ADS)
Laumann, Chris; Pal, Arijeet
2014-03-01
The quantum random energy model is a canonical toy model for a quantum spin glass with a well known phase diagram. We show that the model exhibits a many-body localization-delocalization transition at finite energy density which significantly alters the interpretation of the statistical ``frozen'' phase at lower temperature in isolated quantum systems. The transition manifests in many-body level statistics as well as the long time dynamics of on-site observables. CRL thanks the Perimeter Institute for hospitality and support.
NASA Astrophysics Data System (ADS)
Doyeux, Pierre; Leggio, Bruno; Messina, Riccardo; Antezza, Mauro
2016-02-01
We study the functioning of a three-level thermal machine when acting on a many-qubit system, the entire system being placed in an electromagnetic field in a stationary out-of-thermal-equilibrium configuration. This realistic setup stands between the two so-far-explored cases of single-qubit and macroscopic object targets, providing information on the scaling with system size of purely quantum properties in thermodynamic contexts. We show that, thanks to the presence of robust correlations among the qubits induced by the field, thermodynamic tasks can be delivered by the machine both locally to each qubit and collectively to the many-qubit system: This allows a task to be delivered also on systems much bigger than the machine size.
Benet, L.; Chadderton, L. T.; Kun, S. Yu.; Qi Wang
2007-06-15
We study coherent superpositions of clockwise and anticlockwise rotating intermediate complexes with overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents an analog of a famous double-slit experiment. The time for disappearance of the interference fringes is estimated from heuristic arguments related to fingerprints of chaotic dynamics of a classical counterpart of the coherently rotating complex. Validity of this estimate is confirmed numerically for the H+D{sub 2} chemical reaction. Thus we demonstrate the quantum-classical transition in temporal behavior of highly excited quantum many-body systems in the absence of external noise and coupling to an environment.
Quantum thermalization and many-body Anderson localization
NASA Astrophysics Data System (ADS)
Huse, David
2016-05-01
The out-of-equilibrium dynamics of closed quantum many-body systems can now be explored in a variety of laboratories using a variety of different physical systems, and as a consequence have received a lot of recent theoretical attention. When such systems do go to thermal equilibrium under their own unitary time evolution, this is what is called thermalization. Thermalization is what happens at long times in many large interacting and closed quantum systems, and one way of understanding part of how this happens is via the eigenstate thermalization hypothesis (ETH). The main generic exception to thermalization is many-body localization (MBL), where the system fails to act as a bath to thermalize itself, in spite of being strongly interacting. Instead, the quantum state of a MBL system remains localized near its initial state. MBL is now understood as a new type of quantum integrability, with localized conserved operators. There is a new type of quantum phase transition between MBL and thermalization as one decreases the static randomness in the system; this phase transition remains poorly understood.
Many-body localization in dipolar systems.
Yao, N Y; Laumann, C R; Gopalakrishnan, S; Knap, M; Müller, M; Demler, E A; Lukin, M D
2014-12-12
Systems of strongly interacting dipoles offer an attractive platform to study many-body localized phases, owing to their long coherence times and strong interactions. We explore conditions under which such localized phases persist in the presence of power-law interactions and supplement our analytic treatment with numerical evidence of localized states in one dimension. We propose and analyze several experimental systems that can be used to observe and probe such states, including ultracold polar molecules and solid-state magnetic spin impurities. PMID:25541771
Quantum many-body interactions in digital oxide superlattices.
Monkman, Eric J; Adamo, Carolina; Mundy, Julia A; Shai, Daniel E; Harter, John W; Shen, Dawei; Burganov, Bulat; Muller, David A; Schlom, Darrell G; Shen, Kyle M
2012-10-01
Controlling the electronic properties of interfaces has enormous scientific and technological implications and has been recently extended from semiconductors to complex oxides that host emergent ground states not present in the parent materials. These oxide interfaces present a fundamentally new opportunity where, instead of conventional bandgap engineering, the electronic and magnetic properties can be optimized by engineering quantum many-body interactions. We use an integrated oxide molecular-beam epitaxy and angle-resolved photoemission spectroscopy system to synthesize and investigate the electronic structure of superlattices of the Mott insulator LaMnO(3) and the band insulator SrMnO(3). By digitally varying the separation between interfaces in (LaMnO(3))(2n)/(SrMnO(3))(n) superlattices with atomic-layer precision, we demonstrate that quantum many-body interactions are enhanced, driving the electronic states from a ferromagnetic polaronic metal to a pseudogapped insulating ground state. This work demonstrates how many-body interactions can be engineered at correlated oxide interfaces, an important prerequisite to exploiting such effects in novel electronics. PMID:22902897
Quantum power functional theory for many-body dynamics
Schmidt, Matthias
2015-11-07
We construct a one-body variational theory for the time evolution of nonrelativistic quantum many-body systems. The position- and time-dependent one-body density, particle current, and time derivative of the current act as three variational fields. The generating (power rate) functional is minimized by the true current time derivative. The corresponding Euler-Lagrange equation, together with the continuity equation for the density, forms a closed set of one-body equations of motion. Space- and time-nonlocal one-body forces are generated by the superadiabatic contribution to the functional. The theory applies to many-electron systems.
Quantum power functional theory for many-body dynamics.
Schmidt, Matthias
2015-11-01
We construct a one-body variational theory for the time evolution of nonrelativistic quantum many-body systems. The position- and time-dependent one-body density, particle current, and time derivative of the current act as three variational fields. The generating (power rate) functional is minimized by the true current time derivative. The corresponding Euler-Lagrange equation, together with the continuity equation for the density, forms a closed set of one-body equations of motion. Space- and time-nonlocal one-body forces are generated by the superadiabatic contribution to the functional. The theory applies to many-electron systems.
Exploring flocking via quantum many-body physics techniques
NASA Astrophysics Data System (ADS)
Souslov, Anton; Loewe, Benjamin; Goldbart, Paul M.
2015-03-01
Flocking refers to the spontaneous breaking of spatial isotropy and time-reversal symmetries in collections of bodies such as birds, fish, locusts, bacteria, and artificial active systems. The transport of matter along biopolymers using molecular motors also involves the breaking of these symmetries, which in some cases are known to be broken explicitly. We study these classical nonequilibrium symmetry-breaking phenomena by means of models of many strongly interacting particles that hop on a periodic lattice. We employ a mapping between the classical and quantum dynamics of many-body systems, combined with tools from many-body theory. In particular, we examine the formation and properties of nematic and polar order in low-dimensional, strongly-interacting active systems using techniques familiar from fermionic systems, such as self-consistent field theory and bosonization. Thus, we find that classical active systems can exhibit analogs of quantum phenomena such as spin-orbit coupling, magnetism, and superconductivity. The models we study connect the physics of asymmetric exclusion processes to the spontaneous emergence of transport and flow, and also provide a soluble cousin of Vicsek's model system of self-propelled particles.
Scattering approach to quantum transport and many body effects
NASA Astrophysics Data System (ADS)
Pichard, Jean-Louis; Freyn, Axel
2010-12-01
We review a series of works discussing how the scattering approach to quantum transport developed by Landauer and Buttiker for one body elastic scatterers can be extended to the case where electron-electron interactions act inside the scattering region and give rise to many body scattering. Firstly, we give an exact numerical result showing that at zero temperature a many body scatterer behaves as an effective one body scatterer, with an interaction dependent transmission. Secondly, we underline that this effective scatterer depends on the presence of external scatterers put in its vicinity. The implications of this non local scattering are illustrated studying the conductance of a quantum point contact where electrons interact with a scanning gate microscope. Thirdly, using the numerical renormalization group developed by Wilson for the Kondo problem, we study a double dot spinless model with an inter-dot interaction U and inter-dot hopping td, coupled to leads by hopping terms tc. We show that the quantum conductance as a function of td is given by a universal function, independently of the values of U and tc, if one measures td in units of a characteristic scale τ(U,tc). Mapping the double dot system without spin onto a single dot Anderson model with spin and magnetic field, we show that τ(U,tc) = 2TK, where TK is the Kondo temperature of the Anderson model.
NASA Astrophysics Data System (ADS)
Santos, Lea F.; Távora, Marco; Pérez-Bernal, Francisco
2016-07-01
Excited-state quantum phase transitions (ESQPTs) are generalizations of quantum phase transitions to excited levels. They are associated with local divergences in the density of states. Here, we investigate how the presence of an ESQPT can be detected from the analysis of the structure of the Hamiltonian matrix, the level of localization of the eigenstates, the onset of bifurcation, and the speed of the system evolution. Our findings are illustrated for a Hamiltonian with infinite-range Ising interaction in a transverse field. This is a version of the Lipkin-Meshkov-Glick (LMG) model and the limiting case of the one-dimensional spin-1/2 system with tunable interactions realized with ion traps. From our studies for the dynamics, we uncover similarities between the LMG and the noninteracting XX models.
EDITORIAL: Focus on Quantum Information and Many-Body Theory
NASA Astrophysics Data System (ADS)
Eisert, Jens; Plenio, Martin B.
2010-02-01
Quantum many-body models describing natural systems or materials and physical systems assembled piece by piece in the laboratory for the purpose of realizing quantum information processing share an important feature: intricate correlations that originate from the coherent interaction between a large number of constituents. In recent years it has become manifest that the cross-fertilization between research devoted to quantum information science and to quantum many-body physics leads to new ideas, methods, tools, and insights in both fields. Issues of criticality, quantum phase transitions, quantum order and magnetism that play a role in one field find relations to the classical simulation of quantum systems, to error correction and fault tolerance thresholds, to channel capacities and to topological quantum computation, to name but a few. The structural similarities of typical problems in both fields and the potential for pooling of ideas then become manifest. Notably, methods and ideas from quantum information have provided fresh approaches to long-standing problems in strongly correlated systems in the condensed matter context, including both numerical methods and conceptual insights. Focus on quantum information and many-body theory Contents TENSOR NETWORKS Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems M Rizzi, S Montangero, P Silvi, V Giovannetti and Rosario Fazio Concatenated tensor network states R Hübener, V Nebendahl and W Dür Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms G Evenbly and G Vidal Finite-size geometric entanglement from tensor network algorithms Qian-Qian Shi, Román Orús, John Ove Fjærestad and Huan-Qiang Zhou Characterizing symmetries in a projected entangled pair state D Pérez-García, M Sanz, C E González-Guillén, M M Wolf and J I Cirac Matrix product operator representations B Pirvu, V Murg, J I Cirac
On Many-Body Localization for Quantum Spin Chains
NASA Astrophysics Data System (ADS)
Imbrie, John Z.
2016-06-01
For a one-dimensional spin chain with random local interactions, we prove that many-body localization follows from a physically reasonable assumption that limits the amount of level attraction in the system. The construction uses a sequence of local unitary transformations to diagonalize the Hamiltonian and connect the exact many-body eigenfunctions to the original basis vectors.
EDITORIAL: Focus on Quantum Information and Many-Body Theory
NASA Astrophysics Data System (ADS)
Eisert, Jens; Plenio, Martin B.
2010-02-01
Quantum many-body models describing natural systems or materials and physical systems assembled piece by piece in the laboratory for the purpose of realizing quantum information processing share an important feature: intricate correlations that originate from the coherent interaction between a large number of constituents. In recent years it has become manifest that the cross-fertilization between research devoted to quantum information science and to quantum many-body physics leads to new ideas, methods, tools, and insights in both fields. Issues of criticality, quantum phase transitions, quantum order and magnetism that play a role in one field find relations to the classical simulation of quantum systems, to error correction and fault tolerance thresholds, to channel capacities and to topological quantum computation, to name but a few. The structural similarities of typical problems in both fields and the potential for pooling of ideas then become manifest. Notably, methods and ideas from quantum information have provided fresh approaches to long-standing problems in strongly correlated systems in the condensed matter context, including both numerical methods and conceptual insights. Focus on quantum information and many-body theory Contents TENSOR NETWORKS Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems M Rizzi, S Montangero, P Silvi, V Giovannetti and Rosario Fazio Concatenated tensor network states R Hübener, V Nebendahl and W Dür Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms G Evenbly and G Vidal Finite-size geometric entanglement from tensor network algorithms Qian-Qian Shi, Román Orús, John Ove Fjærestad and Huan-Qiang Zhou Characterizing symmetries in a projected entangled pair state D Pérez-García, M Sanz, C E González-Guillén, M M Wolf and J I Cirac Matrix product operator representations B Pirvu, V Murg, J I Cirac
Quantum many body physics in single and bilayer graphene
NASA Astrophysics Data System (ADS)
Nandkishore, Rahul
Two dimensional electron systems (2DES) provide a uniquely promising avenue for investigation of many body physics. Graphene constitutes a new and unusual 2DES, which may give rise to unexpected collective phenomena. However, the vanishing density of states in charge neutral single layer graphene suppresses many body effects, and one has to alter the system to observe strongly ordered states. We consider three ways of accessing quantum many body physics using graphene. First, we consider doping single layer graphene to a Van Hove singularity in the density of states. We show that there are strong instabilities to several strongly ordered states, with the leading instability being to a d-wave superconducting state. The superconducting state realizes chiral superconductivity, an exotic form of superconductivity wherein the phase of the order parameter winds by 47r as we go around the Fermi surface. We also discuss the nature of the spin density wave state which is the principal competitor to superconductivity in doped graphene. Next, we study bilayer graphene (BLG), which has a non-vanishing density of states even at charge neutrality. We show that Coulomb interactions give rise to a zero bias anomaly in the tunneling density of states for BLG, which manifests itself at high energy scales. We also show that the quadratic band crossing in BLG is unstable to arbitrarily weak interactions, and estimate the energy scale for formation of strongly ordered states. We show that gapped states in BLG have topological properties, and we classify the various possible gapped and gapless states in terms of symmetries. We study the competition between various ordered states, and discuss how the nature of the ground state may be deduced experimentally. We also discuss recent experimental observations of strongly ordered states in bilayer graphene. Finally, we study bilayer graphene in a transverse magnetic field, focusing on the properties of the quantum Hall ferromagnet (QHF) state
Using optical clock to probe quantum many-body physics
NASA Astrophysics Data System (ADS)
Ye, Jun
2016-05-01
The progress of optical lattice clock has benefited greatly from the understanding of atomic interactions. At the same time, the precision of clock spectroscopy has been applied to explore many-body spin interactions including SU(N) symmetry. Our recent work on this combined front of quantum metrology and many-body physics includes the probe of spin-orbital physics in the lattice clock and the investigation of a Fermi degenerate gas of 105 87Sr atoms in a three-dimensional magic-wavelength optical lattice.
Universal Dynamics and Renormalization in Many-Body-Localized Systems
NASA Astrophysics Data System (ADS)
Altman, Ehud; Vosk, Ronen
2015-03-01
We survey the recent progress made in understanding nonequilibrium dynamics in closed random systems. The emphasis is on the important role played by concepts from quantum information theory and on the application of systematic renormalization group methods to capture universal aspects of the dynamics. Finally, we outline some outstanding open questions, which include the description of the many-body-localization phase transition and the identification of physical systems that allow systematic experimental study of these phenomena.
NASA Astrophysics Data System (ADS)
Chin, Cheng
2011-05-01
Recent cold atom researches are reaching out far beyond the realm that was conventionally viewed as atomic physics. Many long standing issues in other physics disciplines or in Gedanken-experiments are nowadays common targets of cold atom physicists. Two prominent examples will be discussed in this talk: BEC-BCS crossover and Efimov physics. Here, cold atoms are employed to emulate electrons in superconductors, and nucleons in nuclear reactions, respectively. The ability to emulate exotic or thought systems using cold atoms stems from the precisely determined, simple, and tunable interaction properties of cold atoms. New experimental tools have also been devised toward an ultimate goal: a complete control and a complete characterization of a few- or many-body quantum system. We are tantalizingly close to this major milestone, and will soon open new venues to explore new quantum phenomena that may (or may not!) exist in scientists' dreams.
Entanglement replication in driven dissipative many-body systems.
Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F
2013-01-25
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
Entanglement replication in driven dissipative many-body systems.
Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F
2013-01-25
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks. PMID:25166146
Roux, Guillaume
2010-09-15
In his Comment [see preceding Comment, Phys. Rev. A 82, 037601 (2010)] on the paper by Roux [Phys. Rev. A 79, 021608(R) (2009)], Rigol argued that the energy distribution after a quench is not related to standard statistical ensembles and cannot explain thermalization. The latter is proposed to stem from what he calls the eigenstate thermalization hypothesis and which boils down to the fact that simple observables are expected to be smooth functions of the energy. In this Reply, we show that there is no contradiction or confusion between the observations and discussions of Roux and the expected thermalization scenario discussed by Rigol. In addition, we emphasize a few other important aspects, in particular the definition of temperature and the equivalence of ensemble, which are much more difficult to show numerically even though we believe they are essential to the discussion of thermalization. These remarks could be of interest to people interested in the interpretation of the data obtained on finite-size systems.
NASA Astrophysics Data System (ADS)
Babadi, Mehrtash; Demler, Eugene; Knap, Michael
2015-10-01
We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1 /2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1 /N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014), 10.1103/PhysRevLett.113.147205].
Many-Body Effects in Quantum-Well Intersubband Transitions
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Ning, Cun-Zheng
2003-01-01
Intersubband polarization couples to collective excitations of the interacting electron gas confined in a semiconductor quantum well (Qw) structure. Such excitations include correlated pair excitations (repellons) and intersubband plasmons (ISPs). The oscillator strength of intersubband transitions (ISBTs) strongly varies with QW parameters and electron density because of this coupling. We have developed a set of kinetic equations, termed the intersubband semiconductor Bloch equations (ISBEs), from density matrix theory with the Hartree-Fock approximation, that enables a consistent description of these many-body effects. Using the ISBEs for a two-conduction-subband model, various many-body effects in intersubband transitions are studied in this work. We find interesting spectral changes of intersubband absorption coefficient due to interplay of the Fermi-edge singularity, subband renormalization, intersubband plasmon oscillation, and nonparabolicity of bandstructure. Our results uncover a new perspective for ISBTs and indicate the necessity of proper many-body theoretical treatment in order for modeling and prediction of ISBT line shape.
Computational nuclear quantum many-body problem: The UNEDF project
Fann, George I
2013-01-01
The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. The primary focus of the project was on constructing, validating, and applying an optimized nuclear energy density functional, which entailed a wide range of pioneering developments in microscopic nuclear structure and reactions, algorithms, high-performance computing, and uncertainty quantification. UNEDF demonstrated that close associations among nuclear physicists, mathematicians, and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This review showcases a wide range of UNEDF science results to illustrate this interplay.
Many-body energy localization transition in periodically driven systems
D’Alessio, Luca; Polkovnikov, Anatoli
2013-06-15
According to the second law of thermodynamics the total entropy of a system is increased during almost any dynamical process. The positivity of the specific heat implies that the entropy increase is associated with heating. This is generally true both at the single particle level, like in the Fermi acceleration mechanism of charged particles reflected by magnetic mirrors, and for complex systems in everyday devices. Notable exceptions are known in noninteracting systems of particles moving in periodic potentials. Here the phenomenon of dynamical localization can prevent heating beyond certain threshold. The dynamical localization is known to occur both at classical (Fermi–Ulam model) and at quantum levels (kicked rotor). However, it was believed that driven ergodic systems will always heat without bound. Here, on the contrary, we report strong evidence of dynamical localization transition in both classical and quantum periodically driven ergodic systems in the thermodynamic limit. This phenomenon is reminiscent of many-body localization in energy space. -- Highlights: •A dynamical localization transition in periodically driven ergodic systems is found. •This phenomenon is reminiscent of many-body localization in energy space. •Our results are valid for classical and quantum systems in the thermodynamic limit. •At critical frequency, the short time expansion for the evolution operator breaks down. •The transition is associated to a divergent time scale.
Measuring entanglement entropies in many-body systems
Klich, Israel; Refael, Gil; Silva, Alessandro
2006-09-15
We explore the relation between entanglement entropy of quantum many-body systems and the distribution of corresponding, properly selected, observables. Such a relation is necessary to actually measure the entanglement entropy. We show that, in general, the Shannon entropy of the probability distribution of certain symmetry observables gives a lower bound to the entropy. In some cases this bound is saturated and directly gives the entropy. We also show other cases in which the probability distribution contains enough information to extract the entropy: we show how this is done in several examples including BEC wave functions, the Dicke model, XY spin chain, and chains with strong randomness.
Nonequilibrium quantum dynamics and transport: from integrability to many-body localization
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Moore, Joel E.
2016-06-01
We review the non-equilibrium dynamics of many-body quantum systems after a quantum quench with spatial inhomogeneities, either in the Hamiltonian or in the initial state. We focus on integrable and many-body localized systems that fail to self-thermalize in isolation and for which the standard hydrodynamical picture breaks down. The emphasis is on universal dynamics, non-equilibrium steady states and new dynamical phases of matter, and on phase transitions far from thermal equilibrium. We describe how the infinite number of conservation laws of integrable and many-body localized systems lead to complex non-equilibrium states beyond the traditional dogma of statistical mechanics.
Critical quasienergy states in driven many-body systems
NASA Astrophysics Data System (ADS)
Bastidas Valencia, Victor Manuel; Engelhardt, Georg; Perez-Fernandez, Pedro; Vogl, Malte; Brandes, Tobias
2015-03-01
A quantum phase transition (QPT) is characterized by non-analyticities of ground-state properties at the critical points. Recently it has been shown that quantum criticality emerges also in excited states of the system, which is referred to as an excited-state quantum phase transition (ESQPT). This kind of quantum criticality is intimately related to a level clustering at critical energies, which results in a logarithmic singularity in the density of states. Most of the previous studies on quantum criticality in excited states have been focused on time independent systems. Here we study spectral singularities that appear in periodically-driven many-body systems and show how the external control allows one to engineer geometrical features of the quasienergy landscape. In particular, we study singularities in the quasienergy spectrum of a fully-connected network consisting of two-level systems with time-dependent interactions. We discuss the characteristic signatures of these singularities in observables like the magnetization, which should be measurable with current technology. The authors gratefully acknowledge financial support by the DFG via grants BRA 1528/7, BRA 1528/8, SFB 910 (V.M.B., T.B.), the Spanish Ministerio de Ciencia e Innovacion (Grants No. FIS2011-28738-C02-01) and Junta de Andalucia (Grants No. FQM160).
Ideal quantum glass transitions: Many-body localization without quenched disorder
Schiulaz, M.; Müller, M.
2014-08-20
We explore the possibility for translationally invariant quantum many-body systems to undergo a dynamical glass transition, at which ergodicity and translational invariance break down spontaneously, driven entirely by quantum effects. In contrast to analogous classical systems, where the existence of such an ideal glass transition remains a controversial issue, a genuine phase transition is predicted in the quantum regime. This ideal quantum glass transition can be regarded as a many-body localization transition due to self-generated disorder. Despite their lack of thermalization, these disorder-free quantum glasses do not possess an extensive set of local conserved operators, unlike what is conjectured for many-body localized systems with strong quenched disorder.
Typical fast thermalization processes in closed many-body systems
Reimann, Peter
2016-01-01
The lack of knowledge about the detailed many-particle motion on the microscopic scale is a key issue in any theoretical description of a macroscopic experiment. For systems at or close to thermal equilibrium, statistical mechanics provides a very successful general framework to cope with this problem. However, far from equilibrium, only very few quantitative and comparably universal results are known. Here a quantum mechanical prediction of this type is derived and verified against various experimental and numerical data from the literature. It quantitatively describes the entire temporal relaxation towards thermal equilibrium for a large class (in a mathematically precisely defined sense) of closed many-body systems, whose initial state may be arbitrarily far from equilibrium. PMID:26926224
Preparation of many-body states for quantum simulation
NASA Astrophysics Data System (ADS)
Ward, Nicholas J.; Kassal, Ivan; Aspuru-Guzik, Alán
2009-05-01
While quantum computers are capable of simulating many quantum systems efficiently, the simulation algorithms must begin with the preparation of an appropriate initial state. We present a method for generating physically relevant quantum states on a lattice in real space. In particular, the present algorithm is able to prepare general pure and mixed many-particle states of any number of particles. It relies on a procedure for converting from a second-quantized state to its first-quantized counterpart. The algorithm is efficient in that it operates in time that is polynomial in all the essential descriptors of the system, the number of particles, the resolution of the lattice, and the inverse of the maximum final error. This scaling holds under the assumption that the wave function to be prepared is bounded or its indefinite integral is known and that the Fock operator of the system is efficiently simulatable.
Numerical canonical transformation approach to quantum many-body problems
NASA Astrophysics Data System (ADS)
White, Steven R.
2002-10-01
We present a new approach for numerical solutions of ab initio quantum chemistry systems. The main idea of the approach, which we call canonical diagonalization, is to diagonalize directly the second-quantized Hamiltonian by a sequence of numerical canonical transformations.
Exponentially Slow Heating in Periodically Driven Many-Body Systems.
Abanin, Dmitry A; De Roeck, Wojciech; Huveneers, François
2015-12-18
We derive general bounds on the linear response energy absorption rates of periodically driven many-body systems of spins or fermions on a lattice. We show that, for systems with local interactions, the energy absorption rate decays exponentially as a function of driving frequency in any number of spatial dimensions. These results imply that topological many-body states in periodically driven systems, although generally metastable, can have very long lifetimes. We discuss applications to other problems, including the decay of highly energetic excitations in cold atomic and solid-state systems. PMID:26722939
Petascale Many Body Methods for Complex Correlated Systems
NASA Astrophysics Data System (ADS)
Pruschke, Thomas
2012-02-01
Correlated systems constitute an important class of materials in modern condensed matter physics. Correlation among electrons are at the heart of all ordering phenomena and many intriguing novel aspects, such as quantum phase transitions or topological insulators, observed in a variety of compounds. Yet, theoretically describing these phenomena is still a formidable task, even if one restricts the models used to the smallest possible set of degrees of freedom. Here, modern computer architectures play an essential role, and the joint effort to devise efficient algorithms and implement them on state-of-the art hardware has become an extremely active field in condensed-matter research. To tackle this task single-handed is quite obviously not possible. The NSF-OISE funded PIRE collaboration ``Graduate Education and Research in Petascale Many Body Methods for Complex Correlated Systems'' is a successful initiative to bring together leading experts around the world to form a virtual international organization for addressing these emerging challenges and educate the next generation of computational condensed matter physicists. The collaboration includes research groups developing novel theoretical tools to reliably and systematically study correlated solids, experts in efficient computational algorithms needed to solve the emerging equations, and those able to use modern heterogeneous computer architectures to make then working tools for the growing community.
Hybrid atom-nanophotonic lattices for quantum optics and many-body physics
NASA Astrophysics Data System (ADS)
Hung, Chen-Lung
2016-05-01
Interfacing light with cold atoms localized near photonic crystal cavities and waveguides presents new opportunities for realizing scalable quantum networks and novel quantum phases of light and matter. Such hybrid system could bring together excellent mobility of photons, and quantum non-linearity as well as control toolbox available for cold atoms in a highly engineered setting. In this talk, I will discuss recent experimental progress toward achieving strong atom-atom interactions in a nanophotonic lattice for light, and theory prospects for inducing long-range quantum dynamics for quantum network and many-body physics.
Rotation of Quantum Impurities in the Presence of a Many-Body Environment
NASA Astrophysics Data System (ADS)
Schmidt, Richard; Lemeshko, Mikhail
2015-05-01
We develop a microscopic theory describing a quantum impurity whose rotational degree of freedom is coupled to a many-particle bath. We approach the problem by introducing the concept of an "angulon"—a quantum rotor dressed by a quantum field—and reveal its quasiparticle properties using a combination of variational and diagrammatic techniques. Our theory predicts renormalization of the impurity rotational structure, such as that observed in experiments with molecules in superfluid helium droplets, in terms of a rotational Lamb shift induced by the many-particle environment. Furthermore, we discover a rich many-body-induced fine structure, emerging in rotational spectra due to a redistribution of angular momentum within the quantum many-body system.
Irreducible many-body correlations in topologically ordered systems
NASA Astrophysics Data System (ADS)
Liu, Yang; Zeng, Bei; Zhou, D. L.
2016-02-01
Topologically ordered systems exhibit large-scale correlation in their ground states, which may be characterized by quantities such as topological entanglement entropy. We propose that the concept of irreducible many-body correlation (IMC), the correlation that cannot be implied by all local correlations, may also be used as a signature of topological order. In a topologically ordered system, we demonstrate that for a part of the system with holes, the reduced density matrix exhibits IMCs which become reducible when the holes are removed. The appearance of these IMCs then represents a key feature of topological phase. We analyze the many-body correlation structures in the ground state of the toric code model in external magnetic fields, and show that the topological phase transition is signaled by the IMCs.
Theory of many-body localization in periodically driven systems
NASA Astrophysics Data System (ADS)
Abanin, Dmitry A.; De Roeck, Wojciech; Huveneers, François
2016-09-01
We present a theory of periodically driven, many-body localized (MBL) systems. We argue that MBL persists under periodic driving at high enough driving frequency: The Floquet operator (evolution operator over one driving period) can be represented as an exponential of an effective time-independent Hamiltonian, which is a sum of quasi-local terms and is itself fully MBL. We derive this result by constructing a sequence of canonical transformations to remove the time-dependence from the original Hamiltonian. When the driving evolves smoothly in time, the theory can be sharpened by estimating the probability of adiabatic Landau-Zener transitions at many-body level crossings. In all cases, we argue that there is delocalization at sufficiently low frequency. We propose a phase diagram of driven MBL systems.
Many-body localization in periodically driven systems.
Ponte, Pedro; Papić, Z; Huveneers, François; Abanin, Dmitry A
2015-04-10
We consider disordered many-body systems with periodic time-dependent Hamiltonians in one spatial dimension. By studying the properties of the Floquet eigenstates, we identify two distinct phases: (i) a many-body localized (MBL) phase, in which almost all eigenstates have area-law entanglement entropy, and the eigenstate thermalization hypothesis (ETH) is violated, and (ii) a delocalized phase, in which eigenstates have volume-law entanglement and obey the ETH. The MBL phase exhibits logarithmic in time growth of entanglement entropy when the system is initially prepared in a product state, which distinguishes it from the delocalized phase. We propose an effective model of the MBL phase in terms of an extensive number of emergent local integrals of motion, which naturally explains the spectral and dynamical properties of this phase. Numerical data, obtained by exact diagonalization and time-evolving block decimation methods, suggest a direct transition between the two phases. PMID:25910094
Quantum Measurement of Spin Correlations in a Symmetric Many-Body State ∖ f 1
NASA Astrophysics Data System (ADS)
Shojaee, Ezad; Kalev, Amir; Deutsch, Ivan; Cquic Team
2016-05-01
Continuous (nonprojective) measurement on a quantum system has been employed previously for fast, robust, and high-fidelity quantum state tomography (QST) on qudits. We expand this protocol to many-body systems in order to perform QST on the reduced one-body and two-body density matrices of a symmetric many-body state of multiple qubits. Such QST will characterize the spin correlations in the system. In this protocol, a continuous measurement is done collectively on many copies of the reduced state at the same time, and therefore, while it is weakly perturbative on each copy, yields high signal-to-noise. Simultaneously, we subject the system to an external collective control in order to generate an informationally complete measurement record. We characterize the information-gain measurement disturbance tradeoff in terms of parameters in the problem (number of qubits, control parameters, shot-noise bandwidth, and the measurement strength). Support from NSF is acknowledged.
Relativistic effects in nuclear many-body systems
Coester, F.
1985-01-01
Different approaches to the formulation of relativistic many-body dynamics yield different perspectives of nature and the magnitude of ''relativistic effects''. The effects of Lorentz invariance appear to be relatively unimportant. Important dynamical features of spinorial many-body formalisms are effects of subnuclear degrees of freedom which are represented in the many-body forces of the covariant nuclear Hamiltonian. 24 refs.
Critical quasienergy states in driven many-body systems
NASA Astrophysics Data System (ADS)
Bastidas, V. M.; Engelhardt, G.; Pérez-Fernández, P.; Vogl, M.; Brandes, T.
2014-12-01
We discuss singularities in the spectrum of driven many-body spin systems. In contrast to undriven models, the driving allows us to control the geometry of the quasienergy landscape. As a consequence, one can engineer singularities in the density of quasienergy states by tuning an external control. We show that the density of levels exhibits logarithmic divergences at the saddle points, while jumps are due to local minima of the quasienergy landscape. We discuss the characteristic signatures of these divergences in observables such as the magnetization, which should be measurable with current technology.
Efficient quantum transport in disordered interacting many-body networks
NASA Astrophysics Data System (ADS)
Ortega, Adrian; Stegmann, Thomas; Benet, Luis
2016-10-01
The coherent transport of n fermions in disordered networks of l single-particle states connected by k -body interactions is studied. These networks are modeled by embedded Gaussian random matrix ensemble (EGE). The conductance bandwidth and the ensemble-averaged total current attain their maximal values if the system is highly filled n ˜l -1 and k ˜n /2 . For the cases k =1 and k =n the bandwidth is minimal. We show that for all parameters the transport is enhanced significantly whenever centrosymmetric embedded Gaussian ensemble (csEGE) are considered. In this case the transmission shows numerous resonances of perfect transport. Analyzing the transmission by spectral decomposition, we find that centrosymmetry induces strong correlations and enhances the extrema of the distributions. This suppresses destructive interference effects in the system and thus causes backscattering-free transmission resonances that enhance the overall transport. The distribution of the total current for the csEGE has a very large dominating peak for n =l -1 , close to the highest observed currents.
Simulation of the many-body dynamical quantum Hall effect in an optical lattice
NASA Astrophysics Data System (ADS)
Zhang, Dan-Wei; Yang, Xu-Chen
2016-05-01
We propose an experimental scheme to simulate the many-body dynamical quantum Hall effect with ultra-cold bosonic atoms in a one-dimensional optical lattice. We first show that the required model Hamiltonian of a spin-1/2 Heisenberg chain with an effective magnetic field and tunable parameters can be realized in this system. For dynamical response to ramping the external fields, the quantized plateaus emerge in the Berry curvature of the interacting atomic spin chain as a function of the effective spin-exchange interaction. The quantization of this response in the parameter space with the interaction-induced topological transition characterizes the many-body dynamical quantum Hall effect. Furthermore, we demonstrate that this phenomenon can be observed in practical cold atom experiments with numerical simulations.
Cooling through quantum criticality and many-body effects in condensed matter and cold gases
NASA Astrophysics Data System (ADS)
Wolf, Bernd; Honecker, Andreas; Hofstetter, Walter; Tutsch, Ulrich; Lang, Michael
2014-10-01
This article reviews some recent developments for new cooling technologies in the fields of condensed matter physics and cold gases, both from an experimental and theoretical point of view. The main idea is to make use of distinct many-body interactions of the system to be cooled which can be some cooling stage or the material of interest itself, as is the case in ultracold gases. For condensed matter systems, we discuss magnetic cooling schemes based on a large magnetocaloric effect as a result of a nearby quantum phase transition and consider effects of geometrical frustration. For ultracold gases, we review many-body cooling techniques, such as spin-gradient and Pomeranchuk cooling, which can be applied in the presence of an optical lattice. We compare the cooling performance of these new techniques with that of conventional approaches and discuss state-of-the-art applications.
GRAVITATIONAL PHASE TRANSITIONS IN THE COSMOLOGICAL MANY-BODY SYSTEM
Saslaw, William C.; Ahmad, Farooq E-mail: farphy@kashmiruniversity.ac.i
2010-09-10
Gravitational many-body clustering of particles (e.g., galaxies) in an expanding universe may be regarded as a form of phase transition. We calculate its properties here and find that it differs in several ways from usual laboratory phase transitions. The cosmological case is never complete since it takes longer to evolve dynamically on larger spatial scales. To examine this, we calculate the effects of higher order corrections on the thermodynamic properties and distribution functions (which are known to agree with observations). The additional higher order terms are subdominant and decrease as the number of particles in the system increases. We also propose an order parameter for this hierarchical phase transition and discuss its relation to the Yang-Lee theory of phase transitions. These results also help to quantify earlier ideas of 'continuous clustering'.
Exploring dynamics of unstable many-body systems
Volya, Alexander; Zelevinsky, Vladimir
2014-10-15
In this work we acquaint reader with the Continuum Shell Model (CSM), which is a proper theoretical tool for the description of physics of unstable systems. We describe the effective non-Hermitian Hamiltonian of the CSM and concentrate on specific aspects of dynamics using realistic examples. The continuum effects are discussed in the case of weakly bound heavy oxygen isotopes, where inclusion of continuum coupling is necessary to improve the traditional nuclear shell model techniques. Physics of overlapping resonances is illustrated using recent experimental information on {sup 8}B nucleus. In the limit of strong continuum coupling the many-body states restructure relative to continuum leading to a few very broad super-radiant states, while at the same time other states become narrow and nearly decoupled from decay. The recent observations of very broad alpha clustering states in {sup 18}O is one of the most transparent manifestations of super-radiance.
Quantum Simulation with Circuit-QED Lattices: from Elementary Building Blocks to Many-Body Theory
NASA Astrophysics Data System (ADS)
Zhu, Guanyu
Recent experimental and theoretical progress in superconducting circuits and circuit QED (quantum electrodynamics) has helped to develop high-precision techniques to control, manipulate, and detect individual mesoscopic quantum systems. A promising direction is hence to scale up from individual building blocks to form larger-scale quantum many-body systems. Although realizing a scalable fault-tolerant quantum computer still faces major barriers of decoherence and quantum error correction, it is feasible to realize scalable quantum simulators with state-of-the-art technology. From the technological point of view, this could serve as an intermediate stage towards the final goal of a large-scale quantum computer, and could help accumulating experience with the control of quantum systems with a large number of degrees of freedom. From the physical point of view, this opens up a new regime where condensed matter systems can be simulated and studied, here in the context of strongly correlated photons and two-level systems. In this thesis, we mainly focus on two aspects of circuit-QED based quantum simulation. First, we discuss the elementary building blocks of the quantum simulator, in particular a fluxonium circuit coupled to a superconducting resonator. We show the interesting properties of the fluxonium circuit as a qubit, including the unusual structure of its charge matrix elements. We also employ perturbation theory to derive the effective Hamiltonian of the coupled system in the dispersive regime, where qubit and the photon frequencies are detuned. The observables predicted with our theory, including dispersive shifts and Kerr nonlinearity, are compared with data from experiments, such as homodyne transmission and two-tone spectroscopy. These studies also relate to the problem of detection in a circuit-QED quantum simulator. Second, we study many-body physics of circuit-QED lattices, serving as quantum simulators. In particular, we focus on two different
Experimental quantum simulations of many-body physics with trapped ions.
Schneider, Ch; Porras, Diego; Schaetz, Tobias
2012-02-01
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.
Many-body localization in a quantum simulator with programmable random disorder
NASA Astrophysics Data System (ADS)
Smith, J.; Lee, A.; Richerme, P.; Neyenhuis, B.; Hess, P. W.; Hauke, P.; Heyl, M.; Huse, D. A.; Monroe, C.
2016-10-01
When a system thermalizes it loses all memory of its initial conditions. Even within a closed quantum system, subsystems usually thermalize using the rest of the system as a heat bath. Exceptions to quantum thermalization have been observed, but typically require inherent symmetries or noninteracting particles in the presence of static disorder. However, for strong interactions and high excitation energy there are cases, known as many-body localization (MBL), where disordered quantum systems can fail to thermalize. We experimentally generate MBL states by applying an Ising Hamiltonian with long-range interactions and programmable random disorder to ten spins initialized far from equilibrium. Using experimental and numerical methods we observe the essential signatures of MBL: initial-state memory retention, Poissonian distributed energy level spacings, and evidence of long-time entanglement growth. Our platform can be scaled to more spins, where a detailed modelling of MBL becomes impossible.
Digital quantum simulation of many-body non-Markovian dynamics
NASA Astrophysics Data System (ADS)
Sweke, R.; Sanz, M.; Sinayskiy, I.; Petruccione, F.; Solano, E.
2016-08-01
We present an algorithmic method for the digital quantum simulation of many-body locally indivisible non-Markovian open quantum systems. It consists of two parts: first, a Suzuki-Lie-Trotter decomposition of the global system propagator into the product of subsystem propagators, which may not be quantum channels, and second, an algorithmic procedure for the implementation of the subsystem propagators through unitary operations and measurements on a dilated space. By providing rigorous error bounds for the relevant Suzuki-Lie-Trotter decomposition, we are able to analyze the efficiency of the method, and connect it with an appropriate measure of the local indivisibility of the system. In light of our analysis, the proposed method is expected to be experimentally achievable for a variety of interesting cases.
Spectral statistics of chaotic many-body systems
NASA Astrophysics Data System (ADS)
Dubertrand, Rémy; Müller, Sebastian
2016-03-01
We derive a trace formula that expresses the level density of chaotic many-body systems as a smooth term plus a sum over contributions associated to solutions of the nonlinear Schrödinger (or Gross-Pitaevski) equation. Our formula applies to bosonic systems with discretised positions, such as the Bose-Hubbard model, in the semiclassical limit as well as in the limit where the number of particles is taken to infinity. We use the trace formula to investigate the spectral statistics of these systems, by studying interference between solutions of the nonlinear Schrödinger equation. We show that in the limits taken the statistics of fully chaotic many-particle systems becomes universal and agrees with predictions from the Wigner-Dyson ensembles of random matrix theory. The conditions for Wigner-Dyson statistics involve a gap in the spectrum of the Frobenius-Perron operator, leaving the possibility of different statistics for systems with weaker chaotic properties.
Many-body quantum electrodynamics networks: Non-equilibrium condensed matter physics with light
NASA Astrophysics Data System (ADS)
Le Hur, Karyn; Henriet, Loïc; Petrescu, Alexandru; Plekhanov, Kirill; Roux, Guillaume; Schiró, Marco
2016-10-01
We review recent developments regarding the quantum dynamics and many-body physics with light, in superconducting circuits and Josephson analogues, by analogy with atomic physics. We start with quantum impurity models addressing dissipative and driven systems. Both theorists and experimentalists are making efforts towards the characterization of these non-equilibrium quantum systems. We show how Josephson junction systems can implement the equivalent of the Kondo effect with microwave photons. The Kondo effect can be characterized by a renormalized light frequency and a peak in the Rayleigh elastic transmission of a photon. We also address the physics of hybrid systems comprising mesoscopic quantum dot devices coupled with an electromagnetic resonator. Then, we discuss extensions to Quantum Electrodynamics (QED) Networks allowing one to engineer the Jaynes-Cummings lattice and Rabi lattice models through the presence of superconducting qubits in the cavities. This opens the door to novel many-body physics with light out of equilibrium, in relation with the Mott-superfluid transition observed with ultra-cold atoms in optical lattices. Then, we summarize recent theoretical predictions for realizing topological phases with light. Synthetic gauge fields and spin-orbit couplings have been successfully implemented in quantum materials and with ultra-cold atoms in optical lattices - using time-dependent Floquet perturbations periodic in time, for example - as well as in photonic lattice systems. Finally, we discuss the Josephson effect related to Bose-Hubbard models in ladder and two-dimensional geometries, producing phase coherence and Meissner currents. The Bose-Hubbard model is related to the Jaynes-Cummings lattice model in the large detuning limit between light and matter (the superconducting qubits). In the presence of synthetic gauge fields, we show that Meissner currents subsist in an insulating Mott phase.
Optimal control of many-body quantum dynamics: Chaos and complexity
NASA Astrophysics Data System (ADS)
Poggi, P. M.; Wisniacki, D. A.
2016-09-01
Achieving full control of the time-evolution of a many-body quantum system is currently a major goal in physics. In this work we investigate the different ways in which the controllability of a quantum system can be influenced by its complexity, or even its chaotic properties. By using optimal control theory, we are able to derive the control fields necessary to drive various physical processes in a spin chain. Then, we study the spectral properties of such fields and how they relate to different aspects of the system complexity. We find that the spectral bandwidth of the fields is, quite generally, independent of the system dimension. Conversely, the spectral complexity of such fields does increase with the number of particles. Nevertheless, we find that the regular or chaotic nature of the system does not affect significantly its controllability.
Kolmogorov-Sinai entropy of many-body Hamiltonian systems.
Lakshminarayan, Arul; Tomsovic, Steven
2011-07-01
The Kolmogorov-Sinai (KS) entropy is a central measure of complexity and chaos. Its calculation for many-body systems is an interesting and important challenge. In this paper, the evaluation is formulated by considering N-dimensional symplectic maps and deriving a transfer matrix formalism for the stability problem. This approach makes explicit a duality relation that is exactly analogous to one found in a generalized Anderson tight-binding model and leads to a formally exact expression for the finite-time KS entropy. Within this formalism there is a hierarchy of approximations, the final one being a diagonal approximation that only makes use of instantaneous Hessians of the potential to find the KS entropy. By way of a nontrivial illustration, the KS entropy of N identically coupled kicked rotors (standard maps) is investigated. The validity of the various approximations with kicking strength, particle number, and time are elucidated. An analytic formula for the KS entropy within the diagonal approximation is derived and its range of validity is also explored.
Revised scaling variables in systems with many-body interactions
NASA Astrophysics Data System (ADS)
Goldstein, Raymond E.; Parola, Alberto
1987-06-01
Thermodynamic perturbation theory and the Kirkwood-Salsburg correlation function identities are used to study nearest-neighbor lattice gases with certain weak symmetry-breaking many-body interactions. It is shown that such systems may be mapped onto symmetric models by the introduction of suitable effective interactions and a shifted chemical potential, both of which depend explicitly on the temperature and fugacity of the original model. In the critical region, such a thermodynamic-state dependence implies the existence of a thermal scaling field which depends on the bare chemical potential, and this ``field mixing'' leads to a breakdown in the classical law of the rectilinear diameter. These results give a microscopic interpretation to a field-theoretic renormalization-group analysis which derives such a diameter singularity from the presence of terms cubic and higher in the order parameter and its gradients in an asymmetric Landau-Ginzburg-Wilson Hamiltonian. For a primarily repulsive three-body potential like the Axilrod-Teller interaction in classical insulating fluids, and in comparison with recent experiments, the analysis correctly describes the observed trends in the critical and near-critical behavior of the diameters with increasing particle polarizability.
Off-resonant many-body quantum carpets in strongly tilted optical lattices
NASA Astrophysics Data System (ADS)
Muñoz-Arias, Manuel H.; Madroñero, Javier; Parra-Murillo, Carlos A.
2016-04-01
A unit filling Bose-Hubbard Hamiltonian embedded in a strong Stark field is studied in the off-resonant regime inhibiting single- and many-particle first-order tunneling resonances. We investigate the occurrence of coherent dipole wavelike propagation along an optical lattice by means of an effective Hamiltonian accounting for second-order tunneling processes. It is shown that dipole wave function evolution in the short-time limit is ballistic and that finite-size effects induce dynamical self-interference patterns known as quantum carpets. We also present the effects of the border right after the first reflection, showing that the wave function diffuses normally with the variance changing linearly in time. This work extends the rich physical phenomenology of tilted one-dimensional lattice systems in a scenario of many interacting quantum particles, the so-called many-body Wannier-Stark system.
Many-Body Mobility Edge in a Mean-Field Quantum Spin Glass
NASA Astrophysics Data System (ADS)
Laumann, C. R.; Pal, A.; Scardicchio, A.
2014-11-01
The quantum random energy model provides a mean-field description of the equilibrium spin glass transition. We show that it further exhibits a many-body localization-delocalization (MBLD) transition when viewed as a closed quantum system. The mean-field structure of the model allows an analytically tractable description of the MBLD transition using the forward-scattering approximation and replica techniques. The predictions are in good agreement with the numerics. The MBLD transition lies at energy density significantly above the equilibrium spin glass transition, indicating that the closed system dynamics freezes well outside of the traditional glass phase. We also observe that the structure of the eigenstates at the MBLD critical point changes continuously with the energy density, raising the possibility of a family of critical theories for the MBLD transition.
Engineering many-body dynamics with quantum light potentials and measurements
NASA Astrophysics Data System (ADS)
Elliott, T. J.; Mekhov, I. B.
2016-07-01
Interactions between many-body atomic systems in optical lattices and light in cavities induce long-range and correlated atomic dynamics beyond the standard Bose-Hubbard model, due to the global nature of the light modes. We characterize these processes, and show that uniting such phenomena with dynamical constraints enforced by the backaction resultant from strong light measurement leads to a synergy that enables the atomic dynamics to be tailored, based on the particular optical geometry, exploiting the additional structure imparted by the quantum light field. This leads to a range of tunable effects such as long-range density-density interactions, perfectly correlated atomic tunneling, superexchange, and effective pair processes. We further show that this provides a framework for enhancing quantum simulations to include such long-range and correlated processes, including reservoir models and dynamical global gauge fields.
Many-Body Generalization of the Z2 Topological Invariant for the Quantum Spin Hall Effect
NASA Astrophysics Data System (ADS)
Lee, Sung-Sik; Ryu, Shinsei
2008-05-01
We propose a many-body generalization of the Z2 topological invariant for the quantum spin Hall insulator, which does not rely on single-particle band structures. The invariant is derived as a topological obstruction that distinguishes topologically distinct many-body ground states on a torus. It is also expressed as a Wilson loop of the SU(2) Berry gauge field, which is quantized due to time-reversal symmetry.
Diagonalization and Many-Body Localization for a Disordered Quantum Spin Chain
NASA Astrophysics Data System (ADS)
Imbrie, John Z.
2016-07-01
We consider a weakly interacting quantum spin chain with random local interactions. We prove that many-body localization follows from a physically reasonable assumption that limits the extent of level attraction in the statistics of eigenvalues. In a Kolmogorov-Arnold-Moser-style construction, a sequence of local unitary transformations is used to diagonalize the Hamiltonian by deforming the initial tensor-product basis into a complete set of exact many-body eigenfunctions.
Many-Body Effects and Lineshape of Intersubband Transitions in Semiconductor Quantum Wells
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng
2003-01-01
Intersubband Transition (ISBT) infrared (IR) absorption and PL in InAs/AlSb were studied for narrow Quantum Wells (QWs). A large redshift was observed (7-10 meV) as temperature increased. A comprehensive many-body theory was developed for ISBTs including contributions of c-c and c-phonon scatterings. Many-body effects were studied systematically for ISBTs. Redshift and linewidth dependence on temperature, as well as spectral features were well explained by theory.
Exploring Quantum Many-Body Spin Dynamics with Truncated Wigner Methods
NASA Astrophysics Data System (ADS)
Schachenmayer, Johannes
Recent experiments in atomic, molecular, and optical physics offer controlled and clean environments to experimentally study non-equilibrium dynamics of large many-body quantum spin-models with variable range interactions. Thus, efficient computation of such dynamics is of great importance. While in one dimension, time-dependent density matrix renormalization group methods (t-DMRG) have proven effective under certain conditions, computing dynamics in higher dimensional systems remains an outstanding challenge. Recently we formulated the discrete truncated Wigner approximation (DTWA), a semiclassical method based on the truncated Wigner approximation (TWA) that has been proven to be surprisingly accurate in predicting quench dynamics in high-dimensional lattices with up to tens of thousands of quantum spins. Here, we introduce the DTWA and show how it can compute time-evolution of quantum states in experiments that engineer spin-models with polar molecules in optical lattices or with ions in two-dimensional Penning traps. We show, how the DTWA can provide results for the time-evolution of classical and quantum correlations in quench experiments in regimes where other numerical methods are generally unreliable. We report on progress of how to incorporate higher order corrections to the method, and how to adapt it to systems with both spin and bosonic degrees of freedom.
The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations
Sellier, J.M. Dimov, I.
2014-09-15
The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practically unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.
Nonperturbative THz nonlinearities for many-body quantum control in semiconductors
NASA Astrophysics Data System (ADS)
Lange, C.; Maag, T.; Bayer, A.; Hohenleutner, M.; Baierl, S.; Bougeard, D.; Mootz, M.; Koch, S. W.; Kira, M.; Huber, R.
2016-03-01
Quantum computing and ultrafast quantum electronics constitute pivotal technologies of the 21st century and revolutionize the way we process information. Successful implementations require controlling superpositions of states and coherence in matter, and exploit nonlinear effects for elementary logic operations. In the THz frequency range between optics and electronics, solid state systems offer a rich spectrum of collective excitations such as excitons, phonons, magnons, or Landau electrons. Here, single-cycle THz transients of 8.7 kV/cm amplitude centered at 1 THz strongly excite inter-Landau-level transitions of magnetically biased GaAs quantum wells, facilitating coherent Landau ladder climbing by more than six rungs, population inversion, and coherent polarization control. Strong, highly nonlinear pump-probe and four- and six-wave mixing signals, entirely unexpected for this paragon of the harmonic oscillator, are revealed through two-time THz spectroscopy. In this scenario of nonperturbative polarization dynamics, our microscopic theory shows how the protective limits of Kohn's theorem are ultimately surpassed by dynamically enhanced Coulomb interactions, opening the door to exploiting many-body dynamics for nonlinear quantum control.
Strongdeco: Expansion of analytical, strongly correlated quantum states into a many-body basis
NASA Astrophysics Data System (ADS)
Juliá-Díaz, Bruno; Graß, Tobias
2012-03-01
We provide a Mathematica code for decomposing strongly correlated quantum states described by a first-quantized, analytical wave function into many-body Fock states. Within them, the single-particle occupations refer to the subset of Fock-Darwin functions with no nodes. Such states, commonly appearing in two-dimensional systems subjected to gauge fields, were first discussed in the context of quantum Hall physics and are nowadays very relevant in the field of ultracold quantum gases. As important examples, we explicitly apply our decomposition scheme to the prominent Laughlin and Pfaffian states. This allows for easily calculating the overlap between arbitrary states with these highly correlated test states, and thus provides a useful tool to classify correlated quantum systems. Furthermore, we can directly read off the angular momentum distribution of a state from its decomposition. Finally we make use of our code to calculate the normalization factors for Laughlin's famous quasi-particle/quasi-hole excitations, from which we gain insight into the intriguing fractional behavior of these excitations. Program summaryProgram title: Strongdeco Catalogue identifier: AELA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5475 No. of bytes in distributed program, including test data, etc.: 31 071 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer on which Mathematica can be installed Operating system: Linux, Windows, Mac Classification: 2.9 Nature of problem: Analysis of strongly correlated quantum states. Solution method: The program makes use of the tools developed in Mathematica to deal with multivariate polynomials to decompose analytical strongly correlated states of bosons
Quantum gases. Observation of many-body dynamics in long-range tunneling after a quantum quench.
Meinert, Florian; Mark, Manfred J; Kirilov, Emil; Lauber, Katharina; Weinmann, Philipp; Gröbner, Michael; Daley, Andrew J; Nägerl, Hanns-Christoph
2014-06-13
Quantum tunneling is at the heart of many low-temperature phenomena. In strongly correlated lattice systems, tunneling is responsible for inducing effective interactions, and long-range tunneling substantially alters many-body properties in and out of equilibrium. We observe resonantly enhanced long-range quantum tunneling in one-dimensional Mott-insulating Hubbard chains that are suddenly quenched into a tilted configuration. Higher-order tunneling processes over up to five lattice sites are observed as resonances in the number of doubly occupied sites when the tilt per site is tuned to integer fractions of the Mott gap. This forms a basis for a controlled study of many-body dynamics driven by higher-order tunneling and demonstrates that when some degrees of freedom are frozen out, phenomena that are driven by small-amplitude tunneling terms can still be observed. PMID:24926015
Chemla, Daniel S.; Shah, Jagdeep
2000-01-01
The large dielectric constant and small effective mass in a semiconductor allows a description of its electronic states in terms of envelope wavefunctions whose energy, time, and length scales are mesoscopic, i.e., halfway between those of atomic and those of condensed matter systems. This property makes it possible to demonstrate and investigate many quantum mechanical, many-body, and quantum kinetic phenomena with tabletop experiments that would be nearly impossible in other systems. This, along with the ability to custom-design semiconductor nanostructures, makes semiconductors an ideal laboratory for experimental investigations. We present an overview of some of the most exciting results obtained in semiconductors in recent years using the technique of ultrafast nonlinear optical spectrocopy. These results show that Coulomb correlation plays a major role in semiconductors and makes them behave more like a strongly interacting system than like an atomic system. The results provide insights into the physics of strongly interacting systems that are relevant to other condensed matter systems, but not easily accessible in other materials. PMID:10716981
Blocking transport resonances via Kondo many-body entanglement in quantum dots
NASA Astrophysics Data System (ADS)
Niklas, Michael; Smirnov, Sergey; Mantelli, Davide; Margańska, Magdalena; Nguyen, Ngoc-Viet; Wernsdorfer, Wolfgang; Cleuziou, Jean-Pierre; Grifoni, Milena
2016-08-01
Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show another side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic co-tunnelling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU(2) \\xotime SU(2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin.
Many-Body Effect in Spin Dephasing in n-Type GaAs Quantum Wells
NASA Astrophysics Data System (ADS)
Weng, Ming-Qi; Wu, Ming-Wei
2005-03-01
By constructing and numerically solving the kinetic Bloch equations we perform a many-body study of the spin dephasing due to the D'yakonov-Perel' effect in n-type GaAs (100) quantum wells for high temperatures. In our study, we include the spin-conserving scattering such as the electron-phonon, the electron-nonmagnetic impurity as well as the electron-electron Coulomb scattering into consideration. The dephasing obtained from our theory contains both the single-particle and the many-body contributions with the latter originating from the inhomogeneous broadening introduced by the DP term [J. Supercond.: Incorp. Novel Magn. 14 (2001) 245 Eur. Phys. J. B 18 (2000) 373]. Our result agrees very well with the experimental data [Phys. Rev. B 62 (2000) 13034] of Malinowski et al. We further show that in the case we study, the spin dephasing is dominated by the many-body effect.
Blocking transport resonances via Kondo many-body entanglement in quantum dots
NASA Astrophysics Data System (ADS)
Niklas, Michael; Smirnov, Sergey; Mantelli, Davide; Margańska, Magdalena; Nguyen, Ngoc-Viet; Wernsdorfer, Wolfgang; Cleuziou, Jean-Pierre; Grifoni, Milena
2016-08-01
Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show another side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic co-tunnelling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU(2) ⨂ SU(2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin.
Algorithm for simulation of quantum many-body dynamics using dynamical coarse-graining
Khasin, M.; Kosloff, R.
2010-04-15
An algorithm for simulation of quantum many-body dynamics having su(2) spectrum-generating algebra is developed. The algorithm is based on the idea of dynamical coarse-graining. The original unitary dynamics of the target observables--the elements of the spectrum-generating algebra--is simulated by a surrogate open-system dynamics, which can be interpreted as weak measurement of the target observables, performed on the evolving system. The open-system state can be represented by a mixture of pure states, localized in the phase space. The localization reduces the scaling of the computational resources with the Hilbert-space dimension n by factor n{sup 3/2}(ln n){sup -1} compared to conventional sparse-matrix methods. The guidelines for the choice of parameters for the simulation are presented and the scaling of the computational resources with the Hilbert-space dimension of the system is estimated. The algorithm is applied to the simulation of the dynamics of systems of 2x10{sup 4} and 2x10{sup 6} cold atoms in a double-well trap, described by the two-site Bose-Hubbard model.
Dynamics of a Many-Body-Localized System Coupled to a Bath.
Fischer, Mark H; Maksymenko, Mykola; Altman, Ehud
2016-04-22
Coupling a many-body-localized system to a dissipative bath necessarily leads to delocalization. Here, we investigate the nature of the ensuing relaxation dynamics and the information it holds on the many-body-localized state. We formulate the relevant Lindblad equation in terms of the local integrals of motion of the underlying localized Hamiltonian. This allows us to map the quantum evolution deep in the localized state to tractable classical rate equations. We consider two different types of dissipation relevant to systems of ultracold atoms: dephasing due to inelastic scattering on the lattice lasers and particle loss. Our approach allows us to characterize their different effects in the limiting cases of weak and strong interactions. PMID:27152775
Dynamics of a Many-Body-Localized System Coupled to a Bath
NASA Astrophysics Data System (ADS)
Fischer, Mark; Maksymenko, Mykola; Altman, Ehud
Coupling a many-body localized system to a dissipative bath necessarily leads to delocalization. Here we investigate the nature of the ensuing relaxation dynamics and the information it holds on the many-body localized state. To solve for the time evolution, we formulate the relevant Lindblad equation in terms of the local integrals of motion of the underlying localized Hamiltonian. This allows to map the quantum evolution deep in the localized state to tractable classical rate equations. We consider two different types of dissipation relevant to systems of ultra-cold atoms: particle loss and dephasing due to inelastic scattering on the lattice lasers. Only the first mechanism shows a pronounced effect of interactions on the relaxation of observables.
Dynamics of a Many-Body-Localized System Coupled to a Bath
NASA Astrophysics Data System (ADS)
Fischer, Mark H.; Maksymenko, Mykola; Altman, Ehud
2016-04-01
Coupling a many-body-localized system to a dissipative bath necessarily leads to delocalization. Here, we investigate the nature of the ensuing relaxation dynamics and the information it holds on the many-body-localized state. We formulate the relevant Lindblad equation in terms of the local integrals of motion of the underlying localized Hamiltonian. This allows us to map the quantum evolution deep in the localized state to tractable classical rate equations. We consider two different types of dissipation relevant to systems of ultracold atoms: dephasing due to inelastic scattering on the lattice lasers and particle loss. Our approach allows us to characterize their different effects in the limiting cases of weak and strong interactions.
Dynamic many-body and nonequilibrium effects in a quantum dot microcavity laser
NASA Astrophysics Data System (ADS)
Lingnau, Benjamin; Lüdge, Kathy; Schöll, Eckehard; Chow, Weng W.
2010-04-01
An interesting aspect of semiconductor quantum dot lasers is their potential for fast dynamical response. Since carrier relaxation is slowed down for discrete energy levels, it is generally agreed that nonequilibrium effects will have strong influence on dynamical behavior in quantum dot lasers. In this paper, we show that, furthermore, many-body effects should be taken into account. The reason is that the interplay of bandgap renormalization, population-hole burning and inhomogeneous broadening is crucial for understanding quantum dot laser dynamics. For example, when operating with a microcavity, the interplay gives rise to modifications of relaxation oscillation behavior that is beyond what can be described by the usual 2-variable rate equation treatment. The theory used in the simulations is based on a semiclassical approach, where the laser field and active medium are described by the Maxwell-semiconductor-Bloch equations. Many-body Coulomb effects are described in the screened Hartree-Fock approximation. Carrier-carrier and carrier-phonon collisions are treated within the effective relaxation rate approximation, with the effective rates estimated from a quantum mechanical approach. Current injection and carrier capture, details of the electronic structure, as well as influences of spectral-hole burning and state-filling in an inhomogeneously broadened quantum dot distribution are taken into account. This theory provides a microscopically consistent description of a quantum dot laser and allows one to perform parametric studies on time scales ranging from subpicosecond to nanoseconds.
Dynamic correlations in Brownian many-body systems.
Brader, Joseph M; Schmidt, Matthias
2014-01-21
For classical Brownian systems driven out of equilibrium, we derive inhomogeneous two-time correlation functions from functional differentiation of the one-body density and current with respect to external fields. In order to allow for appropriate freedom upon building the derivatives, we formally supplement the Smoluchowski dynamics by a source term, which vanishes at the physical solution. These techniques are applied to obtain a complete set of dynamic Ornstein-Zernike equations, which serve for the development of approximation schemes. The rules of functional calculus lead naturally to non-Markovian equations of motion for the two-time correlators. Memory functions are identified as functional derivatives of a unique space- and time-nonlocal dissipation power functional. PMID:25669360
Area laws and efficient descriptions of quantum many-body states
NASA Astrophysics Data System (ADS)
Ge, Yimin; Eisert, Jens
2016-08-01
It is commonly believed that area laws for entanglement entropies imply that a quantum many-body state can be faithfully represented by efficient tensor network states—a conjecture frequently stated in the context of numerical simulations and analytical considerations. In this work, we show that this is in general not the case, except in one-dimension. We prove that the set of quantum many-body states that satisfy an area law for all Renyi entropies contains a subspace of exponential dimension. We then show that there are states satisfying area laws for all Renyi entropies but cannot be approximated by states with a classical description of small Kolmogorov complexity, including polynomial projected entangled pair states or states of multi-scale entanglement renormalisation. Not even a quantum computer with post-selection can efficiently prepare all quantum states fulfilling an area law, and we show that not all area law states can be eigenstates of local Hamiltonians. We also prove translationally and rotationally invariant instances of these results, and show a variation with decaying correlations using quantum error-correcting codes.
Blocking transport resonances via Kondo many-body entanglement in quantum dots.
Niklas, Michael; Smirnov, Sergey; Mantelli, Davide; Margańska, Magdalena; Nguyen, Ngoc-Viet; Wernsdorfer, Wolfgang; Cleuziou, Jean-Pierre; Grifoni, Milena
2016-01-01
Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show another side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic co-tunnelling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU(2) ⊗ SU(2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin. PMID:27526870
Blocking transport resonances via Kondo many-body entanglement in quantum dots
Niklas, Michael; Smirnov, Sergey; Mantelli, Davide; Margańska, Magdalena; Nguyen, Ngoc-Viet; Wernsdorfer, Wolfgang; Cleuziou, Jean-Pierre; Grifoni, Milena
2016-01-01
Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show another side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic co-tunnelling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU(2) ⊗ SU(2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin. PMID:27526870
Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas.
Smolka, Stephan; Wuester, Wolf; Haupt, Florian; Faelt, Stefan; Wegscheider, Werner; Imamoglu, Ataç
2014-10-17
Light-matter interaction has played a central role in understanding as well as engineering new states of matter. Reversible coupling of excitons and photons enabled groundbreaking results in condensation and superfluidity of nonequilibrium quasiparticles with a photonic component. We investigated such cavity-polaritons in the presence of a high-mobility two-dimensional electron gas, exhibiting strongly correlated phases. When the cavity was on resonance with the Fermi level, we observed previously unknown many-body physics associated with a dynamical hole-scattering potential. In finite magnetic fields, polaritons show distinct signatures of integer and fractional quantum Hall ground states. Our results lay the groundwork for probing nonequilibrium dynamics of quantum Hall states and exploiting the electron density dependence of polariton splitting so as to obtain ultrastrong optical nonlinearities.
Cavity quantum electrodynamics with many-body states of a two-dimensional electron gas.
Smolka, Stephan; Wuester, Wolf; Haupt, Florian; Faelt, Stefan; Wegscheider, Werner; Imamoglu, Ataç
2014-10-17
Light-matter interaction has played a central role in understanding as well as engineering new states of matter. Reversible coupling of excitons and photons enabled groundbreaking results in condensation and superfluidity of nonequilibrium quasiparticles with a photonic component. We investigated such cavity-polaritons in the presence of a high-mobility two-dimensional electron gas, exhibiting strongly correlated phases. When the cavity was on resonance with the Fermi level, we observed previously unknown many-body physics associated with a dynamical hole-scattering potential. In finite magnetic fields, polaritons show distinct signatures of integer and fractional quantum Hall ground states. Our results lay the groundwork for probing nonequilibrium dynamics of quantum Hall states and exploiting the electron density dependence of polariton splitting so as to obtain ultrastrong optical nonlinearities. PMID:25278508
BOOK REVIEW: Many-Body Quantum Theory in Condensed Matter Physics—An Introduction
NASA Astrophysics Data System (ADS)
Logan, D. E.
2005-02-01
This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical `rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some
BOOK REVIEW: Many-Body Quantum Theory in Condensed Matter Physics—An Introduction
NASA Astrophysics Data System (ADS)
Logan, D. E.
2005-02-01
This is undoubtedly an ambitious book. It aims to provide a wide ranging, yet self-contained and pedagogical introduction to techniques of quantum many-body theory in condensed matter physics, without losing mathematical `rigor' (which I hope means rigour), and with an eye on physical insight, motivation and application. The authors certainly bring plenty of experience to the task, the book having grown out of their graduate lectures at the Niels Bohr Institute in Copenhagen over a five year period, with the feedback and refinement this presumably brings. The book is also of course ambitious in another sense, for it competes in the tight market of general graduate/advanced undergraduate texts on many-particle physics. Prospective punters will thus want reasons to prefer it to, or at least give it space beside, well established texts in the field. Subject-wise, the book is a good mix of the ancient and modern, the standard and less so. Obligatory chapters deal with the formal cornerstones of many-body theory, from second quantization, time-dependence in quantum mechanics and linear response theory, to Green's function and Feynman diagrams. Traditional topics are well covered, including two chapters on the electron gas, chapters on phonons and electron phonon coupling, and a concise account of superconductivity (confined, no doubt judiciously, to the conventional BCS case). Less mandatory, albeit conceptually vital, subjects are also aired. These include a chapter on Fermi liquid theory, from both semi-classical and microscopic perspectives, and a freestanding account of one-dimensional electron gases and Luttinger liquids which, given the enormity of the topic, is about as concise as it could be without sacrificing clarity. Quite naturally, the authors' own interests also influence the choice of material covered. A persistent theme, which brings a healthy topicality to the book, is the area of transport in mesoscopic systems or nanostructures. Two chapters, some
INTRODUCTION: Many-Body Theory of Atomic Systems: Proceedings of the Nobel Symposium 46
NASA Astrophysics Data System (ADS)
Lindgren, Ingvar; Lundqvist, Stig
1980-01-01
corresponding experimental results, which will eventually lead to a better understanding of the behaviour of many-electron systems and possibly also of many-fermion systems in general. In addition to the static properties of atomic systems there is nowadays a great interest in the dynamics of the excitation process, which is of fundamental importance for our understanding of photoelectron and photoabsorption spectra. The experimental data being produced in this field are enormous and many intricate physical problems appear, which can only be understood by considering the atom as a fully interacting many-body system. All the new developments mentioned here have opened entirely new areas in atomic many-body theory, and we are evidently just at the verge of a very interesting period of rapid progress. It is quite evident that we could have limited the Symposium to atomic problems of the type described here. However, related problems appear in atoms bound in solids and in atoms/molecules bound to solid surfaces. Therefore, we proposed to include also some aspects of these fields in our program, which brought together scientists with different backgrounds, such as atomic and molecular physicists, theoretical chemists, solid state and surface physicists as well as nuclear physicists and quantum- liquid experts. The Symposium then got a distinctive inter-disciplinary character at the same time as it was concentrated on the specific atomic many-body problem. The response to our invitations to the Nobel Symposium was overwhelming. Many other participants were suggested and we extended the number of participants as far as we could. With the wide scope of the Symposium program and small format with regard to number, only a few representatives of each major area could be invited. The symposium gave an excellent picture how the various areas are developing. The various methods to treat the many-body problem were thoroughly discussed and many new results were reported. The relativistic many-body
NASA Astrophysics Data System (ADS)
Pekker, David; Refael, Gil; Altman, Ehud; Demler, Eugene; Oganesyan, Vadim
2014-01-01
We study a new class of unconventional critical phenomena that is characterized by singularities only in dynamical quantities and has no thermodynamic signatures. One example of such a transition is the recently proposed many-body localization-delocalization transition, in which transport coefficients vanish at a critical temperature with no singularities in thermodynamic observables. Describing this purely dynamical quantum criticality is technically challenging as understanding the finite-temperature dynamics necessarily requires averaging over a large number of matrix elements between many-body eigenstates. Here, we develop a real-space renormalization group method for excited states that allows us to overcome this challenge in a large class of models. We characterize a specific example: the 1 D disordered transverse-field Ising model with generic interactions. While thermodynamic phase transitions are generally forbidden in this model, using the real-space renormalization group method for excited states we find a finite-temperature dynamical transition between two localized phases. The transition is characterized by nonanalyticities in the low-frequency heat conductivity and in the long-time (dynamic) spin correlation function. The latter is a consequence of an up-down spin symmetry that results in the appearance of an Edwards-Anderson-like order parameter in one of the localized phases.
Many-body Effects in a Laterally Inhomogeneous Semiconductor Quantum Well
NASA Technical Reports Server (NTRS)
Ning, Cun-Zheng; Li, Jian-Zhong; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Many body effects on conduction and diffusion of electrons and holes in a semiconductor quantum well are studied using a microscopic theory. The roles played by the screened Hartree-Fock (SHE) terms and the scattering terms are examined. It is found that the electron and hole conductivities depend only on the scattering terms, while the two-component electron-hole diffusion coefficients depend on both the SHE part and the scattering part. We show that, in the limit of the ambipolax diffusion approximation, however, the diffusion coefficients for carrier density and temperature are independent of electron-hole scattering. In particular, we found that the SHE terms lead to a reduction of density-diffusion coefficients and an increase in temperature-diffusion coefficients. Such a reduction or increase is explained in terms of a density-and temperature dependent energy landscape created by the bandgap renormalization.
Radiative heat transfer in anisotropic many-body systems: Tuning and enhancement
Nikbakht, Moladad
2014-09-07
A general formalism for calculating the radiative heat transfer in many body systems with anisotropic component is presented. Our scheme extends the theory of radiative heat transfer in isotropic many body systems to anisotropic cases. In addition, the radiative heating of the particles by the thermal bath is taken into account in our formula. It is shown that the radiative heat exchange (HE) between anisotropic particles and their radiative cooling/heating (RCH) could be enhanced several order of magnitude than that of isotropic particles. Furthermore, we demonstrate that both the HE and RCH can be tuned dramatically by particles relative orientation in many body systems.
NonSymmorphic Symmetry Protected Topological Order in Many-body Localized Systems
NASA Astrophysics Data System (ADS)
Ashraf, Khalid
Many-body localized systems have many interesting physical properties such as localization protected quantum order, symmetry protected topological order, area law in entanglement spectrum etc.. Specifically, it has been shown that closed quantum system in 1D i.e. p-wave superconducting wires host localization protected topological order. In this work, we explore the interplay between non-symmorphic symmetry which protects topological order and localization due to disorder. Using a Bogoliubov-de Gennes (BdG) description of p-wave superconductors, we study the topological edge states on a 2D non-symmorphic crystal. We show that a localization protected topological order can exist at high energy in a 2D non-symmorphic crystal. The system goes between topologically trivial and non-trivial phases based on the degree of disorder and shift between the adjacent atoms in the bipartite lattice. We further explore the nature of this phase transition by calculating the entanglement spectrum of the two phases. Finally, the effect of dimensionality on the realization of these phases are discussed.
A many-body generalization of the Z2 topological invariant for the quantum spin Hall effect
NASA Astrophysics Data System (ADS)
Lee, Sung-Sik; Ryu, Shinsei
2008-03-01
We propose a many-body generalization of the Z2 topological invariant for the quantum spin Hall insulator, which does not rely on single-particle band structures. The invariant is derived as a topological obstruction that distinguishes topologically distinct many-body ground states on a torus. It is also expressed as a Wilson-loop of the SU(2) Berry gauge field, which is quantized due to the time-reversal symmetry.
Fokker Planck equations for globally coupled many-body systems with time delays
NASA Astrophysics Data System (ADS)
Frank, T. D.; Beek, P. J.
2005-10-01
A Fokker-Planck description for globally coupled many-body systems with time delays was developed by integrating previously derived Fokker-Planck equations for many-body systems and for time-delayed systems. By means of the Fokker-Planck description developed, we examined the dependence of the variability of many-body systems on attractive coupling forces and time delays. For a fundamental class of systems exemplified by a time-delayed Shimizu-Yamada model for muscular contractions, we established that the variability is an invertible one-to-one mapping of coupling forces and time delays and that coupling forces and time delays have opposite effects on system variability, allowing time delays to annihilate the impact of coupling forces. Furthermore, we showed how variability measures could be used to determine coupling parameters and time delays from experimental data.
Exponential orthogonality catastrophe in single-particle and many-body localized systems
NASA Astrophysics Data System (ADS)
Deng, Dong-Ling; Pixley, J. H.; Li, Xiaopeng; Das Sarma, S.
2015-12-01
We investigate the statistical orthogonality catastrophe (STOC) in single-particle and many-body localized systems by studying the response of the many-body ground state to a local quench. Using scaling arguments and exact numerical calculations, we establish that the STOC gives rise to a wave function overlap between the pre- and postquench ground states that has an exponential decay with the system size, in sharp contrast to the well-known power law Anderson orthogonality catastrophe in metallic systems. This exponential decay arises from a statistical charge transfer process where a particle can be effectively "transported" to an arbitrary lattice site. In a many-body localized phase, this nonlocal transport and the associated exponential STOC phenomenon persist in the presence of interactions. We study the possible experimental consequences of the exponential STOC on the Loschmidt echo and spectral function, establishing that this phenomenon might be observable in cold atomic experiments through Ramsey interference and radio-frequency spectroscopy.
NASA Astrophysics Data System (ADS)
Jones, Andrew P.; Crain, Jason; Sokhan, Vlad P.; Whitfield, Troy W.; Martyna, Glenn J.
2013-04-01
Treating both many-body polarization and dispersion interactions is now recognized as a key element in achieving the level of atomistic modeling required to reveal novel physics in complex systems. The quantum Drude oscillator (QDO), a Gaussian-based, coarse grained electronic structure model, captures both many-body polarization and dispersion and has linear scale computational complexity with system size, hence it is a leading candidate next-generation simulation method. Here, we investigate the extent to which the QDO treatment reproduces the desired long-range atomic and molecular properties. We present closed form expressions for leading order polarizabilities and dispersion coefficients and derive invariant (parameter-free) scaling relationships among multipole polarizability and many-body dispersion coefficients that arise due to the Gaussian nature of the model. We show that these “combining rules” hold to within a few percent for noble gas atoms, alkali metals, and simple (first-row hydride) molecules such as water; this is consistent with the surprising success that models with underlying Gaussian statistics often exhibit in physics. We present a diagrammatic Jastrow-type perturbation theory tailored to the QDO model that serves to illustrate the rich types of responses that the QDO approach engenders. QDO models for neon, argon, krypton, and xenon, designed to reproduce gas phase properties, are constructed and their condensed phase properties explored via linear scale diffusion Monte Carlo (DMC) and path integral molecular dynamics (PIMD) simulations. Good agreement with experimental data for structure, cohesive energy, and bulk modulus is found, demonstrating a degree of transferability that cannot be achieved using current empirical models or fully ab initio descriptions.
García-González, P; Godby, R W
2002-02-01
We present GW many-body results for ground-state properties of two simple but very distinct families of inhomogeneous systems in which traditional implementations of density-functional theory (DFT) fail drastically. The GW approach gives notably better results than the well-known random-phase approximation, at a similar computational cost. These results establish GW as a superior alternative to standard DFT schemes without the expensive numerical effort required by quantum Monte Carlo simulations.
PREFACE: Many-body correlations from dilute to dense nuclear systems
NASA Astrophysics Data System (ADS)
Otsuka, Takaharu; Urban, Michael; Yamada, Taiichi
2011-09-01
The International EFES-IN2P3 conference on "Many body correlations from dilute to dense nuclear systems" was held at the Institut Henri Poincaré (IHP), Paris, France, from 15-18 February 2011, on the occasion of the retirement of our colleague Peter Schuck. Correlations play a decisive role in various many-body systems such as nuclear systems, condensed matter and quantum gases. Important examples include: pairing correlations (Cooper pairs) which give rise to nuclear superfluidity (analogous to superconductivity in condensed matter); particle-hole (RPA) correlations in the description of the ground state beyond mean-field theory; clusters; and α-particle correlations in certain nuclei. Also, the nucleons themselves can be viewed as clusters of three quarks. During the past few years, researchers have started to study how the character of these correlations changes with the variation of the density. For instance, the Cooper pairs in dense matter can transform into a Bose-Einstein condensate (BEC) of true bound states at low density (this is the BCS-BEC crossover studied in ultracold Fermi gases). Similar effects play a role in neutron matter at low density, e.g., in the "neutron skin" of exotic nuclei. The α-cluster correlation becomes particularly important at lower density, such as in the excited states of some nuclei (e.g., the α-condensate-like structure in the Hoyle state of 12C) or in the formation of compact stars. In addition to nuclear physics, topics from astrophysics (neutron stars), condensed matter, and quantum gases were discussed in 48 talks and 19 posters, allowing the almost 90 participants from different communities to exchange their ideas, experiences and methods. The conference dinner took place at the Musée d'Orsay, and all the participants enjoyed the very pleasant atmosphere. One session of the conference was dedicated to the celebration of Peter's retirement. We would like to take this opportunity to wish Peter all the best and we hope
Nuclear quantum many-body dynamics. From collective vibrations to heavy-ion collisions
NASA Astrophysics Data System (ADS)
Simenel, Cédric
2012-11-01
A summary of recent researches on nuclear dynamics with realistic microscopic quantum approaches is presented. The Balian-Vénéroni variational principle is used to derive the time-dependent Hartree-Fock (TDHF) equation describing the dynamics at the mean-field level, as well as an extension including small-amplitude quantum fluctuations which is equivalent to the time-dependent random-phase approximation (TDRPA). Such formalisms as well as their practical implementation in the nuclear physics framework with modern three-dimensional codes are discussed. Recent applications to nuclear dynamics, from collective vibrations to heavy-ion collisions are presented. Particular attention is devoted to the interplay between collective motions and internal degrees of freedom. For instance, the harmonic nature of collective vibrations is questioned. Nuclei are also known to exhibit superfluidity due to pairing residual interaction. Extensions of the theoretical approach to study such pairing vibrations are now available. Large amplitude collective motions are investigated in the framework of heavy-ion collisions leading, for instance, to the formation of a compound system. How fusion is affected by the internal structure of the collision partners, such as their deformation, is discussed. Other mechanisms in competition with fusion, and responsible for the formation of fragments which differ from the entrance channel (transfer reactions, deep-inelastic collisions, and quasi-fission) are investigated. Finally, studies of actinide collisions forming, during very short times of few zeptoseconds, the heaviest nuclear systems available on Earth, are presented.
Labud, P A; Ludwig, A; Wieck, A D; Bester, G; Reuter, D
2014-01-31
We present capacitance-voltage spectra for the conduction band states of InAs quantum dots obtained under continuous illumination. The illumination leads to the appearance of additional charging peaks that we attribute to the charging of electrons into quantum dots containing a variable number of illumination-induced holes. By this we demonstrate an electrical measurement of excitonic states in quantum dots. Magnetocapacitance-voltage spectroscopy reveals that the electron always tunnels into the lowest electronic state. This allows us to directly extract, from the highly correlated many-body states, the correlation energy. The results are compared quantitatively to state of the art atomistic configuration interaction calculations, showing very good agreement for a lower level of excitations and also limitations of the approach for an increasing number of particles. Our experiments offer a rare benchmark to many-body theoretical calculations. PMID:24580478
Morphology of Laplacian growth processes and statistics of equivalent many-body systems
Blumenfeld, R.
1994-11-01
The authors proposes a theory for the nonlinear evolution of two dimensional interfaces in Laplacian fields. The growing region is conformally mapped onto the unit disk, generating an equivalent many-body system whose dynamics and statistics are studied. The process is shown to be Hamiltonian, with the Hamiltonian being the imaginary part of the complex electrostatic potential. Surface effects are introduced through the Hamiltonian as an external field. An extension to a continuous density of particles is presented. The results are used to study the morphology of the interface using statistical mechanics for the many-body system. The distribution of the curvature and the moments of the growth probability along the interface are calculated exactly from the distribution of the particles. In the dilute limit, the distribution of the curvature is shown to develop algebraic tails, which may, for the first time, explain the origin of fractality in diffusion controlled processes.
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Besliu, C.; Jipa, Al.; Felea, D.; Esanu, T.; Stan, E.; Bordeianu, C. C.
2013-04-01
In this paper we present a new version of the Chaos Many-Body Engine C# application (Grossu et al. 2012 [1]). In order to benefit from the latest technological advantages, we migrated the application from .Net Framework 2.0 to .Net Framework 4.0. New tools were implemented also. Trying to estimate the particle interactions dependence on initial conditions, we considered a new distance, which takes into account only the structural differences between two systems. We used this distance for implementing the “Structural Lyapunov” function. We propose also a new precision test based on temporal reversed simulations. New version program summaryProgram title: Chaos Many-Body Engine v03 Catalogue identifier: AEGH_v3_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEGH_v3_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 214429 No. of bytes in distributed program, including test data, etc.: 9512380 Distribution format: tar.gz Programming language: Visual C# .Net 2010 Computer: PC Operating system: .Net Framework 4.0 running on MS Windows RAM: 128 MB Classification: 24.60.Lz, 05.45.a Catalogue identifier of previous version: AEGH_v2_0 Journal reference of previous version: Computer Physics Communications 183 (2012) 1055-1059 Does the new version supersede the previous version?: Yes Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems with reactions. Solution method: Second order Runge-Kutta algorithm. Implementation of temporal reversed simulation precision test, and “Structural Lyapunov” function. In order to benefit from the advantages involved in the latest technologies (e.g. LINQ Queries [2]), Chaos Many-Body Engine was migrated from .Net Framework 2.0 to .Net Framework 4.0. In addition to existing energy conservation
Exponential Orthogonality Catastrophe in Single-Particle and Many-Body Localized Systems
NASA Astrophysics Data System (ADS)
Deng, Dong-Ling; Pixley, J. H.; Li, Xiaopeng
We investigate the statistical orthogonality catastrophe (StOC) in single-particle and many-body localized systems by studying the response of the many-body ground state to a local quench. Using scaling arguments and exact numerical calculations, we establish that the StOC gives rise to a wave function overlap between the pre- and post-quench ground states that has an exponential decay with the system size, in sharp contrast to the well-known power law Anderson orthogonality catastrophe in metallic systems. This exponential decay arises from a statistical charge transfer process where a particle can be effectively ``transported'' to an arbitrary lattice site. We show that in a many-body localized phase, this non-local transport and the associated exponential StOC phenomenon persist in the presence of interactions. We study the possible experimental consequences of the exponential StOC on the Loschmidt echo and spectral function, establishing that this phenomenon might be observable in cold atomic experiments through Ramsey interference and radio-frequency spectroscopy. We thank S.-T. Wang, Z.-X. Gong, Y.-L. Wu, J. D. Sau, and Z. Ovadyahu for discussions. This work is supported by LPS-MPO-CMTC, JQI-NSF-PFC, and ARO-Atomtronics-MURI. The authors acknowledge the University of Maryland supercomputing resources.
NASA Astrophysics Data System (ADS)
Wall, Michael
2014-03-01
Experimental progress in generating and manipulating synthetic quantum systems, such as ultracold atoms and molecules in optical lattices, has revolutionized our understanding of quantum many-body phenomena and posed new challenges for modern numerical techniques. Ultracold molecules, in particular, feature long-range dipole-dipole interactions and a complex and selectively accessible internal structure of rotational and hyperfine states, leading to many-body models with long range interactions and many internal degrees of freedom. Additionally, the many-body physics of ultracold molecules is often probed far from equilibrium, and so algorithms which simulate quantum many-body dynamics are essential. Numerical methods which are to have significant impact in the design and understanding of such synthetic quantum materials must be able to adapt to a variety of different interactions, physical degrees of freedom, and out-of-equilibrium dynamical protocols. Matrix product state (MPS)-based methods, such as the density-matrix renormalization group (DMRG), have become the de facto standard for strongly interacting low-dimensional systems. Moreover, the flexibility of MPS-based methods makes them ideally suited both to generic, open source implementation as well as to studies of the quantum many-body dynamics of ultracold molecules. After introducing MPSs and variational algorithms using MPSs generally, I will discuss my own research using MPSs for many-body dynamics of long-range interacting systems. In addition, I will describe two open source implementations of MPS-based algorithms in which I was involved, as well as educational materials designed to help undergraduates and graduates perform research in computational quantum many-body physics using a variety of numerical methods including exact diagonalization and static and dynamic variational MPS methods. Finally, I will mention present research on ultracold molecules in optical lattices, such as the exploration of
Quantum Optical Lattices for Emergent Many-Body Phases of Ultracold Atoms.
Caballero-Benitez, Santiago F; Mekhov, Igor B
2015-12-11
Confining ultracold gases in cavities creates a paradigm of quantum trapping potentials. We show that this allows us to bridge models with global collective and short-range interactions as novel quantum phases possess properties of both. Some phases appear solely due to quantum light-matter correlations. Because of a global, but spatially structured, interaction, the competition between quantum matter and light waves leads to multimode structures even in single-mode cavities, including delocalized dimers of matter-field coherences (bonds), beyond density orders as supersolids and density waves.
Quantum Optical Lattices for Emergent Many-Body Phases of Ultracold Atoms
NASA Astrophysics Data System (ADS)
Caballero-Benitez, Santiago F.; Mekhov, Igor B.
2015-12-01
Confining ultracold gases in cavities creates a paradigm of quantum trapping potentials. We show that this allows us to bridge models with global collective and short-range interactions as novel quantum phases possess properties of both. Some phases appear solely due to quantum light-matter correlations. Because of a global, but spatially structured, interaction, the competition between quantum matter and light waves leads to multimode structures even in single-mode cavities, including delocalized dimers of matter-field coherences (bonds), beyond density orders as supersolids and density waves.
NASA Astrophysics Data System (ADS)
You, Yi-Zhuang; Qi, Xiao-Liang; Xu, Cenke
We introduce the spectrum bifurcation renormalization group (SBRG) as a generalization of the real-space renormalization group for the many-body localized (MBL) system without truncating the Hilbert space. Starting from a disordered many-body Hamiltonian in the full MBL phase, the SBRG flows to the MBL fixed-point Hamiltonian, and generates the local conserved quantities and the matrix product state representations for all eigenstates. The method is applicable to both spin and fermion models with arbitrary interaction strength on any lattice in all dimensions, as long as the models are in the MBL phase. In particular, we focus on the 1 d interacting Majorana chain with strong disorder, and map out its phase diagram using the entanglement entropy. The SBRG flow also generates an entanglement holographic mapping, which duals the MBL state to a fragmented holographic space decorated with small blackholes.
Stability and Clustering for Lattice Many-Body Quantum Hamiltonians with Multiparticle Potentials
NASA Astrophysics Data System (ADS)
Faria da Veiga, Paulo A.; O'Carroll, Michael
2015-11-01
We analyze a quantum system of N identical spinless particles of mass m, in the lattice Z^d, given by a Hamiltonian H_N=T_N+V_N, with kinetic energy T_N≥ 0 and potential V_N=V_{N,2}+V_{N,3} composed of attractive pair and repulsive 3-body contact-potentials. This Hamiltonian is motivated by the desire to understand the stability of quantum field theories, with massive single particles and bound states in the energy-momentum spectrum, in terms of an approximate Hamiltonian for their N-particle sector. We determine the role of the potentials V_{N,2} and V_{N,3} on the physical stability of the system, such as to avoid a collapse of the N particles. Mathematically speaking, stability is associated with an N-linear lower bound for the infimum of the H_N spectrum, \\underline{σ }(H_N)≥ -cN, for c>0 independent of N. For V_{N,3}=0, H_N is unstable, and the system collapses. If V_{N,3}not =0, H_N is stable and, for strong enough repulsion, we obtain \\underline{σ }(H_N)≥ -c' N, where c'N is the energy of ( N/2) isolated bound pairs. This result is physically expected. A much less trivial result is that, as N varies, we show [ \\underline{σ }(V_N)/N ] has qualitatively the same behavior as the well-known curve for minus the nuclear binding energy per nucleon. Moreover, it turns out that there exists a saturation value N_s of N at and above which the system presents a clustering: the N particles distributed in two fragments and, besides lattice translations of particle positions, there is an energy degeneracy of all two fragments with particle numbers N_r and N_s-N_r, with N_r=1,ldots ,N_s-1.
Quantum many-body theory for qubit decoherence in a finite-size spin bath
Yang Wen; Liu Renbao
2008-11-07
We develop a cluster-correlation expansion theory for the many-body dynamics of a finite-size spin bath in a time scale relevant to the decoherence of a center spin or qubit embedded in the bath. By introducing the cluster correlation as the evolution of a group of bath spins divided by the correlations of all the subgroups, the propagator of the whole bath is factorized into the product of all possible cluster correlations. Each cluster-correlation term accounts for the authentic (non-factorizable) collective excitations within that group. Convergent results can be obtained by truncating the cluster-correlation expansion up to a certain cluster size, as verified in an exactly solvable spin-chain model.
Many-body optical gain of wurtzite GaN-based quantum-well lasers and comparison with experiment
NASA Astrophysics Data System (ADS)
Park, Seoung-Hwan; Chuang, Shun-Lien
1998-01-01
The optical gain of wurtzite InxGa1-xN/In0.02Ga0.98N and GaN/AlxGa1-xN quantum well (QW) lasers taking into account many-body effects is investigated. The valence band structures are calculated as a function of strain and well thickness. The inclusion of compressive strain shows better lasing performance because of the increase of the subband energy separation in the valence band. Our theoretical gain spectra of In0.15Ga0.85N/In0.02Ga0.98N QW lasers are in good agreement with measured ones reported by Nakamura, IEEE J. Sel. Top. Quantum Electron. 3, 712 (1997). It is also shown that there is a universal relation governing the dependence of the band-gap renormalization on the two-dimensional carrier density for GaN-based QW lasers as there is for the infrared III-V systems.
Towards quantum many-body physics with Sr in optical lattices
NASA Astrophysics Data System (ADS)
Blatt, Sebastian; Jansa, Nejc; Escudero, Rodrigo G.; Heinz, André; Park, Annie Jihyun; Snigirev, Stepan; Dalibard, Jean; Bloch, Immanuel
2016-05-01
Within the last decade, fermionic alkaline earth atoms in optical lattices have become a platform for precision measurements, culminating in the realization of an atomic clock with the currently highest stability and accuracy at the 2 ×10-18 level. In the meantime, quantum degenerate gases of all bosonic and fermionic isotopes of Sr have been realized. With the extension of the quantum gas microscopy technique to fermionic alkali metal atoms, experiments with quantum degenerate gases in optical lattices have taken another step towards full control over the internal and external degrees of freedom of fermions in optical lattices. Here, we report on the construction of a new experiment with quantum degenerate gases of Sr in optical lattices. Our experiment aims to combine the high spatial control over the atomic degrees of freedom from quantum gas microscopy with the precision control over the internal degrees of freedom enabled by optical lattice clock techniques.
Spreading in integrable and non-integrable many-body systems
NASA Astrophysics Data System (ADS)
Freese, Johannes; Gutkin, Boris; Guhr, Thomas
2016-11-01
We consider a finite, closed and selfbound many-body system in which a collective degree of freedom is excited. The redistribution of energy and momentum into a finite number of the non-collective degrees of freedom is referred to as spreading as opposed to damping in open systems. Spreading closely relates to thermalization, but while thermalization requires non-integrability, spreading can also present in integrable systems. We identify subtle features which determine the onset of spreading in an integrable model and compare the result with a non-integrable case.
A driven similarity renormalization group approach to quantum many-body problems
Evangelista, Francesco A.
2014-08-07
Applications of the similarity renormalization group (SRG) approach [F. Wegner, Ann. Phys. 506, 77 (1994) and S. D. Głazek and K. G. Wilson, Phys. Rev. D 49, 4214 (1994)] to the formulation of useful many-body theories of electron correlation are considered. In addition to presenting a production-level implementation of the SRG based on a single-reference formalism, a novel integral version of the SRG is reported, in which the flow of the Hamiltonian is driven by a source operator. It is shown that this driven SRG (DSRG) produces a Hamiltonian flow that is analogous to that of the SRG. Compared to the SRG, which requires propagating a set of ordinary differential equations, the DSRG is computationally advantageous since it consists of a set of polynomial equations. The equilibrium distances, harmonic vibrational frequencies, and vibrational anharmonicities of a series of diatomic molecules computed with the SRG and DSRG approximated with one- and two-body normal ordered operators are in good agreement with benchmark values from coupled cluster with singles, doubles, and perturbative triples. Particularly surprising results are found when the SRG and DSRG methods are applied to C{sub 2} and F{sub 2}. In the former case, both methods fail to converge, while in the latter case an unbound potential energy curve is obtained. A modified commutator approximation is shown to correct these problems in the case of the DSRG method.
Chaos in fermionic many-body systems and the metal-insulator transition
Papenbrock, T.; Pluhar, Z.; Tithof, J.; Weidenmueller, H. A.
2011-03-15
We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ensemble (ScE) that mimics this transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body system is much less sparse than ScE.
NASA Astrophysics Data System (ADS)
Wang, Bin
This thesis is composed of two parts. In the first part we summarize our study on implementation of quantum information processing (QIP) in optical cavity QED systems, while in the second part we present our numerical investigations on strongly interacting Fermi systems using a powerful numerical algorithm developed from the perspective of quantum information theory. We explore various possible applications of cavity QED in the strong coupling regime to quantum information processing tasks theoretically, including efficient preparation of Schrodinger-cat states for traveling photon pulses, robust implementation of conditional quantum gates on neutral atoms, as well as implementation of a hybrid controlled SWAP gate. We analyze the feasibility and performance of our schemes by solving corresponding physical models either numerically or analytically. We implement a novel numerical algorithm called Time Evolving Block Decimation (TEBD), which was proposed by Vidal from the perspective of quantum information science. With this algorithm, we numerically study the ground state properties of strongly interacting fermions in an anisotropic optical lattice across a wide Feshbach resonance. The interactions in this system can be described by a general Hubbard model with particle assisted tunneling. For systems with equal spin population, we find that the Luther-Emery phase, which has been known to exist only for attractive on-site interactions in the conventional Hubbard model, could also be found even in the case with repulsive on-site interactions in the general Hubbard model. Using the TEBD algorithm, we also study the effect of particle assisted tunneling in spin-polarized systems. Fermi systems with unequal spin population and attractive interaction could allow the existence of exotic superfluidity, such as the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. In the general Hubbard model, such exotic FFLO pairing of fermions could be suppressed by high particle assisted
NASA Astrophysics Data System (ADS)
Mei, Zhongtao; Vidmar, L.; Heidrich-Meisner, F.; Bolech, C. J.
2016-02-01
In the theory of Bethe-ansatz integrable quantum systems, rapidities play an important role as they are used to specify many-body states, apart from phases. The physical interpretation of rapidities going back to Sutherland is that they are the asymptotic momenta after letting a quantum gas expand into a larger volume making it dilute and noninteracting. We exploit this picture to make a direct connection to quantities that are accessible in sudden-expansion experiments with ultracold quantum gases. By a direct comparison of Bethe-ansatz and time-dependent density matrix renormalization group results, we demonstrate that the expansion velocity of a one-dimensional Fermi-Hubbard model can be predicted from knowing the distribution of occupied rapidities defined by the initial state. Curiously, an approximate Bethe-ansatz solution works well also for the Bose-Hubbard model.
Chaos in Fermionic Many-Body Systems and the Metal Insulator Transition
Papenbrock, Thomas F; Pluhar, Z.; Tithof, J.; Weidenmueller, H. A.
2011-01-01
We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are thus chaotic. Our proof is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix ensemble H^{cr} that mimicks that transition. Our claim then follows from the fact that the generic random-matrix ensemble modeling a fermionic interacting many-body is much less sparse than H^{cr}.
Griffiths effects and slow dynamics in nearly many-body localized systems
NASA Astrophysics Data System (ADS)
Gopalakrishnan, Sarang; Agarwal, Kartiek; Demler, Eugene A.; Huse, David A.; Knap, Michael
2016-04-01
The low-frequency response of systems near a many-body localization transition can be dominated by rare regions that are locally critical or "in the other phase." It is known that in one dimension, these rare regions can cause the dc conductivity and diffusion constant to vanish even inside the delocalized thermal phase. Here, we present a general analysis of such Griffiths effects in the thermal phase near the many-body localization transition: we consider both one-dimensional and higher-dimensional systems, subject to quenched randomness, and discuss both linear response (including the frequency- and wave-vector-dependent conductivity) and more general dynamics. In all the regimes we consider, we identify observables that are dominated by rare-region effects. In some cases (one-dimensional systems and Floquet systems with no extensive conserved quantities), essentially all long-time local observables are dominated by rare-region effects; in others, generic observables are instead dominated by hydrodynamic long-time tails throughout the thermal phase, and one must look at specific probes, such as spin echo, to see Griffiths behavior.
Code C# for chaos analysis of relativistic many-body systems with reactions
NASA Astrophysics Data System (ADS)
Grossu, I. V.; Besliu, C.; Jipa, Al.; Stan, E.; Esanu, T.; Felea, D.; Bordeianu, C. C.
2012-04-01
In this work we present a reaction module for “Chaos Many-Body Engine” (Grossu et al., 2010 [1]). Following our goal of creating a customizable, object oriented code library, the list of all possible reactions, including the corresponding properties (particle types, probability, cross section, particle lifetime, etc.), could be supplied as parameter, using a specific XML input file. Inspired by the Poincaré section, we propose also the “Clusterization Map”, as a new intuitive analysis method of many-body systems. For exemplification, we implemented a numerical toy-model for nuclear relativistic collisions at 4.5 A GeV/c (the SKM200 Collaboration). An encouraging agreement with experimental data was obtained for momentum, energy, rapidity, and angular π distributions. Catalogue identifier: AEGH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 184 628 No. of bytes in distributed program, including test data, etc.: 7 905 425 Distribution format: tar.gz Programming language: Visual C#.NET 2005 Computer: PC Operating system: Net Framework 2.0 running on MS Windows Has the code been vectorized or parallelized?: Each many-body system is simulated on a separate execution thread. One processor used for each many-body system. RAM: 128 Megabytes Classification: 6.2, 6.5 Catalogue identifier of previous version: AEGH_v1_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 1464 External routines: Net Framework 2.0 Library Does the new version supersede the previous version?: Yes Nature of problem: Chaos analysis of three-dimensional, relativistic many-body systems with reactions. Solution method: Second order Runge-Kutta algorithm for simulating relativistic many-body systems with reactions
Theory of the Many-Body Localization Transition in One-Dimensional Systems
NASA Astrophysics Data System (ADS)
Vosk, Ronen; Huse, David A.; Altman, Ehud
2015-07-01
We formulate a theory of the many-body localization transition based on a novel real-space renormalization group (RG) approach. The results of this theory are corroborated and intuitively explained with a phenomenological effective description of the critical point and of the "badly conducting" state found near the critical point on the delocalized side. The theory leads to the following sharp predictions: (i) The delocalized state established near the transition is a Griffiths phase, which exhibits subdiffusive transport of conserved quantities and sub-ballistic spreading of entanglement. The anomalous diffusion exponent α <1 /2 vanishes continuously at the critical point. The system does thermalize in this Griffiths phase. (ii) The many-body localization transition is controlled by a new kind of infinite-randomness RG fixed point, where the broadly distributed scaling variable is closely related to the eigenstate entanglement entropy. Dynamically, the entanglement grows as ˜log t at the critical point, as it does in the localized phase. (iii) In the vicinity of the critical point, the ratio of the entanglement entropy to the thermal entropy and its variance (and, in fact, all moments) are scaling functions of L /ξ , where L is the length of the system and ξ is the correlation length, which has a power-law divergence at the critical point.
Simple approach to the angular momentum distribution in the ground states of many-body systems
NASA Astrophysics Data System (ADS)
Zhao, Y. M.; Arima, A.; Yoshinaga, N.
2002-09-01
We propose a simple approach to predict the angular momentum I ground state (I g.s.) probabilities of many-body systems that does not require the diagonalization of Hamiltonians with random interactions. This method is found to be applicable to all cases that have been discussed: even and odd fermion systems (both in single-j and many-j shells), and boson (both sd and sdg) systems. A simple relation for the highest angular momentum g.s. probability is found. Furthermore, it is suggested for the first time that the 0 g.s. dominance in boson systems and in even-fermion systems is given by two-body interactions with specific features.
Entanglement scaling of excited states in large one-dimensional many-body localized systems
NASA Astrophysics Data System (ADS)
Kennes, D. M.; Karrasch, C.
2016-06-01
We study the properties of excited states in one-dimensional many-body localized (MBL) systems using a matrix product state algorithm. First, the method is tested for a large disordered noninteracting system, where for comparison we compute a quasiexact reference solution via a Monte Carlo sampling of the single-particle levels. Thereafter, we present extensive data obtained for large interacting systems of L ˜100 sites and large bond dimensions χ ˜1700 , which allows us to quantitatively analyze the scaling behavior of the entanglement S in the system. The MBL phase is characterized by a logarithmic growth S (L )˜log(L ) over a large scale separating the regimes where volume and area laws hold. We check the validity of the eigenstate thermalization hypothesis. Our results are consistent with the existence of a mobility edge.
Many-body effects on graphene conductivity: Quantum Monte Carlo calculations
NASA Astrophysics Data System (ADS)
Boyda, D. L.; Braguta, V. V.; Katsnelson, M. I.; Ulybyshev, M. V.
2016-08-01
Optical conductivity of graphene is studied using quantum Monte Carlo calculations. We start from a Euclidean current-current correlator and extract σ (ω ) from Green-Kubo relations using the Backus-Gilbert method. Calculations were performed both for long-range interactions and taking into account only the contact term. In both cases we vary interaction strength and study its influence on optical conductivity. We compare our results with previous theoretical calculations choosing ω ≈κ , thus working in the region of the plateau in σ (ω ) which corresponds to optical conductivity of Dirac quasiparticles. No dependence of optical conductivity on interaction strength is observed unless we approach the antiferromagnetic phase transition in the case of an artificially enhanced contact term. Our results strongly support previous theoretical studies that claimed very weak regularization of graphene conductivity.
Efficient Implementation of Many-body Quantum Chemical Methods on the Intel Xeon Phi Coprocessor
Apra, Edoardo; Klemm, Michael; Kowalski, Karol
2014-12-01
This paper presents the implementation and performance of the highly accurate CCSD(T) quantum chemistry method on the Intel Xeon Phi coprocessor within the context of the NWChem computational chemistry package. The widespread use of highly correlated methods in electronic structure calculations is contingent upon the interplay between advances in theory and the possibility of utilizing the ever-growing computer power of emerging heterogeneous architectures. We discuss the design decisions of our implementation as well as the optimizations applied to the compute kernels and data transfers between host and coprocessor. We show the feasibility of adopting the Intel Many Integrated Core Architecture and the Intel Xeon Phi coprocessor for developing efficient computational chemistry modeling tools. Remarkable scalability is demonstrated by benchmarks. Our solution scales up to a total of 62560 cores with the concurrent utilization of Intel Xeon processors and Intel Xeon Phi coprocessors.
Exploring Few- and Many-Body Dipolar Quantum Phenomena with Ultracold Erbium Atoms
NASA Astrophysics Data System (ADS)
Ferlaino, Francesca
2016-05-01
Given their strong magnetic moment and exotic electronic configuration, rare-earth atoms disclose a plethora of intriguing phenomena in ultracold quantum physics with dipole-dipole interaction. Here, we report on the first degenerate Fermi gas of erbium atoms, based on direct cooling of identical fermions via dipolar collisions. We reveal universal scattering laws between identical dipolar fermions close to zero temperature, and we demonstrate the long-standing prediction of a deformed Fermi surface in dipolar gas. Finally, we present the first experimental study of an extended Bose-Hubbard model using bosonic Er atoms in a three-dimensional optical lattice and we report on the first observation of nearest-neighbor interactions.
Long-range interacting many-body systems with alkaline-earth-metal atoms.
Olmos, B; Yu, D; Singh, Y; Schreck, F; Bongs, K; Lesanovsky, I
2013-04-01
Alkaline-earth-metal atoms can exhibit long-range dipolar interactions, which are generated via the coherent exchange of photons on the (3)P(0) - (3)D(1) transition of the triplet manifold. In the case of bosonic strontium, which we discuss here, this transition has a wavelength of 2.6 μm and a dipole moment of 4.03 D, and there exists a magic wavelength permitting the creation of optical lattices that are identical for the states (3)P(0) and (3)D(1). This interaction enables the realization and study of mixtures of hard-core lattice bosons featuring long-range hopping, with tunable disorder and anisotropy. We derive the many-body master equation, investigate the dynamics of excitation transport, and analyze spectroscopic signatures stemming from coherent long-range interactions and collective dissipation. Our results show that lattice gases of alkaline-earth-metal atoms permit the creation of long-lived collective atomic states and constitute a simple and versatile platform for the exploration of many-body systems with long-range interactions. As such, they represent an alternative to current related efforts employing Rydberg gases, atoms with large magnetic moment, or polar molecules.
Investigation of short-time many-body dynamics in multilevel Rydberg systems.
NASA Astrophysics Data System (ADS)
Bracamontes, Carlos; Young, Jeremy; Goldschmidt, Elizabeth; Boulier, Thomas; Gorshkov, Alexey; Rolston, Steve; Porto, James
2016-05-01
We present follow-up work to previous results in which we observe anomalous broadening in a driven-dissipative system of Rydberg atoms. We address rubidium atoms in a 3D optical lattice on 5s-18s transition and see substantial broadening of this line with increasing excitation strength and atomic density. We attribute the broadening mechanism to dipole-dipole interactions with spontaneously populated nearby Rydberg states. This mechanism implies complex dynamics at early times as the contaminant population is built up. A full microscopic model of this many-body multilevel system has proved elusive, but initial experiments to study these dynamics using single photon counting provided qualitative information that was consistent with simple theoretical estimates. We implement optical heterodyne detection for short probe pulses to study this dynamics in depth and gain further understanding of the system.
Equations of state for many-body systems at high densities
NASA Astrophysics Data System (ADS)
Khan, Imran; Gao, Bo
2004-05-01
For a many-body system at high densities, the equation of state depends not only on the scattering length, but also on further details of the inter-particle potential. For a many-atom system, in particular, its behavior at high densities will depend on the van der Waals interaction. We are exploring the behavior of a many-atom system in this density regime using the variational Monte Carlo method, in combination with the concept of effective potential introduced in a recent work(B. Gao, J. Phys. B 36), 2111 (2003).. As an initial test, we will compare our hard-sphere results with those of Gross-Pitevaskii equation and diffussion Monte Carlo method(D. Blume and C. H. Greene, Phys. Rev. A 63), 063601 (2001)..
Distinctive response of many-body localized systems to a strong electric field
NASA Astrophysics Data System (ADS)
Kozarzewski, Maciej; Prelovšek, Peter; Mierzejewski, Marcin
2016-06-01
We study systems that are close to or within the many-body localized (MBL) regime and are driven by a strong electric field. In the ergodic regime, the disorder extends the applicability of the equilibrium linear-response theory to stronger drivings, whereas the response of the MBL systems is very distinctive, revealing currents with damped oscillations. The oscillation frequency is independent of driving and the damping is not due to heating but rather due to dephasing. The details of damping depend on the system's history reflecting the nonergodicity of the MBL phase, while the frequency of the oscillations remains a robust hallmark of localization. Our results suggest that another distinctive characteristic of the driven MBL phase is also a logarithmic increase of the energy and the polarization with time.
Krishnamoorthy, Sriram; Bernholdt, David E; Pitzer, R. M.; Sadayappan, Ponnuswamy
2009-01-01
Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. The first part of the paper describes an effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations on modern processors. A number of considerations, such as minimization of cache misses and utilization of multimedia vector instructions, are discussed. A library for efficient index permutation of multidimensional tensors is described, and experimental performance data is provided that demonstrates its effectiveness.
Hartono, Albert; Lu, Qingda; henretty, thomas; Krishnamoorthy, Sriram; zhang, huaijian; Baumgartner, Gerald; Bernholdt, David E.; Nooijen, Marcel; Pitzer, Russell M.; Ramanujam, J.; Sadayappan, Ponnuswamy
2009-11-12
Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. The first part of the paper describes an effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations on modern processors. A number of considerations such as minimization of cache misses and utilization of multimedia vector instructions are discussed. A library for efficient index permutation of multi-dimensional tensors is described and experimental performance data is provided that demonstrates its effectiveness.
Hartono, Albert; Lu, Qingda; Henretty, Thomas; Krishnamoorthy, Sriram; Zhang, Huaijian; Baumgartner, Gerald; Bernholdt, David E; Nooijen, Marcel; Pitzer, Russell; Ramanujam, J; Sadayappan, P
2009-11-12
Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. The first part of the paper describes an effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations on modern processors. A number of considerations, such as minimization of cache misses and utilization of multimedia vector instructions, are discussed. A library for efficient index permutation of multidimensional tensors is described, and experimental performance data is provided that demonstrates its effectiveness. PMID:19888780
Image method for induced surface charge from many-body system of dielectric spheres
NASA Astrophysics Data System (ADS)
Qin, Jian; de Pablo, Juan J.; Freed, Karl F.
2016-09-01
Charged dielectric spheres embedded in a dielectric medium provide the simplest model for many-body systems of polarizable ions and charged colloidal particles. We provide a multiple scattering formulation for the total electrostatic energy for such systems and demonstrate that the polarization energy can be rapidly evaluated by an image method that generalizes the image methods for conducting spheres. Individual contributions to the total electrostatic energy are ordered according to the number of polarized surfaces involved, and each additional surface polarization reduces the energy by a factor of (a/R)3ɛ, where a is the sphere radius, R the average inter-sphere separation, and ɛ the relevant dielectric mismatch at the interface. Explicit expressions are provided for both the energy and the forces acting on individual spheres, which can be readily implemented in Monte Carlo and molecular dynamics simulations of polarizable charged spheres, thereby avoiding costly computational techniques that introduce a surface charge distribution that requires numerical solution.
Study of dipolar many-body system in a one-dimensional zig-zag chain
NASA Astrophysics Data System (ADS)
Ghimire, Niraj R.; Yelin, Susanne F.
2016-05-01
The goal is to understand the many-body properties of a one-dimensional zig-zag chain of a fixed number of classical dipolar spins. This is a system that could potentially be modeled by ultracold polar molecules, and be extended such that topological quantities in triangular or hexagonal lattices can be studied. In order to achieve this, we use the density-matrix renormalization group (DMRG) method and find the ground state of the spin S = 1 / 2 model. For this purpose, we will take into account nearest-neighbor (NN) and next-nearest-neighbor (NNN) hopping and interactions which can be expressed as functions of angles between the dipoles.
Many-body dispersion corrections for periodic systems: an efficient reciprocal space implementation
NASA Astrophysics Data System (ADS)
Bučko, Tomáš; Lebègue, Sébastien; Gould, Tim; Ángyán, János G.
2016-02-01
The energy and gradient expressions for the many-body dispersion scheme (MBD@rsSCS) of Ambrosetti et al (2014 J. Chem. Phys. 140 18A508) needed for an efficient implementation of the method for systems under periodic boundary conditions are reported. The energy is expressed as a sum of contributions from points sampled in the first Brillouin zone, in close analogy with planewave implementations of the RPA method for electrons in the dielectric matrix formulation. By avoiding the handling of large supercells, considerable computational savings can be achieved for materials with small and medium sized unit cells. The new implementation has been tested and used for geometry optimization and energy calculations of inorganic and molecular crystals, and layered materials.
Thermalization and many-body localization in systems under dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
De Luca, Andrea; Rodríguez-Arias, Inés; Müller, Markus; Rosso, Alberto
2016-07-01
We study the role of dipolar interactions in the standard protocol used to achieve dynamic nuclear polarization (DNP). We point out that a critical strength of interactions is required to obtain significant nuclear hyperpolarization. Otherwise, the electron spins do not thermalize among each other, due to the incipient many-body localization transition in the electron spin system. Only when the interactions are sufficiently strong, in the so-called spin-temperature regime, they establish an effective thermodynamic behavior in the out-of-equilibrium stationary state. The highest polarization is reached at a point where the spin temperature is just not able to establish itself anymore. We provide numerical predictions for the level of nuclear hyperpolarization and present an analytical technique to estimate the spin temperature as a function of interaction strength and quenched disorder. We show that, at sufficiently strong coupling, nuclear spins perfectly equilibrate to the spin temperature that establishes among the spins of radicals.
Understanding the many-body expansion for large systems. II. Accuracy considerations.
Lao, Ka Un; Liu, Kuan-Yu; Richard, Ryan M; Herbert, John M
2016-04-28
To complement our study of the role of finite precision in electronic structure calculations based on a truncated many-body expansion (MBE, or "n-body expansion"), we examine the accuracy of such methods in the present work. Accuracy may be defined either with respect to a supersystem calculation computed at the same level of theory as the n-body calculations, or alternatively with respect to high-quality benchmarks. Both metrics are considered here. In applications to a sequence of water clusters, (H2O)N=6-55 described at the B3LYP/cc-pVDZ level, we obtain mean absolute errors (MAEs) per H2O monomer of ∼1.0 kcal/mol for two-body expansions, where the benchmark is a B3LYP/cc-pVDZ calculation on the entire cluster. Three- and four-body expansions exhibit MAEs of 0.5 and 0.1 kcal/mol/monomer, respectively, without resort to charge embedding. A generalized many-body expansion truncated at two-body terms [GMBE(2)], using 3-4 H2O molecules per fragment, outperforms all of these methods and affords a MAE of ∼0.02 kcal/mol/monomer, also without charge embedding. GMBE(2) requires significantly fewer (although somewhat larger) subsystem calculations as compared to MBE(4), reducing problems associated with floating-point roundoff errors. When compared to high-quality benchmarks, we find that error cancellation often plays a critical role in the success of MBE(n) calculations, even at the four-body level, as basis-set superposition error can compensate for higher-order polarization interactions. A many-body counterpoise correction is introduced for the GMBE, and its two-body truncation [GMBCP(2)] is found to afford good results without error cancellation. Together with a method such as ωB97X-V/aug-cc-pVTZ that can describe both covalent and non-covalent interactions, the GMBE(2)+GMBCP(2) approach provides an accurate, stable, and tractable approach for large systems. PMID:27131529
Understanding the many-body expansion for large systems. II. Accuracy considerations
NASA Astrophysics Data System (ADS)
Lao, Ka Un; Liu, Kuan-Yu; Richard, Ryan M.; Herbert, John M.
2016-04-01
To complement our study of the role of finite precision in electronic structure calculations based on a truncated many-body expansion (MBE, or "n-body expansion"), we examine the accuracy of such methods in the present work. Accuracy may be defined either with respect to a supersystem calculation computed at the same level of theory as the n-body calculations, or alternatively with respect to high-quality benchmarks. Both metrics are considered here. In applications to a sequence of water clusters, (H2O)N=6-55 described at the B3LYP/cc-pVDZ level, we obtain mean absolute errors (MAEs) per H2O monomer of ˜1.0 kcal/mol for two-body expansions, where the benchmark is a B3LYP/cc-pVDZ calculation on the entire cluster. Three- and four-body expansions exhibit MAEs of 0.5 and 0.1 kcal/mol/monomer, respectively, without resort to charge embedding. A generalized many-body expansion truncated at two-body terms [GMBE(2)], using 3-4 H2O molecules per fragment, outperforms all of these methods and affords a MAE of ˜0.02 kcal/mol/monomer, also without charge embedding. GMBE(2) requires significantly fewer (although somewhat larger) subsystem calculations as compared to MBE(4), reducing problems associated with floating-point roundoff errors. When compared to high-quality benchmarks, we find that error cancellation often plays a critical role in the success of MBE(n) calculations, even at the four-body level, as basis-set superposition error can compensate for higher-order polarization interactions. A many-body counterpoise correction is introduced for the GMBE, and its two-body truncation [GMBCP(2)] is found to afford good results without error cancellation. Together with a method such as ωB97X-V/aug-cc-pVTZ that can describe both covalent and non-covalent interactions, the GMBE(2)+GMBCP(2) approach provides an accurate, stable, and tractable approach for large systems.
Efficient calculation of many-body induced electrostatics in molecular systems
McLaughlin, Keith Cioce, Christian R.; Pham, Tony; Space, Brian; Belof, Jonathan L.
2013-11-14
Potential energy functions including many-body polarization are in widespread use in simulations of aqueous and biological systems, metal-organics, molecular clusters, and other systems where electronically induced redistribution of charge among local atomic sites is of importance. The polarization interactions, treated here via the methods of Thole and Applequist, while long-ranged, can be computed for moderate-sized periodic systems with extremely high accuracy by extending Ewald summation to the induced fields as demonstrated by Nymand, Sala, and others. These full Ewald polarization calculations, however, are expensive and often limited to very small systems, particularly in Monte Carlo simulations, which may require energy evaluation over several hundred-thousand configurations. For such situations, it shall be shown that sufficiently accurate computation of the polarization energy can be produced in a fraction of the central processing unit (CPU) time by neglecting the long-range extension to the induced fields while applying the long-range treatments of Ewald or Wolf to the static fields; these methods, denoted Ewald E-Static and Wolf E-Static (WES), respectively, provide an effective means to obtain polarization energies for intermediate and large systems including those with several thousand polarizable sites in a fraction of the CPU time. Furthermore, we shall demonstrate a means to optimize the damping for WES calculations via extrapolation from smaller trial systems.
Stochastic many-body problems in ecology, evolution, neuroscience, and systems biology
NASA Astrophysics Data System (ADS)
Butler, Thomas C.
Using the tools of many-body theory, I analyze problems in four different areas of biology dominated by strong fluctuations: The evolutionary history of the genetic code, spatiotemporal pattern formation in ecology, spatiotemporal pattern formation in neuroscience and the robustness of a model circadian rhythm circuit in systems biology. In the first two research chapters, I demonstrate that the genetic code is extremely optimal (in the sense that it manages the effects of point mutations or mistranslations efficiently), more than an order of magnitude beyond what was previously thought. I further show that the structure of the genetic code implies that early proteins were probably only loosely defined. Both the nature of early proteins and the extreme optimality of the genetic code are interpreted in light of recent theory [1] as evidence that the evolution of the genetic code was driven by evolutionary dynamics that were dominated by horizontal gene transfer. I then explore the optimality of a proposed precursor to the genetic code. The results show that the precursor code has only limited optimality, which is interpreted as evidence that the precursor emerged prior to translation, or else never existed. In the next part of the dissertation, I introduce a many-body formalism for reaction-diffusion systems described at the mesoscopic scale with master equations. I first apply this formalism to spatially-extended predator-prey ecosystems, resulting in the prediction that many-body correlations and fluctuations drive population cycles in time, called quasicycles. Most of these results were previously known, but were derived using the system size expansion [2, 3]. I next apply the analytical techniques developed in the study of quasi-cycles to a simple model of Turing patterns in a predator-prey ecosystem. This analysis shows that fluctuations drive the formation of a new kind of spatiotemporal pattern formation that I name "quasi-patterns." These quasi
Unified algebraic approach to few- and many-body correlated systems
NASA Astrophysics Data System (ADS)
Gurappa, N.; Panigrahi, Prasanta K.
2003-04-01
The present paper is an extended version of another paper [Phys. Rev. B 59, R2490 (1999)], where we have established the equivalence of the Calogero-Sutherland model to decoupled oscillators. Here, we first employ the same approach for finding the eigenstates of a large class of Hamiltonians, dealing with correlated systems. A number of few- and many-body interacting models are studied and the relationship between their respective Hilbert spaces, with that of oscillators, is found. This connection is then used to obtain the spectrum generating algebras for these systems and make an algebraic statement about correlated systems. The procedure to generate solvable interacting models is outlined. We then point out the inadequacies of the present technique and make use of a method for solving linear differential equations to diagonalize the Sutherland model and establish a precise connection between this correlated system’s wave functions, with those of the free particles on a circle. In the process, we obtain an expression for the Jack polynomials. In two dimensions, we analyze the Hamiltonian having Laughlin wave function as the ground state and point out the natural emergence of the underlying linear W1+∞ symmetry in this approach.
Dynamics of entanglement among the environment oscillators of a many-body system
NASA Astrophysics Data System (ADS)
de Paula, A. L.; Freitas, Dagoberto S.
2016-06-01
In this work, we extend the discussion that began in Ref. 16 [A. L. de Paula, Jr., J. G. G. de Oliveira, Jr., J. G. P. de Faria, D. S. Freitas and M. C. Nemes, Phys. Rev. A 89 (2014) 022303] to deal with the dynamics of the concurrence of a many-body system. In that previous paper, the discussion was focused on the residual entanglement between the partitions of the system. The purpose of the present contribution is to shed some light on the dynamical properties of entanglement among the environment oscillators. We consider a system consisting of a harmonic oscillator linearly coupled to N others and solve the corresponding dynamical problem analytically. We divide the environment into two arbitrary partitions and the entanglement dynamics between any of these partitions is quantified and it shows that in the case when excitations in each partition are equal, the concurrence reaches the value 1 and the two partitions of the environment are maximally entangled. For long times, the excitations of the main oscillator are completely transferred to environment and the environment oscillators are found entangled.
Self-similar nonequilibrium dynamics of a many-body system with power-law interactions.
Gutiérrez, Ricardo; Garrahan, Juan P; Lesanovsky, Igor
2015-12-01
The influence of power-law interactions on the dynamics of many-body systems far from equilibrium is much less explored than their effect on static and thermodynamic properties. To gain insight into this problem we introduce and analyze here an out-of-equilibrium deposition process in which the deposition rate of a given particle depends as a power law on the distance to previously deposited particles. This model draws its relevance from recent experimental progress in the domain of cold atomic gases, which are studied in a setting where atoms that are excited to high-lying Rydberg states interact through power-law potentials that translate into power-law excitation rates. The out-of-equilibrium dynamics of this system turns out to be surprisingly rich. It features a self-similar evolution which leads to a characteristic power-law time dependence of observables such as the particle concentration, and results in a scale invariance of the structure factor. Our findings show that in dissipative Rydberg gases out of equilibrium the characteristic distance among excitations-often referred to as the blockade radius-is not a static but rather a dynamic quantity. PMID:26764669
NASA Astrophysics Data System (ADS)
Hickey, James M.; Genway, Sam; Garrahan, Juan P.
2016-05-01
We study a quantum spin system—adapted from a facilitated spin model for classical glasses—with local bilinear interactions and without quenched disorder which seems to display characteristic signatures of a many-body localisation (MBL) transition. From direct diagonalisation of small systems, we find a change in certain dynamical and spectral properties at a critical value of a coupling, from those characteristic of a thermalising phase to those characteristic of a MBL phase. The system we consider is known to have a quantum phase transition in its ground-state in the limit of large size, related to a first-order active-to-inactive phase transition in the stochastic trajectories of an associated classical model of glasses. Our results here suggest that this first-order transition in the low-lying spectrum may influence the rest of the spectrum of the system in the large size limit. These findings may help understand the connection between MBL and structural glass transitions.
NASA Astrophysics Data System (ADS)
Calogero, Francesco
2004-06-01
A simple approach is discussed which associates to (solvable) matrix equations (solvable) dynamical systems, generally interpretable as (interesting) many-body problems, possibly involving auxiliary dependent variables in addition to those identifying the positions of the moving particles. We then focus on cases in which the auxiliary variables can be altogether eliminated, reobtaining thereby (via this unified approach) well-known solvable many-body problems, and moreover a (solvable) extension of the "goldfish" model.
Sherwin, M.S.; Craig, K.; Unterrainer, K.
1995-12-31
In quantum wells, absorption between the quantized subbands of the conduction band does not take place at the difference of the subband energies; the interactions of the electrons shift the intersubband absorption to higher frequency; this is called the depolarization shift. This shift can be thought of as a dynamic screening effect, and depends upon the difference in population between the subbands of interest. These are the first group of measurements of the dynamics of the depolarization shift, and they offer the possibility of both increased understanding of many-body interactions in real systems, and the possibility of novel quasi-optical devices operating in the far-infared (FIR).
Bruno, Patrick
2012-06-15
The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined. PMID:23004240
Bruno, Patrick
2012-06-15
The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined.
Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO
Mitra, Chandrima; Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.
2015-10-28
We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To studymore » defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. Lastly, these results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy. (C) 2015 AIP Publishing LLC.« less
Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO
Mitra, Chandrima; Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.
2015-10-28
We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To study defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. These results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy.
NASA Astrophysics Data System (ADS)
Pekker, David; Refael, Gil; Altman, Ehud; Demler, Eugene; Oganesyan, Vadim
2014-03-01
We study a new class of unconventional critical phenomena that is characterized by singularities only in dynamical quantities and has no thermodynamic signatures. Describing this purely dynamical quantum criticality is technically challenging as understanding the finite-temperature dynamics necessarily requires averaging over a large number of matrix elements between many-body eigenstates. Here we develop a real-space renormalization group method for excited state (RSRG-X) that allows us to overcome this challenge in a large class of models. We characterize a specific example: the 1D disordered transverse field Ising model with generic interactions. While thermodynamic phase transitions are generally forbidden in this model, using RSRG-X we find a finite-temperature dynamical transition between two localized phases. The transition is characterized by non-analyticities in the low frequency heat conductivity and in the long-time (dynamic) spin correlation function. The latter is a consequence of an up-down spin symmetry that results in the appearance of an Edwards-Anderson-like order parameter in one of the localized phases.
Understanding the many-body expansion for large systems. I. Precision considerations.
Richard, Ryan M; Lao, Ka Un; Herbert, John M
2014-07-01
Electronic structure methods based on low-order "n-body" expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H₂O)₄₇. Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program, we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems. PMID:25005278
Understanding the many-body expansion for large systems. I. Precision considerations
NASA Astrophysics Data System (ADS)
Richard, Ryan M.; Lao, Ka Un; Herbert, John M.
2014-07-01
Electronic structure methods based on low-order "n-body" expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H_2O)_{47}. Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program, we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems.
Understanding the many-body expansion for large systems. I. Precision considerations
Richard, Ryan M.; Lao, Ka Un; Herbert, John M.
2014-07-07
Electronic structure methods based on low-order “n-body” expansions are an increasingly popular means to defeat the highly nonlinear scaling of ab initio quantum chemistry calculations, taking advantage of the inherently distributable nature of the numerous subsystem calculations. Here, we examine how the finite precision of these subsystem calculations manifests in applications to large systems, in this case, a sequence of water clusters ranging in size up to (H{sub 2}O){sub 47}. Using two different computer implementations of the n-body expansion, one fully integrated into a quantum chemistry program and the other written as a separate driver routine for the same program, we examine the reproducibility of total binding energies as a function of cluster size. The combinatorial nature of the n-body expansion amplifies subtle differences between the two implementations, especially for n ⩾ 4, leading to total energies that differ by as much as several kcal/mol between two implementations of what is ostensibly the same method. This behavior can be understood based on a propagation-of-errors analysis applied to a closed-form expression for the n-body expansion, which is derived here for the first time. Discrepancies between the two implementations arise primarily from the Coulomb self-energy correction that is required when electrostatic embedding charges are implemented by means of an external driver program. For reliable results in large systems, our analysis suggests that script- or driver-based implementations should read binary output files from an electronic structure program, in full double precision, or better yet be fully integrated in a way that avoids the need to compute the aforementioned self-energy. Moreover, four-body and higher-order expansions may be too sensitive to numerical thresholds to be of practical use in large systems.
Cooperative Shielding in Many-Body Systems with Long-Range Interaction.
Santos, Lea F; Borgonovi, Fausto; Celardo, Giuseppe Luca
2016-06-24
In recent experiments with ion traps, long-range interactions were associated with the exceptionally fast propagation of perturbation, while in some theoretical works they have also been related with the suppression of propagation. Here, we show that such apparently contradictory behavior is caused by a general property of long-range interacting systems, which we name cooperative shielding. It refers to shielded subspaces that emerge as the system size increases and inside of which the evolution is unaffected by long-range interactions for a long time. As a result, the dynamics strongly depends on the initial state: if it belongs to a shielded subspace, the spreading of perturbation satisfies the Lieb-Robinson bound and may even be suppressed, while for initial states with components in various subspaces, the propagation may be quasi-instantaneous. We establish an analogy between the shielding effect and the onset of quantum Zeno subspaces. The derived effective Zeno Hamiltonian successfully describes the short-ranged dynamics inside the subspaces up to a time scale that increases with system size. Cooperative shielding can be tested in current experiments with trapped ions. PMID:27391705
Entangling many-body bound states with propagative modes in Bose-Hubbard systems
NASA Astrophysics Data System (ADS)
Collura, Mario; Aufderheide, Helge; Roux, Guillaume; Karevski, Dragi
2012-07-01
The quantum evolution of a cloud of bosons initially localized on part of a one-dimensional optical lattice and suddenly subjected to a linear ramp is studied, realizing a quantum analog of the “Galileo ramp” experiment. The main remarkable effects of this realistic setup are revealed using analytical and numerical methods. Only part of the particles are ejected for a high enough ramp, while the others remain self-trapped. Then, the trapped density profile displays rich dynamics with Josephson-type oscillations around a plateau. This setup, by coupling bound states to propagative modes, creates two diverging condensates for which the entanglement is computed and related to the equilibrium one. Further, we address the role of integrability on the entanglement and on the damping and thermalization of simple observables.
Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems
NASA Astrophysics Data System (ADS)
Cohen, Guy
2015-03-01
This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.
Introduction to the Statistical Physics of Integrable Many-body Systems
NASA Astrophysics Data System (ADS)
Šamaj, Ladislav Å.; Bajnok, Zoltán
2013-05-01
Preface; Part I. Spinless Bose and Fermi Gases: 1. Particles with nearest-neighbour interactions: Bethe ansatz and the ground state; 2. Bethe ansatz: zero-temperature thermodynamics and excitations; 3. Bethe ansatz: finite-temperature thermodynamics; 4. Particles with inverse-square interactions; Part II. Quantum Inverse Scattering Method: 5. QISM: Yang-Baxter equation; 6. QISM: transfer matrix and its diagonalization; 7. QISM: treatment of boundary conditions; 8. Nested Bethe ansatz for spin-1/2 fermions with delta interactions; 9. Thermodynamics of spin-1/2 fermions with delta interactions; Part III. Quantum Spin Chains: 10. Quantum Ising chain in a transverse field; 11. XXZ Heisenberg chain: Bethe ansatz and the ground state; 12. XXZ Heisenberg chain: ground state in the presence of magnetic field; 13. XXZ Heisenberg chain: excited states; 14. XXX Heisenberg chain: thermodynamics with strings; 15. XXZ Heisenberg chain: thermodynamics without strings; 16. XYZ Heisenberg chain; 17. Integrable isotropic chains with arbitrary spin; Part IV. Strongly Correlated Electrons: 18. Hubbard model; 19. Kondo effect; 20. Luttinger many-fermion model; 21. Integrable BCS superconductors; Part V. Sine-Gordon Model: 22. Classical sine-Gordon theory; 23. Conformal quantization; 24. Lagrangian quantization; 25. Bootstrap quantization; 26. UV-IR relation; 27. Exact finite volume description from XXZ; 28. Two-dimensional Coulomb gas; Appendix A. Spin and spin operators on chain; Appendix B. Elliptic functions; References; Index.
Many-body effects on optical gain in GaAsPN/GaPN quantum well lasers for silicon integration
Park, Seoung-Hwan
2014-02-14
Many-body effects on the optical gain in GaAsPN/GaP QW structures were investigated by using the multiband effective-mass theory and the non-Markovian gain model with many-body effects. The free-carrier model shows that the optical gain peak slightly increases with increasing N composition. In addition, the QW structure with a larger As composition shows a larger optical gain than that with a smaller As composition. On the other hand, in the case of the many-body model, the optical gain peak decreases with increasing N composition. Also, the QW structure with a smaller As composition is observed to have a larger optical gain than that with a larger As composition. This can be explained by the fact that the QW structure with a smaller As or N composition shows a larger Coulomb enhancement effect than that with a larger As or N composition. This means that it is important to consider the many-body effect in obtaining guidelines for device design issues.
NASA Astrophysics Data System (ADS)
Chen, Xuwen; Holmer, Justin
2016-08-01
We consider the dynamics of N bosons in 1D. We assume that the pair interaction is attractive and given by {N^{β-1}V(N^{β}.) where } where {int V ≤slant 0}. We develop new techniques in treating the N-body Hamiltonian so that we overcome the difficulties generated by the attractive interaction and establish new energy estimates. We also prove the optimal 1D collapsing estimate which reduces the regularity requirement in the uniqueness argument by half a derivative. We derive rigorously the 1D focusing cubic NLS with a quadratic trap as the {N → ∞} limit of the N-body dynamic and hence justify the mean-field limit and prove the propagation of chaos for the focusing quantum many-body system.
Multi-meson systems in lattice QCD / Many-body QCD
Detmold, William
2013-08-31
Nuclear physics entails the study of the properties and interactions of hadrons, such as the proton and neutron, and atomic nuclei and it is central to our understanding of our world at the smallest scales. The underlying basis for nuclear physics is provided by the Standard Model of particle physics which describes how matter interacts through the strong, electromagnetic and weak (electroweak) forces. This theory was developed in the 1970s and provides an extremely successful description of our world at the most fundamental level to which it has been probed. The Standard Model has been, and continues to be, subject to stringent tests at particle accelerators around the world, so far passing without blemish. However, at the relatively low energies that are relevant for nuclear physics, calculations involving the strong interaction, governed by the equations of Quantum Chromodynamics (QCD), are enormously challenging, and to date, the only systematic way to perform them is numerically, using a framework known as lattice QCD (LQCD). In this approach, one discretizes space-time and numerically solves the equations of QCD on a space-time lattice; for realistic calculations, this requires highly optimized algorithms and cutting-edge high performance computing (HPC) resources. Progress over the project period is discussed in detail in the following subsections
NASA Astrophysics Data System (ADS)
Moulopoulos, K.; Ashcroft, N. W.
1996-12-01
The standard model problem of a three-dimensional fully interacting electron gas in a uniform compensating background is shown to result from a procedure starting at the operator level with a fully quantum mechanical two-component system of electrons and countercharge (e.g. nuclei), and following a dual limiting process involving the division of charge and the scaling of mass. The bifurcation method provides insight into other aspects of the corresponding many-body problem, two examples of which are given.
Diffusive and Subdiffusive Spin Transport in the Ergodic Phase of a Many-Body Localizable System.
Žnidarič, Marko; Scardicchio, Antonello; Varma, Vipin Kerala
2016-07-22
We study high temperature spin transport in a disordered Heisenberg chain in the ergodic regime. By employing a density matrix renormalization group technique for the study of the stationary states of the boundary-driven Lindblad equation we are able to study extremely large systems (400 spins). We find both a diffusive and a subdiffusive phase depending on the strength of the disorder and on the anisotropy parameter of the Heisenberg chain. Studying finite-size effects, we show numerically and theoretically that a very large crossover length exists that controls the passage of a clean-system dominated dynamics to one observed in the thermodynamic limit. Such a large length scale, being larger than the sizes studied before, explains previous conflicting results. We also predict spatial profiles of magnetization in steady states of generic nondiffusive systems. PMID:27494464
Diffusive and Subdiffusive Spin Transport in the Ergodic Phase of a Many-Body Localizable System
NASA Astrophysics Data System (ADS)
Žnidarič, Marko; Scardicchio, Antonello; Varma, Vipin Kerala
2016-07-01
We study high temperature spin transport in a disordered Heisenberg chain in the ergodic regime. By employing a density matrix renormalization group technique for the study of the stationary states of the boundary-driven Lindblad equation we are able to study extremely large systems (400 spins). We find both a diffusive and a subdiffusive phase depending on the strength of the disorder and on the anisotropy parameter of the Heisenberg chain. Studying finite-size effects, we show numerically and theoretically that a very large crossover length exists that controls the passage of a clean-system dominated dynamics to one observed in the thermodynamic limit. Such a large length scale, being larger than the sizes studied before, explains previous conflicting results. We also predict spatial profiles of magnetization in steady states of generic nondiffusive systems.
NASA Astrophysics Data System (ADS)
Calogero, Francesco
2004-12-01
We take advantage of the simple approach, recently discussed, which associates to (solvable) matrix equations (solvable) dynamical systems interpretable as (interesting) many-body problems, possibly involving auxiliary dependent variables in addition to those identifying the positions of the moving particles. Starting from a solvable matrix evolution equation, we obtain the corresponding many-body model and note that in one case the auxiliary variables can be altogether eliminated, obtaining thereby an (also Hamiltonian) extension of the "goldfish" model. The solvability of this novel model, and of its isochronous variant, is exhibited. A related, as well solvable, model, is also introduced, as well as its isochronous variant. Finally, the small oscillations of the isochronous models around their equilibrium configurations are investigated, and from their isochronicity certain diophantine relations are evinced.
Image method for Coulomb energy for many-body system of charged dielectric spheres
NASA Astrophysics Data System (ADS)
Qin, Jian; de Pablo, Juan; Freed, Karl
2015-03-01
Ion polarization is important for understanding ion solvation and the stability of ion clusters in polymeric materials which typically exhibit a low and spatially inhomogeneous dielectric permittivity. The simplest approach for modeling ion polarization involves treating the ions as charged spheres with an internal dielectric permittivity differing from that of the medium. The surface polarization contribution to the electrostatic energy for a system of such dielectric spheres can be evaluated perturbatively. We derived closed-form expressions for this energy as a function of the positions of an arbitrary number of polarized surfaces. Our approach is a generalization of the image method for conducting spheres. Using this approach, we calculated the polarization corrections to the cohesion energy for ion clusters and for densely packed ionic crystals. The method can be readily adapted for investigating ion polarization effects in both Monte Carlo and molecular dynamics simulations.
Decay of density waves in coupled one-dimensional many-body-localized systems
NASA Astrophysics Data System (ADS)
Prelovšek, Peter
2016-10-01
This work analyzes the behavior of coupled disordered one-dimensional systems as modelled by identical fermionic Hubbard chains with the on-site potential disorder and coupling emerging through the interchain hopping t'. The study is motivated by the experiment on fermionic cold atoms on a disordered lattice, where a decay rate of the quenched density wave was measured. We present a derivation of the decay rate Γ within perturbation theory and show that, even at large disorder along the chains, the interaction leads to finite Γ >0 , the mechanism being the interaction-induced coupling of in-chain localized and interchain extended single-fermion states. Explicit expressions for Γ are presented for a weak interaction U
Chord-length and free-path distribution functions for many-body systems
NASA Astrophysics Data System (ADS)
Lu, Binglin; Torquato, S.
1993-04-01
We study fundamental morphological descriptors of disordered media (e.g., heterogeneous materials, liquids, and amorphous solids): the chord-length distribution function p(z) and the free-path distribution function p(z,a). For concreteness, we will speak in the language of heterogeneous materials composed of two different materials or ``phases.'' The probability density function p(z) describes the distribution of chord lengths in the sample and is of great interest in stereology. For example, the first moment of p(z) is the ``mean intercept length'' or ``mean chord length.'' The chord-length distribution function is of importance in transport phenomena and problems involving ``discrete free paths'' of point particles (e.g., Knudsen diffusion and radiative transport). The free-path distribution function p(z,a) takes into account the finite size of a simple particle of radius a undergoing discrete free-path motion in the heterogeneous material and we show that it is actually the chord-length distribution function for the system in which the ``pore space'' is the space available to a finite-sized particle of radius a. Thus it is shown that p(z)=p(z,0). We demonstrate that the functions p(z) and p(z,a) are related to another fundamentally important morphological descriptor of disordered media, namely, the so-called lineal-path function L(z) studied by us in previous work [Phys. Rev. A 45, 922 (1992)]. The lineal path function gives the probability of finding a line segment of length z wholly in one of the ``phases'' when randomly thrown into the sample. We derive exact series representations of the chord-length and free-path distribution functions for systems of spheres with a polydispersivity in size in arbitrary dimension D. For the special case of spatially uncorrelated spheres (i.e., fully penetrable spheres) we evaluate exactly the aforementioned functions, the mean chord length, and the mean free path. We also obtain corresponding analytical formulas for the case
Kreula, J M; Clark, S R; Jaksch, D
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case.
Kreula, J. M.; Clark, S. R.; Jaksch, D.
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
Kreula, J M; Clark, S R; Jaksch, D
2016-01-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case. PMID:27609673
NASA Astrophysics Data System (ADS)
Kreula, J. M.; Clark, S. R.; Jaksch, D.
2016-09-01
We propose a non-linear, hybrid quantum-classical scheme for simulating non-equilibrium dynamics of strongly correlated fermions described by the Hubbard model in a Bethe lattice in the thermodynamic limit. Our scheme implements non-equilibrium dynamical mean field theory (DMFT) and uses a digital quantum simulator to solve a quantum impurity problem whose parameters are iterated to self-consistency via a classically computed feedback loop where quantum gate errors can be partly accounted for. We analyse the performance of the scheme in an example case.
Relativistic nuclear many-body theory
Serot, B.D. ); Walecka, J.D. . Continuous Electron Beam Accelerator Facility)
1991-09-11
Nonrelativistic models of nuclear systems have provided important insight into nuclear physics. In future experiments, nuclear systems will be examined under extreme conditions of density and temperature, and their response will be probed at momentum and energy transfers larger than the nucleon mass. It is therefore essential to develop reliable models that go beyond the traditional nonrelativistic many-body framework. General properties of physics, such as quantum mechanics, Lorentz covariance, and microscopic causality, motivate the use of quantum field theories to describe the interacting, relativistic, nuclear many-body system. Renormalizable models based on hadronic degrees of freedom (quantum hadrodynamics) are presented, and the assumptions underlying this framework are discussed. Some applications and successes of quantum hadrodynamics are described, with an emphasis on the new features arising from relativity. Examples include the nuclear equation of state, the shell model, nucleon-nucleus scattering, and the inclusion of zero-point vacuum corrections. Current issues and problems are also considered, such as the construction of improved approximations, the full role of the quantum vacuum, and the relationship between quantum hadrodynamics and quantum chromodynamics. We also speculate on future developments. 103 refs., 18 figs.
NASA Astrophysics Data System (ADS)
Diehl, S.; Baranov, M.; Daley, A. J.; Zoller, P.
2010-08-01
We analyze the ground-state phase diagram of attractive lattice bosons, which are stabilized by a three-body onsite hardcore constraint. A salient feature of this model is an Ising-type transition from a conventional atomic superfluid to a dimer superfluid with vanishing atomic condensate. The study builds on an exact mapping of the constrained model to a theory of coupled bosons with polynomial interactions, proposed in a related paper [S. Diehl, M. Baranov, A. Daley, and P. Zoller, Phys. Rev. B 82, 064509 (2010).10.1103/PhysRevB.82.064509]. In this framework, we focus by analytical means on aspects of the phase diagram which are intimately connected to interactions, and are thus not accessible in a mean-field plus spin-wave approach. First, we determine shifts in the mean-field phase border, which are most pronounced in the low-density regime. Second, the investigation of the strong coupling limit reveals the existence of a “continuous supersolid,” which emerges as a consequence of enhanced symmetries in this regime. We discuss its experimental signatures. Third, we show that the Ising-type phase transition, driven first order via the competition of long-wavelength modes at generic fillings, terminates into a true Ising quantum critical point in the vicinity of half filling.
Parrish, Robert M; Hohenstein, Edward G; Schunck, Nicolas F; Sherrill, C David; Martínez, Todd J
2013-09-27
Configuration-space matrix elements of N-body potentials arise naturally and ubiquitously in the Ritz-Galerkin solution of many-body quantum problems. For the common specialization of local, finite-range potentials, we develop the exact tensor hypercontraction method, which provides a quantized renormalization of the coordinate-space form of the N-body potential, allowing for a highly separable tensor factorization of the configuration-space matrix elements. This representation allows for substantial computational savings in chemical, atomic, and nuclear physics simulations, particularly with respect to difficult "exchangelike" contractions. PMID:24116775
NASA Astrophysics Data System (ADS)
Zhao, Y. M.; Arima, A.; Yoshinaga, N.
2002-12-01
In this paper we discuss in detail the P(I)’s, angular momentum I probabilities in the ground states, of many-body systems interacting via a two-body random ensemble (TBRE). In particular, we extensively apply an approach introduced in an earlier paper and compare the predicted P(I)’s with those obtained by diagonalizing a TBRE Hamiltonian. We begin with a few solvable cases, such as fermions in a small single-j shell and d boson systems, where elegant agreements between the predicted P(I)’s and those obtained by diagonalizing a TBRE Hamiltonian are achieved. We find that d boson systems systematically present counterexamples of angular momentum 0 ground state dominance when the number of d bosons is 6κ±1 with κ a natural number, which suggests that certain fundamental symmetry (say, time reversal invariance) of the Hamiltonian cannot ensure the occurrence of angular momentum 0 ground state dominance. Next, we apply the same approach to more complicated cases, such as even or odd number of fermions in a large single-j shell or a many-j shell, sd-boson or sdg-boson systems, etc. We find that the simple approach proposed in an earlier paper is also well applicable, and thus it is a universal approach. The numerical experiments provide a guideline to tell which interactions are essential to produce a sizable P(I) in a many-body system. This disproves a popular idea that the angular momentum 0 ground state (0 g.s.) dominance may be independent of two-body interactions. Some matrix elements which are useful to understand the observed regularities are given or addressed in detail. In this paper we also report a synchronous staggering between the 0 g.s. probabilities of even numbers of fermions in a single-j shells and j g.s. probabilities of odd numbers of fermions in a single-j shell when j is small. The low seniority chain of 0 g.s. using the same set of two-body interactions is confirmed, but it is noted that contribution to the total 0 g.s. probability
Zheng Huaixiu; Baranger, Harold U.; Gauthier, Daniel J.
2010-12-15
Strong coupling between a two-level system (TLS) and bosonic modes produces dramatic quantum optics effects. We consider a one-dimensional continuum of bosons coupled to a single localized TLS, a system which may be realized in a variety of plasmonic, photonic, or electronic contexts. We present the exact many-body scattering eigenstate obtained by imposing open boundary conditions. Multiphoton bound states appear in the scattering of two or more photons due to the coupling between the photons and the TLS. Such bound states are shown to have a large effect on scattering of both Fock- and coherent-state wave packets, especially in the intermediate coupling-strength regime. We compare the statistics of the transmitted light with a coherent state having the same mean photon number: as the interaction strength increases, the one-photon probability is suppressed rapidly, and the two- and three-photon probabilities are greatly enhanced due to the many-body bound states. This results in non-Poissonian light.
Exploring the many-body localization transition in two dimensions.
Choi, Jae-yoon; Hild, Sebastian; Zeiher, Johannes; Schauß, Peter; Rubio-Abadal, Antonio; Yefsah, Tarik; Khemani, Vedika; Huse, David A; Bloch, Immanuel; Gross, Christian
2016-06-24
A fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept and challenged our understanding of the connection between statistical physics and quantum mechanics. Here we report on the observation of a many-body localization transition between thermal and localized phases for bosons in a two-dimensional disordered optical lattice. With our single-site-resolved measurements, we track the relaxation dynamics of an initially prepared out-of-equilibrium density pattern and find strong evidence for a diverging length scale when approaching the localization transition. Our experiments represent a demonstration and in-depth characterization of many-body localization in a regime not accessible with state-of-the-art simulations on classical computers.
Exploring the many-body localization transition in two dimensions
NASA Astrophysics Data System (ADS)
Choi, Jae-yoon; Hild, Sebastian; Zeiher, Johannes; Schauß, Peter; Rubio-Abadal, Antonio; Yefsah, Tarik; Khemani, Vedika; Huse, David A.; Bloch, Immanuel; Gross, Christian
2016-06-01
A fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept and challenged our understanding of the connection between statistical physics and quantum mechanics. Here we report on the observation of a many-body localization transition between thermal and localized phases for bosons in a two-dimensional disordered optical lattice. With our single-site–resolved measurements, we track the relaxation dynamics of an initially prepared out-of-equilibrium density pattern and find strong evidence for a diverging length scale when approaching the localization transition. Our experiments represent a demonstration and in-depth characterization of many-body localization in a regime not accessible with state-of-the-art simulations on classical computers.
Exploring the many-body localization transition in two dimensions.
Choi, Jae-yoon; Hild, Sebastian; Zeiher, Johannes; Schauß, Peter; Rubio-Abadal, Antonio; Yefsah, Tarik; Khemani, Vedika; Huse, David A; Bloch, Immanuel; Gross, Christian
2016-06-24
A fundamental assumption in statistical physics is that generic closed quantum many-body systems thermalize under their own dynamics. Recently, the emergence of many-body localized systems has questioned this concept and challenged our understanding of the connection between statistical physics and quantum mechanics. Here we report on the observation of a many-body localization transition between thermal and localized phases for bosons in a two-dimensional disordered optical lattice. With our single-site-resolved measurements, we track the relaxation dynamics of an initially prepared out-of-equilibrium density pattern and find strong evidence for a diverging length scale when approaching the localization transition. Our experiments represent a demonstration and in-depth characterization of many-body localization in a regime not accessible with state-of-the-art simulations on classical computers. PMID:27339981
Chasman, R.R.
1995-08-01
In the past few years, we developed many-body variational wave functions that allow one to treat pairing and particle-hole two-body interactions on an equal footing. The complexity of these wave functions depends on the number of levels included in the valence space, but does not depend on the number of nucleons in the system. By using residual interaction strengths (e.g. the quadrupole interaction strength or pairing interaction strength) as generator coordinates, one gets many different wave functions, each having a different expectation value for the relevant interaction mode. These wave functions are particularly useful when one is dealing with a situation in which the mean-field approximation is inadequate. Because the same basis states are used in the construction of the many-body wave functions, it is possible to calculate overlaps and interaction matrix elements for the many-body wave functions (which are not in general orthogonal) easily. The valence space can contain a large number of single-particle basis states, when there are constants of motion that can be used to break the levels up into groups. We added a cranking term to the many-body Hamiltonian and modified the projection procedure to get states of good signature before variation. In our present implementation, each group is limited to eight pairs of single-particle levels. We are working on ways of increasing the number of levels that can be included in each group. We are also working on including particle-particle residual interaction modes, in addition to pairing, in our Hamiltonian.
Cui, H. T.
2010-04-15
Overlap with the separable state is introduced in this article for the purpose of characterizing the overall correlation in many-body systems. This definition has clear geometric and physical meaning and moreover can be considered as the generalization of the concept of the Anderson orthogonality catastrophe. As an exemplification, it is used to mark the phase transition in the Dicke model for zero and finite temperatures, and the discussion shows that it can faithfully reflect the phase transition properties of this model whether for zero or finite temperature. Furthermore, the overlap for the ground state also indicates the appearance of multipartite entanglement in the Dicke model.
NASA Astrophysics Data System (ADS)
Reyes-Lillo, Sebastian E.; Rangel, Tonatiuh; Bruneval, Fabien; Neaton, Jeffrey B.
2016-07-01
The Ruddlesden-Popper (RP) homologous series Srn +1TinO3 n +1 provides a useful template for the study and control of the effects of dimensionality and quantum confinement on the excited state properties of the complex oxide SrTiO3. We use ab initio many-body perturbation theory within the G W approximation and the Bethe-Salpeter equation approach to calculate quasiparticle energies and absorption spectra of Srn +1TinO3 n +1 for n =1 -5 and ∞ . Our computed direct and indirect optical gaps are in excellent agreement with spectroscopic measurements. The calculated optical spectra reproduce the main experimental features and reveal excitonic structure near the gap edge. We find that electron-hole interactions are important across the series, leading to significant exciton binding energies that increase for small n and reach a value of 330 meV for n =1 , a trend attributed to increased quantum confinement. We find that the lowest-energy singlet exciton of Sr2TiO4 (n =1 ) localizes in the two-dimensional plane defined by the TiO2 layer, and we explain the origin of its localization.
NASA Astrophysics Data System (ADS)
Georgescu, IonuÅ£; Jitomirskaya, Svetlana; Mandelshtam, Vladimir A.
2013-11-01
Given a quantum many-body system, the Self-Consistent Phonons (SCP) method provides an optimal harmonic approximation by minimizing the free energy. In particular, the SCP estimate for the vibrational ground state (zero temperature) appears to be surprisingly accurate. We explore the possibility of going beyond the SCP approximation by considering the system Hamiltonian evaluated in the harmonic eigenbasis of the SCP Hamiltonian. It appears that the SCP ground state is already uncoupled to all singly- and doubly-excited basis functions. So, in order to improve the SCP result at least triply-excited states must be included, which then reduces the error in the ground state estimate substantially. For a multidimensional system two numerical challenges arise, namely, evaluation of the potential energy matrix elements in the harmonic basis, and handling and diagonalizing the resulting Hamiltonian matrix, whose size grows rapidly with the dimensionality of the system. Using the example of water hexamer we demonstrate that such calculation is feasible, i.e., constructing and diagonalizing the Hamiltonian matrix in a triply-excited SCP basis, without any additional assumptions or approximations. Our results indicate particularly that the ground state energy differences between different isomers (e.g., cage and prism) of water hexamer are already quite accurate within the SCP approximation.
Georgescu, Ionuţ Mandelshtam, Vladimir A.; Jitomirskaya, Svetlana
2013-11-28
Given a quantum many-body system, the Self-Consistent Phonons (SCP) method provides an optimal harmonic approximation by minimizing the free energy. In particular, the SCP estimate for the vibrational ground state (zero temperature) appears to be surprisingly accurate. We explore the possibility of going beyond the SCP approximation by considering the system Hamiltonian evaluated in the harmonic eigenbasis of the SCP Hamiltonian. It appears that the SCP ground state is already uncoupled to all singly- and doubly-excited basis functions. So, in order to improve the SCP result at least triply-excited states must be included, which then reduces the error in the ground state estimate substantially. For a multidimensional system two numerical challenges arise, namely, evaluation of the potential energy matrix elements in the harmonic basis, and handling and diagonalizing the resulting Hamiltonian matrix, whose size grows rapidly with the dimensionality of the system. Using the example of water hexamer we demonstrate that such calculation is feasible, i.e., constructing and diagonalizing the Hamiltonian matrix in a triply-excited SCP basis, without any additional assumptions or approximations. Our results indicate particularly that the ground state energy differences between different isomers (e.g., cage and prism) of water hexamer are already quite accurate within the SCP approximation.
Many-body ab initio diffusion quantum Monte Carlo applied to the strongly correlated oxide NiO
Mitra, Chandrima; Krogel, Jaron T.; Santana, Juan A.; Reboredo, Fernando A.
2015-10-28
We present a many-body diffusion quantum Monte Carlo (DMC) study of the bulk and defect properties of NiO. We find excellent agreement with experimental values, within 0.3%, 0.6%, and 3.5% for the lattice constant, cohesive energy, and bulk modulus, respectively. The quasiparticle bandgap was also computed, and the DMC result of 4.72 (0.17) eV compares well with the experimental value of 4.3 eV. Furthermore, DMC calculations of excited states at the L, Z, and the gamma point of the Brillouin zone reveal a flat upper valence band for NiO, in good agreement with Angle Resolved Photoemission Spectroscopy results. To study defect properties, we evaluated the formation energies of the neutral and charged vacancies of oxygen and nickel in NiO. A formation energy of 7.2 (0.15) eV was found for the oxygen vacancy under oxygen rich conditions. For the Ni vacancy, we obtained a formation energy of 3.2 (0.15) eV under Ni rich conditions. Lastly, these results confirm that NiO occurs as a p-type material with the dominant intrinsic vacancy defect being Ni vacancy. (C) 2015 AIP Publishing LLC.
NASA Astrophysics Data System (ADS)
Galanti, Marta; Fanelli, Duccio; Piazza, Francesco
2016-08-01
Describing particle transport at the macroscopic or mesoscopic level in non-ideal environments poses fundamental theoretical challenges in domains ranging from inter and intra-cellular transport in biology to diffusion in porous media. Yet, often the nature of the constraints coming from many-body interactions or reflecting a complex and confining environment are better understood and modeled at the microscopic level. In this paper we review the subtle link between microscopic exclusion processes and the mean-field equations that ensue from them in the continuum limit. We show that in an inhomogeneous medium, i.e. when jumps are controlled by site-dependent hopping rates, one can obtain three different nonlinear advection-diffusion equations in the continuum limit, suitable for describing transport in the presence of quenched disorder and external fields, depending on the particular rule embodying site inequivalence at the microscopic level. In a situation that might be termed point-like scenario, when particles are treated as point-like objects, the effect of crowding as imposed at the microscopic level manifests in the mean-field equations only if some degree of inhomogeneity is enforced into the model. Conversely, when interacting agents are assigned a finite size, under the more realistic extended crowding framework, exclusion constraints persist in the unbiased macroscopic representation.
Many-Body Physics, Topology and Geometry
NASA Astrophysics Data System (ADS)
Sen, Siddhartha; Gupta, Kumar Sankar
2015-06-01
The challenge of condensed matter physics is to use non relativistic quantum ideas to explain and predict the observed oscopic properties of matter. To do this great ingenuity and imagination is required. The Hamiltonian H of a many-body system can be written down schematically as
Gravitational Many-Body Problem
Makino, J.
2008-04-29
In this paper, we briefly review some aspects of the gravitational many-body problem, which is one of the oldest problems in the modern mathematical science. Then we review our GRAPE project to design computers specialized to this problem.
NASA Astrophysics Data System (ADS)
Itin, A. P.; Katsnelson, M. I.
2015-08-01
We consider 1D lattices described by Hubbard or Bose-Hubbard models, in the presence of periodic high-frequency perturbations, such as uniform ac force or modulation of hopping coefficients. Effective Hamiltonians for interacting particles are derived using an averaging method resembling classical canonical perturbation theory. As is known, a high-frequency force may renormalize hopping coefficients, causing interesting phenomena such as coherent destruction of tunneling and creation of artificial gauge fields. We find explicitly additional corrections to the effective Hamiltonians due to interactions, corresponding to nontrivial processes such as single-particle density-dependent tunneling, correlated pair hoppings, nearest neighbor interactions, etc. Some of these processes arise also in multiband lattice models, and are capable of giving rise to a rich variety of quantum phases. The apparent contradiction with other methods, e.g., Floquet-Magnus expansion, is explained. The results may be useful for designing effective Hamiltonian models in experiments with ultracold atoms, as well as in the field of ultrafast nonequilibrium magnetism. An example of manipulating exchange interaction in a Mott-Hubbard insulator is considered, where our corrections play an essential role.
Many-body localization and thermalization in disordered Hubbard chains
NASA Astrophysics Data System (ADS)
Mondaini, Rubem; Rigol, Marcos
Recently, a lot of attention has been given to the aspects that lead isolated interacting quantum systems to thermalize. In the presence of disorder, however, the thermalization process fails resulting in a phenomena where transport is suppressed known as many-body localization. Unlike the standard Anderson localization for non-interacting systems, the delocalized (ergodic) phase is very robust against disorder even for moderate values of interaction. Another interesting aspect of the many-body localization phase is that under the time evolution of the quenched disorder, information present in the initial state may survive for arbitrarily long times. This was recently used as a probe of many-body localization of ultracold fermions in optical lattices with quasi-periodic disorder. Here, we will use numerical results in one-dimensional Hubbard chains to show that this analysis may suffer from substantial finite-size effects. We will also compare different types of disorder to see how the ergodicity is affected.
NASA Astrophysics Data System (ADS)
Monthus, Cécile
2016-07-01
The iterative methods to diagonalize matrices and many-body Hamiltonians can be reformulated as flows of Hamiltonians towards diagonalization driven by unitary transformations that preserve the spectrum. After a comparative overview of the various types of discrete flows (Jacobi, QR-algorithm) and differential flows (Toda, Wegner, White) that have been introduced in the past, we focus on the random XXZ chain with random fields in order to determine the best closed flow within a given subspace of running Hamiltonians. For the special case of the free-fermion random XX chain with random fields, the flow coincides with the Toda differential flow for tridiagonal matrices which is related to the classical integrable Toda chain and which can be seen as the continuous analog of the discrete QR-algorithm. For the random XXZ chain with random fields that displays a many-body-localization transition, the present differential flow should be an interesting alternative to compare with the discrete flow that has been proposed recently to study the many-body-localization properties in a model of interacting fermions (Rademaker and Ortuno 2016 Phys. Rev. Lett. 116, 010404).
Eigenvalues and Low Energy Eigenvectors of Quantum Many-Body Systems
NASA Astrophysics Data System (ADS)
Muscatello, Christopher Michael
Superthermal ions in tokamak plasmas play a critical role in heating and current drive, and their confinement within the core of the plasma is crucial for obtaining ignition and sustaining burn in future reactors. At the DIII-D tokamak, a suite of fast-ion measurements is available to diagnose various properties of the superthermal population. This thesis work involves a contribution to DIII-D's fast-ion diagnostic collection: the 2nd generation fast-ion deuterium alpha (2G FIDA) detector. FIDA works on the principle of measuring the light that is emitted from neutralized fast ions that undergo charge exchange events with injected neutral atoms. 2G FIDA complements the other FIDA installations on DIII-D with its unique velocity-space sampling volume. Output from a synthetic diagnostic code (FIDAsim) that predicts FIDA emission levels is compared with measurements from 2G FIDA. We find that, while the predicted and measured shapes of the FIDA spectra agree well, the absolute magnitude of the spectral amplitudes are inconsistent. Results from various FIDAsim trials are presented adjusting several parameters, and it is hypothesized that mischaracterization of the diagnostic neutral beams is a major source of error. Instabilities in tokamaks can cause fast-ion transport. The sawtooth instability is particularly important because the crash phase has been observed to cause reductions up to 50% in the central fast-ion density. Passing ions of all energies are redistributed, but only low energy trapped ions suffer redistribution. The observations are consistent with transport by flux-attachment. Comparisons with theory suggest that the intensity of sawtooth-induced transport depends on the magnitude of toroidal drift. Instabilities characterized by toroidal and poloidal mode numbers and real frequency can coherently interact with energetic particles through mode-particle resonances. During a sawtooth crash, even fast ions whose energies are above the threshold for flux-attachment can experience transport if their orbits satisfy the bounce-precessional resonance condition. On DIII-D, a spatially localized population of beam ions accelerated above the injection energy by ion-cyclotron radio frequency (ICRF) heating is diminished at a sawtooth crash. Furthermore, fast-ion losses concurrent with sawtooth crashes are observed. Calculations show that mode-particle resonances could be responsible. Transport of energetic particles by resonant interactions pertains to many types of instabilities; other examples besides sawteeth will also be presented. Analysis shows that large amplitude modes cause significant resonant transport of fast particles. Even small amplitude modes can resonantly drive transport if multiple harmonics exist.
NASA Astrophysics Data System (ADS)
Boyle, J. J.; Pindzola, M. S.
1998-09-01
Preface; Contributors; Introduction; Part I. Atomic Structure: 1. Development of atomic many-body theory Ingvar Lindgren; 2. Relativistic MBPT for highly charged ions W. R. Johnson; 3. Parity nonconservation in atoms S. A. Blundell, W. R. Johnson, and J. Sapirstein; Part II. Photoionization of Atoms: 4. Single photoionization processes J. J. Boyle, and M. D. Kutzner; 5. Photoionization dominated by double excitation T. N. Chang; 6. Direct double photoionization in atoms Z. W. Liu; 7. Photoelectron angular distributions Steven T. Manson; Part III. A. Atomic Scattering - General Considerations: 8. The many-body approach to electron-atom collisions M. Ya Amusia; 9. Theoretical aspects of electron impact ionization P. L. Altick; Part III. B. Atomic Scattering - Low-Order Applications: 10. Perturbation series methods D. H. Madison; 11. Target dependence of the triply differential cross section Cheng Pan and Anthony F. Starace; 12. Overview of Thomas processes for fast mass transfer J. H. McGuire, Jack C. Straton and T. Ishihara; Part III. C. Atomic Scattering - All-Order Applications: 13. R-matrix Theory: Some Recent Applications Philip G. Burke: 14. Electron scattering: application of Dirac R-matrix theory Wasantha Wijesundera, Ian Grant and Patrick Norrington; 15. Close coupling and distorted-wave theory D. C. Griffin and M. S. Pindzola; Appendix: Units and notation; References; Index.
NASA Astrophysics Data System (ADS)
Boyle, J. J.; Pindzola, M. S.
2005-11-01
Preface; Contributors; Introduction; Part I. Atomic Structure: 1. Development of atomic many-body theory Ingvar Lindgren; 2. Relativistic MBPT for highly charged ions W. R. Johnson; 3. Parity nonconservation in atoms S. A. Blundell, W. R. Johnson, and J. Sapirstein; Part II. Photoionization of Atoms: 4. Single photoionization processes J. J. Boyle, and M. D. Kutzner; 5. Photoionization dominated by double excitation T. N. Chang; 6. Direct double photoionization in atoms Z. W. Liu; 7. Photoelectron angular distributions Steven T. Manson; Part III. A. Atomic Scattering - General Considerations: 8. The many-body approach to electron-atom collisions M. Ya Amusia; 9. Theoretical aspects of electron impact ionization P. L. Altick; Part III. B. Atomic Scattering - Low-Order Applications: 10. Perturbation series methods D. H. Madison; 11. Target dependence of the triply differential cross section Cheng Pan and Anthony F. Starace; 12. Overview of Thomas processes for fast mass transfer J. H. McGuire, Jack C. Straton and T. Ishihara; Part III. C. Atomic Scattering - All-Order Applications: 13. R-matrix Theory: Some Recent Applications Philip G. Burke: 14. Electron scattering: application of Dirac R-matrix theory Wasantha Wijesundera, Ian Grant and Patrick Norrington; 15. Close coupling and distorted-wave theory D. C. Griffin and M. S. Pindzola; Appendix: Units and notation; References; Index.
Probing many-body interactions in an optical lattice clock
Rey, A.M.; Gorshkov, A.V.; Kraus, C.V.; Martin, M.J.; Bishof, M.; Swallows, M.D.; Zhang, X.; Benko, C.; Ye, J.; Lemke, N.D.; Ludlow, A.D.
2014-01-15
We present a unifying theoretical framework that describes recently observed many-body effects during the interrogation of an optical lattice clock operated with thousands of fermionic alkaline earth atoms. The framework is based on a many-body master equation that accounts for the interplay between elastic and inelastic p-wave and s-wave interactions, finite temperature effects and excitation inhomogeneity during the quantum dynamics of the interrogated atoms. Solutions of the master equation in different parameter regimes are presented and compared. It is shown that a general solution can be obtained by using the so called Truncated Wigner Approximation which is applied in our case in the context of an open quantum system. We use the developed framework to model the density shift and decay of the fringes observed during Ramsey spectroscopy in the JILA {sup 87}Sr and NIST {sup 171}Yb optical lattice clocks. The developed framework opens a suitable path for dealing with a variety of strongly-correlated and driven open-quantum spin systems. -- Highlights: •Derived a theoretical framework that describes many-body effects in a lattice clock. •Validated the analysis with recent experimental measurements. •Demonstrated the importance of beyond mean field corrections in the dynamics.
Renormalization group studies of many-body localization
NASA Astrophysics Data System (ADS)
Altman, Ehud
2015-03-01
Quantum correlations do not usually persist for long in systems at finite energy density and disappear once the system thermalizes. But many-body localization offers an alternative paradigm, whereby quantum matter can evade the usual fate of thermal equilibrium and retain retrievable quantum correlations even at high energies. I will survey a dynamical renormalization group (RG) approach used to characterize the novel dynamics and entanglement structures, which develop in the localized phase in lieu of classical thermalization. Then I will present a theory of the transition between the ergodic and the many-body localized phase based on a novel RG framework. Here eigenstate entanglement entropy emerges as a natural scaling variable; the RG describes a change from area-law to volume law entanglement through an intriguing critical point, where the distribution of entanglement entropy becomes maximally broad. The ergodic phase established near the critical point is a Griffiths phase, which exhibits sub-diffusive energy transport and sub-ballistic entanglement propagation. The anomalous diffusion exponent vanishes continuously at the critical point. Before closing I will discuss recent progress in confronting the emerging theoretical understanding of many-body localization with experimental tests. This research is supported in part by the ERC synergy grant UQUAM.
Observing a self-thermalizing many-body state
NASA Astrophysics Data System (ADS)
Lukin, Alexander; Tai, Eric; Preiss, Philipp; Rispoli, Matthew; Robert, Schittko; Kaufman, Adam; Greiner, Markus
2016-05-01
There is a clear intuition for the dynamics of a classical many-body system that is suddenly displaced from thermal equilibrium: Unless there are conserved quantities, the system re-thermalizes and reaches a new equilibrium distribution constrained by only a few thermodynamic variables. In contrast, an isolated quantum many-body system subject to a sudden perturbation undergoes unitary evolution. The dynamics is reversible and preserves memory of the microscopic details of the initial state. Yet, the long-time behavior of local observables in quenched, non-integrable systems is very well described by thermal ensembles. This thermalization within globally pure quantum states is mediated by the growth of entanglement entropy, which takes on the role of thermodynamic entropy. We use recently developed methods to study the global and local quantum purity in the dynamics of quenched Bose-Hubbard systems. We observe a rapid growth and saturation of the entanglement entropy, during which the full system remains verifiably pure. Using number-resolved measurements in a quantum gas microscope, we show that local observables thermalize in agreement with the Eigenstate Thermalization Hypothesis, and we detect a near-volume law in the entanglement entropy.
Interferometric measurements of many-body topological invariants using mobile impurities.
Grusdt, F; Yao, N Y; Abanin, D; Fleischhauer, M; Demler, E
2016-06-17
Topological quantum phases cannot be characterized by Ginzburg-Landau type order parameters, and are instead described by non-local topological invariants. Experimental platforms capable of realizing such exotic states now include synthetic many-body systems such as ultracold atoms or photons. Unique tools available in these systems enable a new characterization of strongly correlated many-body states. Here we propose a general scheme for detecting topological order using interferometric measurements of elementary excitations. The key ingredient is the use of mobile impurities that bind to quasiparticles of a host many-body system. Specifically, we show how fractional charges can be probed in the bulk of fractional quantum Hall systems. We demonstrate that combining Ramsey interference with Bloch oscillations can be used to measure Chern numbers characterizing the dispersion of individual quasiparticles, which gives a direct probe of their fractional charges. Possible extensions of our method to other many-body systems, such as spin liquids, are conceivable.
Interferometric measurements of many-body topological invariants using mobile impurities
NASA Astrophysics Data System (ADS)
Grusdt, F.; Yao, N. Y.; Abanin, D.; Fleischhauer, M.; Demler, E.
2016-06-01
Topological quantum phases cannot be characterized by Ginzburg-Landau type order parameters, and are instead described by non-local topological invariants. Experimental platforms capable of realizing such exotic states now include synthetic many-body systems such as ultracold atoms or photons. Unique tools available in these systems enable a new characterization of strongly correlated many-body states. Here we propose a general scheme for detecting topological order using interferometric measurements of elementary excitations. The key ingredient is the use of mobile impurities that bind to quasiparticles of a host many-body system. Specifically, we show how fractional charges can be probed in the bulk of fractional quantum Hall systems. We demonstrate that combining Ramsey interference with Bloch oscillations can be used to measure Chern numbers characterizing the dispersion of individual quasiparticles, which gives a direct probe of their fractional charges. Possible extensions of our method to other many-body systems, such as spin liquids, are conceivable.
Sliusarenko, O. Yu.; Chechkin, A. V.; Slyusarenko, Yu. V.
2015-04-15
By generalizing Bogolyubov’s reduced description method, we suggest a formalism to derive kinetic equations for many-body dissipative systems in external stochastic field. As a starting point, we use a stochastic Liouville equation obtained from Hamilton’s equations taking dissipation and stochastic perturbations into account. The Liouville equation is then averaged over realizations of the stochastic field by an extension of the Furutsu-Novikov formula to the case of a non-Gaussian field. As the result, a generalization of the classical Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy is derived. In order to get a kinetic equation for the single-particle distribution function, we use a regular cutoff procedure of the BBGKY hierarchy by assuming weak interaction between the particles and weak intensity of the field. Within this approximation, we get the corresponding Fokker-Planck equation for the system in a non-Gaussian stochastic field. Two particular cases are discussed by assuming either Gaussian statistics of external perturbation or homogeneity of the system.
Towards Measuring the Many-Body Entanglement from Fluctuations
NASA Astrophysics Data System (ADS)
Le Hur, Karyn
2012-02-01
The degree of entanglement in a many-body quantum system is often characterized using the bipartite entanglement entropy. We propose that bipartite fluctuations are also an effective tool for studying many-body physics [1] particularly its entanglement properties, in the same way that noise and full counting statistics have been used in mesoscopic transport and cold atoms. We apply some concepts underlying the field of full counting statistics to the study of the ground states of many-body Hamiltonians, with the boundary introduced by the bipartition playing the role of the scattering or interacting region. For systems that are equivalent to non-interacting fermions, we show that fluctuations and higher-order cumulants fully encode the information needed to determine the entanglement entropy [1-3]. In the context of quantum point contacts, measurement of the second charge cumulant showing a logarithmic dependence on time [2] then would constitute a strong indication of many-body entanglement [1]. Here, the measurability of the entanglement entropy, while suggestive, is particular to the nature of non-interacting particles [4,5]. [4pt] [1] H. Francis Song, S. Rachel, C. Flindt, I. Klich, N. Laflorencie and K. Le Hur, arXiv:1109.1001. 30 pages + 25 pages supplementary information.[0pt] [2] I. Klich and L. Levitov, Phys. Rev. Lett. 102, 100502 (2009).[0pt] [3] H. F. Song, C. Flindt, S. Rachel, I. Klich and K. Le Hur, Phys. Rev. B 83, 161408R (2011).[0pt] [4] B. Hsu, E. Grosfeld and E. Fradkin, Phys. Rev. B 80, 235412 (2009).[0pt] [5] H. Francis Song, Stephan Rachel and Karyn Le Hur, Phys. Rev. B 82, 012405 (2010).
Parametric excitation and squeezing in a many-body spinor condensate
NASA Astrophysics Data System (ADS)
Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.
2016-04-01
Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states.
Parametric excitation and squeezing in a many-body spinor condensate.
Hoang, T M; Anquez, M; Robbins, B A; Yang, X Y; Land, B J; Hamley, C D; Chapman, M S
2016-01-01
Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states. PMID:27044675
Parametric excitation and squeezing in a many-body spinor condensate
Hoang, T. M.; Anquez, M.; Robbins, B. A.; Yang, X. Y.; Land, B. J.; Hamley, C. D.; Chapman, M. S.
2016-01-01
Atomic spins are usually manipulated using radio frequency or microwave fields to excite Rabi oscillations between different spin states. These are single-particle quantum control techniques that perform ideally with individual particles or non-interacting ensembles. In many-body systems, inter-particle interactions are unavoidable; however, interactions can be used to realize new control schemes unique to interacting systems. Here we demonstrate a many-body control scheme to coherently excite and control the quantum spin states of an atomic Bose gas that realizes parametric excitation of many-body collective spin states by time varying the relative strength of the Zeeman and spin-dependent collisional interaction energies at multiples of the natural frequency of the system. Although parametric excitation of a classical system is ineffective from the ground state, we show that in our experiment, parametric excitation from the quantum ground state leads to the generation of quantum squeezed states. PMID:27044675
Many-body entanglement in decoherence processes
McAneney, Helen; Lee, Jinhyoung; Kim, M.S.
2003-12-01
A pure state decoheres into a mixed state as it entangles with an environment. When an entangled two-mode system is embedded in a thermal environment, however, each mode may not be entangled with its environment by their simple linear interaction. We consider an exactly solvable model to study the dynamics of a total system, which is composed of an entangled two-mode system and a thermal environment. The Markovian interaction with the environment is concerned with an array of infinite number of beam splitters. It is shown that many-body entanglement of the system and the environment may play a crucial role in the process of disentangling the system.
Reboredo, Fernando Agustín
2012-05-28
The self-healing diffusion Monte Carlo algorithm (SHDMC) [F. A. Reboredo, R. Q. Hood, and P. R. C. Kent, Phys. Rev. B 79, 195117 (2009); F. A. Reboredo, ibid. 80, 125110 (2009)] is extended to study the ground and excited states of magnetic and periodic systems. The method converges to exact eigenstates as the statistical data collected increase if the wave function is sufficiently flexible. It is shown that the dimensionality of the nodal surface is dependent on whether phase is a scalar function or not. A recursive optimization algorithm is derived from the time evolution of the mixed probability density, which is given by an ensemble of electronic configurations (walkers) with complex weight. This complex weight allows the phase of the fixed-node wave function to move away from the trial wave function phase. This novel approach is both a generalization of SHDMC and the fixed-phase approximation [G. Ortiz, D. M. Ceperley, and R. M. Martin, Phys Rev. Lett. 71, 2777 (1993)]. When used recursively it simultaneously improves the node and the phase. The algorithm is demonstrated to converge to nearly exact solutions of model systems with periodic boundary conditions or applied magnetic fields. The computational cost is proportional to the number of independent degrees of freedom of the phase. The method is applied to obtain low-energy excitations of Hamiltonians with magnetic field. Periodic boundary conditions are also considered optimizing wave functions with twisted boundary conditions which are included in a many-body Bloch phase. The potential applications of this new method to study periodic, magnetic, and complex Hamiltonians are discussed.
Many-body radiative heat transfer theory.
Ben-Abdallah, Philippe; Biehs, Svend-Age; Joulain, Karl
2011-09-01
In this Letter, an N-body theory for the radiative heat exchange in thermally nonequilibrated discrete systems of finite size objects is presented. We report strong exaltation effects of heat flux which can be explained only by taking into account the presence of many-body interactions. Our theory extends the standard Polder and van Hove stochastic formalism used to evaluate heat exchanges between two objects isolated from their environment to a collection of objects in mutual interaction. It gives a natural theoretical framework to investigate the photon heat transport properties of complex systems at the mesoscopic scale. PMID:22026672
Studying non-equilibrium many-body dynamics using one-dimensional Bose gases
Langen, Tim; Gring, Michael; Kuhnert, Maximilian; Rauer, Bernhard; Geiger, Remi; Mazets, Igor; Smith, David Adu; Schmiedmayer, Jörg; Kitagawa, Takuya; Demler, Eugene
2014-12-04
Non-equilibrium dynamics of isolated quantum many-body systems play an important role in many areas of physics. However, a general answer to the question of how these systems relax is still lacking. We experimentally study the dynamics of ultracold one-dimensional (1D) Bose gases. This reveals the existence of a quasi-steady prethermalized state which differs significantly from the thermal equilibrium of the system. Our results demonstrate that the dynamics of non-equilibrium quantum many-body systems is a far richer process than has been assumed in the past.
Ultrafast many-body interferometry of impurities coupled to a Fermi sea
NASA Astrophysics Data System (ADS)
Cetina, Marko; Jag, Michael; Lous, Rianne S.; Fritsche, Isabella; Walraven, Jook T. M.; Grimm, Rudolf; Levinsen, Jesper; Parish, Meera M.; Schmidt, Richard; Knap, Michael; Demler, Eugene
2016-10-01
The fastest possible collective response of a quantum many-body system is related to its excitations at the highest possible energy. In condensed matter systems, the time scale for such “ultrafast” processes is typically set by the Fermi energy. Taking advantage of fast and precise control of interactions between ultracold atoms, we observed nonequilibrium dynamics of impurities coupled to an atomic Fermi sea. Our interferometric measurements track the nonperturbative quantum evolution of a fermionic many-body system, revealing in real time the formation dynamics of quasi-particles and the quantum interference between attractive and repulsive states throughout the full depth of the Fermi sea. Ultrafast time-domain methods applied to strongly interacting quantum gases enable the study of the dynamics of quantum matter under extreme nonequilibrium conditions.
Koch, D; Fertitta, E; Paulus, B
2016-07-14
Due to the importance of both static and dynamical correlation in the bond formation, low-dimensional beryllium systems constitute interesting case studies to test correlation methods. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. To gain insight into the main characteristics of the wave function, we started by focusing on the description of small Be chains using standard quantum chemical methods. In a next step we applied the MoI to larger beryllium systems, starting from the Be6 ring. The complete active space formalism was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Although this is a well-established approach for systems with limited multireference character, its application regarding the description of whole dissociation curves requires further testing. Subsequent to the discussion of the role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite chain. PMID:27421394
NASA Astrophysics Data System (ADS)
Koch, D.; Fertitta, E.; Paulus, B.
2016-07-01
Due to the importance of both static and dynamical correlation in the bond formation, low-dimensional beryllium systems constitute interesting case studies to test correlation methods. Aiming to describe the whole dissociation curve of extended Be systems we chose to apply the method of increments (MoI) in its multireference (MR) formalism. To gain insight into the main characteristics of the wave function, we started by focusing on the description of small Be chains using standard quantum chemical methods. In a next step we applied the MoI to larger beryllium systems, starting from the Be6 ring. The complete active space formalism was employed and the results were used as reference for local MR calculations of the whole dissociation curve. Although this is a well-established approach for systems with limited multireference character, its application regarding the description of whole dissociation curves requires further testing. Subsequent to the discussion of the role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite chain.
Many-body Physics of Rydberg Polaritons
NASA Astrophysics Data System (ADS)
Edelman, Alexander; Littlewood, Peter
2014-03-01
Electromagnetically induced transparency (EIT) in cold dense atomic gasses with Rydberg states in has attracted considerable interest as a means of realizing strong nonlinear photon-photon interactions. The coherent light-matter coupling provided by the EIT medium combined with interactions between Rydberg states whose strength and shape can be engineered provide a parameter space with rich phenomenology including photon bound states and spatially ordered structures. Past theoretical treatments of these systems have relied on equations of motion to predict dynamics in particular limits. Here we present progress towards a full many-body path integral description that considers interaction effects beyond the Dicke model as well as the intrinsically non-equilibrium nature of the system, and explore a tentative phase diagram.
Interferometric probes of many-body localization.
Serbyn, M; Knap, M; Gopalakrishnan, S; Papić, Z; Yao, N Y; Laumann, C R; Abanin, D A; Lukin, M D; Demler, E A
2014-10-01
We propose a method for detecting many-body localization (MBL) in disordered spin systems. The method involves pulsed coherent spin manipulations that probe the dephasing of a given spin due to its entanglement with a set of distant spins. It allows one to distinguish the MBL phase from a noninteracting localized phase and a delocalized phase. In particular, we show that for a properly chosen pulse sequence the MBL phase exhibits a characteristic power-law decay reflecting its slow growth of entanglement. We find that this power-law decay is robust with respect to thermal and disorder averaging, provide numerical simulations supporting our results, and discuss possible experimental realizations in solid-state and cold-atom systems. PMID:25325656
Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel
2013-09-21
We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.
Factorization in large-scale many-body calculations
Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.
2013-08-07
One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmetrized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applicable to a broad class of systems with symmetry, in our case rotational invariance, is to exactly factorize both the basis and the interaction using additive/multiplicative quantum numbers; such an algorithm recreates the many-body matrix elements on the fly and can reduce the storage requirements by an order of magnitude or more. Here, we discuss factorization in general and introduce a novel, generalized factorization method, essentially a ‘double-factorization’ which speeds up basis generation and set-up of required arrays. Although we emphasize techniques, we also place factorization in the context of a specific (unpublished) configuration-interaction code, BIGSTICK, which runs both on serial and parallel machines, and discuss the savings in memory due to factorization.
Factorization in large-scale many-body calculations
Johnson, Calvin W.; Ormand, W. Erich; Krastev, Plamen G.
2013-08-07
One approach for solving interacting many-fermion systems is the configuration-interaction method, also sometimes called the interacting shell model, where one finds eigenvalues of the Hamiltonian in a many-body basis of Slater determinants (antisymmetrized products of single-particle wavefunctions). The resulting Hamiltonian matrix is typically very sparse, but for large systems the nonzero matrix elements can nonetheless require terabytes or more of storage. An alternate algorithm, applicable to a broad class of systems with symmetry, in our case rotational invariance, is to exactly factorize both the basis and the interaction using additive/multiplicative quantum numbers; such an algorithm recreates the many-body matrix elementsmore » on the fly and can reduce the storage requirements by an order of magnitude or more. Here, we discuss factorization in general and introduce a novel, generalized factorization method, essentially a ‘double-factorization’ which speeds up basis generation and set-up of required arrays. Although we emphasize techniques, we also place factorization in the context of a specific (unpublished) configuration-interaction code, BIGSTICK, which runs both on serial and parallel machines, and discuss the savings in memory due to factorization.« less
Many body population trapping in ultracold dipolar gases
NASA Astrophysics Data System (ADS)
Dutta, Omjyoti; Lewenstein, Maciej; Zakrzewski, Jakub
2014-05-01
A system of interacting dipoles is of paramount importance for understanding many-body physics. The interaction between dipoles is anisotropic and long-range. While the former allows one to observe rich effects due to different geometries of the system, long-range (1/{{r}^{3}}) interactions lead to strong correlations between dipoles and frustration. In effect, interacting dipoles in a lattice form a paradigmatic system with strong correlations and exotic properties with possible applications in quantum information technologies, and as quantum simulators of condensed matter physics, material science, etc. Notably, such a system is extremely difficult to model due to a proliferation of interaction induced multi-band excitations for sufficiently strong dipole-dipole interactions. In this article we develop a consistent theoretical model of interacting polar molecules in a lattice by applying the concepts and ideas of ionization theory which allows us to include highly excited Bloch bands. Additionally, by involving concepts from quantum optics (population trapping), we show that one can induce frustration and engineer exotic states, such as Majumdar-Ghosh state, or vector-chiral states in such a system.
Dynamical stability of a many-body Kapitza pendulum
Citro, Roberta; Dalla Torre, Emanuele G.; D’Alessio, Luca; Polkovnikov, Anatoli; Babadi, Mehrtash; Oka, Takashi; Demler, Eugene
2015-09-15
We consider a many-body generalization of the Kapitza pendulum: the periodically-driven sine–Gordon model. We show that this interacting system is dynamically stable to periodic drives with finite frequency and amplitude. This finding is in contrast to the common belief that periodically-driven unbounded interacting systems should always tend to an absorbing infinite-temperature state. The transition to an unstable absorbing state is described by a change in the sign of the kinetic term in the Floquet Hamiltonian and controlled by the short-wavelength degrees of freedom. We investigate the stability phase diagram through an analytic high-frequency expansion, a self-consistent variational approach, and a numeric semiclassical calculation. Classical and quantum experiments are proposed to verify the validity of our results.
The semiclassical propagator in Fock space: dynamical echo and many-body interference.
Engl, Thomas; Urbina, Juan Diego; Richter, Klaus
2016-06-13
We present a semiclassical approach to many-body quantum propagation in terms of coherent sums over quantum amplitudes associated with the solutions of corresponding classical nonlinear wave equations. This approach adequately describes interference effects in the many-body space of interacting bosonic systems. The main quantity of interest, the transition amplitude between Fock states when the dynamics is driven by both single-particle contributions and many-body interactions of similar magnitude, is non-perturbatively constructed in the spirit of Gutzwiller's derivation of the van Vleck propagator from the path integral representation of the time evolution operator, but lifted to the space of symmetrized many-body states. Effects beyond mean-field, here representing the classical limit of the theory, are semiclassically described by means of interfering amplitudes where the action and stability of the classical solutions enter. In this way, a genuinely many-body echo phenomenon, coherent backscattering in Fock space, is presented arising due to coherent quantum interference between classical solutions related by time reversal.
Power-Law Entanglement Spectrum in Many-Body Localized Phases
NASA Astrophysics Data System (ADS)
Serbyn, Maksym; Michailidis, Alexios A.; Abanin, Dmitry A.; Papić, Z.
2016-10-01
The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the many-body localized phase have power-law entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical points. We confirm our results using large-scale exact diagonalization. In addition, we develop a matrix-product state algorithm which allows us to access the eigenstates of large systems close to the localization transition, and discuss general implications of our results for variational studies of highly excited eigenstates in many-body localized systems.
Aiming for benchmark accuracy with the many-body expansion.
Richard, Ryan M; Lao, Ka Un; Herbert, John M
2014-09-16
Conspectus The past 15 years have witnessed an explosion of activity in the field of fragment-based quantum chemistry, whereby ab initio electronic structure calculations are performed on very large systems by decomposing them into a large number of relatively small subsystem calculations and then reassembling the subsystem data in order to approximate supersystem properties. Most of these methods are based, at some level, on the so-called many-body (or "n-body") expansion, which ultimately requires calculations on monomers, dimers, ..., n-mers of fragments. To the extent that a low-order n-body expansion can reproduce supersystem properties, such methods replace an intractable supersystem calculation with a large number of easily distributable subsystem calculations. This holds great promise for performing, for example, "gold standard" CCSD(T) calculations on large molecules, clusters, and condensed-phase systems. The literature is awash in a litany of fragment-based methods, each with their own working equations and terminology, which presents a formidable language barrier to the uninitiated reader. We have sought to unify these methods under a common formalism, by means of a generalized many-body expansion that provides a universal energy formula encompassing not only traditional n-body cluster expansions but also methods designed for macromolecules, in which the supersystem is decomposed into overlapping fragments. This formalism allows various fragment-based methods to be systematically classified, primarily according to how the fragments are constructed and how higher-order n-body interactions are approximated. This classification furthermore suggests systematic ways to improve the accuracy. Whereas n-body approaches have been thoroughly tested at low levels of theory in small noncovalent clusters, we have begun to explore the efficacy of these methods for large systems, with the goal of reproducing benchmark-quality calculations, ideally meaning complete
Many body theory of stochastic gene expression
NASA Astrophysics Data System (ADS)
Walczak, Aleksandra M.
The regulation of expression states of genes in cells is a stochastic process. The relatively small numbers of protein molecules of a given type present in the cell and the nonlinear nature of chemical reactions result in behaviours, which are hard to anticipate without an appropriate mathematical development. In this dissertation, I develop theoretical approaches based on methods of statistical physics and many-body theory, in which protein and operator state dynamics are treated stochastically and on an equal footing. This development allows me to study the general principles of how noise arising on different levels of the regulatory system affects the complex collective characteristics of systems observed experimentally. I discuss simple models and approximations, which allow for, at least some, analytical progress in these problems. These have allowed us to understand how the operator state fluctuations may influence the steady state properties and lifetimes of attractors of simple gene systems. I show, that for fast binding and unbinding from the DNA, the operator state may be taken to be in equilibrium for highly cooperative binding, when predicting steady state properties as is traditionally done. Nevertheless, if proteins are produced in bursts, the DNA binding state fluctuations must be taken into account explicitly. Furthermore, even when the steady state probability distributions are weakly influenced by the operator state fluctuations, the escape rate in biologically relevant regimes strongly depends on transcription factor-DNA binding rates.
An integrable many-body problem
NASA Astrophysics Data System (ADS)
Calogero, F.
2011-10-01
Some years ago, Mikhailov and Sokolov identified as integrable the neat system of two evolution equations dot{U}=V2, dot{V}=U2, where U ≡ U(t) and V ≡ V(t) are two N × N matrices, N is an arbitrary positive integer, t ("time") is the independent variable, and superimposed dots indicate the time derivatives. This entails, rather trivially, that the generic solution of the modified version of this model reading dot{U}=V2+i ω U, dot{V}=U2+i ω V, with ω an arbitrary positive constant, is completely periodic with period T = 2π/ω (or possibly a period which is an integer multiple of T): "isochrony." Another, less trivial, consequence of their finding is the observation that the solution of the many-body problem characterized by the Hamiltonian system of N Newtonian evolution equations, ddot{x}n=-a2 xn5+g2/2sum _{m=1, mne n}N[ ( xn-xm) ^{-3}+( xn+xm) ^{-3}], n=1,ldots,N, where xn ≡ xn(t) are N scalar dependent variables and a, g are two arbitrary constants, is simply related to the evolution of the (appropriately rescaled) eigenvalues of a matrix simply related to an appropriate solution of the original Mikhailov-Sokolov integrable matrix evolution system, hence is itself integrable.
Reciprocity theory of many-body interactions
NASA Astrophysics Data System (ADS)
Agbormbai, Adolf A.
1990-01-01
The reciprocity approach is applied to the problem of many body interactions in which an arbitrary number of molecules simultaneously collide with one another at the same impact point in physical space. First, the relevant features in the theory of binary collisions are reviewed, and then the problem of three bodies is considered. It is shown that this reduces to the motion of two particles in the center of mass frame, in contrast to the binary problem which reduces to the motion of a single particle in this frame of reference. It is shown how the three body analysis may be generalized to incorporate an arbitrary number of bodies. In particular, the N body problem is shown to reduce to the motion of N-1 bodies in the center of mass system each of which scatters in the manner described above as well as interchange energy with the others. For the inelastic encounters in which internal energy excitations occur, the problem is decomposed into an internal transational energy exchange superposed on the elastic scattering. The internal-external exchange is formulated statistically via the principle of reciprocity at equilibrium. Techniques are illustrated only for three body collisions, the aim being to formulate a reciprocity equation from which the statistical models of the exchange may be constructed.
Many-body chaos at weak coupling
NASA Astrophysics Data System (ADS)
Stanford, Douglas
2016-10-01
The strength of chaos in large N quantum systems can be quantified using λ L , the rate of growth of certain out-of-time-order four point functions. We calculate λ L to leading order in a weakly coupled matrix Φ4 theory by numerically diagonalizing a ladder kernel. The computation reduces to an essentially classical problem.
Local conservation laws and the structure of the many-body localized states.
Serbyn, Maksym; Papić, Z; Abanin, Dmitry A
2013-09-20
We construct a complete set of local integrals of motion that characterize the many-body localized (MBL) phase. Our approach relies on the assumption that local perturbations act locally on the eigenstates in the MBL phase, which is supported by numerical simulations of the random-field XXZ spin chain. We describe the structure of the eigenstates in the MBL phase and discuss the implications of local conservation laws for its nonequilibrium quantum dynamics. We argue that the many-body localization can be used to protect coherence in the system by suppressing relaxation between eigenstates with different local integrals of motion.
Spatially-partitioned many-body vortices
NASA Astrophysics Data System (ADS)
Klaiman, S.; Alon, O. E.
2016-02-01
A vortex in Bose-Einstein condensates is a localized object which looks much like a tiny tornado storm. It is well described by mean-field theory. In the present work we go beyond the current paradigm and introduce many-body vortices. These are made of spatially- partitioned clouds, carry definite total angular momentum, and are fragmented rather than condensed objects which can only be described beyond mean-field theory. A phase diagram based on a mean-field model assists in predicting the parameters where many-body vortices occur. Implications are briefly discussed.
Novel solvable variants of the goldfish many-body model
NASA Astrophysics Data System (ADS)
Bruschi, M.; Calogero, F.
2006-02-01
A recent technique to identify solvable many-body problems in two-dimensional space yields, via a new twist, new many-body problems of "goldfish" type. Some of these models are isochronous, namely their generic solutions are completely periodic with a fixed period (independent of the initial data). The investigation of the behavior of some of these isochronous systems in the vicinity of their equilibrium configurations yields some amusing diophantine relations.
Interferometric measurements of many-body topological invariants using mobile impurities
Grusdt, F.; Yao, N. Y.; Abanin, D.; Fleischhauer, M.; Demler, E.
2016-01-01
Topological quantum phases cannot be characterized by Ginzburg–Landau type order parameters, and are instead described by non-local topological invariants. Experimental platforms capable of realizing such exotic states now include synthetic many-body systems such as ultracold atoms or photons. Unique tools available in these systems enable a new characterization of strongly correlated many-body states. Here we propose a general scheme for detecting topological order using interferometric measurements of elementary excitations. The key ingredient is the use of mobile impurities that bind to quasiparticles of a host many-body system. Specifically, we show how fractional charges can be probed in the bulk of fractional quantum Hall systems. We demonstrate that combining Ramsey interference with Bloch oscillations can be used to measure Chern numbers characterizing the dispersion of individual quasiparticles, which gives a direct probe of their fractional charges. Possible extensions of our method to other many-body systems, such as spin liquids, are conceivable. PMID:27312285
Projection techniques to approach the nuclear many-body problem
NASA Astrophysics Data System (ADS)
Sun, Yang
2016-04-01
Our understanding of angular-momentum-projection goes beyond quantum-number restoration for symmetry-violated states. The angular-momentum-projection method can be viewed as an efficient way of truncating the shell-model space which is otherwise too large to handle. It defines a transformation from the intrinsic system, where dominant excitation modes in the low-energy region are identified with the concept of spontaneous symmetry breaking, to the laboratory frame with well-organized configuration states according to excitations. An energy-dictated, physically-guided shell-model truncation can then be carried out within the projected space and the Hamiltonian is thereby diagonalized in a compact basis. The present article reviews the theory of angular-momentum-projection applied in the nuclear many-body problem. Angular momentum projection emerges naturally if a deformed state is treated quantum-mechanically. To demonstrate how different physical problems in heavy, deformed nuclei can be efficiently described with different truncation schemes, we introduce the projected shell model and show examples of calculation in a basis with axial symmetry, a basis with triaxiality, and a basis with both quasiparticle and phonon excitations. Technical details of how to calculate the projected matrix elements and how to build a workable model with the projection techniques are given in the appendix.
Reboredo, Fernando A
2012-01-01
The self-healing diffusion Monte Carlo algorithm (SHDMC) [Reboredo, Hood and Kent, Phys. Rev. B {\\bf 79}, 195117 (2009), Reboredo, {\\it ibid.} {\\bf 80}, 125110 (2009)] is extended to study the ground and excited states of magnetic and periodic systems. A recursive optimization algorithm is derived from the time evolution of the mixed probability density. The mixed probability density is given by an ensemble of electronic configurations (walkers) with complex weight. This complex weigh allows the amplitude of the fix-node wave function to move away from the trial wave function phase. This novel approach is both a generalization of SHDMC and the fixed-phase approximation [Ortiz, Ceperley and Martin Phys Rev. Lett. {\\bf 71}, 2777 (1993)]. When used recursively it improves simultaneously the node and phase. The algorithm is demonstrated to converge to the nearly exact solutions of model systems with periodic boundary conditions or applied magnetic fields. The method is also applied to obtain low energy excitations with magnetic field or periodic boundary conditions. The potential applications of this new method to study periodic, magnetic, and complex Hamiltonians are discussed.
PREFACE: 17th International Conference on Recent Progress in Many-Body Theories (MBT17)
NASA Astrophysics Data System (ADS)
Reinholz, Heidi; Boronat, Jordi
2014-08-01
These are the proceedings of the XVII International Conference on Recent Progress in Many-Body Theories, which was held from 8-13 September 2013 in Rostock, Germany. The conference continued the triennial series initiated in Trieste in 1978 and was devoted to new developments in the field of many-body theories. The conference series encourages the exchange of ideas between physicists working in such diverse areas as nuclear physics, quantum chemistry, lattice Hamiltonians or quantum uids. Many-body theories are an integral part in different fields of theoretical physics such as condensed matter, nuclear matter and field theory. Phase transitions and macroscopic quantum effects such as magnetism, Bose-Einstein condensation, super uidity or superconductivity have been investigated within ultra-cold gases, finite systems or various nanomaterials. The conference series on Recent Progress in Many-Body Theories is devoted to foster the interaction and to cross-fertilize between different fields and to discuss future lines of research. The topics of the 17th meeting were Cluster Physics Cold Gases High Energy Density Matter and Intense Lasers Magnetism New Developments in Many-Body Techniques Nuclear Many-Body and Relativistic Theories Quantum Fluids and Solids Quantum Phase Transitions Topological Insulators and Low Dimensional Systems. 109 participants from 20 countries participated. 44 talks and 61 posters werde presented. As a particular highlight of the conference, The Eugene Feenberg Memorial Medal for outstanding results in the field of many-body theory and The Hermann Kümmel Early Achievement Award in Many-Body Physics for young scientists in that field were awarded. The Feenberg Medal went jointly to Patrick Lee (MIT, USA) for his fundamental contributions to condensed-matter theory, especially in regard to the quantum Hall effect, to universal conductance uctuations, and to the Kondo effect in quantum dots, and Douglas Scalapino (UC Santa Barbara, USA) for his
Many-body localization beyond eigenstates in all dimensions
NASA Astrophysics Data System (ADS)
Chandran, A.; Pal, A.; Laumann, C. R.; Scardicchio, A.
2016-10-01
Isolated quantum systems with quenched randomness exhibit many-body localization (MBL), wherein they do not reach local thermal equilibrium even when highly excited above their ground states. It is widely believed that individual eigenstates capture this breakdown of thermalization at finite size. We show that this belief is false in general and that a MBL system can exhibit the eigenstate properties of a thermalizing system. We propose that localized approximately conserved operators (l*-bits) underlie localization in such systems. In dimensions d >1 , we further argue that the existing MBL phenomenology is unstable to boundary effects and gives way to l*-bits . Physical consequences of l*-bits include the possibility of an eigenstate phase transition within the MBL phase unrelated to the dynamical transition in d =1 and thermal eigenstates at all parameters in d >1 . Near-term experiments in ultracold atomic systems and numerics can probe the dynamics generated by boundary layers and emergence of l*-bits .
Lattice gauge theory as a nuclear many-body problem
Mathews, G.J.; Bloom, S.D.; Snyderman, N.J.
1986-10-15
We discuss the conceptual connection between lattice quantum chromodynamics and a nuclear many-body problem. We begin with an illustrative example of how the 0(3) nonlinear sigma model in (1+1) dimensions can be computed with a nuclear shell-model code with a speed which is competitive with other approaches. We then describe progress toward the implementation of this technology in lattice SU(2) Yang-Mills gauge theory.
Lattice gauge theory as a nuclear many-body problem
Mathews, G.J.; Bloom, S.D.; Snyderman, N.J.
1986-05-01
The conceptual connection between lattice quantum chromodynamics and a nuclear many-body problem is discussed. An illustrative example is given now the 0(3) nonlinear sigma model in (1 + 1) dimensions can be computered with a nuclear shell-model code with a speed which is competitive with other approaches. Progress toward the implementation of this technology in lattice SU(2) Yang-Mills gauge theory is described. 8 refs., 1 fig.
Many-Body Basis Set Superposition Effect.
Ouyang, John F; Bettens, Ryan P A
2015-11-10
The basis set superposition effect (BSSE) arises in electronic structure calculations of molecular clusters when questions relating to interactions between monomers within the larger cluster are asked. The binding energy, or total energy, of the cluster may be broken down into many smaller subcluster calculations and the energies of these subsystems linearly combined to, hopefully, produce the desired quantity of interest. Unfortunately, BSSE can plague these smaller fragment calculations. In this work, we carefully examine the major sources of error associated with reproducing the binding energy and total energy of a molecular cluster. In order to do so, we decompose these energies in terms of a many-body expansion (MBE), where a "body" here refers to the monomers that make up the cluster. In our analysis, we found it necessary to introduce something we designate here as a many-ghost many-body expansion (MGMBE). The work presented here produces some surprising results, but perhaps the most significant of all is that BSSE effects up to the order of truncation in a MBE of the total energy cancel exactly. In the case of the binding energy, the only BSSE correction terms remaining arise from the removal of the one-body monomer total energies. Nevertheless, our earlier work indicated that BSSE effects continued to remain in the total energy of the cluster up to very high truncation order in the MBE. We show in this work that the vast majority of these high-order many-body effects arise from BSSE associated with the one-body monomer total energies. Also, we found that, remarkably, the complete basis set limit values for the three-body and four-body interactions differed very little from that at the MP2/aug-cc-pVDZ level for the respective subclusters embedded within a larger cluster. PMID:26574311
Non-equilibrium many body dynamics
Creutz, M.; Gyulassy, M.
1997-09-22
This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.
Many-body characterization of particle-conserving topological superfluids.
Ortiz, Gerardo; Dukelsky, Jorge; Cobanera, Emilio; Esebbag, Carlos; Beenakker, Carlo
2014-12-31
What distinguishes trivial superfluids from topological superfluids in interacting many-body systems where the number of particles is conserved? Building on a class of integrable pairing Hamiltonians, we present a number-conserving, interacting variation of the Kitaev model, the Richardson-Gaudin-Kitaev chain, that remains exactly solvable for periodic and antiperiodic boundary conditions. Our model allows us to identify fermion parity switches that distinctively characterize topological superconductivity (fermion superfluidity) in generic interacting many-body systems. Although the Majorana zero modes in this model have only a power-law confinement, we may still define many-body Majorana operators by tuning the flux to a fermion parity switch. We derive a closed-form expression for an interacting topological invariant and show that the transition away from the topological phase is of third order. PMID:25615376
Goldfishing: A new solvable many-body problem
NASA Astrophysics Data System (ADS)
Bruschi, M.; Calogero, F.
2006-10-01
A recent technique allows one to identify and investigate solvable dynamical systems naturally interpretable as classical many-body problems, being characterized by equations of motion of Newtonian type (generally in two-dimensional space). In this paper we tersely review results previously obtained in this manner and present novel findings of this kind: mainly solvable variants of the goldfish many-body model, including models that feature isochronous classes of completely periodic solutions. Different formulations of these models are presented. The behavior of one of these isochronous dynamical systems in the neighborhood of its equilibrium configuration is investigated, and in this manner some remarkable Diophantine findings are obtained.
Molecular transport in the language of many-body states
NASA Astrophysics Data System (ADS)
Galperin, Michael
2009-03-01
Recent advancements in experimental techniques at nanoscale caused a surge in research of transport through molecular junctions. Nonlinearity of current-voltage characteristic at resonance makes this regime particularly important for potential molecular based memory, switchers and logic devices. One of important differences of molecular junctions (compared e.g. to semiconductor QDs) is sensitivity of electronic and vibrational structure of the junction to oxidation/reduction of the molecule. This implies necessity of treating the transport at resonance in the language of molecular states rather than single particle orbitals. The latter are the choice of majority of available ab initio approaches. We consider two possible schemes capable of incorporating isolated molecule (many-body) states as a basis for transport calculations. The schemes utilize Hubbard operators for description of single electron transitions between many-body states and go beyond previously proposed scattering theory and standard quantum master equation approaches.
A rigorous result on many-body localization
NASA Astrophysics Data System (ADS)
Imbrie, John
The mathematical theory of many-body localization is in its infancy. Lack of thermalization is associated with the existence of a complete set of quasi-local integrals of motion. I will discuss a proof that a particular one-dimensional spin chain with random local interactions exhibits many-body localization. The proof depends on a physically reasonable assumption that limits the amount of level attraction in the system. In a KAM-style construction, a sequence of local unitary transformations is used to diagonalize the Hamiltonian and connect the exact many-body eigenfunctions to the original basis vectors. This provides an explicit construction of integrals of motion via convergent expansions.
Particle-hole symmetry, many-body localization, and topological edge modes
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Friedman, Aaron J.; Parameswaran, S. A.; Potter, Andrew C.
We study the excited states of interacting fermions in one dimension with particle-hole symmetric disorder (equivalently, random-bond XXZ chains) using a combination of renormalization group methods and exact diagonalization. Absent interactions, the entire many-body spectrum exhibits infinite-randomness quantum critical behavior with highly degenerate excited states. We show that though interactions are an irrelevant perturbation in the ground state, they drastically affect the structure of excited states: even arbitrarily weak interactions split the degeneracies in favor of thermalization (weak disorder) or spontaneously broken particle-hole symmetry, driving the system into a many-body localized spin glass phase (strong disorder). In both cases, the quantum critical properties of the non-interacting model are destroyed, either by thermal decoherence or spontaneous symmetry breaking. This system then has the interesting and counterintuitive property that edges of the many-body spectrum are less localized than the center of the spectrum. We argue that our results rule out the existence of certain excited state symmetry-protected topological orders. Supported by the Gordon and Betty Moore Foundation's EPiQS Initiative (Grant GBMF4307 (ACP), the Quantum Materials Program at LBNL (RV), NSF Grant DMR-1455366 and UCOP Research Catalyst Award No. CA-15-327861 (SAP).
Dynamical many-body localization in an integrable model
NASA Astrophysics Data System (ADS)
Keser, Aydin Cem; Ganeshan, Sriram; Refael, Gil; Galitski, Victor
2016-08-01
We investigate dynamical many-body localization and delocalization in an integrable system of periodically-kicked, interacting linear rotors. The linear-in-momentum Hamiltonian makes the Floquet evolution operator analytically tractable for arbitrary interactions. One of the hallmarks of this model is that depending on certain parameters, it manifests both localization and delocalization in momentum space. We present a set of "emergent" integrals of motion, which can serve as a fundamental diagnostic of dynamical localization in the interacting case. We also propose an experimental scheme, involving voltage-biased Josephson junctions, to realize such many-body kicked models.
Recent Progress in Many-Body Theories: Proceedings of the 12th International Conference
NASA Astrophysics Data System (ADS)
Carlson, Joseph A.; Ortiz, Gerardo
2006-07-01
Preface -- International advisory committee -- Feenberg medal session. Surface and superconductivity / L. P. Gor'kov. Spartak T. Belyaev - recipient of the Feenberg Medal / V. Zelevinsky. Many-body physics and spontaneous symmetry breaking / S. T. Belyaev -- Keynote speaker. The future lies ahead / P. W. Anderson -- Strongly correlated systems and phase transitions. Exact results for many-body problems using few-body methods / J. Cardy. Quantum matters: physics beyond Landau's paradigms / T. Senthil. Microscopic calculations of quantum phase transitions in frustrated magnetic lattices / R. F. Bishop & S. E. Krüger. Recent applications of the DMRG method / K. Hallberg. Functional renormalization group in the 2D Hubbard model / C. Honerkamp. Quantum phase transitions and event horizons: condensed matter analogies / G. Chapline. Spin-charge separation and topological phase transitions in Aharnov-Bohm rings of interacting electrons / B. Normand ... [et al.] -- Quantum fluids and solids. Two-particle-two-hole excitations in [symbol]He / E. Krotscheck, H. M. Böhm & K. Schörkhuber. Monolayer charged quantum films: a quantum simulation study / K. Wierschem & E. Manousakis. Can inconmensuration stabilize a superfluid phase of para-hydrogen? / M. Boninsegni. Analysis of the interatomic potential of the helium systems / S. Ujevic & S. A. Vitiello -- Nuclear physics and QCD. Quantum phase transitions in mesoscopic systems / F. Iachello. Nuclear-structure theory in the search for new fundamental physics / J. Engel. Matter at extreme density and its role in neutron stars and supernova / S. Reddy. New approaches to strong coupling lattice QCD / S. Chandrasekharan. Nuclear interactions from the renormalization group / A. Schwenk. Random interactions and ground state spin of finite Fermi systems / V. Zelevinsky & A. Volya -- Cold atoms and quantum information. Superfluid regimes in degenerate atomic fermi gases / G. V. Shlyapnikov. Bosons in optical lattices / S. L. Rolston
Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence.
Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J L; Liu, Ren-Bao
2014-01-01
Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a (29)Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits.
Conserving Many Body Approach to the Infinite-U Anderson Model
NASA Astrophysics Data System (ADS)
Lebanon, Eran; Rech, Jerome; Coleman, P.; Parcollet, Olivier
2006-09-01
Using a Luttinger-Ward scheme for interacting gauge particles, we present a conserving many body treatment of a family of fully screened infinite-U Anderson models that has a smooth crossover into the Fermi-liquid state, with a finite scattering phase shift at zero temperature and a Wilson ratio greater than 1. We illustrate our method, computing the temperature dependence of the thermodynamics, resistivity, and electron dephasing rate and discuss its future application to nonequilibrium quantum dots and quantum critical mixed valent systems.
Many-body physics via machine learning
NASA Astrophysics Data System (ADS)
Arsenault, Louis-Francois; von Lilienfeld, O. Anatole; Millis, Andrew J.
We demonstrate a method for the use of machine learning (ML) to solve the equations of many-body physics, which are functional equations linking a bare to an interacting Green's function (or self-energy) offering transferable power of prediction for physical quantities for both the forward and the reverse engineering problem of materials. Functions are represented by coefficients in an orthogonal polynomial expansion and kernel ridge regression is used. The method is demonstrated using as an example a database built from Dynamical Mean Field theory (DMFT) calculations on the three dimensional Hubbard model. We discuss the extension to a database for real materials. We also discuss some new area of investigation concerning high throughput predictions for real materials by offering a perspective of how our scheme is general enough for applications to other problems involving the inversion of integral equations from the integrated knowledge such as the analytical continuation of the Green's function and the reconstruction of lattice structures from X-ray spectra. Office of Science of the U.S. Department of Energy under SubContract DOE No. 3F-3138 and FG-ER04169.
Interaction energies of large clusters from many-body expansion
NASA Astrophysics Data System (ADS)
Góra, Urszula; Podeszwa, Rafał; Cencek, Wojciech; Szalewicz, Krzysztof
2011-12-01
In the canonical supermolecular approach, calculations of interaction energies for molecular clusters involve a calculation of the whole cluster, which becomes expensive as the cluster size increases. We propose a novel approach to this task by demonstrating that interaction energies of such clusters can be constructed from those of small subclusters with a much lower computational cost by applying progressively lower-level methods for subsequent terms in the many-body expansion. The efficiency of such "stratified approximation" many-body approach (SAMBA) is due to the rapid convergence of the many-body expansion for typical molecular clusters. The method has been applied to water clusters (H2O)n, n = 6, 16, 24. For the hexamer, the best results that can be obtained with current computational resources in the canonical supermolecular method were reproduced to within about one tenth of the uncertainty of the canonical approach while using 24 times less computer time in the many-body expansion calculations. For (H_2 O)_{24}, SAMBA is particularly beneficial and we report interaction energies with accuracy that is currently impossible to obtain with the canonical supermolecular approach. Moreover, our results were computed using two orders of magnitude smaller computer resources than used in the previous best calculations for this system. We also show that the basis-set superposition errors should be removed in calculations for large clusters.
Robustness of Many-Body Localization in the Presence of Dissipation
NASA Astrophysics Data System (ADS)
Levi, Emanuele; Heyl, Markus; Lesanovsky, Igor; Garrahan, Juan P.
2016-06-01
Many-body localization (MBL) has emerged as a novel paradigm for robust ergodicity breaking in closed quantum many-body systems. However, it is not yet clear to which extent MBL survives in the presence of dissipative processes induced by the coupling to an environment. Here we study heating and ergodicity for a paradigmatic MBL system—an interacting fermionic chain subject to quenched disorder—in the presence of dephasing. We find that, even though the system is eventually driven into an infinite-temperature state, heating as monitored by the von Neumann entropy can progress logarithmically slowly, implying exponentially large time scales for relaxation. This slow loss of memory of initial conditions makes signatures of nonergodicity visible over a long, but transient, time regime. We point out a potential controlled realization of the considered setup with cold atomic gases held in optical lattices.
On the simulation of indistinguishable fermions in the many-body Wigner formalism
Sellier, J.M. Dimov, I.
2015-01-01
The simulation of quantum systems consisting of interacting, indistinguishable fermions is an incredible mathematical problem which poses formidable numerical challenges. Many sophisticated methods addressing this problem are available which are based on the many-body Schrödinger formalism. Recently a Monte Carlo technique for the resolution of the many-body Wigner equation has been introduced and successfully applied to the simulation of distinguishable, spinless particles. This numerical approach presents several advantages over other methods. Indeed, it is based on an intuitive formalism in which quantum systems are described in terms of a quasi-distribution function, and highly scalable due to its Monte Carlo nature. In this work, we extend the many-body Wigner Monte Carlo method to the simulation of indistinguishable fermions. To this end, we first show how fermions are incorporated into the Wigner formalism. Then we demonstrate that the Pauli exclusion principle is intrinsic to the formalism. As a matter of fact, a numerical simulation of two strongly interacting fermions (electrons) is performed which clearly shows the appearance of a Fermi (or exchange–correlation) hole in the phase-space, a clear signature of the presence of the Pauli principle. To conclude, we simulate 4, 8 and 16 non-interacting fermions, isolated in a closed box, and show that, as the number of fermions increases, we gradually recover the Fermi–Dirac statistics, a clear proof of the reliability of our proposed method for the treatment of indistinguishable particles.
Particle-hole symmetry, many-body localization, and topological edge modes
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Friedman, Aaron J.; Parameswaran, S. A.; Potter, Andrew C.
2016-04-01
We study the excited states of interacting fermions in one dimension with particle-hole symmetric disorder (equivalently, random-bond XXZ chains) using a combination of renormalization group methods and exact diagonalization. Absent interactions, the entire many-body spectrum exhibits infinite-randomness quantum critical behavior with highly degenerate excited states. We show that though interactions are an irrelevant perturbation in the ground state, they drastically affect the structure of excited states: Even arbitrarily weak interactions split the degeneracies in favor of thermalization (weak disorder) or spontaneously broken particle-hole symmetry, driving the system into a many-body localized spin glass phase (strong disorder). In both cases, the quantum critical properties of the noninteracting model are destroyed, either by thermal decoherence or spontaneous symmetry breaking. This system then has the interesting and counterintuitive property that edges of the many-body spectrum are less localized than the center of the spectrum. We argue that our results rule out the existence of certain excited state symmetry-protected topological orders.
Exploring many-body physics with deep networks
NASA Astrophysics Data System (ADS)
Torlai, Giacomo; Carrasquilla, Juan; Schwab, David; Melko, Roger
The introduction of neural networks with deep architecture has led to a revolution, giving rise to a new wave of technologies empowering our modern society. Although data science has been the main focus, the idea of generic algorithms which automatically extract features and representations from raw data is quite general and applicable in multiple scenarios. Motivated by the effectiveness of deep learning algorithms in revealing complex patterns and structures underlying data, we are interested in exploiting such tool in the context of many-body physics. In this talk we will focus on how to extract information about the physics of a many-body system from the generative training of a deep network, and ultimately consider discriminative tasks, such as phase diagrams estimation and critical points detection. We will discuss results for different classical spin systems, including models with quenched disorder.
Efficient variational diagonalization of fully many-body localized Hamiltonians
NASA Astrophysics Data System (ADS)
Pollmann, Frank; Khemani, Vedika; Cirac, J. Ignacio; Sondhi, S. L.
2016-07-01
We introduce a variational unitary matrix product operator based variational method that approximately finds all the eigenstates of fully many-body localized one-dimensional Hamiltonians. The computational cost of the variational optimization scales linearly with system size for a fixed depth of the UTN ansatz. We demonstrate the usefulness of our approach by considering the Heisenberg chain in a strongly disordered magnetic field for which we compare the approximation to exact diagonalization results.
Toward Hamiltonian Adaptive QM/MM: Accurate Solvent Structures Using Many-Body Potentials.
Boereboom, Jelle M; Potestio, Raffaello; Donadio, Davide; Bulo, Rosa E
2016-08-01
Adaptive quantum mechanical (QM)/molecular mechanical (MM) methods enable efficient molecular simulations of chemistry in solution. Reactive subregions are modeled with an accurate QM potential energy expression while the rest of the system is described in a more approximate manner (MM). As solvent molecules diffuse in and out of the reactive region, they are gradually included into (and excluded from) the QM expression. It would be desirable to model such a system with a single adaptive Hamiltonian, but thus far this has resulted in distorted structures at the boundary between the two regions. Solving this long outstanding problem will allow microcanonical adaptive QM/MM simulations that can be used to obtain vibrational spectra and dynamical properties. The difficulty lies in the complex QM potential energy expression, with a many-body expansion that contains higher order terms. Here, we outline a Hamiltonian adaptive multiscale scheme within the framework of many-body potentials. The adaptive expressions are entirely general, and complementary to all standard (nonadaptive) QM/MM embedding schemes available. We demonstrate the merit of our approach on a molecular system defined by two different MM potentials (MM/MM'). For the long-range interactions a numerical scheme is used (particle mesh Ewald), which yields energy expressions that are many-body in nature. Our Hamiltonian approach is the first to provide both energy conservation and the correct solvent structure everywhere in this system. PMID:27332140
Simulating typical entanglement with many-body Hamiltonian dynamics
Nakata, Yoshifumi; Murao, Mio
2011-11-15
We study the time evolution of the amount of entanglement generated by one-dimensional spin-1/2 Ising-type Hamiltonians composed of many-body interactions. We investigate sets of states randomly selected during the time evolution generated by several types of time-independent Hamiltonians by analyzing the distributions of the amount of entanglement of the sets. We compare such entanglement distributions with that of typical entanglement, entanglement of a set of states randomly selected from a Hilbert space with respect to the unitarily invariant measure. We show that the entanglement distribution obtained by a time-independent Hamiltonian can simulate the average and standard deviation of the typical entanglement, if the Hamiltonian contains suitable many-body interactions. We also show that the time required to achieve such a distribution is polynomial in the system size for certain types of Hamiltonians.
On the possibility of many-body localization in a doped Mott insulator
He, Rong-Qiang; Weng, Zheng-Yu
2016-01-01
Many-body localization (MBL) is currently a hot issue of interacting systems, in which quantum mechanics overcomes thermalization of statistical mechanics. Like Anderson localization of non-interacting electrons, disorders are usually crucial in engineering the quantum interference in MBL. For translation invariant systems, however, the breakdown of eigenstate thermalization hypothesis due to a pure many-body quantum effect is still unclear. Here we demonstrate a possible MBL phenomenon without disorder, which emerges in a lightly doped Hubbard model with very strong interaction. By means of density matrix renormalization group numerical calculation on a two-leg ladder, we show that whereas a single hole can induce a very heavy Nagaoka polaron, two or more holes will form bound pair/droplets which are all localized excitations with flat bands at low energy densities. Consequently, MBL eigenstates of finite energy density can be constructed as composed of these localized droplets spatially separated. We further identify the underlying mechanism for this MBL as due to a novel ‘Berry phase’ of the doped Mott insulator, and show that by turning off this Berry phase either by increasing the anisotropy of the model or by hand, an eigenstate transition from the MBL to a conventional quasiparticle phase can be realized. PMID:27752064
First-principles many-body theory for ultra-cold atoms
NASA Astrophysics Data System (ADS)
Drummond, Peter D.; Hu, Hui; Liu, Xia-Ji
2010-06-01
Recent breakthroughs in the creation of ultra-cold atoms in the laboratory have ushered in unprecedented changes in physical science. These enormous changes in the coldest temperatures available in the laboratory mean that many novel experiments are possible. There is unprecedented control and simplicity in these novel systems, meaning that quantum many-body theory is now facing severe challenges in quantitatively understanding these new results. We discuss some of the new experiments and recently developed theoretical techniques required to predict the results obtained.
Many body generalization of the Landau-Zener problem.
Altland, Alexander; Gurarie, V
2008-02-15
We formulate and approximately solve a specific many body generalization of the Landau-Zener problem. Unlike with the single particle Landau-Zener problem, our system does not abide in the adiabatic ground state, even at very slow driving rates. The structure of the theory suggests that this finding reflects a more general phenomenon in the physics of adiabatically driven many particle systems. Our solution can be used to understand, for example, the behavior of two-level systems coupled to an electromagnetic field, as realized in cavity QED experiments.
Charge optimized many-body potential for aluminum
NASA Astrophysics Data System (ADS)
Choudhary, Kamal; Liang, Tao; Chernatynskiy, Aleksandr; Lu, Zizhe; Goyal, Anuj; Phillpot, Simon R.; Sinnott, Susan B.
2015-01-01
An interatomic potential for Al is developed within the third generation of the charge optimized many-body (COMB3) formalism. The database used for the parameterization of the potential consists of experimental data and the results of first-principles and quantum chemical calculations. The potential exhibits reasonable agreement with cohesive energy, lattice parameters, elastic constants, bulk and shear modulus, surface energies, stacking fault energies, point defect formation energies, and the phase order of metallic Al from experiments and density functional theory. In addition, the predicted phonon dispersion is in good agreement with the experimental data and first-principles calculations. Importantly for the prediction of the mechanical behavior, the unstable stacking fault energetics along the < {12\\bar{{1}}}> direction on the (1 1 1) plane are similar to those obtained from first-principles calculations. The polycrsytal when strained shows responses that are physical and the overall behavior is consistent with experimental observations.
Hong-Ou-Mandel Interference with Atomic Many-Body States
NASA Astrophysics Data System (ADS)
Islam, Rajibul; Lukin, Alexander; Ma, Ruichao; Preiss, Philipp; Rispoli, Matthew; Tai, M. Eric; Greiner, Markus
2015-05-01
Hong-Ou-Mandel (HOM) interference experiments are a powerful probe for the indistinguishability and underlying quantum statistics of particles. In the classic HOM experiment, a pair of identical photons incident on different input ports of a beamsplitter exits via the same output port. Using the precise control and readout afforded by our quantum gas microscope, we present an implementation of this classic experiment using massive bosons in a doublewell optical potential. Identical states are prepared on each site of the doublewell and by lowering the tunnel coupling between the sites for specific times, we drive a beam splitter operation between the sites. For single-atom Fock input states, we have realized a high fidelity beamsplitter operation and observed an HOM interference contrast of >90%. By generalizing to more complex initial states on the input ports, we have been able to establish HOM experiment protocols as a robust approach towards studying the indistinguishability of many-body states as well as probe interaction-induced effects. These techniques open a path towards the measurement of purity in a quantum system and entanglement entropy in many-body states.
Cavity-Free Photon Blockade Induced by Many-Body Bound States
NASA Astrophysics Data System (ADS)
Zheng, Huaixiu; Gauthier, Daniel; Baranger, Harold
2012-02-01
We show theoretically that a variety of strong quantum nonlinear phenomena occur in a completely open one-dimensional waveguide coupled to an N-type four-level system. This system could be realized, for example, in experiments using superconducting circuits. We focus on photon blockade, photon-induced tunneling, bunching or anti-bunching, and the creation of single-photon states, all in the absence of a cavity. Many-body bound states appear due to the strong photon-photon correlation mediated by the four-level system. These bound states cause photon blockade, generating a sub-Poissonian single-photon source [1]. Such a source is crucial for quantum cryptography and distributed quantum networking; our work thus supports the notion that open quantum systems can play a critical role in the manipulation of individual, mobile quanta, a key goal of quantum communication. [1] H. Zheng, D. J. Gauthier, and H. U. Baranger, Phys. Rev. Lett. in press (2011), arXiv:1107.0309.
Scalable Dissipative Preparation of Many-Body Entanglement.
Reiter, Florentin; Reeb, David; Sørensen, Anders S
2016-07-22
We present a technique for the dissipative preparation of highly entangled multiparticle states of atoms coupled to common oscillator modes. By combining local spontaneous emission with coherent couplings, we engineer many-body dissipation that drives the system from an arbitrary initial state into a Greenberger-Horne-Zeilinger state. We demonstrate that using our technique highly entangled steady states can be prepared efficiently in a time that scales polynomially with the system size. Our protocol assumes generic couplings and will thus enable the dissipative production of multiparticle entanglement in a wide range of physical systems. As an example, we demonstrate the feasibility of our scheme in state-of-the-art trapped-ion systems.
Scalable Dissipative Preparation of Many-Body Entanglement
NASA Astrophysics Data System (ADS)
Reiter, Florentin; Reeb, David; Sørensen, Anders S.
2016-07-01
We present a technique for the dissipative preparation of highly entangled multiparticle states of atoms coupled to common oscillator modes. By combining local spontaneous emission with coherent couplings, we engineer many-body dissipation that drives the system from an arbitrary initial state into a Greenberger-Horne-Zeilinger state. We demonstrate that using our technique highly entangled steady states can be prepared efficiently in a time that scales polynomially with the system size. Our protocol assumes generic couplings and will thus enable the dissipative production of multiparticle entanglement in a wide range of physical systems. As an example, we demonstrate the feasibility of our scheme in state-of-the-art trapped-ion systems.
Scalable Dissipative Preparation of Many-Body Entanglement.
Reiter, Florentin; Reeb, David; Sørensen, Anders S
2016-07-22
We present a technique for the dissipative preparation of highly entangled multiparticle states of atoms coupled to common oscillator modes. By combining local spontaneous emission with coherent couplings, we engineer many-body dissipation that drives the system from an arbitrary initial state into a Greenberger-Horne-Zeilinger state. We demonstrate that using our technique highly entangled steady states can be prepared efficiently in a time that scales polynomially with the system size. Our protocol assumes generic couplings and will thus enable the dissipative production of multiparticle entanglement in a wide range of physical systems. As an example, we demonstrate the feasibility of our scheme in state-of-the-art trapped-ion systems. PMID:27494463
The use of many-body expansions and geometry optimizations in fragment-based methods.
Fedorov, Dmitri G; Asada, Naoya; Nakanishi, Isao; Kitaura, Kazuo
2014-09-16
Conspectus Chemists routinely work with complex molecular systems: solutions, biochemical molecules, and amorphous and composite materials provide some typical examples. The questions one often asks are what are the driving forces for a chemical phenomenon? How reasonable are our views of chemical systems in terms of subunits, such as functional groups and individual molecules? How can one quantify the difference in physicochemical properties of functional units found in a different chemical environment? Are various effects on functional units in molecular systems additive? Can they be represented by pairwise potentials? Are there effects that cannot be represented in a simple picture of pairwise interactions? How can we obtain quantitative values for these effects? Many of these questions can be formulated in the language of many-body effects. They quantify the properties of subunits (fragments), referred to as one-body properties, pairwise interactions (two-body properties), couplings of two-body interactions described by three-body properties, and so on. By introducing the notion of fragments in the framework of quantum chemistry, one obtains two immense benefits: (a) chemists can finally relate to quantum chemistry, which now speaks their language, by discussing chemically interesting subunits and their interactions and (b) calculations become much faster due to a reduced computational scaling. For instance, the somewhat academic sounding question of the importance of three-body effects in water clusters is actually another way of asking how two hydrogen bonds affect each other, when they involve three water molecules. One aspect of this is the many-body charge transfer (CT), because the charge transfers in the two hydrogen bonds are coupled to each other (not independent). In this work, we provide a generalized view on the use of many-body expansions in fragment-based methods, focusing on the general aspects of the property expansion and a contraction of a
Many-body forces and the cluster decomposition
NASA Astrophysics Data System (ADS)
Rohrlich, F.
1981-03-01
Direct-interaction dynamics is considered in the relativistic Hamiltonian constraint formalism. It is proven that the Todorov-Komar equations for an N-particle system (N>2) of mutually interacting particles have no solutions that permit interaction if only two-body forces are admitted. The inclusion of many-body forces leads to a system of equations that determines allowed classes of such forces recursively. Starting with given two-body forces that are allowed for the two-body problem, three-body, four-body, etc. forces can be obtained in successive steps from the solutions of equations which we specify. When the interactions are separable, i.e., when they vanish sufficiently fast with increasing distance, the cluster decomposition holds: for large enough separation the dynamics of each cluster becomes independent of the dynamics of all other clusters while maintaining the internal dynamics.
Particle diagrams and embedded many-body random matrix theory.
Small, R A; Müller, S
2014-07-01
We present a method which uses Feynman-like diagrams to calculate the statistical quantities of embedded many-body random matrix problems. The method provides a promising alternative to existing techniques and offers many important simplifications. We use it here to find the fourth, sixth, and eighth moments of the level density of an m-body system with k fermions or bosons interacting through a random Hermitian potential (k ≤ m) in the limit where the number of possible single-particle states is taken to infinity. All share the same transition, starting immediately after 2k = m, from moments arising from a semicircular level density to Gaussian moments. The results also reveal a striking feature; the domain of the 2nth moment is naturally divided into n subdomains specified by the points 2k = m,3 k = m,...,nk = m. PMID:25122235
Accessing Rydberg-dressed interactions using many-body Ramsey dynamics
NASA Astrophysics Data System (ADS)
Mukherjee, Rick; Killian, Thomas; Hazzard, Kaden
2016-05-01
We demonstrate that Ramsey spectroscopy can be used to observe Rydberg-dressed interactions in a many-body system. Our scheme operates comfortably within experimentally measured lifetimes, and accesses a regime where quantum superpositions are crucial. We build a spin-1/2 from one level that is Rydberg-dressed and another that is not. These levels may be hyperfine or long-lived electronic states. An Ising spin model governs the Ramsey dynamics, for which we derive an exact solution. Due to the structure of Rydberg interactions, the dynamics differs significantly from that in other spin systems. As one example, spin echo can increase the rate at which coherence decays. The results are relevant for the current ongoing experiments, including those at Rice University.
Kim, Jeongnim; Reboredo, Fernando A
2014-01-01
The self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo J. Chem. Phys. {\\bf 136}, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. {\\bf 89}, 6316 (1988)] are blended to obtain a method for the calculation of thermodynamic properties of many-body systems at low temperatures. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric trial wave functions. A statistical method is derived for the calculation of finite temperature properties of many-body systems near the ground state. In the process we also obtain a parallel algorithm that optimizes the many-body basis of a small subspace of the many-body Hilbert space. This small subspace is optimized to have maximum overlap with the one expanded by the lower energy eigenstates of a many-body Hamiltonian. We show in a model system that the Helmholtz free energy is minimized within this subspace as the iteration number increases. We show that the subspace expanded by the small basis systematically converges towards the subspace expanded by the lowest energy eigenstates. Possible applications of this method to calculate the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can be also used to accelerate the calculation of the ground or excited states with Quantum Monte Carlo.
The path integral picture of quantum systems
NASA Astrophysics Data System (ADS)
Ceperley, David
2011-03-01
The imaginary time path integral ``formalism'' was introduced in 1953 by Feynman to understand the superfluid transition in liquid helium. The equilibrium properties of quantum many body systems is isomorphic to the classical statistical mechanics of cross-linking polymer-like objects. With the Markov Chain Monte Carlo method, invented by Metropolis et al., also in 1953, a potential way of calculating properties of correlated quantum systems was in place. But calculations for many-body quantum systems did not become routine until computers and algorithms had become sufficiently powerful three decades later. Once such simulations could happen, it was realized that simulations provided a deeper insight into boson superfluids, in particular the relation of bose condensation to the polymer end-to-end distance, and the superfluid density to the polymer ``winding number.'' Some recent developments and applications to supersolids, and helium droplets will be given. Finally, limitations of the methodology e.g. to fermion systems are discussed.
Extended slow dynamical regime close to the many-body localization transition
NASA Astrophysics Data System (ADS)
Luitz, David J.; Laflorencie, Nicolas; Alet, Fabien
2016-02-01
Many-body localization is characterized by a slow logarithmic growth of the entanglement entropy after a global quantum quench while the local memory of an initial density imbalance remains at infinite time. We investigate how much the proximity of a many-body localized phase can influence the dynamics in the delocalized ergodic regime where thermalization is expected. Using an exact Krylov space technique, the out-of-equilibrium dynamics of the random-field Heisenberg chain is studied up to L =28 sites, starting from an initially unentangled high-energy product state. Within most of the delocalized phase, we find a sub-ballistic entanglement growth S (t ) ∝t1 /z with a disorder-dependent exponent z ≥1 , in contrast with the pure ballistic growth z =1 of clean systems. At the same time, anomalous relaxation is also observed for the spin imbalance I (t ) ∝t-ζ with a continuously varying disorder-dependent exponent ζ , vanishing at the transition. This provides a clear experimental signature for detecting this nonconventional regime.
Stochastic many-body perturbation theory for anharmonic molecular vibrations
NASA Astrophysics Data System (ADS)
Hermes, Matthew R.; Hirata, So
2014-08-01
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm-1 and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
Stochastic many-body perturbation theory for anharmonic molecular vibrations
Hermes, Matthew R.; Hirata, So
2014-08-28
A new quantum Monte Carlo (QMC) method for anharmonic vibrational zero-point energies and transition frequencies is developed, which combines the diagrammatic vibrational many-body perturbation theory based on the Dyson equation with Monte Carlo integration. The infinite sums of the diagrammatic and thus size-consistent first- and second-order anharmonic corrections to the energy and self-energy are expressed as sums of a few m- or 2m-dimensional integrals of wave functions and a potential energy surface (PES) (m is the vibrational degrees of freedom). Each of these integrals is computed as the integrand (including the value of the PES) divided by the value of a judiciously chosen weight function evaluated on demand at geometries distributed randomly but according to the weight function via the Metropolis algorithm. In this way, the method completely avoids cumbersome evaluation and storage of high-order force constants necessary in the original formulation of the vibrational perturbation theory; it furthermore allows even higher-order force constants essentially up to an infinite order to be taken into account in a scalable, memory-efficient algorithm. The diagrammatic contributions to the frequency-dependent self-energies that are stochastically evaluated at discrete frequencies can be reliably interpolated, allowing the self-consistent solutions to the Dyson equation to be obtained. This method, therefore, can compute directly and stochastically the transition frequencies of fundamentals and overtones as well as their relative intensities as pole strengths, without fixed-node errors that plague some QMC. It is shown that, for an identical PES, the new method reproduces the correct deterministic values of the energies and frequencies within a few cm{sup −1} and pole strengths within a few thousandths. With the values of a PES evaluated on the fly at random geometries, the new method captures a noticeably greater proportion of anharmonic effects.
Investigation of many-body forces in krypton and xenon
Salacuse, J.J.; Egelstaff, P.A.
1988-10-15
The simplicity of the state dependence at relatively high temperatures ofthe many-body potential contribution to the pressure and energy has been pointed out previously (J. Ram and P. A. Egelstaff, J. Phys. Chem. Liq. 14, 29 (1984); A. Teitsima and P. A. Egelstaff, Phys. Rev. A 21, 367 (1980)). In this paper, we investigate how far these many-body potential terms may be represented by simple models in the case of krypton on the 423-, 273-, 190-, and 150-K isotherms, and xenon on the 170-, 210-, and 270-K isotherms. At the higher temperatures the best agreement is found for the mean-field type of theory, and some consequences are pointed out. On the lower isotherms a state point is found where the many-body energy vanishes, and large departures from mean-field behavior are observed. This is attributed to the influence of short-ranged many-body forces.
Communication: Random phase approximation renormalized many-body perturbation theory
Bates, Jefferson E.; Furche, Filipp
2013-11-07
We derive a renormalized many-body perturbation theory (MBPT) starting from the random phase approximation (RPA). This RPA-renormalized perturbation theory extends the scope of single-reference MBPT methods to small-gap systems without significantly increasing the computational cost. The leading correction to RPA, termed the approximate exchange kernel (AXK), substantially improves upon RPA atomization energies and ionization potentials without affecting other properties such as barrier heights where RPA is already accurate. Thus, AXK is more balanced than second-order screened exchange [A. Grüneis et al., J. Chem. Phys. 131, 154115 (2009)], which tends to overcorrect RPA for systems with stronger static correlation. Similarly, AXK avoids the divergence of second-order Møller-Plesset (MP2) theory for small gap systems and delivers a much more consistent performance than MP2 across the periodic table at comparable cost. RPA+AXK thus is an accurate, non-empirical, and robust tool to assess and improve semi-local density functional theory for a wide range of systems previously inaccessible to first-principles electronic structure calculations.
Quantum-information processing in disordered and complex quantum systems
Sen, Aditi; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej
2006-12-15
We study quantum information processing in complex disordered many body systems that can be implemented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range case, the generation of entanglement and the local realization of quantum gates in a disordered magnetic model describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to calculate its quantum correlations.
Understanding many-body physics in one dimension from the Lieb-Liniger model
NASA Astrophysics Data System (ADS)
Jiang, Yu-Zhu; Chen, Yang-Yang; Guan, Xi-Wen
2015-05-01
This article presents an elementary introduction on various aspects of the prototypical integrable model the Lieb-Liniger Bose gas ranging from the cooperative to the collective features of many-body phenomena. In 1963, Lieb and Liniger first solved this quantum field theory many-body problem using Bethe’s hypothesis, i.e., a particular form of wavefunction introduced by Bethe in solving the one-dimensional Heisenberg model in 1931. Despite the Lieb-Liniger model is arguably the simplest exactly solvable model, it exhibits rich quantum many-body physics in terms of the aspects of mathematical integrability and physical universality. Moreover, the Yang-Yang grand canonical ensemble description for the model provides us with a deep understanding of quantum statistics, thermodynamics, and quantum critical phenomena at the many-body physical level. Recently, such fundamental physics of this exactly solved model has been attracting growing interest in experiments. Since 2004, there have been more than 20 experimental papers that reported novel observations of different physical aspects of the Lieb-Liniger model in the laboratory. So far the observed results are in excellent agreement with results obtained using the analysis of this simplest exactly solved model. Those experimental observations reveal the unique beauty of integrability. Project supported by the National Basic Research Program of China (Grant No. 2012CB922101) and the National Natural Science Foundation of China (Grant Nos. 11374331 and 11304357).
Fermionic Many-Body States Under the Microscope
NASA Astrophysics Data System (ADS)
Mazurenko, Anton; Greif, Daniel; Parsons, Maxwell F.; Chiu, Christie S.; Blatt, Sebastian; Huber, Florian; Ji, Geoffrey; Greiner, Markus
2016-05-01
We demonstrate the site-resolved observation of two component, fermionic Mott insulators, band insulators and metals of ultracold 6 Li in a single layer of a three-dimensional optical lattice. Site-resolved imaging enables measurements of local observables, including the local occupation variance. A comparison with predictions of the high temperature series expansion of the Fermi-Hubbard model is consistent with thermally equilibrated samples, with local entropies as low as 0 . 7kB per particle in the Mott insulator, and 0 . 5kB per particle in the band insulator. The phase diagram in the Mott regime is studied, exploiting the fact that the underlying harmonic potential enables measurements across a wide range of chemical potentials in a single experimental shot. Our experiments provide a starting point for implementing entropy redistribution based cooling schemes. Furthermore, we report on our recent progress towards measuring site-resolved spin correlations for low temperature samples, opening the door for studying many-body systems in theoretically intractable regimes. Current address: Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany.
On the representation of many-body interactions in water
Medders, Gregory; Gotz, Andreas; Morales, Miguel A.; Bajaj, Pushp; Paesani, Francesco
2015-09-09
Recent work has shown that the many-body expansion of the interaction energy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short- and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations. It is found that explicit short-range representations of 2-body and 3-body interactions along with a physically correct incorporation of short- and long-range contributions are necessary for an accurate representation of the water interactions from the gas to the condensed phase. Similarly, a complete many-body representation of the dipole moment surface is found to be crucial to reproducing the correct intensities of the infrared spectrum of liquid water.
On the representation of many-body interactions in water
Medders, Gregory R.; Gotz, Andreas W.; Morales, Miguel A.; Bajaj, Pushp; Paesani, Francesco
2015-09-09
Our recent work has shown that the many-body expansion of the interactionenergy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short- and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations. Moreover, it is found that explicit short-range representations of 2-body and 3-body interactions along with a physically correct incorporation of short- and long-range contributions are necessary for an accurate representation of the waterinteractions from the gas to the condensed phase. Likewise, a complete many-body representation of the dipole moment surface is found to be crucial to reproducing the correct intensities of the infrared spectrum of liquid water.
Thermal Phase Transitions in Finite Quantum Systems
Dean, D.J.
2001-10-18
In this Proceedings, the author will describe the behavior of two different quantum-mechanical systems as a function of increasing temperature. While these systems are somewhat different, the questions addressed are very similar, namely, how does one describe transitions in phase of a finite many-body system; how does one recognize these transitions in practical calculations; and how may one obtain the order of the transition.
NASA Astrophysics Data System (ADS)
Pichler, H.; Daley, A. J.; Zoller, P.
2010-12-01
We analyze in detail the heating of bosonic atoms in an optical lattice due to incoherent scattering of light from the lasers forming the lattice. Because atoms scattered into higher bands do not thermalize on the time scale of typical experiments, this process cannot be described by the total energy increase in the system alone (which is determined by single-particle effects). The heating instead involves an important interplay between the atomic physics of the heating process and the many-body physics of the state. We characterize the effects on many-body states for various system parameters, where we observe important differences in the heating for strongly and weakly interacting regimes, as well as a strong dependence on the sign of the laser detuning from the excited atomic state. We compute heating rates and changes to characteristic correlation functions based on both perturbation-theory calculations and a time-dependent calculation of the dissipative many-body dynamics. The latter is made possible for one-dimensional systems by combining time-dependent density-matrix-renormalization-group methods with quantum trajectory techniques.
Many-body localization and symmetry protected topology with ultracold Rydberg atoms
NASA Astrophysics Data System (ADS)
Potirniche, Ionut-Dragos; Schleier-Smith, Monika; Vishwanath, Ashvin; Yao, Norman
The interplay between quantum entanglement and symmetry-protected topological order has led to the classification of gapped, interacting, one dimensional quantum phases. A consequence of this classification is the existence of a diverse set of exactly solvable models, which serve as paradigmatic examples of various SPT orders. The experimental realization of such models has been hampered by the challenge of implementing tunable multi-body interactions. Recently, an alternate strategy has arisen: periodic driving. Indeed, it has been shown that the dynamics of a simple Floquet transverse-field Ising model can mirror that of the celebrated Haldane chain. However, as SPT order is expected only in the ground state while a driven system is expected to heat to infinite temperature, the ability to observe such ``Floquet'' SPT phases remains an open question. Here, we demonstrate that strong disorder, leading to many-body localization, stabilizes SPT order at finite energy densities while also preventing arbitrary heating of the system. Moreover, we propose a natural experimental implementation in a 1D optical lattice of ultracold Rydberg atoms.
Tsatsos, Marios C.; Streltsov, Alexej I.; Alon, Ofir E.; Cederbaum, Lorenz S.
2010-09-15
A three-dimensional attractive Bose-Einstein condensate is expected to collapse when the number of the particles N in the ground state or the interaction strength {lambda}{sub 0} exceeds a critical value. We study systems of different particle numbers and interaction strength and find that even if the overall ground state is collapsed there is a plethora of fragmented excited states that are still in the metastable region. Utilizing the configuration interaction expansion we determine the spectrum of the ground (''yrast'') and excited many-body states with definite total angular-momentum quantum numbers 0{<=}L{<=}N and -L{<=}M{sub L{<=}}L, and we find and examine states that survive the collapse. This opens up the possibility of realizing a metastable system with overcritical numbers of bosons in a ground state with angular momentum L{ne}0. The multiorbital mean-field theory predictions about the existence of fragmented metastable states with overcritical numbers of bosons are verified and elucidated at the many-body level. The descriptions of the total angular momentum within the mean-field and the many-body approaches are compared.
Realistic many-body models for manganese monoxide under pressure
NASA Astrophysics Data System (ADS)
Tomczak, Jan M.; Miyake, T.; Aryasetiawan, F.
2010-03-01
In materials such as transition-metal oxides where electronic Coulomb correlations impede a description in terms of standard band theories, the application of genuine many-body techniques is inevitable. Interfacing the realism of density-functional-based methods with the virtues of Hubbard-type Hamiltonians, requires the joint ab initio construction of transfer integrals and interaction matrix elements (such as the Hubbard U ) in a localized basis set. In this work, we employ the scheme of maximally localized Wannier functions and the constrained random-phase approximation to create effective low-energy models for manganese monoxide and track their evolution under external pressure. We find that in the low-pressure antiferromagnetic phase, the compression results in an increase in the bare Coulomb interaction for specific orbitals. As we rationalized in recent model considerations [Phys. Rev. B 79, 235133 (2009)], this seemingly counterintuitive behavior is a consequence of the delocalization of the respective Wannier functions. The change in screening processes does not alter this tendency, and thus, the screened on-site component of the interaction, the Hubbard U of the effective low-energy system, increases with pressure as well. The orbital anisotropy of the effects originates from the orientation of the orbitals vis-à-vis the deformation of the unit cell. Within the high-pressure paramagnetic phase, on the other hand, we find the significant increase in the Hubbard U is insensitive to the orbital orientation and almost exclusively owing to a substantial weakening of screening channels upon compression.
Energy benchmarks for water clusters and ice structures from an embedded many-body expansion.
Gillan, M J; Alfè, D; Bygrave, P J; Taylor, C R; Manby, F R
2013-09-21
We show how an embedded many-body expansion (EMBE) can be used to calculate accurate ab initio energies of water clusters and ice structures using wavefunction-based methods. We use the EMBE described recently by Bygrave et al. [J. Chem. Phys. 137, 164102 (2012)], in which the terms in the expansion are obtained from calculations on monomers, dimers, etc., acted on by an approximate representation of the embedding field due to all other molecules in the system, this field being a sum of Coulomb and exchange-repulsion fields. Our strategy is to separate the total energy of the system into Hartree-Fock and correlation parts, using the EMBE only for the correlation energy, with the Hartree-Fock energy calculated using standard molecular quantum chemistry for clusters and plane-wave methods for crystals. Our tests on a range of different water clusters up to the 16-mer show that for the second-order Møller-Plesset (MP2) method the EMBE truncated at 2-body level reproduces to better than 0.1 mE(h)/monomer the correlation energy from standard methods. The use of EMBE for computing coupled-cluster energies of clusters is also discussed. For the ice structures Ih, II, and VIII, we find that MP2 energies near the complete basis-set limit reproduce very well the experimental values of the absolute and relative binding energies, but that the use of coupled-cluster methods for many-body correlation (non-additive dispersion) is essential for a full description. Possible future applications of the EMBE approach are suggested.
NASA Astrophysics Data System (ADS)
Hu, Hui; Wang, An-Bang; Yi, Su; Liu, Xia-Ji
2016-05-01
We theoretically investigate the behavior of a moving impurity immersed in a sea of fermionic atoms that are confined in a quasiperiodic (bichromatic) optical lattice within a standard variational approach. We consider both repulsive and attractive contact interactions for such a simple many-body localization problem of Fermi polarons. The variational approach enables us to access relatively large systems and therefore may be used to understand many-body localization in the thermodynamic limit. The energy and wave function of the polaron states are found to be strongly affected by the quasirandom lattice potential and their experimental measurements (i.e., via radio-frequency spectroscopy or quantum gas microscope) therefore provide a sensitive way to underpin the localization transition. We determine a phase diagram by calculating two critical quasirandom disorder strengths, which correspond to the onset of the localization of the ground-state polaron state and the many-body localization of all polaron states, respectively. Our predicted phase diagram could be straightforwardly examined in current cold-atom experiments.
Many-body interactions in quasi-freestanding graphene
Siegel, David; Park, Cheol-Hwan; Hwang, Choongyu; Deslippe, Jack; Fedorov, Alexei; Louie, Steven; Lanzara, Alessandra
2011-06-03
The Landau-Fermi liquid picture for quasiparticles assumes that charge carriers are dressed by many-body interactions, forming one of the fundamental theories of solids. Whether this picture still holds for a semimetal such as graphene at the neutrality point, i.e., when the chemical potential coincides with the Dirac point energy, is one of the long-standing puzzles in this field. Here we present such a study in quasi-freestanding graphene by using high-resolution angle-resolved photoemission spectroscopy. We see the electron-electron and electron-phonon interactions go through substantial changes when the semimetallic regime is approached, including renormalizations due to strong electron-electron interactions with similarities to marginal Fermi liquid behavior. These findings set a new benchmark in our understanding of many-body physics in graphene and a variety of novel materials with Dirac fermions.
Many-body effects on adiabatic passage through Feshbach resonances
NASA Astrophysics Data System (ADS)
Tikhonenkov, I.; Pazy, E.; Band, Y. B.; Fleischhauer, M.; Vardi, A.
2006-04-01
We theoretically study the dynamics of an adiabatic sweep through a Feshbach resonance, thereby converting a degenerate quantum gas of fermionic atoms into a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero temperature mean-field theory which accurately accounts for initial molecular quantum fluctuations, triggering the association process. The structure of the resulting semiclassical phase space is investigated, highlighting the dynamical instability of the system towards association, for sufficiently small detuning from resonance. It is shown that this instability significantly modifies the finite-rate efficiency of the sweep, transforming the single-pair exponential Landau-Zener behavior of the remnant fraction of atoms Γ on sweep rate α , into a power-law dependence as the number of atoms increases. The obtained nonadiabaticity is determined from the interplay of characteristic time scales for the motion of adiabatic eigenstates and for fast periodic motion around them. Critical slowing-down of these precessions near the instability leads to the power-law dependence. A linear power law Γ∝α is obtained when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and a cubic-root power law Γ∝α1/3 is attained when it is larger. Our mean-field analysis is confirmed by exact calculations, using Fock-space expansions. Finally, we fit experimental low temperature Feshbach sweep data with a power-law dependence. While the agreement with the experimental data is well within experimental error bars, similar accuracy can be obtained with an exponential fit, making additional data highly desirable.
Many-body effects on adiabatic passage through Feshbach resonances
Tikhonenkov, I.; Pazy, E.; Band, Y. B.; Vardi, A.; Fleischhauer, M.
2006-04-15
We theoretically study the dynamics of an adiabatic sweep through a Feshbach resonance, thereby converting a degenerate quantum gas of fermionic atoms into a degenerate quantum gas of bosonic dimers. Our analysis relies on a zero temperature mean-field theory which accurately accounts for initial molecular quantum fluctuations, triggering the association process. The structure of the resulting semiclassical phase space is investigated, highlighting the dynamical instability of the system towards association, for sufficiently small detuning from resonance. It is shown that this instability significantly modifies the finite-rate efficiency of the sweep, transforming the single-pair exponential Landau-Zener behavior of the remnant fraction of atoms {gamma} on sweep rate {alpha}, into a power-law dependence as the number of atoms increases. The obtained nonadiabaticity is determined from the interplay of characteristic time scales for the motion of adiabatic eigenstates and for fast periodic motion around them. Critical slowing-down of these precessions near the instability leads to the power-law dependence. A linear power law {gamma}{proportional_to}{alpha} is obtained when the initial molecular fraction is smaller than the 1/N quantum fluctuations, and a cubic-root power law {gamma}{proportional_to}{alpha}{sup 1/3} is attained when it is larger. Our mean-field analysis is confirmed by exact calculations, using Fock-space expansions. Finally, we fit experimental low temperature Feshbach sweep data with a power-law dependence. While the agreement with the experimental data is well within experimental error bars, similar accuracy can be obtained with an exponential fit, making additional data highly desirable.
On the representation of many-body interactions in water
Medders, Gregory; Gotz, Andreas; Morales, Miguel A.; Bajaj, Pushp; Paesani, Francesco
2015-09-09
Recent work has shown that the many-body expansion of the interaction energy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short- and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations. It is found that explicit short-range representations of 2-body and 3-body interactions along with a physically correct incorporation of short- and long-range contributions are necessary for an accurate representation ofmore » the water interactions from the gas to the condensed phase. Similarly, a complete many-body representation of the dipole moment surface is found to be crucial to reproducing the correct intensities of the infrared spectrum of liquid water.« less
On the representation of many-body interactions in water
Medders, Gregory R.; Gotz, Andreas W.; Morales, Miguel A.; Bajaj, Pushp; Paesani, Francesco
2015-09-09
Our recent work has shown that the many-body expansion of the interactionenergy can be used to develop analytical representations of global potential energy surfaces (PESs) for water. In this study, the role of short- and long-range interactions at different orders is investigated by analyzing water potentials that treat the leading terms of the many-body expansion through implicit (i.e., TTM3-F and TTM4-F PESs) and explicit (i.e., WHBB and MB-pol PESs) representations. Moreover, it is found that explicit short-range representations of 2-body and 3-body interactions along with a physically correct incorporation of short- and long-range contributions are necessary for an accurate representationmore » of the waterinteractions from the gas to the condensed phase. Likewise, a complete many-body representation of the dipole moment surface is found to be crucial to reproducing the correct intensities of the infrared spectrum of liquid water.« less
Entangling qubit registers via many-body states of ultracold atoms
NASA Astrophysics Data System (ADS)
Melko, R. G.; Herdman, C. M.; Iouchtchenko, D.; Roy, P.-N.; Del Maestro, A.
2016-04-01
Inspired by the experimental measurement of the Rényi entanglement entropy in a lattice of ultracold atoms by Islam et al. [Nature (London) 528, 77 (2015), 10.1038/nature15750], we propose a method to entangle two spatially separated qubits using the quantum many-body state as a resource. Through local operations accessible in an experiment, entanglement is transferred to a qubit register from atoms at the ends of a one-dimensional chain. We compute the operational entanglement, which bounds the entanglement physically transferable from the many-body resource to the register, and discuss a protocol for its experimental measurement. Finally, we explore measures for the amount of entanglement available in the register after transfer, suitable for use in quantum information applications.
Prethermalization and universal dynamics in near-integrable quantum systems
NASA Astrophysics Data System (ADS)
Langen, Tim; Gasenzer, Thomas; Schmiedmayer, Jörg
2016-06-01
We review the recent progress in the understanding of the relaxation of isolated near-integrable quantum many-body systems. Focusing on prethermalization and universal dynamics following a quench, we describe the experiments with ultracold atomic gases that illustrate these phenomena and summarize the essential theoretical concepts employed to interpret them. Our discussion highlights the key topics that link the different approaches to this interdisciplinary field, including the generalized Gibbs ensemble, non-thermal fixed points, critical slowing and universal scaling. Finally, we point to new experimental challenges demonstrating these fundamental features of many-body quantum systems out of equilibrium.
NASA Astrophysics Data System (ADS)
Zhu, Linxiao; Fan, Shanhui
2016-09-01
We consider the consequence of nonreciprocity in near-field heat transfer by studying systems consisting of magneto-optical nanoparticles. We demonstrate that, in thermal equilibrium, a nonreciprocal many-body system in heat transfer can support a persistent directional heat current, without violating the second law of thermodynamics. Such a persistent directional heat current cannot occur in reciprocal systems, and can only arise in many-body systems in heat transfer. The use of nonreciprocity therefore points to a new regime of near-field heat transfer for the control of heat flow in the nanoscale.
NASA Astrophysics Data System (ADS)
Kita, Takafumi; Takada, Yasutami
1990-09-01
A one-dimensional many-electron system with a repulsive δ-function interaction is studied by the application of the variational method developed in the preceding paper [Takada and Kita, Phys. Rev. A 42, 3242 (1990)] in order to illustrate its actual implementation. Our results on the grand potential, the entropy, and the specific heat are compared in detail with the exact ones that are calculated by the numerical solution of the coupled integral equations obtained by the Bethe ansatz.
Many-Body Effects on Bandgap Shrinkage, Effective Masses, and Alpha Factor
NASA Technical Reports Server (NTRS)
Li, Jian-Zhong; Ning, C. Z.; Woo, Alex C. (Technical Monitor)
2000-01-01
Many-body Coulomb effects influence the operation of quantum-well (QW) laser diode (LD) strongly. In the present work, we study a two-band electron-hole plasma (EHP) within the Hatree-Fock approximation and the single plasmon pole approximation for static screening. Full inclusion of momentum dependence in the many-body effects is considered. An empirical expression for carrier density dependence of the bandgap renormalization (BGR) in an 8 nm GaAs/Al(0.3)G(4.7)As single QW will be given, which demonstrates a non-universal scaling behavior for quasi-two-dimension structures, due to size-dependent efficiency of screening. In addition, effective mass renormalization (EMR) due to momentum-dependent self-energy many-body correction, for both electrons and holes is studied and serves as another manifestation of the many-body effects. Finally, the effects on carrier density dependence of the alpha factor is evaluated to assess the sensitivity of the full inclusion of momentum dependence.
Optical potentials for inelastic scattering from many-body targets.
Cederbaum, L S
2000-10-01
The standard text book Green's function possesses a self-energy that is known to be an optical potential for elastic scattering. The introduction of an optical potential reduces the complex many-body scattering problem into a tractable one-body problem. In this paper inelastic Green's functions are introduced and discussed which possess self-energies that are optical potentials for inelastic scattering. If the projectile is indistinguishable from particles comprising the target, intriguing aspects arise even for noninteracting particles. PMID:11019269
Recent Progress in Relativistic Many-Body Approach
NASA Astrophysics Data System (ADS)
Ban, S. F.; Geng, L. S.; Liu, L.; Long, W. H.; Meng, J.; Peng, J.; Yao, J. M.; Zhang, S. Q.; Zhou, S. G.
The recent progress of the relativistic many-body approach by the group at Peking University will be reviewed. In particular, the adiabatic and configuration-fixed constrained triaxial RMF approaches, triaxial RMF approach with time-odd components, a Shell-model-Like APproach (SLAP), a Reflection ASymmetric RMF (RAS-RMF) approach, and a new relativistic Hartree-Fock (RHF) approach with density-dependent σ, ω, ρ and π meson-nucleon couplings for finite nuclei and nuclear matter, will be highlighted.
Meson Structure in a Relativistic Many-Body Approach
Llanes-Estrada, Felipe J.; Cotanch, Stephen R.
2000-02-07
Results from an extensive relativistic many-body analysis utilizing a realistic effective QCD Hamiltonian are presented for the meson spectrum. A comparative numerical study of the BCS, Tamm-Dancoff (TDA), and RPA treatments provides new, significant insight into the condensate structure of the vacuum, the chiral symmetry governance of the pion, and the meson spin, orbital, and flavor mass splitting contributions. In contrast to a previous glueball application, substantial quantitative differences are computed between TDA and RPA for the light quark sector with the pion emerging as a Goldstone boson only in the RPA. (c) 2000 The American Physical Society.
Three-body decay of many-body resonances
Jensen, A.S.; Fedorov, D.V.; Fynbo, H.O.U.; Garrido, E.
2005-10-14
We use the hyperspherical coordinates to describe decay of many-body resonances. Direct and sequential decay are described by different paths in the distances between the particles. We generalize the WKB expression for the {alpha}-decay width to decay of three charged particles. Decay mechanisms and resonance structures are computed in coordinate space. The energy distributions of the particles after decay are discussed. Moderate s-wave scattering lengths prefer decay via corresponding virtual state possibly leaving unique fingerprints of this reminiscence of the Efimov effect in the decay of excited states. Numerical illustrations are resonances in 6He, 12C, 17Ne.
Electric dipole polarizability: from few- to many-body systems
NASA Astrophysics Data System (ADS)
Miorelli, Mirko; Bacca, Sonia; Barnea, Nir; Hagen, Gaute; Orlandini, Giuseppina; Papenbrock, Thomas
2016-03-01
We review the Lorentz integral transform coupled-cluster method for the calculation of the electric dipole polarizability. We benchmark our results with exact hyperspherical harmonics calculations for 4He and then we move to a heavier nucleus studying 16O. We observe that the implemented chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order underestimates the electric dipole polarizability.
First-principles energetics of water clusters and ice: A many-body analysis
Gillan, M. J.; Alfè, D.; Bartók, A. P.; Csányi, G.
2013-12-28
Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for cluster, solid, and liquid forms of water. Recent work has stressed the importance of DFT errors in describing dispersion, but we note that errors in other parts of the energy may also contribute. We obtain information about the nature of DFT errors by using a many-body separation of the total energy into its 1-body, 2-body, and beyond-2-body components to analyze the deficiencies of the popular PBE and BLYP approximations for the energetics of water clusters and ice structures. The errors of these approximations are computed by using accurate benchmark energies from the coupled-cluster technique of molecular quantum chemistry and from quantum Monte Carlo calculations. The systems studied are isomers of the water hexamer cluster, the crystal structures Ih, II, XV, and VIII of ice, and two clusters extracted from ice VIII. For the binding energies of these systems, we use the machine-learning technique of Gaussian Approximation Potentials to correct successively for 1-body and 2-body errors of the DFT approximations. We find that even after correction for these errors, substantial beyond-2-body errors remain. The characteristics of the 2-body and beyond-2-body errors of PBE are completely different from those of BLYP, but the errors of both approximations disfavor the close approach of non-hydrogen-bonded monomers. We note the possible relevance of our findings to the understanding of liquid water.
First-principles energetics of water clusters and ice: A many-body analysis
NASA Astrophysics Data System (ADS)
Gillan, M. J.; Alfè, D.; Bartók, A. P.; Csányi, G.
2013-12-01
Standard forms of density-functional theory (DFT) have good predictive power for many materials, but are not yet fully satisfactory for cluster, solid, and liquid forms of water. Recent work has stressed the importance of DFT errors in describing dispersion, but we note that errors in other parts of the energy may also contribute. We obtain information about the nature of DFT errors by using a many-body separation of the total energy into its 1-body, 2-body, and beyond-2-body components to analyze the deficiencies of the popular PBE and BLYP approximations for the energetics of water clusters and ice structures. The errors of these approximations are computed by using accurate benchmark energies from the coupled-cluster technique of molecular quantum chemistry and from quantum Monte Carlo calculations. The systems studied are isomers of the water hexamer cluster, the crystal structures Ih, II, XV, and VIII of ice, and two clusters extracted from ice VIII. For the binding energies of these systems, we use the machine-learning technique of Gaussian Approximation Potentials to correct successively for 1-body and 2-body errors of the DFT approximations. We find that even after correction for these errors, substantial beyond-2-body errors remain. The characteristics of the 2-body and beyond-2-body errors of PBE are completely different from those of BLYP, but the errors of both approximations disfavor the close approach of non-hydrogen-bonded monomers. We note the possible relevance of our findings to the understanding of liquid water.
Many-body dispersion effects in the binding of adsorbates on metal surfaces
Maurer, Reinhard J.; Ruiz, Victor G.; Tkatchenko, Alexandre
2015-09-14
A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic–inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate–surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.
Extended slow dynamical regime near the many-body localization transition
NASA Astrophysics Data System (ADS)
Luitz, David J.; Laflorencie, Nicolas; Alet, Fabien
Many-body localization is characterized by a slow logarithmic growth of entanglement entropy after a global quantum quench while the local memory of an initial spin imbalance remains at infinite time. We address the dynamics in the delocalized ergodic regime, where thermalization is expected. Using an exact Krylov space technique, the out-of-equilibium dynamics of the random-field Heisenberg chain is studied up to L = 28 sites, starting from an initially unantangled high-energy product state. With such a global quench protocol, we study the time evolution of the entanglement entropy, as well as the spin density imbalance in order to make contact with recent cold atom experiments. Within most of the delocalized phase, we unambiguously find a sub-ballistic entanglement growth S (t) ~t 1 / z with a disorder-dependent exponent z >= 1 , in contrast with the pure ballistic growth z = 1 of clean systems. At the same time, anomalous relaxation is also observed for the spin imbalance I (t) ~t-ζ with a continuously varying disorder- dependent exponent ζ, vanishing at the transition. This provides a clear experimental signature for detecting this non-conventional metallic state where transport is sub-diffusive.
Many-body dispersion effects in the binding of adsorbates on metal surfaces.
Maurer, Reinhard J; Ruiz, Victor G; Tkatchenko, Alexandre
2015-09-14
A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic-inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate-surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches. PMID:26374001
Many-body dispersion effects in the binding of adsorbates on metal surfaces
NASA Astrophysics Data System (ADS)
Maurer, Reinhard J.; Ruiz, Victor G.; Tkatchenko, Alexandre
2015-09-01
A correct description of electronic exchange and correlation effects for molecules in contact with extended (metal) surfaces is a challenging task for first-principles modeling. In this work, we demonstrate the importance of collective van der Waals dispersion effects beyond the pairwise approximation for organic-inorganic systems on the example of atoms, molecules, and nanostructures adsorbed on metals. We use the recently developed many-body dispersion (MBD) approach in the context of density-functional theory [Tkatchenko et al., Phys. Rev. Lett. 108, 236402 (2012) and Ambrosetti et al., J. Chem. Phys. 140, 18A508 (2014)] and assess its ability to correctly describe the binding of adsorbates on metal surfaces. We briefly review the MBD method and highlight its similarities to quantum-chemical approaches to electron correlation in a quasiparticle picture. In particular, we study the binding properties of xenon, 3,4,9,10-perylene-tetracarboxylic acid, and a graphene sheet adsorbed on the Ag(111) surface. Accounting for MBD effects, we are able to describe changes in the anisotropic polarizability tensor, improve the description of adsorbate vibrations, and correctly capture the adsorbate-surface interaction screening. Comparison to other methods and experiment reveals that inclusion of MBD effects improves adsorption energies and geometries, by reducing the overbinding typically found in pairwise additive dispersion-correction approaches.
NASA Astrophysics Data System (ADS)
Burin, Alexander L.
2015-09-01
Many-body localization in an XY model with a long-range interaction is investigated. We show that in the regime of a high strength of disordering compared to the interaction an off-resonant flip-flop spin-spin interaction (hopping) generates the effective Ising interactions of spins in the third order of perturbation theory in a hopping. The combination of hopping and induced Ising interactions for the power-law distance dependent hopping V (R ) ∝R-α always leads to the localization breakdown in a thermodynamic limit of an infinite system at α <3 d /2 where d is a system dimension. The delocalization takes place due to the induced Ising interactions U (R ) ∝R-2 α of "extended" resonant pairs. This prediction is consistent with the numerical finite size scaling in one-dimensional systems. Many-body localization in an XY model is more stable with respect to the long-range interaction compared to a many-body problem with similar Ising and Heisenberg interactions requiring α ≥2 d which makes the practical implementations of this model more attractive for quantum information applications. The full summary of dimension constraints and localization threshold size dependencies for many-body localization in the case of combined Ising and hopping interactions is obtained using this and previous work and it is the subject for the future experimental verification using cold atomic systems.
Strain Control of Fermiology and Many-Body Interactions in Two-Dimensional Ruthenates.
Burganov, B; Adamo, C; Mulder, A; Uchida, M; King, P D C; Harter, J W; Shai, D E; Gibbs, A S; Mackenzie, A P; Uecker, R; Bruetzam, M; Beasley, M R; Fennie, C J; Schlom, D G; Shen, K M
2016-05-13
Here we demonstrate how the Fermi surface topology and quantum many-body interactions can be manipulated via epitaxial strain in the spin-triplet superconductor Sr_{2}RuO_{4} and its isoelectronic counterpart Ba_{2}RuO_{4} using oxide molecular beam epitaxy, in situ angle-resolved photoemission spectroscopy, and transport measurements. Near the topological transition of the γ Fermi surface sheet, we observe clear signatures of critical fluctuations, while the quasiparticle mass enhancement is found to increase rapidly and monotonically with increasing Ru-O bond distance. Our work demonstrates the possibilities for using epitaxial strain as a disorder-free means of manipulating emergent properties, many-body interactions, and potentially the superconductivity in correlated materials. PMID:27232037
Effective Operators from Exact Many-Body Renormalization
Lisetskiy, A F; Kruse, M G; Barrett, B R; Navratil, P; Stetcu, I; Vary, J P
2009-06-11
We construct effective two-body Hamiltonians and E2 operators for the p-shell by performing 16{h_bar}{Omega} ab initio no-core shell model (NCSM) calculations for A = 5 and A = 6 nuclei and explicitly projecting the many-body Hamiltonians and E2 operator onto the 0{h_bar}{Omega} space. We then separate the effective E2 operator into one-body and two-body contributions employing the two-body valence cluster approximation. We analyze the convergence of proton and neutron valence one-body contributions with increasing model space size and explore the role of valence two-body contributions. We show that the constructed effective E2 operator can be parametrized in terms of one-body effective charges giving a good estimate of the NCSM result for heavier p-shell nuclei.
Many-body theory and Energy Density Functionals
NASA Astrophysics Data System (ADS)
Baldo, M.
2016-07-01
In this paper a method is first presented to construct an Energy Density Functional on a microscopic basis. The approach is based on the Kohn-Sham method, where one introduces explicitly the Nuclear Matter Equation of State, which can be obtained by an accurate many-body calculation. In this way it connects the functional to the bare nucleon-nucleon interaction. It is shown that the resulting functional can be performing as the best Gogny force functional. In the second part of the paper it is shown how one can go beyond the mean-field level and the difficulty that can appear. The method is based on the particle-vibration coupling scheme and a formalism is presented that can handle the correct use of the vibrational degrees of freedom within a microscopic approach.
Many-body tight-binding model for aluminum nanoparticles
Staszewska, Grazyna; Staszewski, Przemyslaw; Schultz, Nathan E.; Truhlar, Donald G.
2005-01-15
A new, parametrized many-body tight-binding model is proposed for calculating the potential energy surface for aluminum nanoparticles. The parameters have been fitted to reproduce the energies for a variety of aluminum clusters (Al{sub 2}, Al{sub 3}, Al{sub 4}, Al{sub 7}, Al{sub 13}) calculated recently by the PBE0/MG3 method as well as the experimental face-centered-cubic cohesive energy, lattice constant, and a small set of Al cluster ionization potentials. Several types of parametrization are presented and compared. The mean unsigned error per atom for the best model is less than 0.03 eV.
Effects of pairwise versus many-body forces on high-stress plastic deformation
Holian, B.L.; Voter, A.F.; Wagner, N.J.; Ravelo, R.J.; Chen, S.P. ); Hoover, W.G.; Hoover, C.G. ); Hammerberg, J.E. ); Dontje, T.D. )
1991-03-15
We propose a model embedded-atom (many-body) potential and test it against an effective, density-independent, pairwise-additive potential in a variety of nonequilibrium molecular-dynamics simulations of plastic deformation under high stress. Even though both kinds of interactions have nearly the same equilibrium equation of state, the defect energies (i.e., vacancy formation and surface energies) are quite different. As a result, we observe significant qualitative differences in flow behavior between systems characterized by purely pairwise interactions versus higher-order many-body forces.
Relativistic many-body perturbation theory for general open-shell multiplet states of atoms
NASA Astrophysics Data System (ADS)
Ishikawa, Yasuyuki; Koc, Konrad
1996-06-01
A relativistic many-body perturbation theory, which accounts for relativistic and electron-correlation effects for general open-shell multiplet states of atoms and molecules, is developed and implemented with analytic basis sets of Gaussian spinors. The theory retains the essential aspects of Mo/ller-Plesset perturbation theory by employing the relativistic single-Fock-operator method of Koc and Ishikawa [Phys. Rev. A 49, 794 (1994)] for general open-shell systems. Open-shell Dirac-Fock and relativistic many-body perturbation calculations are reported for the ground and low-lying excited states of Li, B2+, Ne7+, and Ca11+.
Reboredo, Fernando A.; Kim, Jeongnim
2014-02-21
A statistical method is derived for the calculation of thermodynamic properties of many-body systems at low temperatures. This method is based on the self-healing diffusion Monte Carlo method for complex functions [F. A. Reboredo, J. Chem. Phys. 136, 204101 (2012)] and some ideas of the correlation function Monte Carlo approach [D. M. Ceperley and B. Bernu, J. Chem. Phys. 89, 6316 (1988)]. In order to allow the evolution in imaginary time to describe the density matrix, we remove the fixed-node restriction using complex antisymmetric guiding wave functions. In the process we obtain a parallel algorithm that optimizes a small subspace of the many-body Hilbert space to provide maximum overlap with the subspace spanned by the lowest-energy eigenstates of a many-body Hamiltonian. We show in a model system that the partition function is progressively maximized within this subspace. We show that the subspace spanned by the small basis systematically converges towards the subspace spanned by the lowest energy eigenstates. Possible applications of this method for calculating the thermodynamic properties of many-body systems near the ground state are discussed. The resulting basis can also be used to accelerate the calculation of the ground or excited states with quantum Monte Carlo.
NASA Astrophysics Data System (ADS)
Lim, S. P.; Sheng, D. N.
2016-07-01
A many-body localized (MBL) state is a new state of matter emerging in a disordered interacting system at high-energy densities through a disorder-driven dynamic phase transition. The nature of the phase transition and the evolution of the MBL phase near the transition are the focus of intense theoretical studies with open issues in the field. We develop an entanglement density matrix renormalization group (En-DMRG) algorithm to accurately target highly excited states for MBL systems. By studying the one-dimensional Heisenberg spin chain in a random field, we demonstrate the accuracy of the method in obtaining energy eigenstates and the corresponding statistical results of quantum states in the MBL phase. Based on large system simulations by En-DMRG for excited states, we demonstrate some interesting features in the entanglement entropy distribution function, which is characterized by two peaks: one at zero and another one at the quantized entropy S =ln2 with an exponential decay tail on the S >ln2 side. Combining En-DMRG with exact diagonalization simulations, we demonstrate that the transition from the MBL phase to the delocalized ergodic phase is driven by rare events where the locally entangled spin pairs develop power-law correlations. The corresponding phase diagram contains an intermediate or crossover regime, which has power-law spin-z correlations resulting from contributions of the rare events. We discuss the physical picture for the numerical observations in this regime, where various distribution functions are distinctly different from results deep in the ergodic and MBL phases for finite-size systems. Our results may provide new insights for understanding the phase transition in such systems.
Electron-phonon coupling using many-body GW theory
NASA Astrophysics Data System (ADS)
Monserrat, Bartomeu; Vanderbilt, David
Electron-phonon coupling drives a plethora of phenomena, such as superconductivity in metals, or the temperature dependence of optical properties in semiconductors. There is increasing evidence that semi-local density functional theory (DFT) is not adequate for the description of electron-phonon coupling, and instead effects such as electronic correlation need to be included. Unfortunately, methods beyond semi-local DFT are computationally demanding, limiting the study of these phenomena. In this talk we will introduce the idea of ``thermal lines'', which can be used to explore the vibrational phase space of solids and molecules at small computational cost. In particular, we will describe how thermal lines can be exploited to calculate the temperature dependence of band structures beyond semi-local DFT, by using many-body GW theory, or by including the effects of spin-orbit coupling. We will present first-principles results showing the effects of electron correlation on the strength of electron-phonon coupling, and the effects of electron-phonon coupling on topological states of matter. Supported by Robinson College, Cambridge, and the Cambridge Philosophical Society.
From Discrete Breathers to Many Body Localization and Flatbands
NASA Astrophysics Data System (ADS)
Flach, Sergej
Discrete breathers (DB) and intrinsic localized modes (ILM) are synonymic dynamical states on nonlinear lattices - periodic in time and localized in space, and widely observed in many applications. I will discuss the connections between DBs and many-body localization (MBL) and the properties of DBs on flatband networks. A dense quantized gas of strongly excited DBs can lead to a MBL phase in a variety of different lattice models. Its classical counterpart corresponds to a 'nonergodic metal' in the MBL language, or to a nonGibbsean selftrapped state in the language of nonlinear dynamics. Flatband networks are lattices with small amplitude waves exhibiting macroscopic degeneracy in their band structure due to local symmetries, destructive interference, compact localized eigenstates and horizontal flat bands. DBs can preserve the compactness of localization in the presence of nonlinearity with properly tuned internal phase relationships, making them promising tools for control of the phase coherence of waves. Also at New Zealand Institute of Advanced Study, Massey University, Auckland, New Zealand.
Another New Solvable Many-Body Model of Goldfish Type
NASA Astrophysics Data System (ADS)
Calogero, Francesco
2012-07-01
A new solvable many-body problem is identified. It is characterized by nonlinear Newtonian equations of motion (''acceleration equal force'') featuring one-body and two-body velocity-dependent forces ''of goldfish type'' which determine the motion of an arbitrary number N of unit-mass point-particles in a plane. The N (generally complex) values z_{n}( t) at time t of the N coordinates of these moving particles are given by the N eigenvalues of a time-dependent N× N matrix U( t) explicitly known in terms of the 2N initial data z_{n}( 0) and dot{z}_{n}(0) . This model comes in two different variants, one featuring 3 arbitrary coupling constants, the other only 2; for special values of these parameters all solutions are completely periodic with the same period independent of the initial data (''isochrony''); for other special values of these parameters this property holds up to corrections vanishing exponentially as t→ ∞ (''asymptotic isochrony''). Other isochronous variants of these models are also reported. Alternative formulations, obtained by changing the dependent variables from the N zeros of a monic polynomial of degree N to its N coefficients, are also exhibited. Some mathematical findings implied by some of these results - such as Diophantine properties of the zeros of certain polynomials - are outlined, but their analysis is postponed to a separate paper.
Direct observation of many-body charge density oscillations in a two-dimensional electron gas.
Sessi, Paolo; Silkin, Vyacheslav M; Nechaev, Ilya A; Bathon, Thomas; El-Kareh, Lydia; Chulkov, Evgueni V; Echenique, Pedro M; Bode, Matthias
2015-01-01
Quantum interference is a striking manifestation of one of the basic concepts of quantum mechanics: the particle-wave duality. A spectacular visualization of this effect is the standing wave pattern produced by elastic scattering of surface electrons around defects, which corresponds to a modulation of the electronic local density of states and can be imaged using a scanning tunnelling microscope. To date, quantum-interference measurements were mainly interpreted in terms of interfering electrons or holes of the underlying band-structure description. Here, by imaging energy-dependent standing-wave patterns at noble metal surfaces, we reveal, in addition to the conventional surface-state band, the existence of an 'anomalous' energy band with a well-defined dispersion. Its origin is explained by the presence of a satellite in the structure of the many-body spectral function, which is related to the acoustic surface plasmon. Visualizing the corresponding charge oscillations provides thus direct access to many-body interactions at the atomic scale. PMID:26498368
Direct observation of many-body charge density oscillations in a two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Sessi, Paolo; Silkin, Vyacheslav M.; Nechaev, Ilya A.; Bathon, Thomas; El-Kareh, Lydia; Chulkov, Evgueni V.; Echenique, Pedro M.; Bode, Matthias
2015-10-01
Quantum interference is a striking manifestation of one of the basic concepts of quantum mechanics: the particle-wave duality. A spectacular visualization of this effect is the standing wave pattern produced by elastic scattering of surface electrons around defects, which corresponds to a modulation of the electronic local density of states and can be imaged using a scanning tunnelling microscope. To date, quantum-interference measurements were mainly interpreted in terms of interfering electrons or holes of the underlying band-structure description. Here, by imaging energy-dependent standing-wave patterns at noble metal surfaces, we reveal, in addition to the conventional surface-state band, the existence of an `anomalous' energy band with a well-defined dispersion. Its origin is explained by the presence of a satellite in the structure of the many-body spectral function, which is related to the acoustic surface plasmon. Visualizing the corresponding charge oscillations provides thus direct access to many-body interactions at the atomic scale.
Approaching the complete-basis limit with a truncated many-body expansion.
Richard, Ryan M; Lao, Ka Un; Herbert, John M
2013-12-14
High-accuracy electronic structure calculations with correlated wave functions demand the use of large basis sets and complete-basis extrapolation, but the accuracy of fragment-based quantum chemistry methods has most often been evaluated using double-ζ basis sets, with errors evaluated relative to a supersystem calculation using the same basis set. Here, we examine the convergence towards the basis-set limit of two- and three-body expansions of the energy, for water clusters and ion-water clusters, focusing on calculations at the level of second-order Møller-Plesset perturbation theory (MP2). Several different corrections for basis-set superposition error (BSSE), each consistent with a truncated many-body expansion, are examined as well. We present a careful analysis of how the interplay of errors (from all sources) influences the accuracy of the results. We conclude that fragment-based methods often benefit from error cancellation wherein BSSE offsets both incompleteness of the basis set as well as higher-order many-body effects that are neglected in a truncated many-body expansion. An n-body counterpoise correction facilitates smooth extrapolation to the MP2 basis-set limit, and at n = 3 affords accurate results while requiring calculations in subsystems no larger than trimers. PMID:24329051
Approaching the complete-basis limit with a truncated many-body expansion
Richard, Ryan M.; Lao, Ka Un; Herbert, John M.
2013-12-14
High-accuracy electronic structure calculations with correlated wave functions demand the use of large basis sets and complete-basis extrapolation, but the accuracy of fragment-based quantum chemistry methods has most often been evaluated using double-ζ basis sets, with errors evaluated relative to a supersystem calculation using the same basis set. Here, we examine the convergence towards the basis-set limit of two- and three-body expansions of the energy, for water clusters and ion–water clusters, focusing on calculations at the level of second-order Møller-Plesset perturbation theory (MP2). Several different corrections for basis-set superposition error (BSSE), each consistent with a truncated many-body expansion, are examined as well. We present a careful analysis of how the interplay of errors (from all sources) influences the accuracy of the results. We conclude that fragment-based methods often benefit from error cancellation wherein BSSE offsets both incompleteness of the basis set as well as higher-order many-body effects that are neglected in a truncated many-body expansion. An n-body counterpoise correction facilitates smooth extrapolation to the MP2 basis-set limit, and at n = 3 affords accurate results while requiring calculations in subsystems no larger than trimers.
NASA Astrophysics Data System (ADS)
Monthus, Cécile
2016-07-01
For short-ranged disordered quantum models in one dimension, the many-body-localization is analyzed via the adaptation to the many-body context (Serbyn et al 2015 Phys. Rev. X 5 041047) of the Thouless point of view on the Anderson transition: the question is whether a local interaction between two long chains is able to reshuffle completely the eigenstates (delocalized phase with a volume-law entanglement) or whether the hybridization between tensor states remains limited (many-body-localized phase with an area-law entanglement). The central object is thus the level of hybridization induced by the matrix elements of local operators, as compared with the difference of diagonal energies. The multifractal analysis of these matrix elements of local operators is used to analyze the corresponding statistics of resonances. Our main conclusion is that the critical point is characterized by the strong-multifractality spectrum f(0≤slant α ≤slant 2)=\\fracα{2} , well known in the context of Anderson localization in spaces of effective infinite dimensionality, where the size of the Hilbert space grows exponentially with the volume. Finally, the possibility of a delocalized non-ergodic phase near criticality is discussed.
Atomic many-body effects and Lamb shifts in alkali metals
NASA Astrophysics Data System (ADS)
Ginges, J. S. M.; Berengut, J. C.
2016-05-01
We present a detailed study of the radiative potential method [V. V. Flambaum and J. S. M. Ginges, Phys. Rev. A 72, 052115 (2005), 10.1103/PhysRevA.72.052115], which enables the accurate inclusion of quantum electrodynamics (QED) radiative corrections in a simple manner in atoms and ions over the range 10 ≤Z ≤120 , where Z is the nuclear charge. Calculations are performed for binding energy shifts to the lowest valence s , p , and d waves over the series of alkali-metal atoms Na to E119. The high accuracy of the radiative potential method is demonstrated by comparison with rigorous QED calculations in frozen atomic potentials, with deviations on the level of 1%. The many-body effects of core relaxation and second- and higher-order perturbation theory on the interaction of the valence electron with the core are calculated. The inclusion of many-body effects tends to increase the size of the shifts, with the enhancement particularly significant for d waves; for K to E119, the self-energy shifts for d waves are only an order of magnitude smaller than the s -wave shifts. It is shown that taking into account many-body effects is essential for an accurate description of the Lamb shift.
Many-body manifestation of interaction-free measurement: The Elitzur-Vaidman bomb
NASA Astrophysics Data System (ADS)
Zilberberg, Oded; Romito, Alessandro; Gefen, Yuval
2016-03-01
We consider an implementation of the Elitzur-Vaidman bomb experiment in a dc-biased electronic Mach-Zehnder interferometer with a leakage port on one of its arms playing the role of a "lousy bomb." Many-body correlations tend to screen out manifestations of interaction-free measurement. Analyzing the correlations between the current at the interferometer's drains and at the leakage port, we identify the limit where the originally proposed single-particle effect is recovered. Specifically, we find that in the regime of sufficiently diluted injected electron beam and short measurement times, effects of quantum-mechanical wave-particle duality emerge in the cross-current correlations.
Novel solvable extensions of the goldfish many-body model
NASA Astrophysics Data System (ADS)
Calogero, F.; Iona, S.
2005-10-01
A novel solvable extension of the goldfish N-body problem is presented. Its Newtonian equations of motion read ζ̈n=2aζ\\dot nζn+2∑m =1,m≠nN(ζ\\dot n-aζn2)(ζ\\dot m-aζm2)/(ζn-ζm), n =1,…,N, where a is an arbitrary (nonvanishing) constant and the rest of the notation is self-evident. The isochronous version of this model is characterized by the Newtonian equations of motion ζ̈n-3iω\\zdot n-2ω2zn=2a(\\zdot n-iωzn)zn+2∑m =1,m≠nN(\\zdot n-iωzn-azn2)(\\zdot m-iωzm-azm2)/(zn-zm), n =1,…,N, where ω is an arbitrary positive constant and the points zn(t) move now necessarily in the complex z-plane. The generic solution of this second model is completely periodic with a period Tk=kT which is an integer multiple k (not larger than N!, indeed generally much smaller) of the basic period T =2π/ω and which is independent of the initial data (for sufficiently small, but otherwise arbitrary, changes of such data). These many-body models have an intriguing variety of equilibrium configurations (genuine: with no two particles sitting at the same place), but only for small values of N (N =2,3,4 for the first model, N =2,3,4,5 for the second). Other versions of these models are also discussed. The study of the behavior of the second, isochronous model around its equilibrium configurations yields some amusing diophantine results.
NASA Astrophysics Data System (ADS)
Krishtal, Alisa; Sinha, Debalina; Genova, Alessandro; Pavanello, Michele
2015-05-01
Subsystem density-functional theory (DFT) is an emerging technique for calculating the electronic structure of complex molecular and condensed phase systems. In this topical review, we focus on some recent advances in this field related to the computation of condensed phase systems, their excited states, and the evaluation of many-body interactions between the subsystems. As subsystem DFT is in principle an exact theory, any advance in this field can have a dual role. One is the possible applicability of a resulting method in practical calculations. The other is the possibility of shedding light on some quantum-mechanical phenomenon which is more easily treated by subdividing a supersystem into subsystems. An example of the latter is many-body interactions. In the discussion, we present some recent work from our research group as well as some new results, casting them in the current state-of-the-art in this review as comprehensively as possible.
Quantum Simulation for Open-System Dynamics
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry
2013-03-01
Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.
NASA Astrophysics Data System (ADS)
Kang, Nam; Ryu, Jai; Choi, Sang
1998-07-01
Utilizing state-independent projection operators, we present a new optical conductivity formula for cyclotron transition in the system of electrons interacting anisotropically with phonons. The line-shape factor appearing in the conductivity tensor contains the many body effects for electrons and phonons. Applying this formula, we determine the two deformation potentials (dilation potential Ξd and uniaxial shear potential Ξu) of Ge in the quantum limit. By fitting the present theoretical values with the experimental data of Murase, Enjouji and Otsuka [J. Phys. Soc. Jpn. 29 (1970) 1248] and Kobori, Ohyama and Otsuka [J. Phys. Soc. Jpn. 59 (1990) 2141], we obtain Ξu=17.0±0.6 eV and Ξd=-10.88±0.47 eV.
Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations
NASA Astrophysics Data System (ADS)
Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.
2015-12-01
Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.
Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations.
Kuechler, Erich R; Giese, Timothy J; York, Darrin M
2015-12-21
Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions.
Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations.
Kuechler, Erich R; Giese, Timothy J; York, Darrin M
2015-12-21
Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom's local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the SN2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM/MM interactions. PMID
Charge-dependent many-body exchange and dispersion interactions in combined QM/MM simulations
Kuechler, Erich R.; Giese, Timothy J.; York, Darrin M.
2015-12-21
Accurate modeling of the molecular environment is critical in condensed phase simulations of chemical reactions. Conventional quantum mechanical/molecular mechanical (QM/MM) simulations traditionally model non-electrostatic non-bonded interactions through an empirical Lennard-Jones (LJ) potential which, in violation of intuitive chemical principles, is bereft of any explicit coupling to an atom’s local electronic structure. This oversight results in a model whereby short-ranged exchange-repulsion and long-ranged dispersion interactions are invariant to changes in the local atomic charge, leading to accuracy limitations for chemical reactions where significant atomic charge transfer can occur along the reaction coordinate. The present work presents a variational, charge-dependent exchange-repulsion and dispersion model, referred to as the charge-dependent exchange and dispersion (QXD) model, for hybrid QM/MM simulations. Analytic expressions for the energy and gradients are provided, as well as a description of the integration of the model into existing QM/MM frameworks, allowing QXD to replace traditional LJ interactions in simulations of reactive condensed phase systems. After initial validation against QM data, the method is demonstrated by capturing the solvation free energies of a series of small, chlorine-containing compounds that have varying charge on the chlorine atom. The model is further tested on the S{sub N}2 attack of a chloride anion on methylchloride. Results suggest that the QXD model, unlike the traditional LJ model, is able to simultaneously obtain accurate solvation free energies for a range of compounds while at the same time closely reproducing the experimental reaction free energy barrier. The QXD interaction model allows explicit coupling of atomic charge with many-body exchange and dispersion interactions that are related to atomic size and provides a more accurate and robust representation of non-electrostatic non-bonded QM
Quantum entanglement in condensed matter systems
NASA Astrophysics Data System (ADS)
Laflorencie, Nicolas
2016-08-01
This review focuses on the field of quantum entanglement applied to condensed matter physics systems with strong correlations, a domain which has rapidly grown over the last decade. By tracing out part of the degrees of freedom of correlated quantum systems, useful and non-trivial information can be obtained through the study of the reduced density matrix, whose eigenvalue spectrum (the entanglement spectrum) and the associated Rényi entropies are now well recognized to contain key features. In particular, the celebrated area law for the entanglement entropy of ground-states will be discussed from the perspective of its subleading corrections which encode universal details of various quantum states of matter, e.g. symmetry breaking states or topological order. Going beyond entropies, the study of the low-lying part of the entanglement spectrum also allows to diagnose topological properties or give a direct access to the excitation spectrum of the edges, and may also raise significant questions about the underlying entanglement Hamiltonian. All these powerful tools can be further applied to shed some light on disordered quantum systems where impurity/disorder can conspire with quantum fluctuations to induce non-trivial effects. Disordered quantum spin systems, the Kondo effect, or the many-body localization problem, which have all been successfully (re)visited through the prism of quantum entanglement, will be discussed in detail. Finally, the issue of experimental access to entanglement measurement will be addressed, together with its most recent developments.
1/f Fluctuation and a Many-Body Disk Model of Slip Phenomena
NASA Astrophysics Data System (ADS)
Hirata, Takayuki
1999-10-01
A many-body disk system was investigated as a model of slip phenomena. A two-dimensional many-body disk system was used as a model of the boundary layer between slip surfaces. Frustrated states occurred in this system depending on the disk configuration. Experiments with this were carried out using a random packing configuration (packing fraction: 0.74 ˜0.76). Acrylic resin disks were packed between a co-axial outer rotating cylinder and an inner fixed cylinder. The outer cylinder was rotated by a motor and the torque at the fixed inner cylinder was measured in a time series. Stick-slip and 1/f fluctuation were observed in the time series.
NASA Astrophysics Data System (ADS)
Ulstrup, Søren; Andersen, Mie; Bianchi, Marco; Barreto, Lucas; Hammer, Bjørk; Hornekær, Liv; Hofmann, Philip
2014-09-01
High quality epitaxial graphene films can be applied as templates for tailoring graphene-substrate interfaces that allow for precise control of the charge carrier behavior in graphene through doping and many-body effects. By combining scanning tunneling microscopy, angle-resolved photoemission spectroscopy and density functional theory we demonstrate that oxygen intercalated epitaxial graphene on Ir(111) has high structural quality, is quasi free-standing, and shows signatures of many-body interactions. Using this system as a template, we show that pn-interfaces can be patterned by adsorption and intercalation of rubidium, and that the n-doped graphene regions exhibit a reduced Coulomb screening via enhanced electron-plasmon coupling. These findings are central for understanding and tailoring the properties of graphene-metal contacts e.g. for realizing quantum tunneling devices.
Probing the many-body localization transition with matrix elements of local operators
NASA Astrophysics Data System (ADS)
Serbyn, Maksym; Papic, Zlatko; Abanin, Dmitry
2015-03-01
We propose the statistics of matrix elements of local operators as a new probe of the many-body localized (MBL) phase. Matrix elements of a given local operator V encode many physical properties, such as the response of the system to a local perturbation induced by the action of V, spectral functions, and dynamics of the system. The distribution of matrix elements of a local operator between system's eigenstates exhibits qualitatively different behavior in the many-body localized and ergodic phases, allowing for an accurate determination of the two phases. To characterize this distribution, for a given system size L, we introduce a parameter g (L) = < log Vi,i+1/Δ >, which is a disorder-averaged ratio of the matrix element of operator V between adjacent eigenstates, and Δ is the level spacing. We find that g (L) decreases with L in the MBL phase, and grows in the ergodic phase. We propose that at the MBL-delocalization transition g (L) is independent of system size, g (L) =gc ~ 1 , and use this criterion to map out the phase diagram of a disordered 1D XXZ spin-1/2 chain. By studying the scaling of g (L) as a function of energy density, we locate the many-body mobility edge. We discuss implications for delocalization phase transition.
Cesium Ultra-Long-Range Rydberg Molecules and Many-Body Physics
NASA Astrophysics Data System (ADS)
Yang, Jin; Jahangiri, Akbar; Rittenhouse, Seth; Reschke, Margarita; Booth, Donald; Sadeghpour, Hossein; Shaffer, James
2016-05-01
Ultra-long-range Rydberg molecules have received increasing interest recently because of their novel properties such as the ability to serve as an electron trap, the potential to possess kilo-Debye dipole moments, and their unique binding mechanism. Recently, experiments focusing on Rydberg P-state and D-state molecules have revealed interesting new features of these novel molecules, like coupling between singlet and triplet scattering channels, p-wave scattering dominated states and their behavior in magnetic fields. In this presentation, we report our recent observation of Cesium D-state ultra-long-range Rydberg molecules and compare our observations to theoretical calculations. We also report our preliminary data on ``polymer'' molecules, which are formed by one Cs Rydberg atom but more than one Cs ground state atom. The transition from a few-body system to a many-body system can provide insight into many-body physics. We acknowledge funding from the NSF.
TRIQS: A toolbox for research on interacting quantum systems
NASA Astrophysics Data System (ADS)
Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka
2015-11-01
We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.
TRIQS: A toolbox for research on interacting quantum systems
NASA Astrophysics Data System (ADS)
Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka
2015-11-01
We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.
Keldysh field theory for driven open quantum systems
NASA Astrophysics Data System (ADS)
Sieberer, L. M.; Buchhold, M.; Diehl, S.
2016-09-01
Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven–dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Keldysh field theory for driven open quantum systems.
Sieberer, L M; Buchhold, M; Diehl, S
2016-09-01
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems. PMID:27482736
Keldysh field theory for driven open quantum systems
NASA Astrophysics Data System (ADS)
Sieberer, L. M.; Buchhold, M.; Diehl, S.
2016-09-01
Recent experimental developments in diverse areas—ranging from cold atomic gases to light-driven semiconductors to microcavity arrays—move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Keldysh field theory for driven open quantum systems.
Sieberer, L M; Buchhold, M; Diehl, S
2016-09-01
Recent experimental developments in diverse areas-ranging from cold atomic gases to light-driven semiconductors to microcavity arrays-move systems into the focus which are located on the interface of quantum optics, many-body physics and statistical mechanics. They share in common that coherent and driven-dissipative quantum dynamics occur on an equal footing, creating genuine non-equilibrium scenarios without immediate counterpart in equilibrium condensed matter physics. This concerns both their non-thermal stationary states and their many-body time evolution. It is a challenge to theory to identify novel instances of universal emergent macroscopic phenomena, which are tied unambiguously and in an observable way to the microscopic drive conditions. In this review, we discuss some recent results in this direction. Moreover, we provide a systematic introduction to the open system Keldysh functional integral approach, which is the proper technical tool to accomplish a merger of quantum optics and many-body physics, and leverages the power of modern quantum field theory to driven open quantum systems.
Simulations of dipolar fluids using effective many-body isotropic interactions.
Sindt, Julien O; Camp, Philip J
2015-07-14
The partition function of a system with pairwise-additive anisotropic dipole-dipole interactions is equal to that of a hypothetical system with many-body isotropic interactions [G. Stell, Phys. Rev. Lett. 32, 286 (1974)]. The effective many-body interactions contain n-body contributions of all orders. Each contribution is known as an expansion in terms of the particle-particle distances r, and the coefficients are temperature dependent. The leading-order two-body term is the familiar -r(-6) attraction, and the leading-order three-body term is equivalent to the Axilrod-Teller interaction. In this work, a fluid of particles with the leading-order two-body and three-body interactions is compared to an equivalent dipolar soft-sphere fluid. Molecular simulations are used to determine the conditions under which the effective many-body interactions reproduce the fluid-phase structures of the dipolar system. The effective many-body interaction works well at moderately high temperatures but fails at low temperatures where particle chaining is expected to occur. It is shown that an adjustment of the coefficients of the two-body and three-body terms leads to a good description of the structure of the dipolar fluid even in the chaining regime, due primarily to the ground-state linear configuration of the three-body Axilrod-Teller interaction. The vapor-liquid phase diagrams of systems with different Axilrod-Teller contributions are determined. As the strength of the three-body interaction is increased, the critical temperature and density both decrease and disappear completely above a threshold strength, where chaining eventually suppresses the condensation transition. PMID:26178112
Kohn-Sham density-functional theory and renormalization of many-body perturbation expansions
NASA Astrophysics Data System (ADS)
Valiev, Marat
1998-03-01
Numerous practical applications provide strong evidence that despite its simplicity and crude approximations, density-functional theory leads to a rather accurate description of ground state properties of various condensed matter systems. Although well documented numerically, to our knowledge a theoretical explanation of the accuracy of density-functional theory has not been given. This issue is clarified in this work by demonstrating that density-functional theory represents a particular renormalization procedure of a many-body perturbation expansion. In other words, it is shown that density-functional theory is a many-body perturbation theory whose convergence properties have been optimized. The realization of this fact brings new meaning into density-functional theory and explains the success of density-functional based calculations. For more information go to http://alchemy.ucsd.edu/marat/ .
Accurate and efficient method for many-body van der Waals interactions.
Tkatchenko, Alexandre; DiStasio, Robert A; Car, Roberto; Scheffler, Matthias
2012-06-01
An efficient method is developed for the microscopic description of the frequency-dependent polarizability of finite-gap molecules and solids. This is achieved by combining the Tkatchenko-Scheffler van der Waals (vdW) method [Phys. Rev. Lett. 102, 073005 (2009)] with the self-consistent screening equation of classical electrodynamics. This leads to a seamless description of polarization and depolarization for the polarizability tensor of molecules and solids. The screened long-range many-body vdW energy is obtained from the solution of the Schrödinger equation for a system of coupled oscillators. We show that the screening and the many-body vdW energy play a significant role even for rather small molecules, becoming crucial for an accurate treatment of conformational energies for biomolecules and binding of molecular crystals. The computational cost of the developed theory is negligible compared to the underlying electronic structure calculation.
Flow equation approach to one-body and many-body localization
NASA Astrophysics Data System (ADS)
Quito, Victor; Bhattacharjee, Paraj; Pekker, David; Refael, Gil
2014-03-01
We study one-body and many-body localization using the flow equation technique applied to spin-1/2 Hamiltonians. This technique, first introduced by Wegner, allows us to exact diagonalize interacting systems by solving a set of first-order differential equations for coupling constants. Besides, by the flow of individual operators we also compute physical properties, such as correlation and localization lengths, by looking at the flow of probability distributions of couplings in the Hilbert space. As a first example, we analyze the one-body localization problem written in terms of spins, the disordered XY model with a random transverse field. We compare the results obtained in the flow equation approach with the diagonalization in the fermionic language. For the many-body problem, we investigate the physical properties of the disordered XXZ Hamiltonian with a random transverse field in the z-direction.
Encoding the structure of many-body localization with matrix product operators
NASA Astrophysics Data System (ADS)
Pekker, David; Clark, Bryan K.
2015-03-01
Anderson insulators are non-interacting disordered systems which have localized single particle eigenstates. The interacting analogue of Anderson insulators are the Many-Body Localized (MBL) phases. The natural language for representing the spectrum of the Anderson insulator is that of product states over the single-particle modes. We show that product states over Matrix Product Operators of small bond dimension is the corresponding natural language for describing the MBL phases. In this language all of the many-body eigenstates are encode by Matrix Product States (i.e. DMRG wave function) consisting of only two sets of low bond-dimension matrices per site: the Gi matrix corresponding to the local ground state on site i and the Ei matrix corresponding to the local excited state. All 2 n eigenstates can be generated from all possible combinations of these matrices.
A many-body potential approach to modelling the thermomechanical properties of actinide oxides.
Cooper, M W D; Rushton, M J D; Grimes, R W
2014-03-12
A many-body potential model for the description of actinide oxide systems, which is robust at high temperatures, is reported for the first time. The embedded atom method is used to describe many-body interactions ensuring good reproduction of a range of thermophysical properties (lattice parameter, bulk modulus, enthalpy and specific heat) between 300 and 3000 K for AmO2, CeO2, CmO2, NpO2, ThO2, PuO2 and UO2. Additionally, the model predicts a melting point for UO2 between 3000 and 3100 K, in close agreement with experiment. Oxygen-oxygen interactions are fixed across the actinide oxide series because it facilitates the modelling of oxide solid solutions. The new potential is also used to predict the energies of Schottky and Frenkel pair disorder processes.
Strong local passivity in finite quantum systems.
Frey, Michael; Funo, Ken; Hotta, Masahiro
2014-07-01
Passive states of quantum systems are states from which no system energy can be extracted by any cyclic (unitary) process. Gibbs states of all temperatures are passive. Strong local (SL) passive states are defined to allow any general quantum operation, but the operation is required to be local, being applied only to a specific subsystem. Any mixture of eigenstates in a system-dependent neighborhood of a nondegenerate entangled ground state is found to be SL passive. In particular, Gibbs states are SL passive with respect to a subsystem only at or below a critical system-dependent temperature. SL passivity is associated in many-body systems with the presence of ground state entanglement in a way suggestive of collective quantum phenomena such as quantum phase transitions, superconductivity, and the quantum Hall effect. The presence of SL passivity is detailed for some simple spin systems where it is found that SL passivity is neither confined to systems of only a few particles nor limited to the near vicinity of the ground state.
Sorting quantum systems efficiently.
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) - which direct photons according to their polarization - and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
Sorting quantum systems efficiently
NASA Astrophysics Data System (ADS)
Ionicioiu, Radu
2016-05-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation.
Sorting quantum systems efficiently
Ionicioiu, Radu
2016-01-01
Measuring the state of a quantum system is a fundamental process in quantum mechanics and plays an essential role in quantum information and quantum technologies. One method to measure a quantum observable is to sort the system in different spatial modes according to the measured value, followed by single-particle detectors on each mode. Examples of quantum sorters are polarizing beam-splitters (PBS) – which direct photons according to their polarization – and Stern-Gerlach devices. Here we propose a general scheme to sort a quantum system according to the value of any d-dimensional degree of freedom, such as spin, orbital angular momentum (OAM), wavelength etc. Our scheme is universal, works at the single-particle level and has a theoretical efficiency of 100%. As an application we design an efficient OAM sorter consisting of a single multi-path interferometer which is suitable for a photonic chip implementation. PMID:27142705
NASA Astrophysics Data System (ADS)
Monthus, Cécile
2016-03-01
A fully many-body localized (FMBL) quantum disordered system is characterized by the emergence of an extensive number of local conserved operators that prevents the relaxation towards thermal equilibrium. These local conserved operators can be seen as the building blocks of the whole set of eigenstates. In this paper, we propose to construct them explicitly via block real-space renormalization. The principle is that each renormalization group step diagonalizes the smallest remaining blocks and produces a conserved operator for each block. The final output for a chain of N spins is a hierarchical organization of the N conserved operators with ≤ft(\\frac{\\ln N}{\\ln 2}\\right) layers. The system size nature of the conserved operators of the top layers is necessary to describe the possible long-range order of the excited eigenstates and the possible critical points between different FMBL phases. We discuss the similarities and the differences with the strong disorder RSRG-X method that generates the whole set of the 2 N eigenstates via a binary tree of N layers. The approach is applied to the long-range quantum spin-glass Ising model, where the constructed excited eigenstates are found to be exactly like ground states in another disorder realization, so that they can be either in the paramagnetic phase, in the spin-glass phase or critical.
Normal State of Highly Polarized Fermi Gases: Simple Many-Body Approaches
Combescot, R.; Recati, A.; Lobo, C.; Chevy, F.
2007-05-04
We consider the problem of a single {down_arrow} atom in the presence of a Fermi sea of {up_arrow} atoms, in the vicinity of a Feshbach resonance. We calculate the chemical potential and the effective mass of the {down_arrow} atom using two simple approaches: a many-body variational wave function and a T-matrix approximation. These two methods lead to the same results and are in good agreement with existing quantum Monte Carlo calculations performed at unitarity and, in one dimension, with the known exact solution. Surprisingly, our results suggest that, even at unitarity, the effect of interactions is fairly weak and can be accurately described using single particle-hole excitations. We also consider the case of unequal masses.
Many-body decoherence dynamics and optimized operation of a single-photon switch
NASA Astrophysics Data System (ADS)
Murray, C. R.; Gorshkov, A. V.; Pohl, T.
2016-09-01
We develop a theoretical framework to characterize the decoherence dynamics due to multi-photon scattering in an all-optical switch based on Rydberg atom induced nonlinearities. By incorporating the knowledge of this decoherence process into optimal photon storage and retrieval strategies, we establish optimized switching protocols for experimentally relevant conditions, and evaluate the corresponding limits in the achievable fidelities. Based on these results we work out a simplified description that reproduces recent experiments (Nat. Commun. 7 12480) and provides a new interpretation in terms of many-body decoherence involving multiple incident photons and multiple gate excitations forming the switch. Aside from offering insights into the operational capacity of realistic photon switching capabilities, our work provides a complete description of spin wave decoherence in a Rydberg quantum optics setting, and has immediate relevance to a number of further applications employing photon storage in Rydberg media.
Quantum system identification.
Burgarth, Daniel; Yuasa, Kazuya
2012-02-24
The aim of quantum system identification is to estimate the ingredients inside a black box, in which some quantum-mechanical unitary process takes place, by just looking at its input-output behavior. Here we establish a basic and general framework for quantum system identification, that allows us to classify how much knowledge about the quantum system is attainable, in principle, from a given experimental setup. We show that controllable closed quantum systems can be estimated up to unitary conjugation. Prior knowledge on some elements of the black box helps the system identification. We present an example in which a Bell measurement is more efficient to identify the system. When the topology of the system is known, the framework enables us to establish a general criterion for the estimability of the coupling constants in its Hamiltonian.
Many-body approach for quartet condensation in strong coupling
Sogo, Takaaki; Roepke, Gerd; Schuck, Peter
2010-06-15
The theory for condensation of higher fermionic clusters is developed. Fully self-consistent nonlinear equations for the quartet order parameter in strongly coupled fermionic systems are established and solved. The breakdown of the quasiparticle picture is pointed out. Derivation of numerically tractable approximation is described. The momentum projected factorization ansatz for the order parameter is employed. As a definite example, the condensation of alpha particles in nuclear matter is worked out.
Itinerant type many-body theories for photo-induced structural phase transitions
NASA Astrophysics Data System (ADS)
Nasu, Keiichiro
2004-09-01
Itinerant type quantum many-body theories for photo-induced structural phase transitions (PSPTs) are reviewed in close connection with various recent experimental results related to this new optical phenomenon. There are two key concepts: the hidden multi-stability of the ground state, and the proliferations of optically excited states. Taking the ionic (I) rarr neutral (N) phase transition in the organic charge transfer (CT) crystal, TTF-CA, as a typical example for this type of transition, we, at first, theoretically show an adiabatic path which starts from CT excitons in the I-phase, but finally reaches an N-domain with a macroscopic size. In connection with this I-N transition, the concept of the initial condition sensitivity is also developed so as to clarify experimentally observed nonlinear characteristics of this material. In the next, using a more simplified model for the many-exciton system, we theoretically study the early time quantum dynamics of the exciton proliferation, which finally results in the formation of a domain with a large number of excitons. For this purpose, we derive a stepwise iterative equation to describe the exciton proliferation, and clarify the origin of the initial condition sensitivity. Possible differences between a photo-induced nonequilibrium phase and an equilibrium phase at high temperatures are also clarified from general and conceptional points of view, in connection with recent experiments on the photo-induced phase transition in an organo-metallic complex crystal. It will be shown that the photo-induced phase can make a new interaction appear as a broken symmetry only in this phase, even when this interaction is almost completely hidden in all the equilibrium phases, such as the ground state and other high-temperature phases. The relation between the photo-induced nonequilibrium phase and the hysteresis induced nonequilibrium one is also qualitatively discussed. We will be concerned with a macroscopic parity violation
The relativistic many body problem with an oscillator interaction
NASA Technical Reports Server (NTRS)
Moshinsky, Marcos
1995-01-01
We start with the total energy E for a system of three scalar relativistic particles that, because of Einstein's relation, will have square roots of functions of the momenta. By taking powers of this relation, we finally get a fourth degree polynomial in E(exp 2), where the square roots have disappeared, and which we can convert into a type of Schroedinger equation. To be in the center of mass frame we pass to Jocobi momenta and then replace them by creation and annihilation operators. We thus get an equation in terms of the generators of a U(2) group, which, in principle, we can solve in an elementary way. Finally, we rewrite our equation in a Poincare invariant form.
Many-body localization and thermalization: Insights from the entanglement spectrum
NASA Astrophysics Data System (ADS)
Geraedts, Scott D.; Nandkishore, Rahul; Regnault, Nicolas
2016-05-01
We study the entanglement spectrum in the many-body localizing and thermalizing phases of one- and two-dimensional Hamiltonian systems and periodically driven "Floquet" systems. We focus on the level statistics of the entanglement spectrum as obtained through numerical diagonalization, finding structure beyond that revealed by more limited measures such as entanglement entropy. In the thermalizing phase the entanglement spectrum obeys level statistics governed by an appropriate random matrix ensemble. For Hamiltonian systems this can be viewed as evidence in favor of a strong version of the eigenstate thermalization hypothesis (ETH). Similar results are also obtained for Floquet systems, where they constitute a result "beyond ETH" and show that the corrections to ETH governing the Floquet entanglement spectrum have statistical properties governed by a random matrix ensemble. The particular random matrix ensemble governing the Floquet entanglement spectrum depends on the symmetries of the Floquet drive and therefore can depend on the choice of origin of time. In the many-body localized phase the entanglement spectrum is also found to show level repulsion, following a semi-Poisson distribution (in contrast to the energy spectrum, which follows a Poisson distribution). This semi-Poisson distribution is found to come mainly from states at high entanglement energies. The observed level repulsion occurs only for interacting localized phases. We also demonstrate that equivalent results can be obtained by calculating with a single typical eigenstate or by averaging over a microcanonical energy window, a surprising result in the localized phase. This discovery of new structure in the pattern of entanglement of localized and thermalizing phases may open up new lines of attack on many-body localization, thermalization, and the localization transition.
Solvable Many-Body Models of Goldfish Type with One-, Two- and Three-Body Forces
NASA Astrophysics Data System (ADS)
Bihun, Oksana; Calogero, Francesco
2013-10-01
The class of solvable many-body problems ''of goldfish type'' is extended by including (the additional presence of) three-body forces. The solvable N-body problems thereby identified are characterized by Newtonian equations of motion featuring 19 arbitrary ''coupling constants''. Restrictions on these constants are identified which cause these systems - or appropriate variants of them - to be isochronous or asymptotically isochronous, i.e. all their solutions to be periodic with a fixed period (independent of the initial data) or to have this property up to contributions vanishing exponentially as t→ ∞.
Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge
NASA Astrophysics Data System (ADS)
Li, Xiaopeng; Pixley, J. H.; Deng, Dong-Ling; Ganeshan, Sriram; Das Sarma, S.
2016-05-01
We study the many-body localization aspects of single-particle mobility edges in fermionic systems. We investigate incommensurate lattices and random disorder Anderson models. Many-body localization and quantum nonergodic properties are studied by comparing entanglement and thermal entropy, and by calculating the scaling of subsystem particle-number fluctuations, respectively. We establish a nonergodic extended phase as a generic intermediate phase (between purely ergodic extended and nonergodic localized phases) for the many-body localization transition of noninteracting fermions where the entanglement entropy manifests a volume law (hence, "extended"), but there are large fluctuations in the subsystem particle numbers (hence, "nonergodic"). Based on the numerical results, we expect such an intermediate phase scenario may continue to hold even for the many-body localization in the presence of interactions as well. We find for many-body fermionic states in noninteracting one-dimensional Aubry-André and three-dimensional Anderson models that the entanglement entropy density and the normalized particle-number fluctuation have discontinuous jumps at the localization transition where the entanglement entropy is subthermal but obeys the "volume law." In the vicinity of the localization transition, we find that both the entanglement entropy and the particle-number fluctuations obey a single parameter scaling based on the diverging localization length. We argue using numerical and theoretical results that such a critical scaling behavior should persist for the interacting many-body localization problem with important observable consequences. Our work provides persuasive evidence in favor of there being two transitions in many-body systems with single-particle mobility edges, the first one indicating a transition from the purely localized nonergodic many-body localized phase to a nonergodic extended many-body metallic phase, and the second one being a transition
Quantum statistical ensemble for emissive correlated systems.
Shakirov, Alexey M; Shchadilova, Yulia E; Rubtsov, Alexey N
2016-06-01
Relaxation dynamics of complex quantum systems with strong interactions towards the steady state is a fundamental problem in statistical mechanics. The steady state of subsystems weakly interacting with their environment is described by the canonical ensemble which assumes the probability distribution for energy to be of the Boltzmann form. The emergence of this probability distribution is ensured by the detailed balance of the transitions induced by the interaction with the environment. Here we consider relaxation of an open correlated quantum system brought into contact with a reservoir in the vacuum state. We refer to such a system as emissive since particles irreversibly evaporate into the vacuum. The steady state of the system is a statistical mixture of the stable eigenstates. We found that, despite the absence of the detailed balance, the stationary probability distribution over these eigenstates is of the Boltzmann form in each N-particle sector. A quantum statistical ensemble corresponding to the steady state is characterized by different temperatures in the different sectors, in contrast to the Gibbs ensemble. We investigate the transition rates between the eigenstates to understand the emergence of the Boltzmann distribution and find their exponential dependence on the transition energy. We argue that this property of transition rates is generic for a wide class of emissive quantum many-body systems. PMID:27415223
Many-body theory of electrical, thermal and optical response of molecular heterojunctions
NASA Astrophysics Data System (ADS)
Bergfield, Justin Phillip
In this work, we develop a many-body theory of electronic transport through single molecule junctions based on nonequilibrium Green's functions (NEGFs). The central quantity of this theory is the Coulomb self-energy matrix of the junction SigmaC. SigmaC is evaluated exactly in the sequential-tunneling limit, and the correction due to finite lead-molecule tunneling is evaluated using a conserving approximation based on diagrammatic perturbation theory on the Keldysh contour. In this way, tunneling processes are included to infinite order, meaning that any approximation utilized is a truncation in the physical processes considered rather than in the order of those processes. Our theory reproduces the key features of both the Coulomb blockade and coherent transport regimes simultaneously in a single unified theory. Nonperturbative effects of intramolecular correlations are included, which are necessary to accurately describe the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap, essential for a quantitative theory of transport. This work covers four major topics related to transport in single-molecule junctions. First, we use our many-body theory to calculate the nonlinear electrical response of the archetypal Au-1,4-benzenedithiol-Au junction and find irregularly shaped 'molecular diamonds' which have been experimentally observed in some larger molecules but which are inaccessible to existing theoretical approaches. Next, we extend our theory to include heat transport and develop an exact expression for the heat current in an interacting nanostructure. Using this result, we discover that quantum coherence can strongly enhance the thermoelectric response of a device, a result with a number of technological applications. We then develop the formalism to include multi-orbital lead-molecule contacts and multi-channel leads, both of which strongly affect the observable transport. Lastly, we include a dynamic screening correction to
Optimal control of complex atomic quantum systems
NASA Astrophysics Data System (ADS)
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-10-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-01-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688
Entanglement in algebraic quantum mechanics: Majorana fermion systems
NASA Astrophysics Data System (ADS)
Benatti, F.; Floreanini, R.
2016-07-01
Many-body entanglement is studied within the algebraic approach to quantum physics in systems made of Majorana fermions. In this framework, the notion of separability stems from partitions of the algebra of observables and properties of the associated correlation functions, rather than on particle tensor products. This allows a complete characterization of non-separable Majorana fermion states to be obtained. These results may have direct application in quantum metrology: using Majorana systems, sub-shot-noise accuracy in parameter estimations can be achieved without preliminary resource-consuming, state entanglement operations.
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Many-Body Localization in One Dimension as a Dynamical Renormalization Group Fixed Point
NASA Astrophysics Data System (ADS)
Vosk, Ronen; Altman, Ehud
2013-02-01
We formulate a dynamical real space renormalization group (RG) approach to describe the time evolution of a random spin-1/2 chain, or interacting fermions, initialized in a state with fixed particle positions. Within this approach we identify a many-body localized state of the chain as a dynamical infinite randomness fixed point. Near this fixed point our method becomes asymptotically exact, allowing analytic calculation of time dependent quantities. In particular, we explain the striking universal features in the growth of the entanglement seen in recent numerical simulations: unbounded logarithmic growth delayed by a time inversely proportional to the interaction strength. This is in striking contrast to the much slower entropy growth as loglogt found for noninteracting fermions with bond disorder. Nonetheless, even the interacting system does not thermalize in the long time limit. We attribute this to an infinite set of approximate integrals of motion revealed in the course of the RG flow, which become asymptotically exact conservation laws at the fixed point. Hence we identify the many-body localized state with an emergent generalized Gibbs ensemble.
Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.
Desgranges, Caroline; Delhommelle, Jerome
2015-11-10
Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids. PMID:26574329
Many-Body Effects on the Thermodynamics of Fluids, Mixtures, and Nanoconfined Fluids.
Desgranges, Caroline; Delhommelle, Jerome
2015-11-10
Using expanded Wang-Landau simulations, we show that taking into account the many-body interactions results in sharp changes in the grand-canonical partition functions of single-component systems, binary mixtures, and nanoconfined fluids. The many-body contribution, modeled with a 3-body Axilrod-Teller-Muto term, results in shifts toward higher chemical potentials of the phase transitions from low-density phases to high-density phases and accounts for deviations of more than, e.g., 20% of the value of the partition function for a single-component liquid. Using the statistical mechanics formalism, we analyze how this contribution has a strong impact on some properties (e.g., pressure, coexisting densities, and enthalpy) and a moderate impact on others (e.g., Gibbs or Helmholtz free energies). We also characterize the effect of the 3-body terms on adsorption isotherms and adsorption thermodynamic properties, thereby providing a full picture of the effect of the 3-body contribution on the thermodynamics of nanoconfined fluids.
Controlling many-body states by the electric-field effect in a two-dimensional material.
Li, L J; O'Farrell, E C T; Loh, K P; Eda, G; Özyilmaz, B; Castro Neto, A H
2016-01-14
To understand the complex physics of a system with strong electron-electron interactions, the ideal is to control and monitor its properties while tuning an external electric field applied to the system (the electric-field effect). Indeed, complete electric-field control of many-body states in strongly correlated electron systems is fundamental to the next generation of condensed matter research and devices. However, the material must be thin enough to avoid shielding of the electric field in the bulk material. Two-dimensional materials do not experience electrical screening, and their charge-carrier density can be controlled by gating. Octahedral titanium diselenide (1T-TiSe2) is a prototypical two-dimensional material that reveals a charge-density wave (CDW) and superconductivity in its phase diagram, presenting several similarities with other layered systems such as copper oxides, iron pnictides, and crystals of rare-earth elements and actinide atoms. By studying 1T-TiSe2 single crystals with thicknesses of 10 nanometres or less, encapsulated in two-dimensional layers of hexagonal boron nitride, we achieve unprecedented control over the CDW transition temperature (tuned from 170 kelvin to 40 kelvin), and over the superconductivity transition temperature (tuned from a quantum critical point at 0 kelvin up to 3 kelvin). Electrically driving TiSe2 over different ordered electronic phases allows us to study the details of the phase transitions between many-body states. Observations of periodic oscillations of magnetoresistance induced by the Little-Parks effect show that the appearance of superconductivity is directly correlated with the spatial texturing of the amplitude and phase of the superconductivity order parameter, corresponding to a two-dimensional matrix of superconductivity. We infer that this superconductivity matrix is supported by a matrix of incommensurate CDW states embedded in the commensurate CDW states. Our results show that spatially
Controlling many-body states by the electric-field effect in a two-dimensional material
NASA Astrophysics Data System (ADS)
Li, L. J.; O'Farrell, E. C. T.; Loh, K. P.; Eda, G.; Özyilmaz, B.; Castro Neto, A. H.
2016-01-01
To understand the complex physics of a system with strong electron-electron interactions, the ideal is to control and monitor its properties while tuning an external electric field applied to the system (the electric-field effect). Indeed, complete electric-field control of many-body states in strongly correlated electron systems is fundamental to the next generation of condensed matter research and devices. However, the material must be thin enough to avoid shielding of the electric field in the bulk material. Two-dimensional materials do not experience electrical screening, and their charge-carrier density can be controlled by gating. Octahedral titanium diselenide (1T-TiSe2) is a prototypical two-dimensional material that reveals a charge-density wave (CDW) and superconductivity in its phase diagram, presenting several similarities with other layered systems such as copper oxides, iron pnictides, and crystals of rare-earth elements and actinide atoms. By studying 1T-TiSe2 single crystals with thicknesses of 10 nanometres or less, encapsulated in two-dimensional layers of hexagonal boron nitride, we achieve unprecedented control over the CDW transition temperature (tuned from 170 kelvin to 40 kelvin), and over the superconductivity transition temperature (tuned from a quantum critical point at 0 kelvin up to 3 kelvin). Electrically driving TiSe2 over different ordered electronic phases allows us to study the details of the phase transitions between many-body states. Observations of periodic oscillations of magnetoresistance induced by the Little-Parks effect show that the appearance of superconductivity is directly correlated with the spatial texturing of the amplitude and phase of the superconductivity order parameter, corresponding to a two-dimensional matrix of superconductivity. We infer that this superconductivity matrix is supported by a matrix of incommensurate CDW states embedded in the commensurate CDW states. Our results show that spatially
Controlling many-body states by the electric-field effect in a two-dimensional material.
Li, L J; O'Farrell, E C T; Loh, K P; Eda, G; Özyilmaz, B; Castro Neto, A H
2016-01-14
To understand the complex physics of a system with strong electron-electron interactions, the ideal is to control and monitor its properties while tuning an external electric field applied to the system (the electric-field effect). Indeed, complete electric-field control of many-body states in strongly correlated electron systems is fundamental to the next generation of condensed matter research and devices. However, the material must be thin enough to avoid shielding of the electric field in the bulk material. Two-dimensional materials do not experience electrical screening, and their charge-carrier density can be controlled by gating. Octahedral titanium diselenide (1T-TiSe2) is a prototypical two-dimensional material that reveals a charge-density wave (CDW) and superconductivity in its phase diagram, presenting several similarities with other layered systems such as copper oxides, iron pnictides, and crystals of rare-earth elements and actinide atoms. By studying 1T-TiSe2 single crystals with thicknesses of 10 nanometres or less, encapsulated in two-dimensional layers of hexagonal boron nitride, we achieve unprecedented control over the CDW transition temperature (tuned from 170 kelvin to 40 kelvin), and over the superconductivity transition temperature (tuned from a quantum critical point at 0 kelvin up to 3 kelvin). Electrically driving TiSe2 over different ordered electronic phases allows us to study the details of the phase transitions between many-body states. Observations of periodic oscillations of magnetoresistance induced by the Little-Parks effect show that the appearance of superconductivity is directly correlated with the spatial texturing of the amplitude and phase of the superconductivity order parameter, corresponding to a two-dimensional matrix of superconductivity. We infer that this superconductivity matrix is supported by a matrix of incommensurate CDW states embedded in the commensurate CDW states. Our results show that spatially
Particle-hole configuration interaction and many-body perturbation theory: Application to Hg+
NASA Astrophysics Data System (ADS)
Berengut, J. C.
2016-07-01
The combination of configuration interaction and many-body perturbation theory methods is extended to nonperturbatively include configurations with electron holes below the designated Fermi level, allowing us to treat systems where holes play an important role. For example, the method can treat valence-hole systems like Ir17 +, particle-hole excitations in noble gases, and difficult transitions such as the 6 s →5 d-16 s2 optical clock transition in Hg+. We take the latter system as our test case for the method and obtain very good accuracy (˜1 %) for the low-lying transition energies. The α dependence of these transitions is calculated and used to reinterpret the existing best laboratory limits on the time dependence of the fine-structure constant.
Demerdash, Omar; Head-Gordon, Teresa
2016-08-01
We analyze convergence of energies and forces for the AMOEBA classical polarizable model when evaluated as a many-body expansion (MBE) against the corresponding N-body parent potential in the context of a condensed-phase water simulation. This is in contrast to most MBE formulations based on quantum mechanics, which focus only on convergence of energies for gas-phase clusters. Using a single water molecule as a definition of a body, we find that truncation of the MBE at third order, 3-AMOEBA, captures direct polarization exactly and yields apparent good convergence of the mutual polarization energy. However, it renders large errors in the magnitude of polarization forces and requires at least fourth-order terms in the MBE to converge toward the parent potential gradient values. We can improve the convergence of polarization forces for 3-AMOEBA by embedding the polarization response of dimers and trimers within a complete representation of the fixed electrostatics of the entire system. We show that the electrostatic embedding formalism helps identify the specific configurations involving linear hydrogen-bonding arrangements that are poorly convergent at the 3-body level. By extending the definition of a body to be a large water cluster, we can reduce errors in forces to yield an approximate polarization model that is up to 10 times faster than the parent potential. The 3-AMOEBA model offers new ways to investigate how the properties of bulk water depend on the degree of connectivity in the liquid. PMID:27405002
NASA Astrophysics Data System (ADS)
Bäppler, Stefanie A.; Plasser, Felix; Wormit, Michael; Dreuw, Andreas
2014-11-01
Exciton sizes and electron-hole binding energies, which are central properties of excited states in extended systems and crucial to the design of modern electronic devices, are readily defined within a quasiparticle framework but are quite challenging to understand in the molecular-orbital picture. The intent of this work is to bridge this gap by providing a general way of extracting the exciton wave function out of a many-body wave function obtained by a quantum chemical excited-state computation. This methodology, which is based on the one-particle transition density matrix, is implemented within the ab initio algebraic diagrammatic construction scheme for the polarization propagator and specifically the evaluation of exciton sizes, i.e., dynamic charge separation distances, is considered. A number of examples are presented. For stacked dimers it is shown that the exciton size for charge separated states corresponds to the intermolecular separation, while it only depends on the monomer size for locally excited states or Frenkel excitons. In the case of conjugated organic polymers, the tool is applied to analyze exciton structure and dynamic charge separation. Furthermore, it is discussed how the methodology may be used for the construction of a charge-transfer diagnostic for time-dependent density-functional theory.
New many-body problems in the plane with periodic solutions
NASA Astrophysics Data System (ADS)
Gómez-Ullate, D.; Hone, A. N. W.; Sommacal, M.
2004-02-01
In this paper we discuss a family of toy models for many-body interactions including velocity-dependent forces. By generalizing a construction due to Calogero, we obtain a class of N-body problems in the plane which have periodic orbits for a large class of initial conditions. The two- and three-body cases (N=2, 3) are exactly solvable, with all solutions being periodic, and we present their explicit solutions. For Ngeq4 Painlevé analysis indicates that the system should not be integrable, and some periodic and non-periodic trajectories are calculated numerically. The construction can be generalized to a broad class of systems, and the mechanism which describes the transition to orbits with higher periods, and eventually to aperiodic or even chaotic orbits, could be present in more realistic models with a mixed phase space. This scenario is different from the onset of chaos by a sequence of Hopf bifurcations.
Periodically driven interacting electrons in one dimension: Many-body Floquet approach
NASA Astrophysics Data System (ADS)
Puviani, M.; Manghi, F.
2016-10-01
We propose a method to study the time evolution of correlated electrons driven by a harmonic perturbation. Combining Floquet formalism to include the time-dependent field and cluster perturbation theory to solve the many-body problem in the presence of short-range correlations, we treat the electron double dressing, by photons and by e -e interactions, on the same footing. We apply the method to an extended Hubbard chain at half occupation, and we show that in the regime of small field frequency and for given values of field strength, the zero-mode Floquet band is no longer gapped and the system recovers a metallic state. Our results are indicative of an omnipresent mechanism for insulator-to-metal transitions in one-dimensional systems.
An exacting transition probability measurement - a direct test of atomic many-body theories.
Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas
2016-01-01
A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties. PMID:27432734
Many-body physics in the classical-field description of a degenerate Bose gas
Wright, T. M.; Davis, M. J.; Proukakis, N. P.
2011-08-15
The classical-field formalism has been widely applied in the calculation of normal correlation functions, and the characterization of condensation, in finite-temperature Bose gases. Here we discuss the extension of this method to the calculation of more general correlations, including the so-called anomalous correlations of the field, without recourse to symmetry-breaking assumptions. Our method is based on the introduction of U(1)-symmetric classical-field variables analogous to the modified quantum ladder operators of number-conserving approaches to the degenerate Bose gas, and allows us to rigorously quantify the anomalous and non-Gaussian character of the field fluctuations. We compare our results for anomalous correlation functions with the predictions of mean-field theories, and demonstrate that the nonlinear classical-field dynamics incorporate a full description of many-body processes which modify the effective mean-field potentials experienced by condensate and noncondensate atoms. We discuss the role of these processes in shaping the condensate mode, and thereby demonstrate the consistency of the Penrose-Onsager definition of the condensate orbital in the classical-field equilibrium. We consider the contribution of various noncondensate-field correlations to the overall suppression of density fluctuations and interactions in the field, and demonstrate the distinct roles of phase and density fluctuations in the transition of the field to the normal phase.
An exacting transition probability measurement - a direct test of atomic many-body theories
Dutta, Tarun; De Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas
2016-01-01
A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties. PMID:27432734
Relativistic and Field Theoretic Effects in the Nuclear Many-Body Problem.
NASA Astrophysics Data System (ADS)
Poorakkiat, Chaisingh
Field theoretic effects of a nucleon of an oxygen -17 have been studied. A computational scheme involving sigma and omega mesons has been set up. It employs the Furry picture of quantum field theory along with an introduction of vector and scalar Woods-Saxon potentials. Use of an adiabatic switching on an interaction leads to an energy shift in form of a symmetric Gell-Mann and Low formula which contains the S matrix. The S matrix allows an expansion in terms of Feynman diagrams which in turn enables us to write a perturbative series analogous to that in many-body perturbation theory. Retardation effects and the first-order energy correction E_{1} of two valence states, 1d_{5/2} and 2s_{1/2}, have been calculated from the diagrams. The self-energy of the 1s _{1/2} state is investigated along with the use of a renormalization technique. The retardation effects are small in the order of 10 kev while the self-energy and E_{1} corrections are big in the order of 700 and 10 Mev respectively.
An exacting transition probability measurement - a direct test of atomic many-body theories
NASA Astrophysics Data System (ADS)
Dutta, Tarun; de Munshi, Debashis; Yum, Dahyun; Rebhi, Riadh; Mukherjee, Manas
2016-07-01
A new protocol for measuring the branching fraction of hydrogenic atoms with only statistically limited uncertainty is proposed and demonstrated for the decay of the P3/2 level of the barium ion, with precision below 0.5%. Heavy hydrogenic atoms like the barium ion are test beds for fundamental physics such as atomic parity violation and they also hold the key to understanding nucleo-synthesis in stars. To draw definitive conclusion about possible physics beyond the standard model by measuring atomic parity violation in the barium ion it is necessary to measure the dipole transition probabilities of low-lying excited states with a precision better than 1%. Furthermore, enhancing our understanding of the barium puzzle in barium stars requires branching fraction data for proper modelling of nucleo-synthesis. Our measurements are the first to provide a direct test of quantum many-body calculations on the barium ion with a precision below one percent and more importantly with no known systematic uncertainties. The unique measurement protocol proposed here can be easily extended to any decay with more than two channels and hence paves the way for measuring the branching fractions of other hydrogenic atoms with no significant systematic uncertainties.
The fixed hypernode method for the solution of the many body Schroedinger equation
Pederiva, F; Kalos, M H; Reboredo, F; Bressanini, D; Guclu, D; Colletti, L; Umrigar, C J
2006-01-24
We propose a new scheme for an approximate solution of the Schroedinger equation for a many-body interacting system, based on the use of pairs of walkers. Trial wavefunctions for these pairs are combinations of standard symmetric and antisymmetric wavefunctions. The method consists in applying a fixed-node restriction in the enlarged space, and computing the energy of the antisymmetric state from the knowledge of the exact ground state energy for the symmetric state. We made two conjectures: first, that this fixed-hypernode energy is an upper bound to the true fermion energy; second that this bound would necessarily be lower than the usual fixed-node energy using the same antisymmetric trial function. The first conjecture is true, and is proved in this paper. The second is not, and numerical and analytical counterexamples are given. The question of whether the fixed-hypernode energy can be better than the usual bound remains open.
NASA Astrophysics Data System (ADS)
Karrasch, C.; Moore, J. E.
2015-09-01
We study the interplay of interactions and disorder in a one-dimensional fermion lattice coupled adiabatically to infinite reservoirs. We employ both the functional renormalization group (FRG) as well as matrix product state techniques, which serve as an accurate benchmark for small systems. Using the FRG, we compute the length- and temperature-dependence of the conductance averaged over 104 samples for lattices as large as 105 sites. We identify regimes in which non-Ohmic power law behavior can be observed and demonstrate that the corresponding exponents can be understood by adapting earlier predictions obtained perturbatively for disordered Luttinger liquids. In the presence of both disorder and isolated impurities, the conductance has a universal single-parameter scaling form. This lays the groundwork for an application of the functional renormalization group to the realm of many-body localization.
NASA Astrophysics Data System (ADS)
Zhang, Liangsheng; Zhao, Bo; Devakul, Trithep; Huse, David A.
2016-06-01
We present a simplified strong-randomness renormalization group (RG) that captures some aspects of the many-body localization (MBL) phase transition in generic disordered one-dimensional systems. This RG can be formulated analytically and is mathematically equivalent to a domain coarsening model that has been previously solved. The critical fixed-point distribution and critical exponents (that satisfy the Chayes inequality) are thus obtained analytically or to numerical precision. This reproduces some, but not all, of the qualitative features of the MBL phase transition that are indicated by previous numerical work and approximate RG studies: our RG might serve as a "zeroth-order" approximation for future RG studies. One interesting feature that we highlight is that the rare Griffiths regions are fractal. For thermal Griffiths regions within the MBL phase, this feature might be qualitatively correctly captured by our RG. If this is correct beyond our approximations, then these Griffiths effects are stronger than has been previously assumed.
Half-metallic ferromagnets: From band structure to many-body effects
NASA Astrophysics Data System (ADS)
Katsnelson, M. I.; Irkhin, V. Yu.; Chioncel, L.; Lichtenstein, A. I.; de Groot, R. A.
2008-04-01
A review of new developments in theoretical and experimental electronic-structure investigations of half-metallic ferromagnets (HMFs) is presented. Being semiconductors for one spin projection and metals for another, these substances are promising magnetic materials for applications in spintronics (i.e., spin-dependent electronics). Classification of HMFs by the peculiarities of their electronic structure and chemical bonding is discussed. The effects of electron-magnon interaction in HMFs and their manifestations in magnetic, spectral, thermodynamic, and transport properties are considered. Special attention is paid to the appearance of nonquasiparticle states in the energy gap, which provide an instructive example of essentially many-body features in the electronic structure. State-of-the-art electronic calculations for correlated d -systems are discussed, and results for specific HMFs (Heusler alloys, zinc-blende structure compounds, CrO2 , and Fe3O4 ) are reviewed.
Electronic excitations of bulk LiCl from many-body perturbation theory
Jiang, Yun-Feng; Wang, Neng-Ping; Rohlfing, Michael
2013-12-07
We present the quasiparticle band structure and the optical excitation spectrum of bulk LiCl, using many-body perturbation theory. Density-functional theory is used to calculate the ground-state geometry of the system. The quasiparticle band structure is calculated within the GW approximation. Taking the electron-hole interaction into consideration, electron-hole pair states and optical excitations are obtained by solving the Bethe-Salpeter equation for the electron-hole two-particle Green function. The calculated band gap is 9.5 eV, which is in good agreement with the experimental result of 9.4 eV. And the calculated optical absorption spectrum, which contains an exciton peak at 8.8 eV and a resonant-exciton peak at 9.8 eV, is also in good agreement with experimental data.
Observation of many-body localization of interacting fermions in a quasirandom optical lattice
NASA Astrophysics Data System (ADS)
Schreiber, Michael; Hodgman, Sean S.; Bordia, Pranjal; Lüschen, Henrik P.; Fischer, Mark H.; Vosk, Ronen; Altman, Ehud; Schneider, Ulrich; Bloch, Immanuel
2015-08-01
Many-body localization (MBL), the disorder-induced localization of interacting particles, signals a breakdown of conventional thermodynamics because MBL systems do not thermalize and show nonergodic time evolution. We experimentally observed this nonergodic evolution for interacting fermions in a one-dimensional quasirandom optical lattice and identified the MBL transition through the relaxation dynamics of an initially prepared charge density wave. For sufficiently weak disorder, the time evolution appears ergodic and thermalizing, erasing all initial ordering, whereas above a critical disorder strength, a substantial portion of the initial ordering persists. The critical disorder value shows a distinctive dependence on the interaction strength, which is in agreement with numerical simulations. Our experiment paves the way to further detailed studies of MBL, such as in noncorrelated disorder or higher dimensions.
A charge optimized many-body potential for titanium nitride (TiN).
Cheng, Y-T; Liang, T; Martinez, J A; Phillpot, S R; Sinnott, S B
2014-07-01
This work presents a new empirical, variable charge potential for TiN systems in the charge-optimized many-body potential framework. The potential parameters were determined by fitting them to experimental data for the enthalpy of formation, lattice parameters, and elastic constants of rocksalt structured TiN. The potential does a good job of describing the fundamental physical properties (defect formation and surface energies) of TiN relative to the predictions of first-principles calculations. This potential is used in classical molecular dynamics simulations to examine the interface of fcc-Ti(0 0 1)/TiN(0 0 1) and to characterize the adsorption of oxygen atoms and molecules on the TiN(0 0 1) surface. The results indicate that the potential is well suited to model TiN thin films and to explore the chemistry associated with their oxidation.
Many-body microhydrodynamics of colloidal particles with active boundary layers
NASA Astrophysics Data System (ADS)
Singh, Rajesh; Ghose, Somdeb; Adhikari, R.
2015-06-01
Colloidal particles with active boundary layers—regions surrounding the particles where non-equilibrium processes produce large velocity gradients—are common in many physical, chemical and biological contexts. The velocity or stress at the edge of the boundary layer determines the exterior fluid flow and, hence, the many-body interparticle hydrodynamic interaction. Here, we present a method to compute the many-body hydrodynamic interaction between N spherical active particles induced by their exterior microhydrodynamic flow. First, we use a boundary integral representation of the Stokes equation to eliminate bulk fluid degrees of freedom. Then, we expand the boundary velocities and tractions of the integral representation in an infinite-dimensional basis of tensorial spherical harmonics and, on enforcing boundary conditions in a weak sense on the surface of each particle, obtain a system of linear algebraic equations for the unknown expansion coefficients. The truncation of the infinite series, fixed by the degree of accuracy required, yields a finite linear system that can be solved accurately and efficiently by iterative methods. The solution linearly relates the unknown rigid body motion to the known values of the expansion coefficients, motivating the introduction of propulsion matrices. These matrices completely characterize hydrodynamic interactions in active suspensions just as mobility matrices completely characterize hydrodynamic interactions in passive suspensions. The reduction in the dimensionality of the problem, from a three-dimensional partial differential equation to a two-dimensional integral equation, allows for dynamic simulations of hundreds of thousands of active particles on multi-core computational architectures. In our simulation of 104 active colloidal particle in a harmonic trap, we find that the necessary and sufficient ingredients to obtain steady-state convective currents, the so-called ‘self-assembled pump’, are (a) one
The dimensionality reduction at surfaces as a playground for many-body and correlation effects
NASA Astrophysics Data System (ADS)
Tejeda, A.; Michel, E. G.; Mascaraque, A.
2013-03-01
Low-dimensional systems have always deserved attention due to the peculiarity of their physics, which is different from or even at odds with three-dimensional expectations. This is precisely the case for many-body effects, as electron-electron correlation or electron-phonon coupling are behind many intriguing problems in condensed matter physics. These interesting phenomena at low dimensions can be studied in one of the paradigms of two dimensionality—the surface of crystals. The maturity of today's surface science techniques allows us to perform thorough experimental studies that can be complemented by the current strength of state-of-the-art calculations. Surfaces are thus a natural two-dimensional playground for studying correlation and many-body effects, which is precisely the object of this special section. This special section presents a collection of eight invited articles, giving an overview of the current status of selected systems, promising techniques and theoretical approaches for studying many-body effects at surfaces and low-dimensional systems. The first article by Hofmann investigates electron-phonon coupling in quasi-free-standing graphene by decoupling graphene from two different substrates with different intercalating materials. The following article by Kirschner deals with the study of NiO films by electron pair emission, a technique particularly well-adapted for studying high electron correlation. Bovensiepen investigates electron-phonon coupling via the femtosecond time- and angle-resolved photoemission spectroscopy technique. The next article by Malterre analyses the phase diagram of alkalis on Si(111):B and studies the role of many-body physics. Biermann proposes an extended Hubbard model for the series of C, Si, Sn and Pb adatoms on Si(111) and obtains the inter-electronic interaction parameters by first principles. Continuing with the theoretical studies, Bechstedt analyses the influence of on-site electron correlation in insulating
Applications of fidelity measures to complex quantum systems.
Wimberger, Sandro
2016-06-13
We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space. PMID:27140967
Propagation of disturbances in degenerate quantum systems
NASA Astrophysics Data System (ADS)
Chancellor, Nicholas; Haas, Stephan
2011-07-01
Disturbances in gapless quantum many-body models are known to travel an unlimited distance throughout the system. Here, we explore this phenomenon in finite clusters with degenerate ground states. The specific model studied here is the one-dimensional J1-J2 Heisenberg Hamiltonian at and close to the Majumdar-Ghosh point. Both open and periodic boundary conditions are considered. Quenches are performed using a local magnetic field. The degenerate Majumdar-Ghosh ground state allows disturbances which carry quantum entanglement to propagate throughout the system and thus dephase the entire system within the degenerate subspace. These disturbances can also carry polarization, but not energy, as all energy is stored locally. The local evolution of the part of the system where energy is stored drives the rest of the system through long-range entanglement. We also examine approximations for the ground state of this Hamiltonian in the strong field limit and study how couplings away from the Majumdar-Ghosh point affect the propagation of disturbances. We find that even in the case of approximate degeneracy, a disturbance can be propagated throughout a finite system.
Quantum iterated function systems.
Łoziński, Artur; Zyczkowski, Karol; Słomczyński, Wojciech
2003-10-01
An iterated function system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum IFS (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting, a QIFS consists of completely positive maps acting in the space of density operators. This formalism is designed to describe certain problems of nonunitary quantum dynamics. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.
Curtright, Thomas; Mezincescu, Luca
2007-09-15
Models of PT symmetric quantum mechanics provide examples of biorthogonal quantum systems. The latter incorporate all the structure of PT symmetric models, and allow for generalizations, especially in situations where the PT construction of the dual space fails. The formalism is illustrated by a few exact results for models of the form H=(p+{nu}){sup 2}+{sigma}{sub k>0}{mu}{sub k} exp(ikx). In some nontrivial cases, equivalent Hermitian theories are obtained and shown to be very simple: They are just free (chiral) particles. Field theory extensions are briefly considered.
Exact many-body ground states of a spin-1 Bose gas in Tonks-Girardeau limit
NASA Astrophysics Data System (ADS)
Jen, Hsiang-Hua; Yip, Sungkit
2016-05-01
We investigate the many-body ground states of a one-dimensional spin-1 Bose gas in Tonks-Girardeau (TG) limit. It is known that in TG gas limit of scalar bosons, the system becomes fermionized that bosons do not penetrate each other, and their wavefunctions take the form of noninteracting fermions. For a spin-1 Bose gas with an infinite atom-atom interaction in a harmonic trap, we construct the many-body ground states from the ones of a noninteracting Fermi gas along with the spin degrees of freedom. With zero magnetic field in the sector of Sz = 0 and in the regime of spin-incoherent Luttinger liquid where we assume negligible | a2 -a0 | , the interaction energy becomes spin-independent, and the many-body wavefunctions of a spin-1 Bose gas is also SU(3) invariant. The many-body wavefunction can be derived by calculating the weightings of spin functions using the conjugacy class G of SN symmetric group for the number of atoms N. We then study the first-order correlation function of the density matrix, from which we extract its momentum distribution. Finite-temperature calculation of the wavefunction by including orbital excitations is also investigated to compare with the case of spinless bosons. Ministry of Science and Technology, Taiwan, under Grant Number MOST-101-2112-M-001-021-MY3.
Electronic conduction properties of indium tin oxide: single-particle and many-body transport.
Lin, Juhn-Jong; Li, Zhi-Qing
2014-08-27
Indium tin oxide (Sn-doped In2O3-δ or ITO) is a very interesting and technologically important transparent conducting oxide. This class of material has been extensively investigated for decades, with research efforts mostly focusing on the application aspects. The fundamental issues of the electronic conduction properties of ITO from room temperature down to liquid-helium temperatures have rarely been addressed thus far. Studies of the electrical-transport properties over a wide range of temperature are essential to unravelling the underlying electronic dynamics and microscopic electronic parameters. In this topical review, we show that one can learn rich physics in ITO material, including the semi-classical Boltzmann transport, the quantum-interference electron transport, as well as the many-body Coulomb electron-electron interaction effects in the presence of disorder and inhomogeneity (granularity). To fully reveal the numerous avenues and unique opportunities that the ITO material has provided for fundamental condensed matter physics research, we demonstrate a variety of charge transport properties in different forms of ITO structures, including homogeneous polycrystalline thin and thick films, homogeneous single-crystalline nanowires and inhomogeneous ultrathin films. In this manner, we not only address new physics phenomena that can arise in ITO but also illustrate the versatility of the stable ITO material forms for potential technological applications. We emphasize that, microscopically, the novel and rich electronic conduction properties of ITO originate from the inherited robust free-electron-like energy bandstructure and low-carrier concentration (as compared with that in typical metals) characteristics of this class of material. Furthermore, a low carrier concentration leads to slow electron-phonon relaxation, which in turn causes the experimentally observed (i) a small residual resistance ratio, (ii) a linear electron diffusion thermoelectric power in
The Hubbard dimer: a density functional case study of a many-body problem.
Carrascal, D J; Ferrer, J; Smith, J C; Burke, K
2015-10-01
This review explains the relationship between density functional theory and strongly correlated models using the simplest possible example, the two-site Hubbard model. The relationship to traditional quantum chemistry is included. Even in this elementary example, where the exact ground-state energy and site occupations can be found analytically, there is much to be explained in terms of the underlying logic and aims of density functional theory. Although the usual solution is analytic, the density functional is given only implicitly. We overcome this difficulty using the Levy-Lieb construction to create a parametrization of the exact function with negligible errors. The symmetric case is most commonly studied, but we find a rich variation in behavior by including asymmetry, as strong correlation physics vies with charge-transfer effects. We explore the behavior of the gap and the many-body Green's function, demonstrating the 'failure' of the Kohn-Sham (KS) method to reproduce the fundamental gap. We perform benchmark calculations of the occupation and components of the KS potentials, the correlation kinetic energies, and the adiabatic connection. We test several approximate functionals (restricted and unrestricted Hartree-Fock and Bethe ansatz local density approximation) to show their successes and limitations. We also discuss and illustrate the concept of the derivative discontinuity. Useful appendices include analytic expressions for density functional energy components, several limits of the exact functional (weak- and strong-coupling, symmetric and asymmetric), various adiabatic connection results, proofs of exact conditions for this model, and the origin of the Hubbard model from a minimal basis model for stretched H2. PMID:26380948
Applications of many-body physics to relativistic heavy ion collisions
NASA Astrophysics Data System (ADS)
Fillion-Gourdeau, Francois
In this dissertation, many-body physics techniques are used to study and improve ideas related to the description of heavy ion collisions at very high energy. The first part of the thesis concerns the production of tensor mesons in proton-proton (pp) collisions. An effective theory where the f2 meson couples to the energy-momentum tensor is proposed and a comparison of the inclusive cross-section computed in the collinear factorization, the k⊥-factorization and the color glass condensate is performed. A study of the phenomenology in pp collisions then shows a strong dependence on the parametrization of the unintegrated distribution function. The conclusion is that f2 meson production can be utilized to improve the understanding of the proton wave-function. In the second part, a similar investigation is performed by analysing the production cross-section of the eta' meson in pp and proton-nucleus (pA) collisions. The nucleus and proton are described by the CGC and the k⊥ -factorization respectively. A new technique for the computation of Wilson lines---color charge densities correlators in the McLerran-Venugopalan model is developped. The phenomenology shows that the cross-section in pA collisions is very sensitive to the value of the saturation scale, a crucial ingredient of the CGC picture. In the third part of the thesis, the collision term of the Boltzmann equation is derived from first principles at all orders and for any number of participating particles, starting from the full out-of-equilibrium quantum field theory and using the multiple scattering expansion. Finally, the emission of photons from a non-abelian strong classical field is investigated. A formalism based on Schwinger-Keldysh propagators relating the production rate of photons to the retarded solution of the Dirac equation in a background field is presented.
NASA Astrophysics Data System (ADS)
Gascon, Jose A.; Hall, Randall W.
2000-11-01
A simple, semiempirical model that includes many-body polarization is used to study the ground and excited state properties of ArN+ clusters (N=3-23) at 80 K. For purposes of comparison, a model that does not include many-body polarization is used to study clusters with N=3-27. Monte Carlo simulations are used to calculate the average properties of these clusters. The model is similar to one previously used to study argon cation clusters without many-body polarization. The photoabsorption spectrum is in good agreement with experiment; in particular, the photoabsorption spectra for cluster sizes 4-10 do not show the blueshift that is seen with models that do not include many-body polarization.
Many-body forces and electron correlation in small metal clusters
NASA Astrophysics Data System (ADS)
Kaplan, Ilya G.; Hernández-Cobos, Jorge; Ortega-Blake, Iván; Novaro, Octavio
1996-04-01
The many-body decomposition of the interaction energy for BeN and LiN (N=2 to 4) clusters is calculated in two approximations: the self-consistent-field method and the Mo/ller-Plesset perturbation theory up to the fourth order. This allows us to estimate the electron-correlation contributions to the many-body forces. The explicit expressions for these contributions in the perturbation theory formalism are obtained. We present a comparative analysis of the role of electron correlations in the BeN and LiN cluster formations and in the many-body interactions in these clusters. As follows from our results, the contribution of electron correlation to many-body interactions is essential for both the BeN and LiN clusters, especially for the latter ones, where nonadditivities are surprisingly large.
Many-body and spin-orbit aspects of the alternating current phenomena
NASA Astrophysics Data System (ADS)
Glenn, Rachel M.
The thesis reports on research in the general field of light interaction with matter. According to the topics addressed, it can be naturally divided into two parts: Part I, many-body aspects of the Rabi oscillations which a two-level systems undergoes under a strong resonant drive; and Part II, absorption of the ac field between the spectrum branches of two-dimensional fermions that are split by the combined action of Zeeman and spin-orbit (SO) fields. The focus of Part I is the following many-body effects that modify the conventional Rabi oscillations: Chapter 1, coupling of a two-level system to a single vibrational mode of the environment. Chapter 2, correlated Rabi oscillations in two electron-hole systems coupled by tunneling with strong electron-hole attraction. In Chapter 1, a new effect of Rabi-vibronic resonance is uncovered. If the frequency of the Rabi oscillations, OR, is close to the frequency o0 of the vibrational mode, the oscillations acquire a collective character. It is demonstrated that the actual frequency of the collective oscillations exhibits a bistable behavior as a function of OR - o0. The main finding in Chapter 2 is, that the Fourier spectrum of the Rabi oscillations in two coupled electron-hole systems undergoes a strong transformation with increasing O R. For OR smaller than the tunneling frequency, the spectrum is dominated by a low-frequency (<< OR ) component and contains two additional weaker lines; conventional Rabi oscillations are restored only as OR exceeds the electron-hole attraction strength. The highlight of Part II is a finding that, while the spectrum of absorption between either Zeeman-split branches or SO-split branches is close to a delta-peak, in the presence of both, it transforms into a broad line with singular behavior at the edges. In particular, when the magnitudes of Zeeman and SO are equal, absorption of very low (much smaller than the splitting) frequencies become possible. The shape of the absorption spectrum
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.
Gogolin, Christian; Eisert, Jens
2016-05-01
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems
NASA Astrophysics Data System (ADS)
Gogolin, Christian; Eisert, Jens
2016-05-01
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language.
Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems.
Gogolin, Christian; Eisert, Jens
2016-05-01
We review selected advances in the theoretical understanding of complex quantum many-body systems with regard to emergent notions of quantum statistical mechanics. We cover topics such as equilibration and thermalisation in pure state statistical mechanics, the eigenstate thermalisation hypothesis, the equivalence of ensembles, non-equilibration dynamics following global and local quenches as well as ramps. We also address initial state independence, absence of thermalisation, and many-body localisation. We elucidate the role played by key concepts for these phenomena, such as Lieb-Robinson bounds, entanglement growth, typicality arguments, quantum maximum entropy principles and the generalised Gibbs ensembles, and quantum (non-)integrability. We put emphasis on rigorous approaches and present the most important results in a unified language. PMID:27088565
Potential of mean force between like-charged nanoparticles: Many-body effect
Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie
2016-01-01
Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles. PMID:26997415
Potential of mean force between like-charged nanoparticles: Many-body effect
NASA Astrophysics Data System (ADS)
Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie
2016-03-01
Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.
NASA Astrophysics Data System (ADS)
Schröder, Florian A. Y. N.; Chin, Alex W.
2016-02-01
We report the development of an efficient many-body algorithm for simulating open quantum system dynamics that utilizes a time-dependent variational principle for matrix product states to evolve large system-environment states. Capturing all system-environment correlations, we reproduce the nonperturbative, quantum-critical dynamics of the zero-temperature spin-boson model, and then exploit the many-body information to visualize the complete time-frequency spectrum of the environmental excitations. Our "environmental spectra" reveal correlated vibrational motion in polaronic modes which preserve their vibrational coherence during incoherent spin relaxation, demonstrating how environment information could yield valuable insights into complex quantum dissipative processes.
Anisotropic magnetic interactions in 5d iridium oxides by many-body quantum chemistry calculations
NASA Astrophysics Data System (ADS)
Katukuri, Vamshi M.; Nishimoto, Satoshi; Yushankhai, Viktor; Rousochatzakis, Ioannis; Hozoi, Liviu; van den Brink, Jeroen
2014-03-01
Ir 5d5 oxides are being actively studied due to the realization of novel spin-orbit coupled jeff ~ 1/2 ground states. One remarkable feature in these compounds is the highly anisotropic magnetic interactions, orders of magnitude stronger than in 3d oxides. We address the nature of the anisotropic exchange in the 2D honeycomb (Na/Li)2IrO3 ((Na/Li)213) and square-lattice (Sr/Ba)2IrO4 ((Sr/Ba)213) iridates, by ab initio multireference configuration-interaction calculations on large embedded clusters. For Na213 we find that the Kitaev term is ferromagnetic and defines the dominant energy scale while the nearest-neighbor Heisenberg contribution is antiferromagnetic. Although Li213 is structurally similar, we predict quite different set of interaction parameters in Li213. We further analyze the magnetic order and the essential differences between these two materials by exact diagonalization and density-matrix renormalization-group calculations that additionally include 2nd and 3rd neighbor couplings. Sizable symmetric anisotropic interactions are also computed for Ba214. From the ab initio data, the relevant in-plane spin model for Ba214 turns out to be a Heisenberg-compass effective model. We finally discuss the Dzyaloshinskii-Moriya exchange in Sr214.
Taming the Dynamical Sign Problem in Real-Time Evolution of Quantum Many-Body Problems
NASA Astrophysics Data System (ADS)
Cohen, Guy; Gull, Emanuel; Reichman, David R.; Millis, Andrew J.
2015-12-01
Current nonequilibrium Monte Carlo methods suffer from a dynamical sign problem that makes simulating real-time dynamics for long times exponentially hard. We propose a new "inchworm algorithm," based on iteratively reusing information obtained in previous steps to extend the propagation to longer times. The algorithm largely overcomes the dynamical sign problem, changing the scaling from exponential to quadratic. We use the method to solve the Anderson impurity model in the Kondo and mixed valence regimes, obtaining results both for quenches and for spin dynamics in the presence of an oscillatory magnetic field.
Taming the Dynamical Sign Problem in Real-Time Evolution of Quantum Many-Body Problems.
Cohen, Guy; Gull, Emanuel; Reichman, David R; Millis, Andrew J
2015-12-31
Current nonequilibrium Monte Carlo methods suffer from a dynamical sign problem that makes simulating real-time dynamics for long times exponentially hard. We propose a new "inchworm algorithm," based on iteratively reusing information obtained in previous steps to extend the propagation to longer times. The algorithm largely overcomes the dynamical sign problem, changing the scaling from exponential to quadratic. We use the method to solve the Anderson impurity model in the Kondo and mixed valence regimes, obtaining results both for quenches and for spin dynamics in the presence of an oscillatory magnetic field. PMID:26765013
A many-body Hamiltonian for nanoparticles immersed in a polymer solution.
Woodward, Clifford E; Forsman, Jan
2015-01-13
We developed an analytical theory for the many-body potential of mean force (POMF) between N spheres immersed in a continuum chain fluid. The theory is almost exact for a Θ polymer solution in the protein limit (small particles, long polymers), where N-body effects are important. Polydispersity in polymer length according to a Schulz-Flory distribution emerges naturally from our analysis, as does the transition to the monodisperse limit. The analytical expression for the POMF allows for computer simulations employing the complete N-body potential (i.e., without n-body truncation; n < N). These are compared with simulations of an explicit particle/polymer mixture. We show that the theory produces fluid structure in excellent agreement with the explicit model simulations even when the system is strongly fluctuating, e.g., at or near the spinodal region. We also demonstrate that other commonly used theoretical approaches, such as truncation of the POMF at the pair level or the Asakura Oosawa model, are extremely inaccurate for these systems. PMID:25547161
Construction and analysis of a simplified many-body neutrino model
Friedland, Alexander; McKellar, Bruce H.J.; Okuniewicz, Ivona
2006-05-01
In dense neutrino systems, such as found in the early Universe, or near a supernova core, neutrino flavor evolution is affected by coherent neutrino-neutrino scattering. It has been recently suggested that many-particle quantum entanglement effects may play an essential role in these systems, potentially invalidating the traditional description in terms of a set of single-particle evolution equations. We model the neutrino system by a system of interacting spins, following an earlier work which showed that such a spin system can in some cases be solved exactly [A. Friedland and C. Lunardini, J. High Energy Phys. 10 (2003) 043.]. We extend this work by constructing an exact analytical solution to a more general spin system, including initial states with asymmetric spin distribution and, moreover, not necessarily aligned along the same axis. Our solution exhibits a rich set of behaviors, including coherent oscillations and dephasing and a transition from the classical to quantum regimes. We argue that the classical evolution of the spin system captures the entire coherent behavior of the neutrino system, while the quantum effects in the spin system capture some, but not all, of the neutrino incoherent evolution. By comparing the spin and neutrino systems, we find no evidence for the violation of the accepted one-body description, though the argument involves some subtleties not appreciated before. The analysis in this paper may apply to other two-state systems beyond the neutrino field.
Dynamical conductivity and its fluctuations along the crossover to many-body localization
NASA Astrophysics Data System (ADS)
Barišić, Osor S.; Kokalj, Jure; Balog, Ivan; Prelovšek, Peter
2016-07-01
We present a numerical study of the many-body localization (MBL) phenomenon in the high-temperature limit within an anisotropic Heisenberg model with random local fields. Taking the dynamical spin conductivity σ (ω ) as the test quantity, we investigate the full frequency dependence of sample-to-sample fluctuations and their scaling properties as a function of the system size L ≤28 and the frequency resolution. We identify differences between the general interacting case Δ >0 and the anisotropy Δ =0 , the latter corresponding to the standard Anderson localization. Except for the extreme MBL case when the relative sample-to-sample fluctuations became large, numerical results allow for the extraction of the low-ω dependence of the conductivity. Results for the dc value σ0 indicate a crossover into the MBL regime, i.e., an exponential-like variation with the disorder strength W . For the same regime, our numerical analysis indicates that the low-frequency exponent α exhibits a small departure from α ˜1 only.
Maximizing kinetic energy transfer in one-dimensional many-body collisions
NASA Astrophysics Data System (ADS)
Ricardo, Bernard; Lee, Paul
2015-03-01
The main problem discussed in this paper involves a simple one-dimensional two-body collision, in which the problem can be extended into a chain of one-dimensional many-body collisions. The result is quite interesting, as it provides us with a thorough mathematical understanding that will help in designing a chain system for maximum energy transfer for a range of collision types. In this paper, we will show that there is a way to improve the kinetic energy transfer between two masses, and the idea can be applied recursively. However, this method only works for a certain range of collision types, which is indicated by a range of coefficients of restitution. Although the concept of momentum, elastic and inelastic collision, as well as Newton’s laws, are taught in junior college physics, especially in Singapore schools, students in this level are not expected to be able to do this problem quantitatively, as it requires rigorous mathematics, including calculus. Nevertheless, this paper provides nice analytical steps that address some common misconceptions in students’ way of thinking about one-dimensional collisions.
How many-body effects modify the van der Waals interaction between graphene sheets
NASA Astrophysics Data System (ADS)
Dobson, John; Gould, Tim; Vignale, Giovanni
2014-03-01
Cold undoped graphene sheets were previously predicted, via Random Phase approximation (RPA) arguments, to exhibit an unusual asymptotic van der Waals (vdW) interaction energy E = - KD-3 where D is the (large) separation between the two parallel graphene sheets. This is compared with D - 5 / 2 for 2D metals and D-4 for 2D insulators. Here we show that graphene is the first known system where effects beyond the RPA should make QUALITATIVE changes to the vdW force. For large separations, D > 10 nm where only πz-mediated vdW forces remain, we predict that the vdW interaction is substantially reduced from the RPA prediction, and has a different power law. This new D dependence is very sensitive to the form of the long-wavelength many-body renormalization of the velocity of the massless Dirac fermions, and may provide independent confirmation of the latter. We will briefly discuss issues involved in possible experiments. Work supported by the Australian Research Council, NSF and DIPC.
An Introductory Guide to GREEN’S Function Methods in Nuclear Many-Body Problems
NASA Astrophysics Data System (ADS)
Kuo, T. T. S.; Tzeng, Yiharn
We present an elementary and fairly detailed review of several Green’s function methods for treating nuclear and other many-body systems. We first treat the single-particle Green’s function, by way of which some details concerning linked diagram expansion, rules for evaluating Green’s function diagrams and solution of the Dyson’s integral equation for Green’s function are exhibited. The particle-particle hole-hole (pphh) Green’s function is then considered, and a specific time-blocking technique is discussed. This technique enables us to have a one-frequency Dyson’s equation for the pphh and similarly for other Green’s functions, thus considerably facilitating their calculation. A third type of Green’s function considered is the particle-hole Green’s function. RPA and high order RPA are treated, along with examples for setting up particle-hole RPA equations. A general method for deriving a model-space Dyson’s equation for Green’s functions is discussed. We also discuss a method for determining the normalization of Green’s function transition amplitudes based on its vertex function. Some applications of Green’s function methods to nuclear structure and recent deep inelastic lepton-nucleus scattering are addressed.
Bandstructure meets many-body theory: the LDA+DMFT method.
Held, K; Andersen, O K; Feldbacher, M; Yamasaki, A; Yang, Y-F
2008-02-13
Ab initio calculation of the electronic properties of materials is a major challenge for solid-state theory. Whereas 40 years' experience has proven density-functional theory (DFT) in a suitable form, e.g. local approximation (LDA), to give a satisfactory description when electronic correlations are weak, materials with strongly correlated electrons, say d- or f-electrons, remain a challenge. Such materials often exhibit 'colossal' responses to small changes of external parameters such as pressure, temperature, and magnetic field, and are therefore most interesting for technical applications. Encouraged by the success of dynamical mean-field theory (DMFT) in dealing with model Hamiltonians for strongly correlated electron systems, physicists from the bandstructure and many-body communities have joined forces and developed a combined LDA+DMFT method for treating materials with strongly correlated electrons ab initio. As a function of increasing Coulomb correlations, this new approach yields a weakly correlated metal, a strongly correlated metal, or a Mott insulator. In this paper, we introduce the LDA+DMFT method by means of an example, LaMnO(3). Results for this material, including the 'colossal' magnetoresistance of doped manganites, are presented. We also discuss the advantages and disadvantages of the LDA+DMFT approach.
A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.
Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao
2012-01-17
The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications.
Energy Gaps and Interaction Blockade in Confined Quantum Systems
Capelle, K.; Borgh, M.; Kaerkkaeinen, K.; Reimann, S. M.
2007-07-06
We investigate universal properties of strongly confined particles that turn out to be dramatically different from what is observed for electrons in atoms and molecules. For a large class of harmonically confined systems, such as small quantum dots and optically trapped atoms, many-body particle addition and removal energies, and energy gaps, are accurately obtained from single-particle eigenvalues. Transport blockade phenomena are related to the derivative discontinuity of the exchange-correlation functional. This implies that they occur very generally, with Coulomb blockade being a particular realization of a more general phenomenon. In particular, we predict a van der Waals blockade in cold atom gases in traps.
Many-Body Effects on the Zero-Point Renormalization of the Band Structure
NASA Astrophysics Data System (ADS)
Antonius, G.; Poncé, S.; Boulanger, P.; Côté, M.; Gonze, X.
2014-05-01
We compute the zero-point renormalization (ZPR) of the optical band gap of diamond from many-body perturbation theory using the perturbative G0W0 approximation as well as quasiparticle self-consistent GW. The electron-phonon coupling energies are found to be more than 40% higher than standard density functional theory when many-body effects are included with the frozen-phonon calculations. A similar increase is observed for the zero-point renormalization in GaAs when G0W0 corrections are applied. We show that these many-body corrections are necessary to accurately predict the temperature dependence of the band gap. The frozen-phonon method also allows us to validate the rigid-ion approximation which is always present in density functional perturbation theory.
Roadmap on quantum optical systems
NASA Astrophysics Data System (ADS)
Dumke, Rainer; Lu, Zehuang; Close, John; Robins, Nick; Weis, Antoine; Mukherjee, Manas; Birkl, Gerhard; Hufnagel, Christoph; Amico, Luigi; Boshier, Malcolm G.; Dieckmann, Kai; Li, Wenhui; Killian, Thomas C.
2016-09-01
This roadmap bundles fast developing topics in experimental optical quantum sciences, addressing current challenges as well as potential advances in future research. We have focused on three main areas: quantum assisted high precision measurements, quantum information/simulation, and quantum gases. Quantum assisted high precision measurements are discussed in the first three sections, which review optical clocks, atom interferometry, and optical magnetometry. These fields are already successfully utilized in various applied areas. We will discuss approaches to extend this impact even further. In the quantum information/simulation section, we start with the traditionally successful employed systems based on neutral atoms and ions. In addition the marvelous demonstrations of systems suitable for quantum information is not progressing, unsolved challenges remain and will be discussed. We will also review, as an alternative approach, the utilization of hybrid quantum systems based on superconducting quantum devices and ultracold atoms. Novel developments in atomtronics promise unique access in exploring solid-state systems with ultracold gases and are investigated in depth. The sections discussing the continuously fast-developing quantum gases include a review on dipolar heteronuclear diatomic gases, Rydberg gases, and ultracold plasma. Overall, we have accomplished a roadmap of selected areas undergoing rapid progress in quantum optics, highlighting current advances and future challenges. These exciting developments and vast advances will shape the field of quantum optics in the future.
NASA Astrophysics Data System (ADS)
Dvorak, Marc; Wu, Zhigang
2015-07-01
Electronic and optical properties of graphene depend strongly on many-body interactions. Employing the highly accurate many-body perturbation approach based on Green's functions, we find a large renormalization over independent particle methods of the fundamental band gaps of semiconducting graphene structures with periodic defects. Additionally, their exciton binding energies are larger than 0.4 eV, suggesting significantly strengthened electron-electron and electron-hole interactions. Their absorption spectra show two strong peaks whose positions are sensitive to the defect fraction and distribution. The strong near-edge optical absorption and excellent tunability make these two-dimensional materials promising for optoelectronic applications.
Many-body rate limit on photoassociation of a Bose-Einstein condensate
Mackie, Matt; Phou, Pierre
2010-09-15
We briefly report on zero-temperature photoassociation of a Bose-Einstein condensate, focusing on the many-body rate limit for atom-molecule conversion. An upgraded model that explicitly includes spontaneous radiative decay leads to an unanticipated shift in the position of the photoassociation resonance, which affects whether the rate (constant) maximizes or saturates, as well as the limiting value itself. A simple analytical model agrees with numerical experiments, but only for high density. Finally, an explicit comparison with the two-body unitary limit, set by the size of the condensate, finds that the many-body rate limit is generally more strict.
Ab initio Wannier-function-based many-body approach to Born charges of crystalline insulators
NASA Astrophysics Data System (ADS)
Sony, Priya; Shukla, Alok
2004-12-01
In this paper we present an approach aimed at performing many-body calculations of Born-effective charges of crystalline insulators by including the electron-correlation effects. The scheme is implemented entirely in the real space, using Wannier functions as single-particle orbitals. Correlation effects are computed by including virtual excitations from the Hartree-Fock mean field, and the excitations are organized as per a Bethe Goldstone-like many-body hierarchy. The results of our calculations suggest that the approach presented here is promising.
Relativistic multireference many-body perturbation theory calculations on Au64+ - Au69+ ions
Vilkas, M J; Ishikawa, Y; Trabert, E
2006-03-31
Many-body perturbation theory (MBPT) calculations are an adequate tool for the description of the structure of highly charged multi-electron ions and for the analysis of their spectra. They demonstrate this by way of a re-investigation of n=3, {Delta}n=0 transitions in the EUV spectra of Na-, Mg-, Al-like, and Si-like ions of Au that have been obtained previously by heavy-ion accelerator based beam-foil spectroscopy. They discuss the evidence and propose several revisions on the basis of the multi-reference many-body perturbation theory calculations of Ne- through P-like ions of Au.
Global and short-range entanglement properties in excited, many-body localized spin chains
NASA Astrophysics Data System (ADS)
West, Colin; Wei, Tzu-Chieh
Many-body localization is a manifestation of the violation of the eigenstate thermalization hypothesis. As one of many characteristic features, eigenstates in a many-body localized regime have been observed to obey an area law in the scaling of the entanglement entropy. Consequently, such states can be efficiently represented by matrix product states (MPS). Here, we use the SIMPS algorithm proposed by Yu, Pekker, and Clark to numerically access these excited states in spin chains with disorder, and study them from the perspective of their global and short range entanglement properties, as well as through other local observables. We compare the behavior across excited states as the strength of disorder varies.
Quantum dephasing of a two-state system by a nonequilibrium harmonic oscillator
Martens, Craig C.
2013-07-14
In this paper, we investigate coherent quantum dynamics in a nonequilibrium environment. We focus on a two-state quantum system strongly coupled to a single classical environmental oscillator, and explore the effect of nonstationary statistical properties of the oscillator on the quantum evolution. A simple nonequilibrium model, consisting of an oscillator with a well-defined initial phase which undergoes subsequent diffusion, is introduced and studied. Approximate but accurate analytic expressions for the evolution of the off-diagonal density matrix element of the quantum system are derived in the second-order cumulant approximation. The effect of the initial phase choice on the subsequent quantum evolution is quantified. It is observed that the initial phase can have a significant effect on the preservation of coherence on short time scales, suggesting this variable as a control parameter for optimizing coherence in many-body quantum systems.
Detection of the many-body topological invariant in a driven, dissipative spin model
NASA Astrophysics Data System (ADS)
Fleischhauer, Michael; Linzner, Dominik
2016-05-01
Systems with topological order have attracted a growing interest in recent years as they have been associated with exotic, strongly correlated quantum states and can possess protected edge states. Engineering dissipative driven quantum systems with a topologically ordered stationary state could circumvent the problem of preparing topological states as encountered in weakly gapped closed systems. Moreover, the stationary state of an open system is an attractor of the dynamics which ensures additional robustness against fluctuations, decoherence and even particle losses. While topological states in closed systems are by now reasonably well understood, at least if non-interacting systems are considered, the concept of topology in open systems is still in its infancy. We here propose and discuss a conceptual detection scheme for topological properties of a one-dimensional dissipative spin chain by coupling it to a well understood closed system. The presence of topological order of the non-gaussian steady state in the dissipative spin chain induces a non-trivial topology in the closed system resulting in a quantized charge pump. Using this we are able to introduce a topological invariant with a clear physical meaning.
NASA Astrophysics Data System (ADS)
Iqbal, A.; Toor, A. H.
2002-03-01
We investigate the role of quantum mechanical effects in the central stability concept of evolutionary game theory, i.e., an evolutionarily stable strategy (ESS). Using two and three-player symmetric quantum games we show how the presence of quantum phenomenon of entanglement can be crucial to decide the course of evolutionary dynamics in a population of interacting individuals.