Advanced Concepts in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George
2014-11-01
Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.
Categorization of Quantum Mechanics Problems by Professors and Students
ERIC Educational Resources Information Center
Lin, Shih-Yin; Singh, Chandralekha
2010-01-01
We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty…
Students' Epistemological Framing in Quantum Mechanics Problem Solving
ERIC Educational Resources Information Center
Modir, Bahar; Thompson, John D.; Sayre, Eleanor C.
2017-01-01
Students' difficulties in quantum mechanics may be the result of unproductive framing and not a fundamental inability to solve the problems or misconceptions about physics content. We observed groups of students solving quantum mechanics problems in an upper-division physics course. Using the lens of epistemological framing, we investigated four…
Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics
NASA Astrophysics Data System (ADS)
Ohzeki, Masayuki
2013-09-01
In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called quantum annealing. The most typical instance is quantum adiabatic computation based on the adiabatic theorem. The quantum adiabatic computation as discussed in the other chapter, unfortunately, has a crucial bottleneck for a part of the optimization problems. We here introduce several recent trials to overcome such a weakpoint by use of developments in statistical mechanics. Through both of the topics, we would shed light on the birth of the interdisciplinary field between quantum mechanics and statistical mechanics.
Fundamental Study on Quantum Nanojets
2004-08-01
Pergamon Press. Bell , J. S . 1966 On the problem of hidden variables in quantum mechanics. Rev. of Modern Phys., 38, 447. Berndl, K., Daumer, M...fluid dynamics based on two quantum mechanical perspectives; Schrödinger’s wave mechanics and quantum fluid dynamics based on Hamilton-Jacoby...References 8 2). Direct Problems a). Quantum fluid dynamics formalism based on Hamilton-Jacoby equation are adapted for the numerical
Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems
ERIC Educational Resources Information Center
Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih
2009-01-01
In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…
Quantum Mechanics From the Cradle?
ERIC Educational Resources Information Center
Martin, John L.
1974-01-01
States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)
Review of the inverse scattering problem at fixed energy in quantum mechanics
NASA Technical Reports Server (NTRS)
Sabatier, P. C.
1972-01-01
Methods of solution of the inverse scattering problem at fixed energy in quantum mechanics are presented. Scattering experiments of a beam of particles at a nonrelativisitic energy by a target made up of particles are analyzed. The Schroedinger equation is used to develop the quantum mechanical description of the system and one of several functions depending on the relative distance of the particles. The inverse problem is the construction of the potentials from experimental measurements.
ON THE DYNAMICAL DERIVATION OF EQUILIBRIUM STATISTICAL MECHANICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prigogine, I.; Balescu, R.; Henin, F.
1960-12-01
Work on nonequilibrium statistical mechanics, which allows an extension of the kinetic proof to all results of equilibrium statistical mechanics involving a finite number of degrees of freedom, is summarized. As an introduction to the general N-body problem, the scattering theory in classical mechanics is considered. The general N-body problem is considered for the case of classical mechanics, quantum mechanics with Boltzmann statistics, and quantum mechanics including quantum statistics. Six basic diagrams, which describe the elementary processes of the dynamics of correlations, were obtained. (M.C.G.)
Quantum mechanics and hidden superconformal symmetry
NASA Astrophysics Data System (ADS)
Bonezzi, R.; Corradini, O.; Latini, E.; Waldron, A.
2017-12-01
Solvability of the ubiquitous quantum harmonic oscillator relies on a spectrum generating osp (1 |2 ) superconformal symmetry. We study the problem of constructing all quantum mechanical models with a hidden osp (1 |2 ) symmetry on a given space of states. This problem stems from interacting higher spin models coupled to gravity. In one dimension, we show that the solution to this problem is the Vasiliev-Plyushchay family of quantum mechanical models with hidden superconformal symmetry obtained by viewing the harmonic oscillator as a one dimensional Dirac system, so that Grassmann parity equals wave function parity. These models—both oscillator and particlelike—realize all possible unitary irreducible representations of osp (1 |2 ).
Elucidating Reaction Mechanisms on Quantum Computers
NASA Astrophysics Data System (ADS)
Wiebe, Nathan; Reiher, Markus; Svore, Krysta; Wecker, Dave; Troyer, Matthias
We show how a quantum computer can be employed to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical-computer simulations for such problems, to significantly increase their accuracy and enable hitherto intractable simulations. Detailed resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. This demonstrates that quantum computers will realistically be able to tackle important problems in chemistry that are both scientifically and economically significant.
Emerging interpretations of quantum mechanics and recent progress in quantum measurement
NASA Astrophysics Data System (ADS)
Clarke, M. L.
2014-01-01
The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).
A New Ontological View of the Quantum Measurement Problem
2005-06-13
broader issues in the foundations of quantum mechanics as well. In this scenario, a quantum measurement is a nonequilibrium phase transition in a...the foundations of quantum mechan - ics as well. In this scenario a quantum measurement is a non-equilibrium phase transition in a “resonant cavity...ontology, and the probabilistic element is removed from the foundations of quantum mechanics , its apparent presence in the quantum measurement being solely
Philosophical perspectives on quantum chaos: Models and interpretations
NASA Astrophysics Data System (ADS)
Bokulich, Alisa Nicole
2001-09-01
The problem of quantum chaos is a special case of the larger problem of understanding how the classical world emerges from quantum mechanics. While we have learned that chaos is pervasive in classical systems, it appears to be almost entirely absent in quantum systems. The aim of this dissertation is to determine what implications the interpretation of quantum mechanics has for attempts to explain the emergence of classical chaos. There are three interpretations of quantum mechanics that have set out programs for solving the problem of quantum chaos: the standard interpretation, the statistical interpretation, and the deBroglie-Bohm causal interpretation. One of the main conclusions of this dissertation is that an interpretation alone is insufficient for solving the problem of quantum chaos and that the phenomenon of decoherence must be taken into account. Although a completely satisfactory solution of the problem of quantum chaos is still outstanding, I argue that the deBroglie-Bohm interpretation with the help of decoherence outlines the most promising research program to pursue. In addition to making a contribution to the debate in the philosophy of physics concerning the interpretation of quantum mechanics, this dissertation reveals two important methodological lessons for the philosophy of science. First, issues of reductionism and intertheoretic relations cannot be divorced from questions concerning the interpretation of the theories involved. Not only is the exploration of intertheoretic relations a central part of the articulation and interpretation of an individual theory, but the very terms used to discuss intertheoretic relations, such as `state' and `classical limit', are themselves defined by particular interpretations of the theory. The second lesson that emerges is that, when it comes to characterizing the relationship between classical chaos and quantum mechanics, the traditional approaches to intertheoretic relations, namely reductionism and theoretical pluralism, are inadequate. The fruitful ways in which models have been used in quantum chaos research point to the need for a new framework for addressing intertheoretic relations that focuses on models rather than laws.
Quantum Optical Implementations of Current Quantum Computing Paradigms
2005-05-01
Conferences and Proceedings: The results were presented at several conferences. These include: 1. M. O. Scully, " Foundations of Quantum Mechanics ", in...applications have revealed a strong connection between the fundamental aspects of quantum mechanics that governs physical systems and the informational...could be solved in polynomial time using quantum computers. Another set of problems where quantum mechanics can carry out computations substantially
Composition in the Quantum World
NASA Astrophysics Data System (ADS)
Hall, Edward Jonathan
This thesis presents a problem for the foundations of quantum mechanics. It arises from the way that theory describes the composition of larger systems in terms of smaller ones, and renders untenable a wide range of interpretations of quantum mechanics. That quantum mechanics is difficult to interpret is old news, given the well-known Measurement Problem. But the problem I raise is quite different, and in important respects more fundamental. In brief: The physical world exhibits mereological structure: physical objects have parts, which in turn have parts, and so on. A natural way to try to represent this structure is by means of a particle theory, according to which the physical world consists entirely enduring physical objects which themselves have no proper parts, but aggregates of which are, or compose, all physical objects. Elementary, non-relativistic quantum mechanics can be cast in this mold--at least, according to the usual expositions of that theory. But herein lies the problem: the standard attempt to give a systematic particle interpretation to elementary quantum mechanics results in nonsense, thanks to the well-established principle of Permutation Invariance, which constrains the quantum -mechanical description of systems containing identical particles. Specifically, it follows from the most minimal principles of a particle interpretation (much weaker than those needed to generate the Measurement Problem), together with Permutation Invariance, that systems identical in composition must have the same physical state. In other words, systems which merely have the same numbers of the same types of particles are therefore, at all times, perfect physical duplicates. This conclusion is absurd: e.g., it is quite plausible that some of those particles which compose my body make up a system identical in composition to some pepperoni pizza. Yet no part of me is a qualitative physical duplicate of any pepperoni pizza. Perhaps "you are what you eat" --but not in this sense! In what follows I develop the principles needed to explore this problem, contrast it with the Measurement Problem, and consider, finally, how it should influence our judgments of the relative merits of the many extant interpretations of quantum mechanics.
Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru
2016-03-14
Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.
Elucidating reaction mechanisms on quantum computers.
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias
2017-07-18
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
Elucidating reaction mechanisms on quantum computers
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias
2017-01-01
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources. PMID:28674011
Elucidating reaction mechanisms on quantum computers
NASA Astrophysics Data System (ADS)
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M.; Wecker, Dave; Troyer, Matthias
2017-07-01
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
Quantum probability and Hilbert's sixth problem
NASA Astrophysics Data System (ADS)
Accardi, Luigi
2018-04-01
With the birth of quantum mechanics, the two disciplines that Hilbert proposed to axiomatize, probability and mechanics, became entangled and a new probabilistic model arose in addition to the classical one. Thus, to meet Hilbert's challenge, an axiomatization should account deductively for the basic features of all three disciplines. This goal was achieved within the framework of quantum probability. The present paper surveys the quantum probabilistic axiomatization. This article is part of the themed issue `Hilbert's sixth problem'.
Quantum biological channel modeling and capacity calculation.
Djordjevic, Ivan B
2012-12-10
Quantum mechanics has an important role in photosynthesis, magnetoreception, and evolution. There were many attempts in an effort to explain the structure of genetic code and transfer of information from DNA to protein by using the concepts of quantum mechanics. The existing biological quantum channel models are not sufficiently general to incorporate all relevant contributions responsible for imperfect protein synthesis. Moreover, the problem of determination of quantum biological channel capacity is still an open problem. To solve these problems, we construct the operator-sum representation of biological channel based on codon basekets (basis vectors), and determine the quantum channel model suitable for study of the quantum biological channel capacity and beyond. The transcription process, DNA point mutations, insertions, deletions, and translation are interpreted as the quantum noise processes. The various types of quantum errors are classified into several broad categories: (i) storage errors that occur in DNA itself as it represents an imperfect storage of genetic information, (ii) replication errors introduced during DNA replication process, (iii) transcription errors introduced during DNA to mRNA transcription, and (iv) translation errors introduced during the translation process. By using this model, we determine the biological quantum channel capacity and compare it against corresponding classical biological channel capacity. We demonstrate that the quantum biological channel capacity is higher than the classical one, for a coherent quantum channel model, suggesting that quantum effects have an important role in biological systems. The proposed model is of crucial importance towards future study of quantum DNA error correction, developing quantum mechanical model of aging, developing the quantum mechanical models for tumors/cancer, and study of intracellular dynamics in general.
Relativistic particle in a box: Klein-Gordon versus Dirac equations
NASA Astrophysics Data System (ADS)
Alberto, Pedro; Das, Saurya; Vagenas, Elias C.
2018-03-01
The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.
Statistical mechanics based on fractional classical and quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korichi, Z.; Meftah, M. T., E-mail: mewalid@yahoo.com
2014-03-15
The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.
Strange Bedfellows: Quantum Mechanics and Data Mining
NASA Astrophysics Data System (ADS)
Weinstein, Marvin
2010-02-01
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
A Non-Intuitionist's Approach To The Interpretation Problem Of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Grelland, Hans Herlof
2005-02-01
A philosophy of physics called "linguistic empiricism" is presented and applied to the interpretation problem of quantum mechanics. This philosophical position is based on the works of Jacques Derrida. The main propositions are (i) that meaning, included the meaning attached to observations, are language-dependent and (ii) that mathematics in physics should be considered as a proper language, not necessary translatable to a more basic language of intuition and immediate experience. This has fundamental implications for quantum mechanics, which is a mathematically coherent and consistent theory; its interpretation problem is associated with its lack of physical images expressible in ordinary language.
Quantum Computing: Solving Complex Problems
DiVincenzo, David
2018-05-22
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
NASA Astrophysics Data System (ADS)
Marshman, Emily; Sayer, Ryan; Henderson, Charles; Singh, Chandralekha
2017-06-01
At large research universities, physics graduate teaching assistants (TAs) are often responsible for grading in courses at all levels. However, few studies have focused on TAs' grading practices in introductory and advanced physics courses. This study was designed to investigate whether physics graduate TAs grade students in introductory physics and quantum mechanics using different criteria and if so, why they may be inclined to do so. To investigate possible discrepancies in TAs' grading approaches in courses at different levels, we implemented a sequence of instructional activities in a TA professional development course that asked TAs to grade student solutions of introductory physics and upper-level quantum mechanics problems and explain why, if at all, their grading approaches were different or similar in the two contexts. We analyzed the differences in TAs' grading approaches in the two contexts and discuss the reasons they provided for the differences in their grading approaches in introductory physics and quantum mechanics in individual interviews, class discussions, and written responses. We find that a majority of the TAs graded solutions to quantum mechanics problems differently than solutions to introductory physics problems. In quantum mechanics, the TAs focused more on physics concepts and reasoning and penalized students for not showing evidence of understanding. The findings of the study have implications for TA professional development programs, e.g., the importance of helping TAs think about the difficulty of a problem from an introductory students' perspective and reflecting on the benefits of formative assessment.
Supersymmetric symplectic quantum mechanics
NASA Astrophysics Data System (ADS)
de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.
2018-02-01
Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.
Student Understanding of Time Dependence in Quantum Mechanics
ERIC Educational Resources Information Center
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-01-01
The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…
From quantum foundations to applications and back.
Gisin, Nicolas; Fröwis, Florian
2018-07-13
Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
The Problem of Representation and Experience in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Ronde, Christian De
2014-03-01
In this paper we discuss the problem of representation and experience in quantum mechanics. We analyze the importance of metaphysics in physical thought and its relation to empiricism and analytic philosophy. We argue against both instrumentalism and scientific realism and claim that both perspectives tend to bypass the problem of representation and justify a "common sense" type experience. Finally, we present our expressionist conception of physics.
Interpretations of Quantum Theory in the Light of Modern Cosmology
NASA Astrophysics Data System (ADS)
Castagnino, Mario; Fortin, Sebastian; Laura, Roberto; Sudarsky, Daniel
2017-11-01
The difficult issues related to the interpretation of quantum mechanics and, in particular, the "measurement problem" are revisited using as motivation the process of generation of structure from quantum fluctuations in inflationary cosmology. The unessential mathematical complexity of the particular problem is bypassed, facilitating the discussion of the conceptual issues, by considering, within the paradigm set up by the cosmological problem, another problem where symmetry serves as a focal point: a simplified version of Mott's problem.
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turbiner, Alexander; Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado, Postal 70-543, 04510 Mexico, D. F.
1996-02-20
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.
NASA Astrophysics Data System (ADS)
Roussel, Marc R.
1999-10-01
One of the traditional obstacles to learning quantum mechanics is the relatively high level of mathematical proficiency required to solve even routine problems. Modern computer algebra systems are now sufficiently reliable that they can be used as mathematical assistants to alleviate this difficulty. In the quantum mechanics course at the University of Lethbridge, the traditional three lecture hours per week have been replaced by two lecture hours and a one-hour computer-aided problem solving session using a computer algebra system (Maple). While this somewhat reduces the number of topics that can be tackled during the term, students have a better opportunity to familiarize themselves with the underlying theory with this course design. Maple is also available to students during examinations. The use of a computer algebra system expands the class of feasible problems during a time-limited exercise such as a midterm or final examination. A modern computer algebra system is a complex piece of software, so some time needs to be devoted to teaching the students its proper use. However, the advantages to the teaching of quantum mechanics appear to outweigh the disadvantages.
Probability and Locality: Determinism Versus Indeterminism in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Dickson, William Michael
1995-01-01
Quantum mechanics is often taken to be necessarily probabilistic. However, this view of quantum mechanics appears to be more the result of historical accident than of careful analysis. Moreover, quantum mechanics in its usual form faces serious problems. Although the mathematical core of quantum mechanics--quantum probability theory- -does not face conceptual difficulties, the application of quantum probability to the physical world leads to problems. In particular, quantum mechanics seems incapable of describing our everyday macroscopic experience. Therefore, several authors have proposed new interpretations --including (but not limited to) modal interpretations, spontaneous localization interpretations, the consistent histories approach, and the Bohm theory--each of which deals with quantum-mechanical probabilities differently. Each of these interpretations promises to describe our macroscopic experience and, arguably, each succeeds. Is there any way to compare them? Perhaps, if we turn to another troubling aspect of quantum mechanics, non-locality. Non -locality is troubling because prima facie it threatens the compatibility of quantum mechanics with special relativity. This prima facie threat is mitigated by the no-signalling theorems in quantum mechanics, but nonetheless one may find a 'conflict of spirit' between nonlocality in quantum mechanics and special relativity. Do any of these interpretations resolve this conflict of spirit?. There is a strong relation between how an interpretation deals with quantum-mechanical probabilities and how it deals with non-locality. The main argument here is that only a completely deterministic interpretation can be completely local. That is, locality together with the empirical predictions of quantum mechanics (specifically, its strict correlations) entails determinism. But even with this entailment in hand, comparison of the various interpretations requires a look at each, to see how non-locality arises, or in the case of deterministic interpretations, whether it arises. The result of this investigation is that, at the least, deterministic interpretations are no worse off with respect to special relativity than indeterministic interpretations. This conclusion runs against a common view that deterministic interpretations, specifically the Bohm theory, have more difficulty with special relativity than other interpretations.
Quantum-mechanical transport equation for atomic systems.
NASA Technical Reports Server (NTRS)
Berman, P. R.
1972-01-01
A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.
Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices
NASA Astrophysics Data System (ADS)
Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco
2016-10-01
We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules. These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics as probability rules: Bayes' rule (measurement), marginalization (partial tracing), independence (tensor product). To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2011-09-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Heisenberg and the Interpretation of Quantum Mechanics
NASA Astrophysics Data System (ADS)
Camilleri, Kristian
2009-02-01
Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.
Contact geometry and quantum mechanics
NASA Astrophysics Data System (ADS)
Herczeg, Gabriel; Waldron, Andrew
2018-06-01
We present a generally covariant approach to quantum mechanics in which generalized positions, momenta and time variables are treated as coordinates on a fundamental "phase-spacetime". We show that this covariant starting point makes quantization into a purely geometric flatness condition. This makes quantum mechanics purely geometric, and possibly even topological. Our approach is especially useful for time-dependent problems and systems subject to ambiguities in choices of clock or observer. As a byproduct, we give a derivation and generalization of the Wigner functions of standard quantum mechanics.
Quantum dice rolling: a multi-outcome generalization of quantum coin flipping
NASA Astrophysics Data System (ADS)
Aharon, N.; Silman, J.
2010-03-01
The problem of quantum dice rolling (DR)—a generalization of the problem of quantum coin flipping (CF) to more than two outcomes and parties—is studied in both its weak and strong variants. We prove by construction that quantum mechanics allows for (i) weak N-sided DR admitting arbitrarily small bias for any N and (ii) two-party strong N-sided DR saturating Kitaev's bound for any N. To derive (ii) we also prove by construction that quantum mechanics allows for (iii) strong imbalanced CF saturating Kitaev's bound for any degree of imbalance. Furthermore, as a corollary of (ii) we introduce a family of optimal 2m-party strong nm-sided DR protocols for any pair m and n.
Reply to "Comment on 'Fractional quantum mechanics' and 'Fractional Schrödinger equation' ".
Laskin, Nick
2016-06-01
The fractional uncertainty relation is a mathematical formulation of Heisenberg's uncertainty principle in the framework of fractional quantum mechanics. Two mistaken statements presented in the Comment have been revealed. The origin of each mistaken statement has been clarified and corrected statements have been made. A map between standard quantum mechanics and fractional quantum mechanics has been presented to emphasize the features of fractional quantum mechanics and to avoid misinterpretations of the fractional uncertainty relation. It has been shown that the fractional probability current equation is correct in the area of its applicability. Further studies have to be done to find meaningful quantum physics problems with involvement of the fractional probability current density vector and the extra term emerging in the framework of fractional quantum mechanics.
Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems
NASA Astrophysics Data System (ADS)
Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W.
2018-06-01
On the basis of Nelson's stochastic mechanics derivation of the Schrödinger equation, a formal mathematical structure of non-relativistic quantum mechanics equivalent to the one in classical analytical mechanics has been established in the literature. We recently were able to augment this structure by deriving quantum Hamilton equations of motion by finding the Nash equilibrium of a stochastic optimal control problem, which is the generalization of Hamilton's principle of classical mechanics to quantum systems. We showed that these equations allow a description and numerical determination of the ground state of quantum problems without using the Schrödinger equation. We extend this approach here to deliver the complete discrete energy spectrum and related eigenfunctions for bound states of one-dimensional stationary quantum systems. We exemplify this analytically for the one-dimensional harmonic oscillator and numerically by analyzing a quartic double-well potential, a model of broad importance in many areas of physics. We furthermore point out a relation between the tunnel splitting of such models and mean first passage time concepts applied to Nelson's diffusion paths in the ground state.
Speakable and Unspeakable in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Bell, J. S.; Aspect, Introduction by Alain
2004-06-01
List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.
NASA Astrophysics Data System (ADS)
Giannetto, E.
2005-08-01
This book is a sort of tribute to Rob Clifton (1964 2002), Associate Professor of Philosophy and Associate Director of the Center for Philosophy of Science at the University of Pittsburgh, philosopher of physics and editor of the journal Studies in the History and Philosophy of Modern Physics, who tragically died of cancer. It contains fourteen papers by Clifton, for the most part written in collaboration with other authors (Jeffrey Bub (2), Sheldon Goldstein, Michael Dickson, Hans Halvorson (6), Adrian Kent (2)), published between 1995 and 2002. The choice of papers made by the editors is very impressive. They concern the foundations of quantum mechanics and quantum field theory. Among the issues discussed are the modal interpretations of quantum mechanics, the problems of hidden variables theories, non-locality, Bell's inequality, the Einstein Podolsky Rosen paradox, Lorentz invariance, de-coherence, non-contextuality, complementarity, entanglement and quantum information. A consequence of such investigations is that non-separability is a more complex issue than violation of Bell's inequality. Apart from the perspective one can follow—whether one agrees or not with Clifton—these papers are effective contributions to an understanding of the problems involved in the foundations of quantum mechanics. The most interesting parts, in my opinion, are related to the extension of the discussion of foundational problems to quantum field theory: on the algebraic approach, and on the twin concepts of particle and vacuum. Non-locality appears to be `worse' in relativistic quantum field theory than in non-relativistic quantum mechanics. All the papers deal with relevant epistemological and even historical aspects of quantum mechanics interpretations, but all the issues are discussed from a technical, logical and mathematical approach. A complete bibliography of Clifton's papers is given at the end of the volume.
Time-dependent perturbation of a two-state quantum mechanical system
NASA Technical Reports Server (NTRS)
Dion, D. R.
1974-01-01
A two- (nondegenerate) level quantum system interacting with a classical monochromatic radiation field is described. The existing work on this problem is reviewed and some novel aspects of the problems are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanizaki, Yuya, E-mail: yuya.tanizaki@riken.jp; Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198; Koike, Takayuki, E-mail: tkoike@ms.u-tokyo.ac.jp
Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynamics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integralsmore » on Lefschetz thimbles. We discuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem. - Highlights: • Real-time path integral is studied based on Picard–Lefschetz theory. • Lucid demonstration is given through simple examples of quantum mechanics. • This technique is applied to quantum mechanics of the double-well potential. • Difficulty for practical applications is revealed, and we discuss its generality. • Quantum tunneling is shown to be closely related to complex classical solutions.« less
Anharmonic quantum mechanical systems do not feature phase space trajectories
NASA Astrophysics Data System (ADS)
Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole
2018-07-01
Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.
Hidden algebra method (quasi-exact-solvability in quantum mechanics)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turbiner, A.
1996-02-01
A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland {ital N}-body problems ass ociated with an existence of the hidden algebra {ital sl}{sub {ital N}} is discussed extensively. {copyright} {ital 1996 American Institute of Physics.}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Tongsong, E-mail: jiangtongsong@sina.com; Department of Mathematics, Heze University, Heze, Shandong 274015; Jiang, Ziwu
In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.
Einstein's equivalence principle in quantum mechanics revisited
NASA Astrophysics Data System (ADS)
Nauenberg, Michael
2016-11-01
The gravitational equivalence principle in quantum mechanics is of considerable importance, but it is generally not included in physics textbooks. In this note, we present a precise quantum formulation of this principle and comment on its verification in a neutron diffraction experiment. The solution of the time dependent Schrödinger equation for this problem also gives the wave function for the motion of a charged particle in a homogeneous electric field, which is also usually ignored in textbooks on quantum mechanics.
Student understanding of time dependence in quantum mechanics
NASA Astrophysics Data System (ADS)
Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing the key role of the energy eigenbasis in determining the time dependence of wave functions. Through analysis of student responses to a set of four interrelated tasks, we categorize some of the difficulties that underlie common errors. The conceptual and reasoning difficulties that have been identified are illustrated through student responses to four sets of questions administered at different points in a junior-level course on quantum mechanics. Evidence is also given that the problems persist throughout undergraduate instruction and into the graduate level.
A modified Lax-Phillips scattering theory for quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strauss, Y., E-mail: ystrauss@cs.bgu.ac.il
The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for themore » quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.« less
The Role of Frame Force in Quantum Detection
2007-01-01
42040) 10. C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68 (1992), no. 21, 3121–3124. MR 1 163 546 11. S ...SUBTITLE The Role of Frame Force in Quantum Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...equivalent to a quantum detection problem from quantum mechanics. To this end we first reformulate Problem 1.2 in terms of orthonormal bases instead of 1
Quantum Mechanics - Fundamentals and Applications to Technology
NASA Astrophysics Data System (ADS)
Singh, Jasprit
1996-10-01
Explore the relationship between quantum mechanics and information-age applications This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulation has been derived in a given chapter, the connection to important technological problems is summarily described. The many helpful features include * Twenty-eight application-oriented sections that focus on lasers, transistors, magnetic memories, superconductors, nuclear magnetic resonance (NMR), and other important technology-driving materials and devices * One hundred solved examples, with an emphasis on numerical results and the connection between the physics and its applications * End-of-chapter problems that ground the student in both fundamental and applied concepts * Numerous figures and tables to clarify the various topics and provide a global view of the problems under discussion * Over two hundred illustrations to highlight problems and text A book for the information age, Quantum Mechanics: Fundamentals and Applications to Technology promises to become a standard in departments of electrical engineering, applied physics, and materials science, as well as physics. It is an excellent text for senior undergraduate and graduate students, and a helpful reference for practicing scientists, engineers, and chemists in the semiconductor and electronic industries.
Thermodynamic integration from classical to quantum mechanics.
Habershon, Scott; Manolopoulos, David E
2011-12-14
We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable. © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2014-06-01
It is shown how all the major conceptual difficulties of standard (textbook) quantum mechanics, including the two measurement problems and the (supposed) nonlocality that conflicts with special relativity, are resolved in the consistent or decoherent histories interpretation of quantum mechanics by using a modified form of quantum logic to discuss quantum properties (subspaces of the quantum Hilbert space), and treating quantum time development as a stochastic process. The histories approach in turn gives rise to some conceptual difficulties, in particular the correct choice of a framework (probabilistic sample space) or family of histories, and these are discussed. The central issue is that the principle of unicity, the idea that there is a unique single true description of the world, is incompatible with our current understanding of quantum mechanics.
Lyapounov variable: Entropy and measurement in quantum mechanics
Misra, B.; Prigogine, I.; Courbage, M.
1979-01-01
We discuss the question of the dynamical meaning of the second law of thermodynamics in the framework of quantum mechanics. Previous discussion of the problem in the framework of classical dynamics has shown that the second law can be given a dynamical meaning in terms of the existence of so-called Lyapounov variables—i.e., dynamical variables varying monotonically in time without becoming contradictory. It has been found that such variables can exist in an extended framework of classical dynamics, provided that the dynamical motion is suitably unstable. In this paper we begin to extend these results to quantum mechanics. It is found that no dynamical variable with the characteristic properties of nonequilibrium entropy can be defined in the standard formulation of quantum mechanics. However, if the Hamiltonian has certain well-defined spectral properties, such variables can be defined but only as a nonfactorizable superoperator. Necessary nonfactorizability of such entropy operators M has the consequence that they cannot preserve the class of pure states. Physically, this means that the distinguishability between pure states and corresponding mixtures must be lost in the case of a quantal system for which the algebra of observables can be extended to include a new dynamical variable representing nonequilibrium entropy. We discuss how this result leads to a solution of the quantum measurement problem. It is also found that the question of existence of entropy of superoperators M is closely linked to the problem of defining an operator of time in quantum mechanics. PMID:16578757
Investigation of spin-zero bosons in q-deformed relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Sobhani, H.; Chung, W. S.; Hassanabadi, H.
2018-04-01
In this article, Scattering states of Klein-Gordon equation for three scatter potentials of single and double Dirac delta and a potential well in the q-deformed formalism of relativistic quantum mechanics have been derived. At first, we discussed how q-deformed formalism can be constructed and used. Postulates of this q-deformed quantum mechanics are noted. Then scattering problems for spin-zero bosons are studied.
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2015-09-01
Preface; Notation; 1. Historical introduction; 2. Particle states in a central potential; 3. General principles of quantum mechanics; 4. Spin; 5. Approximations for energy eigenstates; 6. Approximations for time-dependent problems; 7. Potential scattering; 8. General scattering theory; 9. The canonical formalism; 10. Charged particles in electromagnetic fields; 11. The quantum theory of radiation; 12. Entanglement; Author index; Subject index.
Tales from the prehistory of Quantum Gravity. Léon Rosenfeld's earliest contributions
NASA Astrophysics Data System (ADS)
Peruzzi, Giulio; Rocci, Alessio
2018-05-01
The main purpose of this paper is to analyse the earliest work of Léon Rosenfeld, one of the pioneers in the search of Quantum Gravity, the supposed theory unifying quantum theory and general relativity. We describe how and why Rosenfeld tried to face this problem in 1927, analysing the role of his mentors: Oskar Klein, Louis de Broglie and Théophile De Donder. Rosenfeld asked himself how quantum mechanics should concretely modify general relativity. In the context of a five-dimensional theory, Rosenfeld tried to construct a unifying framework for the gravitational and electromagnetic interaction and wave mechanics. Using a sort of "general relativistic quantum mechanics" Rosenfeld introduced a wave equation on a curved background. He investigated the metric created by what he called `quantum phenomena', represented by wave functions. Rosenfeld integrated Einstein equations in the weak field limit, with wave functions as source of the gravitational field. The author performed a sort of semi-classical approximation obtaining at the first order the Reissner-Nordström metric. We analyse how Rosenfeld's work is part of the history of Quantum Mechanics, because in his investigation Rosenfeld was guided by Bohr's correspondence principle. Finally we briefly discuss how his contribution is connected with the task of finding out which metric can be generated by a quantum field, a problem that quantum field theory on curved backgrounds will start to address 35 years later.
Tales from the prehistory of Quantum Gravity - Léon Rosenfeld's earliest contributions
NASA Astrophysics Data System (ADS)
Peruzzi, Giulio; Rocci, Alessio
2018-04-01
The main purpose of this paper is to analyse the earliest work of Léon Rosenfeld, one of the pioneers in the search of Quantum Gravity, the supposed theory unifying quantum theory and general relativity. We describe how and why Rosenfeld tried to face this problem in 1927, analysing the role of his mentors: Oskar Klein, Louis de Broglie and Théophile De Donder. Rosenfeld asked himself how quantum mechanics should concretely modify general relativity. In the context of a five-dimensional theory, Rosenfeld tried to construct a unifying framework for the gravitational and electromagnetic interaction and wave mechanics. Using a sort of "general relativistic quantum mechanics" Rosenfeld introduced a wave equation on a curved background. He investigated the metric created by what he called `quantum phenomena', represented by wave functions. Rosenfeld integrated Einstein equations in the weak field limit, with wave functions as source of the gravitational field. The author performed a sort of semi-classical approximation obtaining at the first order the Reissner-Nordström metric. We analyse how Rosenfeld's work is part of the history of Quantum Mechanics, because in his investigation Rosenfeld was guided by Bohr's correspondence principle. Finally we briefly discuss how his contribution is connected with the task of finding out which metric can be generated by a quantum field, a problem that quantum field theory on curved backgrounds will start to address 35 years later.
DOE pushes for useful quantum computing
NASA Astrophysics Data System (ADS)
Cho, Adrian
2018-01-01
The U.S. Department of Energy (DOE) is joining the quest to develop quantum computers, devices that would exploit quantum mechanics to crack problems that overwhelm conventional computers. The initiative comes as Google and other companies race to build a quantum computer that can demonstrate "quantum supremacy" by beating classical computers on a test problem. But reaching that milestone will not mean practical uses are at hand, and the new $40 million DOE effort is intended to spur the development of useful quantum computing algorithms for its work in chemistry, materials science, nuclear physics, and particle physics. With the resources at its 17 national laboratories, DOE could play a key role in developing the machines, researchers say, although finding problems with which quantum computers can help isn't so easy.
Grover Search and the No-Signaling Principle
NASA Astrophysics Data System (ADS)
Bao, Ning; Bouland, Adam; Jordan, Stephen P.
2016-09-01
Two of the key properties of quantum physics are the no-signaling principle and the Grover search lower bound. That is, despite admitting stronger-than-classical correlations, quantum mechanics does not imply superluminal signaling, and despite a form of exponential parallelism, quantum mechanics does not imply polynomial-time brute force solution of NP-complete problems. Here, we investigate the degree to which these two properties are connected. We examine four classes of deviations from quantum mechanics, for which we draw inspiration from the literature on the black hole information paradox. We show that in these models, the physical resources required to send a superluminal signal scale polynomially with the resources needed to speed up Grover's algorithm. Hence the no-signaling principle is equivalent to the inability to solve NP-hard problems efficiently by brute force within the classes of theories analyzed.
REVIEWS OF TOPICAL PROBLEMS: Concept of consciousness in the context of quantum mechanics
NASA Astrophysics Data System (ADS)
Menskii, Mikhail B.
2005-04-01
Conceptual problems of the quantum theory of measurement are considered, which are embodied in well-known paradoxes and in Bell's inequalities. Arguments are advanced in favor of the viewpoint that these problems may hardly be solved without direct inclusion of the observer's consciousness in the theoretical description of a quantum measurement. Discussed in this connection is the so-called many-worlds interpretation of quantum mechanics proposed by Everett, as is the extension of Everett's concept, which consists in the assumption that separating the quantum state components corresponding to alternative measurements is not only associated with the observer's consciousness but is completely identified with it. This approach is shown to open up qualitatively new avenues for the unification of physics and psychology and, more broadly, of the sciences and the humanities. This may lead to an extension of the theory of consciousness and shed light on significant and previously misunderstood phenomena in the sphere of consciousness.
Quantum chi-squared and goodness of fit testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temme, Kristan; Verstraete, Frank
2015-01-15
A quantum mechanical hypothesis test is presented for the hypothesis that a certain setup produces a given quantum state. Although the classical and the quantum problems are very much related to each other, the quantum problem is much richer due to the additional optimization over the measurement basis. A goodness of fit test for i.i.d quantum states is developed and a max-min characterization for the optimal measurement is introduced. We find the quantum measurement which leads both to the maximal Pitman and Bahadur efficiencies, and determine the associated divergence rates. We discuss the relationship of the quantum goodness of fitmore » test to the problem of estimating multiple parameters from a density matrix. These problems are found to be closely related and we show that the largest error of an optimal strategy, determined by the smallest eigenvalue of the Fisher information matrix, is given by the divergence rate of the goodness of fit test.« less
Quantum learning of classical stochastic processes: The completely positive realization problem
NASA Astrophysics Data System (ADS)
Monràs, Alex; Winter, Andreas
2016-01-01
Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651-664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece in the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print arXiv:1303.3771(2013)].
JOURNAL SCOPE GUIDELINES: Paper classification scheme
NASA Astrophysics Data System (ADS)
2005-06-01
This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas
The Gibbs paradox and the physical criteria for indistinguishability of identical particles
NASA Astrophysics Data System (ADS)
Unnikrishnan, C. S.
2016-08-01
Gibbs paradox in the context of statistical mechanics addresses the issue of additivity of entropy of mixing gases. The usual discussion attributes the paradoxical situation to classical distinguishability of identical particles and credits quantum theory for enabling indistinguishability of identical particles to solve the problem. We argue that indistinguishability of identical particles is already a feature in classical mechanics and this is clearly brought out when the problem is treated in the language of information and associated entropy. We pinpoint the physical criteria for indistinguishability that is crucial for the treatment of the Gibbs’ problem and the consistency of its solution with conventional thermodynamics. Quantum mechanics provides a quantitative criterion, not possible in the classical picture, for the degree of indistinguishability in terms of visibility of quantum interference, or overlap of the states as pointed out by von Neumann, thereby endowing the entropy expression with mathematical continuity and physical reasonableness.
NASA Astrophysics Data System (ADS)
Robbin, J. M.
2007-07-01
he hallmark of a good book of problems is that it allows you to become acquainted with an unfamiliar topic quickly and efficiently. The Quantum Mechanics Solver fits this description admirably. The book contains 27 problems based mainly on recent experimental developments, including neutrino oscillations, tests of Bell's inequality, Bose Einstein condensates, and laser cooling and trapping of atoms, to name a few. Unlike many collections, in which problems are designed around a particular mathematical method, here each problem is devoted to a small group of phenomena or experiments. Most problems contain experimental data from the literature, and readers are asked to estimate parameters from the data, or compare theory to experiment, or both. Standard techniques (e.g., degenerate perturbation theory, addition of angular momentum, asymptotics of special functions) are introduced only as they are needed. The style is closer to a non-specialist seminar rather than an undergraduate lecture. The physical models are kept simple; the emphasis is on cultivating conceptual and qualitative understanding (although in many of the problems, the simple models fit the data quite well). Some less familiar theoretical techniques are introduced, e.g. a variational method for lower (not upper) bounds on ground-state energies for many-body systems with two-body interactions, which is then used to derive a surprisingly accurate relation between baryon and meson masses. The exposition is succinct but clear; the solutions can be read as worked examples if you don't want to do the problems yourself. Many problems have additional discussion on limitations and extensions of the theory, or further applications outside physics (e.g., the accuracy of GPS positioning in connection with atomic clocks; proton and ion tumor therapies in connection with the Bethe Bloch formula for charged particles in solids). The problems use mainly non-relativistic quantum mechanics and are organised into three sections: Elementary Particles, Nuclei and Atoms; Quantum Entanglement and Measurement; and Complex Systems. The coverage is not comprehensive; there is little on scattering theory, for example, and some areas of recent interest, such as topological aspects of quantum mechanics and semiclassics, are not included. The problems are based on examination questions given at the École Polytechnique in the last 15 years. The book is accessible to undergraduates, but working physicists should find it a delight.
NASA Astrophysics Data System (ADS)
Nagaoka, Hiroshi
We study the problem of minimizing a quadratic quantity defined for given two Hermitian matrices X, Y and a positive-definite Hermitian matrix. This problem is reduced to the simultaneous diagonalization of X, Y when XY = YX. We derive a lower bound for the quantity, and in some special cases solve the problem by showing that the lower bound is achievable. This problem is closely related to a simultaneous measurement of quantum mechanical observables which are not commuting and has an application in the theory of quantum state estimation.
Much Polyphony but Little Harmony: Otto Sackur's Groping for a Quantum Theory of Gases
NASA Astrophysics Data System (ADS)
Badino, Massimiliano; Friedrich, Bretislav
2013-09-01
The endeavor of Otto Sackur (1880-1914) was driven, on the one hand, by his interest in Nernst's heat theorem, statistical mechanics, and the problem of chemical equilibrium and, on the other hand, by his goal to shed light on classical mechanics from the quantum vantage point. Inspired by the interplay between classical physics and quantum theory, Sackur chanced to expound his personal take on the role of the quantum in the changing landscape of physics in the turbulent 1910s. We tell the story of this enthusiastic practitioner of the old quantum theory and early contributor to quantum statistical mechanics, whose scientific ontogenesis provides a telling clue about the phylogeny of his contemporaries.
Uncertain for a century: quantum mechanics and the dilemma of interpretation.
Frank, Adam
2015-12-01
Quantum mechanics, the physical theory describing the microworld, is one of science's greatest triumphs. Remarkably, however, after more than 100 years it is still unclear what quantum mechanics means in terms of basic philosophical questions about the nature of reality. While there are many interpretations of the mathematical machinery of quantum physics, there remain no experimental means to distinguish between most of them. In this contribution, I wish to consider the ways in which the enduring lack of an agreed-upon interpretation of quantum physics influences a number of critical philosophical debates about physics and reality. I briefly review two problems affected by quantum interpretations: the meaning of the term universe and the nature of consciousness. © 2015 New York Academy of Sciences.
Individuation in Quantum Mechanics and Space-Time
NASA Astrophysics Data System (ADS)
Jaeger, Gregg
2010-10-01
Two physical approaches—as distinct, under the classification of Mittelstaedt, from formal approaches—to the problem of individuation of quantum objects are considered, one formulated in spatiotemporal terms and one in quantum mechanical terms. The spatiotemporal approach itself has two forms: one attributed to Einstein and based on the ontology of space-time points, and the other proposed by Howard and based on intersections of world lines. The quantum mechanical approach is also provided here in two forms, one based on interference and another based on a new Quantum Principle of Individuation (QPI). It is argued that the space-time approach to individuation fails and that the quantum approach offers several advantages over it, including consistency with Leibniz’s Principle of Identity of Indiscernibles.
NASA Astrophysics Data System (ADS)
Goldfarb, Yair; Degani, Ilan; Tannor, David J.
2007-11-01
In their comment, Sanz and Miret-Artés (SMA) describe previous trajectory-based formalisms based on the quantum Hamilton-Jacobi (QHJ) formalism. In this reply, we highlight our unique contributions: the identification of the smallness of the quantum force in the complex QHJ and its solution using complex trajectories. SMA also raise the question of how the term locality should be used in quantum mechanics. We suggest that at least certain aspects of nonlocality can depend on the method used to solve the problem.
Developing and assessing research-based tools for teaching quantum mechanics and thermodynamics
NASA Astrophysics Data System (ADS)
Brown, Benjamin R.
Research-based tools to educate college students in physics courses from introductory level to graduate level are essential for helping students with a diverse set of goals and backgrounds learn physics. This thesis explores issues related to student common difficulties with some topics in undergraduate quantum mechanics and thermodynamics courses. Student difficulties in learning quantum mechanics and thermodynamics are investigated by administering written tests and surveys to many classes and conducting individual interviews with a subset of students outside the class to unpack the cognitive mechanisms of the difficulties. The quantum mechanics research also focuses on using the research on student difficulties for the development and evaluation of a Quantum Interactive Learning Tutorial (QuILT) to help students learn about the time-dependence of expectation values using the context of Larmor precession of spin and evaluating the role of asking students to self-diagnose their mistakes on midterm examination on their performance on subsequent problem solving. The QuILT on Larmor precession of spin has both paper-pencil activities and a simulation component to help students learn these foundational issues in quantum mechanics. Preliminary evaluations suggest that the QuILT, which strives to help students build a robust knowledge structure of time-dependence of expectation values in quantum mechanics using a guided approach, is successful in helping students learn these topics in the junior-senior level quantum mechanics courses. The technique to help upper-level students in quantum mechanics courses effectively engage in the process of learning from their mistakes is also found to be effective. In particular, research shows that the self-diagnosis activity in upper-level quantum mechanics significantly helps students who are struggling and this activity can reduce the gap between the high and low achieving students on subsequent problem solving. Finally, a survey of Thermodynamic Processes and the First and Second Laws (STPFaSL) is developed and validated with the purpose of evaluating the effectiveness of these topics in a thermodynamics curriculum. The validity and reliability of this survey are discussed and the student difficulties with these topics among various groups from introductory students to physics graduate students are cataloged.
NASA Astrophysics Data System (ADS)
Bellac, Michel Le
2014-11-01
Although nobody can question the practical efficiency of quantum mechanics, there remains the serious question of its interpretation. As Valerio Scarani puts it, "We do not feel at ease with the indistinguishability principle (that is, the superposition principle) and some of its consequences." Indeed, this principle which pervades the quantum world is in stark contradiction with our everyday experience. From the very beginning of quantum mechanics, a number of physicists--but not the majority of them!--have asked the question of its "interpretation". One may simply deny that there is a problem: according to proponents of the minimalist interpretation, quantum mechanics is self-sufficient and needs no interpretation. The point of view held by a majority of physicists, that of the Copenhagen interpretation, will be examined in Section 10.1. The crux of the problem lies in the status of the state vector introduced in the preceding chapter to describe a quantum system, which is no more than a symbolic representation for the Copenhagen school of thought. Conversely, one may try to attribute some "external reality" to this state vector, that is, a correspondence between the mathematical description and the physical reality. In this latter case, it is the measurement problem which is brought to the fore. In 1932, von Neumann was first to propose a global approach, in an attempt to build a purely quantum theory of measurement examined in Section 10.2. This theory still underlies modern approaches, among them those grounded on decoherence theory, or on the macroscopic character of the measuring apparatus: see Section 10.3. Finally, there are non-standard interpretations such as Everett's many worlds theory or the hidden variables theory of de Broglie and Bohm (Section 10.4). Note, however, that this variety of interpretations has no bearing whatsoever on the practical use of quantum mechanics. There is no controversy on the way we should use quantum mechanics!
A perspective on quantum mechanics calculations in ADMET predictions.
Bowen, J Phillip; Güner, Osman F
2013-01-01
Understanding the molecular basis of drug action has been an important objective for pharmaceutical scientists. With the increasing speed of computers and the implementation of quantum chemistry methodologies, pharmacodynamic and pharmacokinetic problems have become more computationally tractable. Historically the former has been the focus of drug design, but within the last two decades efforts to understand the latter have increased. It takes about fifteen years and over $1 billion dollars for a drug to go from laboratory hit, through lead optimization, to final approval by the U.S. Food and Drug Administration. While the costs have increased substantially, the overall clinical success rate for a compound to emerge from clinical trials is approximately 10%. Most of the attrition rate can be traced to ADMET (absorption, distribution, metabolism, excretion, and toxicity) problems, which is a powerful impetus to study these issues at an earlier stage in drug discovery. Quantum mechanics offers pharmaceutical scientists the opportunity to investigate pharmacokinetic problems at the molecular level prior to laboratory preparation and testing. This review will provide a perspective on the use of quantum mechanics or a combination of quantum mechanics coupled with other classical methods in the pharmacokinetic phase of drug discovery. A brief overview of the essential features of theory will be discussed, and a few carefully selected examples will be given to highlight the computational methods.
Digitized adiabatic quantum computing with a superconducting circuit.
Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M
2016-06-09
Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.
Some clarifications about the Bohmian geodesic deviation equation and Raychaudhuri’s equation
NASA Astrophysics Data System (ADS)
Rahmani, Faramarz; Golshani, Mehdi
2018-01-01
One of the important and famous topics in general theory of relativity and gravitation is the problem of geodesic deviation and its related singularity theorems. An interesting subject is the investigation of these concepts when quantum effects are considered. Since the definition of trajectory is not possible in the framework of standard quantum mechanics (SQM), we investigate the problem of geodesic equation and its related topics in the framework of Bohmian quantum mechanics in which the definition of trajectory is possible. We do this in a fixed background and we do not consider the backreaction effects of matter on the space-time metric.
Physical theories, eternal inflation, and the quantum universe
NASA Astrophysics Data System (ADS)
Nomura, Yasunori
2011-11-01
Infinities in eternal inflation have long been plaguing cosmology, making any predictions highly sensitive to how they are regulated. The problem exists already at the level of semi-classical general relativity, and has a priori nothing to do with quantum gravity. On the other hand, we know that certain problems in semi-classical gravity, for example physics of black holes and their evaporation, have led to understanding of surprising, quantum natures of spacetime and gravity, such as the holographic principle and horizon complementarity. In this paper, we present a framework in which well-defined predictions are obtained in an eternally inflating multiverse, based on the principles of quantum mechanics. We propose that the entire multiverse is described purely from the viewpoint of a single "observer," who describes the world as a quantum state defined on his/her past light cones bounded by the (stretched) apparent horizons. We find that quantum mechanics plays an essential role in regulating infinities. The framework is "gauge invariant," i.e. predictions do not depend on how spacetime is parametrized, as it should be in a theory of quantum gravity. Our framework provides a fully unified treatment of quantum measurement processes and the multiverse. We conclude that the eternally inflating multiverse and many worlds in quantum mechanics are the same. Other important implications include: global spacetime can be viewed as a derived concept; the multiverse is a transient phenomenon during the world relaxing into a supersymmetric Minkowski state. We also present a model of "initial conditions" for the multiverse. By extrapolating our framework to the extreme, we arrive at a picture that the entire multiverse is a fluctuation in the stationary, fractal "mega-multiverse," in which an infinite sequence of multiverse productions occurs. The framework discussed here does not suffer from problems/paradoxes plaguing other measures proposed earlier, such as the youngness paradox and the Boltzmann brain problem.
Quantum mechanics on space with SU(2) fuzziness
NASA Astrophysics Data System (ADS)
Fatollahi, Amir H.; Shariati, Ahmad; Khorrami, Mohammad
2009-04-01
Quantum mechanics of models is considered which are constructed in spaces with Lie algebra type commutation relations between spatial coordinates. The case is specialized to that of the group SU(2), for which the formulation of the problem via the Euler parameterization is also presented. SU(2)-invariant systems are discussed, and the corresponding eigenvalue problem for the Hamiltonian is reduced to an ordinary differential equation, as is the case with such models on commutative spaces.
Unraveling Quantum Annealers using Classical Hardness
Martin-Mayor, Victor; Hen, Itay
2015-01-01
Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstein, Marvin; /SLAC
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
Hidden symmetry in the confined hydrogen atom problem
NASA Astrophysics Data System (ADS)
Pupyshev, Vladimir I.; Scherbinin, Andrei V.
2002-07-01
The classical counterpart of the well-known quantum mechanical model of a spherically confined hydrogen atom is examined in terms of the Lenz vector, a dynamic variable featuring the conventional Kepler problem. It is shown that a conditional conservation law associated with the Lenz vector is true, in fair agreement with the corresponding quantum problem previously found to exhibit a hidden symmetry as well.
Quantum learning of classical stochastic processes: The completely positive realization problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monràs, Alex; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543; Winter, Andreas
2016-01-15
Among several tasks in Machine Learning, a specially important one is the problem of inferring the latent variables of a system and their causal relations with the observed behavior. A paradigmatic instance of this is the task of inferring the hidden Markov model underlying a given stochastic process. This is known as the positive realization problem (PRP), [L. Benvenuti and L. Farina, IEEE Trans. Autom. Control 49(5), 651–664 (2004)] and constitutes a central problem in machine learning. The PRP and its solutions have far-reaching consequences in many areas of systems and control theory, and is nowadays an important piece inmore » the broad field of positive systems theory. We consider the scenario where the latent variables are quantum (i.e., quantum states of a finite-dimensional system) and the system dynamics is constrained only by physical transformations on the quantum system. The observable dynamics is then described by a quantum instrument, and the task is to determine which quantum instrument — if any — yields the process at hand by iterative application. We take as a starting point the theory of quasi-realizations, whence a description of the dynamics of the process is given in terms of linear maps on state vectors and probabilities are given by linear functionals on the state vectors. This description, despite its remarkable resemblance with the hidden Markov model, or the iterated quantum instrument, is however devoid of any stochastic or quantum mechanical interpretation, as said maps fail to satisfy any positivity conditions. The completely positive realization problem then consists in determining whether an equivalent quantum mechanical description of the same process exists. We generalize some key results of stochastic realization theory, and show that the problem has deep connections with operator systems theory, giving possible insight to the lifting problem in quotient operator systems. Our results have potential applications in quantum machine learning, device-independent characterization and reverse-engineering of stochastic processes and quantum processors, and more generally, of dynamical processes with quantum memory [M. Guţă, Phys. Rev. A 83(6), 062324 (2011); M. Guţă and N. Yamamoto, e-print http://arxiv.org/abs/1303.3771 (2013)].« less
Applied Mathematical Methods in Theoretical Physics
NASA Astrophysics Data System (ADS)
Masujima, Michio
2005-04-01
All there is to know about functional analysis, integral equations and calculus of variations in a single volume. This advanced textbook is divided into two parts: The first on integral equations and the second on the calculus of variations. It begins with a short introduction to functional analysis, including a short review of complex analysis, before continuing a systematic discussion of different types of equations, such as Volterra integral equations, singular integral equations of Cauchy type, integral equations of the Fredholm type, with a special emphasis on Wiener-Hopf integral equations and Wiener-Hopf sum equations. After a few remarks on the historical development, the second part starts with an introduction to the calculus of variations and the relationship between integral equations and applications of the calculus of variations. It further covers applications of the calculus of variations developed in the second half of the 20th century in the fields of quantum mechanics, quantum statistical mechanics and quantum field theory. Throughout the book, the author presents over 150 problems and exercises -- many from such branches of physics as quantum mechanics, quantum statistical mechanics, and quantum field theory -- together with outlines of the solutions in each case. Detailed solutions are given, supplementing the materials discussed in the main text, allowing problems to be solved making direct use of the method illustrated. The original references are given for difficult problems. The result is complete coverage of the mathematical tools and techniques used by physicists and applied mathematicians Intended for senior undergraduates and first-year graduates in science and engineering, this is equally useful as a reference and self-study guide.
NASA Astrophysics Data System (ADS)
Barsan, Victor
2018-05-01
Several classes of transcendental equations, mainly eigenvalue equations associated to non-relativistic quantum mechanical problems, are analyzed. Siewert's systematic approach of such equations is discussed from the perspective of the new results recently obtained in the theory of generalized Lambert functions and of algebraic approximations of various special or elementary functions. Combining exact and approximate analytical methods, quite precise analytical outputs are obtained for apparently untractable problems. The results can be applied in quantum and classical mechanics, magnetism, elasticity, solar energy conversion, etc.
Against the empirical viability of the Deutsch-Wallace-Everett approach to quantum mechanics
NASA Astrophysics Data System (ADS)
Dawid, Richard; Thébault, Karim P. Y.
2014-08-01
The subjective Everettian approach to quantum mechanics presented by Deutsch and Wallace fails to constitute an empirically viable theory of quantum phenomena. The decision theoretic implementation of the Born rule realized in this approach provides no basis for rejecting Everettian quantum mechanics in the face of empirical data that contradicts the Born rule. The approach of Greaves and Myrvold, which provides a subjective implementation of the Born rule as well but derives it from empirical data rather than decision theoretic arguments, avoids the problem faced by Deutsch and Wallace and is empirically viable. However, there is good reason to cast doubts on its scientific value.
A quantum annealing architecture with all-to-all connectivity from local interactions.
Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter
2015-10-01
Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.
A quantum annealing architecture with all-to-all connectivity from local interactions
Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter
2015-01-01
Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316
NASA Astrophysics Data System (ADS)
Khots, Boris; Khots, Dmitriy
2014-12-01
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We consider the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.
NASA Technical Reports Server (NTRS)
Biswas, Rupak
2018-01-01
Quantum computing promises an unprecedented ability to solve intractable problems by harnessing quantum mechanical effects such as tunneling, superposition, and entanglement. The Quantum Artificial Intelligence Laboratory (QuAIL) at NASA Ames Research Center is the space agency's primary facility for conducting research and development in quantum information sciences. QuAIL conducts fundamental research in quantum physics but also explores how best to exploit and apply this disruptive technology to enable NASA missions in aeronautics, Earth and space sciences, and space exploration. At the same time, machine learning has become a major focus in computer science and captured the imagination of the public as a panacea to myriad big data problems. In this talk, we will discuss how classical machine learning can take advantage of quantum computing to significantly improve its effectiveness. Although we illustrate this concept on a quantum annealer, other quantum platforms could be used as well. If explored fully and implemented efficiently, quantum machine learning could greatly accelerate a wide range of tasks leading to new technologies and discoveries that will significantly change the way we solve real-world problems.
NASA Astrophysics Data System (ADS)
Ellerman, David
2014-03-01
In models of QM over finite fields (e.g., Schumacher's ``modal quantum theory'' MQT), one finite field stands out, Z2, since Z2 vectors represent sets. QM (finite-dimensional) mathematics can be transported to sets resulting in quantum mechanics over sets or QM/sets. This gives a full probability calculus (unlike MQT with only zero-one modalities) that leads to a fulsome theory of QM/sets including ``logical'' models of the double-slit experiment, Bell's Theorem, QIT, and QC. In QC over Z2 (where gates are non-singular matrices as in MQT), a simple quantum algorithm (one gate plus one function evaluation) solves the Parity SAT problem (finding the parity of the sum of all values of an n-ary Boolean function). Classically, the Parity SAT problem requires 2n function evaluations in contrast to the one function evaluation required in the quantum algorithm. This is quantum speedup but with all the calculations over Z2 just like classical computing. This shows definitively that the source of quantum speedup is not in the greater power of computing over the complex numbers, and confirms the idea that the source is in superposition.
The measurement problem in quantum mechanics: A phenomenological investigation
NASA Astrophysics Data System (ADS)
Hunter, Joel Brooks
2008-10-01
This dissertation is a phenomenological investigation of the measurement problem in quantum mechanics. The primary subject matter for description and analysis is scientific instruments and their use in experiments which elicit the measurement problem. A methodological critique is mounted against the ontological commitments taken for granted in the canonical interpretations of quantum theory and the scientific activity of measurement as the necessary interface between theoretical interest and perceptual results. I argue that an aesthetic dimension of reality functions as aproto-scientific establishment of sense-making that constantly operates to set integratively all other cognitively neat determinations, including scientifically rendered objects that are intrinsically non-visualizable. The way in which data "key in" to the original and originative register of the sensible in observation is clarified by examining prostheses, measuring apparatuses and instruments that are sense-conveying and -integrative with the human sensorium. Experiments, technology and instrumentation are examined in order to understand how knowing and that which is known is bonded by praxis-aisthesis. Quantum measurement is a praxic-dynamie activity and homologically structured and structur ing functional engagement in terms of instantiation, quantifiability, and spatiotemporal differentiation. The distinctions between a beauty-aesthetic and praxis-aisthesis are delineated. It is argued that a beauty-aesthetic is a construal of the economic dimension of scientific objects and work, and is not the primary manner in which the aesthetic dimension is disclosed. The economic dimension of abstractions reduces to an austere aesthetic of calculative economy. Nature itself, however, is not stingy; it is intrinsically capacious, extravagant, full of surprise, nuance, ambiguity and allusiveness. The capaciousness of Nature and the way in which we are integratively set within Nature in a materiality-phenomenality correlation discloses Nature's constituent potential, a condition more primitive than causal interplay. Finally, the relation between a physical mechanism or process and its functional mathematical representation is clarified. No physical mechanism or process accounts for the empirical effects of measurement outcomes in some quantum mechanical experiments. Within the milieu of ordinary perceptual experience, complete with its horizonal structure of spatiality and temporality, something uncaused is encountered which resists full determination in terms of mathematical representation. Keywords: Quantum Mechanics, Measurement Problem, Phenomenology, Prosthesis, Aesthetic
Complexity of the Quantum Adiabatic Algorithm
NASA Astrophysics Data System (ADS)
Hen, Itay
2013-03-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorihms. Here, we discuss several aspects of the quantum adiabatic algorithm: We analyze the efficiency of the algorithm on several ``hard'' (NP) computational problems. Studying the size dependence of the typical minimum energy gap of the Hamiltonians of these problems using quantum Monte Carlo methods, we find that while for most problems the minimum gap decreases exponentially with the size of the problem, indicating that the QAA is not more efficient than existing classical search algorithms, for other problems there is evidence to suggest that the gap may be polynomial near the phase transition. We also discuss applications of the QAA to ``real life'' problems and how they can be implemented on currently available (albeit prototypical) quantum hardware such as ``D-Wave One'', that impose serious restrictions as to which type of problems may be tested. Finally, we discuss different approaches to find improved implementations of the algorithm such as local adiabatic evolution, adaptive methods, local search in Hamiltonian space and others.
Quantum formalism for classical statistics
NASA Astrophysics Data System (ADS)
Wetterich, C.
2018-06-01
In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.
NASA Astrophysics Data System (ADS)
Hagar, Amit
Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the 'apparent' collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard.
Proposed Test of Relative Phase as Hidden Variable in Quantum Mechanics
2012-01-01
implicitly due to its ubiquity in quantum theory , but searches for dependence of measurement outcome on other parameters have been lacking. For a two -state...implemen- tation for the specific case of an atomic two -state system with laser-induced fluores- cence for measurement. Keywords Quantum measurement...Measurement postulate · Born rule 1 Introduction 1.1 Problems with Quantum Measurement Quantum theory prescribes probabilities for outcomes of measurements
Quantum origins of objectivity
NASA Astrophysics Data System (ADS)
Horodecki, R.; Korbicz, J. K.; Horodecki, P.
2015-03-01
In spite of all of its successes, quantum mechanics leaves us with a central problem: How does nature create a bridge from fragile quanta to the objective world of everyday experience? Here we find that a basic structure within quantum mechanics that leads to the perceived objectivity is a so-called spectrum broadcast structure. We uncover this based on minimal assumptions, without referring to any dynamical details or a concrete model. More specifically, working formally within the decoherence theory setting with multiple environments (called quantum Darwinism), we show how a crucial for quantum mechanics notion of nondisturbance due to Bohr [N. Bohr, Phys. Rev. 48, 696 (1935), 10.1103/PhysRev.48.696] and a natural definition of objectivity lead to a canonical structure of a quantum system-environment state, reflecting objective information records about the system stored in the environment.
Insights into teaching quantum mechanics in secondary and lower undergraduate education
NASA Astrophysics Data System (ADS)
Krijtenburg-Lewerissa, K.; Pol, H. J.; Brinkman, A.; van Joolingen, W. R.
2017-06-01
This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences between the conceptual nature of quantum mechanics and classical physics, research on misconceptions, testing, and teaching strategies for introductory quantum mechanics is needed. For this review, 74 articles were selected and analyzed for the misconceptions, research tools, teaching strategies, and multimedia applications investigated. Outcomes were categorized according to their contribution to the various subtopics of quantum mechanics. Analysis shows that students have difficulty relating quantum physics to physical reality. It also shows that the teaching of complex quantum behavior, such as time dependence, superposition, and the measurement problem, has barely been investigated for the secondary and lower undergraduate level. At the secondary school level, this article shows a need to investigate student difficulties concerning wave functions and potential wells. Investigation of research tools shows the necessity for the development of assessment tools for secondary and lower undergraduate education, which cover all major topics and are suitable for statistical analysis. Furthermore, this article shows the existence of very diverse ideas concerning teaching strategies for quantum mechanics and a lack of research into which strategies promote understanding. This article underlines the need for more empirical research into student difficulties, teaching strategies, activities, and research tools intended for a conceptual approach for quantum mechanics.
A Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2015-04-01
Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. We describe a theoretical framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates the effects of diversity in students' prior preparation, goals and motivation for taking upper-level physics courses in general as well as the ``paradigm shift'' from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics will be discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a theoretical framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics. Support from the National Science Foundation is gratefully acknowledged.
Improving Performance in Quantum Mechanics with Explicit Incentives to Correct Mistakes
ERIC Educational Resources Information Center
Brown, Benjamin R.; Mason, Andrew; Singh, Chandralekha
2016-01-01
An earlier investigation found that the performance of advanced students in a quantum mechanics course did not automatically improve from midterm to final exam on identical problems even when they were provided the correct solutions and their own graded exams. Here, we describe a study, which extended over four years, in which upper-level…
NASA Astrophysics Data System (ADS)
Lorenzen, F.; de Ponte, M. A.; Moussa, M. H. Y.
2009-09-01
In this paper, employing the Itô stochastic Schrödinger equation, we extend Bell’s beable interpretation of quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic trajectories are naturally incorporated into Bohm’s causal dynamics, yielding a unified Bohm-Nelson theory. In particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show that our extended beables circumvent the problems in Bohm’s causal dynamics regarding stationary states in quantum mechanics.
NASA Astrophysics Data System (ADS)
Schleich, Wolfgang P.
2001-04-01
Quantum Optics in Phase Space provides a concise introduction to the rapidly moving field of quantum optics from the point of view of phase space. Modern in style and didactically skillful, Quantum Optics in Phase Space prepares students for their own research by presenting detailed derivations, many illustrations and a large set of workable problems at the end of each chapter. Often, the theoretical treatments are accompanied by the corresponding experiments. An exhaustive list of references provides a guide to the literature. Quantum Optics in Phase Space also serves advanced researchers as a comprehensive reference book. Starting with an extensive review of the experiments that define quantum optics and a brief summary of the foundations of quantum mechanics the author Wolfgang P. Schleich illustrates the properties of quantum states with the help of the Wigner phase space distribution function. His description of waves ala WKB connects semi-classical phase space with the Berry phase. These semi-classical techniques provide deeper insight into the timely topics of wave packet dynamics, fractional revivals and the Talbot effect. Whereas the first half of the book deals with mechanical oscillators such as ions in a trap or atoms in a standing wave the second half addresses problems where the quantization of the radiation field is of importance. Such topics extensively discussed include optical interferometry, the atom-field interaction, quantum state preparation and measurement, entanglement, decoherence, the one-atom maser and atom optics in quantized light fields. Quantum Optics in Phase Space presents the subject of quantum optics as transparently as possible. Giving wide-ranging references, it enables students to study and solve problems with modern scientific literature. The result is a remarkably concise yet comprehensive and accessible text- and reference book - an inspiring source of information and insight for students, teachers and researchers alike.
The Madelung Picture as a Foundation of Geometric Quantum Theory
NASA Astrophysics Data System (ADS)
Reddiger, Maik
2017-10-01
Despite its age, quantum theory still suffers from serious conceptual difficulties. To create clarity, mathematical physicists have been attempting to formulate quantum theory geometrically and to find a rigorous method of quantization, but this has not resolved the problem. In this article we argue that a quantum theory recursing to quantization algorithms is necessarily incomplete. To provide an alternative approach, we show that the Schrödinger equation is a consequence of three partial differential equations governing the time evolution of a given probability density. These equations, discovered by Madelung, naturally ground the Schrödinger theory in Newtonian mechanics and Kolmogorovian probability theory. A variety of far-reaching consequences for the projection postulate, the correspondence principle, the measurement problem, the uncertainty principle, and the modeling of particle creation and annihilation are immediate. We also give a speculative interpretation of the equations following Bohm, Vigier and Tsekov, by claiming that quantum mechanical behavior is possibly caused by gravitational background noise.
Efficient hybrid-symbolic methods for quantum mechanical calculations
NASA Astrophysics Data System (ADS)
Scott, T. C.; Zhang, Wenxing
2015-06-01
We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.
Quantum chemical calculation of the equilibrium structures of small metal atom clusters
NASA Technical Reports Server (NTRS)
Kahn, L. R.
1982-01-01
Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.
NASA Astrophysics Data System (ADS)
Johnson, David T.
Quantum mechanics is an extremely successful and accurate physical theory, yet since its inception, it has been afflicted with numerous conceptual difficulties. The primary subject of this thesis is the theory of entropic quantum dynamics (EQD), which seeks to avoid these conceptual problems by interpreting quantum theory from an informational perspective. We begin by reviewing Cox's work in describing probability theory as a means of rationally and consistently quantifying uncertainties. We then discuss how probabilities can be updated according to either Bayes' theorem or the extended method of maximum entropy (ME). After that discussion, we review the work of Caticha and Giffin that shows that Bayes' theorem is a special case of ME. This important result demonstrates that the ME method is the general method for updating probabilities. We then review some motivating difficulties in quantum mechanics before discussing Caticha's work in deriving quantum theory from the approach of entropic dynamics, which concludes our review. After entropic dynamics is introduced, we develop the concepts of symmetries and transformations from an informational perspective. The primary result is the formulation of a symmetry condition that any transformation must satisfy in order to qualify as a symmetry in EQD. We then proceed to apply this condition to the extended Galilean transformation. This transformation is of interest as it exhibits features of both special and general relativity. The transformation yields a gravitational potential that arises from an equivalence of information. We conclude the thesis with a discussion of the measurement problem in quantum mechanics. We discuss the difficulties that arise in the standard quantum mechanical approach to measurement before developing our theory of entropic measurement. In entropic dynamics, position is the only observable. We show how a theory built on this one observable can account for the multitude of measurements present in quantum theory. Furthermore, we show that the Born rule need not be postulated, but can be derived in EQD. Finally, we show how the wave function can be updated by the ME method as the phase is constructed purely in terms of probabilities.
Quantum approach to classical statistical mechanics.
Somma, R D; Batista, C D; Ortiz, G
2007-07-20
We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.
Quantum-mechanical treatment of an electron undergoing synchrotron radiation.
NASA Technical Reports Server (NTRS)
White, D.
1972-01-01
The problem of an electron moving perpendicular to an intense magnetic field is approached from the framework of quantum mechanics. A numerical solution to the related rate equations describing the probabilities of occupation of the electron's energy states is put forth along with the expected errors involved. The quantum-mechanical approach is found to predict a significant amount of energy broadening with time for an initially monoenergetic electron beam entering a region of an intense magnetic field as long as the product of initial energy and magnetic field is of order 50 MG BeV or larger.
NASA Astrophysics Data System (ADS)
Restrepo, Juan; Ciuti, Cristiano; Favero, Ivan
2014-01-01
This Letter investigates a hybrid quantum system combining cavity quantum electrodynamics and optomechanics. The Hamiltonian problem of a photon mode coupled to a two-level atom via a Jaynes-Cummings coupling and to a mechanical mode via radiation pressure coupling is solved analytically. The atom-cavity polariton number operator commutes with the total Hamiltonian leading to an exact description in terms of tripartite atom-cavity-mechanics polarons. We demonstrate the possibility to obtain cooling of mechanical motion at the single-polariton level and describe the peculiar quantum statistics of phonons in such an unconventional regime.
From classical to quantum mechanics: ``How to translate physical ideas into mathematical language''
NASA Astrophysics Data System (ADS)
Bergeron, H.
2001-09-01
Following previous works by E. Prugovečki [Physica A 91A, 202 (1978) and Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)] on common features of classical and quantum mechanics, we develop a unified mathematical framework for classical and quantum mechanics (based on L2-spaces over classical phase space), in order to investigate to what extent quantum mechanics can be obtained as a simple modification of classical mechanics (on both logical and analytical levels). To obtain this unified framework, we split quantum theory in two parts: (i) general quantum axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoints operators, and so on) and (ii) quantum mechanics proper that specifies the Hilbert space as L2(Rn); the Heisenberg rule [pi,qj]=-iℏδij with p=-iℏ∇, the free Hamiltonian H=-ℏ2Δ/2m and so on. We show that general quantum axiomatics (up to a supplementary "axiom of classicity") can be used as a nonstandard mathematical ground to formulate physical ideas and equations of ordinary classical statistical mechanics. So, the question of a "true quantization" with "ℏ" must be seen as an independent physical problem not directly related with quantum formalism. At this stage, we show that this nonstandard formulation of classical mechanics exhibits a new kind of operation that has no classical counterpart: this operation is related to the "quantization process," and we show why quantization physically depends on group theory (the Galilei group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows us to map classical mechanics into quantum mechanics, giving all operators of quantum dynamics and the Schrödinger equation. The great advantage of this point of view is that quantization is based on concrete physical arguments and not derived from some "pure algebraic rule" (we exhibit also some limit of the correspondence principle). Moreover spins for particles are naturally generated, including an approximation of their interaction with magnetic fields. We also recover by this approach the semi-classical formalism developed by E. Prugovečki [Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)].
Framework for understanding the patterns of student difficulties in quantum mechanics
NASA Astrophysics Data System (ADS)
Marshman, Emily; Singh, Chandralekha
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students' prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel) as well as the "paradigm shift" from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.
Quantum computing and probability.
Ferry, David K
2009-11-25
Over the past two decades, quantum computing has become a popular and promising approach to trying to solve computationally difficult problems. Missing in many descriptions of quantum computing is just how probability enters into the process. Here, we discuss some simple examples of how uncertainty and probability enter, and how this and the ideas of quantum computing challenge our interpretations of quantum mechanics. It is found that this uncertainty can lead to intrinsic decoherence, and this raises challenges for error correction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khots, Boris, E-mail: bkhots@cccglobal.com; Khots, Dmitriy, E-mail: dkhots@imathconsulting.com
2014-12-10
Certain results that have been predicted by Quantum Mechanics (QM) theory are not always supported by experiments. This defines a deep crisis in contemporary physics and, in particular, quantum mechanics. We believe that, in fact, the mathematical apparatus employed within today's physics is a possible reason. In particular, we consider the concept of infinity that exists in today's mathematics as the root cause of this problem. We have created Observer's Mathematics that offers an alternative to contemporary mathematics. This paper is an attempt to relay how Observer's Mathematics may explain some of the contradictions in QM theory results. We considermore » the Hamiltonian Mechanics, Newton equation, Schrodinger equation, two slit interference, wave-particle duality for single photons, uncertainty principle, Dirac equations for free electron in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics (see www.mathrelativity.com). Certain results and communications pertaining to solution of these problems are provided.« less
Hidden Statistics Approach to Quantum Simulations
NASA Technical Reports Server (NTRS)
Zak, Michail
2010-01-01
Recent advances in quantum information theory have inspired an explosion of interest in new quantum algorithms for solving hard computational (quantum and non-quantum) problems. The basic principle of quantum computation is that the quantum properties can be used to represent structure data, and that quantum mechanisms can be devised and built to perform operations with this data. Three basic non-classical properties of quantum mechanics superposition, entanglement, and direct-product decomposability were main reasons for optimism about capabilities of quantum computers that promised simultaneous processing of large massifs of highly correlated data. Unfortunately, these advantages of quantum mechanics came with a high price. One major problem is keeping the components of the computer in a coherent state, as the slightest interaction with the external world would cause the system to decohere. That is why the hardware implementation of a quantum computer is still unsolved. The basic idea of this work is to create a new kind of dynamical system that would preserve the main three properties of quantum physics superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. In other words, such a system would reinforce the advantages and minimize limitations of both quantum and classical aspects. Based upon a concept of hidden statistics, a new kind of dynamical system for simulation of Schroedinger equation is proposed. The system represents a modified Madelung version of Schroedinger equation. It preserves superposition, entanglement, and direct-product decomposability while allowing one to measure its state variables using classical methods. Such an optimal combination of characteristics is a perfect match for simulating quantum systems. The model includes a transitional component of quantum potential (that has been overlooked in previous treatment of the Madelung equation). The role of the transitional potential is to provide a jump from a deterministic state to a random state with prescribed probability density. This jump is triggered by blowup instability due to violation of Lipschitz condition generated by the quantum potential. As a result, the dynamics attains quantum properties on a classical scale. The model can be implemented physically as an analog VLSI-based (very-large-scale integration-based) computer, or numerically on a digital computer. This work opens a way of developing fundamentally new algorithms for quantum simulations of exponentially complex problems that expand NASA capabilities in conducting space activities. It has been illustrated that the complexity of simulations of particle interaction can be reduced from an exponential one to a polynomial one.
Boundary conditions in tunneling via quantum hydrodynamics
NASA Technical Reports Server (NTRS)
Nassar, Antonio B.
1993-01-01
Via the hydrodynamical formulation of quantum mechanics, an approach to the problem of tunneling through sharp-edged potential barriers is developed. Above all, it is shown how more general boundary conditions follow from the continuity of mass, momentum, and energy.
Enhancing quantum annealing performance for the molecular similarity problem
NASA Astrophysics Data System (ADS)
Hernandez, Maritza; Aramon, Maliheh
2017-05-01
Quantum annealing is a promising technique which leverages quantum mechanics to solve hard optimization problems. Considerable progress has been made in the development of a physical quantum annealer, motivating the study of methods to enhance the efficiency of such a solver. In this work, we present a quantum annealing approach to measure similarity among molecular structures. Implementing real-world problems on a quantum annealer is challenging due to hardware limitations such as sparse connectivity, intrinsic control error, and limited precision. In order to overcome the limited connectivity, a problem must be reformulated using minor-embedding techniques. Using a real data set, we investigate the performance of a quantum annealer in solving the molecular similarity problem. We provide experimental evidence that common practices for embedding can be replaced by new alternatives which mitigate some of the hardware limitations and enhance its performance. Common practices for embedding include minimizing either the number of qubits or the chain length and determining the strength of ferromagnetic couplers empirically. We show that current criteria for selecting an embedding do not improve the hardware's performance for the molecular similarity problem. Furthermore, we use a theoretical approach to determine the strength of ferromagnetic couplers. Such an approach removes the computational burden of the current empirical approaches and also results in hardware solutions that can benefit from simple local classical improvement. Although our results are limited to the problems considered here, they can be generalized to guide future benchmarking studies.
A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinitskiy, Anton V.; Voth, Gregory A., E-mail: gavoth@uchicago.edu
2015-09-07
Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionistmore » perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.« less
A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.
Sinitskiy, Anton V; Voth, Gregory A
2015-09-07
Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.
Temme, K; Osborne, T J; Vollbrecht, K G; Poulin, D; Verstraete, F
2011-03-03
The original motivation to build a quantum computer came from Feynman, who imagined a machine capable of simulating generic quantum mechanical systems--a task that is believed to be intractable for classical computers. Such a machine could have far-reaching applications in the simulation of many-body quantum physics in condensed-matter, chemical and high-energy systems. Part of Feynman's challenge was met by Lloyd, who showed how to approximately decompose the time evolution operator of interacting quantum particles into a short sequence of elementary gates, suitable for operation on a quantum computer. However, this left open the problem of how to simulate the equilibrium and static properties of quantum systems. This requires the preparation of ground and Gibbs states on a quantum computer. For classical systems, this problem is solved by the ubiquitous Metropolis algorithm, a method that has basically acquired a monopoly on the simulation of interacting particles. Here we demonstrate how to implement a quantum version of the Metropolis algorithm. This algorithm permits sampling directly from the eigenstates of the Hamiltonian, and thus evades the sign problem present in classical simulations. A small-scale implementation of this algorithm should be achievable with today's technology.
Quantum probabilistic logic programming
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan
2015-05-01
We describe a quantum mechanics based logic programming language that supports Horn clauses, random variables, and covariance matrices to express and solve problems in probabilistic logic. The Horn clauses of the language wrap random variables, including infinite valued, to express probability distributions and statistical correlations, a powerful feature to capture relationship between distributions that are not independent. The expressive power of the language is based on a mechanism to implement statistical ensembles and to solve the underlying SAT instances using quantum mechanical machinery. We exploit the fact that classical random variables have quantum decompositions to build the Horn clauses. We establish the semantics of the language in a rigorous fashion by considering an existing probabilistic logic language called PRISM with classical probability measures defined on the Herbrand base and extending it to the quantum context. In the classical case H-interpretations form the sample space and probability measures defined on them lead to consistent definition of probabilities for well formed formulae. In the quantum counterpart, we define probability amplitudes on Hinterpretations facilitating the model generations and verifications via quantum mechanical superpositions and entanglements. We cast the well formed formulae of the language as quantum mechanical observables thus providing an elegant interpretation for their probabilities. We discuss several examples to combine statistical ensembles and predicates of first order logic to reason with situations involving uncertainty.
Measurement and quantum indeterminateness
NASA Astrophysics Data System (ADS)
Healey, Richard
1993-08-01
Albert and Loewer[1] have recently clarified their earlier objection to the interactive interpretation presented in Healey[2]. They now charge that this interpretation fails to solve a problem of which the measurement problem is but a special case. The general problem is to reconcile quantum mechanics with the prima facie determinateness of such dynamical properties as the positions of macroscopic objects. In response I defend both the preeminent significance of determinate measurement outcomes and the claim that the models of Healey[3] go a long way toward securing their determinateness.
Mata, Ricardo A
2010-05-21
In this Perspective, several developments in the field of quantum mechanics/molecular mechanics (QM/MM) approaches are reviewed. Emphasis is placed on the use of correlated wavefunction theory and new state of the art methods for the treatment of large quantum systems. Until recently, computational chemistry approaches to large/complex chemical problems have seldom been considered as tools for quantitative predictions. However, due to the tremendous development of computational resources and new quantum chemical methods, it is nowadays possible to describe the electronic structure of biomolecules at levels of theory which a decade ago were only possible for system sizes of up to 20 atoms. These advances are here outlined in the context of QM/MM. The article concludes with a short outlook on upcoming developments and possible bottlenecks for future applications.
Measurements in Quantum Mechanics and von NEUMANN's Model
NASA Astrophysics Data System (ADS)
Mello, Pier A.; Johansen, Lars M.
2010-12-01
Many textbooks on Quantum Mechanics are not very precise as to the meaning of making a measurement: as a consequence, they frequently make assertions which are not based on a dynamical description of the measurement process. A model proposed by von Neumann allows a dynamical description of measurement in Quantum Mechanics, including the measuring instrument in the formalism. In this article we apply von Neumann's model to illustrate the measurement of an observable by means of a measuring instrument and show how various results, which are sometimens postulated without a dynamical basis, actually emerge. We also investigate the more complex, intriguing and fundamental problem of two successive measurements in Quantum Mechanics, extending von Neumann's model to two measuring instruments. We present a description which allows obtaining, in a unified way, various results that have been given in the literature.
Scale relativity: from quantum mechanics to chaotic dynamics.
NASA Astrophysics Data System (ADS)
Nottale, L.
Scale relativity is a new approach to the problem of the origin of fundamental scales and of scaling laws in physics, which consists in generalizing Einstein's principle of relativity to the case of scale transformations of resolutions. We recall here how it leads one to the concept of fractal space-time, and to introduce a new complex time derivative operator which allows to recover the Schrödinger equation, then to generalize it. In high energy quantum physics, it leads to the introduction of a Lorentzian renormalization group, in which the Planck length is reinterpreted as a lowest, unpassable scale, invariant under dilatations. These methods are successively applied to two problems: in quantum mechanics, that of the mass spectrum of elementary particles; in chaotic dynamics, that of the distribution of planets in the Solar System.
ERIC Educational Resources Information Center
School Science Review, 1990
1990-01-01
Presented are 27 science activities for secondary school science instruction. Topic areas include microbiology, botany, biochemistry, genetics, safety, earthquakes, problem solving, electricity, heat, solutions, mechanics, quantum mechanics, flame tests, and molecular structure. (CW)
NASA Astrophysics Data System (ADS)
Cao, Zhenwei
Over the years, people have found Quantum Mechanics to be extremely useful in explaining various physical phenomena from a microscopic point of view. Anderson localization, named after physicist P. W. Anderson, states that disorder in a crystal can cause non-spreading of wave packets, which is one possible mechanism (at single electron level) to explain metal-insulator transitions. The theory of quantum computation promises to bring greater computational power over classical computers by making use of some special features of Quantum Mechanics. The first part of this dissertation considers a 3D alloy-type model, where the Hamiltonian is the sum of the finite difference Laplacian corresponding to free motion of an electron and a random potential generated by a sign-indefinite single-site potential. The result shows that localization occurs in the weak disorder regime, i.e., when the coupling parameter lambda is very small, for energies E ≤ --Clambda 2. The second part of this dissertation considers adiabatic quantum computing (AQC) algorithms for the unstructured search problem to the case when the number of marked items is unknown. In an ideal situation, an explicit quantum algorithm together with a counting subroutine are given that achieve the optimal Grover speedup over classical algorithms, i.e., roughly speaking, reduce O(2n) to O(2n/2), where n is the size of the problem. However, if one considers more realistic settings, the result shows this quantum speedup is achievable only under a very rigid control precision requirement (e.g., exponentially small control error).
Solving the Nonlocality Riddle by Conformal Quantum Geometrodynamics
NASA Astrophysics Data System (ADS)
Santamato, Enrico; de Martini, Francesco
2012-01-01
Since the 1935 proposal by Einstein, Podolsky and Rosen the riddle of nonlocality, today demonstrated by the violation of Bell's inequalities within innumerable experiments, has been a cause of concern and confusion within the debate over the foundations of quantum mechanics. The present paper tackles the problem by a nonrelativistic approach based on conformal differential geometry applied to the solution of the dynamical problem of two entangled spin 1/2 particles. It is found that the quantum nonlocality may be understood on the basis of a conformal quantum geometrodynamics acting necessarily on the full "configuration space" of the entangled particles. At the end, the violation of the Bell inequalities is demonstrated without making recourse to the common nonlocality paradigm.
Less Decoherence and More Coherence in Quantum Gravity, Inflationary Cosmology and Elsewhere
NASA Astrophysics Data System (ADS)
Okon, Elias; Sudarsky, Daniel
2016-07-01
In Crull (Found Phys 45:1019-1045, 2015) it is argued that, in order to confront outstanding problems in cosmology and quantum gravity, interpretational aspects of quantum theory can by bypassed because decoherence is able to resolve them. As a result, Crull (Found Phys 45:1019-1045, 2015) concludes that our focus on conceptual and interpretational issues, while dealing with such matters in Okon and Sudarsky (Found Phys 44:114-143, 2014), is avoidable and even pernicious. Here we will defend our position by showing in detail why decoherence does not help in the resolution of foundational questions in quantum mechanics, such as the measurement problem or the emergence of classicality.
Liu, Jian; Miller, William H
2011-03-14
We show the exact expression of the quantum mechanical time correlation function in the phase space formulation of quantum mechanics. The trajectory-based dynamics that conserves the quantum canonical distribution-equilibrium Liouville dynamics (ELD) proposed in Paper I is then used to approximately evaluate the exact expression. It gives exact thermal correlation functions (of even nonlinear operators, i.e., nonlinear functions of position or momentum operators) in the classical, high temperature, and harmonic limits. Various methods have been presented for the implementation of ELD. Numerical tests of the ELD approach in the Wigner or Husimi phase space have been made for a harmonic oscillator and two strongly anharmonic model problems, for each potential autocorrelation functions of both linear and nonlinear operators have been calculated. It suggests ELD can be a potentially useful approach for describing quantum effects for complex systems in condense phase.
Experimental quantum annealing: case study involving the graph isomorphism problem.
Zick, Kenneth M; Shehab, Omar; French, Matthew
2015-06-08
Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N(2) to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers.
Experimental quantum annealing: case study involving the graph isomorphism problem
Zick, Kenneth M.; Shehab, Omar; French, Matthew
2015-01-01
Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N2 to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers. PMID:26053973
Implementation of quantum game theory simulations using Python
NASA Astrophysics Data System (ADS)
Madrid S., A.
2013-05-01
This paper provides some examples about quantum games simulated in Python's programming language. The quantum games have been developed with the Sympy Python library, which permits solving quantum problems in a symbolic form. The application of these methods of quantum mechanics to game theory gives us more possibility to achieve results not possible before. To illustrate the results of these methods, in particular, there have been simulated the quantum battle of the sexes, the prisoner's dilemma and card games. These solutions are able to exceed the classic bottle neck and obtain optimal quantum strategies. In this form, python demonstrated that is possible to do more advanced and complicated quantum games algorithms.
Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi
2017-07-21
In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.
The quantum limit for gravitational-wave detectors and methods of circumventing it
NASA Technical Reports Server (NTRS)
Thorne, K. S.; Caves, C. M.; Sandberg, V. D.; Zimmermann, M.; Drever, R. W. P.
1979-01-01
The Heisenberg uncertainty principle prevents the monitoring of the complex amplitude of a mechanical oscillator more accurately than a certain limit value. This 'quantum limit' is a serious obstacle to the achievement of a 10 to the -21st gravitational-wave detection sensitivity. This paper examines the principles of the back-action evasion technique and finds that this technique may be able to overcome the problem of the quantum limit. Back-action evasion does not solve, however, other problems of detection, such as weak coupling, large amplifier noise, and large Nyquist noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durran, Richard; Neate, Andrew; Truman, Aubrey
2008-03-15
We consider the Bohr correspondence limit of the Schroedinger wave function for an atomic elliptic state. We analyze this limit in the context of Nelson's stochastic mechanics, exposing an underlying deterministic dynamical system in which trajectories converge to Keplerian motion on an ellipse. This solves the long standing problem of obtaining Kepler's laws of planetary motion in a quantum mechanical setting. In this quantum mechanical setting, local mild instabilities occur in the Keplerian orbit for eccentricities greater than (1/{radical}(2)) which do not occur classically.
Philosophy of Mind and the Problem of FreeWill in the Light of Quantum Mechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, Henry; Stapp, Henry P
Arguments pertaining to the mind-brain connection and to the physical effectiveness of our conscious choices have been presented in two recent books, one by John Searle, the other by Jaegwon Kim. These arguments are examined, and it is argued that the difficulties encountered arise from a defective understanding and application of a pertinent part of contemporary science, namely quantum mechanics.
Li, Richard Y.; Di Felice, Rosa; Rohs, Remo; Lidar, Daniel A.
2018-01-01
Transcription factors regulate gene expression, but how these proteins recognize and specifically bind to their DNA targets is still debated. Machine learning models are effective means to reveal interaction mechanisms. Here we studied the ability of a quantum machine learning approach to predict binding specificity. Using simplified datasets of a small number of DNA sequences derived from actual binding affinity experiments, we trained a commercially available quantum annealer to classify and rank transcription factor binding. The results were compared to state-of-the-art classical approaches for the same simplified datasets, including simulated annealing, simulated quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting. Despite technological limitations, we find a slight advantage in classification performance and nearly equal ranking performance using the quantum annealer for these fairly small training data sets. Thus, we propose that quantum annealing might be an effective method to implement machine learning for certain computational biology problems. PMID:29652405
Quantum Uncertainty and Decision-Making in Game Theory
NASA Astrophysics Data System (ADS)
Asano, M.; Ohya, M.; Tanaka, Y.; Khrennikov, A.; Basieva, I.
2011-01-01
Recently a few authors pointed to a possibility to apply the mathematical formalism of quantum mechanics to cognitive psychology, in particular, to games of the Prisoners Dilemma (PD) type.6_18 In this paper, we discuss the problem of rationality in game theory and point out that the quantum uncertainty is similar to the uncertainty of knowledge, which a player feels subjectively in his decision-making.
2011-12-01
quantum computer architecture schemes, but there are several problems that will be discussed later. 15 IV. ION TRAPS Wolfgang Paul was the first...famous physics experiment [62]. Wolfgang Paul demonstrated a similar apparatus during his Nobel Prize speech [63]. This device is hyperbolic-parabolic...Although it does not apply to linear traps, it is useful to understand the interaction between the Coulomb force and the repulsive quantum-mechanical Pauli
Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics
NASA Astrophysics Data System (ADS)
Castagnoli, Giuseppe
2016-03-01
Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation measurement. This extended, time-symmetric, representation brings in relational quantum mechanics. It is with respect to Bob and any external observer and cannot be with respect to Alice. It would tell her the number of the drawer with the ball before she opens any drawer. To Alice, the projection of the quantum state due to the preparation measurement should be retarded at the end of her search; in the input state of the search, the drawer number is determined to Bob and undetermined to Alice. We show that, mathematically, one can ascribe any part of the selection of the random outcome of the preparation measurement to the final Alice's measurement. Ascribing half of it explains the speedup of the present algorithm. This leaves the input state to Bob unaltered and projects that to Alice on a state of lower entropy where she knows half of the number of the drawer with the ball in advance. The quantum algorithm turns out to be a sum over histories in each of which Alice knows in advance that the ball is in a pair of drawers and locates it by opening one of the two. In the sample of quantum algorithms examined, the part of the random outcome of the initial measurement selected by the final measurement is one half or slightly above it. Conversely, given an oracle problem, the assumption it is one half always corresponds to an existing quantum algorithm and gives the order of magnitude of the number of oracle queries required by the optimal one.
Mathematical sense-making in quantum mechanics: An initial peek
NASA Astrophysics Data System (ADS)
Dreyfus, Benjamin W.; Elby, Andrew; Gupta, Ayush; Sohr, Erin Ronayne
2017-12-01
Mathematical sense-making—looking for coherence between the structure of the mathematical formalism and causal or functional relations in the world—is a core component of physics expertise. Some physics education research studies have explored what mathematical sense-making looks like at the introductory physics level, while some historians and "science studies" have explored how expert physicists engage in it. What is largely missing, with a few exceptions, is theoretical and empirical work at the intermediate level—upper division physics students—especially when they are learning difficult new mathematical formalism. In this paper, we present analysis of a segment of video-recorded discussion between two students grappling with a quantum mechanics question to illustrate what mathematical sense-making can look like in quantum mechanics. We claim that mathematical sense-making is possible and productive for learning and problem solving in quantum mechanics. Mathematical sense-making in quantum mechanics is continuous in many ways with mathematical sense-making in introductory physics. However, in the context of quantum mechanics, the connections between formalism, intuitive conceptual schema, and the physical world become more compound (nested) and indirect. We illustrate these similarities and differences in part by proposing a new symbolic form, eigenvector eigenvalue, which is composed of multiple primitive symbolic forms.
Complexity of the Quantum Adiabatic Algorithm
NASA Technical Reports Server (NTRS)
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
(Never) Mind your p's and q's: Von Neumann versus Jordan on the foundations of quantum theory
NASA Astrophysics Data System (ADS)
Duncan, A.; Janssen, M.
2013-03-01
In 1927, in two papers entitled "On a new foundation [Neue Begründung] of quantum mechanics," Pascual Jordan presented his version of what came to be known as the Dirac-Jordan statistical transformation theory. Jordan and Paul Dirac arrived at essentially the same theory independently of one another at around the same time. Later in 1927, partly in response to Jordan and Dirac and avoiding the mathematical difficulties facing their approach, John von Neumann developed the modern Hilbert space formalism of quantum mechanics. We focus on Jordan and von Neumann. Central to the formalisms of both are expressions for conditional probabilities of finding some value for one quantity given the value of another. Beyond that Jordan and von Neumann had very different views about the appropriate formulation of problems in quantum mechanics. For Jordan, unable to let go of the analogy to classical mechanics, the solution of such problems required the identification of sets of canonically conjugate variables, i.e., p's and q's. For von Neumann, not constrained by the analogy to classical mechanics, it required only the identification of a maximal set of commuting operators with simultaneous eigenstates. He had no need for p's and q's. Jordan and von Neumann also stated the characteristic new rules for probabilities in quantum mechanics somewhat differently. Jordan and Dirac were the first to state those rules in full generality. Von Neumann rephrased them and, in a paper published a few months later, sought to derive them from more basic considerations. In this paper we reconstruct the central arguments of these 1927 papers by Jordan and von Neumann and of a paper on Jordan's approach by Hilbert, von Neumann, and Nordheim. We highlight those elements in these papers that bring out the gradual loosening of the ties between the new quantum formalism and classical mechanics. This paper was written as part of a joint project in the history of quantum physics of the Max Planck Institut für Wissenschaftsgeschichte and the Fritz-Haber-Institut in Berlin.
Quantum Computation: Entangling with the Future
NASA Technical Reports Server (NTRS)
Jiang, Zhang
2017-01-01
Commercial applications of quantum computation have become viable due to the rapid progress of the field in the recent years. Efficient quantum algorithms are discovered to cope with the most challenging real-world problems that are too hard for classical computers. Manufactured quantum hardware has reached unprecedented precision and controllability, enabling fault-tolerant quantum computation. Here, I give a brief introduction on what principles in quantum mechanics promise its unparalleled computational power. I will discuss several important quantum algorithms that achieve exponential or polynomial speedup over any classical algorithm. Building a quantum computer is a daunting task, and I will talk about the criteria and various implementations of quantum computers. I conclude the talk with near-future commercial applications of a quantum computer.
NASA Technical Reports Server (NTRS)
Isaacson, D.; Marchesin, D.; Paes-Leme, P. J.
1980-01-01
This paper is an expanded version of a talk given at the 1979 T.I.C.O.M. conference. It is a self-contained introduction, for applied mathematicians and numerical analysts, to quantum mechanics and quantum field theory. It also contains a brief description of the authors' numerical approach to the problems of quantum field theory, which may best be summarized by the question; Can we compute the eigenvalues and eigenfunctions of Schrodinger operators in infinitely many variables.
Computer studies of multiple-quantum spin dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murdoch, J.B.
The excitation and detection of multiple-quantum (MQ) transitions in Fourier transform NMR spectroscopy is an interesting problem in the quantum mechanical dynamics of spin systems as well as an important new technique for investigation of molecular structure. In particular, multiple-quantum spectroscopy can be used to simplify overly complex spectra or to separate the various interactions between a nucleus and its environment. The emphasis of this work is on computer simulation of spin-system evolution to better relate theory and experiment.
Quantum mechanics and reality: An interpretation of Everett's theory
NASA Astrophysics Data System (ADS)
Lehner, Christoph Albert
The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious observer is not described by the objective state, but by a Everettian relative state conditional on the subjective state, and no theoretical 'mark of reality' is necessary for this concept of reality. I compare the resulting concept of reality to Kant's distinction between empirical and transcendental reality.
Mathematical methods of studying physical phenomena
NASA Astrophysics Data System (ADS)
Man'ko, Margarita A.
2013-03-01
In recent decades, substantial theoretical and experimental progress was achieved in understanding the quantum nature of physical phenomena that serves as the foundation of present and future quantum technologies. Quantum correlations like the entanglement of the states of composite systems, the phenomenon of quantum discord, which captures other aspects of quantum correlations, quantum contextuality and, connected with these phenomena, uncertainty relations for conjugate variables and entropies, like Shannon and Rényi entropies, and the inequalities for spin states, like Bell inequalities, reflect the recently understood quantum properties of micro and macro systems. The mathematical methods needed to describe all quantum phenomena mentioned above were also the subject of intense studies in the end of the last, and beginning of the new, century. In this section of CAMOP 'Mathematical Methods of Studying Physical Phenomena' new results and new trends in the rapidly developing domain of quantum (and classical) physics are presented. Among the particular topics under discussion there are some reviews on the problems of dynamical invariants and their relations with symmetries of the physical systems. In fact, this is a very old problem of both classical and quantum systems, e.g. the systems of parametric oscillators with time-dependent parameters, like Ermakov systems, which have specific constants of motion depending linearly or quadratically on the oscillator positions and momenta. Such dynamical invariants play an important role in studying the dynamical Casimir effect, the essence of the effect being the creation of photons from the vacuum in a cavity with moving boundaries due to the presence of purely quantum fluctuations of the electromagnetic field in the vacuum. It is remarkable that this effect was recently observed experimentally. The other new direction in developing the mathematical approach in physics is quantum tomography that provides a new vision of quantum states. In the tomographic picture of quantum mechanics, the states are identified with fair conditional probability distributions, which contain the same information on the states as the wave function or the density matrix. The mathematical methods of the tomographic approach are based on studying the star-product (associative product) quantization scheme. The tomographic star-product technique provides an additional understanding of the associative product, which is connected with the existence of specific pairs of operators called quantizers and dequantizers. These operators code information on the kernels of all the star-product schemes, including the traditional phase-space Weyl-Wigner-Moyal picture describing the quantum-system evolution. The new equation to find quantizers, if the kernel of the star product of functions is given, is presented in this CAMOP section. For studying classical systems, the mathematical methods developed in quantum mechanics can also be used. The case of paraxial-radiation beams propagating in waveguides is a known example of describing a purely classical phenomenon by means of quantum-like equations. Thus, some quantum phenomenon like the entanglement can be mimicked by the properties of classical beams, for example, Gaussian modes. The mathematical structures and relations to the symplectic symmetry group are analogous for both classical and quantum phenomena. Such analogies of the mathematical classical and quantum methods used in research on quantum-like communication channels provide new tools for constructing a theoretical basis of the new information-transmission technologies. The conventional quantum mechanics and its relation to classical mechanics contain mathematical recipes of the correspondence principle and quantization rules. Attempts to find rules for deriving the quantum-mechanical formalism starting from the classical field theory, taking into account the influence of classical fluctuations of the field, is considered in these papers. The methods to solve quantum equations and formulate the boundary conditions in the problems with singular potentials are connected with the mathematical problems of self-adjointness of the Hamiltonians. The progress and some new results in this direction are reflected in this CAMOP section. The Gaussian states of the photons play an important role in quantum optics. The multimode electromagnetic field and quantum correlations in the Gaussian states are considered in this section. The new results in the statistical properties of the laser radiation discussed here are based on applications of mathematical methods in this traditional domain of physics. It is worth stressing that the universality of the mathematical procedures permitted to consider the physical phenomena in the ocean is on the same footing as the phenomena in the microworld. In this CAMOP section, there are also papers devoted to traditional problems of solving the Schrödinger equation for interesting quantum systems. Recently obtained results related to different domains of theoretical physics are united by applying mathematical methods and tools, that provide new possibilities to better understand the theoretical foundations needed to develop new quantum technologies like quantum computing and quantum communications. The papers are arranged alphabetically by the name of the first author. We are grateful to all authors who accepted our invitation to contribute to this CAMOP section.
Making sense of quantum operators, eigenstates and quantum measurements
NASA Astrophysics Data System (ADS)
Gire, Elizabeth; Manogue, Corinne
2012-02-01
Operators play a central role in the formalism of quantum mechanics. In particular, operators corresponding to observables encode important information about the results of quantum measurements. We interviewed upper-level undergraduate physics majors about their understanding of the role of operators in quantum measurements. Previous studies have shown that many students think of measurements on quantum systems as being deterministic and that measurements mathematically correspond to operators acting on the initial quantum state. This study is consistent with and expands on those results. We report on how two students make sense of a quantum measurement problem involving sequential measurements and the role that the eigenvalue equation plays in this sense-making.
Chance and time: Cutting the Gordian knot
NASA Astrophysics Data System (ADS)
Hagar, Amit
One of the recurrent problems in the foundations of physics is to explain why we rarely observe certain phenomena that are allowed by our theories and laws. In thermodynamics, for example, the spontaneous approach towards equilibrium is ubiquitous yet the time-reversal-invariant laws that presumably govern thermal behaviour in the microscopic level equally allow spontaneous approach away from equilibrium to occur. Why are the former processes frequently observed while the latter are almost never reported? Another example comes from quantum mechanics where the formalism, if considered complete and universally applicable, predicts the existence of macroscopic superpositions---monstrous Schrodinger cats---and these are never observed: while electrons and atoms enjoy the cloudiness of waves, macroscopic objects are always localized to definite positions. A well-known explanatory framework due to Ludwig Boltzmann traces the rarity of "abnormal" thermodynamic phenomena to the scarcity of the initial conditions that lead to it. After all, physical laws are no more than algorithms and these are expected to generate different results according to different initial conditions, hence Boltzmann's insight that violations of thermodynamic laws are possible but highly improbable. Yet Boltzmann introduces probabilities into this explanatory scheme, and since the latter is couched in terms of classical mechanics, these probabilities must be interpreted as a result of ignorance of the exact state the system is in. Quantum mechanics has taught us otherwise. Here the attempts to explain why we never observe macroscopic superpositions have led to different interpretations of the formalism and to different solutions to the quantum measurement problem. These solutions introduce additional interpretations to the meaning of probability over and above ignorance of the definite state of the physical system: quantum probabilities may result from pure chance. Notwithstanding the success of the Boltzmannian framework in explaining the thermodynamic arrow in time it leaves us with a foundational puzzle: how can ignorance play a role in scientific explanation of objective reality? In turns out that two opposing solutions to the quantum measurement problem in which probabilities arise from the stochastic character of the underlying dynamics may scratch this explanatory itch. By offering a dynamical justification to the probabilities employed in classical statistical mechanics these two interpretations complete the Boltzmannian explanatory scheme and allow us to exorcize ignorance from scientific explanations of unobserved phenomena. In this thesis I argue that the puzzle of the thermodynamic arrow in time is closely related to the problem of interpreting quantum mechanics, i.e., to the measurement problem. We may solve one by fiat and thus solve the other, but it seems unwise to try solving them independently. I substantiate this claim by presenting two possible interpretations to non-relativistic quantum mechanics. Differing as they do on the meaning of the probabilities they introduce into the otherwise deterministic dynamics, these interpretations offer alternative explanatory schemes to the standard Boltzmannian statistical mechanical explanation of thermodynamic approach to equilibrium. I then show how notwithstanding their current empirical equivalence, the two approaches diverge at the continental divide between scientific realism and anti-realism.
NASA Astrophysics Data System (ADS)
Ibort, A.; Pérez-Pardo, J. M.
2015-04-01
This is a series of five lectures around the common subject of the construction of self-adjoint extensions of symmetric operators and its applications to Quantum Physics. We will try to offer a brief account of some recent ideas in the theory of self-adjoint extensions of symmetric operators on Hilbert spaces and their applications to a few specific problems in Quantum Mechanics.
Laplace-Runge-Lenz vector in quantum mechanics in noncommutative space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gáliková, Veronika; Kováčik, Samuel; Prešnajder, Peter
2013-12-15
The main point of this paper is to examine a “hidden” dynamical symmetry connected with the conservation of Laplace-Runge-Lenz vector (LRL) in the hydrogen atom problem solved by means of non-commutative quantum mechanics (NCQM). The basic features of NCQM will be introduced to the reader, the key one being the fact that the notion of a point, or a zero distance in the considered configuration space, is abandoned and replaced with a “fuzzy” structure in such a way that the rotational invariance is preserved. The main facts about the conservation of LRL vector in both classical and quantum theory willmore » be reviewed. Finally, we will search for an analogy in the NCQM, provide our results and their comparison with the QM predictions. The key notions we are going to deal with are non-commutative space, Coulomb-Kepler problem, and symmetry.« less
Time as an Observable in Nonrelativistic Quantum Mechanics
NASA Technical Reports Server (NTRS)
Hahne, G. E.
2003-01-01
The argument follows from the viewpoint that quantum mechanics is taken not in the usual form involving vectors and linear operators in Hilbert spaces, but as a boundary value problem for a special class of partial differential equations-in the present work, the nonrelativistic Schrodinger equation for motion of a structureless particle in four- dimensional space-time in the presence of a potential energy distribution that can be time-as well as space-dependent. The domain of interest is taken to be one of two semi-infinite boxes, one bounded by two t=constant planes and the other by two t=constant planes. Each gives rise to a characteristic boundary value problem: one in which the initial, input values on one t=constant wall are given, with zero asymptotic wavefunction values in all spatial directions, the output being the values on the second t=constant wall; the second with certain input values given on both z=constant walls, with zero asymptotic values in all directions involving time and the other spatial coordinates, the output being the complementary values on the z=constant walls. The first problem corresponds to ordinary quantum mechanics; the second, to a fully time-dependent version of a problem normally considered only for the steady state (time-independent Schrodinger equation). The second problem is formulated in detail. A conserved indefinite metric is associated with space-like propagation, where the sign of the norm of a unidirectional state corresponds to its spatial direction of travel.
NASA Astrophysics Data System (ADS)
Habibi, Hojat; Zeuthen, Emil; Ghanaatshoar, Majid; Hammerer, Klemens
2016-08-01
We revisit the problem of preparing a mechanical oscillator in the vicinity of its quantum-mechanical ground state by means of feedback cooling based on continuous optical detection of the oscillator position. In the parameter regime relevant to ground-state cooling, the optical back-action and imprecision noise set the bottleneck of achievable cooling and must be carefully balanced. This can be achieved by adapting the phase of the local oscillator in the homodyne detection realizing a so-called variational measurement. The trade-off between accurate position measurement and minimal disturbance can be understood in terms of Heisenberg’s microscope and becomes particularly relevant when the measurement and feedback processes happen to be fast within the quantum coherence time of the system to be cooled. This corresponds to the regime of large quantum cooperativity {C}{{q}}≳ 1, which was achieved in recent experiments on feedback cooling. Our method provides a simple path to further pushing the limits of current state-of-the-art experiments in quantum optomechanics.
The dynamics of stock exchange based on the formalism of weak continuous quantum measurement
NASA Astrophysics Data System (ADS)
Melnyk, S.; Tuluzov, I.
2010-07-01
The problem of measurement in economic models and the possibility of their quantum-mechanical description are considered. It is revealed that the apparent paradox of such a description is associated with a priori requirement of conformity of the model to all the alternatives of free choice of the observer. The measurement of the state of a trader on a stock exchange is formally defined as his responses to the proposals of sale at a fixed price. It is shown that an analogue of Bell's inequalities for this measurement model is violated at the most general assumptions related to the strategy of the trader and requires a quantum-mechanical description of the dynamics of his condition. In the framework of the theory of weak continuous quantum measurements, the equation of stock price dynamics and the quantum-mechanical generalization of the F. Black and M. Scholes model for pricing options are obtained. The fundamental distinctions between the obtained model and the classical one are discussed.
A pedestrian approach to the measurement problem in quantum mechanics
NASA Astrophysics Data System (ADS)
Boughn, Stephen; Reginatto, Marcel
2013-09-01
The quantum theory of measurement has been a matter of debate for over eighty years. Most of the discussion has focused on theoretical issues with the consequence that other aspects (such as the operational prescriptions that are an integral part of experimental physics) have been largely ignored. This has undoubtedly exacerbated attempts to find a solution to the "measurement problem". How the measurement problem is defined depends to some extent on how the theoretical concepts introduced by the theory are interpreted. In this paper, we fully embrace the minimalist statistical (ensemble) interpretation of quantum mechanics espoused by Einstein, Ballentine, and others. According to this interpretation, the quantum state description applies only to a statistical ensemble of similarly prepared systems rather than representing an individual system. Thus, the statistical interpretation obviates the need to entertain reduction of the state vector, one of the primary dilemmas of the measurement problem. The other major aspect of the measurement problem, the necessity of describing measurements in terms of classical concepts that lay outside of quantum theory, remains. A consistent formalism for interacting quantum and classical systems, like the one based on ensembles on configuration space that we refer to in this paper, might seem to eliminate this facet of the measurement problem; however, we argue that the ultimate interface with experiments is described by operational prescriptions and not in terms of the concepts of classical theory. There is no doubt that attempts to address the measurement problem have yielded important advances in fundamental physics; however, it is also very clear that the measurement problem is still far from being resolved. The pedestrian approach presented here suggests that this state of affairs is in part the result of searching for a theoretical/mathematical solution to what is fundamentally an experimental/observational question. It suggests also that the measurement problem is, in some sense, ill-posed and might never be resolved. This point of view is tenable so long as one is willing to view physical theories as providing models of nature rather than complete descriptions of reality. Among other things, these considerations lead us to suggest that the Copenhagen interpretation's insistence on the classicality of the measurement apparatus should be replaced by the requirement that a measurement, which is specified operationally, should simply be of sufficient precision.
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theo M.; Mehmani, Bahar; Špička, Václav; Aghdami, Maryam J.; Khrennikov, Andrei Yu
2007-09-01
pt. A. Introductions. The mathematical basis for deterministic quantum mechanics / G.'t Hooft. What did we learn from quantum gravity? / A. Ashtekar. Bose-Einstein condensates and EPR quantum non-locality / F. Laloe. The quantum measurement process: lessons from an exactly solvable model / A.E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen -- pt. B. Quantum mechanics and quantum information. POVMs: a small but important step beyond standard quantum mechanics / W. M. de Muynck. State reduction by measurements with a null result / G. Nienhuis. Solving open questions in the Bose-Einstein condensation of an ideal gas via a hybrid mixture of laser and statistical physics / M. Kim, A. Svidzinsky and M.O. Scully. Twin-Photon light scattering and causality / G. Puentes, A. Aiello and J. P. Woerdman. Simultaneous measurement of non-commuting observables / G. Aquino and B. Mehmani. Quantum decoherence and gravitational waves / M.T. Jaekel ... [et al.]. Role of various entropies in the black hole information loss problem / Th. M. Nieuwenhuizen and I.V. Volovich. Quantum and super-quantum correlations / G.S. Jaeger -- pt. C. Long distance correlations and bell inequalities. Understanding long-distance quantum correlations / L. Marchildon. Connection of probability models to EPR experiments: probability spaces and Bell's theorem / K. Hess and W. Philipp. Fair sampling vs no-signalling principle in EPR experiments / G. Adenier and A. Yu. Khrennikov -- pt. D. Mathematical foundations. Where the mathematical structure of quantum mechanics comes from / G.M. D'Ariano. Phase space description of quantum mechanics and non-commutative geometry: Wigner-Moyal and Bohm in a wider context / B.J. Hiley. Quantum mechanics as simple algorithm for approximation of classical integrals / A. Yu. Khrennikov. Noncommutative quantum mechanics viewed from Feynman Formalism / J. Lages ... [et al.]. Beyond the quantum in Snyder space / J.F.S. van Huele and M. K. Transtrum -- pt. E. Stochastic electrodynamics. Some quantum experiments from the point of view of Stochastic electrodynamics / V. Spicka ... [et al.]. On the ergodic behaviour of atomic systems under the action of the zero-point radiation field / L. De La Peña and A. M. Cetto. Inertia and the vacuum-view on the emergence of the inertia reaction force / A. Rueda and H. Sunahata -- pt. F. Models for the electron. Rotating Hopf-Kinks: oscillators in the sense of de Broglie / U. Enz. Kerr-Newman particles: symmetries and other properties / H.I. Arcos and J.G. Pereira. Kerr geometry beyond the quantum theory / Th. M. Nieuwenhuizen -- pt. G. Philosophical considerations. Probability in non-collapse interpretations of a quantum mechanics / D. Dieks. The Schrödinger-Park paradox about the concept of "State" in quantum statistical mechanics and quantum information theory is still open: one more reason to go beyond? / G.P. Beretta. The conjecture that local realism is possible / E. Santos -- pt. H. The round table. Round table discussion / A.M. Cetto ... [et al.].
Quantum kernel applications in medicinal chemistry.
Huang, Lulu; Massa, Lou
2012-07-01
Progress in the quantum mechanics of biological molecules is being driven by computational advances. The notion of quantum kernels can be introduced to simplify the formalism of quantum mechanics, making it especially suitable for parallel computation of very large biological molecules. The essential idea is to mathematically break large biological molecules into smaller kernels that are calculationally tractable, and then to represent the full molecule by a summation over the kernels. The accuracy of the kernel energy method (KEM) is shown by systematic application to a great variety of molecular types found in biology. These include peptides, proteins, DNA and RNA. Examples are given that explore the KEM across a variety of chemical models, and to the outer limits of energy accuracy and molecular size. KEM represents an advance in quantum biology applicable to problems in medicine and drug design.
NASA Astrophysics Data System (ADS)
Procopio, Lorenzo M.; Rozema, Lee A.; Dakić, Borivoje; Walther, Philip
2017-09-01
In his recent article [Phys. Rev. A 95, 060101(R) (2017), 10.1103/PhysRevA.95.060101], Adler questions the usefulness of the bound found in our experimental search for genuine effects of hypercomplex quantum mechanics [Nat. Commun. 8, 15044 (2017), 10.1038/ncomms15044]. Our experiment was performed using a black-box (instrumentalist) approach to generalized probabilistic theories; therefore, it does not assume a priori any particular underlying mechanism. From that point of view our experimental results do indeed place meaningful bounds on the possible effects of "postquantum theories," including quaternionic quantum mechanics. In his article, Adler compares our experiment to nonrelativistic and Möller formal scattering theories within quaternionic quantum mechanics. With a particular set of assumptions, he finds that quaternionic effects would likely not manifest themselves in general. Although these assumptions are justified in the nonrelativistic case, a proper calculation for relativistic particles is still missing. Here, we provide a concrete relativistic example of Klein-Gordon scattering wherein the quaternionic effects persist. We note that when the Klein-Gordon equation is formulated using a Hamiltonian formalism it displays a so-called "indefinite metric," a characteristic feature of relativistic quantum wave equations. In Adler's example this is directly forbidden by his assumptions, and therefore our present example is not in contradiction to his work. In complex quantum mechanics this problem of an indefinite metric is solved in a second quantization. Unfortunately, there is no known algorithm for canonical field quantization in quaternionic quantum mechanics.
Computational applications of the many-interacting-worlds interpretation of quantum mechanics.
Sturniolo, Simone
2018-05-01
While historically many quantum-mechanical simulations of molecular dynamics have relied on the Born-Oppenheimer approximation to separate electronic and nuclear behavior, recently a great deal of interest has arisen in quantum effects in nuclear dynamics as well. Due to the computational difficulty of solving the Schrödinger equation in full, these effects are often treated with approximate methods. In this paper, we present an algorithm to tackle these problems using an extension to the many-interacting-worlds approach to quantum mechanics. This technique uses a kernel function to rebuild the probability density, and therefore, in contrast with the approximation presented in the original paper, it can be naturally extended to n-dimensional systems. This opens up the possibility of performing quantum ground-state searches with steepest-descent methods, and it could potentially lead to real-time quantum molecular-dynamics simulations. The behavior of the algorithm is studied in different potentials and numbers of dimensions and compared both to the original approach and to exact Schrödinger equation solutions whenever possible.
Quantum mechanics without the projection postulate and its realistic interpretation
NASA Astrophysics Data System (ADS)
Dieks, D.
1989-11-01
It is widely held that quantum mechanics is the first scientific theory to present scientifically internal, fundamental difficulties for a realistic interpretation (in the philosophical sense). The standard (Copenhagen) interpretation of the quantum theory is often described as the inevitable instrumentalistic response. It is the purpose of the present article to argue that quantum theory does not present fundamental new problems to a realistic interpretation. The formalism of quantum theory has the same states—it will be argued—as the formalisms of older physical theories and is capable of the same kinds of philosophical interpretation. This result is reached via an analysis of what it means to give a realistic interpretation to a theory. The main point of difference between quantum mechanics and other theories—as far as the possibilities of interpretation are concerned—is the special treatment given to measurement by the “projection postulate.” But it is possible to do without this postulate. Moreover, rejection of the projection postulate does not, in spite of what is often maintained in the literature, automatically lead to the many-worlds interpretation of quantum mechanics. A realistic interpretation is possible in which only the reality of one (our) world is recognized. It is argued that the Copenhagen interpretation as expounded by Bohr is not in conflict with the here proposed realistic interpretation of quantum theory.
NASA Astrophysics Data System (ADS)
Derakhshani, Maaneli
In this thesis, we consider the implications of solving the quantum measurement problem for the Newtonian description of semiclassical gravity. First we review the formalism of the Newtonian description of semiclassical gravity based on standard quantum mechanics---the Schroedinger-Newton theory---and two well-established predictions that come out of it, namely, gravitational 'cat states' and gravitationally-induced wavepacket collapse. Then we review three quantum theories with 'primitive ontologies' that are well-known known to solve the measurement problem---Schroedinger's many worlds theory, the GRW collapse theory with matter density ontology, and Nelson's stochastic mechanics. We extend the formalisms of these three quantum theories to Newtonian models of semiclassical gravity and evaluate their implications for gravitational cat states and gravitational wavepacket collapse. We find that (1) Newtonian semiclassical gravity based on Schroedinger's many worlds theory is mathematically equivalent to the Schroedinger-Newton theory and makes the same predictions; (2) Newtonian semiclassical gravity based on the GRW theory differs from Schroedinger-Newton only in the use of a stochastic collapse law, but this law allows it to suppress gravitational cat states so as not to be in contradiction with experiment, while allowing for gravitational wavepacket collapse to happen as well; (3) Newtonian semiclassical gravity based on Nelson's stochastic mechanics differs significantly from Schroedinger-Newton, and does not predict gravitational cat states nor gravitational wavepacket collapse. Considering that gravitational cat states are experimentally ruled out, but gravitational wavepacket collapse is testable in the near future, this implies that only the latter two are viable theories of Newtonian semiclassical gravity and that they can be experimentally tested against each other in future molecular interferometry experiments that are anticipated to be capable of testing the gravitational wavepacket collapse prediction.
On the problem of time in quantum mechanics
NASA Astrophysics Data System (ADS)
Bauer, M.
2017-05-01
The problem of time in quantum mechanics (QM) concerns the fact that in the Schrödinger equation time is a parameter, not an operator. Pauli's objection to a time-energy uncertainty relation analogue to the position-momentum one, conjectured by Heisenberg early on, seemed to exclude the existence of such an operator. However Dirac's formulation of an electron's relativistic QM does allow the introduction of a dynamical time operator that is self-adjoint. Consequently, it can be considered as the generator of a unitary transformation of the system, as well as an additional system observable subject to uncertainty. In the present paper these aspects are examined within the standard framework of relativistic QM.
Condensed Matter Physics: Does Quantum Mechanics Matter?
NASA Astrophysics Data System (ADS)
Fisher, Michael E.
Herman Feshbach, the organizer of this Symposium in honor of Niels Bohr, asked me, in his original invitation, for a review of the present state of condensed matter physics, with emphasis on major unsolved problems and comments on any overlap with Bohr's ideas regarding the fundamentals of quantum mechanics. That is surely a difficult assignment and, indeed, goes well beyond what is attempted here; nevertheless, I will take the liberty of raising one issue of a philosophical or metaphysical flavor.
Entanglement bases and general structures of orthogonal complete bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong Zaizhe
2004-10-01
In quantum mechanics and quantum information, to establish the orthogonal bases is a useful means. The existence of unextendible product bases impels us to study the 'entanglement bases' problems. In this paper, the concepts of entanglement bases and exact-entanglement bases are defined, and a theorem about exact-entanglement bases is given. We discuss the general structures of the orthogonal complete bases. Two examples of applications are given. At last, we discuss the problem of transformation of the general structure forms.
Entanglement-assisted quantum feedback control
NASA Astrophysics Data System (ADS)
Yamamoto, Naoki; Mikami, Tomoaki
2017-07-01
The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.
The quantum Zeno effect in double well tunnelling
NASA Astrophysics Data System (ADS)
Lerner, L.
2018-05-01
Measurement lies at the heart of quantum theory, and introductory textbooks in quantum mechanics cover the measurement problem in topics such as the Schrödinger’s cat thought experiment, the EPR problem, and the quantum Zeno effect (QZE). In this article we present a new treatment of the QZE suitable for undergraduate students, for the case of a particle tunnelling between two wells while being observed in one of the wells. The analysis shows that as the observation rate increases, the tunnelling rate tends towards zero, in accordance with Zeno’s maxim ‘a watched pot never boils’. The method relies on decoherence theory, which replaces aspects of quantum collapse by the Schrödinger evolution of an open system, and its recently simplified treatment for undergraduates. Our presentation uses concepts familiar to undergraduate students, so that calculations involving many-body theory and the formal properties of the density matrix are avoided.
Quantum-Like Representation of Non-Bayesian Inference
NASA Astrophysics Data System (ADS)
Asano, M.; Basieva, I.; Khrennikov, A.; Ohya, M.; Tanaka, Y.
2013-01-01
This research is related to the problem of "irrational decision making or inference" that have been discussed in cognitive psychology. There are some experimental studies, and these statistical data cannot be described by classical probability theory. The process of decision making generating these data cannot be reduced to the classical Bayesian inference. For this problem, a number of quantum-like coginitive models of decision making was proposed. Our previous work represented in a natural way the classical Bayesian inference in the frame work of quantum mechanics. By using this representation, in this paper, we try to discuss the non-Bayesian (irrational) inference that is biased by effects like the quantum interference. Further, we describe "psychological factor" disturbing "rationality" as an "environment" correlating with the "main system" of usual Bayesian inference.
Quantum Mechanics, Pattern Recognition, and the Mammalian Brain
NASA Astrophysics Data System (ADS)
Chapline, George
2008-10-01
Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.
An Efficient Quantum Somewhat Homomorphic Symmetric Searchable Encryption
NASA Astrophysics Data System (ADS)
Sun, Xiaoqiang; Wang, Ting; Sun, Zhiwei; Wang, Ping; Yu, Jianping; Xie, Weixin
2017-04-01
In 2009, Gentry first introduced an ideal lattices fully homomorphic encryption (FHE) scheme. Later, based on the approximate greatest common divisor problem, learning with errors problem or learning with errors over rings problem, FHE has developed rapidly, along with the low efficiency and computational security. Combined with quantum mechanics, Liang proposed a symmetric quantum somewhat homomorphic encryption (QSHE) scheme based on quantum one-time pad, which is unconditional security. And it was converted to a quantum fully homomorphic encryption scheme, whose evaluation algorithm is based on the secret key. Compared with Liang's QSHE scheme, we propose a more efficient QSHE scheme for classical input states with perfect security, which is used to encrypt the classical message, and the secret key is not required in the evaluation algorithm. Furthermore, an efficient symmetric searchable encryption (SSE) scheme is constructed based on our QSHE scheme. SSE is important in the cloud storage, which allows users to offload search queries to the untrusted cloud. Then the cloud is responsible for returning encrypted files that match search queries (also encrypted), which protects users' privacy.
EPR, Bell, and quantum locality
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2011-09-01
Maudlin has claimed that no local theory can reproduce the predictions of standard quantum mechanics that violate Bell's inequality for Bohm's version (two spin-half particles in a singlet state) of the Einstein-Podolsky-Rosen problem. It is argued that, on the contrary, standard quantum mechanics itself is a counterexample to Maudlin's claim, because it is local in the appropriate sense (measurements at one place do not influence what occurs elsewhere there) when formulated using consistent principles in place of the inconsistent appeals to "measurement" found in current textbooks. This argument sheds light on the claim of Blaylock that counterfactual definiteness is an essential ingredient in derivations of Bell's inequality.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network.
Goto, Hayato
2016-02-22
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
NASA Astrophysics Data System (ADS)
Goto, Hayato
2016-02-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence.
NASA Astrophysics Data System (ADS)
Li, Richard Y.; Di Felice, Rosa; Rohs, Remo; Lidar, Daniel A.
2018-03-01
Transcription factors regulate gene expression, but how these proteins recognize and specifically bind to their DNA targets is still debated. Machine learning models are effective means to reveal interaction mechanisms. Here we studied the ability of a quantum machine learning approach to classify and rank binding affinities. Using simplified data sets of a small number of DNA sequences derived from actual binding affinity experiments, we trained a commercially available quantum annealer to classify and rank transcription factor binding. The results were compared to state-of-the-art classical approaches for the same simplified data sets, including simulated annealing, simulated quantum annealing, multiple linear regression, LASSO, and extreme gradient boosting. Despite technological limitations, we find a slight advantage in classification performance and nearly equal ranking performance using the quantum annealer for these fairly small training data sets. Thus, we propose that quantum annealing might be an effective method to implement machine learning for certain computational biology problems.
An Efficient and Secure Arbitrary N-Party Quantum Key Agreement Protocol Using Bell States
NASA Astrophysics Data System (ADS)
Liu, Wen-Jie; Xu, Yong; Yang, Ching-Nung; Gao, Pei-Pei; Yu, Wen-Bin
2018-01-01
Two quantum key agreement protocols using Bell states and Bell measurement were recently proposed by Shukla et al. (Quantum Inf. Process. 13(11), 2391-2405, 2014). However, Zhu et al. pointed out that there are some security flaws and proposed an improved version (Quantum Inf. Process. 14(11), 4245-4254, 2015). In this study, we will show Zhu et al.'s improvement still exists some security problems, and its efficiency is not high enough. For solving these problems, we utilize four Pauli operations { I, Z, X, Y} to encode two bits instead of the original two operations { I, X} to encode one bit, and then propose an efficient and secure arbitrary N-party quantum key agreement protocol. In the protocol, the channel checking with decoy single photons is introduced to avoid the eavesdropper's flip attack, and a post-measurement mechanism is used to prevent against the collusion attack. The security analysis shows the present protocol can guarantee the correctness, security, privacy and fairness of quantum key agreement.
Divide and conquer approach to quantum Hamiltonian simulation
NASA Astrophysics Data System (ADS)
Hadfield, Stuart; Papageorgiou, Anargyros
2018-04-01
We show a divide and conquer approach for simulating quantum mechanical systems on quantum computers. We can obtain fast simulation algorithms using Hamiltonian structure. Considering a sum of Hamiltonians we split them into groups, simulate each group separately, and combine the partial results. Simulation is customized to take advantage of the properties of each group, and hence yield refined bounds to the overall simulation cost. We illustrate our results using the electronic structure problem of quantum chemistry, where we obtain significantly improved cost estimates under very mild assumptions.
NASA Astrophysics Data System (ADS)
Ceder, Gerbrand
2007-03-01
The prediction of structure is a key problem in computational materials science that forms the platform on which rational materials design can be performed. Finding structure by traditional optimization methods on quantum mechanical energy models is not possible due to the complexity and high dimensionality of the coordinate space. An unusual, but efficient solution to this problem can be obtained by merging ideas from heuristic and ab initio methods: In the same way that scientist build empirical rules by observation of experimental trends, we have developed machine learning approaches that extract knowledge from a large set of experimental information and a database of over 15,000 first principles computations, and used these to rapidly direct accurate quantum mechanical techniques to the lowest energy crystal structure of a material. Knowledge is captured in a Bayesian probability network that relates the probability to find a particular crystal structure at a given composition to structure and energy information at other compositions. We show that this approach is highly efficient in finding the ground states of binary metallic alloys and can be easily generalized to more complex systems.
The Jost-Kohn inversion procedure
NASA Technical Reports Server (NTRS)
Prosser, R. T.
1972-01-01
Conditions are considered that must be imposed on a class of quantum mechanical problems to obtain reasonable results by the Jost-Kohn procedure. The discussion is restricted to problems in three space-dimensions without assuming any radial or other symmetry of the potential.
Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution.
Djordjevic, Ivan B
2015-08-24
Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually coupled.
Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution
Djordjevic, Ivan B.
2015-01-01
Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i) Markovian classical model, (ii) Markovian-like quantum model, and (iii) hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage) Markov chain-like models of aging, which are mutually coupled. PMID:26305258
Problems in particle theory. Technical report - 1993--1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, S.L.; Wilczek, F.
This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed abovemore » (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) Acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition. (2) Construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space.« less
Importance of parametrizing constraints in quantum-mechanical variational calculations
NASA Technical Reports Server (NTRS)
Chung, Kwong T.; Bhatia, A. K.
1992-01-01
In variational calculations of quantum mechanics, constraints are sometimes imposed explicitly on the wave function. These constraints, which are deduced by physical arguments, are often not uniquely defined. In this work, the advantage of parametrizing constraints and letting the variational principle determine the best possible constraint for the problem is pointed out. Examples are carried out to show the surprising effectiveness of the variational method if constraints are parameterized. It is also shown that misleading results may be obtained if a constraint is not parameterized.
The Quantum Measurement Problem and Physical reality: A Computation Theoretic Perspective
NASA Astrophysics Data System (ADS)
Srikanth, R.
2006-11-01
Is the universe computable? If yes, is it computationally a polynomial place? In standard quantum mechanics, which permits infinite parallelism and the infinitely precise specification of states, a negative answer to both questions is not ruled out. On the other hand, empirical evidence suggests that NP-complete problems are intractable in the physical world. Likewise, computational problems known to be algorithmically uncomputable do not seem to be computable by any physical means. We suggest that this close correspondence between the efficiency and power of abstract algorithms on the one hand, and physical computers on the other, finds a natural explanation if the universe is assumed to be algorithmic; that is, that physical reality is the product of discrete sub-physical information processing equivalent to the actions of a probabilistic Turing machine. This assumption can be reconciled with the observed exponentiality of quantum systems at microscopic scales, and the consequent possibility of implementing Shor's quantum polynomial time algorithm at that scale, provided the degree of superposition is intrinsically, finitely upper-bounded. If this bound is associated with the quantum-classical divide (the Heisenberg cut), a natural resolution to the quantum measurement problem arises. From this viewpoint, macroscopic classicality is an evidence that the universe is in BPP, and both questions raised above receive affirmative answers. A recently proposed computational model of quantum measurement, which relates the Heisenberg cut to the discreteness of Hilbert space, is briefly discussed. A connection to quantum gravity is noted. Our results are compatible with the philosophy that mathematical truths are independent of the laws of physics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu
A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stabilitymore » parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.« less
Quantum Theory of Three-Dimensional Superresolution Using Rotating-PSF Imagery
NASA Astrophysics Data System (ADS)
Prasad, S.; Yu, Z.
The inverse of the quantum Fisher information (QFI) matrix (and extensions thereof) provides the ultimate lower bound on the variance of any unbiased estimation of a parameter from statistical data, whether of intrinsically quantum mechanical or classical character. We calculate the QFI for Poisson-shot-noise-limited imagery using the rotating PSF that can localize and resolve point sources fully in all three dimensions. We also propose an experimental approach based on the use of computer generated hologram and projective measurements to realize the QFI-limited variance for the problem of super-resolving a closely spaced pair of point sources at a highly reduced photon cost. The paper presents a preliminary analysis of quantum-limited three-dimensional (3D) pair optical super-resolution (OSR) problem with potential applications to astronomical imaging and 3D space-debris localization.
NASA Astrophysics Data System (ADS)
Rutkowski, Adam; Buraczewski, Adam; Horodecki, Paweł; Stobińska, Magdalena
2017-01-01
Quantum steering is a relatively simple test for proving that the values of quantum-mechanical measurement outcomes come into being only in the act of measurement. By exploiting quantum correlations, Alice can influence—steer—Bob's physical system in a way that is impossible in classical mechanics, as shown by the violation of steering inequalities. Demonstrating this and similar quantum effects for systems of increasing size, approaching even the classical limit, is a long-standing challenging problem. Here, we prove an experimentally feasible unbounded violation of a steering inequality. We derive its universal form where tolerance for measurement-setting errors is explicitly built in by means of the Deutsch-Maassen-Uffink entropic uncertainty relation. Then, generalizing the mutual unbiasedness, we apply the inequality to the multisinglet and multiparticle bipartite Bell state. However, the method is general and opens the possibility of employing multiparticle bipartite steering for randomness certification and development of quantum technologies, e.g., random access codes.
Quantum Optomechanics with Silicon Nanostructures
NASA Astrophysics Data System (ADS)
Safavi-Naeini, Amir H.
Mechanical resonators are the most basic and ubiquitous physical systems known. In on-chip form, they are used to process high frequency signals in every cell phone, television, and laptop. They have also been in the last few decades in different shapes and forms, a critical part of progress in quantum information sciences with kilogram scale mirrors for gravitational wave detection measuring motion at its quantum limits, and the motion of single ions being used to link qubits for quantum computation. Optomechanics is a field primarily concerned with coupling light to the motion of mechanical structures. This thesis contains descriptions of recent work with mechanical systems in the megahertz to gigahertz frequency range, formed by nanofabricating novel photonic/phononic structures on a silicon chip. These structures are designed to have both optical and mechanical resonances, and laser light is used to address and manipulate their motional degrees of freedom through radiation pressure forces. We laser cool these mechanical resonators to their ground states, and observe for the first time the quantum zero-point motion of a nanomechanical resonator. Conversely, we show that engineered mechanical resonances drastically modify the optical response of our structures, creating large effective optical nonlinearities not present in bulk silicon. We experimentally demonstrate aspects of these nonlinearities by proposing and observing ``electromagnetically induced transparency'' and light slowed down to 6 m/s, as well as wavelength conversion, and generation of nonclassical optical radiation. Finally, the application of optomechanics to longstanding problems in quantum and classical communications are proposed and investigated.
Classical Electrodynamics: Problems with solutions; Problems with solutions
NASA Astrophysics Data System (ADS)
Likharev, Konstantin K.
2018-06-01
l Advanced Physics is a series comprising four parts: Classical Mechanics, Classical Electrodynamics, Quantum Mechanics and Statistical Mechanics. Each part consists of two volumes, Lecture notes and Problems with solutions, further supplemented by an additional collection of test problems and solutions available to qualifying university instructors. This volume, Classical Electrodynamics: Lecture notes is intended to be the basis for a two-semester graduate-level course on electricity and magnetism, including not only the interaction and dynamics charged point particles, but also properties of dielectric, conducting, and magnetic media. The course also covers special relativity, including its kinematics and particle-dynamics aspects, and electromagnetic radiation by relativistic particles.
Physical and Constructive (Limiting) Criterions of Gear Wheels Wear
NASA Astrophysics Data System (ADS)
Fedorov, S. V.
2018-01-01
We suggest using a generalized model of friction - the model of elastic-plastic deformation of the body element, which is located on the surface of the friction pairs. This model is based on our new engineering approach to the problem of friction-triboergodynamics. Friction is examined as transformative and dissipative process. Structural-energetic interpretation of friction as a process of elasto-plastic deformation and fracture contact volumes is proposed. The model of Hertzian (heavy-loaded) friction contact evolution is considered. The least wear particle principle is formulated. It is mechanical (nano) quantum. Mechanical quantum represents the least structural form of solid material body in conditions of friction. It is dynamic oscillator of dissipative friction structure and it can be examined as the elementary nanostructure of metal’s solid body. At friction in state of most complete evolution of elementary tribosystem (tribocontact) all mechanical quanta (subtribosystems) with the exception of one, elasticity and reversibly transform energy of outer impact (mechanic movement). In these terms only one mechanical quantum is the lost - standard of wear. From this position we can consider the physical criterion of wear and the constructive (limiting) criterion of gear teeth and other practical examples of tribosystems efficiency with new tribology notion - mechanical (nano) quantum.
Wormholes and the cosmological constant problem.
NASA Astrophysics Data System (ADS)
Klebanov, I.
The author reviews the cosmological constant problem and the recently proposed wormhole mechanism for its solution. Summation over wormholes in the Euclidean path integral for gravity turns all the coupling parameters into dynamical variables, sampled from a probability distribution. A formal saddle point analysis results in a distribution with a sharp peak at the cosmological constant equal to zero, which appears to solve the cosmological constant problem. He discusses the instabilities of the gravitational Euclidean path integral and the difficulties with its interpretation. He presents an alternate formalism for baby universes, based on the "third quantization" of the Wheeler-De Witt equation. This approach is analyzed in a minisuperspace model for quantum gravity, where it reduces to simple quantum mechanics. Once again, the coupling parameters become dynamical. Unfortunately, the a priori probability distribution for the cosmological constant and other parameters is typically a smooth function, with no sharp peaks.
Discussion of a didactic proposal on quantum mechanics with secondary school students
NASA Astrophysics Data System (ADS)
Michelini, M.; Ragazzon, R.; Santi, L.; Stefanel, A.
2004-09-01
Within some research projects a proposal for the teaching of quantum mechanics in secondary school has been carried out, and some didactic material has been prepared in order to illustrate it, offering resources for its class experimentation (www.fisica.uniud.it/URDF/). In order to study in depth the critical points, which cause learning difficulties for the students in this field, a pilot activity was carried out for a restricted group of students with which the crucial points were discussed. Some interesting elements emerged, such as for example the fact that the major problems in understanding the concept of quantum state are linked to the meaning of incompatible observables.
Gunji, Yukio-Pegio; Shinohara, Shuji; Haruna, Taichi; Basios, Vasileios
2017-02-01
To overcome the dualism between mind and matter and to implement consciousness in science, a physical entity has to be embedded with a measurement process. Although quantum mechanics have been regarded as a candidate for implementing consciousness, nature at its macroscopic level is inconsistent with quantum mechanics. We propose a measurement-oriented inference system comprising Bayesian and inverse Bayesian inferences. While Bayesian inference contracts probability space, the newly defined inverse one relaxes the space. These two inferences allow an agent to make a decision corresponding to an immediate change in their environment. They generate a particular pattern of joint probability for data and hypotheses, comprising multiple diagonal and noisy matrices. This is expressed as a nondistributive orthomodular lattice equivalent to quantum logic. We also show that an orthomodular lattice can reveal information generated by inverse syllogism as well as the solutions to the frame and symbol-grounding problems. Our model is the first to connect macroscopic cognitive processes with the mathematical structure of quantum mechanics with no additional assumptions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Martinez, Jean-Philippe
2017-11-01
The Hartree-Fock method, one of the first applications of the new quantum mechanics in the frame of the many-body problem, had been elaborated by Rayner Douglas Hartree in 1928 and Vladimir Fock in 1930. Promptly, the challenge of tedious computations was being discussed and it is well known that the application of the method benefited greatly from the development of computers from the mid-to-late 1950s. However, the years from 1930 to 1950 were by no means years of stagnation, as the method was the object of several considerations related to its mathematical formulation, possible extension, and conceptual understanding. Thus, with a focus on the respective attitudes of Hartree and Fock, in particular with respect to the concept of quantum exchange, the present work puts forward some mathematical and conceptual clarifications, which played an important role for a better understanding of the many-body problem in quantum mechanics.
Bertrand's theorem and virial theorem in fractional classical mechanics
NASA Astrophysics Data System (ADS)
Yu, Rui-Yan; Wang, Towe
2017-09-01
Fractional classical mechanics is the classical counterpart of fractional quantum mechanics. The central force problem in this theory is investigated. Bertrand's theorem is generalized, and virial theorem is revisited, both in three spatial dimensions. In order to produce stable, closed, non-circular orbits, the inverse-square law and the Hooke's law should be modified in fractional classical mechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matuttis, Hans-Georg; Wang, Xiaoxing
Decomposition methods of the Suzuki-Trotter type of various orders have been derived in different fields. Applying them both to classical ordinary differential equations (ODEs) and quantum systems allows to judge their effectiveness and gives new insights for many body quantum mechanics where reference data are scarce. Further, based on data for 6 × 6 system we conclude that sampling with sign (minus-sign problem) is probably detrimental to the accuracy of fermionic simulations with determinant algorithms.
NASA Technical Reports Server (NTRS)
DeMartino, Salvatore; DeSiena, Silvio
1996-01-01
We look at time evolution of a physical system from the point of view of dynamical control theory. Normally we solve motion equation with a given external potential and we obtain time evolution. Standard examples are the trajectories in classical mechanics or the wave functions in Quantum Mechanics. In the control theory, we have the configurational variables of a physical system, we choose a velocity field and with a suited strategy we force the physical system to have a well defined evolution. The evolution of the system is the 'premium' that the controller receives if he has adopted the right strategy. The strategy is given by well suited laboratory devices. The control mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave packets by control theory. The program is to choose the characteristics of a packet, that is, the equation of evolution for its centre and a controlled dispersion, and to give a building scheme from some initial state (for example a solution of stationary Schroedinger equation). It seems natural in this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.]. It is a quantization scheme different from ordinary ones only formally. This approach introduces in quantum theory the whole mathematical apparatus of stochastic control theory. Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like problems. We apply our scheme to build two classes of quantum packets both derived generalizing some properties of coherent states.
Inverse problems in quantum chemistry
NASA Astrophysics Data System (ADS)
Karwowski, Jacek
Inverse problems constitute a branch of applied mathematics with well-developed methodology and formalism. A broad family of tasks met in theoretical physics, in civil and mechanical engineering, as well as in various branches of medical and biological sciences has been formulated as specific implementations of the general theory of inverse problems. In this article, it is pointed out that a number of approaches met in quantum chemistry can (and should) be classified as inverse problems. Consequently, the methodology used in these approaches may be enriched by applying ideas and theorems developed within the general field of inverse problems. Several examples, including the RKR method for the construction of potential energy curves, determining parameter values in semiempirical methods, and finding external potentials for which the pertinent Schrödinger equation is exactly solvable, are discussed in detail.
Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm.
Godfrin, C; Ferhat, A; Ballou, R; Klyatskaya, S; Ruben, M; Wernsdorfer, W; Balestro, F
2017-11-03
Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3/2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.
Quantum Ensemble Classification: A Sampling-Based Learning Control Approach.
Chen, Chunlin; Dong, Daoyi; Qi, Bo; Petersen, Ian R; Rabitz, Herschel
2017-06-01
Quantum ensemble classification (QEC) has significant applications in discrimination of atoms (or molecules), separation of isotopes, and quantum information extraction. However, quantum mechanics forbids deterministic discrimination among nonorthogonal states. The classification of inhomogeneous quantum ensembles is very challenging, since there exist variations in the parameters characterizing the members within different classes. In this paper, we recast QEC as a supervised quantum learning problem. A systematic classification methodology is presented by using a sampling-based learning control (SLC) approach for quantum discrimination. The classification task is accomplished via simultaneously steering members belonging to different classes to their corresponding target states (e.g., mutually orthogonal states). First, a new discrimination method is proposed for two similar quantum systems. Then, an SLC method is presented for QEC. Numerical results demonstrate the effectiveness of the proposed approach for the binary classification of two-level quantum ensembles and the multiclass classification of multilevel quantum ensembles.
Operating Quantum States in Single Magnetic Molecules: Implementation of Grover's Quantum Algorithm
NASA Astrophysics Data System (ADS)
Godfrin, C.; Ferhat, A.; Ballou, R.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W.; Balestro, F.
2017-11-01
Quantum algorithms use the principles of quantum mechanics, such as, for example, quantum superposition, in order to solve particular problems outperforming standard computation. They are developed for cryptography, searching, optimization, simulation, and solving large systems of linear equations. Here, we implement Grover's quantum algorithm, proposed to find an element in an unsorted list, using a single nuclear 3 /2 spin carried by a Tb ion sitting in a single molecular magnet transistor. The coherent manipulation of this multilevel quantum system (qudit) is achieved by means of electric fields only. Grover's search algorithm is implemented by constructing a quantum database via a multilevel Hadamard gate. The Grover sequence then allows us to select each state. The presented method is of universal character and can be implemented in any multilevel quantum system with nonequal spaced energy levels, opening the way to novel quantum search algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiaoyao; Hall, Randall W.; Löffler, Frank
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H2O, N2, and F2 molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of other quantum chemical methodsmore » and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.« less
Bifurcation-based adiabatic quantum computation with a nonlinear oscillator network
Goto, Hayato
2016-01-01
The dynamics of nonlinear systems qualitatively change depending on their parameters, which is called bifurcation. A quantum-mechanical nonlinear oscillator can yield a quantum superposition of two oscillation states, known as a Schrödinger cat state, via quantum adiabatic evolution through its bifurcation point. Here we propose a quantum computer comprising such quantum nonlinear oscillators, instead of quantum bits, to solve hard combinatorial optimization problems. The nonlinear oscillator network finds optimal solutions via quantum adiabatic evolution, where nonlinear terms are increased slowly, in contrast to conventional adiabatic quantum computation or quantum annealing, where quantum fluctuation terms are decreased slowly. As a result of numerical simulations, it is concluded that quantum superposition and quantum fluctuation work effectively to find optimal solutions. It is also notable that the present computer is analogous to neural computers, which are also networks of nonlinear components. Thus, the present scheme will open new possibilities for quantum computation, nonlinear science, and artificial intelligence. PMID:26899997
ERIC Educational Resources Information Center
Ruckle, L. J.; Belloni, M.; Robinett, R. W.
2012-01-01
The biharmonic oscillator and the asymmetric linear well are two confining power-law-type potentials for which complete bound-state solutions are possible in both classical and quantum mechanics. We examine these problems in detail, beginning with studies of their trajectories in position and momentum space, evaluation of the classical probability…
ERIC Educational Resources Information Center
Ellison, Mark D.
2008-01-01
The one-dimensional particle-in-a-box model used to introduce quantum mechanics to students suffers from a tenuous connection to a real physical system. This article presents a two-dimensional model, the particle confined within a ring, that directly corresponds to observations of surface electrons in a metal trapped inside a circular barrier.…
NASA Astrophysics Data System (ADS)
Kahn, Yoni; Anderson, Adam
2018-03-01
Preface; How to use this book; Resources; 1. Classical mechanics; 2. Electricity and magnetism; 3. Optics and waves; 4. Thermodynamics and statistical mechanics; 5. Quantum mechanics and atomic physics; 6. Special relativity; 7. Laboratory methods; 8. Specialized topics; 9. Special tips and tricks for the Physics GRE; Sample exams and solutions; References; Equation index; Subject index; Problems index.
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco
2008-11-01
The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.
An inquiry-based approach to the Franck-Hertz experiment
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Pizzolato, Nicola
2016-05-01
The practice of scientists and engineers is today exerted within interdisciplinary contexts, placed at the intersections of different research fields, including nanoscale science. The development of the required competences is based on an effective science and engineering instruction, which should be able to drive the students towards a deeper understanding of quantum mechanics fundamental concepts and, at the same time, strengthen their reasoning skills and transversal abilities. In this study we report the results of an inquiry-driven learning path experienced by a sample of 12 electronic engineering undergraduates engaged to perform the Franck-Hertz experiment. Before being involved in this experimental activity, the students received a traditional lecture-based instruction on the fundamental concepts of quantum mechanics, but their answers to an open-ended questionnaire, administered at the beginning of the inquiry activity, demonstrated that the acquired knowledge was characterized by a strictly theoretical vision of quantum science, basically in terms of an artificial mathematical framework having very poor connections with the real world. The Franck Hertz experiment was introduced to the students by starting from the problem of finding an experimental confirmation of the Bohr's postulates asserting that atoms can absorb energy only in quantum portions. The whole activity has been videotaped and this allowed us to deeply analyse the student perception's change about the main concepts of quantum mechanics. We have found that the active participation to this learning experience favored the building of cognitive links among student theoretical perceptions of quantum mechanics and their vision of quantum phenomena, within an everyday context of knowledge. Furthermore, our findings confirm the benefits of integrating traditional lecture-based instruction on quantum mechanics with learning experiences driven by inquiry-based teaching strategies.
Phase operator problem and macroscopic extension of quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozawa, M.
1997-06-01
To find the Hermitian phase operator of a single-mode electromagnetic field in quantum mechanics, the Schr{umlt o}dinger representation is extended to a larger Hilbert space augmented by states with infinite excitation by nonstandard analysis. The Hermitian phase operator is shown to exist on the extended Hilbert space. This operator is naturally considered as the controversial limit of the approximate phase operators on finite dimensional spaces proposed by Pegg and Barnett. The spectral measure of this operator is a Naimark extension of the optimal probability operator-valued measure for the phase parameter found by Helstrom. Eventually, the two promising approaches to themore » statistics of the phase in quantum mechanics are synthesized by means of the Hermitian phase operator in the macroscopic extension of the Schr{umlt o}dinger representation. {copyright} 1997 Academic Press, Inc.« less
Nonparadoxical loss of information in black hole evaporation in a quantum collapse model
NASA Astrophysics Data System (ADS)
Modak, Sujoy K.; Ortíz, Leonardo; Peña, Igor; Sudarsky, Daniel
2015-06-01
We consider a novel approach to address the black hole information paradox. The idea is based on adapting, to the situation at hand, the modified versions of quantum theory involving spontaneous stochastic dynamical collapse of quantum states, which have been considered in attempts to deal with shortcomings of the standard Copenhagen interpretation of quantum mechanics, in particular, the issue known as "the measurement problem." The new basic hypothesis is that the modified quantum behavior is enhanced in the region of high curvature so that the information encoded in the initial quantum state of the matter fields is rapidly erased as the black hole singularity is approached. We show that in this manner the complete evaporation of the black hole via Hawking radiation can be understood as involving no paradox. Calculations are performed using a modified version of quantum theory known as "continuous spontaneous localization" (CSL), which was originally developed in the context of many-particle nonrelativistic quantum mechanics. We use a version of CSL tailored to quantum field theory and applied in the context of the two -dimensional Callan-Giddings-Harvey-Strominger model. Although the role of quantum gravity in this picture is restricted to the resolution of the singularity, related studies suggest that there might be further connections.
Teaching Quantum Mechanics through Project-based Learning
NASA Astrophysics Data System (ADS)
Duda, Gintaras
2013-04-01
Project/Problem-based learning (PBL) is an active area of research within the physics education research (PER) community, however, work done to date has focused on introductory courses. This talk will explore research on upper division quantum mechanics, a junior/senior level course at Creighton, which was taught using PBL pedagogy with no in-class lectures. The talk will explore: 1. student learning in light of the new pedagogy and embedded meta-cognitive self-monitoring and reflective exercises and 2. the effect of the PBL curriculum on student attitudes students’ epistemologies.
Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory
NASA Technical Reports Server (NTRS)
Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.
1990-01-01
New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.
The counterfactual process in weak values
NASA Astrophysics Data System (ADS)
Shikano, Yutaka
2012-11-01
From the viewpoint of mathematics, quantum-mechanical probability seems to be controversial. To resolve this problem, we have reconstructed the Born rule using the weak value. We also discuss its meaning.
Coherent exciton transport in dendrimers and continuous-time quantum walks
NASA Astrophysics Data System (ADS)
Mülken, Oliver; Bierbaum, Veronika; Blumen, Alexander
2006-03-01
We model coherent exciton transport in dendrimers by continuous-time quantum walks. For dendrimers up to the second generation the coherent transport shows perfect recurrences when the initial excitation starts at the central node. For larger dendrimers, the recurrence ceases to be perfect, a fact which resembles results for discrete quantum carpets. Moreover, depending on the initial excitation site, we find that the coherent transport to certain nodes of the dendrimer has a very low probability. When the initial excitation starts from the central node, the problem can be mapped onto a line which simplifies the computational effort. Furthermore, the long time average of the quantum mechanical transition probabilities between pairs of nodes shows characteristic patterns and allows us to classify the nodes into clusters with identical limiting probabilities. For the (space) average of the quantum mechanical probability to be still or to be again at the initial site, we obtain, based on the Cauchy-Schwarz inequality, a simple lower bound which depends only on the eigenvalue spectrum of the Hamiltonian.
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Marinelli, Dimitri; Marzuoli, Annalisa
2013-05-01
The action of the quantum mechanical volume operator, introduced in connection with a symmetric representation of the three-body problem and recently recognized to play a fundamental role in discretized quantum gravity models, can be given as a second-order difference equation which, by a complex phase change, we turn into a discrete Schrödinger-like equation. The introduction of discrete potential-like functions reveals the surprising crucial role here of hidden symmetries, first discovered by Regge for the quantum mechanical 6j symbols; insight is provided into the underlying geometric features. The spectrum and wavefunctions of the volume operator are discussed from the viewpoint of the Hamiltonian evolution of an elementary ‘quantum of space’, and a transparent asymptotic picture of the semiclassical and classical regimes emerges. The definition of coordinates adapted to the Regge symmetry is exploited for the construction of a novel set of discrete orthogonal polynomials, characterizing the oscillatory components of torsion-like modes.
Relativistic Photoionization Computations with the Time Dependent Dirac Equation
2016-10-12
fields often occurs in the relativistic regime. A complete description of this phenomenon requires both relativistic and quantum mechanical treatment...photoionization, or other relativis- tic quantum electronics problems. While the Klein-Gordon equation captures much of the relevant physics, especially...for moderately heavy ions (Z 137), it does neglect the spin polarization of the electron. This memo parallels [1], but replaces the Klein-Gordon
Quantum power source: putting in order of a Brownian motion without Maxwell's demon
NASA Astrophysics Data System (ADS)
Aristov, Vitaly V.; Nikulov, A. V.
2003-07-01
The problem of possible violation of the second law of thermodynamics is discussed. It is noted that the task of the well known challenge to the second law called Maxwell's demon is put in order a chaotic perpetual motion and if any ordered Brownian motion exists then the second law can be broken without this hypothetical intelligent entity. The postulate of absolute randomness of any Brownian motion saved the second law in the beginning of the 20th century when it was realized as perpetual motion. This postulate can be proven in the limits of classical mechanics but is not correct according to quantum mechanics. Moreover some enough known quantum phenomena, such as the persistent current at non-zero resistance, are an experimental evidence of the non-chaotic Brownian motion with non-zero average velocity. An experimental observation of a dc quantum power soruce is interperted as evidence of violation of the second law.
Emergence of coherence and the dynamics of quantum phase transitions
Braun, Simon; Friesdorf, Mathis; Hodgman, Sean S.; Schreiber, Michael; Ronzheimer, Jens Philipp; Riera, Arnau; del Rey, Marco; Bloch, Immanuel; Eisert, Jens
2015-01-01
The dynamics of quantum phase transitions pose one of the most challenging problems in modern many-body physics. Here, we study a prototypical example in a clean and well-controlled ultracold atom setup by observing the emergence of coherence when crossing the Mott insulator to superfluid quantum phase transition. In the 1D Bose–Hubbard model, we find perfect agreement between experimental observations and numerical simulations for the resulting coherence length. We, thereby, perform a largely certified analog quantum simulation of this strongly correlated system reaching beyond the regime of free quasiparticles. Experimentally, we additionally explore the emergence of coherence in higher dimensions, where no classical simulations are available, as well as for negative temperatures. For intermediate quench velocities, we observe a power-law behavior of the coherence length, reminiscent of the Kibble–Zurek mechanism. However, we find nonuniversal exponents that cannot be captured by this mechanism or any other known model. PMID:25775515
Population Switching and Charge Sensing in Quantum Dots: A Case for a Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Goldstein, Moshe; Berkovits, Richard; Gefen, Yuval
2010-06-01
A broad and a narrow level of a quantum dot connected to two external leads may swap their respective occupancies as a function of an external gate voltage. By mapping this problem onto a multiflavored Coulomb gas we show that such population switching is not abrupt. However, trying to measure it by adding a third electrostatically coupled lead may render this switching an abrupt first order quantum phase transition. This is related to the interplay of the Mahan mechanism versus the Anderson orthogonality catastrophe, in similitude to the Fermi edge singularity. A concrete setup for experimental observation of this effect is also suggested.
Nonlinear low-frequency electrostatic wave dynamics in a two-dimensional quantum plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Samiran, E-mail: sran_g@yahoo.com; Chakrabarti, Nikhil, E-mail: nikhil.chakrabarti@saha.ac.in
2016-08-15
The problem of two-dimensional arbitrary amplitude low-frequency electrostatic oscillation in a quasi-neutral quantum plasma is solved exactly by elementary means. In such quantum plasmas we have treated electrons quantum mechanically and ions classically. The exact analytical solution of the nonlinear system exhibits the formation of dark and black solitons. Numerical simulation also predicts the possible periodic solution of the nonlinear system. Nonlinear analysis reveals that the system does have a bifurcation at a critical Mach number that depends on the angle of propagation of the wave. The small-amplitude limit leads to the formation of weakly nonlinear Kadomstev–Petviashvili solitons.
Quantum Gravitational Effects on the Boundary
NASA Astrophysics Data System (ADS)
James, F.; Park, I. Y.
2018-04-01
Quantum gravitational effects might hold the key to some of the outstanding problems in theoretical physics. We analyze the perturbative quantum effects on the boundary of a gravitational system and the Dirichlet boundary condition imposed at the classical level. Our analysis reveals that for a black hole solution, there is a contradiction between the quantum effects and the Dirichlet boundary condition: the black hole solution of the one-particle-irreducible action no longer satisfies the Dirichlet boundary condition as would be expected without going into details. The analysis also suggests that the tension between the Dirichlet boundary condition and loop effects is connected with a certain mechanism of information storage on the boundary.
Quantum computation for solving linear systems
NASA Astrophysics Data System (ADS)
Cao, Yudong
Quantum computation is a subject born out of the combination between physics and computer science. It studies how the laws of quantum mechanics can be exploited to perform computations much more efficiently than current computers (termed classical computers as oppose to quantum computers). The thesis starts by introducing ideas from quantum physics and theoretical computer science and based on these ideas, introducing the basic concepts in quantum computing. These introductory discussions are intended for non-specialists to obtain the essential knowledge needed for understanding the new results presented in the subsequent chapters. After introducing the basics of quantum computing, we focus on the recently proposed quantum algorithm for linear systems. The new results include i) special instances of quantum circuits that can be implemented using current experimental resources; ii) detailed quantum algorithms that are suitable for a broader class of linear systems. We show that for some particular problems the quantum algorithm is able to achieve exponential speedup over their classical counterparts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Xiaoyao; Hall, Randall W.; Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803
The Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calculate the ab initio ground state energies for multiple geometries of the H{sub 2}O, N{sub 2}, and F{sub 2} molecules. The method is based on Feynman’s path integral formulation of quantum mechanics and has two stages. The first stage is called the learning stage and reduces the well-known QMC minus sign problem by optimizing the linear combinations of Slater determinants which are used in the second stage, a conventional QMC simulation. The method is tested using different vector spaces and compared to the results of othermore » quantum chemical methods and to exact diagonalization. Our findings demonstrate that the SiLK method is accurate and reduces or eliminates the minus sign problem.« less
The eigenvalue problem in phase space.
Cohen, Leon
2018-06-30
We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Applications of Quantum Theory of Atomic and Molecular Scattering to Problems in Hypersonic Flow
NASA Technical Reports Server (NTRS)
Malik, F. Bary
1995-01-01
The general status of a grant to investigate the applications of quantum theory in atomic and molecular scattering problems in hypersonic flow is summarized. Abstracts of five articles and eleven full-length articles published or submitted for publication are included as attachments. The following topics are addressed in these articles: fragmentation of heavy ions (HZE particles); parameterization of absorption cross sections; light ion transport; emission of light fragments as an indicator of equilibrated populations; quantum mechanical, optical model methods for calculating cross sections for particle fragmentation by hydrogen; evaluation of NUCFRG2, the semi-empirical nuclear fragmentation database; investigation of the single- and double-ionization of He by proton and anti-proton collisions; Bose-Einstein condensation of nuclei; and a liquid drop model in HZE particle fragmentation by hydrogen.
The quantum measurement problem.
Leggett, A J
2005-02-11
Despite the spectacular success of quantum mechanics (QM) over the last 80 years in explaining phenomena observed at the atomic and subatomic level, the conceptual status of the theory is still a topic of lively controversy. Most of the discussion centers around two famous paradoxes (or, as some would have it, pseudoparadoxes) associated, respectively, with the names of Einstein, Podolsky, and Rosen (EPR) and with Schrodinger's cat. In this Viewpoint, I will concentrate on the paradox of Schrodinger's cat or, as it is often known (to my mind somewhat misleadingly), the quantum measurement paradox.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonçalves, L.A.; Olavo, L.S.F., E-mail: olavolsf@gmail.com
Dissipation in Quantum Mechanics took some time to become a robust field of investigation after the birth of the field. The main issue hindering developments in the field is that the Quantization process was always tightly connected to the Hamiltonian formulation of Classical Mechanics. In this paper we present a quantization process that does not depend upon the Hamiltonian formulation of Classical Mechanics (although still departs from Classical Mechanics) and thus overcome the problem of finding, from first principles, a completely general Schrödinger equation encompassing dissipation. This generalized process of quantization is shown to be nothing but an extension ofmore » a more restricted version that is shown to produce the Schrödinger equation for Hamiltonian systems from first principles (even for Hamiltonian velocity dependent potential). - Highlights: • A Quantization process independent of the Hamiltonian formulation of quantum Mechanics is proposed. • This quantization method is applied to dissipative or absorptive systems. • A Dissipative Schrödinger equation is derived from first principles.« less
NASA Astrophysics Data System (ADS)
Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.
2017-09-01
The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.
New Physical Mechanism for Lightning
NASA Astrophysics Data System (ADS)
Artekha, Sergey N.; Belyan, Andrey V.
2018-02-01
The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm activity is analyzed. It helps to identify a possible physical mechanism of lightning flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in lightning channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and development of the lightning channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.
NASA Astrophysics Data System (ADS)
de Muynck, W. M.; de Baere, W.; Martens, H.
1994-12-01
The validity of the conclusion to the nonlocality of quantum mechanics, accepted widely today as the only reasonable solution to the EPR and Bell issues, is questioned and criticized. Arguments are presented which remove the compelling character of this conclusion and make clear that it is not the most obvious solution. Alternative solutions are developed which are free of the contradictions related with the nonlocality conclusion. Firstly, the dependence on the adopted interpretation is shown, with the conclusion that the alleged nonlocality property of the quantum formalism may have been reached on the basis of an interpretation that is unnecessarily restrictive. Secondly, by extending the conventional quantum formalism along the lines of Ludwig and Davies it is shown that the Bell problem may be related to complementarity rather than to nonlocality. Finally, the dependence on counterfactual reasoning is critically examined. It appears that locality on the quantum level may still be retained provided one accepts a newly proposed principle of nonreproducibility at the individual quantum level as an alternative of quantum nonlocality. It is concluded that the locality principle can retain its general validity, in full conformity with all experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muynck, W.M. de; Martens, H.; De Baere, W.
1994-12-01
The validity of the conclusion to the nonlocality of quantum mechanics, accepted widely today as the only reasonable solution to the EPR and Bell issues, is questioned and criticized. Arguments are presented which remove the compelling character of this conclusion and make clear that it is not the most obvious solution. Alternative solutions are developed which are free of the contradictions related with the nonlocality conclusion. Firstly, the dependence on the adopted interpretation is shown, with the conclusion that the alleged nonlocality property of the quantum formalism may have been reached on the basis of an interpretation that is unnecessarilymore » restrictive. Secondly, by extending the conventional quantum formalism along the lines of Ludwig and Davies it is shown that the Bell problem may be related to complementarity rather than to nonlocality. Finally, the dependence on counterfactual reasoning is critically examined. It appears that locality on the quantum level may still be retained provided one accepts a newly proposed principle of nonreproducibility at the individual quantum level as an alternative of quantum nonlocality. It is concluded that the locality principle can retain its general validity, in full conformity with all experimental data.« less
PREFACE: International Workshop on Statistical-Mechanical Informatics 2008 (IW-SMI 2008)
NASA Astrophysics Data System (ADS)
Hayashi, Masahito; Inoue, Jun-ichi; Kabashima, Yoshiyuki; Tanaka, Kazuyuki
2009-01-01
Statistical mechanical informatics (SMI) is an approach that applies physics to information science, in which many-body problems in information processing are tackled using statistical mechanics methods. In the last decade, the use of SMI has resulted in great advances in research into classical information processing, in particular, theories of information and communications, probabilistic inference and combinatorial optimization problems. It is expected that the success of SMI can be extended to quantum systems. The importance of many-body problems is also being recognized in quantum information theory (QIT), for which quantification of entanglement of bipartite systems has recently been almost completely established after considerable effort. SMI and QIT are sufficiently well developed that it is now appropriate to consider applying SMI to quantum systems and developing many-body theory in QIT. This combination of SMI and QIT is highly likely to contribute significantly to the development of both research fields. The International Workshop on Statistical-Mechanical Informatics has been organized in response to this situation. This workshop, held at Sendai International Conference Center, Sendai, Japan, 14-17 September 2008, and sponsored by the Grant-in-Aid for Scientific Research on Priority Areas `Deepening and Expansion of Statistical Mechanical Informatics (DEX-SMI)' (Head investigator: Yoshiyuki Kabashima, Tokyo Institute of Technology) (Project http://dex-smi.sp.dis.titech.ac.jp/DEX-SMI), was intended to provide leading researchers with strong interdisciplinary interests in QIT and SMI with the opportunity to engage in intensive discussions. The aim of the workshop was to expand SMI to quantum systems and QIT research on quantum (entangled) many-body systems, to discuss possible future directions, and to offer researchers the opportunity to exchange ideas that may lead to joint research initiatives. We would like to thank the contributors of the workshop as well as all the participants, who have enjoyed the workshop as well as their stay in Sendai, one of the most beautiful cities in Japan. This successful workshop will stimulate further development of the interdisciplinary research field of QIT and SMI. Masahito Hayashi, Jun-ichi Inoue, Yoshiyuki Kabashima and Kazuyuki Tanaka Editors The IW-SMI 2008 Organizing Committee Kazuyuki Tanaka, General Chair (Tohoku University) Yoshiyuki Kabashima, Vice-General Chair (Tokyo Institute of Technology) Jun-ichi Inoue, Program Chair (Hokkaido University) Masahito Hayashi, Pulications Chair (Tohoku University) Hidetoshi Nishimori (Tokyo Institute of Technology) Toshiyuki Tanaka (Kyoto University)
A novel quantum scheme for secure two-party distance computation
NASA Astrophysics Data System (ADS)
Peng, Zhen-wan; Shi, Run-hua; Zhong, Hong; Cui, Jie; Zhang, Shun
2017-12-01
Secure multiparty computational geometry is an essential field of secure multiparty computation, which computes a computation geometric problem without revealing any private information of each party. Secure two-party distance computation is a primitive of secure multiparty computational geometry, which computes the distance between two points without revealing each point's location information (i.e., coordinate). Secure two-party distance computation has potential applications with high secure requirements in military, business, engineering and so on. In this paper, we present a quantum solution to secure two-party distance computation by subtly using quantum private query. Compared to the classical related protocols, our quantum protocol can ensure higher security and better privacy protection because of the physical principle of quantum mechanics.
The Future of Theoretical Physics and Cosmology
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Shellard, E. P. S.; Rankin, S. J.
2009-08-01
Preface; List of contributors; 1. Introduction; Part I. Popular Symposium: 2. Our complex cosmos and its future Martin J. Rees; 3. Theories of everything and Hawking's wave function of the Universe James B. Hartle; 4. The problem of space-time singularities: implications for quantum gravity? Roger Penrose; 5. Warping spacetime Kip Thorne; 6. 60 years in a nutshell Stephen W. Hawking; Part II. Spacetime Singularities: 7. Cosmological perturbations and singularities George F. R. Ellis; 8. The quantum physics of chronology protection Matt Visser; 9. Energy dominance and the Hawking-Ellis vacuum conservation theorem Brandon Carter; 10. On the instability of extra space dimensions Roger Penrose; Part III. Black Holes: 11. Black hole uniqueness and the inner horizon stability problem Werner Israel; 12. Black holes in the real universe and their prospects as probes of relativistic gravity Martin J. Rees; 13. Primordial black holes Bernard Carr; 14. Black hole pair creation Simon F. Ross; 15. Black holes as accelerators Steven Giddings; Part IV. Hawking Radiation: 16. Black holes and string theory Malcolm Perry; 17. M theory and black hole quantum mechanics Joe Polchinski; 18. Playing with black strings Gary Horowitz; 19. Twenty years of debate with Stephen Leonard Susskind; Part V. Quantum Gravity: 20. Euclidean quantum gravity: the view from 2002 Gary Gibbons; 21. Zeta functions, anomalies and stable branes Ian Moss; 22. Some reflections on the status of conventional quantum theory when applied to quantum gravity Chris Isham; 23. Quantum geometry and its ramifications Abhay Ashtekar; 24. Topology change in quantum gravity Fay Dowker; Part VI. M Theory and Beyond: 25. The past and future of string theory Edward Witten; 26. String theory David Gross; 27. A brief description of string theory Michael Green; 28. The story of M Paul Townsend; 29. Gauged supergravity and holographic field theory Nick Warner; 30. 57 varieties in a NUTshell Chris Pope; Part VII. de Sitter Space: 31. Adventures in de Sitter space Raphael Bousso; 32. de Sitter space in non-critical string theory Andrew Strominger; 33. Supergravity, M theory and cosmology Renata Kallosh; Part VIII. Quantum Cosmology: 34. The state of the universe James B. Hartle; 35. Quantum cosmology Don Page; 36. Quantum cosmology and eternal inflation A. Vilenkin; 37. Probability in the deterministic theory known as quantum mechanics Bryce de Witt; 38. The interpretation of quantum cosmology and the problem of time J. Halliwell; 39. What local supersymmetry can do for quantum cosmology Peter D'Eath; Part IX. Cosmology: 40. Inflation and cosmological perturbations Alan Guth; 41. The future of cosmology: observational and computational prospects Paul Shellard; 42. The ekpyrotic universe and its cyclic extension Neil Turok; 43. Inflationary theory versus the ekpyrotic/cyclic scenario Andrei Linde; 44. Brane (new) worlds Pierre Binetruy; 45. Publications of Stephen Hawking; Index.
The Everett-Wheeler interpretation and the open future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudbery, Anthony
2011-03-28
I discuss the meaning of probability in the Everett-Wheeler interpretation of quantum mechanics, together with the problem of defining histories. To resolve these, I propose an understanding of probability arising from a form of temporal logic: the probability of a future-tense proposition is identified with its truth value in a many-valued and context-dependent logic. In short, probability is degree of truth. These ideas relate to traditional naive ideas of time and chance. Indeed, I argue that Everettian quantum mechanics is the only form of scientific theory that truly incorporates the perception that the future is open.
Wentzel-Kramers-Brillouin method in the Bargmann representation. [of quantum mechanics
NASA Technical Reports Server (NTRS)
Voros, A.
1989-01-01
It is demonstrated that the Bargmann representation of quantum mechanics is ideally suited for semiclassical analysis, using as an example the WKB method applied to the bound-state problem in a single well of one degree of freedom. For the harmonic oscillator, this WKB method trivially gives the exact eigenfunctions in addition to the exact eigenvalues. For an anharmonic well, a self-consistent variational choice of the representation greatly improves the accuracy of the semiclassical ground state. Also, a simple change of scale illuminates the relationship of semiclassical versus linear perturbative expansions, allowing a variety of multidimensional extensions.
Lie-algebraic Approach to Dynamics of Closed Quantum Systems and Quantum-to-Classical Correspondence
NASA Astrophysics Data System (ADS)
Galitski, Victor
2012-02-01
I will briefly review our recent work on a Lie-algebraic approach to various non-equilibrium quantum-mechanical problems, which has been motivated by continuous experimental advances in the field of cold atoms. First, I will discuss non-equilibrium driven dynamics of a generic closed quantum system. It will be emphasized that mathematically a non-equilibrium Hamiltonian represents a trajectory in a Lie algebra, while the evolution operator is a trajectory in a Lie group generated by the underlying algebra via exponentiation. This turns out to be a constructive statement that establishes, in particular, the fact that classical and quantum unitary evolutions are two sides of the same coin determined uniquely by the same dynamic generators in the group. An equation for these generators - dubbed dual Schr"odinger-Bloch equation - will be derived and analyzed for a few of specific examples. This non-linear equation allows one to construct new exact non-linear solutions to quantum-dynamical systems. An experimentally-relevant example of a family of exact solutions to the many-body Landau-Zener problem will be presented. One practical application of the latter result includes dynamical means to optimize molecular production rate following a quench across the Feshbach resonance.
Applications and error correction for adiabatic quantum optimization
NASA Astrophysics Data System (ADS)
Pudenz, Kristen
Adiabatic quantum optimization (AQO) is a fast-developing subfield of quantum information processing which holds great promise in the relatively near future. Here we develop an application, quantum anomaly detection, and an error correction code, Quantum Annealing Correction (QAC), for use with AQO. The motivation for the anomaly detection algorithm is the problematic nature of classical software verification and validation (V&V). The number of lines of code written for safety-critical applications such as cars and aircraft increases each year, and with it the cost of finding errors grows exponentially (the cost of overlooking errors, which can be measured in human safety, is arguably even higher). We approach the V&V problem by using a quantum machine learning algorithm to identify charateristics of software operations that are implemented outside of specifications, then define an AQO to return these anomalous operations as its result. Our error correction work is the first large-scale experimental demonstration of quantum error correcting codes. We develop QAC and apply it to USC's equipment, the first and second generation of commercially available D-Wave AQO processors. We first show comprehensive experimental results for the code's performance on antiferromagnetic chains, scaling the problem size up to 86 logical qubits (344 physical qubits) and recovering significant encoded success rates even when the unencoded success rates drop to almost nothing. A broader set of randomized benchmarking problems is then introduced, for which we observe similar behavior to the antiferromagnetic chain, specifically that the use of QAC is almost always advantageous for problems of sufficient size and difficulty. Along the way, we develop problem-specific optimizations for the code and gain insight into the various on-chip error mechanisms (most prominently thermal noise, since the hardware operates at finite temperature) and the ways QAC counteracts them. We finish by showing that the scheme is robust to qubit loss on-chip, a significant benefit when considering an implemented system.
The Measurement Problem: Decoherence and Convivial Solipsism
NASA Astrophysics Data System (ADS)
Zwirn, Hervé
2016-06-01
The problem of measurement is often considered an inconsistency inside the quantum formalism. Many attempts to solve (or to dissolve) it have been made since the inception of quantum mechanics. The form of these attempts depends on the philosophical position that their authors endorse. I will review some of them and analyze their relevance. The phenomenon of decoherence is often presented as a solution lying inside the pure quantum formalism and not demanding any particular philosophical assumption. Nevertheless, a widely debated question is to decide between two different interpretations. The first one is to consider that the decoherence process has the effect to actually project a superposed state into one of its classically interpretable component, hence doing the same job as the reduction postulate. For the second one, decoherence is only a way to show why no macroscopic superposed state can be observed, so explaining the classical appearance of the macroscopic world, while the quantum entanglement between the system, the apparatus and the environment never disappears. In this case, explaining why only one single definite outcome is observed remains to do. In this paper, I examine the arguments that have been given for and against both interpretations and defend a new position, the "Convivial Solipsism", according to which the outcome that is observed is relative to the observer, different but in close parallel to the Everett's interpretation and sharing also some similarities with Rovelli's relational interpretation and Quantum Bayesianism. I also show how "Convivial Solipsism" can help getting a new standpoint about the EPR paradox providing a way out of the seemingly unavoidable non-locality of quantum mechanics.
Fast summation of divergent series and resurgent transseries from Meijer-G approximants
NASA Astrophysics Data System (ADS)
Mera, Héctor; Pedersen, Thomas G.; Nikolić, Branislav K.
2018-05-01
We develop a resummation approach based on Meijer-G functions and apply it to approximate the Borel sum of divergent series and the Borel-Écalle sum of resurgent transseries in quantum mechanics and quantum field theory (QFT). The proposed method is shown to vastly outperform the conventional Borel-Padé and Borel-Padé-Écalle summation methods. The resulting Meijer-G approximants are easily parametrized by means of a hypergeometric ansatz and can be thought of as a generalization to arbitrary order of the Borel-hypergeometric method [Mera et al., Phys. Rev. Lett. 115, 143001 (2015), 10.1103/PhysRevLett.115.143001]. Here we demonstrate the accuracy of this technique in various examples from quantum mechanics and QFT, traditionally employed as benchmark models for resummation, such as zero-dimensional ϕ4 theory; the quartic anharmonic oscillator; the calculation of critical exponents for the N -vector model; ϕ4 with degenerate minima; self-interacting QFT in zero dimensions; and the summation of one- and two-instanton contributions in the quantum-mechanical double-well problem.
Modal Interpretation of Quantum Mechanics and Classical Physical Theories
NASA Astrophysics Data System (ADS)
Ingarden, R. S.
In 1990, Bas C. van Fraassen defined the modal interpretation of quantum mechanics as the consideration of it as ``a pure theory of the possible, with testable, empirical implications for what actually happens". This is a narrow, traditional understanding of modality, only in the sense of the concept of possibility (usually denoted in logic by the C. I. Lewis's symbol 3) and the concept of necessity 2 defined by means of 3. In modern logic, however, modality is understood in a much wider sense as any intensional functor (i.e. non-extensional or determined not only by the truth value of a sentence). In the recent (independent of van Fraassen) publications of the author (1997), an attempt was made to apply this wider understanding of modality to interpretation of classical and quantum physics. In the present lecture, these problems are discussed on the background of a brief review of the logical approch to quantum mechanics in the recent 7 decades. In this discussion, the new concepts of sub-modality and super-modality of many orders are used.
NASA Astrophysics Data System (ADS)
Suleymanov, Michael; Horwitz, Lawrence; Yahalom, Asher
2017-06-01
A relativistic 4D string is described in the framework of the covariant quantum theory first introduced by Stueckelberg [ Helv. Phys. Acta 14, 588 (1941)], and further developed by Horwitz and Piron [ Helv. Phys. Acta 46, 316 (1973)], and discussed at length in the book of Horwitz [Relativistic Quantum Mechanics, Springer (2015)]. We describe the space-time string using the solutions of relativistic harmonic oscillator [ J. Math. Phys. 30, 66 (1989)]. We first study the problem of the discrete string, both classically and quantum mechanically, and then turn to a study of the continuum limit, which contains a basically new formalism for the quantization of an extended system. The mass and energy spectrum are derived. Some comparison is made with known string models.
Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
NASA Astrophysics Data System (ADS)
Martinez, Esteban A.; Muschik, Christine A.; Schindler, Philipp; Nigg, Daniel; Erhard, Alexander; Heyl, Markus; Hauke, Philipp; Dalmonte, Marcello; Monz, Thomas; Zoller, Peter; Blatt, Rainer
2016-06-01
Gauge theories are fundamental to our understanding of interactions between the elementary constituents of matter as mediated by gauge bosons. However, computing the real-time dynamics in gauge theories is a notorious challenge for classical computational methods. This has recently stimulated theoretical effort, using Feynman’s idea of a quantum simulator, to devise schemes for simulating such theories on engineered quantum-mechanical devices, with the difficulty that gauge invariance and the associated local conservation laws (Gauss laws) need to be implemented. Here we report the experimental demonstration of a digital quantum simulation of a lattice gauge theory, by realizing (1 + 1)-dimensional quantum electrodynamics (the Schwinger model) on a few-qubit trapped-ion quantum computer. We are interested in the real-time evolution of the Schwinger mechanism, describing the instability of the bare vacuum due to quantum fluctuations, which manifests itself in the spontaneous creation of electron-positron pairs. To make efficient use of our quantum resources, we map the original problem to a spin model by eliminating the gauge fields in favour of exotic long-range interactions, which can be directly and efficiently implemented on an ion trap architecture. We explore the Schwinger mechanism of particle-antiparticle generation by monitoring the mass production and the vacuum persistence amplitude. Moreover, we track the real-time evolution of entanglement in the system, which illustrates how particle creation and entanglement generation are directly related. Our work represents a first step towards quantum simulation of high-energy theories using atomic physics experiments—the long-term intention is to extend this approach to real-time quantum simulations of non-Abelian lattice gauge theories.
A space-efficient quantum computer simulator suitable for high-speed FPGA implementation
NASA Astrophysics Data System (ADS)
Frank, Michael P.; Oniciuc, Liviu; Meyer-Baese, Uwe H.; Chiorescu, Irinel
2009-05-01
Conventional vector-based simulators for quantum computers are quite limited in the size of the quantum circuits they can handle, due to the worst-case exponential growth of even sparse representations of the full quantum state vector as a function of the number of quantum operations applied. However, this exponential-space requirement can be avoided by using general space-time tradeoffs long known to complexity theorists, which can be appropriately optimized for this particular problem in a way that also illustrates some interesting reformulations of quantum mechanics. In this paper, we describe the design and empirical space/time complexity measurements of a working software prototype of a quantum computer simulator that avoids excessive space requirements. Due to its space-efficiency, this design is well-suited to embedding in single-chip environments, permitting especially fast execution that avoids access latencies to main memory. We plan to prototype our design on a standard FPGA development board.
Quantum neurophysics: From non-living matter to quantum neurobiology and psychopathology.
Tarlacı, Sultan; Pregnolato, Massimo
2016-05-01
The concepts of quantum brain, quantum mind and quantum consciousness have been increasingly gaining currency in recent years, both in scientific papers and in the popular press. In fact, the concept of the quantum brain is a general framework. Included in it are basically four main sub-headings. These are often incorrectly used interchangeably. The first of these and the one which started the quantum mind/consciousness debate was the place of consciousness in the problem of measurement in quantum mechanics. Debate on the problem of quantum measurement and about the place of the conscious observer has lasted almost a century. One solution to this problem is that the participation of a conscious observer in the experiment will radically change our understanding of the universe and our relationship with the outside world. The second topic is that of quantum biology. This topic has become a popular field of research, especially in the last decade. It concerns whether or not the rules of quantum physics operate in biological structures. It has been shown in the latest research on photosynthesis, the sense of smell and magnetic direction finding in animals that the laws of quantum physics may operate in warm-wet-noisy biological structures. The third sub-heading is quantum neurobiology. This topic has not yet gained wide acceptance and is still in its early stages. Its primary purpose is directed to understand whether the laws of quantum physics are effective in the biology of the nervous system or not. A further step in brain neurobiology, toward the understanding of consciousness formation, is the research of quantum laws effects upon neural network functions. The fourth and final topic is quantum psychopathology. This topic takes its basis and its support from quantum neurobiology. It comes from the idea that if quantum physics is involved in the normal working of the brain, diseased conditions of the brain such as depression, anxiety, dementia, schizophrenia and hallucinations can be explained by quantum physical pathology. In this article, these topics will be reviewed in a general framework, and for the first time a general classification will be made for the quantum brain theory. Copyright © 2016 Elsevier B.V. All rights reserved.
Implementation of a quantum controlled-SWAP gate with photonic circuits
NASA Astrophysics Data System (ADS)
Ono, Takafumi; Okamoto, Ryo; Tanida, Masato; Hofmann, Holger F.; Takeuchi, Shigeki
2017-03-01
Quantum information science addresses how the processing and transmission of information are affected by uniquely quantum mechanical phenomena. Combination of two-qubit gates has been used to realize quantum circuits, however, scalability is becoming a critical problem. The use of three-qubit gates may simplify the structure of quantum circuits dramatically. Among them, the controlled-SWAP (Fredkin) gates are essential since they can be directly applied to important protocols, e.g., error correction, fingerprinting, and optimal cloning. Here we report a realization of the Fredkin gate for photonic qubits. We achieve a fidelity of 0.85 in the computational basis and an output state fidelity of 0.81 for a 3-photon Greenberger-Horne-Zeilinger state. The estimated process fidelity of 0.77 indicates that our Fredkin gate can be applied to various quantum tasks.
Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket
NASA Astrophysics Data System (ADS)
Gover, Avraham; Pan, Yiming
2018-06-01
In the foundation of quantum mechanics, the spatial dimensions of electron wavepacket are understood only in terms of an expectation value - the probability distribution of the particle location. One can still inquire how the quantum electron wavepacket size affects a physical process. Here we address the fundamental physics problem of particle-wave duality and the measurability of a free electron quantum wavepacket. Our analysis of stimulated radiative interaction of an electron wavepacket, accompanied by numerical computations, reveals two limits. In the quantum regime of long wavepacket size relative to radiation wavelength, one obtains only quantum-recoil multiphoton sidebands in the electron energy spectrum. In the opposite regime, the wavepacket interaction approaches the limit of classical point-particle acceleration. The wavepacket features can be revealed in experiments carried out in the intermediate regime of wavepacket size commensurate with the radiation wavelength.
NASA Astrophysics Data System (ADS)
Cartier, Pierre; DeWitt-Morette, Cecile
2006-11-01
Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.
NASA Astrophysics Data System (ADS)
Cartier, Pierre; DeWitt-Morette, Cecile
2010-06-01
Acknowledgements; List symbols, conventions, and formulary; Part I. The Physical and Mathematical Environment: 1. The physical and mathematical environment; Part II. Quantum Mechanics: 2. First lesson: gaussian integrals; 3. Selected examples; 4. Semiclassical expansion: WKB; 5. Semiclassical expansion: beyond WKB; 6. Quantum dynamics: path integrals and operator formalism; Part III. Methods from Differential Geometry: 7. Symmetries; 8. Homotopy; 9. Grassmann analysis: basics; 10. Grassmann analysis: applications; 11. Volume elements, divergences, gradients; Part IV. Non-Gaussian Applications: 12. Poisson processes in physics; 13. A mathematical theory of Poisson processes; 14. First exit time: energy problems; Part V. Problems in Quantum Field Theory: 15. Renormalization 1: an introduction; 16. Renormalization 2: scaling; 17. Renormalization 3: combinatorics; 18. Volume elements in quantum field theory Bryce DeWitt; Part VI. Projects: 19. Projects; Appendix A. Forward and backward integrals: spaces of pointed paths; Appendix B. Product integrals; Appendix C. A compendium of gaussian integrals; Appendix D. Wick calculus Alexander Wurm; Appendix E. The Jacobi operator; Appendix F. Change of variables of integration; Appendix G. Analytic properties of covariances; Appendix H. Feynman's checkerboard; Bibliography; Index.
Bridging quantum mechanics and structure-based drug design.
De Vivo, Marco
2011-01-01
The last decade has seen great advances in the use of quantum mechanics (QM) to solve biological problems of pharmaceutical relevance. For instance, enzymatic catalysis is often investigated by means of the so-called QM/MM approach, which uses QM and molecular mechanics (MM) methods to determine the (free) energy landscape of the enzymatic reaction mechanism. Here, I will discuss a few representative examples of QM and QM/MM studies of important metalloenzymes of pharmaceutical interest (i.e. metallophosphatases and metallo-beta-lactamases). This review article aims to show how QM-based methods can be used to elucidate ligand-receptor interactions. The challenge is then to exploit this knowledge for the structure-based design of new and potent inhibitors, such as transition state (TS) analogues that resemble the structure and physicochemical properties of the enzymatic TS. Given the results and potential expressed to date by QM-based methods in studying biological problems, the application of QM in structure-based drug design will likely increase, making of these once-prohibitive computations a routinely used tool for drug design.
On Some Troubles with the Metaphysics of Fermionic Compositions
NASA Astrophysics Data System (ADS)
Bigaj, Tomasz
2016-09-01
In this paper I discuss some metaphysical consequences of an unorthodox approach to the problem of the identity and individuality of "indistinguishable" quantum particles. This approach is based on the assumption that the only admissible way of individuating separate components of a given system is with the help of the permutation-invariant qualitative properties of the total system. Such a method of individuation, when applied to fermionic compositions occupying so-called GMW-nonentangled states, yields highly implausible consequences regarding the number of distinct components of a given composite system. I specify the problem (which I call the problem of fermionic inflation) in detail, and I consider several strategies of solving it. The preferred solution of the problem is based on the premise that spatial location should play a privileged role in identifying and making reference to quantum-mechanical systems.
Proof of the Spin Statistics Connection 2: Relativistic Theory
NASA Astrophysics Data System (ADS)
Santamato, Enrico; De Martini, Francesco
2017-12-01
The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important "Pauli Exclusion Principle" but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Santamato and De Martini in Found Phys 45(7):858-873, 2015) we presented a proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the "Conformal Quantum Geometrodynamics". In the present paper, by the same theory the proof of the spin-statistics theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the standard quantum mechanics, which determines the correct spin-statistics connection observed in Nature (Santamato and De Martini in Found Phys 45(7):858-873, 2015). The present proof of the spin-statistics theorem is simpler than the one presented in Santamato and De Martini (Found Phys 45(7):858-873, 2015), because it is based on symmetry group considerations only, without having recourse to frames attached to the particles. Second quantization and anticommuting operators are not necessary.
Quantum-classical correspondence for the inverted oscillator
NASA Astrophysics Data System (ADS)
Maamache, Mustapha; Ryeol Choi, Jeong
2017-11-01
While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)
Entangled states in quantum mechanics
NASA Astrophysics Data System (ADS)
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Wei
Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the NEQ approach I verify the universality class of the 3D Ising spin-glasses. I also investigate the random 3-regular graphs in terms of both classical and quantum phase transitions. I demonstrate that under this simulation scheme, one can extract information associated with the classical and quantum spin-glass transitions without any knowledge prior to the simulation.
Schrödinger problem, Lévy processes, and noise in relativistic quantum mechanics
NASA Astrophysics Data System (ADS)
Garbaczewski, Piotr; Klauder, John R.; Olkiewicz, Robert
1995-05-01
The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for the temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schrödinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feynman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard ``free'' case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schrödinger problem, the ``free noise'' can also be extended to any infinitely divisible probability law, as covered by the Lévy-Khintchine formula. Since the relativistic Hamiltonians ||∇|| and √-Δ+m2 -m are known to generate such laws, we focus on them for the analysis of probabilistic phenomena, which are shown to be associated with the relativistic wave (D'Alembert) and matter-wave (Klein-Gordon) equations, respectively. We show that such stochastic processes exist and are spatial jump processes. In general, in the presence of external potentials, they do not share the Markov property, except for stationary situations. A concrete example of the pseudodifferential Cauchy-Schrödinger evolution is analyzed in detail. The relativistic covariance of related wave equations is exploited to demonstrate how the associated stochastic jump processes comply with the principles of special relativity.
Computing with a single qubit faster than the computation quantum speed limit
NASA Astrophysics Data System (ADS)
Sinitsyn, Nikolai A.
2018-02-01
The possibility to save and process information in fundamentally indistinguishable states is the quantum mechanical resource that is not encountered in classical computing. I demonstrate that, if energy constraints are imposed, this resource can be used to accelerate information-processing without relying on entanglement or any other type of quantum correlations. In fact, there are computational problems that can be solved much faster, in comparison to currently used classical schemes, by saving intermediate information in nonorthogonal states of just a single qubit. There are also error correction strategies that protect such computations.
Quantum correlations are tightly bound by the exclusivity principle.
Yan, Bin
2013-06-28
It is a fundamental problem in physics of what principle limits the correlations as predicted by our current description of nature, based on quantum mechanics. One possible explanation is the "global exclusivity" principle recently discussed in Phys. Rev. Lett. 110, 060402 (2013). In this work we show that this principle actually has a much stronger restriction on the probability distribution. We provide a tight constraint inequality imposed by this principle and prove that this principle singles out quantum correlations in scenarios represented by any graph. Our result implies that the exclusivity principle might be one of the fundamental principles of nature.
Bell's Inequality: Revolution in Quantum Physics or Just AN Inadequate Mathematical Model?
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
The main aim of this review is to stress the role of mathematical models in physics. The Bell inequality (BI) is often called the "most famous inequality of the 20th century." It is commonly accepted that its violation in corresponding experiments induced a revolution in quantum physics. Unlike "old quantum mechanics" (of Einstein, Schrodinger Bohr, Heisenberg, Pauli, Landau, Fock), "modern quantum mechanics" (of Bell, Aspect, Zeilinger, Shimony, Green-berger, Gisin, Mermin) takes seriously so called quantum non-locality. We will show that the conclusion that one has to give up the realism (i.e., a possibility to assign results of measurements to physical systems) or the locality (i.e., to assume action at a distance) is heavily based on one special mathematical model. This model was invented by A. N. Kolmogorov in 1933. One should pay serious attention to the role of mathematical models in physics. The problems of the realism and locality induced by Bell's argument can be solved by using non-Kolmogorovian probabilistic models. We compare this situation with non-Euclidean geometric models in relativity theory.
Dealing with indistinguishable particles and their entanglement.
Compagno, Giuseppe; Castellini, Alessia; Lo Franco, Rosario
2018-07-13
Here, we discuss a particle-based approach to deal with systems of many identical quantum objects (particles) that never employs labels to mark them. We show that it avoids both methodological problems and drawbacks in the study of quantum correlations associated with the standard quantum mechanical treatment of identical particles. The core of this approach is represented by the multiparticle probability amplitude, whose structure in terms of single-particle amplitudes we derive here by first principles. To characterize entanglement among the identical particles, this new method uses the same notions, such as partial trace, adopted for non-identical ones. We highlight the connection between our approach and second quantization. We also define spin-exchanged multipartite states which contain a generalization of W states to identical particles. We prove that particle spatial overlap plays a role in the distributed entanglement within multipartite systems and is responsible for the appearance of non-local quantum correlations.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Problem Solving in Physics: Undergraduates' Framing, Procedures, and Decision Making
NASA Astrophysics Data System (ADS)
Modir, Bahar
In this dissertation I will start with the broad research question of what does problem solving in upper division physics look like? My focus in this study is on students' problem solving in physics theory courses. Some mathematical formalisms are common across all physics core courses such as using the process of separation of variables, doing Taylor series, or using the orthogonality properties of mathematical functions to set terms equal to zero. However, there are slight differences in their use of these mathematical formalisms across different courses, possibly because of how students map different physical systems to these processes. Thus, my first main research question aims to answer how students perform these recurring processes across upper division physics courses. I break this broad question into three particular research questions: What knowledge pieces do students use to make connections between physics and procedural math? How do students use their knowledge pieces coherently to provide reasoning strategies in estimation problems? How do students look ahead into the problem to read the information out of the physical scenario to align their use of math in physics? Building on the previous body of the literature, I will use the theory family of Knowledge in Pieces and provide evidence to expand this theoretical foundation. I will compare my study with previous studies and provide suggestions on how to generalize these theory expansions for future use. My experimental data mostly come from video-based classroom data. Students in groups of 2-4 students solve in-class problems in quantum mechanics and electromagnetic fields 1 courses collaboratively. In addition, I will analyze clinical interviews to demonstrate how a single case study student plays an epistemic game to estimate the total energy in a hurricane. My second research question is more focused on a particular instructional context. How do students frame problem solving in quantum mechanics? I will lay out a new theoretical framework based in epistemic framing that separates the problem solving space into four frames divided along two axes. The first axis models students' framing in math and physics, expanded through the second axis of conceptual problem solving and algorithmic problem solving. I use this framework to show how students navigate problem solving. Lastly, I will use this developed framework to interpret existing difficulties in quantum mechanics.
Sgrignani, Jacopo; Grazioso, Giovanni; De Amici, Marco
2016-09-13
The fast and constant development of drug resistant bacteria represents a serious medical emergency. To overcome this problem, the development of drugs with new structures and modes of action is urgently needed. In this work, we investigated, at the atomistic level, the mechanisms of hydrolysis of Meropenem by OXA-23, a class D β-lactamase, combining unbiased classical molecular dynamics and umbrella sampling simulations with classical force field-based and quantum mechanics/molecular mechanics potentials. Our calculations provide a detailed structural and dynamic picture of the molecular steps leading to the formation of the Meropenem-OXA-23 covalent adduct, the subsequent hydrolysis, and the final release of the inactive antibiotic. In this mechanistic framework, the predicted activation energy is in good agreement with experimental kinetic measurements, validating the expected reaction path.
On spontaneous emission into guided modes with curved wavefronts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yariv, A.; Margalit, S.
1982-11-01
The problem of spontaneous emission into guided modes with curved wavefronts is examined quantum mechanically. A classical result due to Petermann, which shows an increased emission rate relative to modes with planar phase fronts, is corroborated.
Classical Electrodynamics: Lecture notes
NASA Astrophysics Data System (ADS)
Likharev, Konstantin K.
2018-06-01
Essential Advanced Physics is a series comprising four parts: Classical Mechanics, Classical Electrodynamics, Quantum Mechanics and Statistical Mechanics. Each part consists of two volumes, Lecture notes and Problems with solutions, further supplemented by an additional collection of test problems and solutions available to qualifying university instructors. This volume, Classical Electrodynamics: Lecture notes is intended to be the basis for a two-semester graduate-level course on electricity and magnetism, including not only the interaction and dynamics charged point particles, but also properties of dielectric, conducting, and magnetic media. The course also covers special relativity, including its kinematics and particle-dynamics aspects, and electromagnetic radiation by relativistic particles.
Perspective: Quantum mechanical methods in biochemistry and biophysics.
Cui, Qiang
2016-10-14
In this perspective article, I discuss several research topics relevant to quantum mechanical (QM) methods in biophysical and biochemical applications. Due to the immense complexity of biological problems, the key is to develop methods that are able to strike the proper balance of computational efficiency and accuracy for the problem of interest. Therefore, in addition to the development of novel ab initio and density functional theory based QM methods for the study of reactive events that involve complex motifs such as transition metal clusters in metalloenzymes, it is equally important to develop inexpensive QM methods and advanced classical or quantal force fields to describe different physicochemical properties of biomolecules and their behaviors in complex environments. Maintaining a solid connection of these more approximate methods with rigorous QM methods is essential to their transferability and robustness. Comparison to diverse experimental observables helps validate computational models and mechanistic hypotheses as well as driving further development of computational methodologies.
A hundred years with the cosmological constant
NASA Astrophysics Data System (ADS)
Grøn, Øyvind G.
2018-07-01
The main points in the history of the cosmological constant are briefly discussed. As a conceptual background, useful for teaching of physics at an elementary college and university level, Newton’s theory formulated locally in terms of the Poisson equation is presented, and it is shown how it is modified by the introduction of the cosmological constant. The different physical interpretations of the cosmological constant, as introduced by Einstein in 1917 and interpreted by Lemaître in 1934, are presented. Energy conservation in an expanding universe dominated by vacuum energy is discussed. The connection between the cosmological constant and the quantum mechanical vacuum energy is mentioned, together with the problem that a quantum mechanical calculation of the density of the vacuum energy gives a vastly too large value of the cosmological constant. The article is concluded by reviewing a solution of this problem that was presented on May 11, 2017.
False vacuum decay in quantum mechanics and four dimensional scalar field theory
NASA Astrophysics Data System (ADS)
Bezuglov, Maxim
2018-04-01
When the Higgs boson was discovered in 2012 it was realized that electroweak vacuum may suffer a possible metastability on the Planck scale and can eventually decay. To understand this problem it is important to have reliable predictions for the vacuum decay rate within the framework of quantum field theory. For now, it can only be done at one loop level, which is apparently is not enough. The aim of this work is to develop a technique for the calculation of two and higher order radiative corrections to the false vacuum decay rate in the framework of four dimensional scalar quantum field theory and then apply it to the case of the Standard Model. To achieve this goal, we first start from the case of d=1 dimensional QFT i.e. quantum mechanics. We show that for some potentials two and three loop corrections can be very important and must be taken into account. Next, we use quantum mechanical example as a template for the general d=4 dimensional theory. In it we are concentrating on the calculations of bounce solution and corresponding Green function in so called thin wall approximation. The obtained Green function is then used as a main ingredient for the calculation of two loop radiative corrections to the false vacuum decay rate.
Quantum Biometrics with Retinal Photon Counting
NASA Astrophysics Data System (ADS)
Loulakis, M.; Blatsios, G.; Vrettou, C. S.; Kominis, I. K.
2017-10-01
It is known that the eye's scotopic photodetectors, rhodopsin molecules, and their associated phototransduction mechanism leading to light perception, are efficient single-photon counters. We here use the photon-counting principles of human rod vision to propose a secure quantum biometric identification based on the quantum-statistical properties of retinal photon detection. The photon path along the human eye until its detection by rod cells is modeled as a filter having a specific transmission coefficient. Precisely determining its value from the photodetection statistics registered by the conscious observer is a quantum parameter estimation problem that leads to a quantum secure identification method. The probabilities for false-positive and false-negative identification of this biometric technique can readily approach 10-10 and 10-4, respectively. The security of the biometric method can be further quantified by the physics of quantum measurements. An impostor must be able to perform quantum thermometry and quantum magnetometry with energy resolution better than 10-9ℏ , in order to foil the device by noninvasively monitoring the biometric activity of a user.
Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrennikov, Andrei
2010-08-15
One of the crucial differences between mathematical models of classical and quantum mechanics (QM) is the use of the tensor product of the state spaces of subsystems as the state space of the corresponding composite system. (To describe an ensemble of classical composite systems, one uses random variables taking values in the Cartesian product of the state spaces of subsystems.) We show that, nevertheless, it is possible to establish a natural correspondence between the classical and the quantum probabilistic descriptions of composite systems. Quantum averages for composite systems (including entangled) can be represented as averages with respect to classical randommore » fields. It is essentially what Albert Einstein dreamed of. QM is represented as classical statistical mechanics with infinite-dimensional phase space. While the mathematical construction is completely rigorous, its physical interpretation is a complicated problem. We present the basic physical interpretation of prequantum classical statistical field theory in Sec. II. However, this is only the first step toward real physical theory.« less
Dai, Peng; Jiang, Nan; Tan, Ren-Xiang
2016-01-01
Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.
Quantum Mechanical Study of Atoms and Molecules
NASA Technical Reports Server (NTRS)
Sahni, R. C.
1961-01-01
This paper, following a brief introduction, is divided into five parts. Part I outlines the theory of the molecular orbital method for the ground, ionized and excited states of molecules. Part II gives a brief summary of the interaction integrals and their tabulation. Part III outlines an automatic program designed for the computation of various states of molecules. Part IV gives examples of the study of ground, ionized and excited states of CO, BH and N2 where the program of automatic computation and molecular integrals have been utilized. Part V enlists some special problems of Molecular Quantum Mechanics are being tackled at New York University.
Dielectric properties of classical and quantized ionic fluids.
Høye, Johan S
2010-06-01
We study time-dependent correlation functions of classical and quantum gases using methods of equilibrium statistical mechanics for systems of uniform as well as nonuniform densities. The basis for our approach is the path integral formalism of quantum mechanical systems. With this approach the statistical mechanics of a quantum mechanical system becomes the equivalent of a classical polymer problem in four dimensions where imaginary time is the fourth dimension. Several nontrivial results for quantum systems have been obtained earlier by this analogy. Here, we will focus upon the presence of a time-dependent electromagnetic pair interaction where the electromagnetic vector potential that depends upon currents, will be present. Thus both density and current correlations are needed to evaluate the influence of this interaction. Then we utilize that densities and currents can be expressed by polarizations by which the ionic fluid can be regarded as a dielectric one for which a nonlocal susceptibility is found. This nonlocality has as a consequence that we find no contribution from a possible transverse electric zero-frequency mode for the Casimir force between metallic plates. Further, we establish expressions for a leading correction to ab initio calculations for the energies of the quantized electrons of molecules where now retardation effects also are taken into account.
NASA Astrophysics Data System (ADS)
Simonov, Kyrylo; Hiesmayr, Beatrix C.
2016-11-01
Dynamical reduction models propose a solution to the measurement problem in quantum mechanics: the collapse of the wave function becomes a physical process. We compute the predictions to decaying and flavor-oscillating neutral mesons for the two most promising collapse models, the QMUPL (quantum mechanics with universal position localization) model and the mass-proportional CSL (continuous spontaneous localization) model. Our results are showing (i) a strong sensitivity to the very assumptions of the noise field underlying those two collapse models and (ii) under particular assumptions the CSL case allows one even to recover the decay dynamics. This in turn allows one to predict the effective collapse rates solely based on the measured values for the oscillation (mass differences) and the measured values of the decay constants. The four types of neutral mesons (K meson, D meson, Bd meson, and Bs meson) lead surprisingly to ranges comparable to those put forward by Adler [J. Phys. A: Math. Theor. 40, 2935 (2007), 10.1088/1751-8113/40/12/S03] and Ghirardi, Rimini, and Weber [Phys. Rev. D 34, 470 (1986), 10.1103/PhysRevD.34.470]. Our results show that these systems at high energies are very sensitive to possible modifications of the standard quantum theory, making them a very powerful laboratory to rule out certain collapse scenarios and study the detailed physical processes solving the measurement problem.
Nonuniform quantum turbulence in superfluids
NASA Astrophysics Data System (ADS)
Nemirovskii, Sergey K.
2018-04-01
The problem of quantum turbulence in a channel with an inhomogeneous counterflow of superfluid turbulent helium is studied. The counterflow velocity Vns x(y ) along the channel is supposed to have a parabolic profile in the transverse direction y . Such statement corresponds to the recent numerical simulation by Khomenko et al. [Phys. Rev. B 91, 180504 (2015), 10.1103/PhysRevB.91.180504]. The authors reported about a sophisticated behavior of the vortex-line density (VLD) L (r ,t ) , different from L ∝Vns x(y) 2 , which follows from the straightforward application of the conventional Vinen theory. It is clear that Vinen theory should be refined by taking into account transverse effects, and the way it ought to be done is the subject of active discussion in the literature. In this work, we discuss several possible mechanisms of the transverse flux of VLD L (r ,t ) which should be incorporated in the standard Vinen equation to describe adequately the inhomogeneous quantum turbulence. It is shown that the most effective among these mechanisms is the one that is related to the phase-slippage phenomenon. The use of this flux in the modernized Vinen equation corrects the situation with an unusual distribution of the vortex-line density, and satisfactorily describes the behavior L (r ,t ) both in stationary and nonstationary situations. The general problem of the phenomenological Vinen theory in the case of nonuniform and nonstationary quantum turbulence is thoroughly discussed.
Use of the Wigner representation in scattering problems
NASA Technical Reports Server (NTRS)
Bemler, E. A.
1975-01-01
The basic equations of quantum scattering were translated into the Wigner representation, putting quantum mechanics in the form of a stochastic process in phase space, with real valued probability distributions and source functions. The interpretative picture associated with this representation is developed and stressed and results used in applications published elsewhere are derived. The form of the integral equation for scattering as well as its multiple scattering expansion in this representation are derived. Quantum corrections to classical propagators are briefly discussed. The basic approximation used in the Monte-Carlo method is derived in a fashion which allows for future refinement and which includes bound state production. Finally, as a simple illustration of some of the formalism, scattering is treated by a bound two body problem. Simple expressions for single and double scattering contributions to total and differential cross-sections as well as for all necessary shadow corrections are obtained.
SALUTE Grid Application using Message-Oriented Middleware
NASA Astrophysics Data System (ADS)
Atanassov, E.; Dimitrov, D. Sl.; Gurov, T.
2009-10-01
Stochastic ALgorithms for Ultra-fast Transport in sEmiconductors (SALUTE) is a grid application developed for solving various computationally intensive problems which describe ultra-fast carrier transport in semiconductors. SALUTE studies memory and quantum effects during the relaxation process due to electronphonon interaction in one-band semiconductors or quantum wires. Formally, SALUTE integrates a set of novel Monte Carlo, quasi-Monte Carlo and hybrid algorithms for solving various computationally intensive problems which describe the femtosecond relaxation process of optically excited carriers in one-band semiconductors or quantum wires. In this paper we present application-specific job submission and reservation management tool named a Job Track Server (JTS). It is developed using Message-Oriented middleware to implement robust, versatile job submission and tracing mechanism, which can be tailored to application specific failover and quality of service requirements. Experience from using the JTS for submission of SALUTE jobs is presented.
NASA Astrophysics Data System (ADS)
Hiesmayr, Beatrix C.
2015-07-01
About 50 years ago John St. Bell published his famous Bell theorem that initiated a new field in physics. This contribution discusses how discrete symmetries relate to the big open questions of quantum mechanics, in particular: (i) how correlations stronger than those predicted by theories sharing randomness (Bell's theorem) relate to the violation of the CP symmetry and the P symmetry; and its relation to the security of quantum cryptography, (ii) how the measurement problem (“why do we observe no tables in superposition?”) can be polled in weakly decaying systems, (iii) how strongly and weakly interacting quantum systems are affected by Newton's self gravitation. These presented preliminary results show that the meson-antimeson systems and the hyperon- antihyperon systems are a unique laboratory to tackle deep fundamental questions and to contribute to the understand what impact the violation of discrete symmetries has.
Bridging the Gap Between Stationary Homogeneous Isotropic Turbulence and Quantum Mechanics
NASA Astrophysics Data System (ADS)
Sohrab, Siavash
A statistical theory of stationary isotropic turbulence is presented with eddies possessing Gaussian velocity distribution, Maxwell-Boltzmann speed distribution in harmony with perceptions of Heisenberg, and Planck energy distribution in harmony with perceptions of Chandrasekhar and in agreement with experimental observations of Van Atta and Chen. Defining the action S = - mΦ in terms of velocity potential of atomic motion, scale-invariant Schrödinger equation is derivedfrom invariant Bernoulli equation. Thus, the gap between the problems of turbulence and quantum mechanics is closed through connections between Cauchy-Euler-Bernoulli equations of hydrodynamics, Hamilton-Jacobi equation of classical mechanics, and finally Schrödinger equation of quantum mechanics. Transitions of particle (molecular cluster cji) from a small rapidly-oscillating eddy ej (high-energy level-j) to a large slowly-oscillating eddy ei (low energy-level-i) leads to emission of a sub-particle (molecule mji) that carries away the excess energy ɛji = h (νj -νi) in harmony with Bohr theory of atomic spectra. ∖ ∖ NASA Grant No. NAG3-1863.
NASA Astrophysics Data System (ADS)
Sayer, Ryan Thomas
Upper-level undergraduate students entering a quantum mechanics (QM) course are in many ways similar to students entering an introductory physics course. Numerous studies have investigated the difficulties that novices face in introductory physics as well as the pedagogical approaches that are effective in helping them overcome those difficulties. My research focuses on replicating effective approaches and instructional strategies used in introductory physics courses to help advanced students in an upper-level QM course. I have investigated the use of Just-in-time Teaching (JiTT) and peer discussion involving clicker questions in an upper-level quantum mechanics course. The JiTT approach including peer discussions was effective in helping students overcome their difficulties and improve their understanding of QM concepts. Learning tools, such as a Quantum Interactive Learning Tutorial (QuILT) based on the Doubleslit Experiment (DSE) which I helped develop, have been successful in helping upper-level undergraduate students improve their understanding of QM. Many students have also demonstrated the ability to transfer knowledge from a QuILT based on the Mach-Zehnder interferometer while working on the DSE QuILT. In addition, I have been involved in implementing research-based activities during our semester-long professional development course for teaching assistants (TAs). In one intervention, TAs were asked to grade student solutions to introductory physics problems first using their choice of method, then again using a rubric designed to promote effective problem-solving approaches, then once more at the end of the semester using their choice of method. This intervention found that many TAs have ingrained beliefs about the purposes of grading which include placing the burden of proof on the instructor as well as a belief that grading cannot serve as a formative assessment. I also compared TAs grading practices and considerations when grading student solutions to QM problems versus when grading student solutions to introductory physics. Many TAs penalized students for not explicating the problem solving process more often in the QM context than in the introductory physics context. The implications of these interventions for promoting student learning in QM are discussed.
Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.
2018-03-22
Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less
General Relativity without paradigm of space-time covariance, and resolution of the problem of time
NASA Astrophysics Data System (ADS)
Soo, Chopin; Yu, Hoi-Lai
2014-01-01
The framework of a theory of gravity from the quantum to the classical regime is presented. The paradigm shift from full space-time covariance to spatial diffeomorphism invariance, together with clean decomposition of the canonical structure, yield transparent physical dynamics and a resolution of the problem of time. The deep divide between quantum mechanics and conventional canonical formulations of quantum gravity is overcome with a Schrödinger equation for quantum geometrodynamics that describes evolution in intrinsic time. Unitary time development with gauge-invariant temporal ordering is also viable. All Kuchar observables become physical; and classical space-time, with direct correlation between its proper times and intrinsic time intervals, emerges from constructive interference. The framework not only yields a physical Hamiltonian for Einstein's theory, but also prompts natural extensions and improvements towards a well behaved quantum theory of gravity. It is a consistent canonical scheme to discuss Horava-Lifshitz theories with intrinsic time evolution, and of the many possible alternatives that respect 3-covariance (rather than the more restrictive 4-covariance of Einstein's theory), Horava's "detailed balance" form of the Hamiltonian constraint is essentially pinned down by this framework. Issues in quantum gravity that depend on radiative corrections and the rigorous definition and regularization of the Hamiltonian operator are not addressed in this work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sornborger, Andrew Tyler; Stancil, Phillip; Geller, Michael R.
Here, one of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputedmore » potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born–Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3–8 channels and circuit depths < 1000.« less
NASA Astrophysics Data System (ADS)
Sornborger, Andrew T.; Stancil, Phillip; Geller, Michael R.
2018-05-01
One of the most promising applications of an error-corrected universal quantum computer is the efficient simulation of complex quantum systems such as large molecular systems. In this application, one is interested in both the electronic structure such as the ground state energy and dynamical properties such as the scattering cross section and chemical reaction rates. However, most theoretical work and experimental demonstrations have focused on the quantum computation of energies and energy surfaces. In this work, we attempt to make the prethreshold (not error-corrected) quantum simulation of dynamical properties practical as well. We show that the use of precomputed potential energy surfaces and couplings enables the gate-based simulation of few-channel but otherwise realistic molecular collisions. Our approach is based on the widely used Born-Oppenheimer approximation for the structure problem coupled with a semiclassical method for the dynamics. In the latter the electrons are treated quantum mechanically but the nuclei are classical, which restricts the collisions to high energy or temperature (typically above ≈ 10 eV). By using operator splitting techniques optimized for the resulting time-dependent Hamiltonian simulation problem, we give several physically realistic collision examples, with 3-8 channels and circuit depths < 1000.
NASA Astrophysics Data System (ADS)
Owerre, S. A.; Paranjape, M. B.
2014-04-01
We study the phase transition of the escape rate of exchange-coupled dimer of single-molecule magnets which are coupled either ferromagnetically or antiferromagnetically in a staggered magnetic field and an easy z-axis anisotropy. The Hamiltonian for this system has been used to study dimeric molecular nanomagnet [Mn4]2 which is comprised of two single molecule magnets coupled antiferromagnetically. We generalize the method of mapping a single-molecule magnetic spin problem onto a quantum-mechanical particle to dimeric molecular nanomagnets. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and a coordinate dependent reduced mass. It is shown that the presence of the external staggered magnetic field creates a phase boundary separating the first- from the second-order transition. With the set of parameters used by R. Tiron et al. (2003) [25] and S. Hill et al. (2003) [20] to fit experimental data for [Mn4]2 dimer we find that the critical temperature at the phase boundary is T0(c)=0.29K. Therefore, thermally activated transitions should occur for temperatures greater than T0(c).
Quantum-like Modeling of Cognition
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2015-09-01
This paper begins with a historical review of the mutual influence of physics and psychology, from Freud's invention of psychic energy inspired by von Boltzmann' thermodynamics to the enrichment quantum physics gained from the side of psychology by the notion of complementarity (the invention of Niels Bohr who was inspired by William James), besides we consider the resonance of the correspondence between Wolfgang Pauli and Carl Jung in both physics and psychology. Then we turn to the problem of development of mathematical models for laws of thought starting with Boolean logic and progressing towards foundations of classical probability theory. Interestingly, the laws of classical logic and probability are routinely violated not only by quantum statistical phenomena but by cognitive phenomena as well. This is yet another common feature between quantum physics and psychology. In particular, cognitive data can exhibit a kind of the probabilistic interference effect. This similarity with quantum physics convinced a multi-disciplinary group of scientists (physicists, psychologists, economists, sociologists) to apply the mathematical apparatus of quantum mechanics to modeling of cognition. We illustrate this activity by considering a few concrete phenomena: the order and disjunction effects, recognition of ambiguous figures, categorization-decision making. In Appendix 1 we briefly present essentials of theory of contextual probability and a method of representations of contextual probabilities by complex probability amplitudes (solution of the ``inverse Born's problem'') based on a quantum-like representation algorithm (QLRA).
Machine learning & artificial intelligence in the quantum domain: a review of recent progress
NASA Astrophysics Data System (ADS)
Dunjko, Vedran; Briegel, Hans J.
2018-07-01
Quantum information technologies, on the one hand, and intelligent learning systems, on the other, are both emergent technologies that are likely to have a transformative impact on our society in the future. The respective underlying fields of basic research—quantum information versus machine learning (ML) and artificial intelligence (AI)—have their own specific questions and challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question of the extent to which these fields can indeed learn and benefit from each other. Quantum ML explores the interaction between quantum computing and ML, investigating how results and techniques from one field can be used to solve the problems of the other. Recently we have witnessed significant breakthroughs in both directions of influence. For instance, quantum computing is finding a vital application in providing speed-ups for ML problems, critical in our ‘big data’ world. Conversely, ML already permeates many cutting-edge technologies and may become instrumental in advanced quantum technologies. Aside from quantum speed-up in data analysis, or classical ML optimization used in quantum experiments, quantum enhancements have also been (theoretically) demonstrated for interactive learning tasks, highlighting the potential of quantum-enhanced learning agents. Finally, works exploring the use of AI for the very design of quantum experiments and for performing parts of genuine research autonomously, have reported their first successes. Beyond the topics of mutual enhancement—exploring what ML/AI can do for quantum physics and vice versa—researchers have also broached the fundamental issue of quantum generalizations of learning and AI concepts. This deals with questions of the very meaning of learning and intelligence in a world that is fully described by quantum mechanics. In this review, we describe the main ideas, recent developments and progress in a broad spectrum of research investigating ML and AI in the quantum domain.
Machine learning & artificial intelligence in the quantum domain: a review of recent progress.
Dunjko, Vedran; Briegel, Hans J
2018-07-01
Quantum information technologies, on the one hand, and intelligent learning systems, on the other, are both emergent technologies that are likely to have a transformative impact on our society in the future. The respective underlying fields of basic research-quantum information versus machine learning (ML) and artificial intelligence (AI)-have their own specific questions and challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question of the extent to which these fields can indeed learn and benefit from each other. Quantum ML explores the interaction between quantum computing and ML, investigating how results and techniques from one field can be used to solve the problems of the other. Recently we have witnessed significant breakthroughs in both directions of influence. For instance, quantum computing is finding a vital application in providing speed-ups for ML problems, critical in our 'big data' world. Conversely, ML already permeates many cutting-edge technologies and may become instrumental in advanced quantum technologies. Aside from quantum speed-up in data analysis, or classical ML optimization used in quantum experiments, quantum enhancements have also been (theoretically) demonstrated for interactive learning tasks, highlighting the potential of quantum-enhanced learning agents. Finally, works exploring the use of AI for the very design of quantum experiments and for performing parts of genuine research autonomously, have reported their first successes. Beyond the topics of mutual enhancement-exploring what ML/AI can do for quantum physics and vice versa-researchers have also broached the fundamental issue of quantum generalizations of learning and AI concepts. This deals with questions of the very meaning of learning and intelligence in a world that is fully described by quantum mechanics. In this review, we describe the main ideas, recent developments and progress in a broad spectrum of research investigating ML and AI in the quantum domain.
NASA Astrophysics Data System (ADS)
Gerdt, V. P.; Tarasov, O. V.; Shirkov, Dmitrii V.
1980-01-01
The present state of analytic calculations on computers is reviewed. Several programming systems which are used for analytic calculations are discussed: SCHOONSCHIP, CLAM, REDUCE-2, SYMBAL, CAMAL, AVTO-ANALITIK, MACSYMA, etc. It is shown that these systems can be used to solve a wide range of problems in physics and mathematics. Some physical applications are discussed in celestial mechanics, the general theory of relativity, quantum field theory, plasma physics, hydrodynamics, atomic and molecular physics, and quantum chemistry. Some mathematical applications which are discussed are evaluating indefinite integrals, solving differential equations, and analyzing mathematical expressions. This review is addressed to physicists and mathematicians working in a wide range of fields.
Rosnik, Andreana M; Curutchet, Carles
2015-12-08
Over the past decade, both experimentalists and theorists have worked to develop methods to describe pigment-protein coupling in photosynthetic light-harvesting complexes in order to understand the molecular basis of quantum coherence effects observed in photosynthesis. Here we present an improved strategy based on the combination of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations and excited-state calculations to predict the spectral density of electronic-vibrational coupling. We study the water-soluble chlorophyll-binding protein (WSCP) reconstituted with Chl a or Chl b pigments as the system of interest and compare our work with data obtained by Pieper and co-workers from differential fluorescence line-narrowing spectra (Pieper et al. J. Phys. Chem. B 2011, 115 (14), 4042-4052). Our results demonstrate that the use of QM/MM MD simulations where the nuclear positions are still propagated at the classical level leads to a striking improvement of the predicted spectral densities in the middle- and high-frequency regions, where they nearly reach quantitative accuracy. This demonstrates that the so-called "geometry mismatch" problem related to the use of low-quality structures in QM calculations, not the quantum features of pigments high-frequency motions, causes the failure of previous studies relying on similar protocols. Thus, this work paves the way toward quantitative predictions of pigment-protein coupling and the comprehension of quantum coherence effects in photosynthesis.
The emergent Copenhagen interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Hollowood, Timothy J.
2014-05-01
We introduce a new and conceptually simple interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description of macroscopically large systems. This interpretation describes a world in which definite measurement results are obtained with probabilities that reproduce the Born rule. Wave function collapse is seen to be a useful but fundamentally unnecessary piece of prudent book keeping which is only valid for macro-systems. The new interpretation lies in a class of modal interpretations in that it applies to quantum systems that interact with a much larger environment. However, we show that it does not suffer from the problems that have plagued similar modal interpretations like macroscopic superpositions and rapid flipping between macroscopically distinct states. We describe how the interpretation fits neatly together with fully quantum formulations of statistical mechanics and that a measurement process can be viewed as a process of ergodicity breaking analogous to a phase transition. The key feature of the new interpretation is that joint probabilities for the ergodic subsets of states of disjoint macro-systems only arise as emergent quantities. Finally we give an account of the EPR-Bohm thought experiment and show that the interpretation implies the violation of the Bell inequality characteristic of quantum mechanics but in a way that is rather novel. The final conclusion is that the Copenhagen interpretation gives a completely satisfactory phenomenology of macro-systems interacting with micro-systems.
Bathed, Strained, Attenuated, Annihilated: Towards Quantum Optomechanics
NASA Astrophysics Data System (ADS)
Pepper, Brian Jeffrey
The field of optomechanics studies tiny devices that can be pushed mechanically by light. It is an extremely promising avenue towards tests of quantum mechanics on a macroscopic scale, by transferring quantum states of light to nano- or micromechanical objects. This dissertation concerns a long term research program to create quantum superpositions of a macroscopic mirror in an optomechanical cavity. This dissertation has two broad thrusts. The first focuses on microfabrication of a new type of device called optomechanical trampoline resonators, consisting of a small mirror on a cross-shaped tensed silicon nitride membrane. Devices have been fabricated with high mechanical and optical quality, including a 300 kHz device with quality factor 480,000, as well as a device of optical finesse 107,000. These devices are well into the sideband-resolved regime and suitable for optical cooling to the quantum ground state. One such device has been optically cooled to approximately 10 phonons. The second major thrust is theoretical. Creating a macroscopic superposition is a challenging problem, requiring optical cooling to the ground state, strong coupling, extremely high optical finesse and extremely low frequency. A realistic assessment of achievable parameters indicates that it is possible to achieve ground state cooling or strong coupling, but not both. This dissertation proposes a new technique using postselection to achieve macroscopic superpositions with only weak coupling. This relaxes some of the required parameters by orders of magnitude. Prospects for observing hypothetical novel decoherence mechanisms are also discussed.
How quantum brain biology can rescue conscious free will
Hameroff, Stuart
2012-01-01
Conscious “free will” is problematic because (1) brain mechanisms causing consciousness are unknown, (2) measurable brain activity correlating with conscious perception apparently occurs too late for real-time conscious response, consciousness thus being considered “epiphenomenal illusion,” and (3) determinism, i.e., our actions and the world around us seem algorithmic and inevitable. The Penrose–Hameroff theory of “orchestrated objective reduction (Orch OR)” identifies discrete conscious moments with quantum computations in microtubules inside brain neurons, e.g., 40/s in concert with gamma synchrony EEG. Microtubules organize neuronal interiors and regulate synapses. In Orch OR, microtubule quantum computations occur in integration phases in dendrites and cell bodies of integrate-and-fire brain neurons connected and synchronized by gap junctions, allowing entanglement of microtubules among many neurons. Quantum computations in entangled microtubules terminate by Penrose “objective reduction (OR),” a proposal for quantum state reduction and conscious moments linked to fundamental spacetime geometry. Each OR reduction selects microtubule states which can trigger axonal firings, and control behavior. The quantum computations are “orchestrated” by synaptic inputs and memory (thus “Orch OR”). If correct, Orch OR can account for conscious causal agency, resolving problem 1. Regarding problem 2, Orch OR can cause temporal non-locality, sending quantum information backward in classical time, enabling conscious control of behavior. Three lines of evidence for brain backward time effects are presented. Regarding problem 3, Penrose OR (and Orch OR) invokes non-computable influences from information embedded in spacetime geometry, potentially avoiding algorithmic determinism. In summary, Orch OR can account for real-time conscious causal agency, avoiding the need for consciousness to be seen as epiphenomenal illusion. Orch OR can rescue conscious free will. PMID:23091452
Atomistic mechanisms of rapid energy transport in light-harvesting molecules
NASA Astrophysics Data System (ADS)
Ohmura, Satoshi; Koga, Shiro; Akai, Ichiro; Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya
2011-03-01
Synthetic supermolecules such as π-conjugated light-harvesting dendrimers efficiently harvest energy from sunlight, which is of significant importance for the global energy problem. Key to their success is rapid transport of electronic excitation energy from peripheral antennas to photochemical reaction cores, the atomistic mechanisms of which remains elusive. Here, quantum-mechanical molecular dynamics simulation incorporating nonadiabatic electronic transitions reveals the key molecular motion that significantly accelerates the energy transport based on the Dexter mechanism.
Speculation on quantum mechanics and the operation of life giving catalysts.
Haydon, Nathan; McGlynn, Shawn E; Robus, Olin
2011-02-01
The origin of life necessitated the formation of catalytic functionalities in order to realize a number of those capable of supporting reactions that led to the proliferation of biologically accessible molecules and the formation of a proto-metabolic network. Here, the discussion of the significance of quantum behavior on biological systems is extended from recent hypotheses exploring brain function and DNA mutation to include origins of life considerations in light of the concept of quantum decoherence and the transition from the quantum to the classical. Current understandings of quantum systems indicate that in the context of catalysis, substrate-catalyst interaction may be considered as a quantum measurement problem. Exploration of catalytic functionality necessary for life's emergence may have been accommodated by quantum searches within metal sulfide compartments, where catalyst and substrate wave function interaction may allow for quantum based searches of catalytic phase space. Considering the degree of entanglement experienced by catalytic and non catalytic outcomes of superimposed states, quantum contributions are postulated to have played an important role in the operation of efficient catalysts that would provide for the kinetic basis for the emergence of life.
NASA Astrophysics Data System (ADS)
Loepp, Susan; Wootters, William K.
2006-09-01
For many everyday transmissions, it is essential to protect digital information from noise or eavesdropping. This undergraduate introduction to error correction and cryptography is unique in devoting several chapters to quantum cryptography and quantum computing, thus providing a context in which ideas from mathematics and physics meet. By covering such topics as Shor's quantum factoring algorithm, this text informs the reader about current thinking in quantum information theory and encourages an appreciation of the connections between mathematics and science.Of particular interest are the potential impacts of quantum physics:(i) a quantum computer, if built, could crack our currently used public-key cryptosystems; and (ii) quantum cryptography promises to provide an alternative to these cryptosystems, basing its security on the laws of nature rather than on computational complexity. No prior knowledge of quantum mechanics is assumed, but students should have a basic knowledge of complex numbers, vectors, and matrices. Accessible to readers familiar with matrix algebra, vector spaces and complex numbers First undergraduate text to cover cryptography, error-correction, and quantum computation together Features exercises designed to enhance understanding, including a number of computational problems, available from www.cambridge.org/9780521534765
Generalized centripetal force law and quantization of motion constrained on 2D surfaces
NASA Astrophysics Data System (ADS)
Liu, Q. H.; Zhang, J.; Lian, D. K.; Hu, L. D.; Li, Z.
2017-03-01
For a particle of mass μ moves on a 2D surface f(x) = 0 embedded in 3D Euclidean space of coordinates x, there is an open and controversial problem whether the Dirac's canonical quantization scheme for the constrained motion allows for the geometric potential that has been experimentally confirmed. We note that the Dirac's scheme hypothesizes that the symmetries indicated by classical brackets among positions x and momenta p and Hamiltonian Hc remain in quantum mechanics, i.e., the following Dirac brackets [ x ,Hc ] D and [ p ,Hc ] D holds true after quantization, in addition to the fundamental ones [ x , x ] D, [ x , p ] D and [ p , p ] D. This set of hypotheses implies that the Hamiltonian operator is simultaneously determined during the quantization. The quantum mechanical relations corresponding to the classical mechanical ones p / μ =[ x ,Hc ] D directly give the geometric momenta. The time t derivative of the momenta p ˙ =[ p ,Hc ] D in classical mechanics is in fact the generalized centripetal force law for particle on the 2D surface, which in quantum mechanics permits both the geometric momenta and the geometric potential.
Quantum-classical transition of photon-Carnot engine induced by quantum decoherence
NASA Astrophysics Data System (ADS)
Quan, H. T.; Zhang, P.; Sun, C. P.
2006-03-01
We study the physical implementation of the photon-Carnot engine (PCE) based on the cavity quantum electrodynamics system [M. O. Scully, M. Suhail Zubairy, G. S. Agarwal, and H. Walther, Science 299, 862 (2003)]. Here we analyze two decoherence mechanisms for the more practical systems of PCE, the dissipation of photon field, and the pure dephasing of the input atoms. As a result we find that (i) the PCE can work well to some extent even in the existence of the cavity loss (photon dissipation) and (ii) the short-time atomic dephasing, which can destroy the PCE, is a fatal problem to be overcome.
NASA Astrophysics Data System (ADS)
Huang, Wei; Wen, Qiao-Yan; Liu, Bin; Su, Qi; Qin, Su-Juan; Gao, Fei
2014-03-01
Anonymous ranking is a kind of privacy-preserving ranking whereby each of the involved participants can correctly and anonymously get the rankings of his data. It can be utilized to solve many practical problems, such as anonymously ranking the students' exam scores. We investigate the issue of how quantum mechanics can be of use in maintaining the anonymity of the participants in multiparty ranking and present a series of quantum anonymous multiparty, multidata ranking protocols. In each of these protocols, a participant can get the correct rankings of his data and nobody else can match the identity to his data. Furthermore, the security of these protocols with respect to different kinds of attacks is proved.
Clemente-Juan, Juan Modesto; Palii, Andrew; Coronado, Eugenio; Tsukerblat, Boris
2016-08-09
In this article, we focus on the electron-vibrational problem of the tetrameric mixed-valence (MV) complexes proposed for implementation as four-dot molecular quantum cellular automata (mQCA).1 Although the adiabatic approximation explored in ref 2 is an appropriate tool for the qualitative analysis of the basic characteristics of mQCA, like vibronic trapping of the electrons encoding binary information and cell-cell response, it loses its accuracy providing moderate vibronic coupling and fails in the description of the discrete pattern of the vibronic levels. Therefore, a precise solution of the quantum-mechanical vibronic problem is of primary importance for the evaluation of the shapes of the electron transfer optical absorption bands and quantitative analysis of the main parameters of tetrameric quantum cells. Here, we go beyond the Born-Oppenheimer paradigm and present a solution of the quantum-mechanical pseudo Jahn-Teller (JT) vibronic problem in bielectronic MV species (exemplified by the tetra-ruthenium complexes) based on the recently developed symmetry-assisted approach.3,4 The mathematical approach to the vibronic eigenproblem takes into consideration the point symmetry basis, and therefore, the total matrix of the JT Hamiltonian is blocked to the maximum extent. The submatrices correspond to the irreducible representations (irreps) of the point group. With this tool, we also extend the theory of the mQCA cell beyond the limit of prevailing Coulomb repulsion in the electronic pair (adopted in ref 2), and therefore, the general pseudo-JT problems for spin-singlet ((1)B1g, 2(1)A1g, (1)B2g, (1)Eu) ⊗ (b1g + eu) and spin-triplet states ((3)A2g, (3)B1g, 2(3)Eu) ⊗ (b1g + eu) in a square-planar bielectronic system are solved. The obtained symmetry-adapted electron-vibrational functions are employed for the calculation of the profiles (shape functions) of the charge transfer absorption bands in the tetrameric MV complexes and for the discussion of the magnetic properties.
Theoretical Studies in Chemical Kinetics - Annual Report, 1970.
DOE R&D Accomplishments Database
Karplus, Martin
1970-10-01
The research performed includes (a) Alkali-Halide, Alkali-Halide (MX, M?X?) Exchange Reactions; (b) Inversion Problem; (c) Quantum Mechanics of Scattering Processes, (d) Transition State Analysis of Classical Trajectories, (e) Differential Cross Sections from Classical Trajectories; and (f) Other Studies.
Transforming graph states using single-qubit operations.
Dahlberg, Axel; Wehner, Stephanie
2018-07-13
Stabilizer states form an important class of states in quantum information, and are of central importance in quantum error correction. Here, we provide an algorithm for deciding whether one stabilizer (target) state can be obtained from another stabilizer (source) state by single-qubit Clifford operations (LC), single-qubit Pauli measurements (LPM) and classical communication (CC) between sites holding the individual qubits. What is more, we provide a recipe to obtain the sequence of LC+LPM+CC operations which prepare the desired target state from the source state, and show how these operations can be applied in parallel to reach the target state in constant time. Our algorithm has applications in quantum networks, quantum computing, and can also serve as a design tool-for example, to find transformations between quantum error correcting codes. We provide a software implementation of our algorithm that makes this tool easier to apply. A key insight leading to our algorithm is to show that the problem is equivalent to one in graph theory, which is to decide whether some graph G ' is a vertex-minor of another graph G The vertex-minor problem is, in general, [Formula: see text]-Complete, but can be solved efficiently on graphs which are not too complex. A measure of the complexity of a graph is the rank-width which equals the Schmidt-rank width of a subclass of stabilizer states called graph states, and thus intuitively is a measure of entanglement. Here, we show that the vertex-minor problem can be solved in time O (| G | 3 ), where | G | is the size of the graph G , whenever the rank-width of G and the size of G ' are bounded. Our algorithm is based on techniques by Courcelle for solving fixed parameter tractable problems, where here the relevant fixed parameter is the rank width. The second half of this paper serves as an accessible but far from exhausting introduction to these concepts, that could be useful for many other problems in quantum information.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
The Fermionic Projector, entanglement and the collapse of the wave function
NASA Astrophysics Data System (ADS)
Finster, Felix
2011-07-01
After a brief introduction to the fermionic projector approach, we review how entanglement and second quantized bosonic and fermionic fields can be described in this framework. The constructions are discussed with regard to decoherence phenomena and the measurement problem. We propose a mechanism leading to the collapse of the wave function in the quantum mechanical measurement process.
NASA Astrophysics Data System (ADS)
Zyablovsky, A. A.; Andrianov, E. S.; Nechepurenko, I. A.; Dorofeenko, A. V.; Pukhov, A. A.; Vinogradov, A. P.
2017-05-01
Solving the challenging problem of the amplification and generation of an electromagnetic field in nanostructures enables us to implement many properties of the electromagnetic field at the nanoscale in practical applications. A first-principles quantum-mechanical consideration of such a problem is sufficiently restricted by the exponentially large number of degrees of freedom and does not allow the electromagnetic-field dynamics to be described if it involves a high number of interacting atoms and modes of the electromagnetic field. Conversely, the classical description of electromagnetic fields is incorrect at the nanoscale due to the high level of quantum fluctuations connected to high dissipation and noise levels. In this paper, we develop a framework with a significantly reduced number of degrees of freedom, which describes the quantum spatial dynamics of electromagnetic fields interacting with atoms. As an example, we consider the interaction between atoms placed in a metallic subwavelength groove and demonstrate that a spontaneously excited electromagnetic pulse propagates with the group velocity. The developed approach may be exploited to describe nonuniform amplification and propagation of electromagnetic fields in arbitrary dispersive dissipative systems.
Quantum Weak Values and Logic: An Uneasy Couple
NASA Astrophysics Data System (ADS)
Svensson, Bengt E. Y.
2017-03-01
Quantum mechanical weak values of projection operators have been used to answer which-way questions, e. g. to trace which arms in a multiple Mach-Zehnder setup a particle may have traversed from a given initial to a prescribed final state. I show that this procedure might lead to logical inconsistencies in the sense that different methods used to answer composite questions, like "Has the particle traversed the way X or the way Y?", may result in different answers depending on which methods are used to find the answer. I illustrate the problem by considering some examples: the "quantum pigeonhole" framework of Aharonov et al., the three-box problem, and Hardy's paradox. To prepare the ground for my main conclusion on the incompatibility in certain cases of weak values and logic, I study the corresponding situation for strong/projective measurements. In this case, no logical inconsistencies occur provided one is always careful in specifying exactly to which ensemble or sample space one refers. My results cast doubts on the utility of quantum weak values in treating cases like the examples mentioned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brezov, D. S.; Mladenova, C. D.; Mladenov, I. M., E-mail: mladenov@bio21.bas.bg
In this paper we obtain the Lie derivatives of the scalar parameters in the generalized Euler decomposition with respect to arbitrary axes under left and right deck transformations. This problem can be directly related to the representation of the angular momentum in quantum mechanics. As a particular example, we calculate the angular momentum and the corresponding quantum hamiltonian in the standard Euler and Bryan representations. Similarly, in the hyperbolic case, the Laplace-Beltrami operator is retrieved for the Iwasawa decomposition. The case of two axes is considered as well.
NASA Astrophysics Data System (ADS)
Carlip, S.
2014-10-01
The discovery in the early 1970s that black holes radiate as black bodies has radically affected our understanding of general relativity, and offered us some early hints about the nature of quantum gravity. In this paper, will review the discovery of black hole thermodynamics and summarize the many independent ways of obtaining the thermodynamic and (perhaps) statistical mechanical properties of black holes. I will then describe some of the remaining puzzles, including the nature of the quantum microstates, the problem of universality, and the information loss paradox.
Quantum Mechanics: Myths and Facts
NASA Astrophysics Data System (ADS)
Nikolić, Hrvoje
2007-11-01
A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.
Collisional breakup in a quantum system of three charged particles
Rescigno; Baertschy; Isaacs; McCurdy
1999-12-24
Since the invention of quantum mechanics, even the simplest example of the collisional breakup of a system of charged particles, e(-) + H --> H(+) + e(-) + e(-) (where e(-) is an electron and H is hydrogen), has resisted solution and is now one of the last unsolved fundamental problems in atomic physics. A complete solution requires calculation of the energies and directions for a final state in which all three particles are moving away from each other. Even with supercomputers, the correct mathematical description of this state has proved difficult to apply. A framework for solving ionization problems in many areas of chemistry and physics is finally provided by a mathematical transformation of the Schrodinger equation that makes the final state tractable, providing the key to a numerical solution of this problem that reveals its full dynamics.
Quantum Adiabatic Optimization and Combinatorial Landscapes
NASA Technical Reports Server (NTRS)
Smelyanskiy, V. N.; Knysh, S.; Morris, R. D.
2003-01-01
In this paper we analyze the performance of the Quantum Adiabatic Evolution (QAE) algorithm on a variant of Satisfiability problem for an ensemble of random graphs parametrized by the ratio of clauses to variables, gamma = M / N. We introduce a set of macroscopic parameters (landscapes) and put forward an ansatz of universality for random bit flips. We then formulate the problem of finding the smallest eigenvalue and the excitation gap as a statistical mechanics problem. We use the so-called annealing approximation with a refinement that a finite set of macroscopic variables (verses only energy) is used, and are able to show the existence of a dynamic threshold gamma = gammad, beyond which QAE should take an exponentially long time to find a solution. We compare the results for extended and simplified sets of landscapes and provide numerical evidence in support of our universality ansatz.
The Coulomb problem on a 3-sphere and Heun polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellucci, Stefano; Yeghikyan, Vahagn; Yerevan State University, Alex-Manoogian st. 1, 00025 Yerevan
2013-08-15
The paper studies the quantum mechanical Coulomb problem on a 3-sphere. We present a special parametrization of the ellipto-spheroidal coordinate system suitable for the separation of variables. After quantization we get the explicit form of the spectrum and present an algebraic equation for the eigenvalues of the Runge-Lentz vector. We also present the wave functions expressed via Heun polynomials.
Timeless Configuration Space and the Emergence of Classical Behavior
NASA Astrophysics Data System (ADS)
Gomes, Henrique
2018-06-01
The inherent difficulty in talking about quantum decoherence in the context of quantum cosmology is that decoherence requires subsystems, and cosmology is the study of the whole Universe. Consistent histories gave a possible answer to this conundrum, by phrasing decoherence as loss of interference between alternative histories of closed systems. When one can apply Boolean logic to a set of histories, it is deemed `consistent'. However, the vast majority of the sets of histories that are merely consistent are blatantly nonclassical in other respects, and further constraints than just consistency need to be invoked. In this paper, I attempt to give an alternative answer to the issues faced by consistent histories, by exploring a timeless interpretation of quantum mechanics of closed systems. This is done solely in terms of path integrals in non-relativistic, timeless, configuration space. What prompts a fresh look at such foundational problems in this context is the advent of multiple gravitational models in which Lorentz symmetry is not fundamental, but only emergent. And what allows this approach to overcome previous barriers to a timeless, conditional probabilities interpretation of quantum mechanics is the new notion of records—made possible by an inherent asymmetry of configuration space. I outline and explore consequences of this approach for foundational issues of quantum mechanics, such as the natural emergence of the Born rule, conservation of probabilities, and the Sleeping Beauty paradox.
NASA Technical Reports Server (NTRS)
Iachello, Franco
1995-01-01
An algebraic formulation of quantum mechanics is presented. In this formulation, operators of interest are expanded onto elements of an algebra, G. For bound state problems in nu dimensions the algebra G is taken to be U(nu + 1). Applications to the structure of molecules are presented.
Non Kolmogorov Probability Models Outside Quantum Mechanics
NASA Astrophysics Data System (ADS)
Accardi, Luigi
2009-03-01
This paper is devoted to analysis of main conceptual problems in the interpretation of QM: reality, locality, determinism, physical state, Heisenberg principle, "deterministic" and "exact" theories, laws of chance, notion of event, statistical invariants, adaptive realism, EPR correlations and, finally, the EPR-chameleon experiment.
Conservative Diffusions: a Constructive Approach to Nelson's Stochastic Mechanics.
NASA Astrophysics Data System (ADS)
Carlen, Eric Anders
In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions; this thesis is a study of that description. We emphasize that we are concerned here with the possibility of describing, as opposed to explaining, quantum phenomena in terms of diffusions. In this direction, the following questions arise: "Do the diffusions of stochastic mechanics--which are formally given by stochastic differential equations with extremely singular coefficients--really exist?" Given that they exist, one can ask, "Do these diffusions have physically reasonable sample path behavior, and can we use information about sample paths to study the behavior of physical systems?" These are the questions we treat in this thesis. In Chapter I we review stochastic mechanics and diffusion theory, using the Guerra-Morato variational principle to establish the connection with the Schroedinger equation. This chapter is largely expository; however, there are some novel features and proofs. In Chapter II we settle the first of the questions raised above. Using PDE methods, we construct the diffusions of stochastic mechanics. Our result is sufficiently general to be of independent mathematical interest. In Chapter III we treat potential scattering in stochastic mechanics and discuss direct probabilistic methods of studying quantum scattering problems. Our results provide a solid "Yes" in answer to the second question raised above.
The fractional dynamics of quantum systems
NASA Astrophysics Data System (ADS)
Lu, Longzhao; Yu, Xiangyang
2018-05-01
The fractional dynamic process of a quantum system is a novel and complicated problem. The establishment of a fractional dynamic model is a significant attempt that is expected to reveal the mechanism of fractional quantum system. In this paper, a generalized time fractional Schrödinger equation is proposed. To study the fractional dynamics of quantum systems, we take the two-level system as an example and derive the time fractional equations of motion. The basic properties of the system are investigated by solving this set of equations in the absence of light field analytically. Then, when the system is subject to the light field, the equations are solved numerically. It shows that the two-level system described by the time fractional Schrödinger equation we proposed is a confirmable system.
Local quantum thermal susceptibility
De Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio
2016-01-01
Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions. PMID:27681458
Local quantum thermal susceptibility
NASA Astrophysics Data System (ADS)
de Pasquale, Antonella; Rossini, Davide; Fazio, Rosario; Giovannetti, Vittorio
2016-09-01
Thermodynamics relies on the possibility to describe systems composed of a large number of constituents in terms of few macroscopic variables. Its foundations are rooted into the paradigm of statistical mechanics, where thermal properties originate from averaging procedures which smoothen out local details. While undoubtedly successful, elegant and formally correct, this approach carries over an operational problem, namely determining the precision at which such variables are inferred, when technical/practical limitations restrict our capabilities to local probing. Here we introduce the local quantum thermal susceptibility, a quantifier for the best achievable accuracy for temperature estimation via local measurements. Our method relies on basic concepts of quantum estimation theory, providing an operative strategy to address the local thermal response of arbitrary quantum systems at equilibrium. At low temperatures, it highlights the local distinguishability of the ground state from the excited sub-manifolds, thus providing a method to locate quantum phase transitions.
Test of mutually unbiased bases for six-dimensional photonic quantum systems
D'Ambrosio, Vincenzo; Cardano, Filippo; Karimi, Ebrahim; Nagali, Eleonora; Santamato, Enrico; Marrucci, Lorenzo; Sciarrino, Fabio
2013-01-01
In quantum information, complementarity of quantum mechanical observables plays a key role. The eigenstates of two complementary observables form a pair of mutually unbiased bases (MUBs). More generally, a set of MUBs consists of bases that are all pairwise unbiased. Except for specific dimensions of the Hilbert space, the maximal sets of MUBs are unknown in general. Even for a dimension as low as six, the identification of a maximal set of MUBs remains an open problem, although there is strong numerical evidence that no more than three simultaneous MUBs do exist. Here, by exploiting a newly developed holographic technique, we implement and test different sets of three MUBs for a single photon six-dimensional quantum state (a “qusix”), encoded exploiting polarization and orbital angular momentum of photons. A close agreement is observed between theory and experiments. Our results can find applications in state tomography, quantitative wave-particle duality, quantum key distribution. PMID:24067548
Test of mutually unbiased bases for six-dimensional photonic quantum systems.
D'Ambrosio, Vincenzo; Cardano, Filippo; Karimi, Ebrahim; Nagali, Eleonora; Santamato, Enrico; Marrucci, Lorenzo; Sciarrino, Fabio
2013-09-25
In quantum information, complementarity of quantum mechanical observables plays a key role. The eigenstates of two complementary observables form a pair of mutually unbiased bases (MUBs). More generally, a set of MUBs consists of bases that are all pairwise unbiased. Except for specific dimensions of the Hilbert space, the maximal sets of MUBs are unknown in general. Even for a dimension as low as six, the identification of a maximal set of MUBs remains an open problem, although there is strong numerical evidence that no more than three simultaneous MUBs do exist. Here, by exploiting a newly developed holographic technique, we implement and test different sets of three MUBs for a single photon six-dimensional quantum state (a "qusix"), encoded exploiting polarization and orbital angular momentum of photons. A close agreement is observed between theory and experiments. Our results can find applications in state tomography, quantitative wave-particle duality, quantum key distribution.
Quantum-statistical theory of microwave detection using superconducting tunnel junctions
NASA Astrophysics Data System (ADS)
Deviatov, I. A.; Kuzmin, L. S.; Likharev, K. K.; Migulin, V. V.; Zorin, A. B.
1986-09-01
A quantum-statistical theory of microwave and millimeter-wave detection using superconducting tunnel junctions is developed, with a rigorous account of quantum, thermal, and shot noise arising from fluctuation sources associated with the junctions, signal source, and matching circuits. The problem of the noise characterization in the quantum sensitivity range is considered and a general noise parameter Theta(N) is introduced. This parameter is shown to be an adequate figure of merit for most receivers of interest while some devices can require a more complex characterization. Analytical expressions and/or numerically calculated plots for Theta(N) are presented for the most promising detection modes including the parametric amplification, heterodyne mixing, and quadratic videodetection, using both the quasiparticle-current and the Cooper-pair-current nonlinearities. Ultimate minimum values of Theta(N) for each detection mode are compared and found to be in agreement with limitations imposed by the quantum-mechanical uncertainty principle.
Ligare, Martin
2016-05-01
Multiple-pulse NMR experiments are a powerful tool for the investigation of molecules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi-classical vector representations. In this paper I present a new way in which to interpret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identically to those of classical moments. Pictorial representations of these classically evolving states provide a way to calculate the time evolution of ensembles of weakly coupled spins without the full machinery of quantum mechanics, offering insight to anyone who understands precession of magnetic moments in magnetic fields.
A cross-disciplinary introduction to quantum annealing-based algorithms
NASA Astrophysics Data System (ADS)
Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco
2018-04-01
A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.
Tunneling and speedup in quantum optimization for permutation-symmetric problems
Muthukrishnan, Siddharth; Albash, Tameem; Lidar, Daniel A.
2016-07-21
Tunneling is often claimed to be the key mechanism underlying possible speedups in quantum optimization via quantum annealing (QA), especially for problems featuring a cost function with tall and thin barriers. We present and analyze several counterexamples from the class of perturbed Hamming weight optimization problems with qubit permutation symmetry. We first show that, for these problems, the adiabatic dynamics that make tunneling possible should be understood not in terms of the cost function but rather the semiclassical potential arising from the spin-coherent path-integral formalism. We then provide an example where the shape of the barrier in the final costmore » function is short and wide, which might suggest no quantum advantage for QA, yet where tunneling renders QA superior to simulated annealing in the adiabatic regime. However, the adiabatic dynamics turn out not be optimal. Instead, an evolution involving a sequence of diabatic transitions through many avoided-level crossings, involving no tunneling, is optimal and outperforms adiabatic QA. We show that this phenomenon of speedup by diabatic transitions is not unique to this example, and we provide an example where it provides an exponential speedup over adiabatic QA. In yet another twist, we show that a classical algorithm, spin-vector dynamics, is at least as efficient as diabatic QA. Lastly, in a different example with a convex cost function, the diabatic transitions result in a speedup relative to both adiabatic QA with tunneling and classical spin-vector dynamics.« less
Tunneling and speedup in quantum optimization for permutation-symmetric problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukrishnan, Siddharth; Albash, Tameem; Lidar, Daniel A.
Tunneling is often claimed to be the key mechanism underlying possible speedups in quantum optimization via quantum annealing (QA), especially for problems featuring a cost function with tall and thin barriers. We present and analyze several counterexamples from the class of perturbed Hamming weight optimization problems with qubit permutation symmetry. We first show that, for these problems, the adiabatic dynamics that make tunneling possible should be understood not in terms of the cost function but rather the semiclassical potential arising from the spin-coherent path-integral formalism. We then provide an example where the shape of the barrier in the final costmore » function is short and wide, which might suggest no quantum advantage for QA, yet where tunneling renders QA superior to simulated annealing in the adiabatic regime. However, the adiabatic dynamics turn out not be optimal. Instead, an evolution involving a sequence of diabatic transitions through many avoided-level crossings, involving no tunneling, is optimal and outperforms adiabatic QA. We show that this phenomenon of speedup by diabatic transitions is not unique to this example, and we provide an example where it provides an exponential speedup over adiabatic QA. In yet another twist, we show that a classical algorithm, spin-vector dynamics, is at least as efficient as diabatic QA. Lastly, in a different example with a convex cost function, the diabatic transitions result in a speedup relative to both adiabatic QA with tunneling and classical spin-vector dynamics.« less
Hudson, Phillip S; Woodcock, H Lee; Boresch, Stefan
2015-12-03
Carrying out free energy simulations (FES) using quantum mechanical (QM) Hamiltonians remains an attractive, albeit elusive goal. Renewed efforts in this area have focused on using "indirect" thermodynamic cycles to connect "low level" simulation results to "high level" free energies. The main obstacle to computing converged free energy results between molecular mechanical (MM) and QM (ΔA(MM→QM)), as recently demonstrated by us and others, is differences in the so-called "stiff" degrees of freedom (e.g., bond stretching) between the respective energy surfaces. Herein, we demonstrate that this problem can be efficiently circumvented using nonequilibrium work (NEW) techniques, i.e., Jarzynski's and Crooks' equations. Initial applications of computing ΔA(NEW)(MM→QM), for blocked amino acids alanine and serine as well as to generate butane's potentials of mean force via the indirect QM/MM FES method, showed marked improvement over traditional FES approaches.
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
NASA Astrophysics Data System (ADS)
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit QED. Another rapidly growing research field (although its origin can be traced to the beginning of the 1980s) is the quantum control of evolution at the microscopic level. These examples show that quantum non-stationary systems continue to be a living and very interesting part of quantum physics, uniting researchers from many different areas. Thus it is no mere chance that several special scientific meetings devoted to these topics have been organized recently. One was the international seminar 'Time-Dependent Phenomena in Quantum Mechanics' organized by Manfred Kleber and Tobias Kramer in 2007 at Blaubeuren, Germany. The proceedings of that event were published in 2008 as volume 99 of Journal of Physics: Conference Series. Another recent meeting was the International Workshop on Quantum Non-Stationary Systems, held on 19-23 October 2009 at the International Center for Condensed Matter Physics (ICCMP) in Brasilia, Brazil. It was organized and directed by Victor Dodonov (Institute of Physics, University of Brasilia, Brazil), Vladimir Man'ko (P N Lebedev Physical Institute, Moscow, Russia) and Salomon Mizrahi (Physics Department, Federal University of Sao Carlos, Brazil). This event was accompanied by a satellite workshop 'Quantum Dynamics in Optics and Matter', organized by Salomon Mizrahi and Victor Dodonov on 25-26 October 2009 at the Physics Department of the Federal University of Sao Carlos, Brazil. These two workshops, supported by the Brazilian federal agencies CAPES and CNPq and the local agencies FAP-DF and FAPESP, were attended by more than 120 participants from 16 countries. Almost 50 invited talks and 20 poster presentations covered a wide area of research in quantum mechanics, quantum optics and quantum information. This special issue of CAMOP/Physica Scripta contains contributions presented by some invited speakers and participants of the workshop in Brasilia. Although they do not cover all of the wide spectrum of problems related to quantum non-stationary systems, they nonetheless show some general trends. However, readers should remember that these comments represent the personal points of view of their authors. About a third of the comments are devoted to the evolution of quantum systems in the presence of dissipation or other sources of decoherence. This area, started by Landau in 1927, still contains many extremely interesting and unsolved problems. Here they are discussed in view of such different applications as the dynamics of quantum entanglement, cavity QED, optomechanics and the dynamical Casimir effect. Another group of comments deals with different (e.g. geometrical, tomographic, PT-symmetric) approaches to the dynamics of quantum systems, which have been developed in the past two decades. In particular, the problem of transition from quantum to classical description is considered and the inequalities generalizing the standard uncertainty relations are discussed in this connection. Three comments are devoted to the applications of nonclassical states, analytic representations and the algebraic techniques for resolving problems in quantum information and quantum statistical physics. The other contributions are related to different aspects of the dynamics of concrete physical systems, such as the wave-packet approach to the description of transport phenomena in mesoscopic systems, tunneling phenomena in low-dimensional semiconductor structures and resonance states of two-electron quantum dots. We thank all the authors and referees for their efforts in preparing this special issue. We hope that the comments in this collection will be useful for interested readers.
Theoretical motivation for gravitation experiments on ultra-low energy antiprotons and antihydrogen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nieto, M.M.
1995-12-31
It is known that the generally accepted theories of gravity and quantum mechanics are fundamentally incompatible. Thus, when one tries to combine these theories, one must beware of physical pitfalls. Modern theories of quantum gravity are trying to overcome these problems. Any ideas must confront the present agreement with general relativity, but yet be free to wonder about not understood phenomena, such as the dark matter problem. This all has led some {open_quotes}intrepid{close_quotes} theorists to consider a new gravitational regime, that of antimatter. Even more {open_quotes}daring{close_quotes} experimentalists are attempting, or considering attempting, the measurement of the gravitational force on antimatter,more » including low-energy antiprotons and, perhaps most enticing, antihydrogen.« less
Quantization of Non-Lagrangian Systems
NASA Astrophysics Data System (ADS)
Kochan, Denis
A novel method for quantization of non-Lagrangian (open) systems is proposed. It is argued that the essential object, which provides both classical and quantum evolution, is a certain canonical two-form defined in extended velocity space. In this setting classical dynamics is recovered from the stringy-type variational principle, which employs umbilical surfaces instead of histories of the system. Quantization is then accomplished in accordance with the introduced variational principle. The path integral for the transition probability amplitude (propagator) is rearranged to a surface functional integral. In the standard case of closed (Lagrangian) systems the presented method reduces to the standard Feynman's approach. The inverse problem of the calculus of variation, the problem of quantization ambiguity and the quantum mechanics in the presence of friction are analyzed in detail.
Computer Series, 86. Bits and Pieces, 35.
ERIC Educational Resources Information Center
Moore, John W., Ed.
1987-01-01
Describes eight applications of the use of computers in teaching chemistry. Includes discussions of audio frequency measurements of heat capacity ratios, quantum mechanics, ab initio calculations, problem solving using spreadsheets, simplex optimization, faradaic impedance diagrams, and the recording and tabulation of student laboratory data. (TW)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pederson, Mark R., E-mail: mark.pederson@science.doe.gov
2015-04-14
It is tacitly accepted that, for practical basis sets consisting of N functions, solution of the two-electron Coulomb problem in quantum mechanics requires storage of O(N{sup 4}) integrals in the small N limit. For localized functions, in the large N limit, or for planewaves, due to closure, the storage can be reduced to O(N{sup 2}) integrals. Here, it is shown that the storage can be further reduced to O(N{sup 2/3}) for separable basis functions. A practical algorithm, that uses standard one-dimensional Gaussian-quadrature sums, is demonstrated. The resulting algorithm allows for the simultaneous storage, or fast reconstruction, of any two-electron Coulombmore » integral required for a many-electron calculation on processors with limited memory and disk space. For example, for calculations involving a basis of 9171 planewaves, the memory required to effectively store all Coulomb integrals decreases from 2.8 Gbytes to less than 2.4 Mbytes.« less
Pederson, Mark R
2015-04-14
It is tacitly accepted that, for practical basis sets consisting of N functions, solution of the two-electron Coulomb problem in quantum mechanics requires storage of O(N(4)) integrals in the small N limit. For localized functions, in the large N limit, or for planewaves, due to closure, the storage can be reduced to O(N(2)) integrals. Here, it is shown that the storage can be further reduced to O(N(2/3)) for separable basis functions. A practical algorithm, that uses standard one-dimensional Gaussian-quadrature sums, is demonstrated. The resulting algorithm allows for the simultaneous storage, or fast reconstruction, of any two-electron Coulomb integral required for a many-electron calculation on processors with limited memory and disk space. For example, for calculations involving a basis of 9171 planewaves, the memory required to effectively store all Coulomb integrals decreases from 2.8 Gbytes to less than 2.4 Mbytes.
Private States, Quantum Data Hiding, and the Swapping of Perfect Secrecy.
Christandl, Matthias; Ferrara, Roberto
2017-12-01
An important contribution to the understanding of quantum key distribution has been the discovery of entangled states from which secret bits, but no maximally entangled states, can be extracted [Horodecki et al., Phys. Rev. Lett. 94, 200501 (2005)PRLTAO0031-900710.1103/PhysRevLett.94.200501]. The construction of those states was based on an intuition that the quantum mechanical phenomena of data hiding and privacy might be related. In this Letter we firmly connect these two phenomena and highlight three aspects of this result. First, we simplify the definition of the secret key rate. Second, we give a formula for the one-way distillable entanglement of certain private states. Third, we consider the problem of extending the distance of quantum key distribution with help of intermediate stations, a setting called the quantum key repeater. We show that for protocols that first distill private states, it is essentially optimal to use the standard quantum repeater protocol based on entanglement distillation and entanglement swapping.
Loop quantum cosmology and singularities.
Struyve, Ward
2017-08-15
Loop quantum gravity is believed to eliminate singularities such as the big bang and big crunch singularity. This belief is based on studies of so-called loop quantum cosmology which concerns symmetry-reduced models of quantum gravity. In this paper, the problem of singularities is analysed in the context of the Bohmian formulation of loop quantum cosmology. In this formulation there is an actual metric in addition to the wave function, which evolves stochastically (rather than deterministically as the case of the particle evolution in non-relativistic Bohmian mechanics). Thus a singularity occurs whenever this actual metric is singular. It is shown that in the loop quantum cosmology for a homogeneous and isotropic Friedmann-Lemaître-Robertson-Walker space-time with arbitrary constant spatial curvature and cosmological constant, coupled to a massless homogeneous scalar field, a big bang or big crunch singularity is never obtained. This should be contrasted with the fact that in the Bohmian formulation of the Wheeler-DeWitt theory singularities may exist.
Scalar field quantum cosmology: A Schrödinger picture
NASA Astrophysics Data System (ADS)
Vakili, Babak
2012-11-01
We study the classical and quantum models of a scalar field Friedmann-Robertson-Walker (FRW) cosmology with an eye to the issue of time problem in quantum cosmology. We introduce a canonical transformation on the scalar field sector of the action such that the momentum conjugate to the new canonical variable appears linearly in the transformed Hamiltonian. Using this canonical transformation, we show that, it may lead to the identification of a time parameter for the corresponding dynamical system. In the cases of flat, closed and open FRW universes the classical cosmological solutions are obtained in terms of the introduced time parameter. Moreover, this formalism gives rise to a Schrödinger-Wheeler-DeWitt equation for the quantum-mechanical description of the model under consideration, the eigenfunctions of which can be used to construct the wave function of the universe. We use the resulting wave functions in order to investigate the possible corrections to the classical cosmologies due to quantum effects by means of the many-worlds and ontological interpretation of quantum cosmology.
Private States, Quantum Data Hiding, and the Swapping of Perfect Secrecy
NASA Astrophysics Data System (ADS)
Christandl, Matthias; Ferrara, Roberto
2017-12-01
An important contribution to the understanding of quantum key distribution has been the discovery of entangled states from which secret bits, but no maximally entangled states, can be extracted [Horodecki et al., Phys. Rev. Lett. 94, 200501 (2005), 10.1103/PhysRevLett.94.200501]. The construction of those states was based on an intuition that the quantum mechanical phenomena of data hiding and privacy might be related. In this Letter we firmly connect these two phenomena and highlight three aspects of this result. First, we simplify the definition of the secret key rate. Second, we give a formula for the one-way distillable entanglement of certain private states. Third, we consider the problem of extending the distance of quantum key distribution with help of intermediate stations, a setting called the quantum key repeater. We show that for protocols that first distill private states, it is essentially optimal to use the standard quantum repeater protocol based on entanglement distillation and entanglement swapping.
Exploiting Quantum Resonance to Solve Combinatorial Problems
NASA Technical Reports Server (NTRS)
Zak, Michail; Fijany, Amir
2006-01-01
Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.
Quantum and classical dissipation of charged particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.
2013-08-15
A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle.more » •Classical and quantum dynamics of a damped electric charge.« less
Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?
Brezinski, Mark E; Rupnick, Maria
2016-01-01
Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems. PMID:29200743
Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?
Brezinski, Mark E; Rupnick, Maria
2014-07-01
Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems.
Do we really understand quantum mechanics? Strange correlations, paradoxes, and theorems
NASA Astrophysics Data System (ADS)
Laloë, F.
2001-06-01
This article presents a general discussion of several aspects of our present understanding of quantum mechanics. The emphasis is put on the very special correlations that this theory makes possible: They are forbidden by very general arguments based on realism and local causality. In fact, these correlations are completely impossible in any circumstance, except for very special situations designed by physicists especially to observe these purely quantum effects. Another general point that is emphasized is the necessity for the theory to predict the emergence of a single result in a single realization of an experiment. For this purpose, orthodox quantum mechanics introduces a special postulate: the reduction of the state vector, which comes in addition to the Schrödinger evolution postulate. Nevertheless, the presence in parallel of two evolution processes of the same object (the state vector) may be a potential source for conflicts; various attitudes that are possible to avoid this problem are discussed in this text. After a brief historical introduction, recalling how the very special status of the state vector has emerged in quantum mechanics, various conceptual difficulties are introduced and discussed. The Einstein-Podolsky-Rosen (EPR) theorem is presented with the help of a botanical parable, in a way that emphasizes how deeply the EPR reasoning is rooted into what is often called "scientific method." In another section the Greenberger-Horne-Zeilinger argument, the Hardy impossibilities, as well as the Bell-Kochen-Specker theorem are introduced in simple terms. The final two sections attempt to give a summary of the present situation: One section discusses nonlocality and entanglement as we see it presently, with brief mention of recent experiments; the last section contains a (nonexhaustive) list of various attitudes that are found among physicists, and that are helpful to alleviate the conceptual difficulties of quantum mechanics.
Quantum vertex model for reversible classical computing.
Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C
2017-05-12
Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.
Quantum vertex model for reversible classical computing
NASA Astrophysics Data System (ADS)
Chamon, C.; Mucciolo, E. R.; Ruckenstein, A. E.; Yang, Z.-C.
2017-05-01
Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without `learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.
The Problems in Experimental Foundation of Causal Mechanics
NASA Astrophysics Data System (ADS)
Parkhomov, A. G.
Causal mechanics developed by N.A.Kozyrev (1958,1968) and based on the concept of active properties of time has been a subject for emotional scientific discussions for four decades running. An unusual combination of the attributes "emotional" and "scientific" refers not only to the fact that N.A.Kozyrev's theory provides insight into a number of "dark" effects and phenomena of science such as quantum nonlocality, violation of parity, asymmetry of the right-hand and l-hand in biological objects. The most important thing is that the theory infers the everyday correlation between all objects and processes in the universe — even the most widely spaced ones. What is most appealing is that the universal correlation results from a few simple postulates that are consistent with common sense. Equally important is that causal mechanics is consistent with both classic and quantum mechanics…
Information transfer during the universal gravitational decoherence
NASA Astrophysics Data System (ADS)
Korbicz, J. K.; Tuziemski, J.
2017-12-01
Recently Pikovski et al. (Nat Phys 11:668, 2015) have proposed in an intriguing universal decoherence mechanism, suggesting that gravitation may play a conceptually important role in the quantum-to-classical transition, albeit vanishingly small in everyday situations. Here we analyze information transfer induced by this mechanism. We show that generically on short time-scales, gravitational decoherence leads to a redundant information encoding, which results in a form of objectivization of the center-of-mass position in the gravitational field. We derive the relevant time-scales of this process, given in terms of energy dispersion and quantum Fisher information. As an example we study thermal coherent states and show certain robustness of the effect with the temperature. Finally, we draw an analogy between our objectivization mechanism and the fundamental problem of point individuation in General Relativity as emphasized by the Einstein's Hole argument.
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the elements of quantum (wave) mechanics to some special problems in the field of macroscopic fluid dynamics is discussed. Emphasis is placed on the flow of a viscous, incompressible fluid around a circular cylinder. The following subjects are considered: (1) the flow of a nonviscous fluid around a circular cylinder, (2) the restrictions imposed the stream function by the number of dimensions of space, and (3) the flow past three dimensional bodies in a viscous fluid, particularly past a circular cylinder in the symmetrical case.
Efficient classical simulation of the Deutsch-Jozsa and Simon's algorithms
NASA Astrophysics Data System (ADS)
Johansson, Niklas; Larsson, Jan-Åke
2017-09-01
A long-standing aim of quantum information research is to understand what gives quantum computers their advantage. This requires separating problems that need genuinely quantum resources from those for which classical resources are enough. Two examples of quantum speed-up are the Deutsch-Jozsa and Simon's problem, both efficiently solvable on a quantum Turing machine, and both believed to lack efficient classical solutions. Here we present a framework that can simulate both quantum algorithms efficiently, solving the Deutsch-Jozsa problem with probability 1 using only one oracle query, and Simon's problem using linearly many oracle queries, just as expected of an ideal quantum computer. The presented simulation framework is in turn efficiently simulatable in a classical probabilistic Turing machine. This shows that the Deutsch-Jozsa and Simon's problem do not require any genuinely quantum resources, and that the quantum algorithms show no speed-up when compared with their corresponding classical simulation. Finally, this gives insight into what properties are needed in the two algorithms and calls for further study of oracle separation between quantum and classical computation.
Topological defects in alternative theories to cosmic inflation and string cosmology
NASA Astrophysics Data System (ADS)
Alexander, Stephon H. S.
The physics of the Early Universe is described in terms of the inflationary paradigm, which is based on a marriage between Einstein's general theory of relativity minimally coupled to quantum field theory. Inflation was posed to solve some of the outstanding problems of the Standard Big Bang Cosmology (SBB) such as the horizon, formation of structure and monopole problems. Despite its observational and theoretical successes, inflation is plagued with fine tuning and initial singularity problems. On the other hand, superstring/M theory, a theory of quantum gravity, possesses symmetries which naturally avoid space-time singularities. This thesis investigates alternative theories to cosmic inflation for solving the initial singularity, horizon and monopole problems, making use of topological defects. It was proposed by Dvali, Liu and Vaschaspati that the monopole problem can be solved without inflation if domain walls "sweep" up the monopoles in the early universe, thus reducing their number density significantly. Necessary for this mechanism to work is the presence of an attractive force between the monopole and the domain wall as well as a channel for the monopole's unwinding. We show numerically and analytically in two field theory models that for global defects the attraction is a universal result but the unwinding is model specific. The second part of this thesis investigates a string/M theory inspired model for solving the horizon problem. It was proposed by Moffat, Albrecht and Magueijo that the horizon problem is solved with a "phase transition" associated with a varying speed of light before the surface of last scattering. We provide a string/M theory mechanism based on assuming that our space-time is a D-3 brane probing a bulk supergravity black hole bulk background. This mechanism provides the necessary time variation of the velocity of light to solve the horizon problem. We suggest a mechanism which stablilizes the speed of light on the D-3 brane. We finally address the cosmological initial singularity problem using the target space duality inherent in string/M theory. It was suggested by Brandenberger and Vafa that superstring theory can solve the singularity problem and in addition explain why only three spatial dimensions can become large. We show that under specific conditions this mechanism still persists when including the effects of D-branes.
Wronskian Method for Bound States
ERIC Educational Resources Information Center
Fernandez, Francisco M.
2011-01-01
We propose a simple and straightforward method based on Wronskians for the calculation of bound-state energies and wavefunctions of one-dimensional quantum-mechanical problems. We explicitly discuss the asymptotic behaviour of the wavefunction and show that the allowed energies make the divergent part vanish. As illustrative examples we consider…
A case study in programming a quantum annealer for hard operational planning problems
NASA Astrophysics Data System (ADS)
Rieffel, Eleanor G.; Venturelli, Davide; O'Gorman, Bryan; Do, Minh B.; Prystay, Elicia M.; Smelyanskiy, Vadim N.
2015-01-01
We report on a case study in programming an early quantum annealer to attack optimization problems related to operational planning. While a number of studies have looked at the performance of quantum annealers on problems native to their architecture, and others have examined performance of select problems stemming from an application area, ours is one of the first studies of a quantum annealer's performance on parametrized families of hard problems from a practical domain. We explore two different general mappings of planning problems to quadratic unconstrained binary optimization (QUBO) problems, and apply them to two parametrized families of planning problems, navigation-type and scheduling-type. We also examine two more compact, but problem-type specific, mappings to QUBO, one for the navigation-type planning problems and one for the scheduling-type planning problems. We study embedding properties and parameter setting and examine their effect on the efficiency with which the quantum annealer solves these problems. From these results, we derive insights useful for the programming and design of future quantum annealers: problem choice, the mapping used, the properties of the embedding, and the annealing profile all matter, each significantly affecting the performance.
NASA Astrophysics Data System (ADS)
Suess, Daniel; Rudnicki, Łukasz; maciel, Thiago O.; Gross, David
2017-09-01
The outcomes of quantum mechanical measurements are inherently random. It is therefore necessary to develop stringent methods for quantifying the degree of statistical uncertainty about the results of quantum experiments. For the particularly relevant task of quantum state tomography, it has been shown that a significant reduction in uncertainty can be achieved by taking the positivity of quantum states into account. However—the large number of partial results and heuristics notwithstanding—no efficient general algorithm is known that produces an optimal uncertainty region from experimental data, while making use of the prior constraint of positivity. Here, we provide a precise formulation of this problem and show that the general case is NP-hard. Our result leaves room for the existence of efficient approximate solutions, and therefore does not in itself imply that the practical task of quantum uncertainty quantification is intractable. However, it does show that there exists a non-trivial trade-off between optimality and computational efficiency for error regions. We prove two versions of the result: one for frequentist and one for Bayesian statistics.
Quantum Heterogeneous Computing for Satellite Positioning Optimization
NASA Astrophysics Data System (ADS)
Bass, G.; Kumar, V.; Dulny, J., III
2016-12-01
Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.
Adiabatic Quantum Computation with Neutral Cesium
NASA Astrophysics Data System (ADS)
Hankin, Aaron; Parazzoli, L.; Chou, Chin-Wen; Jau, Yuan-Yu; Burns, George; Young, Amber; Kemme, Shanalyn; Ferdinand, Andrew; Biedermann, Grant; Landahl, Andrew; Ivan H. Deutsch Collaboration; Mark Saffman Collaboration
2013-05-01
We are implementing a new platform for adiabatic quantum computation (AQC) based on trapped neutral atoms whose coupling is mediated by the dipole-dipole interactions of Rydberg states. Ground state cesium atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism, thereby providing the requisite entangling interactions. As a benchmark we study a Quadratic Unconstrained Binary Optimization (QUBO) problem whose solution is found in the ground state spin configuration of an Ising-like model. University of New Mexico: Ivan H. Deutsch, Tyler Keating, Krittika Goyal.
NASA Astrophysics Data System (ADS)
Stephanik, Brian Michael
This dissertation describes the results of two related investigations into introductory student understanding of ideas from classical physics that are key elements of quantum mechanics. One investigation probes the extent to which students are able to interpret and apply potential energy diagrams (i.e., graphs of potential energy versus position). The other probes the extent to which students are able to reason classically about probability and spatial probability density. The results of these investigations revealed significant conceptual and reasoning difficulties that students encounter with these topics. The findings guided the design of instructional materials to address the major problems. Results from post-instructional assessments are presented that illustrate the impact of the curricula on student learning.
Using quantum erasure to exorcize Maxwell's demon: I. Concepts and context
NASA Astrophysics Data System (ADS)
Scully, Marlan O.; Rostovtsev, Yuri; Sariyanni, Zoe-Elizabeth; Suhail Zubairy, M.
2005-10-01
Szilard [L. Szilard, Zeitschrift für Physik, 53 (1929) 840] made a decisive step toward solving the Maxwell demon problem by introducing and analyzing the single atom heat engine. Bennett [Sci. Am. 255 (1987) 107] completed the solution by pointing out that there must be an entropy, ΔS=kln2, generated as the result of information erased on each cycle. Nevertheless, others have disagreed. For example, philosophers such as Popper “have found the literature surrounding Maxwell's demon deeply problematic.” We propose and analyze a new kind of single atom quantum heat engine which allows us to resolve the Maxwell demon paradox simply, and without invoking the notions of information or entropy. The energy source of the present quantum engine [Scully, Phys. Rev. Lett. 87 (2001) 22601] is a Stern-Gerlach apparatus acting as a demonesque heat sorter. An isothermal compressor acts as the entropy sink. In order to complete a thermodynamic cycle, an energy of ΔW=kTln2 must be expended. This energy is essentially a “reset” or “eraser” energy. Thus Bennett's entropy ΔS=ΔW/T emerges as a simple consequence of the quantum thermodynamics of our heat engine. It would seem that quantum mechanics contains the kernel of information entropy at its very core. That is the concept of information erasure as it appears in quantum mechanics [Scully and Drühl, Phys. Rev. A 25 (1982) 2208] and the present quantum heat engine have a deep common origin.
A quantum annealing approach for fault detection and diagnosis of graph-based systems
NASA Astrophysics Data System (ADS)
Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.
2015-02-01
Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.
Undergraduate quantum mechanics: lost opportunities for engaging motivated students?
NASA Astrophysics Data System (ADS)
Johansson, Anders
2018-03-01
Quantum mechanics is widely recognised as an important and difficult subject, and many studies have been published focusing on students’ conceptual difficulties. However, the sociocultural aspects of studying such an emblematic subject have not been researched to any large extent. This study explores students’ experiences of undergraduate quantum mechanics using qualitative analysis of semi-structured interview data. The results inform discussions about the teaching of quantum mechanics by adding a sociocultural dimension. Students pictured quantum mechanics as an intriguing subject that inspired them to study physics. The study environment they encountered when taking their first quantum mechanics course was however not always as inspiring as expected. Quantum mechanics instruction has commonly focused on the mathematical framework of quantum mechanics, and this kind of teaching was also what the interviewees had experienced. Two ways of handling the encounter with a traditional quantum mechanics course were identified in the interviews; either students accept the practice of studying quantum mechanics in a mathematical, exercise-centred way or they distance themselves from these practices and the subject. The students who responded by distancing themselves experienced a crisis and disappointment, where their experiences did not match the way they imagined themselves engaging with quantum mechanics. The implications of these findings are discussed in relation to efforts to reform the teaching of undergraduate quantum mechanics.
NASA Astrophysics Data System (ADS)
Benatti, Fabio; Floreanini, Roberto; Scholes, Greg
2012-08-01
The last years have witnessed fast growing developments in the use of quantum mechanics in technology-oriented and information-related fields, especially in metrology, in the developments of nano-devices and in understanding highly efficient transport processes. The consequent theoretical and experimental outcomes are now driving new experimental tests of quantum mechanical effects with unprecedented accuracies that carry with themselves the concrete possibility of novel technological spin-offs. Indeed, the manifold advances in quantum optics, atom and ion manipulations, spintronics and nano-technologies are allowing direct experimental verifications of new ideas and their applications to a large variety of fields. All of these activities have revitalized interest in quantum mechanics and created a unique framework in which theoretical and experimental physics have become fruitfully tangled with information theory, computer, material and life sciences. This special issue aims to provide an overview of what is currently being pursued in the field and of what kind of theoretical reference frame is being developed together with the experimental and theoretical results. It consists of three sections: 1. Memory effects in quantum dynamics and quantum channels 2. Driven open quantum systems 3. Experiments concerning quantum coherence and/or decoherence The first two sections are theoretical and concerned with open quantum systems. In all of the above mentioned topics, the presence of an external environment needs to be taken into account, possibly in the presence of external controls and/or forcing, leading to driven open quantum systems. The open system paradigm has proven to be central in the analysis and understanding of many basic issues of quantum mechanics, such as the measurement problem, quantum communication and coherence, as well as for an ever growing number of applications. The theory is, however, well-settled only when the so-called Markovian or memoryless, approximation applies. When strong coupling or long environmental relaxation times make memory effects important for a realistic description of the dynamics, new strategies are asked for and the assessment of the general structure of non-Markovian dynamical equations for realistic systems is a crucial issue. The impact of quantum phenomena such as coherence and entanglement in biology has recently started to be considered as a possible source of the high efficiency of certain biological mechanisms, including e.g. light harvesting in photosynthesis and enzyme catalysis. In this effort, the relatively unknown territory of driven open quantum systems is being explored from various directions, with special attention to the creation and stability of coherent structures away from thermal equilibrium. These investigations are likely to advance our understanding of the scope and role of quantum mechanics in living systems; at the same time they provide new ideas for the developments of next generations of devices implementing highly efficient energy harvesting and conversion. The third section concerns experimental studies that are currently being pursued. Multidimensional nonlinear spectroscopy, in particular, has played an important role in enabling experimental detection of the signatures of coherence. Recent remarkable results suggest that coherence—both electronic and vibrational—survive for substantial timescales even in complex biological systems. The papers reported in this issue describe work at the forefront of this field, where researchers are seeking a detailed understanding of the experimental signatures of coherence and its implications for light-induced processes in biology and chemistry.
Planck constant as spectral parameter in integrable systems and KZB equations
NASA Astrophysics Data System (ADS)
Levin, A.; Olshanetsky, M.; Zotov, A.
2014-10-01
We construct special rational gl N Knizhnik-Zamolodchikov-Bernard (KZB) equations with Ñ punctures by deformation of the corresponding quantum gl N rational R-matrix. They have two parameters. The limit of the first one brings the model to the ordinary rational KZ equation. Another one is τ. At the level of classical mechanics the deformation parameter τ allows to extend the previously obtained modified Gaudin models to the modified Schlesinger systems. Next, we notice that the identities underlying generic (elliptic) KZB equations follow from some additional relations for the properly normalized R-matrices. The relations are noncommutative analogues of identities for (scalar) elliptic functions. The simplest one is the unitarity condition. The quadratic (in R matrices) relations are generated by noncommutative Fay identities. In particular, one can derive the quantum Yang-Baxter equations from the Fay identities. The cubic relations provide identities for the KZB equations as well as quadratic relations for the classical r-matrices which can be treated as halves of the classical Yang-Baxter equation. At last we discuss the R-matrix valued linear problems which provide gl Ñ CM models and Painlevé equations via the above mentioned identities. The role of the spectral parameter plays the Planck constant of the quantum R-matrix. When the quantum gl N R-matrix is scalar ( N = 1) the linear problem reproduces the Krichever's ansatz for the Lax matrices with spectral parameter for the gl Ñ CM models. The linear problems for the quantum CM models generalize the KZ equations in the same way as the Lax pairs with spectral parameter generalize those without it.
Wang, Xingmei; Liu, Shu; Liu, Zhipeng
2017-01-01
This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method.
Liu, Zhipeng
2017-01-01
This paper proposes a combination of non-local spatial information and quantum-inspired shuffled frog leaping algorithm to detect underwater objects in sonar images. Specifically, for the first time, the problem of inappropriate filtering degree parameter which commonly occurs in non-local spatial information and seriously affects the denoising performance in sonar images, was solved with the method utilizing a novel filtering degree parameter. Then, a quantum-inspired shuffled frog leaping algorithm based on new search mechanism (QSFLA-NSM) is proposed to precisely and quickly detect sonar images. Each frog individual is directly encoded by real numbers, which can greatly simplify the evolution process of the quantum-inspired shuffled frog leaping algorithm (QSFLA). Meanwhile, a fitness function combining intra-class difference with inter-class difference is adopted to evaluate frog positions more accurately. On this basis, recurring to an analysis of the quantum-behaved particle swarm optimization (QPSO) and the shuffled frog leaping algorithm (SFLA), a new search mechanism is developed to improve the searching ability and detection accuracy. At the same time, the time complexity is further reduced. Finally, the results of comparative experiments using the original sonar images, the UCI data sets and the benchmark functions demonstrate the effectiveness and adaptability of the proposed method. PMID:28542266
Quantum cryptography using coherent states: Randomized encryption and key generation
NASA Astrophysics Data System (ADS)
Corndorf, Eric
With the advent of the global optical-telecommunications infrastructure, an increasing number of individuals, companies, and agencies communicate information with one another over public networks or physically-insecure private networks. While the majority of the traffic flowing through these networks requires little or no assurance of secrecy, the same cannot be said for certain communications between banks, between government agencies, within the military, and between corporations. In these arenas, the need to specify some level of secrecy in communications is a high priority. While the current approaches to securing sensitive information (namely the public-key-cryptography infrastructure and deterministic private-key ciphers like AES and 3DES) seem to be cryptographically strong based on empirical evidence, there exist no mathematical proofs of secrecy for any widely deployed cryptosystem. As an example, the ubiquitous public-key cryptosystems infer all of their secrecy from the assumption that factoring of the product of two large primes is necessarily time consuming---something which has not, and perhaps cannot, be proven. Since the 1980s, the possibility of using quantum-mechanical features of light as a physical mechanism for satisfying particular cryptographic objectives has been explored. This research has been fueled by the hopes that cryptosystems based on quantum systems may provide provable levels of secrecy which are at least as valid as quantum mechanics itself. Unfortunately, the most widely considered quantum-cryptographic protocols (BB84 and the Ekert protocol) have serious implementation problems. Specifically, they require quantum-mechanical states which are not readily available, and they rely on unproven relations between intrusion-level detection and the information available to an attacker. As a result, the secrecy level provided by these experimental implementations is entirely unspecified. In an effort to provably satisfy the cryptographic objectives of key generation and direct data-encryption, a new quantum cryptographic principle is demonstrated wherein keyed coherent-state signal sets are employed. Taking advantage of the fundamental and irreducible quantum-measurement noise of coherent states, these schemes do not require the users to measure the influence of an attacker. Experimental key-generation and data encryption schemes based on these techniques, which are compatible with today's WDM fiber-optic telecommunications infrastructure, are implemented and analyzed.
Upper-Division Student Difficulties with the Dirac Delta Function
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Pollock, Steven J.
2015-01-01
The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them.…
Quantum decoherence and interlevel relations
NASA Astrophysics Data System (ADS)
Crull, Elise M.
Quantum decoherence is a dynamical process whereby a system's phase relations become delocalized due to interaction and subsequent entanglement with its environment. This delocalization, or decoherence, forces the quantum system into a state that is apparently classical (or apparently an eigenstate) by prodigiously suppressing features that typically give rise to so-called quantum behavior. Thus it has been frequently proposed by physicists and philosophers alike that decoherence explains the dynamical transition from quantum behavior to classical behavior. Statements like this assume the existence of distinct realms, however, and the present thesis is an exploration of the metaphysical consequences of quantum decoherence motivated by the question of the quantum-to-classical transition and interlevel relations: if there are in-principle "classical" and "quantum" levels, what are the relations between them? And if there are no such levels, what follows? Importantly, the following philosophical investigations are carried out by intentionally leaving aside the measurement problem and concerns about particular interpretations of quantum mechanics. Good philosophical work, it is argued, can be done without adopting a specific interpretational framework and without recourse to the measurement problem. After introducing the physics of decoherence and exploring the four canonical models applied to system-environment interactions, it is argued that, ontologically speaking, there exist no levels. This claim---called the "nontological thesis"---exposes as ill-posed questions regarding the transition from the quantum regime to the classical regime and reveals the inappropriateness of interlevel relations (like reduction, supervenience and emergence) operating within metaphysical frameworks. The nontological thesis has further important consequences regarding intralevel relations: not only are there no meaningful ways to carve the world into levels, but there are no meaningful ways to carve the world into parts and wholes either. These conclusions, supported by quantum decoherence and the empirical success of its models, drastically alter the philosophical terrain---not just in physics or in the philosophy of physics, but in traditional metaphysics as well.
Protein folding: the optically induced electronic excitations model
NASA Astrophysics Data System (ADS)
Jeknić-Dugić, J.
2009-07-01
The large-molecules conformational transitions problem (the 'protein folding problem') is an open issue of vivid current science research work of fundamental importance for a number of modern science disciplines as well as for nanotechnology. Here, we elaborate the recently proposed quantum-decoherence-based approach to the issue. First, we emphasize a need for detecting the elementary quantum mechanical processes (whose combinations may give a proper description of the realistic experimental situations) and then we design such a model. As distinct from the standard approach that deals with the conformation system, we investigate the optically induced transitions in the molecule electrons system that, in effect, may give rise to a conformation change in the molecule. Our conclusion is that such a model may describe the comparatively slow conformational transitions.
Secure quantum signatures: a practical quantum technology (Conference Presentation)
NASA Astrophysics Data System (ADS)
Andersson, Erika
2016-10-01
Modern cryptography encompasses much more than encryption of secret messages. Signature schemes are widely used to guarantee that messages cannot be forged or tampered with, for example in e-mail, software updates and electronic commerce. Messages are also transferrable, which distinguishes digital signatures from message authentication. Transferability means that messages can be forwarded; in other words, that a sender is unlikely to be able to make one recipient accept a message which is subsequently rejected by another recipient if the message is forwarded. Similar to public-key encryption, the security of commonly used signature schemes relies on the assumed computational difficulty of problems such as finding discrete logarithms or factoring large primes. With quantum computers, such assumptions would no longer be valid. Partly for this reason, it is desirable to develop signature schemes with unconditional or information-theoretic security. Quantum signature schemes are one possible solution. Similar to quantum key distribution (QKD), their unconditional security relies only on the laws of quantum mechanics. Quantum signatures can be realized with the same system components as QKD, but are so far less investigated. This talk aims to provide an introduction to quantum signatures and to review theoretical and experimental progress so far.
The application of quantum mechanics in structure-based drug design.
Mucs, Daniel; Bryce, Richard A
2013-03-01
Computational chemistry has become an established and valuable component in structure-based drug design. However the chemical complexity of many ligands and active sites challenges the accuracy of the empirical potentials commonly used to describe these systems. Consequently, there is a growing interest in utilizing electronic structure methods for addressing problems in protein-ligand recognition. In this review, the authors discuss recent progress in the development and application of quantum chemical approaches to modeling protein-ligand interactions. The authors specifically consider the development of quantum mechanics (QM) approaches for studying large molecular systems pertinent to biology, focusing on protein-ligand docking, protein-ligand binding affinities and ligand strain on binding. Although computation of binding energies remains a challenging and evolving area, current QM methods can underpin improved docking approaches and offer detailed insights into ligand strain and into the nature and relative strengths of complex active site interactions. The authors envisage that QM will become an increasingly routine and valued tool of the computational medicinal chemist.
Cosmological implications of quantum mechanics parametrization of dark energy
NASA Astrophysics Data System (ADS)
Szydłowski, Marek; Stachowski, Aleksander; Urbanowski, Krzysztof
2017-08-01
We consider the cosmology with the running dark energy. The parametrization of dark energy is derived from the quantum process of transition from the false vacuum state to the true vacuum state. This model is the generalized interacting CDM model. We consider the energy density of dark energy parametrization, which is given by the Breit-Wigner energy distribution function. The idea of the process of the quantum mechanical decay of unstable states was formulated by Krauss and Dent. We used this idea in our considerations. In this model is an energy transfer in the dark sector. In this evolutional scenario the universe starts from the false vacuum state and goes to the true vacuum state of the present day universe. The intermediate regime during the passage from false to true vacuum states takes place. In this way the cosmological constant problem can be tried to solve. We estimate the cosmological parameters for this model. This model is in a good agreement with the astronomical data and is practically indistinguishable from CDM model.
Designing quantum information processing via structural physical approximation.
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Designing quantum information processing via structural physical approximation
NASA Astrophysics Data System (ADS)
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Quantum Speedup for Active Learning Agents
NASA Astrophysics Data System (ADS)
Paparo, Giuseppe Davide; Dunjko, Vedran; Makmal, Adi; Martin-Delgado, Miguel Angel; Briegel, Hans J.
2014-07-01
Can quantum mechanics help us build intelligent learning agents? A defining signature of intelligent behavior is the capacity to learn from experience. However, a major bottleneck for agents to learn in real-life situations is the size and complexity of the corresponding task environment. Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation. If the environment is impatient, allowing only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all. Here, we show that quantum physics can help and provide a quadratic speedup for active learning as a genuine problem of artificial intelligence. This result will be particularly relevant for applications involving complex task environments.
Large-scale semidefinite programming for many-electron quantum mechanics.
Mazziotti, David A
2011-02-25
The energy of a many-electron quantum system can be approximated by a constrained optimization of the two-electron reduced density matrix (2-RDM) that is solvable in polynomial time by semidefinite programming (SDP). Here we develop a SDP method for computing strongly correlated 2-RDMs that is 10-20 times faster than previous methods [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)]. We illustrate with (i) the dissociation of N(2) and (ii) the metal-to-insulator transition of H(50). For H(50) the SDP problem has 9.4×10(6) variables. This advance also expands the feasibility of large-scale applications in quantum information, control, statistics, and economics. © 2011 American Physical Society
Large-Scale Semidefinite Programming for Many-Electron Quantum Mechanics
NASA Astrophysics Data System (ADS)
Mazziotti, David A.
2011-02-01
The energy of a many-electron quantum system can be approximated by a constrained optimization of the two-electron reduced density matrix (2-RDM) that is solvable in polynomial time by semidefinite programming (SDP). Here we develop a SDP method for computing strongly correlated 2-RDMs that is 10-20 times faster than previous methods [D. A. Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)PRLTAO0031-900710.1103/PhysRevLett.93.213001]. We illustrate with (i) the dissociation of N2 and (ii) the metal-to-insulator transition of H50. For H50 the SDP problem has 9.4×106 variables. This advance also expands the feasibility of large-scale applications in quantum information, control, statistics, and economics.
Using quantum chemistry muscle to flex massive systems: How to respond to something perturbing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertoni, Colleen
Computational chemistry uses the theoretical advances of quantum mechanics and the algorithmic and hardware advances of computer science to give insight into chemical problems. It is currently possible to do highly accurate quantum chemistry calculations, but the most accurate methods are very computationally expensive. Thus it is only feasible to do highly accurate calculations on small molecules, since typically more computationally efficient methods are also less accurate. The overall goal of my dissertation work has been to try to decrease the computational expense of calculations without decreasing the accuracy. In particular, my dissertation work focuses on fragmentation methods, intermolecular interactionsmore » methods, analytic gradients, and taking advantage of new hardware.« less
NASA Astrophysics Data System (ADS)
Bass, Gideon; Tomlin, Casey; Kumar, Vaibhaw; Rihaczek, Pete; Dulny, Joseph, III
2018-04-01
NP-hard optimization problems scale very rapidly with problem size, becoming unsolvable with brute force methods, even with supercomputing resources. Typically, such problems have been approximated with heuristics. However, these methods still take a long time and are not guaranteed to find an optimal solution. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. Current quantum annealing (QA) devices are designed to solve difficult optimization problems, but they are limited by hardware size and qubit connectivity restrictions. We present a novel heterogeneous computing stack that combines QA and classical machine learning, allowing the use of QA on problems larger than the hardware limits of the quantum device. These results represent experiments on a real-world problem represented by the weighted k-clique problem. Through this experiment, we provide insight into the state of quantum machine learning.
Conditions for Lorentz-invariant superluminal information transfer without signaling
NASA Astrophysics Data System (ADS)
Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.
2016-03-01
We understand emergent quantum mechanics in the sense that quantum mechanics describes processes of physical emergence relating an assumed sub-quantum physics to macroscopic boundary conditions. The latter can be shown to entail top-down causation, in addition to usual bottom-up scenarios. With this example it is demonstrated that definitions of “realism” in the literature are simply too restrictive. A prevailing manner to define realism in quantum mechanics is in terms of pre-determination independent of the measurement. With our counter-example, which actually is ubiquitous in emergent, or self-organizing, systems, we argue for realism without pre-determination. We refer to earlier results of our group showing how the guiding equation of the de Broglie-Bohm interpretation can be derived from a theory with classical ingredients only. Essentially, this corresponds to a “quantum mechanics without wave functions” in ordinary 3-space, albeit with nonlocal correlations. This, then, leads to the central question of how to deal with the nonlocality problem in a relativistic setting. We here show that a basic argument discussing the allegedly paradox time ordering of events in EPR-type two-particle experiments falls short of taking into account the contextuality of the experimental setup. Consequently, we then discuss under which circumstances (i.e. physical premises) superluminal information transfer (but not signaling) may be compatible with a Lorentz-invariant theory. Finally, we argue that the impossibility of superluminal signaling - despite the presence of superluminal information transfer - is not the result of some sort of conspiracy (á la “Nature likes to hide”), but the consequence of the impossibility to exactly reproduce in repeated experimental runs a state's preparation, or of the no-cloning theorem, respectively.
A review on economic emission dispatch problems using quantum computational intelligence
NASA Astrophysics Data System (ADS)
Mahdi, Fahad Parvez; Vasant, Pandian; Kallimani, Vish; Abdullah-Al-Wadud, M.
2016-11-01
Economic emission dispatch (EED) problems are one of the most crucial problems in power systems. Growing energy demand, limitation of natural resources and global warming make this topic into the center of discussion and research. This paper reviews the use of Quantum Computational Intelligence (QCI) in solving Economic Emission Dispatch problems. QCI techniques like Quantum Genetic Algorithm (QGA) and Quantum Particle Swarm Optimization (QPSO) algorithm are discussed here. This paper will encourage the researcher to use more QCI based algorithm to get better optimal result for solving EED problems.
Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G
2018-01-17
Metal-organic frameworks (MOFs) are materials with applications in catalysis, gas separations, and storage. Quantum mechanical (QM) calculations can provide valuable guidance to understand and predict their properties. In order to make the calculations faster, rather than modeling these materials as periodic (infinite) systems, it is useful to construct finite models (called cluster models) and use subsystem methods such as fragment methods or combined quantum mechanical and molecular mechanical (QM/MM) methods. Here we employ a QM/MM methodology to study one particular MOF that has been of widespread interest because of its wide pores and good solvent and thermal stability, namely NU-1000, which contains hexanuclear zirconium nodes and 1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy 4- ) linkers. A modified version of the Bristow-Tiana-Walsh transferable force field has been developed to allow QM/MM calculations on NU-1000; we call the new parametrization the NU1T force field. We consider isomeric structures corresponding to various proton topologies of the [Zr 6 (μ 3 -O) 8 O 8 H 16 ] 8+ node of NU-1000, and we compute their relative energies using a QM/MM scheme designed for the present kind of problem. We compared the results to full quantum mechanical (QM) energy calculations and found that the QM/MM models can reproduce the full QM relative energetics (which span a range of 334 kJ mol -1 ) with a mean unsigned deviation (MUD) of only 2 kJ mol -1 . Furthermore, we found that the structures optimized by QM/MM are nearly identical to their full QM optimized counterparts.
NASA Astrophysics Data System (ADS)
Castagnoli, Giuseppe
2017-05-01
The usual representation of quantum algorithms, limited to the process of solving the problem, is physically incomplete as it lacks the initial measurement. We extend it to the process of setting the problem. An initial measurement selects a problem setting at random, and a unitary transformation sends it into the desired setting. The extended representation must be with respect to Bob, the problem setter, and any external observer. It cannot be with respect to Alice, the problem solver. It would tell her the problem setting and thus the solution of the problem implicit in it. In the representation to Alice, the projection of the quantum state due to the initial measurement should be postponed until the end of the quantum algorithm. In either representation, there is a unitary transformation between the initial and final measurement outcomes. As a consequence, the final measurement of any ℛ-th part of the solution could select back in time a corresponding part of the random outcome of the initial measurement; the associated projection of the quantum state should be advanced by the inverse of that unitary transformation. This, in the representation to Alice, would tell her, before she begins her problem solving action, that part of the solution. The quantum algorithm should be seen as a sum over classical histories in each of which Alice knows in advance one of the possible ℛ-th parts of the solution and performs the oracle queries still needed to find it - this for the value of ℛ that explains the algorithm's speedup. We have a relation between retrocausality ℛ and the number of oracle queries needed to solve an oracle problem quantumly. All the oracle problems examined can be solved with any value of ℛ up to an upper bound attained by the optimal quantum algorithm. This bound is always in the vicinity of 1/2 . Moreover, ℛ =1/2 always provides the order of magnitude of the number of queries needed to solve the problem in an optimal quantum way. If this were true for any oracle problem, as plausible, it would solve the quantum query complexity problem.
NASA Astrophysics Data System (ADS)
Baily, Charles Raymond
A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively realist perspectives of introductory students, and a lack of ontological flexibility in their conceptions of light and matter. We have developed a framework for understanding and characterizing student perspectives on the physical interpretation of quantum mechanics, and demonstrate the differential impact on student thinking of the myriad ways instructors approach interpretive themes in their introductory courses. Like expert physicists, students interpret quantum phenomena differently, and these interpretations are significantly influenced by their overall stances on questions central to the so-called measurement problem: Is the wave function physically real, or simply a mathematical tool? Is the collapse of the wave function an ad hoc rule, or a physical transition not described by any equation? Does an electron, being a form of matter, exist as a localized particle at all times? These questions, which are of personal and academic interest to our students, are largely only superficially addressed in our introductory courses, often for fear of opening a Pandora's Box of student questions, none of which have easy answers. We show how a transformed modern physics curriculum (recently implemented at the University of Colorado) may positively impact student perspectives on indeterminacy and wave-particle duality, by making questions of classical and quantum reality a central theme of our course, but also by making the beliefs of our students, and not just those of scientists, an explicit topic of discussion.
Land bidding game with conflicting interest and its quantum solution
NASA Astrophysics Data System (ADS)
Situ, Haozhen; Alonso-Sanz, Ramón; Li, Lvzhou; Zhang, Cai
Recently, the first conflicting interest quantum game based on the nonlocality property of quantum mechanics has been introduced in A. Pappa, N. Kumar, T. Lawson, M. Santha, S. Y. Zhang, E. Diamanti and I. Kerenidis, Phys. Rev. Lett. 114 (2015) 020401. Several quantum games of the same genre have also been proposed subsequently. However, these games are constructed from some well-known Bell inequalities, thus are quite abstract and lack of realistic interpretations. In the present paper, we modify the common interest land bidding game introduced in N. Brunner and N. Linden, Nat. Commun. 4 (2013) 2057, which is also based on nonlocality and can be understood as two companies collaborating in developing a project. The modified game has conflicting interest and reflects the free rider problem in economics. Then we show that it has a fair quantum solution that leads to better outcome. Finally, we study how several types of paradigmatic noise affect the outcome of this game.
Locality for quantum systems on graphs depends on the number field
NASA Astrophysics Data System (ADS)
Hall, H. Tracy; Severini, Simone
2013-07-01
Adapting a definition of Aaronson and Ambainis (2005 Theory Comput. 1 47-79), we call a quantum dynamics on a digraph saturated Z-local if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.
NASA Astrophysics Data System (ADS)
Neri, Elettra; Scazza, Francesco; Roati, Giacomo
2018-04-01
Quantum systems out of equilibrium offer the possibility of understanding intriguing and challenging problems in modern physics. Studying transport properties is not only valuable to unveil fundamental properties of quantum matter but it is also an excellent tool for developing new quantum devices which inherently employ quantum-mechanical effects. In this contribution, we present our experimental studies on quantum transport using ultracold Fermi gases of 6Li atoms. We realize the analogous of a Josephson junction by bisecting fermionic superfluids by a thin optical barrier. We observe coherent dynamics in both the population and in the relative phase between the two reservoirs. For critical parameters, the superfluid dynamics exhibits both coherent and resistive flow due to phase-slippage events manifesting as vortices propagating into the bulk. We uncover also a regime of strong dissipation where the junction operation is irreversibly affected by vortex proliferation. Our studies open new directions for investigating dissipation and superfluid transport in strongly correlated fermionic systems.
Particle detection and non-detection in a quantum time of arrival measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sombillo, Denny Lane B., E-mail: dsombillo@nip.upd.edu.ph; Galapon, Eric A.
2016-01-15
The standard time-of-arrival distribution cannot reproduce both the temporal and the spatial profile of the modulus squared of the time-evolved wave function for an arbitrary initial state. In particular, the time-of-arrival distribution gives a non-vanishing probability even if the wave function is zero at a given point for all values of time. This poses a problem in the standard formulation of quantum mechanics where one quantizes a classical observable and uses its spectral resolution to calculate the corresponding distribution. In this work, we show that the modulus squared of the time-evolved wave function is in fact contained in one ofmore » the degenerate eigenfunctions of the quantized time-of-arrival operator. This generalizes our understanding of quantum arrival phenomenon where particle detection is not a necessary requirement, thereby providing a direct link between time-of-arrival quantization and the outcomes of the two-slit experiment. -- Highlights: •The time-evolved position density is contained in the standard TOA distribution. •Particle may quantum mechanically arrive at a given point without being detected. •The eigenstates of the standard TOA operator are linked to the two-slit experiment.« less
Quantum Mechanical Earth: Where Orbitals Become Orbits
ERIC Educational Resources Information Center
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
NASA Technical Reports Server (NTRS)
Roth, J. P.
1972-01-01
Methods for development of logic design together with algorithms for failure testing, a method for design of logic for ultra-large-scale integration, extension of quantum calculus to describe the functional behavior of a mechanism component-by-component and to computer tests for failures in the mechanism using the diagnosis algorithm, and the development of an algorithm for the multi-output 2-level minimization problem are discussed.
Propensity, Probability, and Quantum Theory
NASA Astrophysics Data System (ADS)
Ballentine, Leslie E.
2016-08-01
Quantum mechanics and probability theory share one peculiarity. Both have well established mathematical formalisms, yet both are subject to controversy about the meaning and interpretation of their basic concepts. Since probability plays a fundamental role in QM, the conceptual problems of one theory can affect the other. We first classify the interpretations of probability into three major classes: (a) inferential probability, (b) ensemble probability, and (c) propensity. Class (a) is the basis of inductive logic; (b) deals with the frequencies of events in repeatable experiments; (c) describes a form of causality that is weaker than determinism. An important, but neglected, paper by P. Humphreys demonstrated that propensity must differ mathematically, as well as conceptually, from probability, but he did not develop a theory of propensity. Such a theory is developed in this paper. Propensity theory shares many, but not all, of the axioms of probability theory. As a consequence, propensity supports the Law of Large Numbers from probability theory, but does not support Bayes theorem. Although there are particular problems within QM to which any of the classes of probability may be applied, it is argued that the intrinsic quantum probabilities (calculated from a state vector or density matrix) are most naturally interpreted as quantum propensities. This does not alter the familiar statistical interpretation of QM. But the interpretation of quantum states as representing knowledge is untenable. Examples show that a density matrix fails to represent knowledge.
Universal Linear Optics: An implementation of Boson Sampling on a Fully Reconfigurable Circuit
NASA Astrophysics Data System (ADS)
Harrold, Christopher; Carolan, Jacques; Sparrow, Chris; Russell, Nicholas J.; Silverstone, Joshua W.; Marshall, Graham D.; Thompson, Mark G.; Matthews, Jonathan C. F.; O'Brien, Jeremy L.; Laing, Anthony; Martín-López, Enrique; Shadbolt, Peter J.; Matsuda, Nobuyuki; Oguma, Manabu; Itoh, Mikitaka; Hashimoto, Toshikazu
Linear optics has paved the way for fundamental tests in quantum mechanics and has gone on to enable a broad range of quantum information processing applications for quantum technologies. We demonstrate an integrated photonics processor that is universal for linear optics. The device is a silica-on-silicon planar waveguide circuit (PLC) comprising a cascade of 15 Mach Zehnder interferometers, with 30 directional couplers and 30 tunable thermo-optic phase shifters which are electrically interfaced for the arbitrary setting of a phase. We input ensembles of up to six photons, and monitor the output with a 12-single-photon detector system. The calibrated device is capable of implementing any linear optical protocol. This enables the implementation of new quantum information processing tasks in seconds, which would have previously taken months to realise. We demonstrate 100 instances of the boson sampling problem with verification tests, and six-dimensional complex Hadamards. Also Imperial College London.
Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks
NASA Astrophysics Data System (ADS)
Halnon, Theodore; Bojowald, Martin
2017-01-01
In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply. Partial funding from the Ronald E. McNair Postbaccalaureate Achievement Program.
Ensembles and Experiments in Classical and Quantum Physics
NASA Astrophysics Data System (ADS)
Neumaier, Arnold
A philosophically consistent axiomatic approach to classical and quantum mechanics is given. The approach realizes a strong formal implementation of Bohr's correspondence principle. In all instances, classical and quantum concepts are fully parallel: the same general theory has a classical realization and a quantum realization. Extending the ''probability via expectation'' approach of Whittle to noncommuting quantities, this paper defines quantities, ensembles, and experiments as mathematical concepts and shows how to model complementarity, uncertainty, probability, nonlocality and dynamics in these terms. The approach carries no connotation of unlimited repeatability; hence it can be applied to unique systems such as the universe. Consistent experiments provide an elegant solution to the reality problem, confirming the insistence of the orthodox Copenhagen interpretation on that there is nothing but ensembles, while avoiding its elusive reality picture. The weak law of large numbers explains the emergence of classical properties for macroscopic systems.
A strategy for quantum algorithm design assisted by machine learning
NASA Astrophysics Data System (ADS)
Bang, Jeongho; Ryu, Junghee; Yoo, Seokwon; Pawłowski, Marcin; Lee, Jinhyoung
2014-07-01
We propose a method for quantum algorithm design assisted by machine learning. The method uses a quantum-classical hybrid simulator, where a ‘quantum student’ is being taught by a ‘classical teacher’. In other words, in our method, the learning system is supposed to evolve into a quantum algorithm for a given problem, assisted by a classical main-feedback system. Our method is applicable for designing quantum oracle-based algorithms. We chose, as a case study, an oracle decision problem, called a Deutsch-Jozsa problem. We showed by using Monte Carlo simulations that our simulator can faithfully learn a quantum algorithm for solving the problem for a given oracle. Remarkably, the learning time is proportional to the square root of the total number of parameters, rather than showing the exponential dependence found in the classical machine learning-based method.
From Weyl to Born-Jordan quantization: The Schrödinger representation revisited
NASA Astrophysics Data System (ADS)
de Gosson, Maurice A.
2016-03-01
The ordering problem has been one of the long standing and much discussed questions in quantum mechanics from its very beginning. Nowadays, there is more or less a consensus among physicists that the right prescription is Weyl's rule, which is closely related to the Moyal-Wigner phase space formalism. We propose in this report an alternative approach by replacing Weyl quantization with the less well-known Born-Jordan quantization. This choice is actually natural if we want the Heisenberg and Schrödinger pictures of quantum mechanics to be mathematically equivalent. It turns out that, in addition, Born-Jordan quantization can be recovered from Feynman's path integral approach provided that one used short-time propagators arising from correct formulas for the short-time action, as observed by Makri and Miller. These observations lead to a slightly different quantum mechanics, exhibiting some unexpected features, and this without affecting the main existing theory; for instance quantizations of physical Hamiltonian functions are the same as in the Weyl correspondence. The differences are in fact of a more subtle nature; for instance, the quantum observables will not correspond in a one-to-one fashion to classical ones, and the dequantization of a Born-Jordan quantum operator is less straightforward than that of the corresponding Weyl operator. The use of Born-Jordan quantization moreover solves the "angular momentum dilemma", which already puzzled L. Pauling. Born-Jordan quantization has been known for some time (but not fully exploited) by mathematicians working in time-frequency analysis and signal analysis, but ignored by physicists. One of the aims of this report is to collect and synthesize these sporadic discussions, while analyzing the conceptual differences with Weyl quantization, which is also reviewed in detail. Another striking feature is that the Born-Jordan formalism leads to a redefinition of phase space quantum mechanics, where the usual Wigner distribution has to be replaced with a new quasi-distribution reducing interference effects.
Few-body problem in terms of correlated Gaussians
NASA Astrophysics Data System (ADS)
Silvestre-Brac, Bernard; Mathieu, Vincent
2007-10-01
In their textbook, Suzuki and Varga [Stochastic Variational Approach to Quantum-Mechanical Few-Body Problems (Springer, Berlin, 1998)] present the stochastic variational method with the correlated Gaussian basis in a very exhaustive way. However, the Fourier transform of these functions and their application to the management of a relativistic kinetic energy operator are missing and cannot be found in the literature. In this paper we present these interesting formulas. We also give a derivation for formulations concerning central potentials.
The pursuit of locality in quantum mechanics
NASA Astrophysics Data System (ADS)
Hodkin, Malcolm
The rampant success of quantum theory is the result of applications of the 'new' quantum mechanics of Schrodinger and Heisenberg (1926-7), the Feynman-Schwinger-Tomonaga Quantum Electro-dynamics (1946-51), the electro-weak theory of Salaam, Weinberg, and Glashow (1967-9), and Quantum Chromodynamics (1973-); in fact, this success of 'the' quantum theory has depended on a continuous stream of brilliant and quite disparate mathematical formulations. In this carefully concealed ferment there lie plenty of unresolved difficulties, simply because in churning out fabulously accurate calculational tools there has been no sensible explanation of all that is going on. It is even argued that such an understanding is nothing to do with physics. A long-standing and famous illustration of this is the paradoxical thought-experiment of Einstein, Podolsky and Rosen (1935). Fundamental to all quantum theories, and also their paradoxes, is the location of sub-microscopic objects; or, rather, that the specification of such a location is fraught with mathematical inconsistency. This project encompasses a detailed, critical survey of the tangled history of Position within quantum theories. The first step is to show that, contrary to appearances, canonical quantum mechanics has only a vague notion of locality. After analysing a number of previous attempts at a 'relativistic quantum mechanics', two lines of thought are considered in detail. The first is the work of Wan and students, which is shown to be no real improvement on the iisu.al 'nonrelativistic' theory. The second is based on an idea of Dirac's - using backwards-in-time light-cones as the hypersurface in space-time. There remain considerable difficulties in the way of producing a consistent scheme here. To keep things nicely stirred up, the author then proposes his own approach - an adaptation of Feynman's QED propagators. This new approach is distinguished from Feynman's since the propagator or Green's function is not obtained by Feynman's rule. The type of equation solved is also different: instead of an initial-value problem, a solution that obeys a time-symmetric causality criterion is found for an inhomogeneous partial differential equation with homogeneous boundary conditions. To make the consideration of locality more precise, some results of Fourier transform theory are presented in a form that is directly applicable. Somewhat away from the main thrust of the thesis, there is also an attempt to explain, the manner in which quantum effects disappear as the number of particles increases in such things as experimental realisations of the EPR and de Broglie thought experiments.
NASA Astrophysics Data System (ADS)
Xue, ShiChuan; Wu, JunJie; Xu, Ping; Yang, XueJun
2018-02-01
Quantum computing is a significant computing capability which is superior to classical computing because of its superposition feature. Distinguishing several quantum states from quantum algorithm outputs is often a vital computational task. In most cases, the quantum states tend to be non-orthogonal due to superposition; quantum mechanics has proved that perfect outcomes could not be achieved by measurements, forcing repetitive measurement. Hence, it is important to determine the optimum measuring method which requires fewer repetitions and a lower error rate. However, extending current measurement approaches mainly aiming at quantum cryptography to multi-qubit situations for quantum computing confronts challenges, such as conducting global operations which has considerable costs in the experimental realm. Therefore, in this study, we have proposed an optimum subsystem method to avoid these difficulties. We have provided an analysis of the comparison between the reduced subsystem method and the global minimum error method for two-qubit problems; the conclusions have been verified experimentally. The results showed that the subsystem method could effectively discriminate non-orthogonal two-qubit states, such as separable states, entangled pure states, and mixed states; the cost of the experimental process had been significantly reduced, in most circumstances, with acceptable error rate. We believe the optimal subsystem method is the most valuable and promising approach for multi-qubit quantum computing applications.
Quantum reinforcement learning.
Dong, Daoyi; Chen, Chunlin; Li, Hanxiong; Tarn, Tzyh-Jong
2008-10-01
The key approaches for machine learning, particularly learning in unknown probabilistic environments, are new representations and computation mechanisms. In this paper, a novel quantum reinforcement learning (QRL) method is proposed by combining quantum theory and reinforcement learning (RL). Inspired by the state superposition principle and quantum parallelism, a framework of a value-updating algorithm is introduced. The state (action) in traditional RL is identified as the eigen state (eigen action) in QRL. The state (action) set can be represented with a quantum superposition state, and the eigen state (eigen action) can be obtained by randomly observing the simulated quantum state according to the collapse postulate of quantum measurement. The probability of the eigen action is determined by the probability amplitude, which is updated in parallel according to rewards. Some related characteristics of QRL such as convergence, optimality, and balancing between exploration and exploitation are also analyzed, which shows that this approach makes a good tradeoff between exploration and exploitation using the probability amplitude and can speedup learning through the quantum parallelism. To evaluate the performance and practicability of QRL, several simulated experiments are given, and the results demonstrate the effectiveness and superiority of the QRL algorithm for some complex problems. This paper is also an effective exploration on the application of quantum computation to artificial intelligence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donangelo, R.J.
An integral representation for the classical limit of the quantum mechanical S-matrix is developed and applied to heavy-ion Coulomb excitation and Coulomb-nuclear interference. The method combines the quantum principle of superposition with exact classical dynamics to describe the projectile-target system. A detailed consideration of the classical trajectories and of the dimensionless parameters that characterize the system is carried out. The results are compared, where possible, to exact quantum mechanical calculations and to conventional semiclassical calculations. It is found that in the case of backscattering the classical limit S-matrix method is able to almost exactly reproduce the quantum-mechanical S-matrix elements, andmore » therefore the transition probabilities, even for projectiles as light as protons. The results also suggest that this approach should be a better approximation for heavy-ion multiple Coulomb excitation than earlier semiclassical methods, due to a more accurate description of the classical orbits in the electromagnetic field of the target nucleus. Calculations using this method indicate that the rotational excitation probabilities in the Coulomb-nuclear interference region should be very sensitive to the details of the potential at the surface of the nucleus, suggesting that heavy-ion rotational excitation could constitute a sensitive probe of the nuclear potential in this region. The application to other problems as well as the present limits of applicability of the formalism are also discussed.« less
Aspects of perturbation theory in quantum mechanics: The BenderWuMATHEMATICA® package
NASA Astrophysics Data System (ADS)
Sulejmanpasic, Tin; Ünsal, Mithat
2018-07-01
We discuss a general setup which allows the study of the perturbation theory of an arbitrary, locally harmonic 1D quantum mechanical potential as well as its multi-variable (many-body) generalization. The latter may form a prototype for regularized quantum field theory. We first generalize the method of Bender-Wu,and derive exact recursion relations which allow the determination of the perturbative wave-function and energy corrections to an arbitrary order, at least in principle. For 1D systems, we implement these equations in an easy to use MATHEMATICA® package we call BenderWu. Our package enables quick home-computer computation of high orders of perturbation theory (about 100 orders in 10-30 s, and 250 orders in 1-2 h) and enables practical study of a large class of problems in Quantum Mechanics. We have two hopes concerning the BenderWu package. One is that due to resurgence, large amount of non-perturbative information, such as non-perturbative energies and wave-functions (e.g. WKB wave functions), can in principle be extracted from the perturbative data. We also hope that the package may be used as a teaching tool, providing an effective bridge between perturbation theory and non-perturbative physics in textbooks. Finally, we show that for the multi-variable case, the recursion relation acquires a geometric character, and has a structure which allows parallelization to computer clusters.
New insights on emergence from the perspective of weak values and dynamical non-locality
NASA Astrophysics Data System (ADS)
Tollaksen, Jeff
2014-04-01
In this article, we will examine new fundamental aspects of "emergence" and "information" using novel approaches to quantum mechanics which originated from the group around Aharonov. The two-state vector formalism provides a complete description of pre- and post-selected quantum systems and has uncovered a host of new quantum phenomena which were previously hidden. The most important feature is that any weak coupling to a pre- and post-selected system is effectively a coupling to a "weak value" which is given by a simple expression depending on the two-state vector. In particular, weak values, are the outcomes of so called "weak measurements" which have recently become a very powerful tool for ultra-sensitive measurements. Using weak values, we will show how to separate a particle from its properties, not unlike the Cheshire cat story: "Well! I've often seen a cat without a grin," thought Alice; "but a grin without a cat! It's the most curious thing I ever saw in all my life!" Next, we address the question whether the physics on different scales "emerges" from quantum mechanics or whether the laws of physics at those scales are fundamental. We show that the classical limit of quantum mechanics is a far more complicated issue; it is in fact dramatically more involved and it requires a complete revision of all our intuitions. The revised intuitions can then serve as a guide to finding novel quantum effects. Next we show that novel experimental aspects of contextuality can be demonstrated with weak measurements and these suggest new restrictions on hidden variable approaches. Next we emphasize that the most important implication of the Aharonov-Bohm effect is the existence of non-local interactions which do not violate causality. Finally, we review some generalizations of quantum mechanics and their implications for "emergence" and "information." First, we review an alternative approach to quantum evolution in which each moment of time is viewed as a new "universe" and time evolution is given by correlations between different moments. Next, we present a new solution to the measurement problem involving future boundary conditions placed on the universe as a whole. Finally, we introduce another fundamental approach to quantum evolution which allows for tremendous richness in the types of allowable Hamiltonians.
Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.
Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao
2017-01-01
Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.
Tunneling time in space fractional quantum mechanics
NASA Astrophysics Data System (ADS)
Hasan, Mohammad; Mandal, Bhabani Prasad
2018-02-01
We calculate the time taken by a wave packet to travel through a classically forbidden region of space in space fractional quantum mechanics. We obtain the close form expression of tunneling time from a rectangular barrier by stationary phase method. We show that tunneling time depends upon the width b of the barrier for b → ∞ and therefore Hartman effect doesn't exist in space fractional quantum mechanics. Interestingly we found that the tunneling time monotonically reduces with increasing b. The tunneling time is smaller in space fractional quantum mechanics as compared to the case of standard quantum mechanics. We recover the Hartman effect of standard quantum mechanics as a special case of space fractional quantum mechanics.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S. P.
2013-01-01
-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on -symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a -symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the phase transition can now be understood intuitively without resorting to sophisticated mathe- matics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter–antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of -synthetic materials are being developed, and the phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of -symmetric quantum mechanics. PMID:23509390
KAMINSKI, GEORGE A.; STERN, HARRY A.; BERNE, B. J.; FRIESNER, RICHARD A.; CAO, YIXIANG X.; MURPHY, ROBERT B.; ZHOU, RUHONG; HALGREN, THOMAS A.
2014-01-01
We present results of developing a methodology suitable for producing molecular mechanics force fields with explicit treatment of electrostatic polarization for proteins and other molecular system of biological interest. The technique allows simulation of realistic-size systems. Employing high-level ab initio data as a target for fitting allows us to avoid the problem of the lack of detailed experimental data. Using the fast and reliable quantum mechanical methods supplies robust fitting data for the resulting parameter sets. As a result, gas-phase many-body effects for dipeptides are captured within the average RMSD of 0.22 kcal/mol from their ab initio values, and conformational energies for the di- and tetrapeptides are reproduced within the average RMSD of 0.43 kcal/mol from their quantum mechanical counterparts. The latter is achieved in part because of application of a novel torsional fitting technique recently developed in our group, which has already been used to greatly improve accuracy of the peptide conformational equilibrium prediction with the OPLS-AA force field.1 Finally, we have employed the newly developed first-generation model in computing gas-phase conformations of real proteins, as well as in molecular dynamics studies of the systems. The results show that, although the overall accuracy is no better than what can be achieved with a fixed-charges model, the methodology produces robust results, permits reasonably low computational cost, and avoids other computational problems typical for polarizable force fields. It can be considered as a solid basis for building a more accurate and complete second-generation model. PMID:12395421
Teaching Quantum Mechanics through Project-based Learning
NASA Astrophysics Data System (ADS)
Duda, Gintaras; Ward, Kristina
2014-03-01
Project/Problem-based learning (PBL) is an active area of research within the physics education research (PER) community, however, work done to date has focused on introductory courses. This talk will explore research on upper division quantum mechanics, a junior/senior level course at Creighton University, which was taught using PBL pedagogy with no in-class lectures. Course time was primarily spent on lecture tutorials and projects, which included alpha decay of Uranium, neutrino oscillations, and FTIR spectroscopy of HCl. This talk will explore: 1. student learning in light of the new pedagogy and embedded meta-cognitive self-monitoring exercises, 2. the effect of the PBL curriculum on student attitudes, motivation, and students' epistemologies, and 3. the use of explicit written reflections within a physics course to probe student understanding.
Efficiency of quantum vs. classical annealing in nonconvex learning problems
Zecchina, Riccardo
2018-01-01
Quantum annealers aim at solving nonconvex optimization problems by exploiting cooperative tunneling effects to escape local minima. The underlying idea consists of designing a classical energy function whose ground states are the sought optimal solutions of the original optimization problem and add a controllable quantum transverse field to generate tunneling processes. A key challenge is to identify classes of nonconvex optimization problems for which quantum annealing remains efficient while thermal annealing fails. We show that this happens for a wide class of problems which are central to machine learning. Their energy landscapes are dominated by local minima that cause exponential slowdown of classical thermal annealers while simulated quantum annealing converges efficiently to rare dense regions of optimal solutions. PMID:29382764
Vanner, M. R.; Pikovski, I.; Cole, G. D.; Kim, M. S.; Brukner, Č.; Hammerer, K.; Milburn, G. J.; Aspelmeyer, M.
2011-01-01
Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing, and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions. PMID:21900608
Renormalization of myoglobin–ligand binding energetics by quantum many-body effects
Weber, Cédric; Cole, Daniel J.; O’Regan, David D.; Payne, Mike C.
2014-01-01
We carry out a first-principles atomistic study of the electronic mechanisms of ligand binding and discrimination in the myoglobin protein. Electronic correlation effects are taken into account using one of the most advanced methods currently available, namely a linear-scaling density functional theory (DFT) approach wherein the treatment of localized iron 3d electrons is further refined using dynamical mean-field theory. This combination of methods explicitly accounts for dynamical and multireference quantum physics, such as valence and spin fluctuations, of the 3d electrons, while treating a significant proportion of the protein (more than 1,000 atoms) with DFT. The computed electronic structure of the myoglobin complexes and the nature of the Fe–O2 bonding are validated against experimental spectroscopic observables. We elucidate and solve a long-standing problem related to the quantum-mechanical description of the respiration process, namely that DFT calculations predict a strong imbalance between O2 and CO binding, favoring the latter to an unphysically large extent. We show that the explicit inclusion of the many-body effects induced by the Hund’s coupling mechanism results in the correct prediction of similar binding energies for oxy- and carbonmonoxymyoglobin. PMID:24717844
Running into Trouble with the Time-Dependent Propagation of a Wavepacket
ERIC Educational Resources Information Center
Garriz, Abel E.; Sztrajman, Alejandro; Mitnik, Dario
2010-01-01
The propagation in time of a wavepacket is a conceptually rich problem suitable to be studied in any introductory quantum mechanics course. This subject is covered analytically in most of the standard textbooks. Computer simulations have become a widespread pedagogical tool, easily implemented in computer labs and in classroom demonstrations.…
Spin-Orbit Coupling and the Conservation of Angular Momentum
ERIC Educational Resources Information Center
Hnizdo, V.
2012-01-01
In nonrelativistic quantum mechanics, the total (i.e. orbital plus spin) angular momentum of a charged particle with spin that moves in a Coulomb plus spin-orbit-coupling potential is conserved. In a classical nonrelativistic treatment of this problem, in which the Lagrange equations determine the orbital motion and the Thomas equation yields the…
A subgradient approach for constrained binary optimization via quantum adiabatic evolution
NASA Astrophysics Data System (ADS)
Karimi, Sahar; Ronagh, Pooya
2017-08-01
Outer approximation method has been proposed for solving the Lagrangian dual of a constrained binary quadratic programming problem via quantum adiabatic evolution in the literature. This should be an efficient prescription for solving the Lagrangian dual problem in the presence of an ideally noise-free quantum adiabatic system. However, current implementations of quantum annealing systems demand methods that are efficient at handling possible sources of noise. In this paper, we consider a subgradient method for finding an optimal primal-dual pair for the Lagrangian dual of a constrained binary polynomial programming problem. We then study the quadratic stable set (QSS) problem as a case study. We see that this method applied to the QSS problem can be viewed as an instance-dependent penalty-term approach that avoids large penalty coefficients. Finally, we report our experimental results of using the D-Wave 2X quantum annealer and conclude that our approach helps this quantum processor to succeed more often in solving these problems compared to the usual penalty-term approaches.
Li, Zi-Xiang; Wang, Fa; Yao, Hong; ...
2016-04-30
Monolayer FeSe films grown on SrTiO 3 (STO) substrate show superconducting gap-opening temperatures (T c) which are almost an order of magnitude higher than those of the bulk FeSe and are highest among all known Fe-based superconductors. Angle-resolved photoemission spectroscopy observed “replica bands” suggesting the importance of the interaction between FeSe electrons and STO phonons. These facts rejuvenated the quest for T c enhancement mechanisms in iron-based, especially iron-chalcogenide, superconductors. Here, we perform the first numerically-exact sign-problem-free quantum Monte Carlo simulations to iron-based superconductors. We (1) study the electronic pairing mechanism intrinsic to heavily electron doped FeSe films, and (2)more » examine the effects of electron–phonon interaction between FeSe and STO as well as nematic fluctuations on T c. Armed with these results, we return to the question “what makes the T c of monolayer FeSe on SrTiO 3 so high?” in the conclusion and discussions.« less
Performance of Quantum Annealers on Hard Scheduling Problems
NASA Astrophysics Data System (ADS)
Pokharel, Bibek; Venturelli, Davide; Rieffel, Eleanor
Quantum annealers have been employed to attack a variety of optimization problems. We compared the performance of the current D-Wave 2X quantum annealer to that of the previous generation D-Wave Two quantum annealer on scheduling-type planning problems. Further, we compared the effect of different anneal times, embeddings of the logical problem, and different settings of the ferromagnetic coupling JF across the logical vertex-model on the performance of the D-Wave 2X quantum annealer. Our results show that at the best settings, the scaling of expected anneal time to solution for D-WAVE 2X is better than that of the DWave Two, but still inferior to that of state of the art classical solvers on these problems. We discuss the implication of our results for the design and programming of future quantum annealers. Supported by NASA Ames Research Center.
NASA Astrophysics Data System (ADS)
Bednar, Earl; Drager, Steven L.
2007-04-01
Quantum information processing's objective is to utilize revolutionary computing capability based on harnessing the paradigm shift offered by quantum computing to solve classically hard and computationally challenging problems. Some of our computationally challenging problems of interest include: the capability for rapid image processing, rapid optimization of logistics, protecting information, secure distributed simulation, and massively parallel computation. Currently, one important problem with quantum information processing is that the implementation of quantum computers is difficult to realize due to poor scalability and great presence of errors. Therefore, we have supported the development of Quantum eXpress and QuIDD Pro, two quantum computer simulators running on classical computers for the development and testing of new quantum algorithms and processes. This paper examines the different methods used by these two quantum computing simulators. It reviews both simulators, highlighting each simulators background, interface, and special features. It also demonstrates the implementation of current quantum algorithms on each simulator. It concludes with summary comments on both simulators.
Demonstration of essentiality of entanglement in a Deutsch-like quantum algorithm
NASA Astrophysics Data System (ADS)
Huang, He-Liang; Goswami, Ashutosh K.; Bao, Wan-Su; Panigrahi, Prasanta K.
2018-06-01
Quantum algorithms can be used to efficiently solve certain classically intractable problems by exploiting quantum parallelism. However, the effectiveness of quantum entanglement in quantum computing remains a question of debate. This study presents a new quantum algorithm that shows entanglement could provide advantages over both classical algorithms and quantum algo- rithms without entanglement. Experiments are implemented to demonstrate the proposed algorithm using superconducting qubits. Results show the viability of the algorithm and suggest that entanglement is essential in obtaining quantum speedup for certain problems in quantum computing. The study provides reliable and clear guidance for developing useful quantum algorithms.
Thermodynamic equilibrium with acceleration and the Unruh effect
NASA Astrophysics Data System (ADS)
Becattini, F.
2018-04-01
We address the problem of thermodynamic equilibrium with constant acceleration along the velocity field lines in a quantum relativistic statistical mechanics framework. We show that for a free scalar quantum field, after vacuum subtraction, all mean values vanish when the local temperature T is as low as the Unruh temperature TU=A /2 π where A is the magnitude of the acceleration four-vector. We argue that the Unruh temperature is an absolute lower bound for the temperature of any accelerated fluid at global thermodynamic equilibrium. We discuss the conditions of this bound to be applicable in a local thermodynamic equilibrium situation.
Barvinsky, A O
2007-08-17
The density matrix of the Universe for the microcanonical ensemble in quantum cosmology describes an equipartition in the physical phase space of the theory (sum over everything), but in terms of the observable spacetime geometry this ensemble is peaked about the set of recently obtained cosmological instantons limited to a bounded range of the cosmological constant. This suggests the mechanism of constraining the landscape of string vacua and a possible solution to the dark energy problem in the form of the quasiequilibrium decay of the microcanonical state of the Universe.
Coupled Structural, Thermal, Phase-change and Electromagnetic Analysis for Superconductors, Volume 2
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Park, K. C.; Militello, C.; Schuler, J. J.
1996-01-01
Described are the theoretical development and computer implementation of reliable and efficient methods for the analysis of coupled mechanical problems that involve the interaction of mechanical, thermal, phase-change and electromag subproblems. The focus application has been the modeling of superconductivity and associated quantum-state phase change phenomena. In support of this objective the work has addressed the following issues: (1) development of variational principles for finite elements, (2) finite element modeling of the electromagnetic problem, (3) coupling of thermel and mechanical effects, and (4) computer implementation and solution of the superconductivity transition problem. The main accomplishments have been: (1) the development of the theory of parametrized and gauged variational principles, (2) the application of those principled to the construction of electromagnetic, thermal and mechanical finite elements, and (3) the coupling of electromagnetic finite elements with thermal and superconducting effects, and (4) the first detailed finite element simulations of bulk superconductors, in particular the Meissner effect and the nature of the normal conducting boundary layer. The theoretical development is described in two volumes. Volume 1 describes mostly formulation specific problems. Volume 2 describes generalization of those formulations.
Quantum-mechanical machinery for rational decision-making in classical guessing game
NASA Astrophysics Data System (ADS)
Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S.; Lee, Jinhyoung
2016-02-01
In quantum game theory, one of the most intriguing and important questions is, “Is it possible to get quantum advantages without any modification of the classical game?” The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call ‘reasoning’) to generate the best strategy, which may occur internally, e.g., in the player’s brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.
Restoration for Noise Removal in Quantum Images
NASA Astrophysics Data System (ADS)
Liu, Kai; Zhang, Yi; Lu, Kai; Wang, Xiaoping
2017-09-01
Quantum computation has become increasingly attractive in the past few decades due to its extraordinary performance. As a result, some studies focusing on image representation and processing via quantum mechanics have been done. However, few of them have considered the quantum operations for images restoration. To address this problem, three noise removal algorithms are proposed in this paper based on the novel enhanced quantum representation model, oriented to two kinds of noise pollution (Salt-and-Pepper noise and Gaussian noise). For the first algorithm Q-Mean, it is designed to remove the Salt-and-Pepper noise. The noise points are extracted through comparisons with the adjacent pixel values, after which the restoration operation is finished by mean filtering. As for the second method Q-Gauss, a special mask is applied to weaken the Gaussian noise pollution. The third algorithm Q-Adapt is effective for the source image containing unknown noise. The type of noise can be judged through the quantum statistic operations for the color value of the whole image, and then different noise removal algorithms are used to conduct image restoration respectively. Performance analysis reveals that our methods can offer high restoration quality and achieve significant speedup through inherent parallelism of quantum computation.
Quantum-mechanical machinery for rational decision-making in classical guessing game
Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S.; Lee, Jinhyoung
2016-01-01
In quantum game theory, one of the most intriguing and important questions is, “Is it possible to get quantum advantages without any modification of the classical game?” The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call ‘reasoning’) to generate the best strategy, which may occur internally, e.g., in the player’s brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences. PMID:26875685
Quantum-mechanical machinery for rational decision-making in classical guessing game.
Bang, Jeongho; Ryu, Junghee; Pawłowski, Marcin; Ham, Byoung S; Lee, Jinhyoung
2016-02-15
In quantum game theory, one of the most intriguing and important questions is, "Is it possible to get quantum advantages without any modification of the classical game?" The answer to this question so far has largely been negative. So far, it has usually been thought that a change of the classical game setting appears to be unavoidable for getting the quantum advantages. However, we give an affirmative answer here, focusing on the decision-making process (we call 'reasoning') to generate the best strategy, which may occur internally, e.g., in the player's brain. To show this, we consider a classical guessing game. We then define a one-player reasoning problem in the context of the decision-making theory, where the machinery processes are designed to simulate classical and quantum reasoning. In such settings, we present a scenario where a rational player is able to make better use of his/her weak preferences due to quantum reasoning, without any altering or resetting of the classically defined game. We also argue in further analysis that the quantum reasoning may make the player fail, and even make the situation worse, due to any inappropriate preferences.
NASA Astrophysics Data System (ADS)
Horwitz, L. P.
2015-05-01
The most recent meeting took place at the University of Connecticut, Storrs, on June 9-13, 2014. This meeting forms the basis for the Proceedings that are recorded in this issue of the Journal of Physics: Conference Series. Along with the work of some of the founding members of the Association, we were fortunate to have lecturers from application areas that provided strong challenges for further developments in quantum field theory, cosmological problems, and in the dynamics of systems subject to accelerations and the effects of general relativity. Topics treated in this issue include studies of the dark matter problem, rotation curves, and, in particular, for the (relatively accessible) Milky Way galaxy, compact stellar objects, a composite particle model, and the properties of a conformally invariant theory with spontaneous symmetry breaking. The Stueckelberg theory is further investigated for its properties in producing bremsstrahlung and pair production and apparent superluminal effects, and, as mentioned above, the implications of low energy nuclear reactions for such off-shell theories. Other "proper time" theories are investigated as well, and a study of the clock synchronization problem is presented. A mathematical study of to quantum groupo associated with the Toda lattice and its implications for quantum field theory, as well as a phenomenological discussion of supernova mechanics as well as a semiclassical discussion of electron spin and the question of the compatibility of special relativity and the quantum theory. A careful analysis of the covariant Aharonov-Bohm effect is given as well. The quantization of massless fields and the relation to the Maxwell theory is also discussed. We wish to thank the participants who contributed very much through their lectures, personal discussions, and these papers, to the advancement of the subject and our understanding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimpell, Michael; Werner, Reinhard F.
2007-06-15
The mean king problem is a quantum mechanical retrodiction problem, in which Alice has to name the outcome of an ideal measurement made in one of several different orthonormal bases. Alice is allowed to prepare the state of the system and to do a final measurement, possibly including an entangled copy. However, Alice gains knowledge about which basis was measured only after she no longer has access to the quantum system or its copy. We give a necessary and sufficient condition on the bases, for Alice to have a strategy to solve this problem, without assuming that the bases aremore » mutually unbiased. The condition requires the existence of an overall joint probability distribution for random variables, whose marginal pair distributions are fixed as the transition probability matrices of the given bases. In particular, in the qubit case the problem is decided by Bell's original three variable inequality. In the standard setting of mutually unbiased bases, when they do exist, Alice can always succeed. However, for randomly chosen bases her success probability rapidly goes to zero with increasing dimension.« less
NASA Astrophysics Data System (ADS)
Reimpell, Michael; Werner, Reinhard F.
2007-06-01
The mean king problem is a quantum mechanical retrodiction problem, in which Alice has to name the outcome of an ideal measurement made in one of several different orthonormal bases. Alice is allowed to prepare the state of the system and to do a final measurement, possibly including an entangled copy. However, Alice gains knowledge about which basis was measured only after she no longer has access to the quantum system or its copy. We give a necessary and sufficient condition on the bases, for Alice to have a strategy to solve this problem, without assuming that the bases are mutually unbiased. The condition requires the existence of an overall joint probability distribution for random variables, whose marginal pair distributions are fixed as the transition probability matrices of the given bases. In particular, in the qubit case the problem is decided by Bell’s original three variable inequality. In the standard setting of mutually unbiased bases, when they do exist, Alice can always succeed. However, for randomly chosen bases her success probability rapidly goes to zero with increasing dimension.
Quantum computation with coherent spin states and the close Hadamard problem
NASA Astrophysics Data System (ADS)
Adcock, Mark R. A.; Høyer, Peter; Sanders, Barry C.
2016-04-01
We study a model of quantum computation based on the continuously parameterized yet finite-dimensional Hilbert space of a spin system. We explore the computational powers of this model by analyzing a pilot problem we refer to as the close Hadamard problem. We prove that the close Hadamard problem can be solved in the spin system model with arbitrarily small error probability in a constant number of oracle queries. We conclude that this model of quantum computation is suitable for solving certain types of problems. The model is effective for problems where symmetries between the structure of the information associated with the problem and the structure of the unitary operators employed in the quantum algorithm can be exploited.
NASA Astrophysics Data System (ADS)
Sandoval, J. H.; Bellotti, F. F.; Yamashita, M. T.; Frederico, T.; Fedorov, D. V.; Jensen, A. S.; Zinner, N. T.
2018-03-01
The quantum mechanical three-body problem is a source of continuing interest due to its complexity and not least due to the presence of fascinating solvable cases. The prime example is the Efimov effect where infinitely many bound states of identical bosons can arise at the threshold where the two-body problem has zero binding energy. An important aspect of the Efimov effect is the effect of spatial dimensionality; it has been observed in three dimensional systems, yet it is believed to be impossible in two dimensions. Using modern experimental techniques, it is possible to engineer trap geometry and thus address the intricate nature of quantum few-body physics as function of dimensionality. Here we present a framework for studying the three-body problem as one (continuously) changes the dimensionality of the system all the way from three, through two, and down to a single dimension. This is done by considering the Efimov favorable case of a mass-imbalanced system and with an external confinement provided by a typical experimental case with a (deformed) harmonic trap.
Neuroscience, quantum indeterminism and the Cartesian soul.
Clarke, Peter G H
2014-02-01
Quantum indeterminism is frequently invoked as a solution to the problem of how a disembodied soul might interact with the brain (as Descartes proposed), and is sometimes invoked in theories of libertarian free will even when they do not involve dualistic assumptions. Taking as example the Eccles-Beck model of interaction between self (or soul) and brain at the level of synaptic exocytosis, I here evaluate the plausibility of these approaches. I conclude that Heisenbergian uncertainty is too small to affect synaptic function, and that amplification by chaos or by other means does not provide a solution to this problem. Furthermore, even if Heisenbergian effects did modify brain functioning, the changes would be swamped by those due to thermal noise. Cells and neural circuits have powerful noise-resistance mechanisms, that are adequate protection against thermal noise and must therefore be more than sufficient to buffer against Heisenbergian effects. Other forms of quantum indeterminism must be considered, because these can be much greater than Heisenbergian uncertainty, but these have not so far been shown to play a role in the brain. Copyright © 2013 Elsevier Inc. All rights reserved.
A position-dependent mass harmonic oscillator and deformed space
NASA Astrophysics Data System (ADS)
da Costa, Bruno G.; Borges, Ernesto P.
2018-04-01
We consider canonically conjugated generalized space and linear momentum operators x^ q and p^ q in quantum mechanics, associated with a generalized translation operator which produces infinitesimal deformed displacements controlled by a deformation parameter q. A canonical transformation (x ^ ,p ^ ) →(x^ q,p^ q ) leads the Hamiltonian of a position-dependent mass particle in usual space to another Hamiltonian of a particle with constant mass in a conservative force field of the deformed space. The equation of motion for the classical phase space (x, p) may be expressed in terms of the deformed (dual) q-derivative. We revisit the problem of a q-deformed oscillator in both classical and quantum formalisms. Particularly, this canonical transformation leads a particle with position-dependent mass in a harmonic potential to a particle with constant mass in a Morse potential. The trajectories in phase spaces (x, p) and (xq, pq) are analyzed for different values of the deformation parameter. Finally, we compare the results of the problem in classical and quantum formalisms through the principle of correspondence and the WKB approximation.
Effect of local minima on adiabatic quantum optimization.
Amin, M H S
2008-04-04
We present a perturbative method to estimate the spectral gap for adiabatic quantum optimization, based on the structure of the energy levels in the problem Hamiltonian. We show that, for problems that have an exponentially large number of local minima close to the global minimum, the gap becomes exponentially small making the computation time exponentially long. The quantum advantage of adiabatic quantum computation may then be accessed only via the local adiabatic evolution, which requires phase coherence throughout the evolution and knowledge of the spectrum. Such problems, therefore, are not suitable for adiabatic quantum computation.
NASA Astrophysics Data System (ADS)
Kandala, Abhinav; Mezzacapo, Antonio; Temme, Kristan; Bravyi, Sergey; Takita, Maika; Chavez-Garcia, Jose; Córcoles, Antonio; Smolin, John; Chow, Jerry; Gambetta, Jay
Hybrid quantum-classical algorithms can be used to find variational solutions to generic quantum problems. Here, we present an experimental implementation of a device-oriented optimizer that uses superconducting quantum hardware. The experiment relies on feedback between the quantum device and classical optimization software which is robust to measurement noise. Our device-oriented approach uses naturally available interactions for the preparation of trial states. We demonstrate the application of this technique for solving interacting spin and molecular structure problems.
Transfer of Learning in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2005-09-01
We investigate the difficulties that undergraduate students in quantum mechanics courses have in transferring learning from previous courses or within the same course from one context to another by administering written tests and conducting individual interviews. Quantum mechanics is abstract and its paradigm is very different from the classical one. A good grasp of the principles of quantum mechanics requires creating and organizing a knowledge structure consistent with the quantum postulates. Previously learned concepts such as the principle of superposition and probability can be useful in quantum mechanics if students are given opportunity to build associations between new and prior knowledge. We also discuss the need for better alignment between quantum mechanics and modern physics courses taken previously because semi-classical models can impede internalization of the quantum paradigm in more advanced courses.
Dynamic optimization and its relation to classical and quantum constrained systems
NASA Astrophysics Data System (ADS)
Contreras, Mauricio; Pellicer, Rely; Villena, Marcelo
2017-08-01
We study the structure of a simple dynamic optimization problem consisting of one state and one control variable, from a physicist's point of view. By using an analogy to a physical model, we study this system in the classical and quantum frameworks. Classically, the dynamic optimization problem is equivalent to a classical mechanics constrained system, so we must use the Dirac method to analyze it in a correct way. We find that there are two second-class constraints in the model: one fix the momenta associated with the control variables, and the other is a reminder of the optimal control law. The dynamic evolution of this constrained system is given by the Dirac's bracket of the canonical variables with the Hamiltonian. This dynamic results to be identical to the unconstrained one given by the Pontryagin equations, which are the correct classical equations of motion for our physical optimization problem. In the same Pontryagin scheme, by imposing a closed-loop λ-strategy, the optimality condition for the action gives a consistency relation, which is associated to the Hamilton-Jacobi-Bellman equation of the dynamic programming method. A similar result is achieved by quantizing the classical model. By setting the wave function Ψ(x , t) =e iS(x , t) in the quantum Schrödinger equation, a non-linear partial equation is obtained for the S function. For the right-hand side quantization, this is the Hamilton-Jacobi-Bellman equation, when S(x , t) is identified with the optimal value function. Thus, the Hamilton-Jacobi-Bellman equation in Bellman's maximum principle, can be interpreted as the quantum approach of the optimization problem.
Compressed modes for variational problems in mathematics and physics
Ozoliņš, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley
2013-01-01
This article describes a general formalism for obtaining spatially localized (“sparse”) solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger’s equation in quantum mechanics. Sparsity is achieved by adding an regularization term to the variational principle, which is shown to yield solutions with compact support (“compressed modes”). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size. PMID:24170861
Compressed modes for variational problems in mathematics and physics.
Ozolins, Vidvuds; Lai, Rongjie; Caflisch, Russel; Osher, Stanley
2013-11-12
This article describes a general formalism for obtaining spatially localized ("sparse") solutions to a class of problems in mathematical physics, which can be recast as variational optimization problems, such as the important case of Schrödinger's equation in quantum mechanics. Sparsity is achieved by adding an regularization term to the variational principle, which is shown to yield solutions with compact support ("compressed modes"). Linear combinations of these modes approximate the eigenvalue spectrum and eigenfunctions in a systematically improvable manner, and the localization properties of compressed modes make them an attractive choice for use with efficient numerical algorithms that scale linearly with the problem size.
The solution of the sixth Hilbert problem: the ultimate Galilean revolution
NASA Astrophysics Data System (ADS)
D'Ariano, Giacomo Mauro
2018-04-01
I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: `physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as `clock', `rigid rod', `force', `inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory. This article is part of the theme issue `Hilbert's sixth problem'.
The solution of the sixth Hilbert problem: the ultimate Galilean revolution.
D'Ariano, Giacomo Mauro
2018-04-28
I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: 'physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as 'clock', 'rigid rod', 'force', 'inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ballesteros, Ángel, E-mail: angelb@ubu.es; Enciso, Alberto, E-mail: aenciso@icmat.es; Herranz, Francisco J., E-mail: fjherranz@ubu.es
In this paper we quantize the N-dimensional classical Hamiltonian system H=(|q|)/(2(η+|q|)) p{sup 2}−k/(η+|q|) , that can be regarded as a deformation of the Coulomb problem with coupling constant k, that it is smoothly recovered in the limit η→0. Moreover, the kinetic energy term in H is just the one corresponding to an N-dimensional Taub–NUT space, a fact that makes this system relevant from a geometric viewpoint. Since the Hamiltonian H is known to be maximally superintegrable, we propose a quantization prescription that preserves such superintegrability in the quantum mechanical setting. We show that, to this end, one must choose asmore » the kinetic part of the Hamiltonian the conformal Laplacian of the underlying Riemannian manifold, which combines the usual Laplace–Beltrami operator on the Taub–NUT manifold and a multiple of its scalar curvature. As a consequence, we obtain a novel exactly solvable deformation of the quantum Coulomb problem, whose spectrum is computed in closed form for positive values of η and k, and showing that the well-known maximal degeneracy of the flat system is preserved in the deformed case. Several interesting algebraic and physical features of this new exactly solvable quantum system are analyzed, and the quantization problem for negative values of η and/or k is also sketched.« less
High-capacity quantum key distribution via hyperentangled degrees of freedom
NASA Astrophysics Data System (ADS)
Simon, David S.; Sergienko, Alexander V.
2014-06-01
Quantum key distribution (QKD) has long been a promising area for the application of quantum effects in solving real-world problems. However, two major obstacles have stood in the way of its widespread application: low secure key generation rates and short achievable operating distances. In this paper, a new physical mechanism for dealing with the first of these problems is proposed: the interplay between different degrees of freedom in a hyperentangled system (parametric down-conversion) is used to increase the Hilbert space dimension available for key generation while maintaining security. Polarization-based Bell tests provide security checking, while orbital angular momentum (OAM) and total angular momentum (TAM) provide a higher key generation rate. Whether to measure TAM or OAM is decided randomly in each trial. The concurrent noncommutativity of TAM with OAM and polarization provides the physical basis for quantum security. TAM measurements link polarization to OAM, so that if the legitimate participants measure OAM while the eavesdropper measures TAM (or vice-versa), then polarization entanglement is lost, revealing the eavesdropper. In contrast to other OAM-based QKD methods, complex active switching between OAM bases is not required; instead, passive switching by beam splitters combined with much simpler active switching between polarization bases makes implementation at high OAM more practical.
Quantum Mechanics/Molecular Mechanics Modeling of Enzymatic Processes: Caveats and Breakthroughs.
Quesne, Matthew G; Borowski, Tomasz; de Visser, Sam P
2016-02-18
Nature has developed large groups of enzymatic catalysts with the aim to transfer substrates into useful products, which enables biosystems to perform all their natural functions. As such, all biochemical processes in our body (we drink, we eat, we breath, we sleep, etc.) are governed by enzymes. One of the problems associated with research on biocatalysts is that they react so fast that details of their reaction mechanisms cannot be obtained with experimental work. In recent years, major advances in computational hardware and software have been made and now large (bio)chemical systems can be studied using accurate computational techniques. One such technique is the quantum mechanics/molecular mechanics (QM/MM) technique, which has gained major momentum in recent years. Unfortunately, it is not a black-box method that is easily applied, but requires careful set-up procedures. In this work we give an overview on the technical difficulties and caveats of QM/MM and discuss work-protocols developed in our groups for running successful QM/MM calculations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Geometry of Quantum Computation with Qudits
Luo, Ming-Xing; Chen, Xiu-Bo; Yang, Yi-Xian; Wang, Xiaojun
2014-01-01
The circuit complexity of quantum qubit system evolution as a primitive problem in quantum computation has been discussed widely. We investigate this problem in terms of qudit system. Using the Riemannian geometry the optimal quantum circuits are equivalent to the geodetic evolutions in specially curved parametrization of SU(dn). And the quantum circuit complexity is explicitly dependent of controllable approximation error bound. PMID:24509710
Quantum thermodynamic cycles and quantum heat engines. II.
Quan, H T
2009-04-01
We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.
United States Air Force Summer Faculty Research Program. 1988 Program Technical Report. Volume 2
1988-12-01
prove relevant for a quantum mechanical analysis of this problem. VII RECOMMENDATIONS: Considerable effort has been invested in this problem during the...into the fundementals of noise see the references at the end of this report. Let us now look at the noise involved in a transmitter-receiver system...a sig- nificant investment of effort at AFWL. After S/N improvements are made, a schedule of experiments will be executed. An analysis of the kinetic
Density-matrix-based algorithm for solving eigenvalue problems
NASA Astrophysics Data System (ADS)
Polizzi, Eric
2009-03-01
A fast and stable numerical algorithm for solving the symmetric eigenvalue problem is presented. The technique deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms) or other Davidson-Jacobi techniques and takes its inspiration from the contour integration and density-matrix representation in quantum mechanics. It will be shown that this algorithm—named FEAST—exhibits high efficiency, robustness, accuracy, and scalability on parallel architectures. Examples from electronic structure calculations of carbon nanotubes are presented, and numerical performances and capabilities are discussed.
On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation
NASA Astrophysics Data System (ADS)
Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich
2018-01-01
The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
NASA Astrophysics Data System (ADS)
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-01
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian SzIz on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
NASA Astrophysics Data System (ADS)
Rabinovich, B. I.
2006-03-01
Based on a mathematical model described in [1], some new aspects of the dynamics of a thin planar plasma ring rotating in the magnetic field of a central body are considered. The dipole field is considered assuming that the dipole has a small eccentricity, and the dipole axis is inclined at a small angle to the central body’s axis of rotation. Emphasis is placed on the problem of stability of the ring’s stationary rotation. Unlike [1], the disturbed motion is considered which has a character of eddy magneto-gyroscopic waves. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. It is demonstrated that some “elite” rings characterized by integral quantum numbers are long-living, while “lethal” or unstable rings (antirings) are associated with half-integer quantum numbers. As a result, an evolutionally rife rotating ring of magnetized plasma turns out to be stratified into a large number of narrow elite rings separated by gaps whose positions correspond to antirings. The regions of possible existence of elite rings in near-central body space are considered. Quantum numbers determining elite eigenvalues of the mean sector velocity (normalized in a certain manner) of a ring coincide with the quantum numbers appearing in the solution to the Schrödinger equation for a hydrogen atom. Perturbations of elite orbits corresponding to these quantum numbers satisfy the de Brogli quantum-mechanical condition. This is one more illustration of the isomorphism of quantization in microcosm and macrocosm.
NASA Astrophysics Data System (ADS)
Resconi, Germano; Klir, George J.; Pessa, Eliano
Recognizing that syntactic and semantic structures of classical logic are not sufficient to understand the meaning of quantum phenomena, we propose in this paper a new interpretation of quantum mechanics based on evidence theory. The connection between these two theories is obtained through a new language, quantum set theory, built on a suggestion by J. Bell. Further, we give a modal logic interpretation of quantum mechanics and quantum set theory by using Kripke's semantics of modal logic based on the concept of possible worlds. This is grounded on previous work of a number of researchers (Resconi, Klir, Harmanec) who showed how to represent evidence theory and other uncertainty theories in terms of modal logic. Moreover, we also propose a reformulation of the many-worlds interpretation of quantum mechanics in terms of Kripke's semantics. We thus show how three different theories — quantum mechanics, evidence theory, and modal logic — are interrelated. This opens, on one hand, the way to new applications of quantum mechanics within domains different from the traditional ones, and, on the other hand, the possibility of building new generalizations of quantum mechanics itself.
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
NASA Astrophysics Data System (ADS)
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory * Finite Quantum Physics and Noncommutative Geometry * Higgs as Gauge Field and the Standard Model * Canonical Quantisation of an Off-Conformal Theory * Deterministic Quantum Mechanics in One Dimension * Spin-Statistics Relations for Topological Geons in 2+1 Quantum Gravity * Generalized Fock Spaces * Geometrical Expression for Short Distance Singularities in Field Theory * 5. Mathematics and Quantum Field Theory * Knot Invariants from Quantum Field Theories * Infinite Grassmannians and Moduli Spaces of G-Bundles * A Review of an Algebraic Geometry Approach to a Model Quantum Field Theory on a Curve (Abstract) * 6. Integrable Models * Spectral Representation of Correlation Functions in Two-Dimensional Quantum Field Theories * On Various Avatars of the Pasquier Algebra * Supersymmetric Integrable Field Theories and Eight Vertex Free Fermion Models (Abstract) * 7. Lattice Field Theory * From Kondo Model and Strong Coupling Lattice QCD to the Isgur-Wise Function * Effective Confinement from a Logarithmically Running Coupling (Abstract)
Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J
2012-02-01
Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.
Quantum Information in Non-physics Departments at Liberal Arts Colleges
NASA Astrophysics Data System (ADS)
Westmoreland, Michael
2012-02-01
Quantum information and quantum computing have changed our thinking about the basic concepts of quantum physics. These fields have also introduced exciting new applications of quantum mechanics such as quantum cryptography and non-interactive measurement. It is standard to teach such topics only to advanced physics majors who have completed coursework in quantum mechanics. Recent encounters with teaching quantum cryptography to non-majors and a bout of textbook-writing suggest strategies for teaching this interesting material to those without the standard quantum mechanics background. This talk will share some of those strategies.
NASA Astrophysics Data System (ADS)
Cataloglu, Erdat
The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate positive correlation coefficient of 0.42 observed between students' QMVI scores and their final course grades was also consistent with expectations in a valid instrument. In addition, the Cronbach-alpha reliability coefficient of the QMVI was found to be 0.82. Limited findings were drawn on students' understanding of introductory quantum mechanics concepts. Data suggested that the construct of quantum mechanics understanding is most likely multidimensional and the Main Topic defined as "Quantum Mechanics Postulates" may be an especially important factor for students in acquiring a successful understanding of quantum mechanics.
NASA Astrophysics Data System (ADS)
Blanchard, Philippe; Hellmich, Mario; Ługiewicz, Piotr; Olkiewicz, Robert
Quantum mechanics is the greatest revision of our conception of the character of the physical world since Newton. Consequently, David Hilbert was very interested in quantum mechanics. He and John von Neumann discussed it frequently during von Neumann's residence in Göttingen. He published in 1932 his book Mathematical Foundations of Quantum Mechanics. In Hilbert's opinion it was the first exposition of quantum mechanics in a mathematically rigorous way. The pioneers of quantum mechanics, Heisenberg and Dirac, neither had use for rigorous mathematics nor much interest in it. Conceptually, quantum theory as developed by Bohr and Heisenberg is based on the positivism of Mach as it describes only observable quantities. It first emerged as a result of experimental data in the form of statistical observations of quantum noise, the basic concept of quantum probability.
Algorithms Bridging Quantum Computation and Chemistry
NASA Astrophysics Data System (ADS)
McClean, Jarrod Ryan
The design of new materials and chemicals derived entirely from computation has long been a goal of computational chemistry, and the governing equation whose solution would permit this dream is known. Unfortunately, the exact solution to this equation has been far too expensive and clever approximations fail in critical situations. Quantum computers offer a novel solution to this problem. In this work, we develop not only new algorithms to use quantum computers to study hard problems in chemistry, but also explore how such algorithms can help us to better understand and improve our traditional approaches. In particular, we first introduce a new method, the variational quantum eigensolver, which is designed to maximally utilize the quantum resources available in a device to solve chemical problems. We apply this method in a real quantum photonic device in the lab to study the dissociation of the helium hydride (HeH+) molecule. We also enhance this methodology with architecture specific optimizations on ion trap computers and show how linear-scaling techniques from traditional quantum chemistry can be used to improve the outlook of similar algorithms on quantum computers. We then show how studying quantum algorithms such as these can be used to understand and enhance the development of classical algorithms. In particular we use a tool from adiabatic quantum computation, Feynman's Clock, to develop a new discrete time variational principle and further establish a connection between real-time quantum dynamics and ground state eigenvalue problems. We use these tools to develop two novel parallel-in-time quantum algorithms that outperform competitive algorithms as well as offer new insights into the connection between the fermion sign problem of ground states and the dynamical sign problem of quantum dynamics. Finally we use insights gained in the study of quantum circuits to explore a general notion of sparsity in many-body quantum systems. In particular we use developments from the field of compressed sensing to find compact representations of ground states. As an application we study electronic systems and find solutions dramatically more compact than traditional configuration interaction expansions, offering hope to extend this methodology to challenging systems in chemical and material design.
Investigations of quantum heuristics for optimization
NASA Astrophysics Data System (ADS)
Rieffel, Eleanor; Hadfield, Stuart; Jiang, Zhang; Mandra, Salvatore; Venturelli, Davide; Wang, Zhihui
We explore the design of quantum heuristics for optimization, focusing on the quantum approximate optimization algorithm, a metaheuristic developed by Farhi, Goldstone, and Gutmann. We develop specific instantiations of the of quantum approximate optimization algorithm for a variety of challenging combinatorial optimization problems. Through theoretical analyses and numeric investigations of select problems, we provide insight into parameter setting and Hamiltonian design for quantum approximate optimization algorithms and related quantum heuristics, and into their implementation on hardware realizable in the near term.
Solving Quantum Ground-State Problems with Nuclear Magnetic Resonance
Li, Zhaokai; Yung, Man-Hong; Chen, Hongwei; Lu, Dawei; Whitfield, James D.; Peng, Xinhua; Aspuru-Guzik, Alán; Du, Jiangfeng
2011-01-01
Quantum ground-state problems are computationally hard problems for general many-body Hamiltonians; there is no classical or quantum algorithm known to be able to solve them efficiently. Nevertheless, if a trial wavefunction approximating the ground state is available, as often happens for many problems in physics and chemistry, a quantum computer could employ this trial wavefunction to project the ground state by means of the phase estimation algorithm (PEA). We performed an experimental realization of this idea by implementing a variational-wavefunction approach to solve the ground-state problem of the Heisenberg spin model with an NMR quantum simulator. Our iterative phase estimation procedure yields a high accuracy for the eigenenergies (to the 10−5 decimal digit). The ground-state fidelity was distilled to be more than 80%, and the singlet-to-triplet switching near the critical field is reliably captured. This result shows that quantum simulators can better leverage classical trial wave functions than classical computers PMID:22355607
Boosting quantum annealer performance via sample persistence
NASA Astrophysics Data System (ADS)
Karimi, Hamed; Rosenberg, Gili
2017-07-01
We propose a novel method for reducing the number of variables in quadratic unconstrained binary optimization problems, using a quantum annealer (or any sampler) to fix the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are usually much easier for the quantum annealer to solve, due to their being smaller and consisting of disconnected components. This approach significantly increases the success rate and number of observations of the best known energy value in samples obtained from the quantum annealer, when compared with calling the quantum annealer without using it, even when using fewer annealing cycles. Use of the method results in a considerable improvement in success metrics even for problems with high-precision couplers and biases, which are more challenging for the quantum annealer to solve. The results are further enhanced by applying the method iteratively and combining it with classical pre-processing. We present results for both Chimera graph-structured problems and embedded problems from a real-world application.
NASA Astrophysics Data System (ADS)
Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi
2013-12-01
The problem of dark energy is briefly reviewed in both theoretical and observational aspects. In the theoretical aspect, dark energy scenarios are classified into symmetry, anthropic principle, tuning mechanism, modified gravity, quantum cosmology, holographic principle, back-reaction and phenomenological types. In the observational aspect, we introduce cosmic probes, dark energy related projects, observational constraints on theoretical models and model independent reconstructions.
Supercritical entanglement in local systems: Counterexample to the area law for quantum matter.
Movassagh, Ramis; Shor, Peter W
2016-11-22
Quantum entanglement is the most surprising feature of quantum mechanics. Entanglement is simultaneously responsible for the difficulty of simulating quantum matter on a classical computer and the exponential speedups afforded by quantum computers. Ground states of quantum many-body systems typically satisfy an "area law": The amount of entanglement between a subsystem and the rest of the system is proportional to the area of the boundary. A system that obeys an area law has less entanglement and can be simulated more efficiently than a generic quantum state whose entanglement could be proportional to the total system's size. Moreover, an area law provides useful information about the low-energy physics of the system. It is widely believed that for physically reasonable quantum systems, the area law cannot be violated by more than a logarithmic factor in the system's size. We introduce a class of exactly solvable one-dimensional physical models which we can prove have exponentially more entanglement than suggested by the area law, and violate the area law by a square-root factor. This work suggests that simple quantum matter is richer and can provide much more quantum resources (i.e., entanglement) than expected. In addition to using recent advances in quantum information and condensed matter theory, we have drawn upon various branches of mathematics such as combinatorics of random walks, Brownian excursions, and fractional matching theory. We hope that the techniques developed herein may be useful for other problems in physics as well.
Supercritical entanglement in local systems: Counterexample to the area law for quantum matter
Movassagh, Ramis; Shor, Peter W.
2016-01-01
Quantum entanglement is the most surprising feature of quantum mechanics. Entanglement is simultaneously responsible for the difficulty of simulating quantum matter on a classical computer and the exponential speedups afforded by quantum computers. Ground states of quantum many-body systems typically satisfy an “area law”: The amount of entanglement between a subsystem and the rest of the system is proportional to the area of the boundary. A system that obeys an area law has less entanglement and can be simulated more efficiently than a generic quantum state whose entanglement could be proportional to the total system’s size. Moreover, an area law provides useful information about the low-energy physics of the system. It is widely believed that for physically reasonable quantum systems, the area law cannot be violated by more than a logarithmic factor in the system’s size. We introduce a class of exactly solvable one-dimensional physical models which we can prove have exponentially more entanglement than suggested by the area law, and violate the area law by a square-root factor. This work suggests that simple quantum matter is richer and can provide much more quantum resources (i.e., entanglement) than expected. In addition to using recent advances in quantum information and condensed matter theory, we have drawn upon various branches of mathematics such as combinatorics of random walks, Brownian excursions, and fractional matching theory. We hope that the techniques developed herein may be useful for other problems in physics as well. PMID:27821725
How to think about indiscernible particles
NASA Astrophysics Data System (ADS)
Giglio, Daniel Joseph
Permutation symmetries which arise in quantum mechanics pose an intriguing problem. It is not clear that particles which exhibit permutation symmetries (i.e. particles which are indiscernible, meaning that they can be swapped with each other without this yielding a new physical state) qualify as "objects" in any reasonable sense of the term. One solution to this puzzle, which I attribute to W.V. Quine, would have us eliminate such particles from our ontology altogether in order to circumvent the metaphysical vexations caused by permutation symmetries. In this essay I argue that Quine's solution is too rash, and in its place I suggest a novel solution based on altering some of the language of quantum mechanics. Before launching into the technical details of indiscernible particles, however, I begin this essay with some remarks on the methodology -- instrumentalism -- which motivates my arguments.
NASA Technical Reports Server (NTRS)
Schwenke, David W.; Truhlar, Donald G.
1990-01-01
The Generalized Newton Variational Principle for 3D quantum mechanical reactive scattering is briefly reviewed. Then three techniques are described which improve the efficiency of the computations. First, the fact that the Hamiltonian is Hermitian is used to reduce the number of integrals computed, and then the properties of localized basis functions are exploited in order to eliminate redundant work in the integral evaluation. A new type of localized basis function with desirable properties is suggested. It is shown how partitioned matrices can be used with localized basis functions to reduce the amount of work required to handle the complex boundary conditions. The new techniques do not introduce any approximations into the calculations, so they may be used to obtain converged solutions of the Schroedinger equation.
Li, Desheng
2014-01-01
This paper proposes a novel variant of cooperative quantum-behaved particle swarm optimization (CQPSO) algorithm with two mechanisms to reduce the search space and avoid the stagnation, called CQPSO-DVSA-LFD. One mechanism is called Dynamic Varying Search Area (DVSA), which takes charge of limiting the ranges of particles' activity into a reduced area. On the other hand, in order to escape the local optima, Lévy flights are used to generate the stochastic disturbance in the movement of particles. To test the performance of CQPSO-DVSA-LFD, numerical experiments are conducted to compare the proposed algorithm with different variants of PSO. According to the experimental results, the proposed method performs better than other variants of PSO on both benchmark test functions and the combinatorial optimization issue, that is, the job-shop scheduling problem.
NASA Astrophysics Data System (ADS)
Nikitin, Anatoly G.; Karadzhov, Yuri
2011-07-01
We present a collection of matrix-valued shape invariant potentials which give rise to new exactly solvable problems of SUSY quantum mechanics. It includes all irreducible matrix superpotentials of the generic form W=kQ+\\frac{1}{k} R+P, where k is a variable parameter, Q is the unit matrix multiplied by a real-valued function of independent variable x, and P and R are the Hermitian matrices depending on x. In particular, we recover the Pron'ko-Stroganov 'matrix Coulomb potential' and all known scalar shape invariant potentials of SUSY quantum mechanics. In addition, five new shape invariant potentials are presented. Three of them admit a dual shape invariance, i.e. the related Hamiltonians can be factorized using two non-equivalent superpotentials. We find discrete spectrum and eigenvectors for the corresponding Schrödinger equations and prove that these eigenvectors are normalizable.
Quantum speedup of the traveling-salesman problem for bounded-degree graphs
NASA Astrophysics Data System (ADS)
Moylett, Dominic J.; Linden, Noah; Montanaro, Ashley
2017-03-01
The traveling-salesman problem is one of the most famous problems in graph theory. However, little is currently known about the extent to which quantum computers could speed up algorithms for the problem. In this paper, we prove a quadratic quantum speedup when the degree of each vertex is at most 3 by applying a quantum backtracking algorithm to a classical algorithm by Xiao and Nagamochi. We then use similar techniques to accelerate a classical algorithm for when the degree of each vertex is at most 4, before speeding up higher-degree graphs via reductions to these instances.
Truth Values of Quantum Phenomena
NASA Astrophysics Data System (ADS)
Bolotin, Arkady
2018-04-01
In the paper, the idea of describing not-yet-verified properties of quantum objects with logical many-valuedness is scrutinized. As it is argued, to promote such an idea, the following two foundational problems of many-valued quantum logic must be decided: the problem of choosing a proper system of many-valued logic and the problem of the emergence of bivalence from logical many-valuedness. Difficulties accompanying solutions of these problems are discussed.
Quantum cryptography as a retrodiction problem.
Werner, A H; Franz, T; Werner, R F
2009-11-27
We propose a quantum key distribution protocol based on a quantum retrodiction protocol, known as the Mean King problem. The protocol uses a two way quantum channel. We show security against coherent attacks in a transmission-error free scenario, even if Eve is allowed to attack both transmissions. This establishes a connection between retrodiction and key distribution.
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of non-Markovian quantum dynamics are also briefly discussed.
Solving quantum optimal control problems using Clebsch variables and Lin constraints
NASA Astrophysics Data System (ADS)
Delgado-Téllez, M.; Ibort, A.; Rodríguez de la Peña, T.
2018-01-01
Clebsch variables (and Lin constraints) are applied to the study of a class of optimal control problems for affine-controlled quantum systems. The optimal control problem will be modelled with controls defined on an auxiliary space where the dynamical group of the system acts freely. The reciprocity between both theories: the classical theory defined by the objective functional and the quantum system, is established by using a suitable version of Lagrange’s multipliers theorem and a geometrical interpretation of the constraints of the system as defining a subspace of horizontal curves in an associated bundle. It is shown how the solutions of the variational problem defined by the objective functional determine solutions of the quantum problem. Then a new way of obtaining explicit solutions for a family of optimal control problems for affine-controlled quantum systems (finite or infinite dimensional) is obtained. One of its main advantages, is the the use of Clebsch variables allows to compute such solutions from solutions of invariant problems that can often be computed explicitly. This procedure can be presented as an algorithm that can be applied to a large class of systems. Finally, some simple examples, spin control, a simple quantum Hamiltonian with an ‘Elroy beanie’ type classical model and a controlled one-dimensional quantum harmonic oscillator, illustrating the main features of the theory, will be discussed.
Compiling quantum circuits to realistic hardware architectures using temporal planners
NASA Astrophysics Data System (ADS)
Venturelli, Davide; Do, Minh; Rieffel, Eleanor; Frank, Jeremy
2018-04-01
To run quantum algorithms on emerging gate-model quantum hardware, quantum circuits must be compiled to take into account constraints on the hardware. For near-term hardware, with only limited means to mitigate decoherence, it is critical to minimize the duration of the circuit. We investigate the application of temporal planners to the problem of compiling quantum circuits to newly emerging quantum hardware. While our approach is general, we focus on compiling to superconducting hardware architectures with nearest neighbor constraints. Our initial experiments focus on compiling Quantum Alternating Operator Ansatz (QAOA) circuits whose high number of commuting gates allow great flexibility in the order in which the gates can be applied. That freedom makes it more challenging to find optimal compilations but also means there is a greater potential win from more optimized compilation than for less flexible circuits. We map this quantum circuit compilation problem to a temporal planning problem, and generated a test suite of compilation problems for QAOA circuits of various sizes to a realistic hardware architecture. We report compilation results from several state-of-the-art temporal planners on this test set. This early empirical evaluation demonstrates that temporal planning is a viable approach to quantum circuit compilation.
Exploring the quantum speed limit with computer games
NASA Astrophysics Data System (ADS)
Sørensen, Jens Jakob W. H.; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F.
2016-04-01
Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. ‘Gamification’—the application of game elements in a non-game context—is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.
Exploring the quantum speed limit with computer games.
Sørensen, Jens Jakob W H; Pedersen, Mads Kock; Munch, Michael; Haikka, Pinja; Jensen, Jesper Halkjær; Planke, Tilo; Andreasen, Morten Ginnerup; Gajdacz, Miroslav; Mølmer, Klaus; Lieberoth, Andreas; Sherson, Jacob F
2016-04-14
Humans routinely solve problems of immense computational complexity by intuitively forming simple, low-dimensional heuristic strategies. Citizen science (or crowd sourcing) is a way of exploiting this ability by presenting scientific research problems to non-experts. 'Gamification'--the application of game elements in a non-game context--is an effective tool with which to enable citizen scientists to provide solutions to research problems. The citizen science games Foldit, EteRNA and EyeWire have been used successfully to study protein and RNA folding and neuron mapping, but so far gamification has not been applied to problems in quantum physics. Here we report on Quantum Moves, an online platform gamifying optimization problems in quantum physics. We show that human players are able to find solutions to difficult problems associated with the task of quantum computing. Players succeed where purely numerical optimization fails, and analyses of their solutions provide insights into the problem of optimization of a more profound and general nature. Using player strategies, we have thus developed a few-parameter heuristic optimization method that efficiently outperforms the most prominent established numerical methods. The numerical complexity associated with time-optimal solutions increases for shorter process durations. To understand this better, we produced a low-dimensional rendering of the optimization landscape. This rendering reveals why traditional optimization methods fail near the quantum speed limit (that is, the shortest process duration with perfect fidelity). Combined analyses of optimization landscapes and heuristic solution strategies may benefit wider classes of optimization problems in quantum physics and beyond.
NASA Astrophysics Data System (ADS)
Rohrlich, Daniel
Y. Aharonov and A. Shimony both conjectured that two axioms - relativistic causality (``no superluminal signalling'') and nonlocality - so nearly contradict each other that only quantum mechanics reconciles them. Can we indeed derive quantum mechanics, at least in part, from these two axioms? No: ``PR-box'' correlations show that quantum correlations are not the most nonlocal correlations consistent with relativistic causality. Here we replace ``nonlocality'' with ``retrocausality'' and supplement the axioms of relativistic causality and retrocausality with a natural and minimal third axiom: the existence of a classical limit, in which macroscopic observables commute. That is, just as quantum mechanics has a classical limit, so must any generalization of quantum mechanics. In this limit, PR-box correlations violaterelativistic causality. Generalized to all stronger-than-quantum bipartite correlations, this result is a derivation of Tsirelson's bound (a theorem of quantum mechanics) from the three axioms of relativistic causality, retrocausality and the existence of a classical limit. Although the derivation does not assume quantum mechanics, it points to the Hilbert space structure that underlies quantum correlations. I thank the John Templeton Foundation (Project ID 43297) and the Israel Science Foundation (Grant No. 1190/13) for support.
A gist of comprehensive review of hadronic chemistry and its applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tangde, Vijay M.
20{sup th} century theories of Quantum Mechanics and Quantum Chemistry are exactly valid only when considered to represent the atomic structures. While considering the more general aspects of atomic combinations these theories fail to explain all the related experimental data from first unadulterated axiomatic principles. According to Quantum Chemistry two valence electrons should repel each other and as such there is no mathematical representation of a strong attractive forces between such valence electrons. In view of these and other insufficiencies of Quantum Chemistry, an Italian-American Scientist Professor Ruggero Maria Santilli during his more than five decades of dedicated and sustainedmore » research has denounced the fact that quantum chemistry is mostly based on mere nomenclatures. Professor R M Santilli first formulated the iso-, geno- and hyper- mathematics [1, 2, 3, 4] that helped in understanding numerous diversified problems and removing inadequacies in most of the established and celebrated theories of 20th century physics and chemistry. This involves the isotopic, genotopic, etc. lifting of Lie algebra that generated Lie admissible mathematics to properly describe irreversible processes. The studies on Hadronic Mechanics in general and chemistry in particular based on Santilli’s mathematics[3, 4, 5] for the first time has removed the very fundamental limitations of quantum chemistry [2, 6, 7, 8]. In the present discussion, a comprehensive review of Hadronic Chemistry is presented that imparts the completeness to the Quantum Chemistry via an addition of effects at distances of the order of 1 fm (only) which are assumed to be Non-linear, Non-local, Non-potential, Non-hamiltonian and thus Non-unitary, stepwise successes of Hadronic Chemistry and its application in development of a new chemical species called Magnecules.« less
Bell's theorem and the problem of decidability between the views of Einstein and Bohr.
Hess, K; Philipp, W
2001-12-04
Einstein, Podolsky, and Rosen (EPR) have designed a gedanken experiment that suggested a theory that was more complete than quantum mechanics. The EPR design was later realized in various forms, with experimental results close to the quantum mechanical prediction. The experimental results by themselves have no bearing on the EPR claim that quantum mechanics must be incomplete nor on the existence of hidden parameters. However, the well known inequalities of Bell are based on the assumption that local hidden parameters exist and, when combined with conflicting experimental results, do appear to prove that local hidden parameters cannot exist. This fact leaves only instantaneous actions at a distance (called "spooky" by Einstein) to explain the experiments. The Bell inequalities are based on a mathematical model of the EPR experiments. They have no experimental confirmation, because they contradict the results of all EPR experiments. In addition to the assumption that hidden parameters exist, Bell tacitly makes a variety of other assumptions; for instance, he assumes that the hidden parameters are governed by a single probability measure independent of the analyzer settings. We argue that the mathematical model of Bell excludes a large set of local hidden variables and a large variety of probability densities. Our set of local hidden variables includes time-like correlated parameters and a generalized probability density. We prove that our extended space of local hidden variables does permit derivation of the quantum result and is consistent with all known experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niquet, Yann-Michel, E-mail: yniquet@cea.fr; Nguyen, Viet-Hung; Duchemin, Ivan
2014-02-07
We discuss carrier mobilities in the quantum Non-Equilibrium Green's Functions (NEGF) framework. We introduce a method for the extraction of the mobility that is free from contact resistance contamination and with minimal needs for ensemble averages. We focus on silicon thin films as an illustration, although the method can be applied to various materials such as semiconductor nanowires or carbon nanostructures. We then introduce a new paradigm for the definition of the partial mobility μ{sub M} associated with a given elastic scattering mechanism “M,” taking phonons (PH) as a reference (μ{sub M}{sup −1}=μ{sub PH+M}{sup −1}−μ{sub PH}{sup −1}). We argue thatmore » this definition makes better sense in a quantum transport framework as it is free from long range interference effects that can appear in purely ballistic calculations. As a matter of fact, these mobilities satisfy Matthiessen's rule for three mechanisms [e.g., surface roughness (SR), remote Coulomb scattering (RCS) and phonons] much better than the usual, single mechanism calculations. We also discuss the problems raised by the long range spatial correlations in the RCS disorder. Finally, we compare semi-classical Kubo-Greenwood (KG) and quantum NEGF calculations. We show that KG and NEGF are in reasonable agreement for phonon and RCS, yet not for SR. We discuss the reasons for these discrepancies.« less
Solving the three-body Coulomb breakup problem using exterior complex scaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.
2004-05-17
Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish themore » formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dress, W.B.
Rosen's modeling relation is embedded in Popper's three worlds to provide an heuristic tool for model building and a guide for thinking about complex systems. The utility of this construct is demonstrated by suggesting a solution to the problem of pseudo science and a resolution of the famous Bohr-Einstein debates. A theory of bizarre systems is presented by an analogy with entangled particles of quantum mechanics. This theory underscores the poverty of present-day computational systems (e.g., computers) for creating complex and bizarre entities by distinguishing between mechanism and organism.
NASA Astrophysics Data System (ADS)
Tuszynski, Jack A.; Woolf, Nancy
This chapter provides an introduction to the rest of the book, which has a multidisciplinary approach to the physics of consciousness. We summarize the various contributions and present our own point of view, which is that there are some deficiencies in defining higher-order consciousness in strict terms of classic physics. We favor a proposal that considers some aspects of quantum-mechanical operations among molecules involved with neurotransmission and mechanical transport of synaptic proteins. In our view, the wiring of the brain is not as complex, and certainly not as integrated, as commonly assumed. Instead, the wiring pattern redundantly obeys a few general principles focused on high resolution rather than crossmodal integration. Basing cognitive functions, such as higher-order consciousness, solely on electrophysiological responses in neural networks thus wired may not suffice. On the other hand, coherent quantum computing, executed by tubulins, the protein subunits of microtubules, may exert en masse influences over the transport of many receptor and scaffolding proteins to various activated synapses, thereby accounting for the unity of conscious experience. We discuss the potential problems of quantum computing, such as decoherence, and also present counterarguments, as well as recent empirical results consistent with the notion that quantum computing in the interiors of neurons, in particular, within the interiors of dendrites may indeed be possible.
Quantum biology at the cellular level--elements of the research program.
Bordonaro, Michael; Ogryzko, Vasily
2013-04-01
Quantum biology is emerging as a new field at the intersection between fundamental physics and biology, promising novel insights into the nature and origin of biological order. We discuss several elements of QBCL (quantum biology at cellular level) - a research program designed to extend the reach of quantum concepts to higher than molecular levels of biological organization. We propose a new general way to address the issue of environmentally induced decoherence and macroscopic superpositions in biological systems, emphasizing the 'basis-dependent' nature of these concepts. We introduce the notion of 'formal superposition' and distinguish it from that of Schroedinger's cat (i.e., a superposition of macroscopically distinct states). Whereas the latter notion presents a genuine foundational problem, the former one contradicts neither common sense nor observation, and may be used to describe cellular 'decision-making' and adaptation. We stress that the interpretation of the notion of 'formal superposition' should involve non-classical correlations between molecular events in a cell. Further, we describe how better understanding of the physics of Life can shed new light on the mechanism driving evolutionary adaptation (viz., 'Basis-Dependent Selection', BDS). Experimental tests of BDS and the potential role of synthetic biology in closing the 'evolvability mechanism' loophole are also discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
A Process Algebra Approach to Quantum Electrodynamics
NASA Astrophysics Data System (ADS)
Sulis, William
2017-12-01
The process algebra program is directed towards developing a realist model of quantum mechanics free of paradoxes, divergences and conceptual confusions. From this perspective, fundamental phenomena are viewed as emerging from primitive informational elements generated by processes. The process algebra has been shown to successfully reproduce scalar non-relativistic quantum mechanics (NRQM) without the usual paradoxes and dualities. NRQM appears as an effective theory which emerges under specific asymptotic limits. Space-time, scalar particle wave functions and the Born rule are all emergent in this framework. In this paper, the process algebra model is reviewed, extended to the relativistic setting, and then applied to the problem of electrodynamics. A semiclassical version is presented in which a Minkowski-like space-time emerges as well as a vector potential that is discrete and photon-like at small scales and near-continuous and wave-like at large scales. QED is viewed as an effective theory at small scales while Maxwell theory becomes an effective theory at large scales. The process algebra version of quantum electrodynamics is intuitive and realist, free from divergences and eliminates the distinction between particle, field and wave. Computations are carried out using the configuration space process covering map, although the connection to second quantization has not been fully explored.
Quantum issues in optical communication. [noise reduction in signal reception
NASA Technical Reports Server (NTRS)
Kennedy, R. S.
1973-01-01
Various approaches to the problem of controlling quantum noise, the dominant noise in an optical communications system, are discussed. It is shown that, no matter which way the problem is approached, there always remain uncertainties. These uncertainties exist because, to date, only very few communication problems have been solved in their full quantum form.
Quantum adiabatic machine learning
NASA Astrophysics Data System (ADS)
Pudenz, Kristen L.; Lidar, Daniel A.
2013-05-01
We develop an approach to machine learning and anomaly detection via quantum adiabatic evolution. This approach consists of two quantum phases, with some amount of classical preprocessing to set up the quantum problems. In the training phase we identify an optimal set of weak classifiers, to form a single strong classifier. In the testing phase we adiabatically evolve one or more strong classifiers on a superposition of inputs in order to find certain anomalous elements in the classification space. Both the training and testing phases are executed via quantum adiabatic evolution. All quantum processing is strictly limited to two-qubit interactions so as to ensure physical feasibility. We apply and illustrate this approach in detail to the problem of software verification and validation, with a specific example of the learning phase applied to a problem of interest in flight control systems. Beyond this example, the algorithm can be used to attack a broad class of anomaly detection problems.
Experimental realization of a one-way quantum computer algorithm solving Simon's problem.
Tame, M S; Bell, B A; Di Franco, C; Wadsworth, W J; Rarity, J G
2014-11-14
We report an experimental demonstration of a one-way implementation of a quantum algorithm solving Simon's problem-a black-box period-finding problem that has an exponential gap between the classical and quantum runtime. Using an all-optical setup and modifying the bases of single-qubit measurements on a five-qubit cluster state, key representative functions of the logical two-qubit version's black box can be queried and solved. To the best of our knowledge, this work represents the first experimental realization of the quantum algorithm solving Simon's problem. The experimental results are in excellent agreement with the theoretical model, demonstrating the successful performance of the algorithm. With a view to scaling up to larger numbers of qubits, we analyze the resource requirements for an n-qubit version. This work helps highlight how one-way quantum computing provides a practical route to experimentally investigating the quantum-classical gap in the query complexity model.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S P
2013-04-28
PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.
Demonstration of quantum advantage in machine learning
NASA Astrophysics Data System (ADS)
Ristè, Diego; da Silva, Marcus P.; Ryan, Colm A.; Cross, Andrew W.; Córcoles, Antonio D.; Smolin, John A.; Gambetta, Jay M.; Chow, Jerry M.; Johnson, Blake R.
2017-04-01
The main promise of quantum computing is to efficiently solve certain problems that are prohibitively expensive for a classical computer. Most problems with a proven quantum advantage involve the repeated use of a black box, or oracle, whose structure encodes the solution. One measure of the algorithmic performance is the query complexity, i.e., the scaling of the number of oracle calls needed to find the solution with a given probability. Few-qubit demonstrations of quantum algorithms, such as Deutsch-Jozsa and Grover, have been implemented across diverse physical systems such as nuclear magnetic resonance, trapped ions, optical systems, and superconducting circuits. However, at the small scale, these problems can already be solved classically with a few oracle queries, limiting the obtained advantage. Here we solve an oracle-based problem, known as learning parity with noise, on a five-qubit superconducting processor. Executing classical and quantum algorithms using the same oracle, we observe a large gap in query count in favor of quantum processing. We find that this gap grows by orders of magnitude as a function of the error rates and the problem size. This result demonstrates that, while complex fault-tolerant architectures will be required for universal quantum computing, a significant quantum advantage already emerges in existing noisy systems.
An implementation problem for boson fields and quantum Girsanov transform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr; Obata, Nobuaki, E-mail: obata@math.is.tohoku.ac.jp
2016-08-15
We study an implementation problem for quadratic functions of annihilation and creation operators on a boson field in terms of quantum white noise calculus. The implementation problem is shown to be equivalent to a linear differential equation for white noise operators containing quantum white noise derivatives. The solution is explicitly obtained and turns out to form a class of white noise operators including generalized Fourier–Gauss and Fourier–Mehler transforms, Bogoliubov transform, and a quantum extension of the Girsanov transform.
Portfolios of quantum algorithms.
Maurer, S M; Hogg, T; Huberman, B A
2001-12-17
Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can find the solution of hard problems only probabilistically. Thus the efficiency of the algorithms has to be characterized by both the expected time to completion and the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-satisfiability.
NASA Astrophysics Data System (ADS)
Laino, Luigi
2018-06-01
In the following paper, the author will try to test the meaning of the transcendental approach in respect of the inner changes implied by the idea of quantum gravity. He will firstly describe the basic methodological Kant's aim, viz. the grounding of a meta-science of physics as the a priori corpus of physical knowledge. After that, he will take into account the problematic physical and philosophical relationship between the theory of relativity and the quantum mechanics; in showing how the elementary ontological and epistemological assumptions of experience result to be changed within them, he will also show the further modifications occurred in the development of the loop quantum gravity. He will particularly focus on the tough problem of the relationship space-matter, in order to settle the decisive question about the possibility of keeping a transcendental approach in the light of quantum gravity. He will positively answer by recalling Cassirer's theory of the invariants of experience, although he will also add some problematic issues arising from the new physical context.
On quantum integrability of the Landau-Lifshitz model
NASA Astrophysics Data System (ADS)
Melikyan, A.; Pinzul, A.
2009-10-01
We investigate the quantum integrability of the Landau-Lifshitz (LL) model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin [Lett. Math. Phys. 15, 357 (1988)] and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.
The quantum computer game: citizen science
NASA Astrophysics Data System (ADS)
Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob
2013-05-01
Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.
Niels Bohr on the wave function and the classical/quantum divide
NASA Astrophysics Data System (ADS)
Zinkernagel, Henrik
2016-02-01
It is well known that Niels Bohr insisted on the necessity of classical concepts in the account of quantum phenomena. But there is little consensus concerning his reasons, and what he exactly meant by this. In this paper, I re-examine Bohr's interpretation of quantum mechanics, and argue that the necessity of the classical can be seen as part of his response to the measurement problem. More generally, I attempt to clarify Bohr's view on the classical/quantum divide, arguing that the relation between the two theories is that of mutual dependence. An important element in this clarification consists in distinguishing Bohr's idea of the wave function as symbolic from both a purely epistemic and an ontological interpretation. Together with new evidence concerning Bohr's conception of the wave function collapse, this sets his interpretation apart from both standard versions of the Copenhagen interpretation, and from some of the reconstructions of his view found in the literature. I conclude with a few remarks on how Bohr's ideas make much sense also when modern developments in quantum gravity and early universe cosmology are taken into account.
Level statistics of disordered spin-1/2 systems and materials with localized Cooper pairs.
Cuevas, Emilio; Feigel'man, Mikhail; Ioffe, Lev; Mezard, Marc
2012-01-01
The origin of continuous energy spectra in large disordered interacting quantum systems is one of the key unsolved problems in quantum physics. Although small quantum systems with discrete energy levels are noiseless and stay coherent forever in the absence of any coupling to external world, most large-scale quantum systems are able to produce a thermal bath and excitation decay. This intrinsic decoherence is manifested by a broadening of energy levels, which aquire a finite width. The important question is: what is the driving force and the mechanism of transition(s) between these two types of many-body systems - with and without intrinsic decoherence? Here we address this question via the numerical study of energy-level statistics of a system of interacting spin-1/2 with random transverse fields. We present the first evidence for a well-defined quantum phase transition between domains of discrete and continous many-body spectra in such spin models, implying the appearance of novel insulating phases in the vicinity of the superconductor-insulator transition in InO(x) and similar materials.
Quantum Chemistry in Great Britain: Developing a Mathematical Framework for Quantum Chemistry
NASA Astrophysics Data System (ADS)
Simões, Ana; Gavroglu, Kostas
By 1935 quantum chemistry was already delineated as a distinct sub-discipline due to the contributions of Fritz London, Walter Heitler, Friedrich Hund, Erich Hückel, Robert Mulliken, Linus Pauling, John van Vleck and John Slater. These people are credited with showing that the application of quantum mechanics to the solution of chemical problems was, indeed, possible, especially so after the introduction of a number of new concepts and the adoption of certain approximation methods. And though a number of chemists had started talking of the formation of theoretical or, even, mathematical chemistry, a fully developed mathematical framework of quantum chemistry was still wanting. The work of three persons in particular-of John E. Lennard-Jones, Douglas R. Hartree, and Charles Alfred Coulson-has been absolutely crucial in the development of such a framework. In this paper we shall discuss the work of these three researchers who started their careers in the Cambridge tradition of mathematical physics and who at some point of their careers all became professors of applied mathematics. We shall argue that their work consisted of decisive contributions to the development of such a mathematical framework for quantum chemistry.
The capacity to transmit classical information via black holes
NASA Astrophysics Data System (ADS)
Adami, Christoph; Ver Steeg, Greg
2013-03-01
One of the most vexing problems in theoretical physics is the relationship between quantum mechanics and gravity. According to an argument originally by Hawking, a black hole must destroy any information that is incident on it because the only radiation that a black hole releases during its evaporation (the Hawking radiation) is precisely thermal. Surprisingly, this claim has never been investigated within a quantum information-theoretic framework, where the black hole is treated as a quantum channel to transmit classical information. We calculate the capacity of the quantum black hole channel to transmit classical information (the Holevo capacity) within curved-space quantum field theory, and show that the information carried by late-time particles sent into a black hole can be recovered with arbitrary accuracy, from the signature left behind by the stimulated emission of radiation that must accompany any absorption event. We also show that this stimulated emission turns the black hole into an almost-optimal quantum cloning machine, where the violation of the no-cloning theorem is ensured by the noise provided by the Hawking radiation. Thus, rather than threatening the consistency of theoretical physics, Hawking radiation manages to save it instead.
Some problems in applications of the linear variational method
NASA Astrophysics Data System (ADS)
Pupyshev, Vladimir I.; Montgomery, H. E.
2015-09-01
The linear variational method is a standard computational method in quantum mechanics and quantum chemistry. As taught in most classes, the general guidance is to include as many basis functions as practical in the variational wave function. However, if it is desired to study the patterns of energy change accompanying the change of system parameters such as the shape and strength of the potential energy, the problem becomes more complicated. We use one-dimensional systems with a particle in a rectangular or in a harmonic potential confined in an infinite rectangular box to illustrate situations where a variational calculation can give incorrect results. These situations result when the energy of the lowest eigenvalue is strongly dependent on the parameters that describe the shape and strength of the potential. The numerical examples described in this work are provided as cautionary notes for practitioners of numerical variational calculations.
Learning phase transitions by confusion
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
2017-02-01
Classifying phases of matter is key to our understanding of many problems in physics. For quantum-mechanical systems in particular, the task can be daunting due to the exponentially large Hilbert space. With modern computing power and access to ever-larger data sets, classification problems are now routinely solved using machine-learning techniques. Here, we propose a neural-network approach to finding phase transitions, based on the performance of a neural network after it is trained with data that are deliberately labelled incorrectly. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to the development of a generic tool for identifying unexplored phase transitions.
Learning phase transitions by confusion
NASA Astrophysics Data System (ADS)
van Nieuwenburg, Evert; Liu, Ye-Hua; Huber, Sebastian
Classifying phases of matter is a central problem in physics. For quantum mechanical systems, this task can be daunting owing to the exponentially large Hilbert space. Thanks to the available computing power and access to ever larger data sets, classification problems are now routinely solved using machine learning techniques. Here, we propose to use a neural network based approach to find transitions depending on the performance of the neural network after training it with deliberately incorrectly labelled data. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to a generic tool to identify unexplored transitions.