Science.gov

Sample records for quantum mechanics main

  1. Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Commins, Eugene D.

    2014-10-01

    Preface; 1. Introduction; 2. Mathematical preliminaries; 3. The rules of quantum mechanics; 4. The connection between the fundamental rules and wave mechanics; 5. Further illustrations of the rules of quantum mechanics; 6. Further developments in one-dimensional wave mechanics; 7. The theory of angular momentum; 8. Wave mechanics in three dimensions: hydrogenic atoms; 9. Time-independent approximations for bound state problems; 10. Applications of static perturbation theory; 11. Identical particles; 12. Atomic structure; 13. Molecules; 14. The stability of matter; 15. Photons; 16. Interaction of non-relativistic charged particles and radiation; 17. Further topics in perturbation theory; 18. Scattering; 19. Special relativity and quantum mechanics: the Klein-Gordon equation; 20. The Dirac equation; 21. Interaction of a relativistic spin 1/2 particle with an external electromagnetic field; 22. The Dirac field; 23. Interaction between relativistic electrons, positrons, and photons; 24. The quantum mechanics of weak interactions; 25. The quantum measurement problem; Appendix A: useful inequalities for quantum mechanics; Appendix B: Bell's inequality; Appendix C: spin of the photon: vector spherical waves; Works cited; Bibliography; Index.

  2. Bohmian quantum mechanics with quantum trajectories

    NASA Astrophysics Data System (ADS)

    Jeong, Yeuncheol

    The quantum trajectory method in the hydrodynamical formulation of Madelung-Bohm-Takabayasi quantum mechanics is an example of showing the cognitive importance of scientific illustrations and metaphors, especially, in this case, in computational quantum chemistry and electrical engineering. The method involves several numerical schemes of solving a set of hydrodynamical equations of motion for probability density fluids, based on the propagation of those probability density trajectories. The quantum trajectory method gives rise to, for example, an authentic quantum electron transport theory of motion to, among others, classically-minded applied scientists who probably have less of a commitment to traditional quantum mechanics. They were not the usual audience of quantum mechanics and simply choose to use a non-Copenhagen type interpretation to their advantage. Thus, the metaphysical issues physicists had a trouble with are not the main concern of the scientists. With the advantages of a visual and illustrative trajectory, the quantum theory of motion by Bohm effectively bridges quantum and classical physics, especially, in the mesoscale domain. Without having an abrupt shift in actions and beliefs from the classical to the quantum world, scientists and engineers are able to enjoy human cognitive capacities extended into the quantum mechanical domain.

  3. Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    A development of quantum theory that was initiated in the 1920s by Werner Heisenberg (1901-76) and Erwin Schrödinger (1887-1961). The theory drew on a proposal made in 1925 Prince Louis de Broglie (1892-1987), that particles have wavelike properties (the wave-particle duality) and that an electron, for example, could in some respects be regarded as a wave with a wavelength that depended on its mo...

  4. Quantum mechanics and quantum information theory

    NASA Astrophysics Data System (ADS)

    van Camp, Wesley William

    The principle aim of this dissertation is to investigate the philosophical application of quantum information theory to interpretational issues regarding the theory of quantum mechanics. Recently, quantum information theory has emerged as a potential source for such an interpretation. The main question with which this dissertation will be concerned is whether or not an information-theoretic interpretation can serve as a conceptually acceptable interpretation of quantum mechanics. It will be argued that some of the more obvious approaches -- that quantum information theory shows us that ultimately the world is made of information, and quantum Bayesianism -- fail as philosophical interpretations of quantum mechanics. However, the information-theoretic approach of Clifton, Bub, and Halvorson introduces Einstein's distinction between principle theories and constructive theories, arguing that quantum mechanics is best understood as an information-theoretic principle theory. While I argue that this particular approach fails, it does offer a viable new philosophical role for information theory. Specifically, an investigation of interpretationally successful principle theories such as Newtonian mechanics, special relativity, and general relativity, shows that the particular principles employed are necessary as constitutive elements of a framework which partially defines the basic explanatory concepts of space, time, and motion. Without such constitutive principles as preconditions for empirical meaning, scientific progress is hampered. It is argued that the philosophical issues in quantum mechanics stem from an analogous conceptual crisis. On the basis of this comparison, the best strategy for resolving these problems is to apply a similar sort of conceptual analysis to quantum mechanics so as to provide an appropriate set of constitutive principles clarifying the conceptual issues at stake. It is further argued that quantum information theory is ideally placed as a novel

  5. Testing Nonassociative Quantum Mechanics.

    PubMed

    Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut

    2015-11-27

    The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.

  6. Is quantum mechanics exact?

    SciTech Connect

    Kapustin, Anton

    2013-06-15

    We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.

  7. Relativity and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Brändas, Erkki J.

    2007-12-01

    The old dilemma of quantum mechanics versus the theory of relativity is reconsidered via a first principles relativistically invariant theory. By analytic extension of quantum mechanics into the complex plane one may (i) include dynamical features such as time- and length-scales and (ii) examine the possibility and flexibility of so-called general Jordan block formations. The present viewpoint asks for a new perspective on the age-old problem of quantum mechanics versus the theory of relativity. To bring these ideas together, we will establish the relation with the Klein-Gordon-Dirac relativistic theory and confirm some dynamical features of both the special and the general relativity theory.

  8. Quantum Mechanics From the Cradle?

    ERIC Educational Resources Information Center

    Martin, John L.

    1974-01-01

    States that the major problem in learning quantum mechanics is often the student's ignorance of classical mechanics and that one conceptual hurdle in quantum mechanics is its statistical nature, in contrast to the determinism of classical mechanics. (MLH)

  9. Grassmann matrix quantum mechanics

    DOE PAGES

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit.more » In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.« less

  10. Grassmann matrix quantum mechanics

    SciTech Connect

    Anninos, Dionysios; Denef, Frederik; Monten, Ruben

    2016-04-21

    We explore quantum mechanical theories whose fundamental degrees of freedom are rectangular matrices with Grassmann valued matrix elements. We study particular models where the low energy sector can be described in terms of a bosonic Hermitian matrix quantum mechanics. We describe the classical curved phase space that emerges in the low energy sector. The phase space lives on a compact Kähler manifold parameterized by a complex matrix, of the type discovered some time ago by Berezin. The emergence of a semiclassical bosonic matrix quantum mechanics at low energies requires that the original Grassmann matrices be in the long rectangular limit. In conclusion, we discuss possible holographic interpretations of such matrix models which, by construction, are endowed with a finite dimensional Hilbert space.

  11. Copenhagen quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hollowood, Timothy J.

    2016-07-01

    In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrödinger cat states are the norm rather than curiosities generated in physicists' laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr's quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics.

  12. Introduction to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Griffiths, David J.

    2016-09-01

    Part I. Theory: 1. The wave function; 2. Time-independent Schrödinger equation; 3. Formalism; 4. Quantum mechanics in three dimensions; 5. Identical particles; Part II. Applications: 6. Time-independent perturbation theory; 7. The variational principle; 8. The WKB approximation; 9. Time-dependent perturbation theory; 10. The adiabatic approximation; 11. Scattering; 12. Afterword; Appendix. Linear algebra.

  13. Epigenetics: Biology's Quantum Mechanics.

    PubMed

    Jorgensen, Richard A

    2011-01-01

    The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.

  14. Quantum Mechanics, Volume 1

    NASA Astrophysics Data System (ADS)

    Cohen-Tannoudji, Claude; Diu, Bernard; Laloe, Frank

    1986-06-01

    Beginning students of quantum mechanics frequently experience difficulties separating essential underlying principles from the specific examples to which these principles have been historically applied. Nobel-Prize-winner Claude Cohen-Tannoudji and his colleagues have written this book to eliminate precisely these difficulties. Fourteen chapters provide a clarity of organization, careful attention to pedagogical details, and a wealth of topics and examples which make this work a textbook as well as a timeless reference, allowing to tailor courses to meet students' specific needs. Each chapter starts with a clear exposition of the problem which is then treated, and logically develops the physical and mathematical concept. These chapters emphasize the underlying principles of the material, undiluted by extensive references to applications and practical examples which are put into complementary sections. The book begins with a qualitative introduction to quantum mechanical ideas using simple optical analogies and continues with a systematic and thorough presentation of the mathematical tools and postulates of quantum mechanics as well as a discussion of their physical content. Applications follow, starting with the simplest ones like e.g. the harmonic oscillator, and becoming gradually more complicated (the hydrogen atom, approximation methods, etc.). The complementary sections each expand this basic knowledge, supplying a wide range of applications and related topics as well as detailed expositions of a large number of special problems and more advanced topics, integrated as an essential portion of the text.

  15. Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    David, J.; Fernández, C.

    2010-10-01

    Supersymmetric quantum mechanics (SUSY QM) is a powerful tool for generating new potentials with known spectra departing from an initial solvable one. In these lecture notes we will present some general formulae concerning SUSY QM of first second order for one-dimensional arbitrary systems, we will illustrate the method through the trigonometric Pöschl-Teller potentials. Some intrinsically related subjects, as the algebraic structure inherited by the new Hamiltonians and the corresponding coherent states will be analyzed. The technique will be as well implemented for periodic potentials, for which the corresponding spectrum is composed of allowed bands separated by energy gaps.

  16. Gaussian effective potential: Quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    1984-10-01

    We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.

  17. Quantum Mechanics and Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Dimock, Jonathan

    2011-02-01

    Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.

  18. Quantum Mechanics: Myths and Facts

    NASA Astrophysics Data System (ADS)

    Nikolić, Hrvoje

    2007-11-01

    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.

  19. Bell's theorem and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rosen, Nathan

    1994-02-01

    Bell showed that assuming locality leads to a disagreement with quantum mechanics. Here the nature of the nonlocality that follows from quantum mechanics is investigated. Note by the Editor—Readers will recognize Professor Rosen, author of this paper, as one of the co-authors of the famous EPR paper, Albert Einstein, Boris Podolsky, and Nathan Rosen, ``Can Quantum-Mechanical Description of Physical Reality be considered Complete?'', Phys. Rev. 47, 770-780 (1935). Robert H. Romer, Editor

  20. Diagrammatic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.; Lomonaco, Samuel J.

    2015-05-01

    This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.

  1. Klein's programme and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Clemente-Gallardo, Jesús; Marmo, Giuseppe

    2015-04-01

    We review the geometrical formulation of quantum mechanics to identify, according to Klein's programme, the corresponding group of transformations. For closed systems, it is the unitary group. For open quantum systems, the semigroup of Kraus maps contains, as a maximal subgroup, the general linear group. The same group emerges as the exponentiation of the C*-algebra associated with the quantum system, when thought of as a Lie algebra. Thus, open quantum systems seem to identify the general linear group as associated with quantum mechanics and moreover suggest to extend the Klein programme also to groupoids. The usual unitary group emerges as a maximal compact subgroup of the general linear group.

  2. Decoherence in quantum mechanics and quantum cosmology

    NASA Technical Reports Server (NTRS)

    Hartle, James B.

    1992-01-01

    A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.

  3. PT quantum mechanics.

    PubMed

    Bender, Carl M; DeKieviet, Maarten; Klevansky, S P

    2013-04-28

    PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.

  4. Principles of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Landé, Alfred

    2013-10-01

    ödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.

  5. QUANTUM MECHANICS WITHOUT STATISTICAL POSTULATES

    SciTech Connect

    G. GEIGER; ET AL

    2000-11-01

    The Bohmian formulation of quantum mechanics describes the measurement process in an intuitive way without a reduction postulate. Due to the chaotic motion of the hidden classical particle all statistical features of quantum mechanics during a sequence of repeated measurements can be derived in the framework of a deterministic single system theory.

  6. Dissipative Forces and Quantum Mechanics

    ERIC Educational Resources Information Center

    Eck, John S.; Thompson, W. J.

    1977-01-01

    Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)

  7. Communication: Quantum mechanics without wavefunctions

    SciTech Connect

    Schiff, Jeremy; Poirier, Bill

    2012-01-21

    We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.

  8. Quantum Mechanics in Insulators

    SciTech Connect

    Aeppli, G.

    2009-08-20

    Atomic physics is undergoing a large revival because of the possibility of trapping and cooling ions and atoms both for individual quantum control as well as collective quantum states, such as Bose-Einstein condensates. The present lectures start from the 'atomic' physics of isolated atoms in semiconductors and insulators and proceed to coupling them together to yield magnets undergoing quantum phase transitions as well as displaying novel quantum states with no classical analogs. The lectures are based on: G.-Y. Xu et al., Science 317, 1049-1052 (2007); G. Aeppli, P. Warburton, C. Renner, BT Technology Journal, 24, 163-169 (2006); H. M. Ronnow et al., Science 308, 392-395 (2005) and N. Q. Vinh et al., PNAS 105, 10649-10653 (2008).

  9. Quantum mechanics from invariance principles

    NASA Astrophysics Data System (ADS)

    Moldoveanu, Florin

    2015-07-01

    Quantum mechanics is an extremely successful theory of nature and yet it lacks an intuitive axiomatization. In contrast, the special theory of relativity is well understood and is rooted into natural or experimentally justified postulates. Here we introduce an axiomatization approach to quantum mechanics which is very similar to special theory of relativity derivation. The core idea is that a composed system obeys the same laws of nature as its components. This leads to a Jordan-Lie algebraic formulation of quantum mechanics. The starting assumptions are minimal: the laws of nature are invariant under time evolution, the laws of nature are invariant under tensor composition, the laws of nature are relational, together with the ability to define a physical state (positivity). Quantum mechanics is singled out by a fifth experimentally justified postulate: nature violates Bell's inequalities.

  10. Non-Hermitian quantum mechanics

    NASA Astrophysics Data System (ADS)

    Jones-Smith, Katherine

    The basic structure of quantum mechanics was delineated in the early days of the theory and has not been modified since. One of the fundamental assumptions used in formulating the theory is that operators are represented by Hermitian matrices. In recent years it has been shown that quantum mechanics can be formulated consistently without making this assumption, using instead a combination of the parity (P) and time-reversal (T) operators and a number of other requirements related to P and T. Only the case of even T has been analyzed in the literature; here we generalize the principles to include odd time-reversal. We use this generalization to construct a non-Hermitian version of the Dirac equation, and in doing so discover a new type of particle not allowed within the (Hermitian) Standard Model. Finally we present a potential application of the ideas of non-Hermitian quantum mechanics to the unsolved problems of quantum magnetism and high temperature superconductivity.

  11. Kowalevski top in quantum mechanics

    SciTech Connect

    Matsuyama, A.

    2013-09-15

    The quantum mechanical Kowalevski top is studied by the direct diagonalization of the Hamiltonian. The spectra show different behaviors depending on the region divided by the bifurcation sets of the classical invariant tori. Some of these spectra are nearly degenerate due to the multiplicity of the invariant tori. The Kowalevski top has several symmetries and symmetry quantum numbers can be assigned to the eigenstates. We have also carried out the semiclassical quantization of the Kowalevski top by the EBK formulation. It is found that the semiclassical spectra are close to the exact values, thus the eigenstates can be also labeled by the integer quantum numbers. The symmetries of the system are shown to have close relations with the semiclassical quantum numbers and the near-degeneracy of the spectra. -- Highlights: •Quantum spectra of the Kowalevski top are calculated. •Semiclassical quantization is carried out by the EBK formulation. •Quantum states are labeled by the semiclassical integer quantum numbers. •Multiplicity of the classical torus makes the spectra nearly degenerate. •Symmetries, quantum numbers and near-degenerate spectra are closely related.

  12. Quantum Mechanics and Narratability

    NASA Astrophysics Data System (ADS)

    Myrvold, Wayne C.

    2016-07-01

    As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.

  13. Quantum Mechanical Earth: Where Orbitals Become Orbits

    ERIC Educational Resources Information Center

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…

  14. Energy conservation in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Prentis, Jeffrey J.; Fedak, William A.

    2004-05-01

    In the classical mechanics of conservative systems, the position and momentum evolve deterministically such that the sum of the kinetic energy and potential energy remains constant in time. This canonical trademark of energy conservation is absent in the standard presentations of quantum mechanics based on the Schrödinger picture. We present a purely canonical proof of energy conservation that focuses exclusively on the time-dependent position x(t) and momentum p(t) operators. This treatment of energy conservation serves as an introduction to the Heisenberg picture and illuminates the classical-quantum connection. We derive a quantum-mechanical work-energy theorem and show explicitly how the time dependence of x and p and the noncommutivity of x and p conspire to bring about a perfect temporal balance between the evolving kinetic and potential parts of the total energy operator.

  15. QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.

    PubMed

    Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C

    2015-08-28

    According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion.

  16. Intrusion Detection With Quantum Mechanics: A Photonic Quantum Fence

    DTIC Science & Technology

    2008-12-01

    computing and quantum key distribution (QKD). Some of the most remarkable examples include quantum teleportation for the non-local transfer of...1 INTRUSION DETECTION WITH QUANTUM MECHANICS: A PHOTONIC QUANTUM FENCE T. S. Humble*, R. S. Bennink, and W. P. Grice Oak Ridge National...use of quantum -mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no

  17. Effective equations for the quantum pendulum from momentous quantum mechanics

    SciTech Connect

    Hernandez, Hector H.; Chacon-Acosta, Guillermo

    2012-08-24

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  18. Improving student understanding of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2015-04-01

    Learning quantum mechanics is challenging for many students. We are investigating the difficulties that upper-level students have in learning quantum mechanics. To help improve student understanding of quantum concepts, we are developing quantum interactive learning tutorials (QuILTs) and tools for peer-instruction. Many of the QuILTs employ computer simulations to help students visualize and develop better intuition about quantum phenomena. We will discuss the common students' difficulties and research-based tools we are developing to bridge the gap between quantitative and conceptual aspects of quantum mechanics and help students develop a solid grasp of quantum concepts. Support from the National Science Foundation is gratefully acknowledged.

  19. Emergent quantum mechanics of finances

    NASA Astrophysics Data System (ADS)

    Nastasiuk, Vadim A.

    2014-06-01

    This paper is an attempt at understanding the quantum-like dynamics of financial markets in terms of non-differentiable price-time continuum having fractal properties. The main steps of this development are the statistical scaling, the non-differentiability hypothesis, and the equations of motion entailed by this hypothesis. From perspective of the proposed theory the dynamics of S&P500 index are analyzed.

  20. Quantum mechanics of black holes.

    PubMed

    Witten, Edward

    2012-08-03

    The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.

  1. Quantum mechanics and the psyche

    NASA Astrophysics Data System (ADS)

    Galli Carminati, G.; Martin, F.

    2008-07-01

    In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.

  2. Quantum communication between remote mechanical resonators

    NASA Astrophysics Data System (ADS)

    Felicetti, S.; Fedortchenko, S.; Rossi, R.; Ducci, S.; Favero, I.; Coudreau, T.; Milman, P.

    2017-02-01

    Mechanical resonators represent one of the most promising candidates to mediate the interaction between different quantum technologies, bridging the gap between efficient quantum computation and long-distance quantum communication. Here, we introduce an interferometric scheme where the interaction of a mechanical resonator with input-output quantum pulses is controlled by an independent classical drive. We design protocols for state teleportation and direct quantum state transfer, between distant mechanical resonators. The proposed device, feasible with state-of-the-art technology, can serve as a building block for the implementation of long-distance quantum networks of mechanical resonators.

  3. Geometrical Phases in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Christian, Joy Julius

    In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a

  4. Facets of contextual realism in quantum mechanics

    SciTech Connect

    Pan, Alok Kumar; Home, Dipankar

    2011-09-23

    In recent times, there is an upsurge of interest in demonstrating the quantum contextuality. In this proceedings, we explore the two different forms of arguments that have been used for showing the contextual character of quantum mechanics. First line of study concerns the violations of the noncontextual realist models by quantum mechanics, where second line of study that is qualitatively distinct from the earlier one, demonstrates the contextuality within the formalism of quantum mechanics.

  5. Quantum statistical mechanics in arithmetic topology

    NASA Astrophysics Data System (ADS)

    Marcolli, Matilde; Xu, Yujie

    2017-04-01

    This paper provides a construction of a quantum statistical mechanical system associated to knots in the 3-sphere and cyclic branched coverings of the 3-sphere, which is an analog, in the sense of arithmetic topology, of the Bost-Connes system, with knots replacing primes, and cyclic branched coverings of the 3-sphere replacing abelian extensions of the field of rational numbers. The operator algebraic properties of this system differ significantly from the Bost-Connes case, due to the properties of the action of the semigroup of knots on a direct limit of knot groups. The resulting algebra of observables is a noncommutative Bernoulli product. We describe the main properties of the associated quantum statistical mechanical system and of the relevant partition functions, which are obtained from simple knot invariants like genus and crossing number.

  6. Treating time travel quantum mechanically

    NASA Astrophysics Data System (ADS)

    Allen, John-Mark A.

    2014-10-01

    The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilizing the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their nonlinearity and time-travel paradoxes. In particular, the "equivalent circuit model"—which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory—is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of alternate theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features—such as time-travel paradoxes, the ability to distinguish nonorthogonal states with certainty, and the ability to clone or delete arbitrary pure states—that are present with D-CTCs and P-CTCs. The problems with nonlinear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.

  7. Teaching Quantum Mechanics on an Introductory Level.

    ERIC Educational Resources Information Center

    Muller, Rainer; Wiesner, Hartmut

    2002-01-01

    Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)

  8. Deformation of noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Jiang, Jian-Jian; Chowdhury, S. Hasibul Hassan

    2016-09-01

    In this paper, the Lie group GNC α , β , γ , of which the kinematical symmetry group GNC of noncommutative quantum mechanics (NCQM) is a special case due to fixed nonzero α, β, and γ, is three-parameter deformation quantized using the method suggested by Ballesteros and Musso [J. Phys. A: Math. Theor. 46, 195203 (2013)]. A certain family of QUE algebras, corresponding to GNC α , β , γ with two of the deformation parameters approaching zero, is found to be in agreement with the existing results of the literature on quantum Heisenberg group. Finally, we dualize the underlying QUE algebra to obtain an expression for the underlying star-product between smooth functions on GNC α , β , γ .

  9. Matrix quantum mechanics from qubits

    NASA Astrophysics Data System (ADS)

    Hartnoll, Sean A.; Huijse, Liza; Mazenc, Edward A.

    2017-01-01

    We introduce a transverse field Ising model with order N 2 spins interacting via a nonlocal quartic interaction. The model has an O( N, ℤ), hyperoctahedral, symmetry. We show that the large N partition function admits a saddle point in which the symmetry is enhanced to O( N). We further demonstrate that this `matrix saddle' correctly computes large N observables at weak and strong coupling. The matrix saddle undergoes a continuous quantum phase transition at intermediate couplings. At the transition the matrix eigenvalue distribution becomes disconnected. The critical excitations are described by large N matrix quantum mechanics. At the critical point, the low energy excitations are waves propagating in an emergent 1 + 1 dimensional spacetime.

  10. Quantum-mechanical twin paradox

    NASA Astrophysics Data System (ADS)

    Franson, J. D.

    2016-10-01

    In the twin paradox of special relativity, an observer that travels along an accelerated trajectory at a high velocity will experience a smaller amount of elapsed time than an observer that remains at rest. This illustrates the fact that time is relative unlike the situation in classical physics where time is absolute. In a recent paper, Bushev et al (2016 New J. Phys. 18 093050) showed that the twin paradox can also be demonstrated using a single electron that functions as a quantum-mechanical clock. The wave function of the electron can travel along two different paths simultaneously, which allows a measurement of the difference in proper times along the two trajectories using a single particle. Quantum interference effects show that time cannot be thought of as a classical parameter even when associated with a single clock or observer.

  11. Mechanism for quantum speedup in open quantum systems

    NASA Astrophysics Data System (ADS)

    Liu, Hai-Bin; Yang, W. L.; An, Jun-Hong; Xu, Zhen-Yu

    2016-02-01

    The quantum speed limit (QSL) time for open system characterizes the most efficient response of the system to the environmental influences. Previous results showed that the non-Markovianity governs the quantum speedup. Via studying the dynamics of a dissipative two-level system, we reveal that the non-Markovian effect is only the dynamical way of the quantum speedup, while the formation of the system-environment bound states is the essential reason for the quantum speedup. Our attribution of the quantum speedup to the energy-spectrum character can supply another vital path for experiments when the quantum speedup shows up without any dynamical calculations. The potential experimental observation of our quantum speedup mechanism in the circuit QED system is discussed. Our results may be of both theoretical and experimental interest in exploring the ultimate QSL in realistic environments, and may open new perspectives for devising active quantum speedup devices.

  12. Quantum localization of classical mechanics

    NASA Astrophysics Data System (ADS)

    Batalin, Igor A.; Lavrov, Peter M.

    2016-07-01

    Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.

  13. Quantum mechanics in complex systems

    NASA Astrophysics Data System (ADS)

    Hoehn, Ross Douglas

    This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown

  14. Propagators in polymer quantum mechanics

    NASA Astrophysics Data System (ADS)

    Flores-González, Ernesto; Morales-Técotl, Hugo A.; Reyes, Juan D.

    2013-09-01

    Polymer Quantum Mechanics is based on some of the techniques used in the loop quantization of gravity that are adapted to describe systems possessing a finite number of degrees of freedom. It has been used in two ways: on one hand it has been used to represent some aspects of the loop quantization in a simpler context, and, on the other, it has been applied to each of the infinite mechanical modes of other systems. Indeed, this polymer approach was recently implemented for the free scalar field propagator. In this work we compute the polymer propagators of the free particle and a particle in a box; amusingly, just as in the non polymeric case, the one of the particle in a box may be computed also from that of the free particle using the method of images. We verify the propagators hereby obtained satisfy standard properties such as: consistency with initial conditions, composition and Green's function character. Furthermore they are also shown to reduce to the usual Schrödinger propagators in the limit of small parameter μ0, the length scale introduced in the polymer dynamics and which plays a role analog of that of Planck length in Quantum Gravity.

  15. Bridging classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Haddad, D.; Seifert, F.; Chao, L. S.; Li, S.; Newell, D. B.; Pratt, J. R.; Williams, C.; Schlamminger, S.

    2016-10-01

    Using a watt balance and a frequency comb, a mass-energy equivalence is derived. The watt balance compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. By using frequency combs to measure velocities and acceleration of gravity, the unit of mass can be realized from a set of three defining constants: the Planck constant h, the speed of light c, and the hyperfine splitting frequency of 133Cs.

  16. Quantum mechanical light harvesting mechanisms in photosynthesis

    NASA Astrophysics Data System (ADS)

    Scholes, Gregory

    2012-02-01

    More than 10 million billion photons of light strike a leaf each second. Incredibly, almost every red-coloured photon is captured by chlorophyll pigments and initiates steps to plant growth. Last year we reported that marine algae use quantum mechanics in order to optimize photosynthesis [1], a process essential to its survival. These and other insights from the natural world promise to revolutionize our ability to harness the power of the sun. In a recent review [2] we described the principles learned from studies of various natural antenna complexes and suggested how to utilize that knowledge to shape future technologies. We forecast the need to develop ways to direct and regulate excitation energy flow using molecular organizations that facilitate feedback and control--not easy given that the energy is only stored for a billionth of a second. In this presentation I will describe new results that explain the observation and meaning of quantum-coherent energy transfer. [4pt] [1] Elisabetta Collini, Cathy Y. Wong, Krystyna E. Wilk, Paul M. G. Curmi, Paul Brumer, and Gregory D. Scholes, ``Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature'' Nature 463, 644-648 (2010).[0pt] [2] Gregory D. Scholes, Graham R. Fleming, Alexandra Olaya-Castro and Rienk van Grondelle, ``Lessons from nature about solar light harvesting'' Nature Chem. 3, 763-774 (2011).

  17. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2009-02-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  18. Heisenberg and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Camilleri, Kristian

    2011-09-01

    Preface; 1. Introduction; Part I. The Emergence of Quantum Mechanics: 2. Quantum mechanics and the principle of observability; 3. The problem of interpretation; Part II. The Heisenberg-Bohr Dialogue: 4. The wave-particle duality; 5. Indeterminacy and the limits of classical concepts: the turning point in Heisenberg's thought; 6. Heisenberg and Bohr: divergent viewpoints of complementarity; Part III. Heisenberg's Epistemology and Ontology of Quantum Mechanics: 7. The transformation of Kantian philosophy; 8. The linguistic turn in Heisenberg's thought; Conclusion; References; Index.

  19. Speakable and Unspeakable in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bell, J. S.; Aspect, Introduction by Alain

    2004-06-01

    List of papers on quantum philosophy by J. S. Bell; Preface; Acknowledgements; Introduction by Alain Aspect; 1. On the problem of hidden variables in quantum mechanics; 2. On the Einstein-Rosen-Podolsky paradox; 3. The moral aspects of quantum mechanics; 4. Introduction to the hidden-variable question; 5. Subject and object; 6. On wave packet reduction in the Coleman-Hepp model; 7. The theory of local beables; 8. Locality in quantum mechanics: reply to critics; 9. How to teach special relativity; 10. Einstein-Podolsky-Rosen experiments; 11. The measurement theory of Everett and de Broglie's pilot wave; 12. Free variables and local causality; 13. Atomic-cascade photons and quantum-mechanical nonlocality; 14. de Broglie-Bohm delayed choice double-slit experiments and density matrix; 15. Quantum mechanics for cosmologists; 16. Bertlmann's socks and the nature of reality; 17. On the impossible pilot wave; 18. Speakable and unspeakable in quantum mechanics; 19. Beables for quantum field theory; 20. Six possible worlds of quantum mechanics; 21. EPR correlations and EPR distributions; 22. Are there quantum jumps?; 23. Against 'measurement'; 24. La Nouvelle cuisine.

  20. Towards a Constructive Foundation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Smilga, Walter

    2016-11-01

    I describe a constructive foundation for quantum mechanics, based on the discreteness of the degrees of freedom of quantum objects and on the Principle of Relativity. Taking Einstein's historical construction of Special Relativity as a model, the construction is carried out in close contact with a simple quantum mechanical Gedanken experiment. This leads to the standard axioms of quantum mechanics. The quantum mechanical description is identified as a mathematical tool that allows describing objects, whose degree of freedom in space-time has a discrete spectrum, relative to classical observers in space-time. This description is covariant with respect to (continuous) coordinate transformations and meets the requirement that the spectrum is the same in every inertial system. The construction gives detailed answers to controversial questions, such as the measurement problem, the informational content of the wave function, and the completeness of quantum mechanics.

  1. Towards a Constructive Foundation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Smilga, Walter

    2017-01-01

    I describe a constructive foundation for quantum mechanics, based on the discreteness of the degrees of freedom of quantum objects and on the Principle of Relativity. Taking Einstein's historical construction of Special Relativity as a model, the construction is carried out in close contact with a simple quantum mechanical Gedanken experiment. This leads to the standard axioms of quantum mechanics. The quantum mechanical description is identified as a mathematical tool that allows describing objects, whose degree of freedom in space-time has a discrete spectrum, relative to classical observers in space-time. This description is covariant with respect to (continuous) coordinate transformations and meets the requirement that the spectrum is the same in every inertial system. The construction gives detailed answers to controversial questions, such as the measurement problem, the informational content of the wave function, and the completeness of quantum mechanics.

  2. Bohmian mechanics and quantum field theory.

    PubMed

    Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino

    2004-08-27

    We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.

  3. A Bit of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Oss, Stefano; Rosi, Tommaso

    2015-04-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.

  4. BOOK REVIEWS: Quantum Mechanics: Fundamentals

    NASA Astrophysics Data System (ADS)

    Whitaker, A.

    2004-02-01

    This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a

  5. Geometrical description of algebraic structures: Applications to Quantum Mechanics

    SciTech Connect

    Carinena, J. F.; Ibort, A.; Marmo, G.; Morandi, G.

    2009-05-06

    Geometrization of physical theories have always played an important role in their analysis and development. In this contribution we discuss various aspects concerning the geometrization of physical theories: from classical mechanics to quantum mechanics. We will concentrate our attention into quantum theories and we will show how to use in a systematic way the transition from algebraic to geometrical structures to explore their geometry, mainly its Jordan-Lie structure.

  6. Quantum mechanics without potential function

    SciTech Connect

    Alhaidari, A. D.; Ismail, M. E. H.

    2015-07-15

    In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which is written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.

  7. Quantum mechanics of Proca fields

    NASA Astrophysics Data System (ADS)

    Zamani, Farhad; Mostafazadeh, Ali

    2009-05-01

    We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity (P), generalized time-reversal (T), and generalized charge or chirality (C) operators for this system and offer a physical interpretation for its PT-, C-, and CPT-symmetries.

  8. What is the main mechanism of tramadol?

    PubMed

    Minami, Kouichiro; Ogata, Junichi; Uezono, Yasuhito

    2015-10-01

    Tramadol is an analgesic that is used worldwide for pain, but its mechanisms of action have not been fully elucidated. The majority of studies to date have focused on activation of the μ-opioid receptor (μOR) and inhibition of monoamine reuptake as mechanisms of tramadol. Although it has been speculated that tramadol acts primarily through activation of the μOR, no evidence has revealed whether tramadol directly activates the μOR. During the past decade, major advances have been made in our understanding of the physiology and pharmacology of ion channels and G protein-coupled receptor (GPCR) signaling. Several studies have shown that GPCRs and ion channels are targets for tramadol. In particular, tramadol has been shown to affect GPCRs. Here, the effects of tramadol on GPCRs, monoamine transporters, and ion channels are presented with a discussion of recent research on the mechanisms of tramadol.

  9. Kindergarten Quantum Mechanics: Lecture Notes

    SciTech Connect

    Coecke, Bob

    2006-01-04

    These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns 'doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I which subsumes my Logic of Entanglement. For a survey on the 'what', the 'why' and the 'hows' I refer to a previous set of lecture notes. In a last section we provide some pointers to the body of technical literature on the subject.

  10. Quantum mechanics, relativity and time

    NASA Astrophysics Data System (ADS)

    Basini, Giuseppe; Capozziello, Salvatore

    2005-01-01

    A discussion on quantum mechanics, general relativity and their relations is introduced. The assumption of the absolute validity of conservation laws and the extension to a 5D-space lead to reconsider several shortcomings and paradoxes of modern physics under a new light without the necessity to take into account symmetry breakings. In this picture, starting from first principles, and after a reduction procedure from 5D to 4D, dynamics leads to the natural emergence of two time arrows and ofa scalar-tensor theory of gravity. In this framework, phenomena like entanglement of systems and topology changes can be naturally accounted and, furthermore, several experimental evidences as gamma ray bursts, sizes of astrophysical structures and the observed values of cosmological parameters can be explained. The identification, thanks to conservation laws, of a covariant symplectic structure as a general feature also for gravity can be seen as a deep link common to all the interactions.

  11. Thermodynamic integration from classical to quantum mechanics.

    PubMed

    Habershon, Scott; Manolopoulos, David E

    2011-12-14

    We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable.

  12. [Neuroplasticity: main mechanisms and their clinical significance].

    PubMed

    Damulin, I V

    2009-01-01

    Common mechanisms of neuroplasticity and their manifestations in different neurological diseases are reviewed. The ambiguity of physiological and clinical changes caused by neuroplasticity is emphasized. Special attention is drawn to the functional post-stroke rehabilitation. The author emphasizes the importance of "cerebral reserve" in normal ageing and Alzheimer's disease. Possibilities of neuroplasticity activation are reviewed. The efficacy of cerebrolysin in the treatment of dementia and stroke is mentioned.

  13. Quantum Mechanics and physical calculations

    NASA Astrophysics Data System (ADS)

    Karayan, H. S.

    2014-03-01

    We suggest to realize the computer simulation and calculation by the algebraic structure built on the basis of the logic inherent to processes in physical systems (called physical computing). We suggest a principle for the construction of quantum algorithms of neuroinformatics of quantum neural networks. The role of academician Sahakyan is emphasized in the development of quantum physics in Armenia.

  14. Einstein's equivalence principle in quantum mechanics revisited

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    2016-11-01

    The gravitational equivalence principle in quantum mechanics is of considerable importance, but it is generally not included in physics textbooks. In this note, we present a precise quantum formulation of this principle and comment on its verification in a neutron diffraction experiment. The solution of the time dependent Schrödinger equation for this problem also gives the wave function for the motion of a charged particle in a homogeneous electric field, which is also usually ignored in textbooks on quantum mechanics.

  15. Consistent interpretations of quantum mechanics

    SciTech Connect

    Omnes, R. )

    1992-04-01

    Within the last decade, significant progress has been made towards a consistent and complete reformulation of the Copenhagen interpretation (an interpretation consisting in a formulation of the experimental aspects of physics in terms of the basic formalism; it is consistent if free from internal contradiction and complete if it provides precise predictions for all experiments). The main steps involved decoherence (the transition from linear superpositions of macroscopic states to a mixing), Griffiths histories describing the evolution of quantum properties, a convenient logical structure for dealing with histories, and also some progress in semiclassical physics, which was made possible by new methods. The main outcome is a theory of phenomena, viz., the classically meaningful properties of a macroscopic system. It shows in particular how and when determinism is valid. This theory can be used to give a deductive form to measurement theory, which now covers some cases that were initially devised as counterexamples against the Copenhagen interpretation. These theories are described, together with their applications to some key experiments and some of their consequences concerning epistemology.

  16. Quantum Mechanics with a Little Less Mystery

    ERIC Educational Resources Information Center

    Cropper, William H.

    1969-01-01

    Suggests the "route of the inquiring mind in presenting the esoteric quantum mechanical postulates and concepts in an understandable form. Explains that the quantum mechanical postulates are but useful mathematical forms to express thebroader principles of superposition and correspondence. Briefly describes some of the features which makes the…

  17. Improving students' understanding of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Zhu, Guangtian

    2011-12-01

    Learning physics is challenging at all levels. Students' difficulties in the introductory level physics courses have been widely studied and many instructional strategies have been developed to help students learn introductory physics. However, research shows that there is a large diversity in students' preparation and skills in the upper-level physics courses and it is necessary to provide scaffolding support to help students learn advanced physics. This thesis explores issues related to students' common difficulties in learning upper-level undergraduate quantum mechanics and how these difficulties can be reduced by research-based learning tutorials and peer instruction tools. We investigated students' difficulties in learning quantum mechanics by administering written tests and surveys to many classes and conducting individual interviews with a subset of students. Based on these investigations, we developed Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical knowledge structure of quantum mechanics through a guided approach. Preliminary assessments indicate that students' understanding of quantum mechanics is improved after using the research-based learning tools in the junior-senior level quantum mechanics courses. We also designed a standardized conceptual survey that can help instructors better probe students' understanding of quantum mechanics concepts in one spatial dimension. The validity and reliability of this quantum mechanics survey is discussed.

  18. Quantum Mechanical Models Of The Fermi Shuttle

    SciTech Connect

    Sternberg, James

    2011-06-01

    The Fermi shuttle is a mechanism in which high energy electrons are produced in an atomic collision by multiple collisions with a target and a projectile atom. It is normally explained purely classically in terms of the electron's orbits prescribed in the collision. Common calculations to predict the Fermi shuttle use semi-classical methods, but these methods still rely on classical orbits. In reality such collisions belong to the realm of quantum mechanics, however. In this paper we discuss several purely quantum mechanical calculations which can produce the Fermi shuttle. Being quantum mechanical in nature, these calculations produce these features by wave interference, rather than by classical orbits.

  19. Strange Bedfellows: Quantum Mechanics and Data Mining

    SciTech Connect

    Weinstein, Marvin; /SLAC

    2009-12-16

    Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.

  20. Quantum epistemology from subquantum ontology: Quantum mechanics from theory of classical random fields

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2017-02-01

    The scientific methodology based on two descriptive levels, ontic (reality as it is) and epistemic (observational), is briefly presented. Following Schrödinger, we point to the possible gap between these two descriptions. Our main aim is to show that, although ontic entities may be unaccessible for observations, they can be useful for clarification of the physical nature of operational epistemic entities. We illustrate this thesis by the concrete example: starting with the concrete ontic model preceding quantum mechanics (the latter is treated as an epistemic model), namely, prequantum classical statistical field theory (PCSFT), we propose the natural physical interpretation for the basic quantum mechanical entity-the quantum state ("wave function"). The correspondence PCSFT ↦ QM is not straightforward, it couples the covariance operators of classical (prequantum) random fields with the quantum density operators. We use this correspondence to clarify the physical meaning of the pure quantum state and the superposition principle-by using the formalism of classical field correlations.

  1. Quantum mechanics and the generalized uncertainty principle

    SciTech Connect

    Bang, Jang Young; Berger, Micheal S.

    2006-12-15

    The generalized uncertainty principle has been described as a general consequence of incorporating a minimal length from a theory of quantum gravity. We consider a simple quantum mechanical model where the operator corresponding to position has discrete eigenvalues and show how the generalized uncertainty principle results for minimum uncertainty wave packets.

  2. Principles and Dynamics of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Efthimiades, Spyros

    2009-05-01

    Quantum mechanics can be founded on three principles: particle waves, concurrent states and averaged energy relations. The Schrodinger, time-evolution and Dirac equations are derived to be the conditions the wavefunction must satisfy in order to fulfill the corresponding averaged energy relations. Adopting a particle and wave balanced approach we attain a clear, consistent and justified quantum theory.

  3. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    SciTech Connect

    Lee, Sang-Bong

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.

  4. Dynamics of nonrelativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Efthimiades, Spyros

    2017-01-01

    We show that the wavefunction of an electron interacting with an electric potential is accurately represented by the superposition of plane waves that fulfills the total energy relation. As a result, we explicitly derive the Schrödinger, Pauli, Klein-Gordon, and Dirac equations. While the traditional nonrelativistic quantum dynamics is based on postulates, the dynamics we introduce is theoretically justified, in agreement with experimental measurements, and consistent with the fundamental theory of quantum electrodynamics.

  5. Fundamental Quantum Mechanics--A Graphic Presentation

    ERIC Educational Resources Information Center

    Wise, M. N.; Kelley, T. G.

    1977-01-01

    Describes a presentation of basic quantum mechanics for nonscience majors that relies on a computer-generated graphic display to circumvent the usual mathematical difficulties. It allows a detailed treatment of free-particle motion in a wave picture. (MLH)

  6. Quantum mechanical streamlines. I - Square potential barrier

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.

    1974-01-01

    Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.

  7. Quantum mechanical stabilization of Minkowski signature wormholes

    SciTech Connect

    Visser, M.

    1989-05-19

    When one attempts to construct classical wormholes in Minkowski signature Lorentzian spacetimes violations of both the weak energy hypothesis and averaged weak energy hypothesis are encountered. Since the weak energy hypothesis is experimentally known to be violated quantum mechanically, this suggests that a quantum mechanical analysis of Minkowski signature wormholes is in order. In this note I perform a minisuperspace analysis of a simple class of Minkowski signature wormholes. By solving the Wheeler-de Witt equation for pure Einstein gravity on this minisuperspace the quantum mechanical wave function of the wormhole is obtained in closed form. The wormhole is shown to be quantum mechanically stabilized with an average radius of order the Planck length. 8 refs.

  8. Uncertainty in quantum mechanics: faith or fantasy?

    PubMed

    Penrose, Roger

    2011-12-13

    The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications.

  9. On the geometrization of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Tavernelli, Ivano

    2016-08-01

    Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave-particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie-Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space-time, as it is the case for gravitation in the general relativity.

  10. Macroscopic quantum mechanics in a classical spacetime.

    PubMed

    Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei

    2013-04-26

    We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.

  11. Geometric Hamiltonian quantum mechanics and applications

    NASA Astrophysics Data System (ADS)

    Pastorello, Davide

    2016-08-01

    Adopting a geometric point of view on Quantum Mechanics is an intriguing idea since, we know that geometric methods are very powerful in Classical Mechanics then, we can try to use them to study quantum systems. In this paper, we summarize the construction of a general prescription to set up a well-defined and self-consistent geometric Hamiltonian formulation of finite-dimensional quantum theories, where phase space is given by the Hilbert projective space (as Kähler manifold), in the spirit of celebrated works of Kibble, Ashtekar and others. Within geometric Hamiltonian formulation quantum observables are represented by phase space functions, quantum states are described by Liouville densities (phase space probability densities), and Schrödinger dynamics is induced by a Hamiltonian flow on the projective space. We construct the star-product of this phase space formulation and some applications of geometric picture are discussed.

  12. On the geometrization of quantum mechanics

    SciTech Connect

    Tavernelli, Ivano

    2016-08-15

    Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave–particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie–Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space–time, as it is the case for gravitation in the general relativity.

  13. Antonio Gramsci's Reflection on Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Tassani, Isabella

    2006-06-01

    As the first step of a wider historical reconstruction of the reception of quantum mechanics in the nineteenth-century philosophy, we are going to consider Antonio Gramsci's philosophy. He asks himself about the nature of quantum objects, if their existence depends on the act of measuring by the experimenter and if this kind of relationship can be interpreted as an argument in favour of an immaterialistic philosophy. We will remark how an idealistic interpretation of quantum mechanics found a fertile field in the Italian culture, characterized by an antiscientific attitude and at the same time needing to find in science a term of comparison.

  14. Quantum mechanics near closed timelike lines

    NASA Astrophysics Data System (ADS)

    Deutsch, David

    1991-11-01

    The methods of the quantum theory of computation are used to analyze the physics of closed timelike lines. This is dominated, even at the macroscopic level, by quantum mechanics. In classical physics the existence of such lines in a spacetime imposes ``paradoxical'' constraints on the state of matter in their past and also provides means for knowledge to be created in ways that conflict with the principles of the philosophy of science. In quantum mechanics the first of these pathologies does not occur. The second is mitigated, and may be avoidable without such spacetimes being ruled out. Several novel and distinctive (but nonparadoxical) quantum-mechanical effects occur on and near closed timelike lines, including violations of the correspondence principle and of unitarity. It becomes possible to ``clone'' quantum systems and to measure the state of a quantum system. A new experimental test of the Everett interpretation against all others becomes possible. Consideration of these and other effects sheds light on the nature of quantum mechanics.

  15. Hidden algebra method (quasi-exact-solvability in quantum mechanics)

    SciTech Connect

    Turbiner, Alexander

    1996-02-20

    A general introduction to quasi-exactly-solvable problems of quantum mechanics is presented. Main attention is given to multidimensional quasi-exactly-solvable and exactly-solvable Schroedinger operators. Exact-solvability of the Calogero and Sutherland N-body problems ass ociated with an existence of the hidden algebra slN is discussed extensively.

  16. A "Bit" of Quantum Mechanics

    ERIC Educational Resources Information Center

    Oss, Stefano; Rosi, Tommaso

    2015-01-01

    We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…

  17. Quantum approach to classical statistical mechanics.

    PubMed

    Somma, R D; Batista, C D; Ortiz, G

    2007-07-20

    We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.

  18. Nonrelativistic Quantum Mechanics with Fundamental Environment

    NASA Astrophysics Data System (ADS)

    Gevorkyan, Ashot S.

    2011-03-01

    Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations ( fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum system (QS) + FE" is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended space R 3 ⊗ R { ξ}, where R 3 and R { ξ} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.

  19. Measurements and mathematical formalism of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Slavnov, D. A.

    2007-03-01

    A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.

  20. Photon Quantum Mechanics in the Undergraduate Curriculum

    NASA Astrophysics Data System (ADS)

    Pearson, Brett; Carson, Zack; Jackson, David

    2011-05-01

    Although it has been discussed for centuries, the true nature of light is still being debated. In fact, the quantum mechanical aspects of light have only been observed within the past 30 years. Recent advances in technology have decreased the complexity of such tests, and the Department of Physics and Astronomy at Dickinson College has worked to infuse various quantum optics experiments throughout our curriculum. We describe a set of experiments that includes the existence of photons, single-photon interference, the quantum eraser, and tests of Bell's theorem. A primary motivation is bringing undergraduate students face to face with some of the fascinating and subtle aspects of quantum mechanics in a hands-on setting. Supported by Dickinson College and NSF DUE-0737230.

  1. Optimal guidance law in quantum mechanics

    SciTech Connect

    Yang, Ciann-Dong Cheng, Lieh-Lieh

    2013-11-15

    Following de Broglie’s idea of a pilot wave, this paper treats quantum mechanics as a problem of stochastic optimal guidance law design. The guidance scenario considered in the quantum world is that an electron is the flight vehicle to be guided and its accompanying pilot wave is the guidance law to be designed so as to guide the electron to a random target driven by the Wiener process, while minimizing a cost-to-go function. After solving the stochastic optimal guidance problem by differential dynamic programming, we point out that the optimal pilot wave guiding the particle’s motion is just the wavefunction Ψ(t,x), a solution to the Schrödinger equation; meanwhile, the closed-loop guidance system forms a complex state–space dynamics for Ψ(t,x), from which quantum operators emerge naturally. Quantum trajectories under the action of the optimal guidance law are solved and their statistical distribution is shown to coincide with the prediction of the probability density function Ψ{sup ∗}Ψ. -- Highlights: •Treating quantum mechanics as a pursuit-evasion game. •Reveal an interesting analogy between guided flight motion and guided quantum motion. •Solve optimal quantum guidance problem by dynamic programming. •Gives a formal proof of de Broglie–Bohm’s idea of a pilot wave. •The optimal pilot wave is shown to be a wavefunction solved from Schrödinger equation.

  2. Computations in quantum mechanics made easy

    NASA Astrophysics Data System (ADS)

    Korsch, H. J.; Rapedius, K.

    2016-09-01

    Convenient and simple numerical techniques for performing quantum computations based on matrix representations of Hilbert space operators are presented and illustrated by various examples. The applications include the calculations of spectral and dynamical properties for one-dimensional and two-dimensional single-particle systems as well as bosonic many-particle and open quantum systems. Due to their technical simplicity these methods are well suited as a tool for teaching quantum mechanics to undergraduates and graduates. Explicit implementations of the presented numerical methods in Matlab are given.

  3. Observation and superselection in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    We attempt to clarify the main conceptual issues in approaches to 'objectification' or 'measurement' in quantum mechanics which are based on superselection rules. Such approaches venture to derive the emergence of classical 'reality' relative to a class of observers; those believing that the classical world exists intrinsically and absolutely are advised against reading this paper. The prototype approach (K. Hepp, Helv. Phys. Acta 45 (1972), 237-248) where superselection sectors are assumed in the state space of the apparatus is shown to be untenable. Instead, one should couple system and apparatus to an environment, and postulate superselection rules for the latter. These are motivated by the locality of any observer or other (actual or virtual) monitoring system. In this way 'environmental' solutions to the measurement problem (H.D. Zeh, Found. Phys. 1 (1970), 69-76; W. H. Zurek, Phys. Rev. D26 (1982), 1862-1880 and Progr. Theor. Phys. 89 (1993), 281-312) become consistent and acceptable, too. Points of contact with the modal interpretation are briefly discussed. We propose a minimal value attribution to observables in theories with superselection rules, in which only central observables have properties. In particular, the eigenvector-eigenvalue link is dropped. This is mainly motivated by Ockham's razor.

  4. Multichannel framework for singular quantum mechanics

    SciTech Connect

    Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner; García Canal, Carlos A.; Ordóñez, Carlos R.

    2014-01-15

    A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (“asymptotic”) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: •A multichannel framework is proposed for singular quantum mechanics and analogues. •The framework unifies several established approaches for singular potentials. •Singular points are treated as new scattering channels. •Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. •Conformal quantum mechanics and the inverse quartic potential are highlighted.

  5. An Axiomatic Basis for Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Cassinelli, Gianni; Lahti, Pekka

    2016-10-01

    In this paper we use the framework of generalized probabilistic theories to present two sets of basic assumptions, called axioms, for which we show that they lead to the Hilbert space formulation of quantum mechanics. The key results in this derivation are the co-ordinatization of generalized geometries and a theorem of Solér which characterizes Hilbert spaces among the orthomodular spaces. A generalized Wigner theorem is applied to reduce some of the assumptions of Solér's theorem to the theory of symmetry in quantum mechanics. Since this reduction is only partial we also point out the remaining open questions.

  6. Two basic Uncertainty Relations in Quantum Mechanics

    SciTech Connect

    Angelow, Andrey

    2011-04-07

    In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schroedinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.

  7. Two basic Uncertainty Relations in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Angelow, Andrey

    2011-04-01

    In the present article, we discuss two types of uncertainty relations in Quantum Mechanics-multiplicative and additive inequalities for two canonical observables. The multiplicative uncertainty relation was discovered by Heisenberg. Few years later (1930) Erwin Schrödinger has generalized and made it more precise than the original. The additive uncertainty relation is based on the three independent statistical moments in Quantum Mechanics-Cov(q,p), Var(q) and Var(p). We discuss the existing symmetry of both types of relations and applicability of the additive form for the estimation of the total error.

  8. Quantum Mechanical Aspects of Free Electron Lasers.

    NASA Astrophysics Data System (ADS)

    Saritepe, Selcuk

    Scope of study. A 2-D quantum theory of the Free Electron Laser (FEL) has been developed based on the solutions of Dirac equation for the motion of electrons moving in various wiggler geometries, uniform, tapered and enhanced by an axial guide field. It is shown that these solutions can be written in terms of Mathieu functions of fractional order. Using these solutions a perturbational analysis is carried out to calculate the frequencies and the gain of the FEL in each magnet configuration. Finally, an optical model for the FEL interaction is developed to explain the saturation behaviour and the short-pulse effects such as Laser Lethargy. Findings and conclusions. It is found that the quantum mechanical effects due to transverse momentum correction were gamma (Lorentz factor) times larger than the quantum recoil and spin effects and therefore important for the short wavelength FELs. These quantum mechanical effects cause a broadening in the spontaneous emission lineshape, a decrease in gain and an increase in the rate of harmonic frequency generation. In the presence of an axial field, gain is increased, harmonic frequency rate is reduced and Dirac solutions exhibit instability. The optical model developed in this thesis correctly predicts the oscillator rise time and uses a simpler algorithm to calculate the nonlinear saturation behaviour. Optical model also incorporates inhomogeneous broadening and quantum mechanical effects and explains the Laser Lethargy effect as an optical pulse compression phenomenon.

  9. A new introductory quantum mechanics curriculum

    NASA Astrophysics Data System (ADS)

    Kohnle, Antje; Bozhinova, Inna; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth

    2014-01-01

    The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum-mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of the interpretive aspects of quantum mechanics and quantum information theory. This paper gives an overview of the resources available from the IOP website. The core text includes around 80 articles which are co-authored by leading experts, arranged in themes, and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is included in the resource. Solutions to activities are available to instructors. The resources can be used in a variety of ways, from being supplemental to existing courses to forming a complete programme.

  10. Statistical mechanics based on fractional classical and quantum mechanics

    SciTech Connect

    Korichi, Z.; Meftah, M. T.

    2014-03-15

    The purpose of this work is to study some problems in statistical mechanics based on the fractional classical and quantum mechanics. At first stage we have presented the thermodynamical properties of the classical ideal gas and the system of N classical oscillators. In both cases, the Hamiltonian contains fractional exponents of the phase space (position and momentum). At the second stage, in the context of the fractional quantum mechanics, we have calculated the thermodynamical properties for the black body radiation, studied the Bose-Einstein statistics with the related problem of the condensation and the Fermi-Dirac statistics.

  11. Quantum Mechanics in the Light of Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Gell-Mann, Murray; Hartle, James B.

    We sketch a quantum-mechanical framework for the universe as a whole. Within that framework we propose a program for describing the ultimate origin in quantum cosmology of the "quasiclassical domain" of familiar experience and for characterizing the process of measurement. Predictions in quantum mechanics are made from probabilities for sets of alternative histories. Probabilities (approximately obeying the rules of probability theory) can be assigned only to sets of histories that approximately decohere. Decoherence is defined and the mechanism of decoherence is reviewed. Decoherence requires a sufficiently coarse-grained description of alternative histories of the universe. A quasiclassical domain consists of a branching set of alternative decohering histories, described by a coarse graining that is, in an appropriate sense, maximally refined consistent with decoherence, with individual branches that exhibit a high level of classical correlation in time. We pose the problem of making these notions precise and quantitative. A quasiclassical domain is emergent in the universe as a consequence of the initial condition and the action function of the elementary particles. It is an important question whether all the quasiclassical domains are roughly equivalent or whether there are various essentially inequivalent ones. A measurement is a correlation with variables in a quasiclassical domain. An "observer" (or information gathering and utilizing system) is a complex adaptive system that has evolved to exploit the relative predictability of a quasiclassical domain, or rather a set of such domains among which it cannot discriminate because of its own very coarse graining. We suggest that resolution of many of the problems of interpretation presented by quantum mechanics is to be accomplished, not by further scrutiny of the subject as it applies to reproducible laboratory situations, but rather by an examination of alternative histories of the universe, stemming from its

  12. The geometry of real reducible polarizations in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Tejero Prieto, Carlos; Vitolo, Raffaele

    2017-03-01

    The formulation of geometric quantization contains several axioms and assumptions. We show that for real polarizations we can generalize the standard geometric quantization procedure by introducing an arbitrary connection on the polarization bundle. The existence of reducible quantum structures leads to considering the class of Liouville symplectic manifolds. Our main application of this modified geometric quantization scheme is to quantum mechanics on Riemannian manifolds. With this method we obtain an energy operator without the scalar curvature term that appears in the standard formulation, thus agreeing with the usual expression found in the physics literature.

  13. Emerging interpretations of quantum mechanics and recent progress in quantum measurement

    NASA Astrophysics Data System (ADS)

    Clarke, M. L.

    2014-01-01

    The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).

  14. Comparison of Classical and Quantum Mechanical Uncertainties.

    ERIC Educational Resources Information Center

    Peslak, John, Jr.

    1979-01-01

    Comparisons are made for the particle-in-a-box, the harmonic oscillator, and the one-electron atom. A classical uncertainty principle is derived and compared with its quantum-mechanical counterpart. The results are discussed in terms of the statistical interpretation of the uncertainty principle. (Author/BB)

  15. The geometric semantics of algebraic quantum mechanics.

    PubMed

    Cruz Morales, John Alexander; Zilber, Boris

    2015-08-06

    In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.

  16. Quantum mechanics is compatible with realism

    SciTech Connect

    Burgos, M.E.

    1987-08-01

    A new paradox of quantum mechanics has recently been proposed by an author claiming that any attempt to inject realism in physical theory is bound to lead to inconsistencies. In this paper the author shows that the mentioned paradox is not such a one and that at present there are no reasons to reject realism.

  17. Holism, physical theories and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Seevinck, M. P.

    Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism'. For this purpose I propose an epistemological criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if it is impossible in principle to infer the global properties, as assigned in the theory, by local resources available to an agent. I propose that these resources include at least all local operations and classical communication. This approach is contrasted with the well-known approaches to holism in terms of supervenience. The criterion for holism proposed here involves a shift in emphasis from ontology to epistemology. I apply this epistemological criterion to classical physics and Bohmian mechanics as represented on a phase and configuration space respectively, and for quantum mechanics (in the orthodox interpretation) using the formalism of general quantum operations as completely positive trace non-increasing maps. Furthermore, I provide an interesting example from which one can conclude that quantum mechanics is holistic in the above mentioned sense, although, perhaps surprisingly, no entanglement is needed.

  18. Time and the foundations of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Pashby, Thomas

    Quantum mechanics has provided philosophers of science with many counterintuitive insights and interpretive puzzles, but little has been written about the role that time plays in the theory. One reason for this is the celebrated argument of Wolfgang Pauli against the inclusion of time as an observable of the theory, which has been seen as a demonstration that time may only enter the theory as a classical parameter. Against this orthodoxy I argue that there are good reasons to expect certain kinds of `time observables' to find a representation within quantum theory, including clock operators (which provide the means to measure the passage of time) and event time operators, which provide predictions for the time at which a particular event occurs, such as the appearance of a dot on a luminescent screen. I contend that these time operators deserve full status as observables of the theory, and on re ection provide a uniquely compelling reason to expand the set of observables allowed by the standard formalism of quantum mechanics. In addition, I provide a novel association of event time operators with conditional probabilities, and propose a temporally extended form of quantum theory to better accommodate the time of an event as an observable quantity. This leads to a proposal to interpret quantum theory within an event ontology, inspired by Bertrand Russell's Analysis of Matter. On this basis I mount a defense of Russell's relational theory of time against a recent attack.

  19. The Compton effect: Transition to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stuewer, R. H.

    2000-11-01

    The discovery of the Compton effect at the end of 1922 was a decisive event in the transition to the new quantum mechanics of 1925-1926 because it stimulated physicists to examine anew the fundamental problem of the interaction between radiation and matter. I first discuss Albert Einstein's light-quantum hypothesis of 1905 and why physicists greeted it with extreme skepticism, despite Robert A. Millikan's confirmation of Einstein's equation of the photoelectric effect in 1915. I then follow in some detail the experimental and theoretical research program that Arthur Holly Compton pursued between 1916 and 1922 at the University of Minnesota, the Westinghouse Lamp Company, the Cavendish Laboratory, and Washington University that culminated in his discovery of the Compton effect. Surprisingly, Compton was not influenced directly by Einstein's light-quantum hypothesis, in contrast to Peter Debye and H.A. Kramers, who discovered the quantum theory of scattering independently. I close by discussing the most significant response to that discovery, the Bohr-Kramers-Slater theory of 1924, its experimental refutation, and its influence on the emerging new quantum mechanics.

  20. Time in classical and in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Elçi, A.

    2010-07-01

    This paper presents an analysis of the time concept in classical mechanics from the perspective of the invariants of a motion. The analysis shows that there is a conceptual gap concerning time in the Dirac-Heisenberg-von Neumann formalism and that Bohr's complementarity principle does not fill the gap. In the Dirac-Heisenberg-von Neumann formalism, a particle's properties are represented by Heisenberg matrices. This axiom is the source of the time problem in quantum mechanics.

  1. Quantum mechanical studies of carbon structures

    SciTech Connect

    Bartelt, Norman Charles; Ward, Donald; Zhou, Xiaowang; Foster, Michael E.; Schultz, Peter A.; Wang, Bryan M.; McCarty, Kevin F.

    2015-10-01

    Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their unique mechanical and electrical properties. The materials exhibit extremely high strength and conductivity when defects created during synthesis are minimized. Atomistic modeling is one technique for high resolution studies of defect formation and mitigation. To enable simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-fidelity analytical bond-order potential for the C is needed. To generate inputs for developing such a potential, we performed quantum mechanical calculations of various C structures.

  2. Quantum mechanics of 4-derivative theories.

    PubMed

    Salvio, Alberto; Strumia, Alessandro

    2016-01-01

    A renormalizable theory of gravity is obtained if the dimension-less 4-derivative kinetic term of the graviton, which classically suffers from negative unbounded energy, admits a sensible quantization. We find that a 4-derivative degree of freedom involves a canonical coordinate with unusual time-inversion parity, and that a correspondingly unusual representation must be employed for the relative quantum operator. The resulting theory has positive energy eigenvalues, normalizable wavefunctions, unitary evolution in a negative-norm configuration space. We present a formalism for quantum mechanics with a generic norm.

  3. A Primer on Resonances in Quantum Mechanics

    SciTech Connect

    Rosas-Ortiz, Oscar; Fernandez-Garcia, Nicolas; Cruz y Cruz, Sara

    2008-11-13

    After a pedagogical introduction to the concept of resonance in classical and quantum mechanics, some interesting applications are discussed. The subject includes resonances occurring as one of the effects of radiative reaction, the resonances involved in the refraction of electromagnetic waves by a medium with a complex refractive index, and quantum decaying systems described in terms of resonant states of the energy (Gamow-Siegert functions). Some useful mathematical approaches like the Fourier transform, the complex scaling method and the Darboux transformation are also reviewed.

  4. Quantum mechanical coherence, resonance, and mind

    SciTech Connect

    Stapp, H.P.

    1995-03-26

    Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.

  5. Global and local horizon quantum mechanics

    NASA Astrophysics Data System (ADS)

    Casadio, Roberto; Giugno, Andrea; Giusti, Andrea

    2017-02-01

    Horizons are classical causal structures that arise in systems with sharply defined energy and corresponding gravitational radius. A global gravitational radius operator can be introduced for a static and spherically symmetric quantum mechanical matter state by lifting the classical "Hamiltonian" constraint that relates the gravitational radius to the ADM mass, thus giving rise to a "horizon wave-function". This minisuperspace-like formalism is shown here to be able to consistently describe also the local gravitational radius related to the Misner-Sharp mass function of the quantum source, provided its energy spectrum is determined by spatially localised modes.

  6. Quantum mechanics concept assessment: Development and validation study

    NASA Astrophysics Data System (ADS)

    Sadaghiani, Homeyra R.; Pollock, Steven J.

    2015-06-01

    As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum mechanics assessment tool (QMAT) to a multiple-choice (MC) format. Further question refinement, development of effective distractors, adding new questions, and robust statistical analysis has led to a 31-item quantum mechanics concept assessment (QMCA) test. The QMCA is used as post-test only to assess students' knowledge about five main topics of quantum measurement: the time-independent Schrödinger equation, wave functions and boundary conditions, time evolution, and probability density. During two years of testing and refinement, the QMCA has been given in alpha (N =61 ) and beta versions (N =263 ) to students in upper division quantum mechanics courses at 11 different institutions with an average post-test score of 54%. By allowing for comparisons of student learning across different populations and institutions, the QMCA provides instructors and researchers a more standard measure of effectiveness of different curricula or teaching strategies on student conceptual understanding of quantum mechanics. In this paper, we discuss the construction of effective distractors and the use of student interviews and expert feedback to revise and validate both questions and distractors. We include the results of common statistical tests of reliability and validity, which suggest the instrument is presently in a stable, usable, and promising form.

  7. Neutrino oscillations: Quantum mechanics vs. quantum field theory

    SciTech Connect

    Akhmedov, Evgeny Kh.; Kopp, Joachim

    2010-01-01

    A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.

  8. ``the Human BRAIN & Fractal quantum mechanics''

    NASA Astrophysics Data System (ADS)

    Rosary-Oyong, Se, Glory

    In mtDNA ever retrieved from Iman Tuassoly, et.al:Multifractal analysis of chaos game representation images of mtDNA''.Enhances the price & valuetales of HE. Prof. Dr-Ing. B.J. HABIBIE's N-219, in J. Bacteriology, Nov 1973 sought:'' 219 exist as separate plasmidDNA species in E.coli & Salmonella panama'' related to ``the brain 2 distinct molecular forms of the (Na,K)-ATPase..'' & ``neuron maintains different concentration of ions(charged atoms'' thorough Rabi & Heisenber Hamiltonian. Further, after ``fractal space time are geometric analogue of relativistic quantum mechanics''[Ord], sought L.Marek Crnjac: ``Chaotic fractals at the root of relativistic quantum physics''& from famous Nottale: ``Scale relativity & fractal space-time:''Application to Quantum Physics , Cosmology & Chaotic systems'',1995. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  9. Gravitomagnetism and Spinor Quantum Mechanics

    SciTech Connect

    Adler, Ronald J.; Chen, Pisin; Varani, Elisa; /Unlisted

    2012-09-14

    We give a systematic treatment of a spin 1=2 particle in a combined electromagnetic field and a weak gravitational field that is produced by a slowly moving matter source. This paper continues previous work on a spin zero particle, but it is largely self-contained and may serve as an introduction to spinors in a Riemann space. The analysis is based on the Dirac equation expressed in generally covariant form and coupled minimally to the electromagnetic field. The restriction to a slowly moving matter source, such as the earth, allows us to describe the gravitational field by a gravitoelectric (Newtonian) potential and a gravitomagnetic (frame-dragging) vector potential, the existence of which has recently been experimentally verified. Our main interest is the coupling of the orbital and spin angular momenta of the particle to the gravitomagnetic field. Specifically we calculate the gravitational gyromagnetic ratio as g{sub g} = 1 ; this is to be compared with the electromagnetic gyromagnetic ratio of g{sub e} = 2 for a Dirac electron.

  10. Dummett vs Bell on quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ben-Menahem, Yemima

    The purpose of this paper is to cast doubt on the common allegation that quantum mechanics (QM) is incompatible with realism. I argue that the results usually considered inimical to realism, notably the violation of Bells inequality, in fact play the opposite role-they support realism. The argument is not intended, however, to demonstrate realism or refute its alternatives as general metaphysical positions. It is directed specifically at the view that QM differs from classical mechanics in that, unlike classical mechanics, it is not amenable to a realist interpretation.

  11. Hidden variables and nonlocality in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Hemmick, Douglas Lloyd

    1997-05-01

    Most physicists hold a skeptical attitude toward a 'hidden variables' interpretation of quantum theory, despite David Bohm's successful construction of such a theory and John S. Bell's strong arguments in favor of the idea. The first reason for doubt concerns certain mathematical theorems (von Neumann's, Gleason's, Kochen and Specker's, and Bell's) which can be applied to the hidden variables issue. These theorems are often credited with proving that hidden variables are indeed 'impossible', in the sense that they cannot replicate the predictions of quantum mechanics. Many who do not draw such a strong conclusion nevertheless accept that hidden variables have been shown to exhibit prohibitively complicated features. The second concern is that the most sophisticated example of a hidden variables theory-that of David Bohm-exhibits non-locality, i.e., consequences of events at one place can propagate to other places instantaneously. However, neither the mathematical theorems in question nor the attribute of nonlocality detract from the importance of a hidden variables interpretation of quantum theory. Nonlocality is present in quantum mechanics itself, and is a required characteristic of any theory that agrees with the quantum mechanical predictions. We first discuss the earliest analysis of hidden variables-that of von Neumann's theorem-and review John S. Bell's refutation of von Neumann's 'impossibility proof'. We recall and elaborate on Bell's arguments regarding the theorems of Gleason, and Kochen and Specker. According to Bell, these latter theorems do not imply that hidden variables interpretations are untenable, but instead that such theories must exhibit contextuality, i.e., they must allow for the dependence of measurement results on the characteristics of both measured system and measuring apparatus. We demonstrate a new way to understand the implications of both Gleason's theorem and Kochen and Specker's theorem by noting that they prove a result we call

  12. Quantum-Mechanical Prediction of Nanoscale Photovoltaics.

    PubMed

    Zhang, Yu; Meng, LingYi; Yam, ChiYung; Chen, GuanHua

    2014-04-03

    Previous simulations of photovoltaic devices are based on classical models, which neglect the atomistic details and quantum-mechanical effects besides the dependence on many empirical parameters. Here, within the nonequilibrium Green's function formalism, we present a quantum-mechanical study of the performance of inorganic nanowire-based photovoltaic devices. On the basis of density-functional tight-binding theory, the method allows simulation of current-voltage characteristics and optical properties of photovoltaic devices without relying on empirical parameters. Numerical studies of silicon nanowire-based devices of realistic sizes with 10 000 atoms are performed, and the results indicate that atomistic details and nonequilibrium conditions have a clear impact on the photoresponse of the devices.

  13. Applications of computational quantum mechanics

    NASA Astrophysics Data System (ADS)

    Temel, Burcin

    This original research dissertation is composed of a new numerical technique based on Chebyshev polynomials that is applied on scattering problems, a phenomenological kinetics study for CO oxidation on RuO2 surface, and an experimental study on methanol coupling with doped metal oxide catalysts. Minimum Error Method (MEM), a least-squares minimization method, provides an efficient and accurate alternative to solve systems of ordinary differential equations. Existing methods usually utilize matrix methods which are computationally costful. MEM, which is based on the Chebyshev polynomials as a basis set, uses the recursion relationships and fast Chebyshev transforms which scale as O(N). For large basis set calculations this provides an enormous computational efficiency in the calculations. Chebyshev polynomials are also able to represent non-periodic problems very accurately. We applied MEM on elastic and inelastic scattering problems: it is more efficient and accurate than traditionally used Kohn variational principle, and it also provides the wave function in the interaction region. Phenomenological kinetics (PK) is widely used in industry to predict the optimum conditions for a chemical reaction. PK neglects the fluctuations, assumes no lateral interactions, and considers an ideal mix of reactants. The rate equations are tested by fitting the rate constants to the results of the experiments. Unfortunately, there are numerous examples where a fitted mechanism was later shown to be erroneous. We have undertaken a thorough comparison between the phenomenological equations and the results of kinetic Monte Carlo (KMC) simulations performed on the same system. The PK equations are qualitatively consistent with the KMC results but are quantitatively erroneous as a result of interplays between the adsorption and desorption events. The experimental study on methanol coupling with doped metal oxide catalysts demonstrates the doped metal oxides as a new class of catalysts

  14. Probing pores using elementary quantum mechanics.

    PubMed

    Ryu, S

    2001-01-01

    The relaxation of polarized spins in a porous medium has been utilized as a probe of its structure. We note that the governing diffusion problem has a close parallel to that of a particle in a box, an elementary Quantum mechanics toy model. Following the spirits of "free electron" model, we use generic properties of the eigen spectrum to understand features common to a wide variety of pore geometry, consistent with large scale numerical simulations and experimental data.

  15. A quantum mechanics glimpse to standard cosmology

    SciTech Connect

    Barbosa-Cendejas, N.; Reyes, M.

    2010-07-12

    In this work we present a connection between a standard cosmology model for inflation and quantum mechanics. We consider a time independent Schroedinger type equation derived from the equations of motion for a single scalar field in a flat space time with a FRW metric and a cosmological constant; the fact that the equation of motion is precisely a Schroedinger equation allows us to investigate on the algebraic relations between the two models and probe the consequences derived from this point of view.

  16. Grounding quantum probability in psychological mechanism.

    PubMed

    Love, Bradley C

    2013-06-01

    Pothos & Busemeyer (P&B) provide a compelling case that quantum probability (QP) theory is a better match to human judgment than is classical probability (CP) theory. However, any theory (QP, CP, or other) phrased solely at the computational level runs the risk of being underconstrained. One suggestion is to ground QP accounts in mechanism, to leverage a wide range of process-level data.

  17. Hunting for Snarks in Quantum Mechanics

    SciTech Connect

    Hestenes, David

    2009-12-08

    A long-standing debate over the interpretation of quantum mechanics has centered on the meaning of Schroedinger's wave function {psi} for an electron. Broadly speaking, there are two major opposing schools. On the one side, the Copenhagen school(led by Bohr, Heisenberg and Pauli) holds that {psi} provides a complete description of a single electron state; hence the probability interpretation of {psi}{psi}* expresses an irreducible uncertainty in electron behavior that is intrinsic in nature. On the other side, the realist school(led by Einstein, de Broglie, Bohm and Jaynes) holds that {psi} represents a statistical ensemble of possible electron states; hence it is an incomplete description of a single electron state. I contend that the debaters have overlooked crucial facts about the electron revealed by Dirac theory. In particular, analysis of electron zitterbewegung(first noticed by Schroedinger) opens a window to particle substructure in quantum mechanics that explains the physical significance of the complex phase factor in {psi}. This led to a testable model for particle substructure with surprising support by recent experimental evidence. If the explanation is upheld by further research, it will resolve the debate in favor of the realist school. I give details. The perils of research on the foundations of quantum mechanics have been foreseen by Lewis Carroll in The Hunting of the Snark{exclamation_point}.

  18. Classical and quantum-mechanical state reconstruction

    NASA Astrophysics Data System (ADS)

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-07-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that used in medical imaging known as computer-aided tomography. It is remarkable that this method can be taken over to quantum mechanics, where it leads to a description of the quantum state in terms of the Wigner function which, although it may take on negative values, plays the role of the probability density in phase space in classical physics. We then present another approach to quantum state reconstruction based on the notion of mutually unbiased bases—a notion of current research interest, for which we give explanatory remarks—and indicate the relation between these two approaches. Since the subject of state reconstruction is rarely considered at the level of textbooks, the presentation in this paper is aimed at graduate-level readers.

  19. Quantum mechanics: The Bayesian theory generalized to the space of Hermitian matrices

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2016-10-01

    We consider the problem of gambling on a quantum experiment and enforce rational behavior by a few rules. These rules yield, in the classical case, the Bayesian theory of probability via duality theorems. In our quantum setting, they yield the Bayesian theory generalized to the space of Hermitian matrices. This very theory is quantum mechanics: in fact, we derive all its four postulates from the generalized Bayesian theory. This implies that quantum mechanics is self-consistent. It also leads us to reinterpret the main operations in quantum mechanics as probability rules: Bayes' rule (measurement), marginalization (partial tracing), independence (tensor product). To say it with a slogan, we obtain that quantum mechanics is the Bayesian theory in the complex numbers.

  20. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.

    PubMed

    Turaev, Dmitry

    2016-05-01

    It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.

  1. 48. MAIN WAREHOUSE THIRD LEVEL Elevator drive mechanism is ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. MAIN WAREHOUSE - THIRD LEVEL Elevator drive mechanism is seen to the right, while drive wheels, belt wheels and chain drives are visible in the wooden wall framing. The horizontal metal conveyor (at the top of the wall Just under the inverted 'V' brace) is part of the empty can supply system connected to the external can conveyor. See Photo No. 28. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  2. Quantum mechanics with coordinate dependent noncommutativity

    NASA Astrophysics Data System (ADS)

    Kupriyanov, V. G.

    2013-11-01

    Noncommutative quantum mechanics can be considered as a first step in the construction of quantum field theory on noncommutative spaces of generic form, when the commutator between coordinates is a function of these coordinates. In this paper we discuss the mathematical framework of such a theory. The noncommutativity is treated as an external antisymmetric field satisfying the Jacobi identity. First, we propose a symplectic realization of a given Poisson manifold and construct the Darboux coordinates on the obtained symplectic manifold. Then we define the star product on a Poisson manifold and obtain the expression for the trace functional. The above ingredients are used to formulate a nonrelativistic quantum mechanics on noncommutative spaces of general form. All considered constructions are obtained as a formal series in the parameter of noncommutativity. In particular, the complete algebra of commutation relations between coordinates and conjugated momenta is a deformation of the standard Heisenberg algebra. As examples we consider a free particle and an isotropic harmonic oscillator on the rotational invariant noncommutative space.

  3. An approach to nonstandard quantum mechanics

    NASA Astrophysics Data System (ADS)

    Raab, A.

    2004-12-01

    We use nonstandard analysis to formulate quantum mechanics in hyperfinite-dimensional spaces. Self-adjoint operators on hyperfinite-dimensional spaces have complete eigensets, and bound states and continuum states of a Hamiltonian can thus be treated on an equal footing. We show that the formalism extends the standard formulation of quantum mechanics. To this end we develop the Loeb-function calculus in nonstandard hulls. The idea is to perform calculations in a hyperfinite-dimensional space, but to interpret expectation values in the corresponding nonstandard hull. We further apply the framework to nonrelativistic quantum scattering theory. For time-dependent scattering theory, we identify the starting time and the finishing time of a scattering experiment, and we obtain a natural separation of time scales on which the preparation process, the interaction process, and the detection process take place. For time-independent scattering theory, we derive rigorously explicit formulas for the Mo/ller wave operators and the S-matrix.

  4. Bohmian Mechanics In A Macroscopic Quantum System

    NASA Astrophysics Data System (ADS)

    Haven, Emmanuel

    2006-01-01

    In the so called `causal' interpretation of quantum mechanics, an electron is considered as a particle and such particle is influenced not only by a classical but also by a so called quantum potential. This idea was developed by Professor Bohm in an important paper. In this paper we use some of the basics of this interpretation in a financial option pricing environment. The causal interpretation allows for trajectories. Path breaking work by Professors Bohm and Hiley and Khrennikov and Choustova have made that the causal interpretation is a step closer to potential applications in social science. In this paper we consider the wave function as a wave of information. We consider the gradient of the phase of this wave function and show how the option price could be influenced by this gradient.

  5. Indirect Acquisition of Information in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ballesteros, M.; Fraas, M.; Fröhlich, J.; Schubnel, B.

    2016-02-01

    Long sequences of successive direct (projective) measurements or observations of just a few "uninteresting" physical quantities pertaining to a quantum system, such as clicks of some detectors, may reveal indirect, but precise and unambiguous information on the values of some very "interesting" observables of the system. In this paper, the mathematics underlying this claim is developed; i.e., we attempt to contribute to a mathematical theory of indirect and, in particular, non-demolition observations and measurements in quantum mechanics. Our attempt leads us to make some novel uses of classical notions and results of probability theory, such as the "algebra of functions measurable at infinity", the Central Limit Theorem, results concerning relative entropy and its role in the theory of large deviations, etc.

  6. Quantum mechanical hamiltonian models of turing machines

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    1982-11-01

    Quantum mechanical Hamiltonian models, which represent an aribtrary but finite number of steps of any Turing machine computation, are constructed here on a finite lattice of spin-1/2 systems. Different regions of the lattice correspond to different components of the Turing machine (plus recording system). Successive states of any machine computation are represented in the model by spin configuration states. Both time-independent and time-dependent Hamiltonian models are constructed here. The time-independent models do not dissipate energy or degrade the system state as they evolve. They operate close to the quantum limit in that the total system energy uncertainty/computation speed is close to the limit given by the time-energy uncertainty relation. However, the model evolution is time global and the Hamiltonian is more complex. The time-dependent models do not degrade the system state. Also they are time local and the Hamiltonian is less complex.

  7. Unstable trajectories and the quantum mechanical uncertainty

    SciTech Connect

    Moser, Hans R.

    2008-08-15

    There is still an ongoing discussion about various seemingly contradictory aspects of classical particle motion and its quantum mechanical counterpart. One of the best accepted viewpoints that intend to bridge the gap is the so-called Copenhagen Interpretation. A major issue there is to regard wave functions as probability amplitudes (usually for the position of a particle). However, the literature also reports on approaches that claim a trajectory for any quantum mechanical particle, Bohmian mechanics probably being the most prominent one among these ideas. We introduce a way to calculate trajectories as well, but our crucial ingredient is their well controlled local (thus also momentaneous) degree of instability. By construction, at every moment their unpredictability, i.e., their local separation rates of neighboring trajectories, is governed by the local value of the given modulus square of a wave function. We present extensive numerical simulations of the H and He atom, and for some velocity-related quantities, namely angular momentum and total energy, we inspect their agreement with the values appearing in wave mechanics. Further, we interpret the archetypal double slit interference experiment in the spirit of our findings. We also discuss many-particle problems far beyond He, which guides us to a variety of possible applications.

  8. Quantum mechanics. Mechanically detecting and avoiding the quantum fluctuations of a microwave field.

    PubMed

    Suh, J; Weinstein, A J; Lei, C U; Wollman, E E; Steinke, S K; Meystre, P; Clerk, A A; Schwab, K C

    2014-06-13

    Quantum fluctuations of the light field used for continuous position detection produce stochastic back-action forces and ultimately limit the sensitivity. To overcome this limit, the back-action forces can be avoided by giving up complete knowledge of the motion, and these types of measurements are called "back-action evading" or "quantum nondemolition" detection. We present continuous two-tone back-action evading measurements with a superconducting electromechanical device, realizing three long-standing goals: detection of back-action forces due to the quantum noise of a microwave field, reduction of this quantum back-action noise by 8.5 ± 0.4 decibels (dB), and measurement imprecision of a single quadrature of motion 2.4 ± 0.7 dB below the mechanical zero-point fluctuations. Measurements of this type will find utility in ultrasensitive measurements of weak forces and nonclassical states of motion.

  9. The metaphysics of quantum mechanics: Modal interpretations

    NASA Astrophysics Data System (ADS)

    Gluck, Stuart Murray

    2004-11-01

    This dissertation begins with the argument that a preferred way of doing metaphysics is through philosophy of physics. An understanding of quantum physics is vital to answering questions such as: What counts as an individual object in physical ontology? Is the universe fundamentally indeterministic? Are indiscernibles identical? This study explores how the various modal interpretations of quantum mechanics answer these sorts of questions; modal accounts are one of the two classes of interpretations along with so-called collapse accounts. This study suggests a new alternative within the class of modal views that yields a more plausible ontology, one in which the Principle of the Identity of Indisceribles is necessarily true. Next, it shows that modal interpretations can consistently deny that the universe must be fundamentally indeterministic so long as they accept certain other metaphysical commitments: either a perfect initial distribution of states in the universe or some form of primitive dispositional properties. Finally, the study sketches out a future research project for modal interpretations based on developing quantified quantum logic.

  10. The Simpson's paradox in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Selvitella, Alessandro

    2017-03-01

    In probability and statistics, the Simpson's paradox is a paradox in which a trend that appears in different groups of data disappears when these groups are combined, while the reverse trend appears for the aggregate data. In this paper, we give some results about the occurrence of the Simpson's paradox in quantum mechanics. In particular, we prove that the Simpson's paradox occurs for solutions of the quantum harmonic oscillator both in the stationary case and in the non-stationary case. In the non-stationary case, the Simpson's paradox is persistent: if it occurs at any time t =t ˜ , then it occurs at any time t ≠t ˜ . Moreover, we prove that the Simpson's paradox is not an isolated phenomenon, namely, that, close to initial data for which it occurs, there are lots of initial data (a open neighborhood), for which it still occurs. Differently from the case of the quantum harmonic oscillator, we also prove that the paradox appears (asymptotically) in the context of the nonlinear Schrödinger equation but at intermittent times.

  11. BiHermitian supersymmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Zucchini, Roberto

    2007-04-01

    BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2, 2) world sheet supersymmetry. In this paper, we work out supersymmetric quantum mechanics for a biHermitian target space. We display the full supersymmetry of the model and illustrate in detail its quantization procedure. Finally, we show that the quantized model reproduces the Hodge theory for compact twisted generalized Kähler manifolds recently developed by Gualtieri in [33]. This allows us to recover and put in a broader context the results on the biHermitian topological sigma models obtained by Kapustin and Li in [9].

  12. Quantum Mechanical Studies of Molecular Hyperpolarizabilities.

    DTIC Science & Technology

    1980-04-30

    exponent , reflects the screening of an electron in a given orbital by the interior electrons in the atom or molecule. In practice, when studying...Basis sets have evolved over the years in molecular quantum mechanics until sets of orbital exponents for the different atoms composing the molecule have...and R. P. Hurst , J. Chem. Phys. 46, 2356 (1967); S. P. LickmannI and J. W. Moskowitz, J. Chem. Phys. 54, 3622 7T971). 26. T. H. Dunning, J. Chem. Phys

  13. Investigation into mechanical properties of bone and its main constituents

    NASA Astrophysics Data System (ADS)

    Evdokimenko, Ekaterina

    Bone is a hierarchically structured natural composite material, consisting of organic phase (type-I collagen), inorganic phase (hydroxyapatite), and water. Studies of the two main bone constituents, utilizing controlled demineralization and deproteinization, can shed light on mineral-collagen interaction which makes bone such a unique biological material. This knowledge is necessary for computational analysis of bone structure to identify preferential sites in the collagen matrix and mineral network that degrade more easily. The main goal of this work is to develop a comprehensive picture of mechanical properties of bone and its main constituents. Following the Introduction, Chapter 2 presents an investigation of microstructure and compressive mechanical properties of bovine femur cortical bone carried out on completely demineralized, completely deproteinized, and untreated bone samples in three anatomical directions. Anisotropic nature of bone was clearly identified in all cases. Extra levels of porosity along with microstructural differences for the three directions were found to be the main sources of the anisotropy. In Chapter 3, a new theoretical model of cortical and trabecular bone as composite materials with hierarchical structure spanning from nanometer (collagen-mineral) level to millimeter (bone) level was developed. Compression testing was performed on untreated, demineralized, and deproteinized cortical and trabecular bovine femur bone samples to verify the model. The experimental data were compared with theoretical predictions; excellent agreement was found between the theory and experiments for all bone phases. Optical microscopy, scanning electron microscopy, and micro-computed tomography techniques were applied to characterize the structure of the samples at multiple length scales and provide further inputs for the modeling. Chapter 4 presents a comparative study of mechanical properties, microstructure, and porosity of mature and young bovine

  14. Attosecond delays in photoionization: time and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Maquet, Alfred; Caillat, Jérémie; Taïeb, Richard

    2014-10-01

    This article addresses topics regarding time measurements performed on quantum systems. The motivation is linked to the advent of ‘attophysics’ which makes feasible to follow the motion of electrons in atoms and molecules, with time resolution at the attosecond (1 as = 10-18 s) level, i.e. at the natural scale for electronic processes in these systems. In this context, attosecond ‘time-delays’ have been recently measured in experiments on photoionization and the question arises if such advances could cast a new light on the still active discussion on the status of the time variable in quantum mechanics. One issue still debatable is how to decide whether one can define a quantum time operator with eigenvalues associated to measurable ‘time-delays’, or time is a parameter, as it is implicit in the Newtonian classical mechanics. One objective of this paper is to investigate if the recent attophysics-based measurements could shed light on this parameter-operator conundrum. To this end, we present here the main features of the theory background, followed by an analysis of the experimental schemes that have been used to evidence attosecond ‘time-delays’ in photoionization. Our conclusion is that these results reinforce the view that time is a parameter which cannot be defined without reference to classical mechanics.

  15. Nonequilibrium quantum mechanics: A "hot quantum soup" of paramagnons

    NASA Astrophysics Data System (ADS)

    Scammell, H. D.; Sushkov, O. P.

    2017-01-01

    Motivated by recent measurements of the lifetime (decay width) of paramagnons in quantum antiferromagnet TlCuCl3, we investigate paramagnon decay in a heat bath and formulate an appropriate quantum theory. Our formulation can be split into two regimes: (i) a nonperturbative, "hot quantum soup" regime where the paramagnon width is comparable to its energy; (ii) a usual perturbative regime where the paramagnon width is significantly lower than its energy. Close to the Neel temperature, the paramagnon width becomes comparable to its energy and falls into the hot quantum soup regime. To describe this regime, we develop a new finite frequency, finite temperature technique for a nonlinear quantum field theory; the "golden rule of quantum kinetics." The formulation is generic and applicable to any three-dimensional quantum antiferromagnet in the vicinity of a quantum critical point. Specifically, we apply our results to TlCuCl3 and find agreement with experimental data. Additionally, we show that logarithmic running of the coupling constant in the upper critical dimension changes the commonly accepted picture of the quantum disordered and quantum critical regimes.

  16. The formal path integral and quantum mechanics

    SciTech Connect

    Johnson-Freyd, Theo

    2010-11-15

    Given an arbitrary Lagrangian function on R{sup d} and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.

  17. Quantum Mechanical Study of Nanoscale MOSFET

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    The steady state characteristics of MOSFETS that are of practical Interest are the drive current, off-current, dope of drain current versus drain voltage, and threshold voltage. In this section, we show that quantum mechanical simulations yield significantly different results from drift-diffusion based methods. These differences arise because of the following quantum mechanical features: (I) polysilicon gate depletion in a manner opposite to the classical case (II) dependence of the resonant levels in the channel on the gate voltage, (III) tunneling of charge across the gate oxide and from source to drain, (IV) quasi-ballistic flow of electrons. Conclusions dI/dV versus V does not increase in a manner commensurate with the increase in number of subbands. - The increase in dI/dV with bias is much smaller then the increase in the number of subbands - a consequence of bragg reflection. Our calculations show an increase in transmission with length of contact, as seen in experiments. It is desirable for molecular electronics applications to have a small contact area, yet large coupling. In this case, the circumferential dependence of the nanotube wave function dictates: - Transmission in armchair tubes saturates around unity - Transmission in zigzag tubes saturates at two.

  18. Mathematical model I. Electron and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Gadre, Nitin Ramchandra

    2011-03-01

    The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is `difficult' to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.

  19. Differentiability of correlations in realistic quantum mechanics

    SciTech Connect

    Cabrera, Alejandro; Faria, Edson de; Pujals, Enrique; Tresser, Charles

    2015-09-15

    We prove a version of Bell’s theorem in which the locality assumption is weakened. We start by assuming theoretical quantum mechanics and weak forms of relativistic causality and of realism (essentially the fact that observable values are well defined independently of whether or not they are measured). Under these hypotheses, we show that only one of the correlation functions that can be formulated in the framework of the usual Bell theorem is unknown. We prove that this unknown function must be differentiable at certain angular configuration points that include the origin. We also prove that, if this correlation is assumed to be twice differentiable at the origin, then we arrive at a version of Bell’s theorem. On the one hand, we are showing that any realistic theory of quantum mechanics which incorporates the kinematic aspects of relativity must lead to this type of rough correlation function that is once but not twice differentiable. On the other hand, this study brings us a single degree of differentiability away from a relativistic von Neumann no hidden variables theorem.

  20. Quantum mechanical wavefunction: visualization at undergraduate level

    NASA Astrophysics Data System (ADS)

    Chhabra, Mahima; Das, Ritwick

    2017-01-01

    Quantum mechanics (QM) forms the most crucial ingredient of modern-era physical science curricula at undergraduate level. The abstract ideas involved in QM related concepts pose a challenge towards appropriate visualization as a consequence of their counter-intuitive nature and lack of experiment-assisted visualization tools. At the heart of the quantum mechanical formulation lies the concept of ‘wavefunction’, which forms the basis for understanding the behavior of physical systems. At undergraduate level, the concept of ‘wavefunction’ is introduced in an abstract framework using mathematical tools and therefore opens up an enormous scope for alternative conceptions and erroneous visualization. The present work is an attempt towards exploring the visualization models constructed by undergraduate students for appreciating the concept of ‘wavefunction’. We present a qualitative analysis of the data obtained from administering a questionnaire containing four visualization based questions on the topic of ‘wavefunction’ to a group of ten undergraduate-level students at an institute in India which excels in teaching and research of basic sciences. Based on the written responses, all ten students were interviewed in detail to unravel the exact areas of difficulty in visualization of ‘wavefunction’. The outcome of present study not only reveals the gray areas in students’ conceptualization, but also provides a plausible route to address the issues at the pedagogical level within the classroom.

  1. Molecular model with quantum mechanical bonding information.

    PubMed

    Bohórquez, Hugo J; Boyd, Russell J; Matta, Chérif F

    2011-11-17

    The molecular structure can be defined quantum mechanically thanks to the theory of atoms in molecules. Here, we report a new molecular model that reflects quantum mechanical properties of the chemical bonds. This graphical representation of molecules is based on the topology of the electron density at the critical points. The eigenvalues of the Hessian are used for depicting the critical points three-dimensionally. The bond path linking two atoms has a thickness that is proportional to the electron density at the bond critical point. The nuclei are represented according to the experimentally determined atomic radii. The resulting molecular structures are similar to the traditional ball and stick ones, with the difference that in this model each object included in the plot provides topological information about the atoms and bonding interactions. As a result, the character and intensity of any given interatomic interaction can be identified by visual inspection, including the noncovalent ones. Because similar bonding interactions have similar plots, this tool permits the visualization of chemical bond transferability, revealing the presence of functional groups in large molecules.

  2. Student Understanding of Time Dependence in Quantum Mechanics

    ERIC Educational Resources Information Center

    Emigh, Paul J.; Passante, Gina; Shaffer, Peter S.

    2015-01-01

    The time evolution of quantum states is arguably one of the more difficult ideas in quantum mechanics. In this article, we report on results from an investigation of student understanding of this topic after lecture instruction. We demonstrate specific problems that students have in applying time dependence to quantum systems and in recognizing…

  3. Anyons in quantum mechanics with a minimal length

    NASA Astrophysics Data System (ADS)

    Buisseret, Fabien

    2017-02-01

    The existence of anyons, i.e. quantum states with an arbitrary spin, is a generic feature of standard quantum mechanics in (2 + 1) -dimensional Minkowski spacetime. Here it is shown that relativistic anyons may exist also in quantum theories where a minimal length is present. The interplay between minimal length and arbitrary spin effects are discussed.

  4. Foundation of quantum mechanics from the principle of relativity

    SciTech Connect

    Nottale, Laurent

    2007-04-28

    We briefly recall the main steps by which we suggest to found quantum mechanics and gauge field theories on the principle of relativity, once it is extended to scale transformations of the reference system. The wave functions are constructed as consequences of the nondifferentiability of a continuous space-time, while the Schroedinger and Dirac equations are obtained from its geodesics equations. In this framework, the gauge fields emerge as manifestation of the fractal geometry, and the gauge charges as the conservative quantities which are built from its internal symmetries.

  5. New type of N = 4 supersymmetric quantum mechanics

    SciTech Connect

    Ivanov, Evgeny; Sidorov, Stepan

    2014-07-23

    We overview a new type of supersymmetric quantum mechanics models based on the worldline realizations of the supergroup SU(2|1). Our main focus is on the models associated with the chiral multiplets (2,4,2). Considering two nonequivalent deformations of the standard N = 4, d = 1 superspace, we define the relevant chiral superfields and construct their SU(2|1) invariant actions. We give off- and on-shell descriptions of these models and perform their quantization. The basic peculiarities of such models and interrelations between them are briefly discussed.

  6. Surveying Instructors' Attitudes and Approaches to Teaching Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Siddiqui, Shabnam; Singh, Chandralekha

    2010-10-01

    Understanding instructors' attitudes and approaches to teaching quantum mechanics can be helpful in developing research-based learning tools. Here we discuss the findings from a survey in which 13 instructors reflected on issues related to quantum mechanics teaching. Topics included opinions about the goals of a quantum mechanics course, general challenges in teaching the subject, students' preparation for the course, comparison between their own learning of quantum mechanics vs. how they teach it and the extent to which contemporary topics are incorporated into the syllabus.

  7. Tampering detection system using quantum-mechanical systems

    DOEpatents

    Humble, Travis S [Knoxville, TN; Bennink, Ryan S [Knoxville, TN; Grice, Warren P [Oak Ridge, TN

    2011-12-13

    The use of quantum-mechanically entangled photons for monitoring the integrity of a physical border or a communication link is described. The no-cloning principle of quantum information science is used as protection against an intruder's ability to spoof a sensor receiver using a `classical` intercept-resend attack. Correlated measurement outcomes from polarization-entangled photons are used to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation.

  8. Exact and Optimal Quantum Mechanics/Molecular Mechanics Boundaries.

    PubMed

    Sun, Qiming; Chan, Garnet Kin-Lic

    2014-09-09

    Motivated by recent work in density matrix embedding theory, we define exact link orbitals that capture all quantum mechanical (QM) effects across arbitrary quantum mechanics/molecular mechanics (QM/MM) boundaries. Exact link orbitals are rigorously defined from the full QM solution, and their number is equal to the number of orbitals in the primary QM region. Truncating the exact set yields a smaller set of link orbitals optimal with respect to reproducing the primary region density matrix. We use the optimal link orbitals to obtain insight into the limits of QM/MM boundary treatments. We further analyze the popular general hybrid orbital (GHO) QM/MM boundary across a test suite of molecules. We find that GHOs are often good proxies for the most important optimal link orbital, although there is little detailed correlation between the detailed GHO composition and optimal link orbital valence weights. The optimal theory shows that anions and cations cannot be described by a single link orbital. However, expanding to include the second most important optimal link orbital in the boundary recovers an accurate description. The second optimal link orbital takes the chemically intuitive form of a donor or acceptor orbital for charge redistribution, suggesting that optimal link orbitals can be used as interpretative tools for electron transfer. We further find that two optimal link orbitals are also sufficient for boundaries that cut across double bonds. Finally, we suggest how to construct "approximately" optimal link orbitals for practical QM/MM calculations.

  9. A short course on quantum mechanics and methods of quantization

    NASA Astrophysics Data System (ADS)

    Ercolessi, Elisa

    2015-07-01

    These notes collect the lectures given by the author to the "XXIII International Workshop on Geometry and Physics" held in Granada (Spain) in September 2014. The first part of this paper aims at introducing a mathematical oriented reader to the realm of Quantum Mechanics (QM) and then to present the geometric structures that underline the mathematical formalism of QM which, contrary to what is usually done in Classical Mechanics (CM), are usually not taught in introductory courses. The mathematics related to Hilbert spaces and Differential Geometry are assumed to be known by the reader. In the second part, we concentrate on some quantization procedures, that are founded on the geometric structures of QM — as we have described them in the first part — and represent the ones that are more operatively used in modern theoretical physics. We will discuss first the so-called Coherent State Approach which, mainly complemented by "Feynman Path Integral Technique", is the method which is most widely used in quantum field theory. Finally, we will describe the "Weyl Quantization Approach" which is at the origin of modern tomographic techniques, originally used in optics and now in quantum information theory.

  10. Statistical origin of classical mechanics and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Chu, Shu-Yuan

    1993-11-01

    The classical action for interacting strings, obtained by generalizing the time-symmetric electrodynamics of Wheeler and Feynman, is exactly additive. The additivity of the string action suggests a connection between the area of the string world sheets and entropy. We find that the action principle of classical mechanics is the condition that the total entropy of the strings be at an extremum, and the path-integral representation of the quantum density matrix element is an approximation to the partition function of the string theory.

  11. Testing quantum mechanics using third-order correlations

    NASA Astrophysics Data System (ADS)

    Kinsler, Paul

    1996-04-01

    Semiclassical theories similar to stochastic electrodynamics are widely used in optics. The distinguishing feature of such theories is that the quantum uncertainty is represented by random statistical fluctuations. They can successfully predict some quantum-mechanical phenomena; for example, the squeezing of the quantum uncertainty in the parametric oscillator. However, since such theories are not equivalent to quantum mechanics, they will not always be useful. Complex number representations can be used to exactly model the quantum uncertainty, but care has to be taken that approximations do not reduce the description to a hidden variable one. This paper helps show the limitations of ``semiclassical theories,'' and helps show where a true quantum-mechanical treatment needs to be used. Third-order correlations are a test that provides a clear distinction between quantum and hidden variable theories in a way analogous to that provided by the ``all or nothing'' Greenberger-Horne-Zeilinger test of local hidden variable theories.

  12. Harmonizing General Relativity with Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Alfonso-Faus, Antonio

    2007-04-01

    Gravitation is the common underlying texture between General Relativity and Quantum Mechanics. We take gravitation as the link that can make possible the marriage between these two sciences. We use here the duality of Nature for gravitation: A continuous warped space, wave-like, and a discrete quantum gas, particle-like, both coexistent and producing an equilibrium state in the Universe. The result is a static, non expanding, spherical, unlimited and finite Universe, with no cosmological constant and no dark energy. Macht's Principle is reproduced here by the convergence of the two cosmological equations of Einstein. From this a Mass Boom concept is born given by M = t, M the mass of the Universe and t its age. Also a decreasing speed of light is the consequence of the Mass Boom, c = 1/t, which explains the Supernovae Type Ia observations without the need of expansion (nor, of course, accelerated expansion). Our Mass Boom model completely wipes out the problems and paradoxes built in the Big Bang model, like the horizon, monopole, entropy, flatness, fine tuning, etc. It also eliminates the need for inflation.

  13. Dynamical phase transitions in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rotter, Ingrid

    2012-02-01

    The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.

  14. Causal localizations in relativistic quantum mechanics

    SciTech Connect

    Castrigiano, Domenico P. L. Leiseifer, Andreas D.

    2015-07-15

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  15. Causal localizations in relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Castrigiano, Domenico P. L.; Leiseifer, Andreas D.

    2015-07-01

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  16. Extending quantum mechanics entails extending special relativity

    NASA Astrophysics Data System (ADS)

    Aravinda, S.; Srikanth, R.

    2016-05-01

    The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure.

  17. Are quantum-mechanical-like models possible, or necessary, outside quantum physics?

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2014-12-01

    This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.

  18. Quantum mechanics of a generalised rigid body

    NASA Astrophysics Data System (ADS)

    Gripaios, Ben; Sutherland, Dave

    2016-05-01

    We consider the quantum version of Arnold’s generalisation of a rigid body in classical mechanics. Thus, we quantise the motion on an arbitrary Lie group manifold of a particle whose classical trajectories correspond to the geodesics of any one-sided-invariant metric. We show how the derivation of the spectrum of energy eigenstates can be simplified by making use of automorphisms of the Lie algebra and (for groups of type I) by methods of harmonic analysis. We show how the method can be extended to cosets, generalising the linear rigid rotor. As examples, we consider all connected and simply connected Lie groups up to dimension 3. This includes the universal cover of the archetypical rigid body, along with a number of new exactly solvable models. We also discuss a possible application to the topical problem of quantising a perfect fluid.

  19. Gauge invariance and reciprocity in quantum mechanics

    SciTech Connect

    Leung, P. T.; Young, K.

    2010-03-15

    Reciprocity in wave propagation usually refers to the symmetry of the Green's function under the interchange of the source and the observer coordinates, but this condition is not gauge invariant in quantum mechanics, a problem that is particularly significant in the presence of a vector potential. Several possible alternative criteria are given and analyzed with reference to different examples with nonzero magnetic fields and/or vector potentials, including the case of a multiply connected spatial domain. It is shown that the appropriate reciprocity criterion allows for specific phase factors separable into functions of the source and observer coordinates and that this condition is robust with respect to the addition of any scalar potential. In the Aharonov-Bohm effect, reciprocity beyond monoenergetic experiments holds only because of subsidiary conditions satisfied in actual experiments: the test charge is in units of e and the flux is produced by a condensate of particles with charge 2e.

  20. Waveform information from quantum mechanical entropy

    NASA Astrophysics Data System (ADS)

    Funkhouser, Scott; Suski, William; Winn, Andrew

    2016-06-01

    Although the entropy of a given signal-type waveform is technically zero, it is nonetheless desirable to use entropic measures to quantify the associated information. Several such prescriptions have been advanced in the literature but none are generally successful. Here, we report that the Fourier-conjugated `total entropy' associated with quantum-mechanical probabilistic amplitude functions (PAFs) is a meaningful measure of information in non-probabilistic real waveforms, with either the waveform itself or its (normalized) analytic representation acting in the role of the PAF. Detailed numerical calculations are presented for both adaptations, showing the expected informatic behaviours in a variety of rudimentary scenarios. Particularly noteworthy are the sensitivity to the degree of randomness in a sequence of pulses and potential for detection of weak signals.

  1. Quantum mechanical calculations to chemical accuracy

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The accuracy of current molecular-structure calculations is illustrated with examples of quantum mechanical solutions for chemical problems. Two approaches are considered: (1) the coupled-cluster singles and doubles (CCSD) with a perturbational estimate of the contribution of connected triple excitations, or CCDS(T); and (2) the multireference configuration-interaction (MRCI) approach to the correlation problem. The MRCI approach gains greater applicability by means of size-extensive modifications such as the averaged-coupled pair functional approach. The examples of solutions to chemical problems include those for C-H bond energies, the vibrational frequencies of O3, identifying the ground state of Al2 and Si2, and the Lewis-Rayleigh afterglow and the Hermann IR system of N2. Accurate molecular-wave functions can be derived from a combination of basis-set saturation studies and full configuration-interaction calculations.

  2. On some hydrodynamical aspects of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Spera, Mauro

    2010-02-01

    In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the complex polynomial ( i.e. Borel-Weil) realization of the irreducible unitary representations of SU(2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schrödinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly determine the critical points of the pressure of this “Schrödinger fluid”, together with its vorticity, which turns out to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.

  3. On some hydrodynamical aspects of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Spera, Mauro

    2010-02-01

    In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the complex polynomial (i.e. Borel-Weil) realization of the irreducible unitary representations of SU(2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schrödinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly determine the critical points of the pressure of this "Schrödinger fluid", together with its vorticity, which turns out to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.

  4. New methods for quantum mechanical reaction dynamics

    SciTech Connect

    Thompson, Ward Hugh

    1996-12-01

    Quantum mechanical methods are developed to describe the dynamics of bimolecular chemical reactions. We focus on developing approaches for directly calculating the desired quantity of interest. Methods for the calculation of single matrix elements of the scattering matrix (S-matrix) and initial state-selected reaction probabilities are presented. This is accomplished by the use of absorbing boundary conditions (ABC) to obtain a localized (L2) representation of the outgoing wave scattering Green`s function. This approach enables the efficient calculation of only a single column of the S-matrix with a proportionate savings in effort over the calculation of the entire S-matrix. Applying this method to the calculation of the initial (or final) state-selected reaction probability, a more averaged quantity, requires even less effort than the state-to-state S-matrix elements. It is shown how the same representation of the Green`s function can be effectively applied to the calculation of negative ion photodetachment intensities. Photodetachment spectroscopy of the anion ABC- can be a very useful method for obtaining detailed information about the neutral ABC potential energy surface, particularly if the ABC- geometry is similar to the transition state of the neutral ABC. Total and arrangement-selected photodetachment spectra are calculated for the H3O- system, providing information about the potential energy surface for the OH + H2 reaction when compared with experimental results. Finally, we present methods for the direct calculation of the thermal rate constant from the flux-position and flux-flux correlation functions. The spirit of transition state theory is invoked by concentrating on the short time dynamics in the area around the transition state that determine reactivity. These methods are made efficient by evaluating the required quantum mechanical trace in the basis of eigenstates of the

  5. Categorical quantum mechanics II: Classical-quantum interaction

    NASA Astrophysics Data System (ADS)

    Coecke, Bob; Kissinger, Aleks

    2016-08-01

    This is the second part of a three-part overview, in which we derive the category-theoretic backbone of quantum theory from a process ontology, treating quantum theory as a theory of systems, processes and their interactions. In this part, we focus on classical-quantum interaction. Classical and quantum systems are treated as distinct types, of which the respective behavioral properties are specified in terms of processes and their compositions. In particular, classicality is witnessed by ‘spiders’ which fuse together whenever they connect. We define mixedness and show that pure processes are extremal in the space of all processes, and we define entanglement and show that quantum theory indeed exhibits entanglement. We discuss the classification of tripartite qubit entanglement and show that both the GHZ-state and the W-state come from spider-like families of processes, which differ only in how they behave when they are connected by two or more wires. We define measurements and provide fully comprehensive descriptions of several quantum protocols involving classical data flow. Finally, we give a notion of ‘genuine quantumness’, from which special processes called ‘phase spiders’ arise, and get a first glimpse of quantum nonlocality.

  6. Reverse Causation and the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Cramer, John G.

    2006-10-01

    In the first part of the paper we present the transactional interpretation of quantum mechanics, a method of viewing the formalism of quantum mechanics that provides a way of visualizing quantum events and experiments. In the second part, we present an EPR gedankenexperiment that appears to lead to observer-level reverse causation. A transactional analysis of the experiment is presented. It easily accounts for the reported observations but does not reveal any barriers to its modification for reverse causation.

  7. BOOK REVIEW: Mind, Matter and Quantum Mechanics (2nd edition)

    NASA Astrophysics Data System (ADS)

    Mahler, G.

    2004-07-01

    Quantum mechanics is usually defined in terms of some loosely connected axioms and rules. Such a foundation is far from the beauty of, e.g., the `principles' underlying classical mechanics. Motivated, in addition, by notorious interpretation problems, there have been numerous attempts to modify or `complete' quantum mechanics. A first attempt was based on so-called hidden variables; its proponents essentially tried to expel the non-classical nature of quantum mechanics. More recent proposals intend to complete quantum mechanics not within mechanics proper but on a `higher (synthetic) level'; by means of a combination with gravitation theory (R Penrose), with quantum information theory (C M Caves, C A Fuchs) or with psychology and brain science (H P Stapp). I think it is fair to say that in each case the combination is with a subject that, per se, suffers from a very limited understanding that is even more severe than that of quantum mechanics. This was acceptable, though, if it could convincingly be argued that scientific progress desperately needs to join forces. Quantum mechanics of a closed system was a beautiful and well understood theory with its respective state being presented as a point on a deterministic trajectory in Liouville space---not unlike the motion of a classical N-particle system in its 6N-dimensional phase-space. Unfortunately, we need an inside and an outside view, we need an external reference frame, we need an observer. This unavoidable partition is the origin of most of the troubles we have with quantum mechanics. A pragmatic solution is introduced in the form of so-called measurement postulates: one of the various incompatible properties of the system under consideration is supposed to be realized (i.e. to become a fact, to be defined without fundamental dispersion) based on `instantaneous' projections within some externally selected measurement basis. As a result, the theory becomes essentially statistical rather than deterministic

  8. Categorization of Quantum Mechanics Problems by Professors and Students

    ERIC Educational Resources Information Center

    Lin, Shih-Yin; Singh, Chandralekha

    2010-01-01

    We discuss the categorization of 20 quantum mechanics problems by physics professors and undergraduate students from two honours-level quantum mechanics courses. Professors and students were asked to categorize the problems based upon similarity of solution. We also had individual discussions with professors who categorized the problems. Faculty…

  9. Developing and Evaluating Animations for Teaching Quantum Mechanics Concepts

    ERIC Educational Resources Information Center

    Kohnle, Antje; Douglass, Margaret; Edwards, Tom J.; Gillies, Alastair D.; Hooley, Christopher A.; Sinclair, Bruce D.

    2010-01-01

    In this paper, we describe animations and animated visualizations for introductory and intermediate-level quantum mechanics instruction developed at the University of St Andrews. The animations aim to help students build mental representations of quantum mechanics concepts. They focus on known areas of student difficulty and misconceptions by…

  10. Do Free Quantum-Mechanical Wave Packets Always Spread?

    ERIC Educational Resources Information Center

    Klein, James R.

    1980-01-01

    The spreading or shrinking of free three-dimensional quantum-mechanical wave packets is addressed. A seeming paradox concerning the time evolution operator and nonspreading wave packets is discussed, and the necessity of taking into account the appropriate mathematical structure of quantum mechanics is emphasized. Teaching implications are given.…

  11. Design and Validation of the Quantum Mechanics Conceptual Survey

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  12. In Defense of a Heuristic Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Healy, Eamonn F.

    2010-01-01

    Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…

  13. Students' Conceptual Difficulties in Quantum Mechanics: Potential Well Problems

    ERIC Educational Resources Information Center

    Ozcan, Ozgur; Didis, Nilufer; Tasar, Mehmet Fatih

    2009-01-01

    In this study, students' conceptual difficulties about some basic concepts in quantum mechanics like one-dimensional potential well problems and probability density of tunneling particles were identified. For this aim, a multiple choice instrument named Quantum Mechanics Conceptual Test has been developed by one of the researchers of this study…

  14. Quantum Mechanics from Periodic Dynamics: the bosonic case

    SciTech Connect

    Dolce, Donatello

    2010-05-04

    Enforcing the periodicity hypothesis of the 'old' formulation of Quantum Mechanics we show the possibility for a new scenario where Special Relativity and Quantum Mechanics are unified in a deterministic field theory. A novel interpretation of the AdS/CFT conjecture is discussed.

  15. A snapshot of foundational attitudes toward quantum mechanics

    NASA Astrophysics Data System (ADS)

    Schlosshauer, Maximilian; Kofler, Johannes; Zeilinger, Anton

    2013-08-01

    Foundational investigations in quantum mechanics, both experimental and theoretical, gave birth to the field of quantum information science. Nevertheless, the foundations of quantum mechanics themselves remain hotly debated in the scientific community, and no consensus on essential questions has been reached. Here, we present the results of a poll carried out among 33 participants of a conference on the foundations of quantum mechanics. The participants completed a questionnaire containing 16 multiple-choice questions probing opinions on quantum-foundational issues. Participants included physicists, philosophers, and mathematicians. We describe our findings, identify commonly held views, and determine strong, medium, and weak correlations between the answers. Our study provides a unique snapshot of current views in the field of quantum foundations, as well as an analysis of the relationships between these views.

  16. Chirality, quantum mechanics, and biological determinism

    NASA Astrophysics Data System (ADS)

    Davies, P. C. W.

    2006-08-01

    life with biochemical make-up resembling that of known life. Whilst the experimental search for a second sample of life - possibly by detecting a chiral "anomaly" - continues, some theoretical investigations may be pursued to narrow down the options. Chiral determinism would be an intrinsically quantum process. There are hints that quantum mechanics plays a key role in biology, but the claim remains contentious. Here I review some of the evidence for quantum aspects of biology. I also summarize some proposals for testing biological determinism by seeking evidence for a multiple genesis events on Earth, and for identifying extant "alien microbes" - micro-organisms descended from an independent origin from familiar life.

  17. Spin Glass a Bridge Between Quantum Computation and Statistical Mechanics

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2013-09-01

    In this chapter, we show two fascinating topics lying between quantum information processing and statistical mechanics. First, we introduce an elaborated technique, the surface code, to prepare the particular quantum state with robustness against decoherence. Interestingly, the theoretical limitation of the surface code, accuracy threshold, to restore the quantum state has a close connection with the problem on the phase transition in a special model known as spin glasses, which is one of the most active researches in statistical mechanics. The phase transition in spin glasses is an intractable problem, since we must strive many-body system with complicated interactions with change of their signs depending on the distance between spins. Fortunately, recent progress in spin-glass theory enables us to predict the precise location of the critical point, at which the phase transition occurs. It means that statistical mechanics is available for revealing one of the most interesting parts in quantum information processing. We show how to import the special tool in statistical mechanics into the problem on the accuracy threshold in quantum computation. Second, we show another interesting technique to employ quantum nature, quantum annealing. The purpose of quantum annealing is to search for the most favored solution of a multivariable function, namely optimization problem. The most typical instance is the traveling salesman problem to find the minimum tour while visiting all the cities. In quantum annealing, we introduce quantum fluctuation to drive a particular system with the artificial Hamiltonian, in which the ground state represents the optimal solution of the specific problem we desire to solve. Induction of the quantum fluctuation gives rise to the quantum tunneling effect, which allows nontrivial hopping from state to state. We then sketch a strategy to control the quantum fluctuation efficiently reaching the ground state. Such a generic framework is called

  18. Statistical mechanics of quantum-classical systems with holonomic constraints.

    PubMed

    Sergi, Alessandro

    2006-01-14

    The statistical mechanics of quantum-classical systems with holonomic constraints is formulated rigorously by unifying the classical Dirac bracket and the quantum-classical bracket in matrix form. The resulting Dirac quantum-classical theory, which conserves the holonomic constraints exactly, is then used to formulate time evolution and statistical mechanics. The correct momentum-jump approximation for constrained systems arises naturally from this formalism. Finally, in analogy with what was found in the classical case, it is shown that the rigorous linear-response function of constrained quantum-classical systems contains nontrivial additional terms which are absent in the response of unconstrained systems.

  19. High-efficiency quantum state transfer and quantum memory using a mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Sete, Eyob A.; Eleuch, H.

    2015-03-01

    We analyze an optomechanical system that can be used to efficiently transfer a quantum state between an optical cavity and a distant mechanical oscillator coupled to a second optical cavity. We show that for a moderate mechanical Q factor it is possible to achieve a transfer efficiency of 99.4 % by using adjustable cavity damping rates and destructive interference. We also show that the quantum mechanical oscillator can be used as a quantum memory device with an efficiency of 96 % employing a pulsed optomechanical coupling. Although the mechanical dissipation slightly decreases the efficiency, its effect can be significantly reduced by designing a high-Q mechanical oscillator.

  20. Calendar effects in quantum mechanics in view of interactive holography

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2013-04-01

    Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .

  1. Review of student difficulties in upper-level quantum mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha; Marshman, Emily

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical mechanics and quantum mechanics are very different. Here, we review research on student reasoning difficulties in learning upper-level quantum mechanics and research on students' problem-solving and metacognitive skills in these courses. Some of these studies were multiuniversity investigations. The investigations suggest that there is large diversity in student performance in upper-level quantum mechanics regardless of the university, textbook, or instructor, and many students in these courses have not acquired a functional understanding of the fundamental concepts. The nature of reasoning difficulties in learning quantum mechanics is analogous to reasoning difficulties found via research in introductory physics courses. The reasoning difficulties were often due to overgeneralizations of concepts learned in one context to another context where they are not directly applicable. Reasoning difficulties in distinguishing between closely related concepts and in making sense of the formalism of quantum mechanics were common. We conclude with a brief summary of the research-based approaches that take advantage of research on student difficulties in order to improve teaching and learning of quantum mechanics.

  2. "Mysticism" in Quantum Mechanics: The Forgotten Controversy

    ERIC Educational Resources Information Center

    Marin, Juan Miguel

    2009-01-01

    This paper argues that a European controversy over a "mystical" hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s--birth of quantum theory--and concluding…

  3. The physical principles of quantum mechanics. A critical review

    NASA Astrophysics Data System (ADS)

    Strocchi, F.

    2012-01-01

    The standard presentation of the principles of quantum mechanics is critically reviewed both from the experimental/operational point and with respect to the request of mathematical consistency and logical economy. A simpler and more physically motivated formulation is discussed. The existence of non commuting observables, which characterizes quantum mechanics with respect to classical mechanics, is related to operationally testable complementarity relations, rather than to uncertainty relations. The drawbacks of Dirac argument for canonical quantization are avoided by a more geometrical approach.

  4. Quantum Hamilton mechanics: Hamilton equations of quantum motion, origin of quantum operators, and proof of quantization axiom

    SciTech Connect

    Yang, C.-D. . E-mail: cdyang@mail.ncku.edu.tw

    2006-12-15

    This paper gives a thorough investigation on formulating and solving quantum problems by extended analytical mechanics that extends canonical variables to complex domain. With this complex extension, we show that quantum mechanics becomes a part of analytical mechanics and hence can be treated integrally with classical mechanics. Complex canonical variables are governed by Hamilton equations of motion, which can be derived naturally from Schroedinger equation. Using complex canonical variables, a formal proof of the quantization axiom p {sup {yields}} p = -ih{nabla}, which is the kernel in constructing quantum-mechanical systems, becomes a one-line corollary of Hamilton mechanics. The derivation of quantum operators from Hamilton mechanics is coordinate independent and thus allows us to derive quantum operators directly under any coordinate system without transforming back to Cartesian coordinates. Besides deriving quantum operators, we also show that the various prominent quantum effects, such as quantization, tunneling, atomic shell structure, Aharonov-Bohm effect, and spin, all have the root in Hamilton mechanics and can be described entirely by Hamilton equations of motion.

  5. Ruling out multi-order interference in quantum mechanics.

    PubMed

    Sinha, Urbasi; Couteau, Christophe; Jennewein, Thomas; Laflamme, Raymond; Weihs, Gregor

    2010-07-23

    Quantum mechanics and gravitation are two pillars of modern physics. Despite their success in describing the physical world around us, they seem to be incompatible theories. There are suggestions that one of these theories must be generalized to achieve unification. For example, Born's rule--one of the axioms of quantum mechanics--could be violated. Born's rule predicts that quantum interference, as shown by a double-slit diffraction experiment, occurs from pairs of paths. A generalized version of quantum mechanics might allow multipath (i.e., higher-order) interference, thus leading to a deviation from the theory. We performed a three-slit experiment with photons and bounded the magnitude of three-path interference to less than 10(-2) of the expected two-path interference, thus ruling out third- and higher-order interference and providing a bound on the accuracy of Born's rule. Our experiment is consistent with the postulate both in semiclassical and quantum regimes.

  6. Bell operator and Gaussian squeezed states in noncommutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bastos, Catarina; Bernardini, Alex E.; Bertolami, Orfeu; Dias, Nuno Costa; Prata, João Nuno

    2016-05-01

    We examine putative corrections to the Bell operator due to the noncommutativity in the phase space. Starting from a Gaussian squeezed envelope whose time evolution is driven by commutative (standard quantum mechanics) and noncommutative dynamics, respectively, we conclude that although the time-evolving covariance matrix in the noncommutative case is different from the standard case, the squeezing parameter dominates and there are no noticeable noncommutative corrections to the Bell operator. This indicates that, at least for squeezed states, the privileged states to test Bell correlations, noncommutativity versions of quantum mechanics remain as nonlocal as quantum mechanics itself.

  7. Predicting crystal structure by merging data mining with quantum mechanics.

    PubMed

    Fischer, Christopher C; Tibbetts, Kevin J; Morgan, Dane; Ceder, Gerbrand

    2006-08-01

    Modern methods of quantum mechanics have proved to be effective tools to understand and even predict materials properties. An essential element of the materials design process, relevant to both new materials and the optimization of existing ones, is knowing which crystal structures will form in an alloy system. Crystal structure can only be predicted effectively with quantum mechanics if an algorithm to direct the search through the large space of possible structures is found. We present a new approach to the prediction of structure that rigorously mines correlations embodied within experimental data and uses them to direct quantum mechanical techniques efficiently towards the stable crystal structure of materials.

  8. The actual content of quantum theoretical kinematics and mechanics

    NASA Technical Reports Server (NTRS)

    Heisenberg, W.

    1983-01-01

    First, exact definitions are supplied for the terms: position, velocity, energy, etc. (of the electron, for instance), such that they are valid also in quantum mechanics. Canonically conjugated variables are determined simultaneously only with a characteristic uncertainty. This uncertainty is the intrinsic reason for the occurrence of statistical relations in quantum mechanics. Mathematical formulation is made possible by the Dirac-Jordan theory. Beginning from the basic principles thus obtained, macroscopic processes are understood from the viewpoint of quantum mechanics. Several imaginary experiments are discussed to elucidate the theory.

  9. Quantum mechanics/molecular mechanics restrained electrostatic potential fitting.

    PubMed

    Burger, Steven K; Schofield, Jeremy; Ayers, Paul W

    2013-12-05

    We present a quantum mechanics/molecular mechanics (QM/MM) method to evaluate the partial charges of amino acid residues for use in MM potentials based on their protein environment. For each residue of interest, the nearby residues are included in the QM system while the rest of the protein is treated at the MM level of theory. After a short structural optimization, the partial charges of the central residue are fit to the electrostatic potential using the restrained electrostatic potential (RESP) method. The resulting charges and electrostatic potential account for the individual environment of the residue, although they lack the transferable nature of library partial charges. To evaluate the quality of the QM/MM RESP charges, thermodynamic integration is used to measure the pKa shift of the aspartic acid residues in three different proteins, turkey egg lysozyme, beta-cryptogein, and Thioredoxin. Compared to the AMBER ff99SB library values, the QM/MM RESP charges show better agreement between the calculated and experimental pK(a) values for almost all of the residues considered.

  10. Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation

    NASA Astrophysics Data System (ADS)

    Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter

    2013-08-01

    The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.

  11. New Potentials for Old: The Darboux Transformation in Quantum Mechanics

    ERIC Educational Resources Information Center

    Williams, Brian Wesley; Celius, Tevye C.

    2008-01-01

    The Darboux transformation in quantum mechanics is reviewed at a basic level. Examples of how this transformation leads to exactly solvable potentials related to the "particle in a box" and the harmonic oscillator are shown in detail. The connection between the Darboux transformation and some modern operator based approaches to quantum mechanics…

  12. Quantum Computer Games: Quantum Minesweeper

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  13. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.

    PubMed

    Shen, Lin; Wu, Jingheng; Yang, Weitao

    2016-10-11

    Molecular dynamics simulation with multiscale quantum mechanics/molecular mechanics (QM/MM) methods is a very powerful tool for understanding the mechanism of chemical and biological processes in solution or enzymes. However, its computational cost can be too high for many biochemical systems because of the large number of ab initio QM calculations. Semiempirical QM/MM simulations have much higher efficiency. Its accuracy can be improved with a correction to reach the ab initio QM/MM level. The computational cost on the ab initio calculation for the correction determines the efficiency. In this paper we developed a neural network method for QM/MM calculation as an extension of the neural-network representation reported by Behler and Parrinello. With this approach, the potential energy of any configuration along the reaction path for a given QM/MM system can be predicted at the ab initio QM/MM level based on the semiempirical QM/MM simulations. We further applied this method to three reactions in water to calculate the free energy changes. The free-energy profile obtained from the semiempirical QM/MM simulation is corrected to the ab initio QM/MM level with the potential energies predicted with the constructed neural network. The results are in excellent accordance with the reference data that are obtained from the ab initio QM/MM molecular dynamics simulation or corrected with direct ab initio QM/MM potential energies. Compared with the correction using direct ab initio QM/MM potential energies, our method shows a speed-up of 1 or 2 orders of magnitude. It demonstrates that the neural network method combined with the semiempirical QM/MM calculation can be an efficient and reliable strategy for chemical reaction simulations.

  14. On Heat in a Quantum Mechanical Process

    NASA Astrophysics Data System (ADS)

    Deesuwan, Tanapat; Anders, Janet

    2013-05-01

    Heat is the portion of energy exchange between systems in thermodynamic process which, unlike work, is always associated with the change of the entropies of the systems. In the context of quantum thermodynamics, heat process is described by an incoherent generalised quantum evolution, which is a map between two quantum states that does not preserve the entropy. Based on an information-theoretic reasoning, we propose that heat involving in a general quantum thermodynamic process can be separated into two types: one that is due to the unital subclass of the evolutions and another one that is due to the others. According to these categories, we show how the former type of heat can be incorporated into Jarzynski equality, resulting in a generalised version of the equality. We also derive a Jarzynski inequality which incorporates all heat into the picture and show that this situation is just equivalent to the presence of Maxwell's demon.

  15. Jensen-Shannon Divergence: A Multipurpose Distance for Statistical and Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Lamberti, Pedro W.; Majtey, Ana P.; Madrid, Marcos; Pereyra, María E.

    2007-05-01

    Many problems of statistical and quantum mechanics can be established in terms of a distance; in the first case the distance is usually defined between probability distributions; in the second one, between quantum states. The present work is devoted to review the main properties of a distance known as the Jensen-Shannon divergence (JSD) in its classical and quantum version. We present two examples of application of this distance: in the first one we use it as a quantifiers of the stochastic resonance phenomenon in ion channels; in the second one we use the JSD to propose a geometrical view of entanglement for two qubits states.

  16. Quantum Mechanics in Biology: Photoexcitations in DNA

    NASA Astrophysics Data System (ADS)

    Bittner, Eric R.; Czader, Arkadiusz

    We consider here the theoretical and quantum chemical description of the photoexcitated states in DNA duplexes. We discuss the motivation and limitations of an exciton model and use this as the starting point for more detailed excited state quantum chemical evaluations. In particular, we focus upon the role of interbase proton transfer between Watson/Crick pairs in localizing an excitation and then quenching it through intersystem crossing and charge transfer.

  17. Why are probabilistic laws governing quantum mechanics and neurobiology?

    NASA Astrophysics Data System (ADS)

    Kröger, Helmut

    2005-08-01

    We address the question: Why are dynamical laws governing in quantum mechanics and in neuroscience of probabilistic nature instead of being deterministic? We discuss some ideas showing that the probabilistic option offers advantages over the deterministic one.

  18. Generalized Weyl-Wigner map and Vey quantum mechanics

    NASA Astrophysics Data System (ADS)

    Dias, Nuno Costa; Prata, João Nuno

    2001-12-01

    The Weyl-Wigner map yields the entire structure of Moyal quantum mechanics directly from the standard operator formulation. The covariant generalization of Moyal theory, also known as Vey quantum mechanics, was presented in the literature many years ago. However, a derivation of the formalism directly from standard operator quantum mechanics, clarifying the relation between the two formulations, is still missing. In this article we present a covariant generalization of the Weyl order prescription and of the Weyl-Wigner map and use them to derive Vey quantum mechanics directly from the standard operator formulation. The procedure displays some interesting features: it yields all the key ingredients and provides a more straightforward interpretation of the Vey theory including a direct implementation of unitary operator transformations as phase space coordinate transformations in the Vey idiom. These features are illustrated through a simple example.

  19. Probabilistic Approach to Teaching the Principles of Quantum Mechanics

    ERIC Educational Resources Information Center

    Santos, Emilio

    1976-01-01

    Approaches the representation of quantum mechanics through Hilbert space postulates. Demonstrates that if the representation is to be accurate, an evolution operator of the form of a Hamiltonian must be used. (CP)

  20. Particles, Waves, and the Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Christoudouleas, N. D.

    1975-01-01

    Presents an explanation, without mathematical equations, of the basic principles of quantum mechanics. Includes wave-particle duality, the probability character of the wavefunction, and the uncertainty relations. (MLH)

  1. Macroscopic test of quantum mechanics versus stochastic electrodynamics

    NASA Astrophysics Data System (ADS)

    Chaturvedi, S.; Drummond, Peter D.

    1997-02-01

    We identify a test of quantum mechanics versus macroscopic local realism in the form of stochastic electrodynamics. The test uses the steady-state triple quadrature correlations of a parametric oscillator below threshold.

  2. A Simplified Quantum Mechanical Model of Diatomic Molecules

    ERIC Educational Resources Information Center

    Nielsen, Lars Drud

    1978-01-01

    Introduces a simple one-dimensional model of a diatomic molecule that can explain all the essential features of a real two particle quantum mechanical system and gives quantitative results in fair agreement with those of a hydrogen molecule. (GA)

  3. Quantum mechanics of the inverted oscillator potential

    NASA Astrophysics Data System (ADS)

    Barton, G.

    1986-02-01

    The Hamiltonian ( 1/2m)p 2 - 1/2mω 2x 2 yields equations solvable in closed form; one is led to them by questions about the longest mean sojourn time T allowed by quantum mechanics to a system near unstable equilibrium. These equations are then studied further in their own right. After criticism of earlier arguments, one finds, by aid of the Green's function, that T ˜ ω -1log{ l/( {h̷}/{mω) 1/2}} for sojourn in the region | x| < l, where l is the resolving power of the detector. Without appeal to some parameter like l one would get nonsense estimates T ˜ ω-1 (e.g., from the nondecay probability familiar in the decay of metastable states). in this potential wavepackets Gaussian in position do not split on impact: their peaks are either transmitted or reflected, depending on the sign of the energy E ≷ 0; however, they spread so fast that not all the probability ends up on the same side of the origin as the peak. The energy eigenfunctions (parabolic cylinder functions) identify the transmission and reflection amplitudes as T = (1 + e -2πE) -1/2eiφ, R = -i(1 + e -2πE) -1/2 e -πE e iφ, where φ = arg Γ( 1/2 - iE) (in units where 2m = 1 = ω = h̷). The density of states for the interval | x| ≤ L is 2π -1 log L + π -1ϕ'( E). Wavepackets that are peaked sharply enough in energy travel without dispersion in the asymptotic region | x| > | E|, and do split on impact in the usual way. The travel times and time delays of these packets are determined. For both reflection and transmission, and for both E ≷ 0, the time delays are given by φ'( E), which is a symmetric function of E, with a positive maximum at E = 0. In particular, packets tunneling under the barrier reemerge sooner if their energy is more negative. This paradox (which occurs also in other tunneling problems) is elucidated as far as possible. Coherent states are constructed by analogy to those of the ordinary oscillator. Though not integrable, their probability distributions do have a

  4. Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.

    PubMed

    Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori

    2016-10-11

    The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an SN1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.

  5. Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Auffèves, Alexia; Grangier, Philippe

    2016-02-01

    In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer's perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.

  6. Probability in the Many-Worlds Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Vaidman, Lev

    It is argued that, although in the Many-Worlds Interpretation of quantum mechanics there is no "probability" for an outcome of a quantum experiment in the usual sense, we can understand why we have an illusion of probability. The explanation involves: (a) A "sleeping pill" gedanken experiment which makes correspondence between an illegitimate question: "What is the probability of an outcome of a quantum measurement?" with a legitimate question: "What is the probability that `I' am in the world corresponding to that outcome?"; (b) A gedanken experiment which splits the world into several worlds which are identical according to some symmetry condition; and (c) Relativistic causality, which together with (b) explain the Born rule of standard quantum mechanics. The Quantum Sleeping Beauty controversy and "caring measure" replacing probability measure are discussed.

  7. $\\cN$-FOLD SUPERSYMMETRY IN QUANTUM MECHANICAL MATRIX MODELS

    NASA Astrophysics Data System (ADS)

    Tanaka, Toshiaki

    2012-03-01

    We formulate Ņ-fold supersymmetry in quantum mechanical matrix models. As an example, we construct general two-by-two Hermitian matrix two-fold supersymmetric quantum mechanical systems. We find that there are two inequivalent such systems, both of which are characterized by two arbitrary scalar functions, and one of which does not reduce to the scalar system. The obtained systems are all weakly quasi-solvable.

  8. Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics

    SciTech Connect

    Goldfarb, Yair; Degani, Ilan; Tannor, David J.

    2006-12-21

    In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared--it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification - a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10{sup -7} calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.

  9. Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics.

    PubMed

    Goldfarb, Yair; Degani, Ilan; Tannor, David J

    2006-12-21

    In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared-it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification-a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10(-7) calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.

  10. Quantum mechanical effects in plasmonic structures with subnanometre gaps

    PubMed Central

    Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G.; Baumberg, Jeremy J.; Nordlander, Peter; Lezec, Henri J.; Aizpurua, Javier; Crozier, Kenneth B.

    2016-01-01

    Metallic structures with nanogap features have proven highly effective as building blocks for plasmonic systems, as they can provide a wide tuning range of operating frequencies and large near-field enhancements. Recent work has shown that quantum mechanical effects such as electron tunnelling and nonlocal screening become important as the gap distances approach the subnanometre length-scale. Such quantum effects challenge the classical picture of nanogap plasmons and have stimulated a number of theoretical and experimental studies. This review outlines the findings of many groups into quantum mechanical effects in nanogap plasmons, and discusses outstanding challenges and future directions. PMID:27255556

  11. Acoustic Analog to Quantum Mechanical Level-Splitting

    NASA Astrophysics Data System (ADS)

    Hilbert, Shawn

    2010-03-01

    One difficulty in teaching quantum mechanics is the lack of classroom demonstrations. To sidestep this issue, analogies can provide an enlightening alternative. Acoustics governance by the same time-independent wave equation as quantum mechanics supports it use in such analogies. This presentation examines one such analogy for an infinite potential well with a delta potential perturbation. The physical acoustic system consists of continuous sounds waves traveling in a pair of tubes which are separated by a variable diaphragm. The level-splitting nature of the quantum system can be mimicked in the acoustic system.

  12. Quantum mechanics simulation of protein dynamics on long timescale.

    PubMed

    Liu, H; Elstner, M; Kaxiras, E; Frauenheim, T; Hermans, J; Yang, W

    2001-09-01

    Protein structure and dynamics are the keys to a wide range of problems in biology. In principle, both can be fully understood by using quantum mechanics as the ultimate tool to unveil the molecular interactions involved. Indeed, quantum mechanics of atoms and molecules have come to play a central role in chemistry and physics. In practice, however, direct application of quantum mechanics to protein systems has been prohibited by the large molecular size of proteins. As a consequence, there is no general quantum mechanical treatment that not only exceeds the accuracy of state-of-the-art empirical models for proteins but also maintains the efficiency needed for extensive sampling in the conformational space, a requirement mandated by the complexity of protein systems. Here we show that, given recent developments in methods, a general quantum mechanical-based treatment can be constructed. We report a molecular dynamics simulation of a protein, crambin, in solution for 350 ps in which we combine a semiempirical quantum-mechanical description of the entire protein with a description of the surrounding solvent, and solvent-protein interactions based on a molecular mechanics force field. Comparison with a recent very high-resolution crystal structure of crambin (Jelsch et al., Proc Natl Acad Sci USA 2000;102:2246-2251) shows that geometrical detail is better reproduced in this simulation than when several alternate molecular mechanics force fields are used to describe the entire system of protein and solvent, even though the structure is no less flexible. Individual atomic charges deviate in both directions from "canonical" values, and some charge transfer is found between the N and C-termini. The capability of simulating protein dynamics on and beyond the few hundred ps timescale with a demonstrably accurate quantum mechanical model will bring new opportunities to extend our understanding of a range of basic processes in biology such as molecular recognition and enzyme

  13. The Möbius symmetry of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Faraggi, Alon E.; Matone, Marco

    2015-07-01

    The equivalence postulate approach to quantum mechanics aims to formulate quantum mechanics from a fundamental geometrical principle. Underlying the formulation there exists a basic cocycle condition which is invariant under D-dimensional Mobius transformations with respect to the Euclidean or Minkowski metrics. The invariance under global Mobius transformations implies that spatial space is compact. Furthermore, it implies energy quantisation and undefinability of quantum trajectories without assuming any prior interpretation of the wave function. The approach may be viewed as conventional quantum mechanics with the caveat that spatial space is compact, as dictated by the Möbius symmetry, with the classical limit corresponding to the decompactification limit. Correspondingly, there exists a finite length scale in the formalism and consequently an intrinsic regularisation scheme. Evidence for the compactness of space may exist in the cosmic microwave background radiation.

  14. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  15. Optimal state discrimination and unstructured search in nonlinear quantum mechanics

    NASA Astrophysics Data System (ADS)

    Childs, Andrew M.; Young, Joshua

    2016-02-01

    Nonlinear variants of quantum mechanics can solve tasks that are impossible in standard quantum theory, such as perfectly distinguishing nonorthogonal states. Here we derive the optimal protocol for distinguishing two states of a qubit using the Gross-Pitaevskii equation, a model of nonlinear quantum mechanics that arises as an effective description of Bose-Einstein condensates. Using this protocol, we present an algorithm for unstructured search in the Gross-Pitaevskii model, obtaining an exponential improvement over a previous algorithm of Meyer and Wong. This result establishes a limitation on the effectiveness of the Gross-Pitaevskii approximation. More generally, we demonstrate similar behavior under a family of related nonlinearities, giving evidence that the ability to quickly discriminate nonorthogonal states and thereby solve unstructured search is a generic feature of nonlinear quantum mechanics.

  16. 'Mysticism' in quantum mechanics: the forgotten controversy

    NASA Astrophysics Data System (ADS)

    Marin, Juan Miguel

    2009-07-01

    This paper argues that a European controversy over a 'mystical' hypothesis, one assigning the mind a role to play at the material level of reality, shaped much of the debate over the interpretation of the quantum equations. It traces back the controversy to the past two decades, beginning in the late 1920s—birth of quantum theory—and concluding with Erwin Schrödinger's lectures published as 'Mind and Matter'. Becoming aware of the issues at stake can help us understand the historical, philosophical and cultural background from which today's physics emerged.

  17. Deformation quantization: Quantum mechanics lives and works in phase space

    NASA Astrophysics Data System (ADS)

    Zachos, Cosmas K.

    2014-09-01

    Wigner's 1932 quasi-probability Distribution Function in phase-space, his first paper in English, is a special (Weyl) representation of the density matrix. It has been useful in describing quantum flows in semiclassical limits; quantum optics; nuclear and physics; decoherence (eg, quantum computing); quantum chaos; "Welcher Weg" puzzles; molecular Talbot-Lau interferometry; atomic measurements. It is further of great importance in signal processing (time-frequency analysis). Nevertheless, a remarkable aspect of its internal logic, pioneered by H. Groenewold and J. Moyal, has only blossomed in the last quarter-century: It furnishes a third, alternate, formulation of Quantum Mechanics, independent of the conventional Hilbert Space (the gold medal), or Path Integral (the silver medal) formulations, and perhaps more intuitive, since it shares language with classical mechanics: one need not choose sides between coordinate or momentum space variables, since it is formulated simultaneously in terms of position and momentum. This bronze medal formulation is logically complete and self-standing, and accommodates the uncertainty principle in an unexpected manner, so that it offers unique insights into the classical limit of quantum theory. The observables in this formulation are cnumber functions in phase space instead of operators, with the same interpretation as their classical counterparts, only now composed together in novel algebraic ways using star products. One might then envision an imaginary world in which this formulation of quantum mechanics had preceded the conventional Hilbert-space formulation, and its own techniques and methods had arisen independently, perhaps out of generalizations of classical mechanics and statistical mechanics. A sampling of such intriguing techniques and methods has already been published in C. K. Zachos, Int Jou Mod Phys A17 297-316 (2002), and T. L. Curtright, D. B. Fairlie, and C. K. Zachos, A Concise Treatise on Quantum Mechanics in

  18. Quantum mechanics and reality: An interpretation of Everett's theory

    NASA Astrophysics Data System (ADS)

    Lehner, Christoph Albert

    The central part of Everett's formulation of quantum mechanics is a quantum mechanical model of memory and of observation as the recording of information in a memory. To use this model as an answer to the measurement problem, Everett has to assume that a conscious observer can be in a superposition of such memory states and be unaware of it. This assumption has puzzled generations of readers. The fundamental aim of this dissertation is to find a set of simpler assumptions which are sufficient to show that Everett's model is empirically adequate. I argue that Everett's model needs three assumptions to account for the process of observation: an assumption of decoherence of observers as quantum mechanical systems; an assumption of supervenience of mental states (qualities) over quantum mechanical properties; and an assumption about the interpretation of quantum mechanical states in general: quantum mechanical states describe ensembles of states of affairs coexisting in the same system. I argue that the only plausible understanding of such ensembles is as ensembles of possibilities, and that all standard no-collapse interpretations agree in this reading of quantum mechanical states. Their differences can be understood as different theories about what marks the real state within this ensemble, and Everett's theory as the claim that no additional 'mark of reality' is necessary. Using the three assumptions, I argue that introspection cannot determine the objective quantum mechanical state of an observer. Rather, the introspective qualities of a quantum mechanical state can be represented by a (classical) statistical ensemble of subjective states. An analysis of these subjective states and their dynamics leads to the conclusion that they suffice to give empirically correct predictions. The argument for the empirical adequacy of the subjective state entails that knowledge of the objective quantum mechanical state is impossible in principle. Empirical reality for a conscious

  19. The Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Kastner, Ruth E.

    2012-10-01

    Preface; 1. Introduction: quantum peculiarities; 2. The map vs the territory; 3. The original TI: fundamentals; 4. The new possibilist TI: fundamentals; 5. Challenges, replies, and applications; 6. PTI and relativity; 7. The metaphysics of possibility; 8. PTI and 'spacetime'; 9. Epilogue: more than meets the eye; Appendixes; References; Index.

  20. Classical and Quantum-Mechanical State Reconstruction

    ERIC Educational Resources Information Center

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  1. Quantum mechanics of time travel through post-selected teleportation

    NASA Astrophysics Data System (ADS)

    Lloyd, Seth; Maccone, Lorenzo; Garcia-Patron, Raul; Giovannetti, Vittorio; Shikano, Yutaka

    2011-07-01

    This paper discusses the quantum mechanics of closed-timelike curves (CTCs) and of other potential methods for time travel. We analyze a specific proposal for such quantum time travel, the quantum description of CTCs based on post-selected teleportation (P-CTCs). We compare the theory of P-CTCs to previously proposed quantum theories of time travel: the theory is inequivalent to Deutsch’s theory of CTCs, but it is consistent with path-integral approaches (which are the best suited for analyzing quantum-field theory in curved space-time). We derive the dynamical equations that a chronology-respecting system interacting with a CTC will experience. We discuss the possibility of time travel in the absence of general-relativistic closed-timelike curves, and investigate the implications of P-CTCs for enhancing the power of computation.

  2. A Non-Intuitionist's Approach To The Interpretation Problem Of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Grelland, Hans Herlof

    2005-02-01

    A philosophy of physics called "linguistic empiricism" is presented and applied to the interpretation problem of quantum mechanics. This philosophical position is based on the works of Jacques Derrida. The main propositions are (i) that meaning, included the meaning attached to observations, are language-dependent and (ii) that mathematics in physics should be considered as a proper language, not necessary translatable to a more basic language of intuition and immediate experience. This has fundamental implications for quantum mechanics, which is a mathematically coherent and consistent theory; its interpretation problem is associated with its lack of physical images expressible in ordinary language.

  3. Analogies between optical and quantum mechanical angular momentum.

    PubMed

    Nienhuis, Gerard

    2017-02-28

    The insight that a beam of light can carry orbital angular momentum (AM) in its propagation direction came up in 1992 as a surprise. Nevertheless, the existence of momentum and AM of an electromagnetic field has been well known since the days of Maxwell. We compare the expressions for densities of AM in general three-dimensional modes and in paraxial modes. Despite their classical nature, these expressions have a suggestive quantum mechanical appearance, in terms of linear operators acting on mode functions. In addition, paraxial wave optics has several analogies with real quantum mechanics, both with the wave function of a free quantum particle and with a quantum harmonic oscillator. We discuss how these analogies can be applied.This article is part of the themed issue 'Optical orbital angular momentum'.

  4. A modified Lax-Phillips scattering theory for quantum mechanics

    SciTech Connect

    Strauss, Y.

    2015-07-15

    The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for the quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.

  5. Quantum mechanics on profinite groups and partial order

    NASA Astrophysics Data System (ADS)

    Vourdas, A.

    2013-02-01

    Inverse limits and profinite groups are used in a quantum mechanical context. Two cases are considered: a quantum system with positions in the profinite group { {Z}}_p and momenta in the group { {Q}}_p/{ {Z}}_p, and a quantum system with positions in the profinite group {\\widehat{ {Z}}} and momenta in the group { {Q}}/{ {Z}}. The corresponding Schwatz-Bruhat spaces of wavefunctions and the Heisenberg-Weyl groups are discussed. The sets of subsystems of these systems are studied from the point of view of partial order theory. It is shown that they are directed-complete partial orders. It is also shown that they are topological spaces with T0-topologies, and this is used to define continuity of various physical quantities. The physical meaning of profinite groups, non-Archimedean metrics, partial orders and T0-topologies, in a quantum mechanical context, is discussed.

  6. Analogies between optical and quantum mechanical angular momentum

    NASA Astrophysics Data System (ADS)

    Nienhuis, Gerard

    2017-02-01

    The insight that a beam of light can carry orbital angular momentum (AM) in its propagation direction came up in 1992 as a surprise. Nevertheless, the existence of momentum and AM of an electromagnetic field has been well known since the days of Maxwell. We compare the expressions for densities of AM in general three-dimensional modes and in paraxial modes. Despite their classical nature, these expressions have a suggestive quantum mechanical appearance, in terms of linear operators acting on mode functions. In addition, paraxial wave optics has several analogies with real quantum mechanics, both with the wave function of a free quantum particle and with a quantum harmonic oscillator. We discuss how these analogies can be applied. This article is part of the themed issue 'Optical orbital angular momentum'.

  7. A modified Lax-Phillips scattering theory for quantum mechanics

    NASA Astrophysics Data System (ADS)

    Strauss, Y.

    2015-07-01

    The Lax-Phillips scattering theory is an appealing abstract framework for the analysis of scattering resonances. Quantum mechanical adaptations of the theory have been proposed. However, since these quantum adaptations essentially retain the original structure of the theory, assuming the existence of incoming and outgoing subspaces for the evolution and requiring the spectrum of the generator of evolution to be unbounded from below, their range of applications is rather limited. In this paper, it is shown that if we replace the assumption regarding the existence of incoming and outgoing subspaces by the assumption of the existence of Lyapunov operators for the quantum evolution (the existence of which has been proved for certain classes of quantum mechanical scattering problems), then it is possible to construct a structure analogous to the Lax-Phillips structure for scattering problems for which the spectrum of the generator of evolution is bounded from below.

  8. Comment on 'Nonlocality, Counterfactuals and Quantum Mechanics'

    SciTech Connect

    Stapp, H.P.

    1999-04-14

    A recent proof [H. P. Stapp, Am. J. Phys. 65, 300 (1997)], formulated in the symbolic language of modal logic, claims to show that contemporary quantum theory, viewed as a set of rules that allow us to calculate statistical predictions among certain kinds of observations, cannot be imbedded in any rational framework that conforms to the principles that (1) the experimenters' choices of which experiments they will perform can be considered to be free choices, (2) outcomes of measurements are unique, and (3) the free choices just mentioned have no backward-in-time effects of any kind. This claim is similar to Bell's theorem, but much stronger, because no reality assumption alien to quantum philosophy is used. The paper being commented on [W. Unruh, Phys. Rev. A 59, 126 (1999)] argues that some such reality assumption has been ''smuggled'' in. That argument is examined here and shown, I believe, to be defective.

  9. Dirac particle in gravitational quantum mechanics

    NASA Astrophysics Data System (ADS)

    Pedram, Pouria

    2011-08-01

    In this Letter, we consider the effects of the Generalized (Gravitational) Uncertainty Principle (GUP) on the eigenvalues and the eigenfunctions of the Dirac equation. This form of GUP is consistent with various candidates of quantum gravity such as string theory, loop quantum gravity, doubly special relativity and black hole physics and predicts both a minimum measurable length and a maximum measurable momentum. The modified Hamiltonian contains two additional terms proportional to a( and a( where αi are Dirac matrices and a∼1/MPlc is the GUP parameter. For the case of the Dirac free particle and the Dirac particle in a box, we solve the generalized Dirac equation and find the modified energy eigenvalues and eigenfunctions.

  10. Quantum Mechanics for Beginning Physics Students

    NASA Astrophysics Data System (ADS)

    Schneider, Mark B.

    2010-10-01

    The past two decades of attention to introductory physics education has emphasized enhanced development of conceptual understanding to accompany calculational ability. Given this, it is surprising that current texts continue to rely on the Bohr model to develop a flawed intuition, and introduce correct atomic physics on an ad hoc basis. For example, Halliday, Resnick, and Walker describe the origin of atomic quantum numbers as such: "The restrictions on the values of the quantum number for the hydrogen atom, as listed in Table 39-2, are not arbitrary but come out of the solution to Schrödinger's equation." They give no further justification, but do point out the values are in conflict with the predictions of the Bohr model.

  11. Use of mathematical logical concepts in quantum mechanics: an example

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    2002-07-01

    The representation of numbers by product states in quantum mechanics can be extended to the representation of words and word sequences in languages by product states. This can be used to study quantum systems that generate text that has meaning. A simple example of such a system, based on an example described by Smullyan, is studied here. Based on a path interpretation for some word states, definitions of truth, validity, consistency and completeness are given and their properties studied. It is also shown that the relation between the potential meaning, if any, of word states and the quantum algorithmic complexity of the process generating the word states must be quite complex or nonexistent.

  12. Mathematical foundations of quantum mechanics: An advanced short course

    NASA Astrophysics Data System (ADS)

    Moretti, Valter

    2016-08-01

    This paper collects and extends the lectures I gave at the “XXIV International Fall Workshop on Geometry and Physics” held in Zaragoza (Spain) during September 2015. Within these lectures I review the formulation of Quantum Mechanics, and quantum theories in general, from a mathematically advanced viewpoint, essentially based on the orthomodular lattice of elementary propositions, discussing some fundamental ideas, mathematical tools and theorems also related to the representation of physical symmetries. The final step consists of an elementary introduction the so-called (C∗-) algebraic formulation of quantum theories.

  13. Cosmology and the pilot wave interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Tipler, Frank J.

    1984-07-01

    Bell has recently revived the pilot wave interpretation of de Broglie and Bohm as a possible scheme for interpreting wave functions in quantum cosmology. I argue that the pilot wave interpretation cannot be applied consistently to systems whose wave functions split into macroscopically distinguishable states. At some stage the pilot wave interpretation must either tacitly invoke wave function reduction in the same manner as the Copenhagen interpretation, or else abandon locality by requiring physical particles to move faster than light. Consequently, the many-worlds interpretation is the only known realist interpretation of the quantum mechanical formalism which can be extended to quantum cosmology.

  14. Models on the boundary between classical and quantum mechanics.

    PubMed

    Hooft, Gerard 't

    2015-08-06

    Arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there cannot be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In this report, several such counterexamples are shown. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. So now the question is asked: how can such a model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations? Arguments concerning Bell's theorem are further sharpened.

  15. Quantum mechanics from an equivalence principle

    SciTech Connect

    Faraggi, A.E.; Matone, M.

    1997-05-15

    The authors show that requiring diffeomorphic equivalence for one-dimensional stationary states implies that the reduced action S{sub 0} satisfies the quantum Hamilton-Jacobi equation with the Planck constant playing the role of a covariantizing parameter. The construction shows the existence of a fundamental initial condition which is strictly related to the Moebius symmetry of the Legendre transform and to its involutive character. The universal nature of the initial condition implies the Schroedinger equation in any dimension.

  16. Randomness in quantum mechanics - nature's ultimate cryptogram?

    NASA Astrophysics Data System (ADS)

    Erber, T.; Putterman, S.

    1985-11-01

    The possibility that a single atom irradiated by coherent light will be equivalent to an infinite computer with regard to its ability to generate random numbers is addressed. A search for unexpected patterns of order by crypt analysis of the telegraph signal generated by the on/off time of the atom's fluorescence is described. The results will provide new experimental tests of the fundamental principles of quantum theory.

  17. Quantum mechanical models with strictly ergodic disorder

    NASA Astrophysics Data System (ADS)

    Mavi, Rajinder

    We study quantum Hamiltonians with potentials defined by strictly ergodic dynamical systems. Our interest here are models where physical properties are understood in some regimes of disorder and the extent to which they vary in alternate regimes of disorder. For Schrodinger operators we show properties known to hold in the case of analytic potentials on the torus hold even for rough potentials only required to be Holder continuous. Specifically in this case we show, assuming a positive Lyapunov exponent, dynamical localization properties hold; as well as continuity of the measure of the spectrum for all rotations. For the quantum Ising model we show for phase structure that occur in the random regime, there are similar conditions for existence under the assumption of strictly ergodic dynamics. That is, moment conditions for random disorder are paralleled by conditions on the sampling functions in deterministic disorder. We obtain conditions for existence of phase transitions given any strictly egodically defined disorder. In addition, a new multiscale analysis method is developed to show the existence of stretched exponential decay in the random cluster model generalization of the quantum Ising model where only slower decay was obainable by previous methods.

  18. Photon physics: from wave mechanics to quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Keller, Ole

    2009-05-01

    When rewritten in an appropriate manner, the microscopic Maxwell-Lorentz equations appear as a wave-mechanical theory for photons, and their quantum physical interaction with matter. A natural extension leads from photon wave mechanics to quantum electrodynamics (QED). In its modern formulation photon wave mechanics has given us valuable new insight in subjects such as spatial photon localization, near-field photon dynamics, transverse photon mass, photon eikonal theory, photon tunneling, and rim-zone electrodynamics. The present review is based on my plenary lecture at the SPIE-Europe 2009 Optics and Optoelectronics International Symposium in Prague.

  19. The conceptual and the anecdotal history of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Beller, Mara

    1996-04-01

    The aim of this paper is to combine the intellectual and the psychosocial aspects. blurring the distinction between the conceptual and the anecdotal history of quantum mechanics. The full realization of the importance of such “anecdotal” factors leads to the revision of our understanding of the conceptual development itself. The paper concludes with the suggestion that a major part of numerous inconsistencies in the Copenhagen interpretation of quantum physics are of a psychosocial origin.

  20. Preparing a mechanical oscillator in non-gaussian quantum states.

    PubMed

    Khalili, Farid; Danilishin, Stefan; Miao, Haixing; Müller-Ebhardt, Helge; Yang, Huan; Chen, Yanbei

    2010-08-13

    We propose a protocol for coherently transferring non-Gaussian quantum states from an optical field to a mechanical oscillator. We demonstrate its experimental feasibility in future gravitational-wave detectors and tabletop optomechanical devices. This work not only outlines a feasible way to investigate nonclassicality in macroscopic optomechanical systems, but also presents a new and elegant approach for solving non-Markovian open quantum dynamics in general linear systems.

  1. Optimization of metabolite detection by quantum mechanics simulations in magnetic resonance spectroscopy.

    PubMed

    Gambarota, Giulio

    2016-09-03

    Magnetic resonance spectroscopy (MRS) is a well established modality for investigating tissue metabolism in vivo. In recent years, many efforts by the scientific community have been directed towards the improvement of metabolite detection and quantitation. Quantum mechanics simulations allow for investigations of the MR signal behaviour of metabolites; thus, they provide an essential tool in the optimization of metabolite detection. In this review, we will examine quantum mechanics simulations based on the density matrix formalism. The density matrix was introduced by von Neumann in 1927 to take into account statistical effects within the theory of quantum mechanics. We will discuss the main steps of the density matrix simulation of an arbitrary spin system and show some examples for the strongly coupled two spin system.

  2. Combined quantum mechanical/molecular mechanics modeling for large organometallic and metallobiochemical systems

    NASA Astrophysics Data System (ADS)

    Leong, Max Kangchien

    A method of combined quantum mechanics/molecular mechanics has been developed to model larger organometallic and metallobiochemical systems where neither quantum mechanics nor molecular mechanics, applied separately, can solve the problem. An electronically transparent interface, which allows charge transfers between the quantum and classical fragments, is devised and realized by employing a special iterative procedure of double (intrafragment and interfragment) self-consistent calculations. The combined QM/MM scheme was successfully applied to model iron picket-fence porphyrin, vitamin B12, aquocobalamin, and vitamin B12 coenzyme molecules.

  3. Investigations of fundamental phenomena in quantum mechanics with neutrons

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yuji

    2014-04-01

    Neutron interferometer and polarimeter are used for the experimental investigations of quantum mechanical phenomena. Interferometry exhibits clear evidence of quantum-contextuality and polarimetry demonstrates conflicts of a contextual model of quantum mechanics á la Leggett. In these experiments, entanglements are achieved between degrees of freedom in a single-particle: spin, path and energy degrees of freedom are manipulated coherently and entangled. Both experiments manifest the fact that quantum contextuality is valid for phenomena with matter waves with high precision. In addition, another experiment is described which deals with error-disturbance uncertainty relation: we have experimentally tested error-disturbance uncertainty relations, one is derived by Heisenberg and the other by Ozawa. Experimental results confirm the fact that the Heisenberg's uncertainty relation is often violated and that the new relation by Ozawa is always larger than the limit. At last, as an example of a counterfactual phenomenon of quantum mechanics, observation of so-called quantum Cheshire Cat is carried out by using neutron interferometer. Experimental results suggest that pre- and post-selected neutrons travel through one of the arms of the interferometer while their magnetic moment is located in the other arm.

  4. Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Bley, Gonzalo A.; Thomas, Lawrence E.

    2017-01-01

    We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.

  5. Reality, Causality, and Probability, from Quantum Mechanics to Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady

    2015-10-01

    These three lectures consider the questions of reality, causality, and probability in quantum theory, from quantum mechanics to quantum field theory. They do so in part by exploring the ideas of the key founding figures of the theory, such N. Bohr, W. Heisenberg, E. Schrödinger, or P. A. M. Dirac. However, while my discussion of these figures aims to be faithful to their thinking and writings, and while these lectures are motivated by my belief in the helpfulness of their thinking for understanding and advancing quantum theory, this project is not driven by loyalty to their ideas. In part for that reason, these lectures also present different and even conflicting ways of thinking in quantum theory, such as that of Bohr or Heisenberg vs. that of Schrödinger. The lectures, most especially the third one, also consider new physical, mathematical, and philosophical complexities brought in by quantum field theory vis-à-vis quantum mechanics. I close by briefly addressing some of the implications of the argument presented here for the current state of fundamental physics.

  6. Quantum-mechanical study on the mechanism of peptide bond formation in the ribosome.

    PubMed

    Acosta-Silva, Carles; Bertran, Joan; Branchadell, Vicenç; Oliva, Antoni

    2012-04-04

    Ribosomes transform the genetic information encoded within genes into proteins. In recent years, there has been much progress in the study of this complex molecular machine, but the mechanism of peptide bond formation and the origin of the catalytic power of this ancient enzymatic system are still an unsolved puzzle. A quantum-mechanical study of different possible mechanisms of peptide synthesis in the ribosome has been carried out using the M06-2X density functional. The uncatalyzed processes in solution have been treated with the SMD solvation model. Concerted and two-step mechanisms have been explored. Three main points suggested in this work deserve to be deeply analyzed. First, no zwitterionic intermediates are found when the process takes place in the ribosome. Second, the proton shuttle mechanism is suggested to be efficient only through the participation of the A2451 2'-OH and two crystallographic water molecules. Finally, the mechanisms in solution and in the ribosome are very different, and this difference may help us to understand the origin of the efficient catalytic role played by the ribosome.

  7. Quantum mechanics, gravity and modified quantization relations.

    PubMed

    Calmet, Xavier

    2015-08-06

    In this paper, we investigate a possible energy scale dependence of the quantization rules and, in particular, from a phenomenological point of view, an energy scale dependence of an effective [Formula: see text] (reduced Planck's constant). We set a bound on the deviation of the value of [Formula: see text] at the muon scale from its usual value using measurements of the anomalous magnetic moment of the muon. Assuming that inflation has taken place, we can conclude that nature is described by a quantum theory at least up to an energy scale of about 10(16) GeV.

  8. Are nonlinear discrete cellular automata compatible with quantum mechanics?

    NASA Astrophysics Data System (ADS)

    Elze, Hans-Thomas

    2015-07-01

    We consider discrete and integer-valued cellular automata (CA). A particular class of which comprises “Hamiltonian CA” with equations of motion that bear similarities to Hamilton's equations, while they present discrete updating rules. The dynamics is linear, quite similar to unitary evolution described by the Schrödinger equation. This has been essential in our construction of an invertible map between such CA and continuous quantum mechanical models, which incorporate a fundamental discreteness scale. Based on Shannon's sampling theory, it leads, for example, to a one-to-one relation between quantum mechanical and CA conservation laws. The important issue of linearity of the theory is examined here by incorporating higher-order nonlinearities into the underlying action. These produce inconsistent nonlocal (in time) effects when trying to describe continuously such nonlinear CA. Therefore, in the present framework, only linear CA and local quantum mechanical dynamics are compatible.

  9. A deformation quantization theory for noncommutative quantum mechanics

    SciTech Connect

    Costa Dias, Nuno; Prata, Joao Nuno; Gosson, Maurice de; Luef, Franz

    2010-07-15

    We show that the deformation quantization of noncommutative quantum mechanics previously considered by Dias and Prata ['Weyl-Wigner formulation of noncommutative quantum mechanics', J. Math. Phys. 49, 072101 (2008)] and Bastos, Dias, and Prata ['Wigner measures in non-commutative quantum mechanics', e-print arXiv:math-ph/0907.4438v1; Commun. Math. Phys. (to appear)] can be expressed as a Weyl calculus on a double phase space. We study the properties of the star-product thus defined and prove a spectral theorem for the star-genvalue equation using an extension of the methods recently initiated by de Gosson and Luef ['A new approach to the *-genvalue equation', Lett. Math. Phys. 85, 173-183 (2008)].

  10. Quantum-mechanical description of in-medium fragmentation

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.; Pirner, H.-J.; Potashnikova, I. K.; Schmidt, Ivan; Tarasov, A. V.; Voskresenskaya, O. O.

    2008-11-01

    We present a quantum-mechanical description of quark-hadron fragmentation in a nuclear environment. It employs the path-integral formulation of quantum mechanics, which takes care of all phases and interferences and contains all relevant time scales, such as production, coherence, and formation. The cross section includes the probability of prehadron (colorless dipole) production both inside and outside the medium. Moreover, it also includes inside-outside production, which is a typical quantum-mechanical interference effect (like twin-slit electron propagation). We observe a substantial suppression caused by the medium, even if the prehadron is produced outside the medium and no energy loss is involved. This important source of suppression is missed in the usual energy-loss scenario interpreting the effect of jet quenching observed in heavy ion collisions. This may be one reason for the too large gluon density reported by such analyses.

  11. David Bohm's Hidden Variables Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Hall, Ned; Feldman, Gary; Wulsin, Wells

    2001-04-01

    This talk presents the hidden variables interpretation of quantum mechanics as proposed by David Bohm in 1952. Using a pilot-wave, Bohm’s theory reproduces the standard predictions of quantum mechanics while at the same time postulating that particles at all times are localized at definite positions. By way of introduction, the foundational issue of the quantum mechanics measurement problem will be discussed. The talk will then focus on how Bohm’s formulation of a hidden variables theory stands up to philosophical examination. Traditional objections to the theory, such as the EPR paradox, will be addressed, as well as the deeper metaphysical implications it holds for our view of the universe.

  12. On testing for the stage of collapse in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Becker, Lon Stephen

    The question was considered whether it is possible to experimentally narrow down the time of collapse in the measurement process of quantum mechanics. A form of experiment was developed towards that end. The proof of John von Neumann that it is impossible to determine the time of collapse was analyzed, and its hidden assumptions were exploited in the design of the experiment. The reinterpretation of quantum mechanics by David Bohm was introduced to give an alternative way of looking at quantum mechanics. An objection to this view was discussed but rejected. Finally a pair of thought experiments were offered with the potential to be converted in the future into tests for whether collapse has occurred at various points in the measurement process.

  13. Quantum-mechanical transport equation for atomic systems.

    NASA Technical Reports Server (NTRS)

    Berman, P. R.

    1972-01-01

    A quantum-mechanical transport equation (QMTE) is derived which should be applicable to a wide range of problems involving the interaction of radiation with atoms or molecules which are also subject to collisions with perturber atoms. The equation follows the time evolution of the macroscopic atomic density matrix elements of atoms located at classical position R and moving with classical velocity v. It is quantum mechanical in the sense that all collision kernels or rates which appear have been obtained from a quantum-mechanical theory and, as such, properly take into account the energy-level variations and velocity changes of the active (emitting or absorbing) atom produced in collisions with perturber atoms. The present formulation is better suited to problems involving high-intensity external fields, such as those encountered in laser physics.

  14. Quantum mechanisms of density wave transport

    PubMed Central

    Miller, John H.; Wijesinghe, Asanga I.

    2012-01-01

    We report on new developments in the quantum picture of correlated electron transport in charge and spin density waves. The model treats the condensate as a quantum fluid in which charge soliton domain wall pairs nucleate above a Coulomb blockade threshold field. We employ a time-correlated soliton tunneling model, analogous to the theory of time-correlated single electron tunneling, to interpret the voltage oscillations and nonlinear current-voltage characteristics above threshold. An inverse scaling relationship between threshold field and dielectric response, originally proposed by Grüner, emerges naturally from the model. Flat dielectric and other ac responses below threshold in NbSe3 and TaS3, as well as small density wave phase displacements, indicate that the measured threshold is often much smaller than the classical depinning field. In some materials, the existence of two distinct threshold fields suggests that both soliton nucleation and classical depinning may occur. In our model, the ratio of electrostatic charging to pinning energy helps determine whether soliton nucleation or classical depinning dominates. PMID:22711979

  15. Reality in quantum mechanics, Extended Everett Concept, and consciousness

    NASA Astrophysics Data System (ADS)

    Mensky, M. B.

    2007-09-01

    Conceptual problems in quantum mechanics result from the specific quantum concept of reality and require, for their solution, including the observer’s consciousness into the quantum theory of measurements. Most naturally, this is achieved in the framework of Everett’s “many-world interpretation” of quantum mechanics. According to this interpretation, various classical alternatives are perceived by consciousness separately from each other. In the Extended Everett Concept (EEC) proposed by the present author, the separation of the alternatives is identified with the phenomenon of consciousness. This explains the classical character of the alternatives and unusual manifestations of consciousness arising “at the edge of consciousness” (i.e., in sleep or trance) when its access to “other alternative classical realities” (other Everett’s worlds) becomes feasible. Because of reversibility of quantum evolution in EEC, all time moments in the quantum world are equivalent, while the impression of flow of time appears only in consciousness. If it is assumed that consciousness may influence the probabilities of alternatives (which is consistent in case of infinitely many Everett’s worlds), EEC explains free will, “probabilistic miracles” (observing low-probability events), and decreasing entropy in the sphere of life.

  16. The Misapplication of Probability Theory in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Racicot, Ronald

    2014-03-01

    This article is a revision of two papers submitted to the APS in the past two and a half years. In these papers, arguments and proofs are summarized for the following: (1) The wrong conclusion by EPR that Quantum Mechanics is incomplete, perhaps requiring the addition of ``hidden variables'' for completion. Theorems that assume such ``hidden variables,'' such as Bell's theorem, are also wrong. (2) Quantum entanglement is not a realizable physical phenomenon and is based entirely on assuming a probability superposition model for quantum spin. Such a model directly violates conservation of angular momentum. (3) Simultaneous multiple-paths followed by a quantum particle traveling through space also cannot possibly exist. Besides violating Noether's theorem, the multiple-paths theory is based solely on probability calculations. Probability calculations by themselves cannot possibly represent simultaneous physically real events. None of the reviews of the submitted papers actually refuted the arguments and evidence that was presented. These analyses should therefore be carefully evaluated since the conclusions reached have such important impact in quantum mechanics and quantum information theory.

  17. Quantum-mechanical treatment of an electron undergoing synchrotron radiation.

    NASA Technical Reports Server (NTRS)

    White, D.

    1972-01-01

    The problem of an electron moving perpendicular to an intense magnetic field is approached from the framework of quantum mechanics. A numerical solution to the related rate equations describing the probabilities of occupation of the electron's energy states is put forth along with the expected errors involved. The quantum-mechanical approach is found to predict a significant amount of energy broadening with time for an initially monoenergetic electron beam entering a region of an intense magnetic field as long as the product of initial energy and magnetic field is of order 50 MG BeV or larger.

  18. A new teaching approach to quantum mechanical tunneling

    NASA Astrophysics Data System (ADS)

    Gilfoyle, G. P.

    1999-09-01

    The transfer matrix method has been used to investigate quantum mechanical tunneling in introductory quantum mechanics. The method is applied first to calculate the transmission coefficient for tunneling through a rectangular barrier and is then extended to the problem of potential barriers of arbitrary shape, in particular, to radioactive decay. This approach uses matrix methods that are accessible to a broader range of undergraduates than other numerical techniques, the connection between the rectangular barrier problem and potential barriers of arbitrary shape is transparent, and it can be readily executed by undergraduates. The classroom experience with this approach is discussed.

  19. Study on a Possible Darwinian Origin of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Baladrón, C.

    2011-03-01

    A sketchy subquantum theory deeply influenced by Wheeler's ideas (Am. J. Phys. 51:398-404, 1983) and by the de Broglie-Bohm interpretation (Goldstein in Stanford Encyclopedia of Philosophy, 2006) of quantum mechanics is further analyzed. In this theory a fundamental system is defined as a dual entity formed by bare matter and a methodological probabilistic classical Turing machine. The evolution of the system would be determined by three Darwinian informational regulating principles. Some progress in the derivation of the postulates of quantum mechanics from these regulating principles is reported. The entanglement in a bipartite system is preliminarily considered.

  20. Unstable particles in non-relativistic quantum mechanics?

    SciTech Connect

    Hernandez-Coronado, H.

    2011-10-14

    The Schroedinger equation is up-to-a-phase invariant under the Galilei group. This phase leads to the Bargmann's superselection rule, which forbids the existence of the superposition of states with different mass and implies that unstable particles cannot be described consistently in non-relativistic quantum mechanics (NRQM). In this paper we claim that Bargmann's rule neglects physical effects and that a proper description of non-relativistic quantum mechanics requires to take into account this phase through the Extended Galilei group and the definition of its action on spacetime coordinates.

  1. The uncertainty principle determines the nonlocality of quantum mechanics.

    PubMed

    Oppenheim, Jonathan; Wehner, Stephanie

    2010-11-19

    Two central concepts of quantum mechanics are Heisenberg's uncertainty principle and a subtle form of nonlocality that Einstein famously called "spooky action at a distance." These two fundamental features have thus far been distinct concepts. We show that they are inextricably and quantitatively linked: Quantum mechanics cannot be more nonlocal with measurements that respect the uncertainty principle. In fact, the link between uncertainty and nonlocality holds for all physical theories. More specifically, the degree of nonlocality of any theory is determined by two factors: the strength of the uncertainty principle and the strength of a property called "steering," which determines which states can be prepared at one location given a measurement at another.

  2. Spacetime alternatives in the quantum mechanics of a relativistic particle

    SciTech Connect

    Whelan, J.T. Isaac Newton Institute for Mathematical Sciences, 20 Clarkson Road, Cambridge, CB3 0EH )

    1994-11-15

    Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities.

  3. PREFACE: Progress in supersymmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Aref'eva, I.; Fernández, D. J.; Hussin, V.; Negro, J.; Nieto, L. M.; Samsonov, B. F.

    2004-10-01

    The theory of integrable systems is grounded in the very beginning of theoretical physics: Kepler's system is an integrable system. This field of dynamical systems, where one looks for exact solutions of the equations of motion, has attracted most of the great figures in mathematical physics: Euler, Lagrange, Jacobi, etc. Liouville was the first to formulate the precise mathematical conditions ensuring solvability `by quadrature' of the dynamical equations, and his theorem still lies at the heart of the recent developments. The modern era started about thirty years ago with the systematic formulation of soliton solutions to nonlinear wave equations. Since then, impressive developments arose both for the classical and the quantum theory. Subtle mathematical techniques were devised for the resolution of these theories, relying on algebra (group theory), analysis and algebraic geometry (Riemann theory of surfaces). We therefore clearly see that the theory of integrable systems lies ab initio at a crossing of physics and mathematics, and that the developments of these last thirty years have strengthened this dual character, which makes it into an archetypal domain of mathematical physics. As regards the classical theory, beyond the direct connections to the various domains of classical soliton physics (hydrodynamics, condensed matter physics, laser optics, particle physics, plasma, biology or information coding), one has witnessed in these recent years more unexpected (and for some of them not yet well understood) connections to a priori farther fields of theoretical physics: string theory (through matrix models), topological field theories (two dimensional Yang--Mills, three dimensional Chern--Simons--Witten), or supersymmetric field theories (for instance the correspondence discovered by Seiberg and Witten between classical integrable models and quantum potentials). Quantum integrable theories provide examples of exactly (non perturbatively) solvable physical models

  4. Geometric control of quantum mechanical and nonlinear classical systems

    NASA Astrophysics Data System (ADS)

    Nelson, Richard Joseph

    1999-10-01

    Geometric control refers to the judicious use of the non- commuting nature of inputs and natural dynamics as the basis for control. The last few decades in control system theory have seen the application of differential geometry in proving several important properties of systems, including controllability and observability. Until recently, however, the results of this mathematical geometry have rarely been used as the basis for designing and implementing an actual controller. This thesis demonstrates the application of a judicious selection of inputs, so that if the system is proven to be controllable using geometric methods, one can design input sequences using the same geometry. A demonstration of this method is shown in simulating the attitude control of a satellite: a highly non-linear, non- holonomic control problem. Although not a practical method for large re-orientations of a typical satellite, the approach can be applied to other nonlinear systems. The method is also applied to the closed-loop performance of a quantum mechanical system to demonstrate the feasibility of coherent quantum feedback-something impossible using a conventional controller. Finally, the method is applied in the open-loop control of a quantum mechanical system: in this case, the creation of Greenberger-Horne-Zeilinger correlations among the nuclei of an ensemble of alanine molecules in a nuclear magnetic resonance spectrometer. In each case, the data demonstrate the usefulness of a geometric approach to control. In addition to demonstrations of geometric control in practice, the quantum mechanical experiments also demonstrate for the first time peculiar quantum correlations, including GHZ correlations, that have no classical analog. The quantum experiments further establish nuclear magnetic resonance as a viable and accessible testbed of quantum predictions and processes. (Copies available exclusively from MIT Libraries, Rm. 14- 0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax

  5. How Does Quantum Uncertainty Emerge from Deterministic Bohmian Mechanics?

    NASA Astrophysics Data System (ADS)

    Solé, A.; Oriols, X.; Marian, D.; Zanghì, N.

    2016-10-01

    Bohmian mechanics is a theory that provides a consistent explanation of quantum phenomena in terms of point particles whose motion is guided by the wave function. In this theory, the state of a system of particles is defined by the actual positions of the particles and the wave function of the system; and the state of the system evolves deterministically. Thus, the Bohmian state can be compared with the state in classical mechanics, which is given by the positions and momenta of all the particles, and which also evolves deterministically. However, while in classical mechanics it is usually taken for granted and considered unproblematic that the state is, at least in principle, measurable, this is not the case in Bohmian mechanics. Due to the linearity of the quantum dynamical laws, one essential component of the Bohmian state, the wave function, is not directly measurable. Moreover, it turns out that the measurement of the other component of the state — the positions of the particles — must be mediated by the wave function; a fact that in turn implies that the positions of the particles, though measurable, are constrained by absolute uncertainty. This is the key to understanding how Bohmian mechanics, despite being deterministic, can account for all quantum predictions, including quantum randomness and uncertainty.

  6. Quantum mechanical force field for water with explicit electronic polarization

    PubMed Central

    Han, Jaebeom; Mazack, Michael J. M.; Zhang, Peng; Truhlar, Donald G.; Gao, Jiali

    2013-01-01

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 106 self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  7. Quantum mechanical force field for water with explicit electronic polarization.

    PubMed

    Han, Jaebeom; Mazack, Michael J M; Zhang, Peng; Truhlar, Donald G; Gao, Jiali

    2013-08-07

    A quantum mechanical force field (QMFF) for water is described. Unlike traditional approaches that use quantum mechanical results and experimental data to parameterize empirical potential energy functions, the present QMFF uses a quantum mechanical framework to represent intramolecular and intermolecular interactions in an entire condensed-phase system. In particular, the internal energy terms used in molecular mechanics are replaced by a quantum mechanical formalism that naturally includes electronic polarization due to intermolecular interactions and its effects on the force constants of the intramolecular force field. As a quantum mechanical force field, both intermolecular interactions and the Hamiltonian describing the individual molecular fragments can be parameterized to strive for accuracy and computational efficiency. In this work, we introduce a polarizable molecular orbital model Hamiltonian for water and for oxygen- and hydrogen-containing compounds, whereas the electrostatic potential responsible for intermolecular interactions in the liquid and in solution is modeled by a three-point charge representation that realistically reproduces the total molecular dipole moment and the local hybridization contributions. The present QMFF for water, which is called the XP3P (explicit polarization with three-point-charge potential) model, is suitable for modeling both gas-phase clusters and liquid water. The paper demonstrates the performance of the XP3P model for water and proton clusters and the properties of the pure liquid from about 900 × 10(6) self-consistent-field calculations on a periodic system consisting of 267 water molecules. The unusual dipole derivative behavior of water, which is incorrectly modeled in molecular mechanics, is naturally reproduced as a result of an electronic structural treatment of chemical bonding by XP3P. We anticipate that the XP3P model will be useful for studying proton transport in solution and solid phases as well as across

  8. Solvable time-dependent models in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cordero-Soto, Ricardo J.

    In the traditional setting of quantum mechanics, the Hamiltonian operator does not depend on time. While some Schrodinger equations with time-dependent Hamiltonians have been solved, explicitly solvable cases are typically scarce. This thesis is a collection of papers in which this first author along with Suslov, Suazo, and Lopez, has worked on solving a series of Schrodinger equations with a time-dependent quadratic Hamiltonian that has applications in problems of quantum electrodynamics, lasers, quantum devices such as quantum dots, and external varying fields. In particular the author discusses a new completely integrable case of the time-dependent Schrodinger equation in Rn with variable coefficients for a modified oscillator, which is dual with respect to the time inversion to a model of the quantum oscillator considered by Meiler, Cordero-Soto, and Suslov. A second pair of dual Hamiltonians is found in the momentum representation. Our examples show that in mathematical physics and quantum mechanics a change in the direction of time may require a total change of the system dynamics in order to return the system back to its original quantum state. The author also considers several models of the damped oscillators in nonrelativistic quantum mechanics in a framework of a general approach to the dynamics of the time-dependent Schrodinger equation with variable quadratic Hamiltonians. The Green functions are explicitly found in terms of elementary functions and the corresponding gauge transformations are discussed. The factorization technique is applied to the case of a shifted harmonic oscillator. The time-evolution of the expectation values of the energy related operators is determined for two models of the quantum damped oscillators under consideration. The classical equations of motion for the damped oscillations are derived for the corresponding expectation values of the position operator. Finally, the author constructs integrals of motion for several models

  9. Quantum Mechanics, Pattern Recognition, and the Mammalian Brain

    NASA Astrophysics Data System (ADS)

    Chapline, George

    2008-10-01

    Although the usual way of representing Markov processes is time asymmetric, there is a way of describing Markov processes, due to Schrodinger, which is time symmetric. This observation provides a link between quantum mechanics and the layered Bayesian networks that are often used in automated pattern recognition systems. In particular, there is a striking formal similarity between quantum mechanics and a particular type of Bayesian network, the Helmholtz machine, which provides a plausible model for how the mammalian brain recognizes important environmental situations. One interesting aspect of this relationship is that the "wake-sleep" algorithm for training a Helmholtz machine is very similar to the problem of finding the potential for the multi-channel Schrodinger equation. As a practical application of this insight it may be possible to use inverse scattering techniques to study the relationship between human brain wave patterns, pattern recognition, and learning. We also comment on whether there is a relationship between quantum measurements and consciousness.

  10. EDITORIAL: Focus on Mechanical Systems at the Quantum Limit FOCUS ON MECHANICAL SYSTEMS AT THE QUANTUM LIMIT

    NASA Astrophysics Data System (ADS)

    Aspelmeyer, Markus; Schwab, Keith

    2008-09-01

    The last five years have witnessed an amazing development in the field of nano- and micromechanics. What was widely considered fantasy ten years ago is about to become an experimental reality: the quantum regime of mechanical systems is within reach of current experiments. Two factors (among many) have contributed significantly to this situation. As part of the widespread effort into nanoscience and nanofabrication, it is now possible to produce high-quality nanomechanical and micromechanical resonators, spanning length scales of millimetres to nanometres, and frequencies from kilohertz to gigahertz. Researchers coupled these mechanical elements to high-sensitivity actuation and readout systems such as single-electron transistors, quantum dots, atomic point contacts, SQUID loops, high-finesse optical or microwave-cavities etc. Some of these ultra-sensitive readout schemes are in principle capable of detection at the quantum limit and a large part of the experimental effort is at present devoted to achieving this. On the other hand, the fact that the groups working in the field come from various different physics backgrounds—the authors of this editorial are a representative sample—has been a constant source of inspiration for helpful theoretical and experimental tools that have been adapted from other fields to the mechanical realm. To name just one example: ideas from quantum optics have led to the recent demonstration (both in theory and experiment) that coupling a mechanical resonator to a high-finesse optical cavity can be fully analogous to the well-known sideband-resolved laser cooling of ions and hence is capable in principle of cooling a mechanical mode into its quantum ground state. There is no doubt that such interdisciplinarity has been a crucial element for the development of the field. It is interesting to note that a very similar sociological phenomenon occurred earlier in the quantum information community, an area which is deeply enriched by the

  11. Physics on the boundary between classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    't Hooft, Gerard

    2014-04-01

    Nature's laws in the domain where relativistic effects, gravitational effects and quantum effects are all comparatively strong are far from understood. This domain is called the Planck scale. Conceivably, a theory can be constructed where the quantum nature of phenomena at such scales can be attributed to something fundamentally simpler. However, arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there can't be physical laws that require "conspiracy". It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In the lecture we will show several such counterexamples. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. This theory is often portrayed as to underly the quantum field theory of the subatomic particles, including the "Standard Model". So now the question is asked: how can this model feature "conspiracy", and how bad is that? Is there conspiracy in the vacuum fluctuations?

  12. Non-exponential and oscillatory decays in quantum mechanics

    SciTech Connect

    Peshkin, Murray; Volya, Alexander; Zelevinsky, Vladimir

    2014-08-07

    The quantum-mechanical theory of the decay of unstable states is revisited. We show that the decay is non-exponential both in the short-time and long-time limits using a more physical definition of the decay rate than the one usually used. We report results of numerical studies based on Winter's model that may elucidate qualitative features of exponential and non-exponential decay more generally. The main exponential stage is related to the formation of a radiating state that maintains the shape of its wave function with exponentially diminishing normalization. We discuss situations where the radioactive decay displays several exponents. The transient stages between different regimes are typically accompanied by interference of various contributions and resulting oscillations in the decay curve. The decay curve can be fully oscillatory in a two-flavor generalization of Winter's model with some values of the parameters. We consider the implications of that result for models of the oscillations reported by GSI.

  13. METHODOLOGICAL NOTES: Irreversibility in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Kadomtsev, Boris B.

    2003-11-01

    From the Editorial Board. November 9, 2003 would have marked the seventy-fifth birthday of Boris Borisovich Kadomtsev, were he alive. An outstanding theoretical physicist, teacher, and enlightener, a prominent scientist in plasma physics and controlled nuclear fusion, Kadomtsev was also actively involved in science organization activities. In particular, from 1976 until his untimely death on August 19, 1998, Kadomtsev was the Editor-in-Chief of Physics-Uspekhi, and it is owing to his efforts that the journal improved notably during his tenure. Now, the Editorial Board, with gratitude and sorrow, would like to celebrate his birthday and to honor his blessed memory in these pages. There is, however, a rule — indeed an immutable tradition — in the journal that, except for the Personalia section, no anniversary can be marked in any way other than in a scientific publication. This rule was strictly observed under Kadomtsev, and certainly should not be violated now, even when honoring his memory. Fortunately, there is a video which remained of a lecture on modern problems of quantum physics that Kadomtsev delivered on May 12, 1997. Prepared for publication by M B Kadomtsev, the lecture allows the reader to revisit the heritage of B B Kadomtsev, to appreciate his logic in treating this very difficult area of physics, to hear his voice as it were, to recall Boris Borisovich Kadomtsev and to honor his memory.

  14. Parity-dependent non-commutative quantum mechanics

    NASA Astrophysics Data System (ADS)

    Chung, Won Sang

    2017-01-01

    In this paper, we consider the non-commutative quantum mechanics (NCQM) with parity (or space reflection) in two dimensions. Using the parity operators Ri, we construct the deformed Heisenberg algebra with parity in the non-commutative plane. We use this algebra to discuss the isotropic harmonic Hamiltonian with parity.

  15. Efficient Integration of Quantum Mechanical Wave Equations by Unitary Transforms

    SciTech Connect

    Bauke, Heiko; Keitel, Christoph H.

    2009-08-13

    The integration of time dependent quantum mechanical wave equations is a fundamental problem in computational physics and computational chemistry. The energy and momentum spectrum of a wave function imposes fundamental limits on the performance of numerical algorithms for this problem. We demonstrate how unitary transforms can help to surmount these limitations.

  16. Time Symmetric Quantum Mechanics and Causal Classical Physics ?

    NASA Astrophysics Data System (ADS)

    Bopp, Fritz W.

    2017-02-01

    A two boundary quantum mechanics without time ordered causal structure is advocated as consistent theory. The apparent causal structure of usual "near future" macroscopic phenomena is attributed to a cosmological asymmetry and to rules governing the transition between microscopic to macroscopic observations. Our interest is a heuristic understanding of the resulting macroscopic physics.

  17. Quantum-mechanical theory of optomechanical Brillouin cooling

    SciTech Connect

    Tomes, Matthew; Bahl, Gaurav; Carmon, Tal; Marquardt, Florian

    2011-12-15

    We analyze how to exploit Brillouin scattering of light from sound for the purpose of cooling optomechanical devices and present a quantum-mechanical theory for Brillouin cooling. Our analysis shows that significant cooling ratios can be obtained with standard experimental parameters. A further improvement of cooling efficiency is possible by increasing the dissipation of the optical anti-Stokes resonance.

  18. A note on misunderstandings of Piron's axioms for quantum mechanics

    NASA Astrophysics Data System (ADS)

    Foulis, D. J.; Randall, C. H.

    1984-01-01

    Piron's axioms for a realistically interpreted quantum mechanics are analyzed in detail within the context of a formal mathematical structure expressed in the conventional set-theoretic idiom of mathematics. As a result, some of the serious misconceptions that have encouraged recent criticisms of Piron's axioms are exposed.

  19. Equivalent emergence of time dependence in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Briggs, John S.

    2015-05-01

    Beginning with the principle that a closed mechanical composite system is timeless, time can be defined by the regular changes in a suitable position coordinate (clock) in the observing part, when one part of the closed composite observes another part. Translating this scenario into both classical and quantum mechanics allows a transition to be made from a time-independent mechanics for the closed composite to a time-dependent description of the observed part alone. The use of Hamilton-Jacobi theory yields a very close parallel between the derivations in classical and quantum mechanics. The time-dependent equations, Hamilton-Jacobi or Schrödinger, appear as approximations since no observed system is truly closed. The quantum case has an additional feature in the condition that the observing environment must become classical in order to define a real classical time variable. This condition leads to a removal of entanglement engendered by the interaction between the observed system and the observing environment. Comparison is made to the similar emergence of time in quantum gravity theory.

  20. Completeness of the Coulomb Wave Functions in Quantum Mechanics

    ERIC Educational Resources Information Center

    Mukunda, N.

    1978-01-01

    Gives an explicit and elementary proof that the radial energy eigenfunctions for the hydrogen atom in quantum mechanics, bound and scattering states included, form a complete set. The proof uses some properties of the confluent hypergeometric functions and the Cauchy residue theorem from analytic function theory. (Author/GA)

  1. The History of Teaching Quantum Mechanics in Greece

    ERIC Educational Resources Information Center

    Tampakis, Constantin; Skordoulis, Constantin

    2007-01-01

    In this work, our goal is to examine the attitude of the Greek scientific community towards Quantum Mechanics and establish the history of teaching of this theory in Greece. We have examined Physics textbooks written by professors of the University of Athens, as well as records of public speeches, university yearbooks from 1923 to 1970, articles…

  2. Overcoming Misconceptions in Quantum Mechanics with the Time Evolution Operator

    ERIC Educational Resources Information Center

    Quijas, P. C. Garcia; Aguilar, L. M. Arevalo

    2007-01-01

    Recently, there have been many efforts to use the research techniques developed in the field of physics education research to improve the teaching and learning of quantum mechanics. In particular, part of this research is focusing on misconceptions held by students. For instance, a set of misconceptions is associated with the concept of stationary…

  3. Exactly Solvable Quantum Mechanical Potentials: An Alternative Approach.

    ERIC Educational Resources Information Center

    Pronchik, Jeremy N.; Williams, Brian W.

    2003-01-01

    Describes an alternative approach to finding exactly solvable, one-dimensional quantum mechanical potentials. Differs from the usual approach in that instead of starting with a particular potential and seeking solutions to the related Schrodinger equations, it begins with known solutions to second-order ordinary differential equations and seeks to…

  4. Spin and Uncertainty in the Interpretation of Quantum Mechanics.

    ERIC Educational Resources Information Center

    Hestenes, David

    1979-01-01

    Points out that quantum mechanics interpretations, using Heisenberg's Uncertainty Relations for the position and momentum of an electron, have their drawbacks. The interpretations are limited to the Schrodinger theory and fail to take into account either spin or relativity. Shows why spin cannot be ignored. (Author/GA)

  5. Recursive representation of Wronskians in confluent supersymmetric quantum mechanics

    NASA Astrophysics Data System (ADS)

    Contreras-Astorga, Alonso; Schulze-Halberg, Axel

    2017-03-01

    A recursive form of arbitrary-order Wronskian associated with transformation functions in the confluent algorithm of supersymmetric quantum mechanics (SUSY) is constructed. With this recursive form regularity conditions for the generated potentials can be analyzed. Moreover, as byproducts we obtain new representations of solutions to Schrödinger equations that underwent a confluent SUSY-transformation.

  6. Quantum Mechanics Concept Assessment: Development and Validation Study

    ERIC Educational Resources Information Center

    Sadaghiani, Homeyra R.; Pollock, Steven J.

    2015-01-01

    As part of an ongoing investigation of students' learning in first semester upper-division quantum mechanics, we needed a high-quality conceptual assessment instrument for comparing outcomes of different curricular approaches. The process of developing such a tool started with converting a preliminary version of a 14-item open-ended quantum…

  7. Review of Student Difficulties in Upper-Level Quantum Mechanics

    ERIC Educational Resources Information Center

    Singh, Chandralekha; Marshman, Emily

    2015-01-01

    Learning advanced physics, in general, is challenging not only due to the increased mathematical sophistication but also because one must continue to build on all of the prior knowledge acquired at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical…

  8. A multiscale quantum mechanics/electromagnetics method for device simulations.

    PubMed

    Yam, ChiYung; Meng, Lingyi; Zhang, Yu; Chen, GuanHua

    2015-04-07

    Multiscale modeling has become a popular tool for research applying to different areas including materials science, microelectronics, biology, chemistry, etc. In this tutorial review, we describe a newly developed multiscale computational method, incorporating quantum mechanics into electronic device modeling with the electromagnetic environment included through classical electrodynamics. In the quantum mechanics/electromagnetics (QM/EM) method, the regions of the system where active electron scattering processes take place are treated quantum mechanically, while the surroundings are described by Maxwell's equations and a semiclassical drift-diffusion model. The QM model and the EM model are solved, respectively, in different regions of the system in a self-consistent manner. Potential distributions and current densities at the interface between QM and EM regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. The method is illustrated in the simulation of several realistic systems. In the case of junctionless field-effect transistors, transfer characteristics are obtained and a good agreement between experiments and simulations is achieved. Optical properties of a tandem photovoltaic cell are studied and the simulations demonstrate that multiple QM regions are coupled through the classical EM model. Finally, the study of a carbon nanotube-based molecular device shows the accuracy and efficiency of the QM/EM method.

  9. Quantum Mechanics of the Einstein-Hopf Model.

    ERIC Educational Resources Information Center

    Milonni, P. W.

    1981-01-01

    The Einstein-Hopf model for the thermodynamic equilibrium between the electromagnetic field and dipole oscillators is considered within the framework of quantum mechanics. Both the wave and particle aspects of the Einstein fluctuation formula are interpreted in terms of the fundamental absorption and emission processes. (Author/SK)

  10. Econophysics: from Game Theory and Information Theory to Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Jimenez, Edward; Moya, Douglas

    2005-03-01

    Rationality is the universal invariant among human behavior, universe physical laws and ordered and complex biological systems. Econophysics isboth the use of physical concepts in Finance and Economics, and the use of Information Economics in Physics. In special, we will show that it is possible to obtain the Quantum Mechanics principles using Information and Game Theory.

  11. Elementary Quantum Mechanics in a High-Energy Process

    ERIC Educational Resources Information Center

    Denville, A.; And Others

    1978-01-01

    Compares two approaches to strong absorption in elementary quantum mechanics; the black sphere and a model based on the continuum theory of nuclear reactions. Examines the application to proton-antiproton interactions at low momenta and concludes that the second model is the appropriate and simplest to use. (Author/GA)

  12. Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Kaiser, David I.; Gallicchio, Jason; Team 1: University of Vienna, InstituteQuantum Optics and Quantum Information; Team 2: UC San Diego Cosmology Group; Team 3: NASA/JPL/Caltech

    2016-06-01

    We report on an in progress "Cosmic Bell" experiment that will leverage cosmology to test quantum mechanics and Bell's inequality using astronomical observations. Different iterations of our experiment will send polarization-entangled photons through the open air to detectors ~1-100 kilometers apart, whose settings would be rapidly chosen using real-time telescopic observations of Milky Way stars, and eventually distant, causally disconnected, cosmological sources - such as pairs of quasars or patches of the cosmic microwave background - all while the entangled pair is still in flight. This would, for the first time, attempt to fully close the so-called "setting independence" or "free will" loophole in experimental tests of Bell's inequality, whereby an alternative theory could mimic the quantum predictions if the experimental settings choices shared even a small correlation with unknown, local, causal influences a mere few milliseconds prior to the experiment. A full Cosmic Bell test would push any such influence all the way back to the hot big bang, since the end of any period of inflation, 13.8 billion years ago, an improvement of 20 orders of magnitude compared to the best previous experiments. Redshift z > 3.65 quasars observed at optical wavelengths are the optimal candidate source pairs using present technology. Our experiment is partially funded by the NSF INSPIRE program, in collaboration with MIT, UC San Diego, Harvey Mudd College, NASA/JPL/Caltech, and the University of Vienna. Such an experiment has implications for our understanding of nature at the deepest level. By testing quantum mechanics in a regime never before explored, we would at the very least extend our confidence in quantum theory, while at the same time severely constraining large classes of alternative theories. If the experiment were to uncover discrepancies from the quantum predictions, there could be crucial implications for early-universe cosmology, the security of quantum encryption

  13. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    NASA Technical Reports Server (NTRS)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  14. Quantum Mechanics for Everyone: Can it be done with Technology?

    NASA Astrophysics Data System (ADS)

    Zollman, Dean

    2004-10-01

    The Visual Quantum Mechanics project has created a series of teaching/learning units to introduce quantum physics to a variety of audiences ranging from high school students who normally would not study these topics to undergraduate physics majors. Most recently we have been developing materials relating modern medical procedures and contemporary physics. In all of these materials interactive computer visualizations are coupled with hands-on experiences to create a series of activities which help students learn about some aspects of quantum mechanics. Our goal is to enable students to obtain a qualitative and, where appropriate, a quantitative understanding of contemporary ideas in physics. Included in the instructional materials are student-centered activities that address a variety of concepts in quantum physics and applications to devices such as the light emitting diode, the electron microscope, an inexpensive infrared detection card, and the Star Trek Transporter. Whenever possible the students begin the study of a new concept with an experiment using inexpensive equipment. They, then, build models of the physical phenomenon using interactive computer visualization and conclude by applying those models to new situations. For physics students these visualizations are usually followed by a mathematical approach. For others the visualizations provide a framework for understanding the concepts. Thus, Visual Quantum Mechanics allows a wide range of students to begin to understand the basic concepts, implications and interpretations of quantum physics. At present we are building on this foundation to create materials which show the connection between contemporary physics and modern medical diagnosis. Additional information is available at http://web.phys.ksu.edu/.

  15. Quantum statistical mechanics of dense partially ionized hydrogen

    NASA Technical Reports Server (NTRS)

    Dewitt, H. E.; Rogers, F. J.

    1972-01-01

    The theory of dense hydrogen plasmas beginning with the two component quantum grand partition function is reviewed. It is shown that ionization equilibrium and molecular dissociation equilibrium can be treated in the same manner with proper consideration of all two-body states. A quantum perturbation expansion is used to give an accurate calculation of the equation of state of the gas for any degree of dissociation and ionization. The statistical mechanical calculation of the plasma equation of state is intended for stellar interiors. The general approach is extended to the calculation of the equation of state of the outer layers of large planets.

  16. Factorization in the quantum mechanics with the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Chung, Won Sang

    2015-07-01

    In this paper, we discuss the quantum mechanics with the generalized uncertainty principle (GUP) where the commutation relation is given by [x̂,p̂] = iℏ(1 + αp̂ + βp̂2). For this algebra, we obtain the eigenfunction of the momentum operator. We also study the GUP corrected quantum particle in a box. Finally, we apply the factorization method to the harmonic oscillator in the presence of a minimal observable length and obtain the energy eigenvalues by applying the perturbation method.

  17. Efficient hybrid-symbolic methods for quantum mechanical calculations

    NASA Astrophysics Data System (ADS)

    Scott, T. C.; Zhang, Wenxing

    2015-06-01

    We present hybrid symbolic-numerical tools to generate optimized numerical code for rapid prototyping and fast numerical computation starting from a computer algebra system (CAS) and tailored to any given quantum mechanical problem. Although a major focus concerns the quantum chemistry methods of H. Nakatsuji which has yielded successful and very accurate eigensolutions for small atoms and molecules, the tools are general and may be applied to any basis set calculation with a variational principle applied to its linear and non-linear parameters.

  18. Jarzynski equality in PT-symmetric quantum mechanics

    DOE PAGES

    Deffner, Sebastian; Saxena, Avadh

    2015-04-13

    We show that the quantum Jarzynski equality generalizes to PT -symmetric quantum mechanics with unbroken PT -symmetry. In the regime of broken PT -symmetry the Jarzynski equality does not hold as also the CPT -norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system – two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT -symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.

  19. Jarzynski Equality in PT-Symmetric Quantum Mechanics.

    PubMed

    Deffner, Sebastian; Saxena, Avadh

    2015-04-17

    We show that the quantum Jarzynski equality generalizes to PT-symmetric quantum mechanics with unbroken PT symmetry. In the regime of broken PT symmetry, the Jarzynski equality does not hold as also the CPT norm is not preserved during the dynamics. These findings are illustrated for an experimentally relevant system-two coupled optical waveguides. It turns out that for these systems the phase transition between the regimes of unbroken and broken PT symmetry is thermodynamically inhibited as the irreversible work diverges at the critical point.

  20. Quantum mechanical calculation of Rydberg-Rydberg autoionization rates

    NASA Astrophysics Data System (ADS)

    Kiffner, Martin; Ceresoli, Davide; Li, Wenhui; Jaksch, Dieter

    2016-10-01

    We present quantum mechanical calculations of autoionization rates for two rubidium Rydberg atoms with weakly overlapping electron clouds. We neglect exchange effects and consider tensor products of independent atom states forming an approximate basis of the two-electron state space. We consider large sets of two-atom states with randomly chosen quantum numbers and find that the charge overlap between the two Rydberg electrons allows one to characterise the magnitude of the autoionization rates. If the electron clouds overlap by more than one percent, the autoionization rates increase approximately exponentially with the charge overlap. This finding is independent of the energy of the initial state.

  1. A wave equation interpolating between classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.

    2015-10-01

    We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.

  2. A perspective on quantum mechanics calculations in ADMET predictions.

    PubMed

    Bowen, J Phillip; Güner, Osman F

    2013-01-01

    Understanding the molecular basis of drug action has been an important objective for pharmaceutical scientists. With the increasing speed of computers and the implementation of quantum chemistry methodologies, pharmacodynamic and pharmacokinetic problems have become more computationally tractable. Historically the former has been the focus of drug design, but within the last two decades efforts to understand the latter have increased. It takes about fifteen years and over $1 billion dollars for a drug to go from laboratory hit, through lead optimization, to final approval by the U.S. Food and Drug Administration. While the costs have increased substantially, the overall clinical success rate for a compound to emerge from clinical trials is approximately 10%. Most of the attrition rate can be traced to ADMET (absorption, distribution, metabolism, excretion, and toxicity) problems, which is a powerful impetus to study these issues at an earlier stage in drug discovery. Quantum mechanics offers pharmaceutical scientists the opportunity to investigate pharmacokinetic problems at the molecular level prior to laboratory preparation and testing. This review will provide a perspective on the use of quantum mechanics or a combination of quantum mechanics coupled with other classical methods in the pharmacokinetic phase of drug discovery. A brief overview of the essential features of theory will be discussed, and a few carefully selected examples will be given to highlight the computational methods.

  3. Quantum Mechanical Modeling of Ballistic MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The objective of this project was to develop theory, approximations, and computer code to model quasi 1D structures such as nanotubes, DNA, and MOSFETs: (1) Nanotubes: Influence of defects on ballistic transport, electro-mechanical properties, and metal-nanotube coupling; (2) DNA: Model electron transfer (biochemistry) and transport experiments, and sequence dependence of conductance; and (3) MOSFETs: 2D doping profiles, polysilicon depletion, source to drain and gate tunneling, understand ballistic limit.

  4. Statistical Mechanics of Confined Quantum Particles

    NASA Astrophysics Data System (ADS)

    Bannur, Vishnu M.; Udayanandan, K. M.

    We develop statistical mechanics and thermodynamics of Bose and Fermi systems in relativistic harmonic oscillator (RHO) confining potential, which is applicable in quark gluon plasma (QGP), astrophysics, Bose-Einstein condensation (BEC) etc. Detailed study of QGP system is carried out and compared with lattice results. Furthermore, as an application, our equation of state (EoS) of QGP is used to study compact stars like quark star.

  5. Delirium Quantum Or, where I will take quantum mechanics if it will let me

    NASA Astrophysics Data System (ADS)

    Fuchs, Christopher A.

    2007-02-01

    Once again, I take advantage of the wonderfully liberal and tolerant mood Andrei Khrennikov sets at his yearly conferences by submitting a nonstandard paper for the proceedings. This pseudo-paper consists of excerpts drawn from two of my samizdats [Quantum States: What the Hell Are They? and Darwinism All the Way Down (and Probabilism All the Way Back Up)] that I think best summarize what I am aiming for on the broadest scale with my quantum foundations program. Section 1 tries to draw a picture of a physical world whose essence is "Darwinism all the way down." Section 2 outlines how quantum theory should be viewed in light of that, i.e., as being an expression of probabilism (in Bruno de Finetti or Richard Jeffrey's sense) all the way back up. Section 3 describes how the idea of "identical" quantum measurement outcomes, though sounding atomistic in character, nonetheless meshes well with a William Jamesian style "radical pluralism." Sections 4 and 5 further detail how quantum theory should not be viewed so much as a "theory of the world," but rather as a theory of decision-making for agents immersed within a quantum world—that is, a world in continual creation. Finally, Sections 6 and 7 attempt to sketch once again the very positive sense in which quantum theory is incomplete, but still just as complete is it can be. In total, I hope these heady speculations convey some of the excitement and potential I see for the malleable world quantum mechanics hints of.

  6. Quantum mechanical reality according to Copenhagen 2.0

    NASA Astrophysics Data System (ADS)

    Din, Allan M.

    2016-05-01

    The long-standing conceptual controversies concerning the interpretation of nonrelativistic quantum mechanics are argued, on one hand, to be due to its incompleteness, as affirmed by Einstein. But on the other hand, it appears to be possible to complete it at least partially, as Bohr might have appreciated it, in the framework of its standard mathematical formalism with observables as appropriately defined self-adjoint operators. This completion of quantum mechanics is based on the requirement on laboratory physics to be effectively confined to a bounded space region and on the application of the von Neumann deficiency theorem to properly define a set of self-adjoint extensions of standard observables, e.g. the momenta and the Hamiltonian, in terms of certain isometries on the region boundary. This is formalized mathematically in the setting of a boundary ontology for the so-called Qbox in which the wave function acquires a supplementary dependence on a set of Additional Boundary Variables (ABV). It is argued that a certain geometric subset of the ABV parametrizing Quasi-Periodic Translational Isometries (QPTI) has a particular physical importance by allowing for the definition of an ontic wave function, which has the property of epitomizing the spatial wave function “collapse.” Concomitantly the standard wave function in an unbounded geometry is interpreted as an epistemic wave function, which together with the ontic QPTI wave function gives rise to the notion of two-wave duality, replacing the standard concept of wave-particle duality. More generally, this approach to quantum physics in a bounded geometry provides a novel analytical basis for a better understanding of several conceptual notions of quantum mechanics, including reality, nonlocality, entanglement and Heisenberg’s uncertainty relation. The scope of this analysis may be seen as a foundational update of the multiple versions 1.x of the Copenhagen interpretation of quantum mechanics, which is

  7. Functional methods underlying classical mechanics, relativity and quantum theory

    NASA Astrophysics Data System (ADS)

    Kryukov, A.

    2013-04-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is "made" of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  8. Reflections on Zeilinger-Brukner Information Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    2016-07-01

    In this short review I present my personal reflections on Zeilinger-Brukner information interpretation of quantum mechanics (QM).In general, this interpretation is very attractive for me. However, its rigid coupling to the notion of irreducible quantum randomness is a very complicated issue which I plan to address in more detail. This note may be useful for general public interested in quantum foundations, especially because I try to analyze essentials of the information interpretation critically (i.e., not just emphasizing its advantages as it is commonly done). This review is written in non-physicist friendly manner. Experts actively exploring this interpretation may be interested in the paper as well, as in the comments of "an external observer" who have been monitoring the development of this approach to QM during the last 18 years. The last part of this review is devoted to the general methodology of science with references to views of de Finetti, Wigner, and Peres.

  9. The simplified Fermi accelerator in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Karner, Gunther

    1994-11-01

    We review the simplified classical Fermi acceleration mechanism and construct a quantum counterpart by imposing time-dependent boundary conditions on solutions of the "free" Schrödinger equation at the unit interval. We find similiar dynamical features in the sense that limiting KAM curves, respectively purely singular quasienergy spectrum, exist(s) for sufficiently smooth "wall oscillations" (typically of C 2 type). In addition, we investigate quantum analogs to local approximations of the Fermi map both in its quasiperiodic and irregular phase space regions. In particular, we find pure point q.e. spectrum in the former case and conjecture that "random boundary conditions" are necessary to model a quantum analog to the chaotic regime of the classical accelerator.

  10. Quantum processes as a mechanism in olfaction for smell recognition?

    NASA Astrophysics Data System (ADS)

    Brookes, Jennifer

    2011-03-01

    The physics of smell is not well understood. The biological processes that occur following a signalling event are well understood (Buck 1991). However, the reasons how and why a signalling event occurs when a particular smell molecule and receptor combination is made, remains un-established. Luca Turin proposes a signalling mechanism which determines smell molecules by quantum mechanics (Turin 1996). Investigation of this mechanism shows it to be physically robust (Brookes,et al, 2007), and consequences of the theory provides quantitative measurements of smell and interesting potential experiments that may determine whether the recognition of smell is a quantum event. Brookes, J.C, Hartoutsiou, F, Horsfield, A.P and Stoneham, A.M. (2007). Physical Review Letters 98, no. 3 038101 Buck, L. (1991) Cell, 65, no.1 (4): 175-187. Turin, L. (1996) Chemical Sences 21, no 6. 773-791 With many thanks to the Wellcome Trust.

  11. Simulated scaling method for localized enhanced sampling and simultaneous "alchemical" free energy simulations: a general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations.

    PubMed

    Li, Hongzhi; Fajer, Mikolai; Yang, Wei

    2007-01-14

    A potential scaling version of simulated tempering is presented to efficiently sample configuration space in a localized region. The present "simulated scaling" method is developed with a Wang-Landau type of updating scheme in order to quickly flatten the distributions in the scaling parameter lambdam space. This proposal is meaningful for a broad range of biophysical problems, in which localized sampling is required. Besides its superior capability and robustness in localized conformational sampling, this simulated scaling method can also naturally lead to efficient "alchemical" free energy predictions when dual-topology alchemical hybrid potential is applied; thereby simultaneously, both of the chemically and conformationally distinct portions of two end point chemical states can be efficiently sampled. As demonstrated in this work, the present method is also feasible for the quantum mechanical and quantum mechanical/molecular mechanical simulations.

  12. Nonrelativistic quantum mechanics with consideration of influence of fundamental environment

    SciTech Connect

    Gevorkyan, A. S.

    2013-08-15

    Spontaneous transitions between bound states of an atomic system, the 'Lamb Shift' of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations (fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schroedinger type and is defined on the extended space Double-Struck-Capital-R {sup 3} Circled-Times {Xi}{sup n}, where Double-Struck-Capital-R {sup 3} and {Xi}{sup n} are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.

  13. Quantum mechanics on SO(3) via noncommutative dual variables

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Raasakka, Matti

    2011-07-01

    We formulate quantum mechanics on the group SO(3) using a noncommutative dual space representation for the quantum states, inspired by recent work in quantum gravity. The new noncommutative variables have a clear connection to the corresponding classical variables, and our analysis confirms them as the natural phase space variables, both mathematically and physically. In particular, we derive the first order (Hamiltonian) path integral in terms of the noncommutative variables, as a formulation of the transition amplitudes alternative to that based on harmonic analysis. We find that the nontrivial phase space structure gives naturally rise to quantum corrections to the action for which we find a closed expression. We then study both the semiclassical approximation of the first order path integral and the example of a free particle on SO(3). On the basis of these results, we comment on the relevance of similar structures and methods for more complicated theories with group-based configuration spaces, such as loop quantum gravity and spin foam models.

  14. Nonrelativistic quantum mechanics with consideration of influence of fundamental environment

    NASA Astrophysics Data System (ADS)

    Gevorkyan, A. S.

    2013-08-01

    Spontaneous transitions between bound states of an atomic system, the "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected with the influence of the quantum vacuum fluctuations ( fundamental environment (FE)), which are impossible to consider in the framework of standard quantum-mechanical approaches. The joint system quantum system (QS) and FE is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger type and is defined on the extended space ℝ3⊗Ξ n , where ℝ3 and Ξ n are the Euclidean and functional spaces, respectively. The method of stochastic density matrix is developed and the von Neumann equation for reduced density matrix of QS with FE is generalized. The entropy of QS entangled with FE is defined and investigated. It is proved that the interaction of QS with the environment leads to emerging structures of various topologies which present new quantum-field properties of QS. It is shown that when the physical system (irrelatively to its being micro ormacro) breaks up into two fragments by means of FE, there arises between these fragments a nonpotential interaction which does not disappear at large distances.

  15. Non-exponential decay in Quantum Mechanics and Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Giacosa, Francesco

    2014-10-01

    We describe some salient features as well as some recent developments concerning short-time deviations from the exponential decay law in the context of Quantum Mechanics by using the Lee Hamiltonian approach and Quantum Field Theory by using relativistic Lagrangians. In particular, the case in which two decay channels are present is analyzed: the ratio of decay probability densities, which is a constant equal to the ratio of decay widths in the exponential limit, shows in general sizable fluctuations which persist also at long times.

  16. Subsystem Quantum Mechanics and its Applications to Crystalline Systems

    NASA Astrophysics Data System (ADS)

    Zou, Pengfei

    This thesis reports results of the author's investigations along the theme that both dynamic and static properties of molecules and solids can be expressed in terms of their parts from theoretical and applied aspects. Specifically, the following four main results are obtained: (1) A topological analysis of the charge density in crystals has been developed. This is an extension of the theory of molecular structure to crystalline systems. Relationships between the bulk properties of a crystal and its topological structure have been established. A comparison of the topological properties of molecules and crystals have been made. (2) The theory of atoms in molecules has been extended to a crystal and yields a variational definition of a Wigner-Seitz cell. This definition maximizes the relation of the cell to the physical form exhibited by the charge density and the derived structure factors that account, in a natural way, for the observed intensities of scattered electrons and X-rays. It has been demonstrated that the theory of atoms in molecules and crystals can provide a way to model the behaviour of solids. This is done through the use of the fact that atomic properties are often transferable from one system to another. (3) The subsystem variational principle has been reformulated in terms of quantum field theoretical language and the subsystem Feynman path integrals of electrons have been obtained using the coherent representation. This part contributes to the foundation of the theory of atoms in molecules and crystals. (4) Both dynamic and static quantum mechanical subspace techniques have been extensively investigated. A new variational method has been derived for embedding one system in another using the R-matrix formalism within the density functional approach. A formal subspace perturbation scheme has been proposed. These methods aim to obtain the charge distribution of a subsystem starting from known reference systems. Before I came here I was confused about

  17. Quantum mechanical properties of graphene nano-flakes and quantum dots.

    PubMed

    Shi, Hongqing; Barnard, Amanda S; Snook, Ian K

    2012-11-07

    In recent years considerable attention has been given to methods for modifying and controlling the electronic and quantum mechanical properties of graphene quantum dots. However, as these types of properties are indirect consequences of the wavefunction of the material, a more efficient way of determining properties may be to engineer the wavefunction directly. One way of doing this may be via deliberate structural modifications, such as producing graphene nanostructures with specific sizes and shapes. In this paper we use quantum mechanical simulations to determine whether the wavefunction, quantified via the distribution of the highest occupied molecular orbital, has a direct and reliable relationship to the physical structure, and whether structural modifications can be useful for wavefunction engineering. We find that the wavefunction of small molecular graphene structures can be different from those of larger nanoscale counterparts, and the distribution of the highest occupied molecular orbital is strongly affected by the geometric shape (but only weakly by edge and corner terminations). This indicates that both size and shape may be more useful parameters in determining quantum mechanical and electronic properties, which should then be reasonably robust against variations in the chemical passivation or functionalisation around the circumference.

  18. Third emission mechanism in solid-state nanocavity quantum electrodynamics.

    PubMed

    Yamaguchi, Makoto; Asano, Takashi; Noda, Susumu

    2012-09-01

    Photonic crystal (PC) nanocavities have been receiving a great deal of attention recently because of their ability to strongly confine photons in a tiny space with a high quality factor. According to cavity quantum electrodynamics (cavity QED), such confined photons can achieve efficient interactions with excitons in semiconductors, leading to the Purcell effect in the weak coupling regime and vacuum Rabi splitting (VRS) in the strong coupling regime. These features are promising for applications such as quantum information processing, highly efficient single photon sources and ultra-low threshold lasers. In this context, the coupled system of a semiconductor quantum dot (QD) and a PC nanocavity has been intensively investigated in recent years.Although experimental reports have demonstrated such fundamental features, two anomalous phenomena have also been observed. First, photon emission from the cavity occurs even when it is significantly detuned from the QD. Second, spectral triplets are formed by additional bare-cavity lines between the VRS lines. These features cannot be explained by standard cavity QED theories and have prompted controversy regarding their physical mechanisms. In this review we describe the recent experimental and theoretical progress made in the investigation of these phenomena. Similar mechanisms will also occur in many other coupled quantum systems, and thus the findings are applicable to a wide range of fields.

  19. Memories of Crisis: Bohr, Kuhn, and the Quantum Mechanical ``Revolution''

    NASA Astrophysics Data System (ADS)

    Seth, Suman

    2013-04-01

    ``The history of science, to my knowledge,'' wrote Thomas Kuhn, describing the years just prior to the development of matrix and wave mechanics, ``offers no equally clear, detailed, and cogent example of the creative functions of normal science and crisis.'' By 1924, most quantum theorists shared a sense that there was much wrong with all extant atomic models. Yet not all shared equally in the sense that the failure was either terribly surprising or particularly demoralizing. Not all agreed, that is, that a crisis for Bohr-like models was a crisis for quantum theory. This paper attempts to answer four questions: two about history, two about memory. First, which sub-groups of the quantum theoretical community saw themselves and their field in a state of crisis in the early 1920s? Second, why did they do so, and how was a sense of crisis related to their theoretical practices in physics? Third, do we regard the years before 1925 as a crisis because they were followed by the quantum mechanical revolution? And fourth, to reverse the last question, were we to call into the question the existence of a crisis (for some at least) does that make a subsequent revolution less revolutionary?

  20. Emergence of a New Quantum Mechanics by Multivalued Logic

    NASA Astrophysics Data System (ADS)

    de Gerlicz, Claude Gaudeau; Antoine, Mathias; Bobola, Philippe; Flawisky, Nicolas; Hebras, Xavier; Mundedi, Musa

    2013-09-01

    Quantum Mechanics associated with new logic like Multivalued Logic and Fuzzy Logic has progressed in different ways and their applications can be found in many fields of sciences and technologies. All the concepts attached to this theory are far from the classical view. Classical mechanics can be viewed as crisp limit of a Fuzzy quantum mechanics. This leads to the following interpretation: It is the consequence of an assumption that a quantum particle "reside" in different place or in every path of the continuum of paths which collapse into a single "unique" trajectory of an observed classical motion The reality is "Fuzzy" and nonlocal not only in space but also in time. In this sense, idealised pointlike particles of classical mechanics corresponding to the ultimate sharpness of the fuzziness density emerge in a process of interaction between different parts of fuzzy wholeness. This process is viewed as a continuous process of defuzzification. It transforms a fuzzy reality into a crisp one. It is clear that the emerging crisp reality as a final step of measurements carries less of information that the underlying fuzzy reality. This means that there is an irreversible loss of information usually called "collapse of the wave function". It is not so much a "collapse" as a realization of one of the many possibilities existing within a fuzzy reality. Any measurements rearrange the fuzzy reality leading to different detection outcomes.

  1. Photons and evolution: quantum mechanical processes modulate sexual differentiation.

    PubMed

    Davis, George E; Lowell, Walter E

    2009-09-01

    This paper will show that the fractional difference in the human gender ratio (GR) between the GR(at death) for those born in solar cycle peak years (maxima) and the GR(at death) in those born in solar cycle non-peak years (minima), e.g., 0.023, divided by Pi, yields a reasonable approximation of the quantum mechanical constant, alpha, or the fine structure constant (FSC) approximately 0.007297... or approximately 1/137. This finding is based on a sample of approximately 50 million cases using common, readily available demographic data, e.g., state of birth, birth date, death date, and gender. Physicists Nair, Geim et al. had found precisely the same fractional difference, 0.023, in the absorption of white light (sunlight) by a single-atom thick layer of graphene, a carbon skeleton resembling chicken wire fencing. This absorption fraction, when divided by Pi, yielded the FSC and was the first time this constant could "so directly be assessed practically by the naked eye". As the GR is a reflection of sexual differentiation, this paper reveals that a quantum mechanical process, as manifested by the FSC, is playing a role in the primordial process of replication, a necessary requirement of life. Successful replication is the primary engine driving evolution, which at a biochemical level, is a quantum mechanical process dependent upon photonic energy from the Sun. We propose that a quantum-mechanical, photon-driven chemical evolution preceded natural selection in biology and the mechanisms of mitosis and meiosis are manifestations of this chemical evolution in ancient seas over 3 billion years ago. Evolutionary processes became extant first in self-replicating molecules forced to adapt to high energy photons, mostly likely in the ultraviolet spectrum. These events led to evolution by natural selection as complex mixing of genetic material within species creating the variety needed to match changing environments reflecting the same process initiated at the dawn of life

  2. Testing Quantum Mechanics and Bell's Inequality with Astronomical Observations

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Gallicchio, Jason; Kaiser, David I.; Guth, Alan H.

    2015-01-01

    We propose an experiment which would leverage cosmology to test quantum mechanics using astronomical observations. Our experiment would send entangled photons to detectors over 100 kilometers apart, whose settings would be rapidly chosen using real-time telescopic observations of distant, causally disconnected, cosmic sources - such as pairs of quasars or patches of the Cosmic Microwave Background - all while the entangled pair is still in flight. This would, for the first time, close close the so-called "setting independence" or "free will" loophole in experimental tests of Bell's inequality, whereby an alternative theory could mimic the quantum predictions if the experimental settings choices shared even a small correlation with some local "hidden variables" due to unknown causal influences a mere few milliseconds prior to the experiment. Our "Cosmic Bell" experiment would push any such hidden variable conspiracy all the way back to the hot big bang, since the end of any period of inflation, 13.8 Gyr ago, an improvement of 20 orders of magnitude. We demonstrate the real world feasibility of our experimental setup. While causally disjoint patches of the cosmic microwave background radiation at redshift z ~ 1090 could be used to set the detectors, z > 3.65 quasars observed at optical wavelengths are arguably the optimal candidate source pairs using present technology. Our proposal is supported by some of the world's leading quantum experimentalists, who have begun to collaborate with us to conduct the experiment in the next 2-3 years using some of the instrumentation they have already built and used at two astronomical observatories in the Canary Islands. Such an experiment has implications for our understanding of nature at the deepest level. By testing quantum mechanics in a regime never before explored, we would at the very least extend our confidence in quantum theory, while at the same time severely constraining large classes of alternative theories. If the

  3. Block-adaptive quantum mechanics: an adaptive divide-and-conquer approach to interactive quantum chemistry.

    PubMed

    Bosson, Maël; Grudinin, Sergei; Redon, Stephane

    2013-03-05

    We present a novel Block-Adaptive Quantum Mechanics (BAQM) approach to interactive quantum chemistry. Although quantum chemistry models are known to be computationally demanding, we achieve interactive rates by focusing computational resources on the most active parts of the system. BAQM is based on a divide-and-conquer technique and constrains some nucleus positions and some electronic degrees of freedom on the fly to simplify the simulation. As a result, each time step may be performed significantly faster, which in turn may accelerate attraction to the neighboring local minima. By applying our approach to the nonself-consistent Atom Superposition and Electron Delocalization Molecular Orbital theory, we demonstrate interactive rates and efficient virtual prototyping for systems containing more than a thousand of atoms on a standard desktop computer.

  4. Probability and Quantum Symmetries. II. The Theorem of Noether in quantum mechanics

    SciTech Connect

    Albeverio, S.; Rezende, J.; Zambrini, J.-C.

    2006-06-15

    For the largest class of physical systems having a classical analog, a new rigorous, but not probabilistic, Lagrangian version of nonrelativistic quantum mechanics is given, in terms of a notion of regularized action function. As a consequence of the study of the symmetries of this action, an associated Noether theorem is obtained. All the quantum symmetries resulting from the canonical quantization procedure follow in this way, as well as a number of symmetries which are new even for the case of the simplest systems. The method is based on the study of a corresponding Lie algebra and an analytical continuation in the time parameter of the probabilistic construction given in paper I of this work. Generically, the associated quantum first integrals are time dependent and the probabilistic model provides a natural interpretation of the new symmetries. Various examples illustrate the physical relevance of our results.

  5. O the Verge of Collapse: Modal Interpretations of Quantum Mechanics.

    NASA Astrophysics Data System (ADS)

    Ruetsche, Laura

    1995-01-01

    The conjunction of Schrodinger dynamics and the usual way of thinking about the conditions under which quantum systems exhibit determinate values implies that measurements don't have outcomes. The orthodox fix to this quantum measurement problem is von Neumann's postulate of measurement collapse, which suspends Schrodinger dynamics in measurement contexts. Contending that the fundamental dynamical law of quantum theory breaks down every time we test the theory empirically, the collapse postulate is unsatisfactory. Recently philosophers (e.g., van Fraassen and Healey) and physicists (e.g., Kochen and Dieks) have proposed a less violent solution to the measurement problem. Their modal interpretations of quantum mechanics advocate unusual ways of thinking about the situations under which quantum systems exhibit determinate observable values, semantics which reconcile determinate measurement outcomes with universal Schrodinger dynamics. Thus modal interpretations hold out hope that quantum theory is complete and exceptionless. This dissertation tempers that hope. I consider the modal approach to the neglected problem of state preparation. A promising modal account exploits standard quantum transition probabilities. But, I claim, modal interpretations must subject these transition probabilities to a consistency constraint which they can be shown to violate. Non-standard transition probabilities might avoid this inconsistency, but they would also introduce novel dynamics, and so undo the modal triumph of taking Schrodinger dynamics to be complete and universal. Next I consider Albert and Loewer's assault on modal accounts of "error-prone" measurements. I argue that the Albert-Loewer problem is more general than Albert, Loewer, or their critics appreciate, and that the Araki-Yanase theorem implies the existence of a class of observables whose error-free measurements succumb to the Albert-Loewer problem. I review modal responses to Albert and Loewer which appeal to the

  6. Quantum mechanical calculations and mineral spectroscopy

    NASA Astrophysics Data System (ADS)

    Kubicki, J. D.

    2006-05-01

    Interpretation of spectra in systems of environmental interest is not generally straightforward due to the lack of close analogs and a clear structure of some components of the system. Computational chemistry can be used as an objective method to test interpretations of spectra. This talk will focus on applying ab initio methods to complement vibrational, NMR, and EXAFS spectroscopic information. Examples of systems studied include phosphate/Fe-hydroxides, arsenate/Al- and Fe-hydroxide, fractured silica surfaces. Phosphate interactions with Fe-hydroxides are important in controlling nutrient availability in soils and transport within streams. In addition, organo-phosphate bonding may be a key attachment mechanism for bacteria at Fe-oxide surfaces. Interpretation of IR spectra is enhanced by model predictions of vibrational frequencies for various surface complexes. Ab initio calculations were used to help explain As(V) and As(III) adsorption behavior onto amorphous Al- and Fe-hydroxides in conjunction with EXAFS measurements. Fractured silica surfaces have been implicated in silicosis. These calculations test structures that could give rise to radical formation on silica surfaces. Calculations to simulate the creation of Si and SiO radical species on sufaces and their subsequent production of OH radicals will be discussed.

  7. Sampling Molecular Conformers in Solution with Quantum Mechanical Accuracy at a Nearly Molecular-Mechanics Cost.

    PubMed

    Rosa, Marta; Micciarelli, Marco; Laio, Alessandro; Baroni, Stefano

    2016-09-13

    We introduce a method to evaluate the relative populations of different conformers of molecular species in solution, aiming at quantum mechanical accuracy, while keeping the computational cost at a nearly molecular-mechanics level. This goal is achieved by combining long classical molecular-dynamics simulations to sample the free-energy landscape of the system, advanced clustering techniques to identify the most relevant conformers, and thermodynamic perturbation theory to correct the resulting populations, using quantum-mechanical energies from density functional theory. A quantitative criterion for assessing the accuracy thus achieved is proposed. The resulting methodology is demonstrated in the specific case of cyanin (cyanidin-3-glucoside) in water solution.

  8. A quantum mechanical polarizable force field for biomolecular interactions

    PubMed Central

    Donchev, A. G.; Ozrin, V. D.; Subbotin, M. V.; Tarasov, O. V.; Tarasov, V. I.

    2005-01-01

    We introduce a quantum mechanical polarizable force field (QMPFF) fitted solely to QM data at the MP2/aTZ(-hp) level. Atomic charge density is modeled by point-charge nuclei and floating exponentially shaped electron clouds. The functional form of interaction energy parallels quantum mechanics by including electrostatic, exchange, induction, and dispersion terms. Separate fitting of each term to the counterpart calculated from high-quality QM data ensures high transferability of QMPFF parameters to different molecular environments, as well as accurate fit to a broad range of experimental data in both gas and liquid phases. QMPFF, which is much more efficient than ab initio QM, is optimized for the accurate simulation of biomolecular systems and the design of drugs. PMID:15911753

  9. On the consistent effect histories approach to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rudolph, Oliver

    1996-11-01

    A formulation of the consistent histories approach to quantum mechanics in terms of generalized observables (POV measures) and effect operators is provided. The usual notion of ``history'' is generalized to the notion of ``effect history.'' The space of effect histories carries the structure of a D-poset. Recent results of J. D. Maitland Wright imply that every decoherence functional defined for ordinary histories can be uniquely extended to a bi-additive decoherence functional on the space of effect histories. Omnès' logical interpretation is generalized to the present context. The result of this work considerably generalizes and simplifies the earlier formulation of the consistent effect histories approach to quantum mechanics communicated in a previous work of this author.

  10. Approaching the standard quantum limit of mechanical torque sensing

    NASA Astrophysics Data System (ADS)

    Kim, P. H.; Hauer, B. D.; Doolin, C.; Souris, F.; Davis, J. P.

    2016-10-01

    Reducing the moment of inertia improves the sensitivity of a mechanically based torque sensor, the parallel of reducing the mass of a force sensor, yet the correspondingly small displacements can be difficult to measure. To resolve this, we incorporate cavity optomechanics, which involves co-localizing an optical and mechanical resonance. With the resulting enhanced readout, cavity-optomechanical torque sensors are now limited only by thermal noise. Further progress requires thermalizing such sensors to low temperatures, where sensitivity limitations are instead imposed by quantum noise. Here, by cooling a cavity-optomechanical torque sensor to 25 mK, we demonstrate a torque sensitivity of 2.9 yNm/. At just over a factor of ten above its quantum-limited sensitivity, such cryogenic optomechanical torque sensors will enable both static and dynamic measurements of integrated samples at the level of a few hundred spins.

  11. The black hole S-Matrix from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Betzios, Panagiotis; Gaddam, Nava; Papadoulaki, Olga

    2016-11-01

    We revisit the old black hole S-Matrix construction and its new partial wave expansion of 't Hooft. Inspired by old ideas from non-critical string theory & c = 1 Matrix Quantum Mechanics, we reformulate the scattering in terms of a quantum mechanical model — of waves scattering off inverted harmonic oscillator potentials — that exactly reproduces the unitary black hole S-Matrix for all spherical harmonics; each partial wave corresponds to an inverted harmonic oscillator with ground state energy that is shifted relative to the s-wave oscillator. Identifying a connection to 2d string theory allows us to show that there is an exponential degeneracy in how a given total initial energy may be distributed among many partial waves of the 4d black hole.

  12. Some theoretical aspects of quantum mechanical equations in Rindler space

    NASA Astrophysics Data System (ADS)

    Mitra, Soma; Chakrabarty, Somenath

    2017-03-01

    In this article we have investigated theoretical aspects of the solutions of some of the quantum mechanical problems in Rindler space. We have developed formalisms for the exact analytical solutions for the relativistic equations, along with the approximate form of solutions for the Schrödinger equation. The Hamiltonian operator in Rindler space is found to be non-Hermitian in nature, whereas the energy eigen values are observed to be real in nature. We have noticed that the sole reason behind such real behavior is the PT -symmetric form of the Hamiltonian operator. We have also observed that the energy eigen values are negative, lineraly quantized and the quantum mechanical system becomes more and more bound with the increase in the strength of gravitational field strength produced by the strongly gravitating objects, e.g., black holes, which is classical in nature.

  13. Approaching the standard quantum limit of mechanical torque sensing

    PubMed Central

    Kim, P. H.; Hauer, B. D.; Doolin, C.; Souris, F.; Davis, J. P.

    2016-01-01

    Reducing the moment of inertia improves the sensitivity of a mechanically based torque sensor, the parallel of reducing the mass of a force sensor, yet the correspondingly small displacements can be difficult to measure. To resolve this, we incorporate cavity optomechanics, which involves co-localizing an optical and mechanical resonance. With the resulting enhanced readout, cavity-optomechanical torque sensors are now limited only by thermal noise. Further progress requires thermalizing such sensors to low temperatures, where sensitivity limitations are instead imposed by quantum noise. Here, by cooling a cavity-optomechanical torque sensor to 25 mK, we demonstrate a torque sensitivity of 2.9 yNm/. At just over a factor of ten above its quantum-limited sensitivity, such cryogenic optomechanical torque sensors will enable both static and dynamic measurements of integrated samples at the level of a few hundred spins. PMID:27762273

  14. Geometrical and quantum mechanical aspects in observers' mathematics

    NASA Astrophysics Data System (ADS)

    Khots, Boris; Khots, Dmitriy

    2013-10-01

    When we create mathematical models for Quantum Mechanics we assume that the mathematical apparatus used in modeling, at least the simplest mathematical apparatus, is infallible. In particular, this relates to the use of "infinitely small" and "infinitely large" quantities in arithmetic and the use of Newton Cauchy definitions of a limit and derivative in analysis. We believe that is where the main problem lies in contemporary study of nature. We have introduced a new concept of Observer's Mathematics (see www.mathrelativity.com). Observer's Mathematics creates new arithmetic, algebra, geometry, topology, analysis and logic which do not contain the concept of continuum, but locally coincide with the standard fields. We prove that Euclidean Geometry works in sufficiently small neighborhood of the given line, but when we enlarge the neighborhood, non-euclidean Geometry takes over. We prove that the physical speed is a random variable, cannot exceed some constant, and this constant does not depend on an inertial coordinate system. We proved the following theorems: Theorem A (Lagrangian). Let L be a Lagrange function of free material point with mass m and speed v. Then the probability P of L = m 2 v2 is less than 1: P(L = m 2 v2) < 1. Theorem B (Nadezhda effect). On the plane (x, y) on every line y = kx there is a point (x0, y0) with no existing Euclidean distance between origin (0, 0) and this point. Conjecture (Black Hole). Our space-time nature is a black hole: light cannot go out infinitely far from origin.

  15. M-theory Calabi-Yau Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Haupt, Alexander S.

    2009-11-01

    This thesis explores an exotic class of M-theory compactifications in which the compact manifold is taken to be a Calabi-Yau five-fold. The resulting effective theory is a one-dimensional N=2 super-mechanics model that exhibits peculiar features of one-dimensional supersymmetry, such as the appearance of fermion-only super-multiplets. The latter necessitates reducing also the fermionic sector of M-theory, which is not normally included in the compactification literature and is thus presented, together with the required technology, in detail. The one-dimensional effective theory is most elegantly described in superspace and therefore, a detailed account of one-dimensional flat and curved N=2 superspace is provided. This includes developing the theory of fermionic multiplets and the study of cross-couplings between 2a and 2b multiplets. Another important aspect is the inclusion of flux. We study its consistency conditions, its relation to supersymmetry and the way it gives rise to a potential in the one-dimensional effective action. It is also explained how the supersymmetry-preserving part of the potential can be obtained from a Gukov-type superpotential. The main motivation of this compactification scenario is rooted in the realm of cosmology. Its virtue is a democratic treatment of spatial dimensions. As opposed to the artificial 3+7 split in most string compactifications, the early universe starts out with all spatial dimensions compact and small in our approach. One then seeks for dynamical ways in which three dimensions grow large at late times. Possible realisations of this idea are discussed both at the classical and at the quantum level. Finally, preliminary work on Calabi-Yau five-fold compactifications of F-theory and the resulting two-dimensional string-like actions is presented.

  16. On a full Monte Carlo approach to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Sellier, J. M.; Dimov, I.

    2016-12-01

    The Monte Carlo approach to numerical problems has shown to be remarkably efficient in performing very large computational tasks since it is an embarrassingly parallel technique. Additionally, Monte Carlo methods are well known to keep performance and accuracy with the increase of dimensionality of a given problem, a rather counterintuitive peculiarity not shared by any known deterministic method. Motivated by these very peculiar and desirable computational features, in this work we depict a full Monte Carlo approach to the problem of simulating single- and many-body quantum systems by means of signed particles. In particular we introduce a stochastic technique, based on the strategy known as importance sampling, for the computation of the Wigner kernel which, so far, has represented the main bottleneck of this method (it is equivalent to the calculation of a multi-dimensional integral, a problem in which complexity is known to grow exponentially with the dimensions of the problem). The introduction of this stochastic technique for the kernel is twofold: firstly it reduces the complexity of a quantum many-body simulation from non-linear to linear, secondly it introduces an embarassingly parallel approach to this very demanding problem. To conclude, we perform concise but indicative numerical experiments which clearly illustrate how a full Monte Carlo approach to many-body quantum systems is not only possible but also advantageous. This paves the way towards practical time-dependent, first-principle simulations of relatively large quantum systems by means of affordable computational resources.

  17. The Problem of Representation and Experience in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Ronde, Christian De

    2014-03-01

    In this paper we discuss the problem of representation and experience in quantum mechanics. We analyze the importance of metaphysics in physical thought and its relation to empiricism and analytic philosophy. We argue against both instrumentalism and scientific realism and claim that both perspectives tend to bypass the problem of representation and justify a "common sense" type experience. Finally, we present our expressionist conception of physics.

  18. Polymer quantum mechanics some examples using path integrals

    SciTech Connect

    Parra, Lorena; Vergara, J. David

    2014-01-14

    In this work we analyze several physical systems in the context of polymer quantum mechanics using path integrals. First we introduce the group averaging method to quantize constrained systems with path integrals and later we use this procedure to compute the effective actions for the polymer non-relativistic particle and the polymer harmonic oscillator. We analyze the measure of the path integral and we describe the semiclassical dynamics of the systems.

  19. Resolution of the Klein Paradox within Relativistic Quantum Mechanics

    SciTech Connect

    Alhaidari, A. D.

    2011-10-27

    We present a resolution of the Klein paradox within the framework of one-particle relativistic quantum mechanics (no pair production). Not only reflection becomes total but the vacuum remains neutral as well. This is accomplished by replacing the pair production process with virtual negative energy ''incidence'' within the barrier in a process analogous to the introduction of image charges in electrostatic and virtual sources in optics.

  20. Fragment quantum mechanical calculation of proteins and its applications.

    PubMed

    He, Xiao; Zhu, Tong; Wang, Xianwei; Liu, Jinfeng; Zhang, John Z H

    2014-09-16

    Conspectus The desire to study molecular systems that are much larger than what the current state-of-the-art ab initio or density functional theory methods could handle has naturally led to the development of novel approximate methods, including semiempirical approaches, reduced-scaling methods, and fragmentation methods. The major computational limitation of ab initio methods is the scaling problem, because the cost of ab initio calculation scales nth power or worse with system size. In the past decade, the fragmentation approach based on chemical locality has opened a new door for developing linear-scaling quantum mechanical (QM) methods for large systems and for applications to large molecular systems such as biomolecules. The fragmentation approach is highly attractive from a computational standpoint. First, the ab initio calculation of individual fragments can be conducted almost independently, which makes it suitable for massively parallel computations. Second, the electron properties, such as density and energy, are typically combined in a linear fashion to reproduce those for the entire molecular system, which makes the overall computation scale linearly with the size of the system. In this Account, two fragmentation methods and their applications to macromolecules are described. They are the electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method and the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach. The EE-GMFCC method is developed from the MFCC approach, which was initially used to obtain accurate protein-ligand QM interaction energies. The main idea of the MFCC approach is that a pair of conjugate caps (concaps) is inserted at the location where the subsystem is divided by cutting the chemical bond. In addition, the pair of concaps is fused to form molecular species such that the overcounted effect from added concaps can be properly removed. By introducing the electrostatic

  1. Effects of a scalar scaling field on quantum mechanics

    SciTech Connect

    Benioff, Paul

    2016-04-18

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.

  2. A Separable, Dynamically Local Ontological Model of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Pienaar, Jacques

    2016-01-01

    A model of reality is called separable if the state of a composite system is equal to the union of the states of its parts, located in different regions of space. Spekkens has argued that it is trivial to reproduce the predictions of quantum mechanics using a separable ontological model, provided one allows for arbitrary violations of `dynamical locality'. However, since dynamical locality is strictly weaker than local causality, this leaves open the question of whether an ontological model for quantum mechanics can be both separable and dynamically local. We answer this question in the affirmative, using an ontological model based on previous work by Deutsch and Hayden. Although the original formulation of the model avoids Bell's theorem by denying that measurements result in single, definite outcomes, we show that the model can alternatively be cast in the framework of ontological models, where Bell's theorem does apply. We find that the resulting model violates local causality, but satisfies both separability and dynamical locality, making it a candidate for the `most local' ontological model of quantum mechanics.

  3. Novel symmetries in N=2 supersymmetric quantum mechanical models

    SciTech Connect

    Malik, R.P.; Khare, Avinash

    2013-07-15

    We demonstrate the existence of a novel set of discrete symmetries in the context of the N=2 supersymmetric (SUSY) quantum mechanical model with a potential function f(x) that is a generalization of the potential of the 1D SUSY harmonic oscillator. We perform the same exercise for the motion of a charged particle in the X–Y plane under the influence of a magnetic field in the Z-direction. We derive the underlying algebra of the existing continuous symmetry transformations (and corresponding conserved charges) and establish its relevance to the algebraic structures of the de Rham cohomological operators of differential geometry. We show that the discrete symmetry transformations of our present general theories correspond to the Hodge duality operation. Ultimately, we conjecture that any arbitrary N=2 SUSY quantum mechanical system can be shown to be a tractable model for the Hodge theory. -- Highlights: •Discrete symmetries of two completely different kinds of N=2 supersymmetric quantum mechanical models have been discussed. •The discrete symmetries provide physical realizations of Hodge duality. •The continuous symmetries provide the physical realizations of de Rham cohomological operators. •Our work sheds a new light on the meaning of the above abstract operators.

  4. Computational alanine scanning with linear scaling semiempirical quantum mechanical methods.

    PubMed

    Diller, David J; Humblet, Christine; Zhang, Xiaohua; Westerhoff, Lance M

    2010-08-01

    Alanine scanning is a powerful experimental tool for understanding the key interactions in protein-protein interfaces. Linear scaling semiempirical quantum mechanical calculations are now sufficiently fast and robust to allow meaningful calculations on large systems such as proteins, RNA and DNA. In particular, they have proven useful in understanding protein-ligand interactions. Here we ask the question: can these linear scaling quantum mechanical methods developed for protein-ligand scoring be useful for computational alanine scanning? To answer this question, we assembled 15 protein-protein complexes with available crystal structures and sufficient alanine scanning data. In all, the data set contains Delta Delta Gs for 400 single point alanine mutations of these 15 complexes. We show that with only one adjusted parameter the quantum mechanics-based methods outperform both buried accessible surface area and a potential of mean force and compare favorably to a variety of published empirical methods. Finally, we closely examined the outliers in the data set and discuss some of the challenges that arise from this examination.

  5. Principle of Least Action and Approximations in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Kobe, Donald

    2008-03-01

    A Lagrangian together with the Principle of Least Action (PLA) is a unifying approach used in all areas of physics to derive their fundamental equations. In quantum mechanics this approach can be used to derive the Schr"odinger equation. The PLA may also be used to obtain approximate equations in quantum mechanics by using time-dependent trial wave functions. For a system with a time-independent Hamiltonian the PLA can be reduced to the Rayleigh-Ritz variational principle of time-independent quantum mechanics. For a system of many bosons a trial wave function that is a product of time-dependent single particle wave functions may be used in the PLA to obtain the time-dependent Gross-Pitaeveski equation, which is useful in describing a Bose- Einstein condensate. For a system of many fermions a trial wave function that is a product of time-dependent single particle orbitals may be used in the PLA to obtain the time-dependent Hartree-Fock equations, which are useful in atomic and nuclear physics.

  6. Effects of a scalar scaling field on quantum mechanics

    DOE PAGES

    Benioff, Paul

    2016-04-18

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at eachmore » location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.« less

  7. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    PubMed

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies.

  8. A signed particle formulation of non-relativistic quantum mechanics

    SciTech Connect

    Sellier, Jean Michel

    2015-09-15

    A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.

  9. Laplace-Runge-Lenz vector in quantum mechanics in noncommutative space

    SciTech Connect

    Gáliková, Veronika; Kováčik, Samuel; Prešnajder, Peter

    2013-12-15

    The main point of this paper is to examine a “hidden” dynamical symmetry connected with the conservation of Laplace-Runge-Lenz vector (LRL) in the hydrogen atom problem solved by means of non-commutative quantum mechanics (NCQM). The basic features of NCQM will be introduced to the reader, the key one being the fact that the notion of a point, or a zero distance in the considered configuration space, is abandoned and replaced with a “fuzzy” structure in such a way that the rotational invariance is preserved. The main facts about the conservation of LRL vector in both classical and quantum theory will be reviewed. Finally, we will search for an analogy in the NCQM, provide our results and their comparison with the QM predictions. The key notions we are going to deal with are non-commutative space, Coulomb-Kepler problem, and symmetry.

  10. A Delayed Choice Quantum Eraser Explained by the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Fearn, H.

    2016-01-01

    This paper explains the delayed choice quantum eraser of Kim et al. (A delayed choice quantum eraser, 1999) in terms of the transactional interpretation (TI) of quantum mechanics by Cramer (Rev Mod Phys 58:647, 1986, The quantum handshake, entanglement, nonlocality and transactions, 1986). It is kept deliberately mathematically simple to help explain the transactional technique. The emphasis is on a clear understanding of how the instantaneous "collapse" of the wave function due to a measurement at a specific time and place may be reinterpreted as a relativistically well-defined collapse over the entire path of the photon and over the entire transit time from slit to detector. This is made possible by the use of a retarded offer wave, which is thought to travel from the slits (or rather the small region within the parametric crystal where down-conversion takes place) to the detector and an advanced counter wave traveling backward in time from the detector to the slits. The point here is to make clear how simple the transactional picture is and how much more intuitive the collapse of the wave function becomes if viewed in this way. Also, any confusion about possible retro-causal signaling is put to rest. A delayed choice quantum eraser does not require any sort of backward in time communication. This paper makes the point that it is preferable to use the TI over the usual Copenhagen interpretation for a more intuitive understanding of the quantum eraser delayed choice experiment. Both methods give exactly the same end results and can be used interchangeably.

  11. The measurement problem in quantum mechanics: A phenomenological investigation

    NASA Astrophysics Data System (ADS)

    Hunter, Joel Brooks

    2008-10-01

    This dissertation is a phenomenological investigation of the measurement problem in quantum mechanics. The primary subject matter for description and analysis is scientific instruments and their use in experiments which elicit the measurement problem. A methodological critique is mounted against the ontological commitments taken for granted in the canonical interpretations of quantum theory and the scientific activity of measurement as the necessary interface between theoretical interest and perceptual results. I argue that an aesthetic dimension of reality functions as aproto-scientific establishment of sense-making that constantly operates to set integratively all other cognitively neat determinations, including scientifically rendered objects that are intrinsically non-visualizable. The way in which data "key in" to the original and originative register of the sensible in observation is clarified by examining prostheses, measuring apparatuses and instruments that are sense-conveying and -integrative with the human sensorium. Experiments, technology and instrumentation are examined in order to understand how knowing and that which is known is bonded by praxis-aisthesis. Quantum measurement is a praxic-dynamie activity and homologically structured and structur ing functional engagement in terms of instantiation, quantifiability, and spatiotemporal differentiation. The distinctions between a beauty-aesthetic and praxis-aisthesis are delineated. It is argued that a beauty-aesthetic is a construal of the economic dimension of scientific objects and work, and is not the primary manner in which the aesthetic dimension is disclosed. The economic dimension of abstractions reduces to an austere aesthetic of calculative economy. Nature itself, however, is not stingy; it is intrinsically capacious, extravagant, full of surprise, nuance, ambiguity and allusiveness. The capaciousness of Nature and the way in which we are integratively set within Nature in a materiality

  12. Is there a philosophy of time compatible with relativity and quantum mechanics?

    NASA Astrophysics Data System (ADS)

    Besnard, Fabien

    2012-06-01

    The goal of this text is to study the compatibility of three main philosophical theories of time (presentism, possibilism, and eternalism) with special relativity, general relativity, and quantum mechanics. We will show that possibilism is compatible with these physical theories, but only at two conditions: the past of an observer must be understood as his causal past, and there must be some mechanism forbidding closed timelike curves. We will also argue that provided one adopts Everett's interpretation of QM, eternalism can be phrased in a natural way which is compatible with these three theories. We emphasize the fact that reality is observer-independent in eternalism only.

  13. PREFACE: EmQM13: Emergent Quantum Mechanics 2013

    NASA Astrophysics Data System (ADS)

    2014-04-01

    These proceedings comprise the invited lectures of the second international symposium on Emergent Quantum Mechanics (EmQM13), which was held at the premises of the Austrian Academy of Sciences in Vienna, Austria, 3-6 October 2013. The symposium was held at the ''Theatersaal'' of the Academy of Sciences, and was devoted to the open exploration of emergent quantum mechanics, a possible ''deeper level theory'' that interconnects three fields of knowledge: emergence, the quantum, and information. Could there appear a revised image of physical reality from recognizing new links between emergence, the quantum, and information? Could a novel synthesis pave the way towards a 21st century, ''superclassical'' physics? The symposium provided a forum for discussing (i) important obstacles which need to be overcome as well as (ii) promising developments and research opportunities on the way towards emergent quantum mechanics. Contributions were invited that presented current advances in both standard as well as unconventional approaches to quantum mechanics. The EmQM13 symposium was co-organized by Gerhard Grössing (Austrian Institute for Nonlinear Studies (AINS), Vienna), and by Jan Walleczek (Fetzer Franklin Fund, USA, and Phenoscience Laboratories, Berlin). After a very successful first conference on the same topic in 2011, the new partnership between AINS and the Fetzer Franklin Fund in producing the EmQM13 symposium was able to further expand interest in the promise of emergent quantum mechanics. The symposium consisted of two parts, an opening evening addressing the general public, and the scientific program of the conference proper. The opening evening took place at the Great Ceremonial Hall (Grosser Festsaal) of the Austrian Academy of Sciences, and it presented talks and a panel discussion on ''The Future of Quantum Mechanics'' with three distinguished speakers: Stephen Adler (Princeton), Gerard 't Hooft (Utrecht) and Masanao Ozawa (Nagoya). The articles contained in

  14. PT symmetry in classical and quantum statistical mechanics.

    PubMed

    Meisinger, Peter N; Ogilvie, Michael C

    2013-04-28

    PT-symmetric Hamiltonians and transfer matrices arise naturally in statistical mechanics. These classical and quantum models often require the use of complex or negative weights and thus fall outside the conventional equilibrium statistical mechanics of Hermitian systems. PT-symmetric models form a natural class where the partition function is necessarily real, but not necessarily positive. The correlation functions of these models display a much richer set of behaviours than Hermitian systems, displaying sinusoidally modulated exponential decay, as in a dense fluid, or even sinusoidal modulation without decay. Classical spin models with PT-symmetry include Z(N) models with a complex magnetic field, the chiral Potts model and the anisotropic next-nearest-neighbour Ising model. Quantum many-body problems with a non-zero chemical potential have a natural PT-symmetric representation related to the sign problem. Two-dimensional quantum chromodynamics with heavy quarks at non-zero chemical potential can be solved by diagonalizing an appropriate PT-symmetric Hamiltonian.

  15. Insights into the phosphatase and the synthase activities of human bisphosphoglycerate mutase: a quantum mechanics/molecular mechanics simulation.

    PubMed

    Chu, Wen-Ting; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2014-03-07

    Bisphosphoglycerate mutase (BPGM) is a multi-activity enzyme. Its main function is to synthesize the 2,3-bisphosphoglycerate, the allosteric effector of hemoglobin. This enzyme can also catalyze the 2,3-bisphosphoglycerate to the 3-phosphoglycerate. In this study, the reaction mechanisms of both the phosphatase and the synthase activities of human bisphosphoglycerate mutase were theoretically calculated by using the quantum mechanics/molecular mechanics method based on the metadynamics and umbrella sampling simulations. The simulation results not only show the free energy curve of the phosphatase and the synthase reactions, but also reveal the important role of some residues in the active site. Additionally, the energy barriers of the two reactions indicate that the activity of the synthase in human bisphosphoglycerate mutase is much higher than that of the phosphatase. The estimated reaction barriers are consistent with the experimental data. Therefore, our work can give important information to understand the catalytic mechanism of the bisphosphoglycerate mutase family.

  16. 157. ARAIII Reactor building (ARA608) Main gas loop mechanical flow ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    157. ARA-III Reactor building (ARA-608) Main gas loop mechanical flow sheet. This drawing was selected as a typical example of mechanical arrangements within reactor building. Aerojet-general 880-area/GCRE-0608-50-013-102634. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  17. Excitation transfer through open quantum networks: Three basic mechanisms

    NASA Astrophysics Data System (ADS)

    Campos Venuti, Lorenzo; Zanardi, Paolo

    2011-10-01

    A variety of open quantum networks are currently under intense examination to model energy transport in photosynthetic systems. Here, we study the coherent transfer of a quantum excitation over a network incoherently coupled with a structured and small environment that effectively models the photosynthetic reaction center. Our goal is to distill a few basic, possibly universal, mechanisms or effects that are featured in simple energy-transfer models. In particular, we identify three different phenomena: the congestion effect, the asymptotic unitarity, and the staircase effects. We begin with few-site models, in which these effects can be fully understood, and then proceed to study more complex networks similar to those employed to model energy transfer in light-harvesting complexes.

  18. Quantum mechanics on phase space and the Coulomb potential

    NASA Astrophysics Data System (ADS)

    Campos, P.; Martins, M. G. R.; Vianna, J. D. M.

    2017-04-01

    Symplectic quantum mechanics (SMQ) makes possible to derive the Wigner function without the use of the Liouville-von Neumann equation. In this formulation of the quantum theory the Galilei Lie algebra is constructed using the Weyl (or star) product with Q ˆ = q ⋆ = q +iħ/2∂p , P ˆ = p ⋆ = p -iħ/2∂q, and the Schrödinger equation is rewritten in phase space; in consequence physical applications involving the Coulomb potential present some specific difficulties. Within this context, in order to treat the Schrödinger equation in phase space, a procedure based on the Levi-Civita (or Bohlin) transformation is presented and applied to two-dimensional (2D) hydrogen atom. Amplitudes of probability in phase space and the correspondent Wigner quasi-distribution functions are derived and discussed.

  19. Deformation of supersymmetric and conformal quantum mechanics through affine transformations

    NASA Technical Reports Server (NTRS)

    Spiridonov, Vyacheslav

    1993-01-01

    Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.

  20. Evanescent radiation, quantum mechanics and the Casimir effect

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  1. Black hole thermodynamics from near-horizon conformal quantum mechanics

    SciTech Connect

    Camblong, Horacio E.; Ordonez, Carlos R.

    2005-05-15

    The thermodynamics of black holes is shown to be directly induced by their near-horizon conformal invariance. This behavior is exhibited using a scalar field as a probe of the black hole gravitational background, for a general class of metrics in D spacetime dimensions (with D{>=}4). The ensuing analysis is based on conformal quantum mechanics, within a hierarchical near-horizon expansion. In particular, the leading conformal behavior provides the correct quantum statistical properties for the Bekenstein-Hawking entropy, with the near-horizon physics governing the thermodynamics from the outset. Most importantly: (i) this treatment reveals the emergence of holographic properties; (ii) the conformal coupling parameter is shown to be related to the Hawking temperature; and (iii) Schwarzschild-like coordinates, despite their 'coordinate singularity', can be used self-consistently to describe the thermodynamics of black holes.

  2. The quantum coherent mechanism for singlet fission: experiment and theory.

    PubMed

    Chan, Wai-Lun; Berkelbach, Timothy C; Provorse, Makenzie R; Monahan, Nicholas R; Tritsch, John R; Hybertsen, Mark S; Reichman, David R; Gao, Jiali; Zhu, X-Y

    2013-06-18

    The absorption of one photon by a semiconductor material usually creates one electron-hole pair. However, this general rule breaks down in a few organic semiconductors, such as pentacene and tetracene, where one photon absorption may result in two electron-hole pairs. This process, where a singlet exciton transforms to two triplet excitons, can have quantum yields as high as 200%. Singlet fission may be useful to solar cell technologies to increase the power conversion efficiency beyond the so-called Shockley-Queisser limit. Through time-resolved two-photon photoemission (TR-2PPE) spectroscopy in crystalline pentacene and tetracene, our lab has recently provided the first spectroscopic signatures in singlet fission of a critical intermediate known as the multiexciton state (also called a correlated triplet pair). More importantly, we found that population of the multiexciton state rises at the same time as the singlet state on the ultrafast time scale upon photoexcitation. This observation does not fit with the traditional view of singlet fission involving the incoherent conversion of a singlet to a triplet pair. However, it provides an experimental foundation for a quantum coherent mechanism in which the electronic coupling creates a quantum superposition of the singlet and the multiexciton state immediately after optical excitation. In this Account, we review key experimental findings from TR-2PPE experiments and present a theoretical analysis of the quantum coherent mechanism based on electronic structural and density matrix calculations for crystalline tetracene lattices. Using multistate density functional theory, we find that the direct electronic coupling between singlet and multiexciton states is too weak to explain the experimental observation. Instead, indirect coupling via charge transfer intermediate states is two orders of magnitude stronger, and dominates the dynamics for ultrafast multiexciton formation. Density matrix calculation for the crystalline

  3. The Kantian element in the Copenhagen interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cale, David Lee

    In Quantum Physics and the Philosophical Tradition, Aage Petersen makes the troubling claim that the entirety of the tradition of Western philosophy is "deconstructed" by quantum mechanics. This viewpoint applies, especially, to the relationship between Kantian philosophy and quantum theory. It is generally accepted that quantum mechanics, in its Copenhagen interpretation, has destroyed all validity for the classical belief in a deterministic underlying reality, a belief sustained throughout the nineteenth century through a philosophical ground in Kant's critical philosophy. This dissertation takes on the daunting task of determining what, if any, relationship can be had between contemporary physics and Kantian philosophy. It begins with a historical review of the challenges posed for Kant's arguments and proposed solutions, especially those offered by Cassirer. It then turns to the task of providing the Western philosophical tradition with an interpretation apart from Petersen's, which sees it as concerned only with the problem of being. The offered solution is the suggestion that Western philosophy be understood as a struggle, between epistemological and ontological perspectives, to provide a context for the various descriptions of nature provided by human scientific progress. Kant's philosophy is then interpreted as an effort to provide Newtonian physics with a valid context in the face of Hume's skepticism. The finding is that Kant was the first to suggest that an object does not acquire the spatio-temporal properties used in its physical description until introduced to an observer. The dissertation concludes that the authors of the Copenhagen interpretation were essentially engaged in Kant's enterprise through their attempt to provide an observer based context for the spatio-temporal descriptive principles used in the physics of their time.

  4. BOOK REVIEW: The Quantum Mechanics Solver: How to Apply Quantum Theory to Modern Physics, 2nd edition

    NASA Astrophysics Data System (ADS)

    Robbin, J. M.

    2007-07-01

    he hallmark of a good book of problems is that it allows you to become acquainted with an unfamiliar topic quickly and efficiently. The Quantum Mechanics Solver fits this description admirably. The book contains 27 problems based mainly on recent experimental developments, including neutrino oscillations, tests of Bell's inequality, Bose Einstein condensates, and laser cooling and trapping of atoms, to name a few. Unlike many collections, in which problems are designed around a particular mathematical method, here each problem is devoted to a small group of phenomena or experiments. Most problems contain experimental data from the literature, and readers are asked to estimate parameters from the data, or compare theory to experiment, or both. Standard techniques (e.g., degenerate perturbation theory, addition of angular momentum, asymptotics of special functions) are introduced only as they are needed. The style is closer to a non-specialist seminar rather than an undergraduate lecture. The physical models are kept simple; the emphasis is on cultivating conceptual and qualitative understanding (although in many of the problems, the simple models fit the data quite well). Some less familiar theoretical techniques are introduced, e.g. a variational method for lower (not upper) bounds on ground-state energies for many-body systems with two-body interactions, which is then used to derive a surprisingly accurate relation between baryon and meson masses. The exposition is succinct but clear; the solutions can be read as worked examples if you don't want to do the problems yourself. Many problems have additional discussion on limitations and extensions of the theory, or further applications outside physics (e.g., the accuracy of GPS positioning in connection with atomic clocks; proton and ion tumor therapies in connection with the Bethe Bloch formula for charged particles in solids). The problems use mainly non-relativistic quantum mechanics and are organised into three

  5. Quantum Information Biology: From Information Interpretation of Quantum Mechanics to Applications in Molecular Biology and Cognitive Psychology

    NASA Astrophysics Data System (ADS)

    Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Tanaka, Yoshiharu; Yamato, Ichiro

    2015-10-01

    We discuss foundational issues of quantum information biology (QIB)—one of the most successful applications of the quantum formalism outside of physics. QIB provides a multi-scale model of information processing in bio-systems: from proteins and cells to cognitive and social systems. This theory has to be sharply distinguished from "traditional quantum biophysics". The latter is about quantum bio-physical processes, e.g., in cells or brains. QIB models the dynamics of information states of bio-systems. We argue that the information interpretation of quantum mechanics (its various forms were elaborated by Zeilinger and Brukner, Fuchs and Mermin, and D' Ariano) is the most natural interpretation of QIB. Biologically QIB is based on two principles: (a) adaptivity; (b) openness (bio-systems are fundamentally open). These principles are mathematically represented in the framework of a novel formalism— quantum adaptive dynamics which, in particular, contains the standard theory of open quantum systems.

  6. The Radical Pair Mechanism and the Avian Chemical Compass: Quantum Coherence and Entanglement

    SciTech Connect

    Zhang, Yiteng; Kais, Sabre; Berman, Gennady Petrovich

    2015-02-02

    We review the spin radical pair mechanism which is a promising explanation of avian navigation. This mechanism is based on the dependence of product yields on 1) the hyperfine interaction involving electron spins and neighboring nuclear spins and 2) the intensity and orientation of the geomagnetic field. One surprising result is that even at ambient conditions quantum entanglement of electron spins can play an important role in avian magnetoreception. This review describes the general scheme of chemical reactions involving radical pairs generated from singlet and triplet precursors; the spin dynamics of the radical pairs; and the magnetic field dependence of product yields caused by the radical pair mechanism. The main part of the review includes a description of the chemical compass in birds. We review: the general properties of the avian compass; the basic scheme of the radical pair mechanism; the reaction kinetics in cryptochrome; quantum coherence and entanglement in the avian compass; and the effects of noise. We believe that the quantum avian compass can play an important role in avian navigation and can also provide the foundation for a new generation of sensitive and selective magnetic-sensing nano-devices.

  7. Application of high level wavefunction methods in quantum mechanics/molecular mechanics hybrid schemes.

    PubMed

    Mata, Ricardo A

    2010-05-21

    In this Perspective, several developments in the field of quantum mechanics/molecular mechanics (QM/MM) approaches are reviewed. Emphasis is placed on the use of correlated wavefunction theory and new state of the art methods for the treatment of large quantum systems. Until recently, computational chemistry approaches to large/complex chemical problems have seldom been considered as tools for quantitative predictions. However, due to the tremendous development of computational resources and new quantum chemical methods, it is nowadays possible to describe the electronic structure of biomolecules at levels of theory which a decade ago were only possible for system sizes of up to 20 atoms. These advances are here outlined in the context of QM/MM. The article concludes with a short outlook on upcoming developments and possible bottlenecks for future applications.

  8. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    SciTech Connect

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Enders, J.; Köhler, A.; Kozela, A.

    2013-11-07

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.

  9. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bodek, K.; Caban, P.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.; Rembieliński, J.; Rozpedzik, D.; Włodarczyk, M.; Zejma, J.

    2013-11-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.

  10. Intrinsic periodicity: the forgotten lesson of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Dolce, Donatello

    2013-06-01

    Wave-particle duality, together with the concept of elementary particles, was introduced by de Broglie in terms of intrinsically periodic phenomena. However, after nearly 90 years, the physical origin of such undulatory mechanics remains unrevealed. We propose a natural realization of the de Broglie periodic phenomenon in terms of harmonic vibrational modes associated to space-time periodicities. In this way we find that, similarly to a vibrating string or a particle in a box, the intrinsic recurrence imposed as a constraint to elementary particles represents a fully consistent quantization condition. The resulting cyclic dynamics formally match ordinary relativistic Quantum Mechanics in both the canonical and Feynman formulations. Interactions are introduced in a geometrodynamical way, similarly to general relativity, by simply considering that variations of kinematical state can be equivalently described in terms of modulations of space-time recurrences, as known from undulatory mechanics. We present this novel quantization prescription from an historical prospective.

  11. Principles of Empiricism and the Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    The interpretation of quantum mechanics (QM) is discussed in terms of the principles and logic of empiricism. First, we list a set of issues that should be settled before any consistent interpretation is attempted. This includes questions such as whether we can use an exophysical perspective or an endophysical perspective, and whether a completely reductionist approach makes sense or are we forced to incorporate emergent laws of physics. We then list the scientific pr nciples that should be strictly adhered to in any debate on QM. We follow this with a list of cautions and warnings about misleading concepts that should be avoided, such as ignoring contextuality and the meaning of scientific truth values. These principles and warning are then used to decide on the issues we first identified, giving us a basis for an interpretation of QM from the perspective of observers and quantum signal states of apparatus, rather than in terms of qu ntum states of systems under observation. Finally, we review a proposed mathematical formalism that encodes this interpretation in terms of quantum registers.

  12. Quantum mechanics in fractional and other anomalous spacetimes

    SciTech Connect

    Calcagni, Gianluca; Nardelli, Giuseppe; Scalisi, Marco

    2012-10-15

    We formulate quantum mechanics in spacetimes with real-order fractional geometry and more general factorizable measures. In spacetimes where coordinates and momenta span the whole real line, Heisenberg's principle is proven and the wave-functions minimizing the uncertainty are found. In spite of the fact that ordinary time and spatial translations are broken and the dynamics is not unitary, the theory is in one-to-one correspondence with a unitary one, thus allowing us to employ standard tools of analysis. These features are illustrated in the examples of the free particle and the harmonic oscillator. While fractional (and the more general anomalous-spacetime) free models are formally indistinguishable from ordinary ones at the classical level, at the quantum level they differ both in the Hilbert space and for a topological term fixing the classical action in the path integral formulation. Thus, all non-unitarity in fractional quantum dynamics is encoded in a contribution depending only on the initial and final states.

  13. Absorbers in the Transactional Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Boisvert, Jean-Sébastien; Marchildon, Louis

    2013-03-01

    The transactional interpretation of quantum mechanics, following the time-symmetric formulation of electrodynamics, uses retarded and advanced solutions of the Schrödinger equation and its complex conjugate to understand quantum phenomena by means of transactions. A transaction occurs between an emitter and a specific absorber when the emitter has received advanced waves from all possible absorbers. Advanced causation always raises the specter of paradoxes, and it must be addressed carefully. In particular, different devices involving contingent absorbers or various types of interaction-free measurements have been proposed as threatening the original version of the transactional interpretation. These proposals will be analyzed by examining in each case the configuration of absorbers and, in the special case of the so-called quantum liar experiment, by carefully following the development of retarded and advanced waves through the Mach-Zehnder interferometer. We will show that there is no need to resort to the hierarchy of transactions that some have proposed, and will argue that the transactional interpretation is consistent with the block-universe picture of time.

  14. Effects of Number Scaling on Entangled States in Quantum Mechanics

    SciTech Connect

    Benioff, Paul

    2016-05-19

    A summary of number structure scaling is followed by a description of the effects of number scaling in nonrelativistic quantum mechanics. The description extends earlier work to include the effects on the states of two or more interacting particles. Emphasis is placed on the effects on entangled states. The resulting scaling field is generalized to describe the effects on these states. It is also seen that one can use fiber bundles with fibers associated with single locations of the underlying space to describe the effects of scaling on arbitrary numbers of particles.

  15. Importance of parametrizing constraints in quantum-mechanical variational calculations

    NASA Technical Reports Server (NTRS)

    Chung, Kwong T.; Bhatia, A. K.

    1992-01-01

    In variational calculations of quantum mechanics, constraints are sometimes imposed explicitly on the wave function. These constraints, which are deduced by physical arguments, are often not uniquely defined. In this work, the advantage of parametrizing constraints and letting the variational principle determine the best possible constraint for the problem is pointed out. Examples are carried out to show the surprising effectiveness of the variational method if constraints are parameterized. It is also shown that misleading results may be obtained if a constraint is not parameterized.

  16. Sachdev-Ye-Kitaev model as Liouville quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bagrets, Dmitry; Altland, Alexander; Kamenev, Alex

    2016-10-01

    We show that the proper inclusion of soft reparameterization modes in the Sachdev-Ye-Kitaev model of N randomly interacting Majorana fermions reduces its long-time behavior to that of Liouville quantum mechanics. As a result, all zero temperature correlation functions decay with the universal exponent ∝τ - 3 / 2 for times larger than the inverse single particle level spacing τ ≫ Nln ⁡ N. In the particular case of the single particle Green function this behavior is manifestation of the zero-bias anomaly, or scaling in energy as ɛ 1 / 2. We also present exact diagonalization study supporting our conclusions.

  17. Point form relativistic quantum mechanics and relativistic SU(6)

    NASA Technical Reports Server (NTRS)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  18. On the quantum mechanical solutions with minimal length uncertainty

    NASA Astrophysics Data System (ADS)

    Shababi, Homa; Pedram, Pouria; Chung, Won Sang

    2016-06-01

    In this paper, we study two generalized uncertainty principles (GUPs) including [X,P] = iℏ(1 + βP2j) and [X,P] = iℏ(1 + βP2 + kβ2P4) which imply minimal measurable lengths. Using two momentum representations, for the former GUP, we find eigenvalues and eigenfunctions of the free particle and the harmonic oscillator in terms of generalized trigonometric functions. Also, for the latter GUP, we obtain quantum mechanical solutions of a particle in a box and harmonic oscillator. Finally we investigate the statistical properties of the harmonic oscillator including partition function, internal energy, and heat capacity in the context of the first GUP.

  19. Octonic second-order equations of relativistic quantum mechanics

    SciTech Connect

    Mironov, Victor L.; Mironov, Sergey V.

    2009-01-15

    We demonstrate a generalization of relativistic quantum mechanics using eight-component value ''octons'' that generate an associative noncommutative spatial algebra. It is shown that the octonic second-order equation for the eight-component octonic wave function, obtained from the Einstein relation for energy and momentum, describes particles with spin 1/2. It is established that the octonic wave function of a particle in the state with defined spin projection has a specific spatial structure that takes the form of an octonic oscillator with two spatial polarizations: longitudinal linear and transverse circular.

  20. "Spring theory of relativity" originating from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Yefremov, Alexander P.

    Compact derivation of mathematical equations similar to those of quantum and classical mechanics is given on the base of fractal decomposition of a three-dimensional space. In physical units the equations become Shrödinger and Hamilton-Jacobi equations, the wave function of a free particle associated with a virtual ring. Locally uniform motion of the ring in the physical space provides an original helix (or regular cylindrical spring) model of a relativistic theory equivalent in results with special relativity, the free particle's relativistic Lagrangian emerging automatically. Irregular spring model generates theory similar to general relativity.

  1. Operational dynamic modeling transcending quantum and classical mechanics.

    PubMed

    Bondar, Denys I; Cabrera, Renan; Lompay, Robert R; Ivanov, Misha Yu; Rabitz, Herschel A

    2012-11-09

    We introduce a general and systematic theoretical framework for operational dynamic modeling (ODM) by combining a kinematic description of a model with the evolution of the dynamical average values. The kinematics includes the algebra of the observables and their defined averages. The evolution of the average values is drawn in the form of Ehrenfest-like theorems. We show that ODM is capable of encompassing wide-ranging dynamics from classical non-relativistic mechanics to quantum field theory. The generality of ODM should provide a basis for formulating novel theories.

  2. Minimum length from quantum mechanics and classical general relativity.

    PubMed

    Calmet, Xavier; Graesser, Michael; Hsu, Stephen D H

    2004-11-19

    We derive fundamental limits on measurements of position, arising from quantum mechanics and classical general relativity. First, we show that any primitive probe or target used in an experiment must be larger than the Planck length lP. This suggests a Planck-size minimum ball of uncertainty in any measurement. Next, we study interferometers (such as LIGO) whose precision is much finer than the size of any individual components and hence are not obviously limited by the minimum ball. Nevertheless, we deduce a fundamental limit on their accuracy of order lP. Our results imply a device independent limit on possible position measurements.

  3. A finite Zitterbewegung model for relativistic quantum mechanics

    SciTech Connect

    Noyes, H.P.

    1990-02-19

    Starting from steps of length h/mc and time intervals h/mc{sup 2}, which imply a quasi-local Zitterbewegung with velocity steps {plus minus}c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig.

  4. Neutron stars. [quantum mechanical processes associated with magnetic fields

    NASA Technical Reports Server (NTRS)

    Canuto, V.

    1978-01-01

    Quantum-mechanical processes associated with the presence of high magnetic fields and the effect of such fields on the evolution of neutron stars are reviewed. A technical description of the interior of a neutron star is presented. The neutron star-pulsar relation is reviewed and consideration is given to supernovae explosions, flux conservation in neutron stars, gauge-invariant derivation of the equation of state for a strongly magnetized gas, neutron beta-decay, and the stability condition for a neutron star.

  5. Teaching Quantum Mechanics through Project-based Learning

    NASA Astrophysics Data System (ADS)

    Duda, Gintaras

    2013-04-01

    Project/Problem-based learning (PBL) is an active area of research within the physics education research (PER) community, however, work done to date has focused on introductory courses. This talk will explore research on upper division quantum mechanics, a junior/senior level course at Creighton, which was taught using PBL pedagogy with no in-class lectures. The talk will explore: 1. student learning in light of the new pedagogy and embedded meta-cognitive self-monitoring and reflective exercises and 2. the effect of the PBL curriculum on student attitudes students’ epistemologies.

  6. [Review on the main microorganisms and their metabolic mechanisms in enhanced biological phosphorus removal (EBPR) systems].

    PubMed

    Sun, Xue; Zhu, Wei-Jing; Wang, Liang; Wu, Wei-Xiang

    2014-03-01

    Enhanced biological phosphorus removal (EBPR) process is applied widely for removing phosphorus from wastewater. Studies on functional microorganisms and their metabolic mechanisms are fundamental to effective regulation for stable operation and performance improvement of EBPR process. Two main types of microorganisms in EBPR systems, polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were selected to summarize their metabolic mechanisms such as substrate uptake mechanisms, glycogen degradation pathways, extent of TCA cycle involvement and metabolic similarity between PAOs and GAOs. Application of molecular biology techniques in microbiology and metabolic mechanisms involved in the EBPR system was evaluated. Potential future research areas for the EBPR system and process optimization were also proposed.

  7. Quantum mechanical/molecular mechanical study on the mechanism of the enzymatic Baeyer-Villiger reaction.

    PubMed

    Polyak, Iakov; Reetz, Manfred T; Thiel, Walter

    2012-02-08

    We report a combined quantum mechanical/molecular mechanical (QM/MM) study on the mechanism of the enzymatic Baeyer-Villiger reaction catalyzed by cyclohexanone monooxygenase (CHMO). In QM/MM geometry optimizations and reaction path calculations, density functional theory (B3LYP/TZVP) is used to describe the QM region consisting of the substrate (cyclohexanone), the isoalloxazine ring of C4a-peroxyflavin, the side chain of Arg-329, and the nicotinamide ring and the adjacent ribose of NADP(+), while the remainder of the enzyme is represented by the CHARMM force field. QM/MM molecular dynamics simulations and free energy calculations at the semiempirical OM3/CHARMM level employ the same QM/MM partitioning. According to the QM/MM calculations, the enzyme-reactant complex contains an anionic deprotonated C4a-peroxyflavin that is stabilized by strong hydrogen bonds with the Arg-329 residue and the NADP(+) cofactor. The CHMO-catalyzed reaction proceeds via a Criegee intermediate having pronounced anionic character. The initial addition reaction has to overcome an energy barrier of about 9 kcal/mol. The formed Criegee intermediate occupies a shallow minimum on the QM/MM potential energy surface and can undergo fragmentation to the lactone product by surmounting a second energy barrier of about 7 kcal/mol. The transition state for the latter migration step is the highest point on the QM/MM energy profile. Gas-phase reoptimizations of the QM region lead to higher barriers and confirm the crucial role of the Arg-329 residue and the NADP(+) cofactor for the catalytic efficiency of CHMO. QM/MM calculations for the CHMO-catalyzed oxidation of 4-methylcyclohexanone reproduce and rationalize the experimentally observed (S)-enantioselectivity for this substrate, which is governed by the conformational preferences of the corresponding Criegee intermediate and the subsequent transition state for the migration step.

  8. Links between fluid mechanics and quantum mechanics: a model for information in economics?

    PubMed

    Haven, Emmanuel

    2016-05-28

    This paper tallies the links between fluid mechanics and quantum mechanics, and attempts to show whether those links can aid in beginning to build a formal template which is usable in economics models where time is (a)symmetric and memory is absent or present. An objective of this paper is to contemplate whether those formalisms can allow us to model information in economics in a novel way.

  9. N=2 supersymmetric quantum mechanics of N Lieb-Liniger-Yang bosons on a line

    NASA Astrophysics Data System (ADS)

    Mateos Guilarte, J.; Moreno Mosquera, A.

    2017-02-01

    A supersymmetric generalization of the Lieb-Liniger-Yang dynamics governing N massive bosons moving on a line with delta interactions among them at coinciding points is developed. The analysis of the delicate balance between integrability and-supersymmetry, starting from the exactly solvable non-supersymmetric LLY system, is one of the paper main concerns. Two extreme regimes of the N parameter are explored: 1) For few bosons we fall in the realm of supersymmetric quantum mechanics with a short number of degrees of freedom, e.g., the SUSY Pösch-Teller potentials if N = 1 . 2) For large N we deal with supersymmetric extensions of many-body systems in the thermodynamic limit akin, e.g., to the supersymmetric Calogero-Sutherland systems. Emphasis will be put in the investigation of the ground-state structure of these quantum mechanical systems enjoying {N}=2 extended supersymmetry without spoiling integrability. The decision about wether or not supersymmetry is spontaneously broken, a central question in SUSY quantum mechanics determined from the ground-state structure, is another goal of the paper.

  10. Metaphysical Underdetermination and Logical Determination: the Case of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Arenhart, Jonas R. B.

    2014-03-01

    The `underdetermination of metaphysics by the physics' is the thesis that our best scientific theories do not uniquely determine their ontologies. Non-relativistic quantum mechanics is famously thought to exemplify this kind of underdetermination: it may be seen as compatible with both an ontology of individual objects and with an ontology of non-individual objects. A possible way out of the dilema thus created consists in adopting some version of Ontic Structural Realism (OSR), a view according to which the metaphysically relevant aspect of the theory is its structure, not the nature of the objects dealt with. According to OSR, particular objects may be dispensed with (eliminated or re-conceptualized) in favor of the structure of the theory. In this paper we shall argue that the underdetermination of metaphysics by the physics is a consequence of a too strict naturalism in ontology. As a result, when a mitigated ontological naturalism is taken into account, underdetermination does not appear to have such dark consequences for object-oriented ontologies in quantum mechanics.

  11. Classical and quantum mechanics of diatomic molecules in tilted fields.

    PubMed

    Arango, Carlos A; Kennerly, William W; Ezra, Gregory S

    2005-05-08

    We investigate the classical and quantum mechanics of diatomic molecules in noncollinear (tilted) static electric and nonresonant linearly polarized laser fields. The classical diatomic in tilted fields is a nonintegrable system, and we study the phase space structure for physically relevant parameter regimes for the molecule KCl. While exhibiting low-energy (pendular) and high-energy (free-rotor) integrable limits, the rotor in tilted fields shows chaotic dynamics at intermediate energies, and the degree of classical chaos can be tuned by changing the tilt angle. We examine the quantum mechanics of rotors in tilted fields. Energy-level correlation diagrams are computed, and the presence of avoided crossings quantified by the study of nearest-neighbor spacing distributions as a function of energy and tilting angle. Finally, we examine the influence of classical periodic orbits on rotor wave functions. Many wave functions in the tilted field case are found to be highly nonseparable in spherical polar coordinates. Localization of wave functions in the vicinity of classical periodic orbits, both stable and unstable, is observed for many states.

  12. On the consistent histories approach to quantum mechanics

    SciTech Connect

    Dowker, F. |; Kent, A.

    1996-03-01

    We review the consistent histories formulations of quantum mechanics developed by Griffiths, Omnes, Gell-Man, and Hartle, and we describe the classifications of consistent sets. We illustrate some general features of consistent sets by a few lemmas and examples. We also consider various interpretations of the formalism, and we examine the new problems which arise in reconstructing the past and predicting the future. It is shown that Omnes characterization of true statements---statements that can be deduced unconditionally in his interpretation---is incorrect. We examine critically Gell-Mann and Hartle`s interpretation of the formalism, and in particular, their discussions of communication, prediction, and retrodiction, and we conclude that their explanation of the apparent persistence of quasiclassicality relies on assumptions about an as-yet-unknown theory of experience. Our overall conclusion is that the consistent histories approach illustrates the need to supplement quantum mechanics by some selection principle in order to produce a fundamental theory capable of unconditional predictions.

  13. Implications of Einstein-Weyl Causality on Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bendaniel, David

    A fundamental physical principle that has consequences for the topology of space-time is the principle of Einstein-Weyl causality. This also has quantum mechanical manifestations. Borchers and Sen have rigorously investigated the mathematical implications of Einstein-Weyl causality and shown the denumerable space-time Q2 would be implied. They were left with important philosophical paradoxes regarding the nature of the physical real line E, e.g., whether E = R, the real line of mathematics. In order to remove these paradoxes an investigation into a constructible foundation is suggested. We have pursued such a program and find it indeed provides a dense, denumerable space-time and, moreover, an interesting connection with quantum mechanics. We first show that this constructible theory contains polynomial functions which are locally homeomorphic with a dense, denumerable metric space R* and are inherently quantized. Eigenfunctions governing fields can then be effectively obtained by computational iteration. Postulating a Lagrangian for fields in a compactified space-time, we get a general description of which the Schrodinger equation is a special case. From these results we can then also show that this denumerable space-time is relational (in the sense that space is not infinitesimally small if and only if it contains a quantized field) and, since Q2 is imbedded in R*2, it directly fulfills the strict topological requirements for Einstein-Weyl causality. Therefore, the theory predicts that E = R*.

  14. An efficient quantum mechanical method for radical pair recombination reactions

    NASA Astrophysics Data System (ADS)

    Lewis, Alan M.; Fay, Thomas P.; Manolopoulos, David E.

    2016-12-01

    The standard quantum mechanical expressions for the singlet and triplet survival probabilities and product yields of a radical pair recombination reaction involve a trace over the states in a combined electronic and nuclear spin Hilbert space. If this trace is evaluated deterministically, by performing a separate time-dependent wavepacket calculation for each initial state in the Hilbert space, the computational effort scales as O (Z2log ⁡Z ) , where Z is the total number of nuclear spin states. Here we show that the trace can also be evaluated stochastically, by exploiting the properties of spin coherent states. This results in a computational effort of O (M Z log ⁡Z ) , where M is the number of Monte Carlo samples needed for convergence. Example calculations on a strongly coupled radical pair with Z >106 show that the singlet yield can be converged to graphical accuracy using just M =200 samples, resulting in a speed up by a factor of >5000 over a standard deterministic calculation. We expect that this factor will greatly facilitate future quantum mechanical simulations of a wide variety of radical pairs of interest in chemistry and biology.

  15. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    PubMed

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed.

  16. Student ability to distinguish between superposition states and mixed states in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-12-01

    Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the experimental implications of a superposition state. In particular, they fail to recognize how a superposition state and a mixed state (sometimes called a "lack of knowledge" state) can produce different experimental results. We present data that suggest that superposition in quantum mechanics is a difficult concept for students enrolled in sophomore-, junior-, and graduate-level quantum mechanics courses. We illustrate how an interactive lecture tutorial can improve student understanding of quantum mechanical superposition. A longitudinal study suggests that the impact persists after an additional quarter of quantum mechanics instruction that does not specifically address these ideas.

  17. Inactivation mechanism of glycerol dehydration by diol dehydratase from combined quantum mechanical/molecular mechanical calculations.

    PubMed

    Doitomi, Kazuki; Kamachi, Takashi; Toraya, Tetsuo; Yoshizawa, Kazunari

    2012-11-13

    Inactivation of diol dehydratase during the glycerol dehydration reaction is studied on the basis of quantum mechanical/molecular mechanical calculations. Glycerol is not a chiral compound but contains a prochiral carbon atom. Once it is bound to the active site, the enzyme adopts two binding conformations. One is predominantly responsible for the product-forming reaction (G(R) conformation), and the other primarily contributes to inactivation (G(S) conformation). Reactant radical is converted into a product and byproduct in the product-forming reaction and inactivation, respectively. The OH group migrates from C2 to C1 in the product-forming reaction, whereas the transfer of a hydrogen from the 3-OH group of glycerol to C1 takes place during the inactivation. The activation barrier of the hydrogen transfer does not depend on the substrate-binding conformation. On the other hand, the activation barrier of OH group migration is sensitive to conformation and is 4.5 kcal/mol lower in the G(R) conformation than in the G(S) conformation. In the OH group migration, Glu170 plays a critical role in stabilizing the reactant radical in the G(S) conformation. Moreover, the hydrogen bonding interaction between Ser301 and the 3-OH group of glycerol lowers the activation barrier in G(R)-TS2. As a result, the difference in energy between the hydrogen transfer and the OH group migration is reduced in the G(S) conformation, which shows that the inactivation is favored in the G(S) conformation.

  18. Quantum Mechanics and Molecular Mechanics Study of the Catalytic Mechanism of Human AMSH-LP Domain Deubiquitinating Enzymes.

    PubMed

    Zhu, Wenyou; Liu, Yongjun; Ling, Baoping

    2015-08-25

    Deubiquitinating enzymes (DUBs) catalyze the cleavage of the isopeptide bond in polyubiquitin chains to control and regulate the deubiquitination process in all known eukaryotic cells. The human AMSH-LP DUB domain specifically cleaves the isopeptide bonds in the Lys63-linked polyubiquitin chains. In this article, the catalytic mechanism of AMSH-LP has been studied using a combined quantum mechanics and molecular mechanics method. Two possible hydrolysis processes (Path 1 and Path 2) have been considered. Our calculation results reveal that the activation of Zn(2+)-coordinated water molecule is the essential step for the hydrolysis of isopeptide bond. In Path 1, the generated hydroxyl first attacks the carbonyl group of Gly76, and then the amino group of Lys63 is protonated, which is calculated to be the rate limiting step with an energy barrier of 13.1 kcal/mol. The energy barrier of the rate limiting step and the structures of intermediate and product are in agreement with the experimental results. In Path 2, the protonation of amino group of Lys63 is prior to the nucleophilic attack of activated hydroxyl. The two proton transfer processes in Path 2 correspond to comparable overall barriers (33.4 and 36.1 kcal/mol), which are very high for an enzymatic reaction. Thus, Path 2 can be ruled out. During the reaction, Glu292 acts as a proton transfer mediator, and Ser357 mainly plays a role in stabilizing the negative charge of Gly76. Besides acting as a Lewis acid, Zn(2+) also influences the reaction by coordinating to the reaction substrates (W1 and Gly76).

  19. Quantum-Mechanical Definition of Atoms and Chemical Bonds in Molecules

    DTIC Science & Technology

    2015-01-01

    AFRL-RQ-ED-TR-2014-0025 Quantum-Mechanical Definition of Atoms and Chemical Bonds in Molecules P.W. Langhoff J.D. Mills J.A...DATES COVERED (From - To) 15 Oct 2013 - 15 Oct 2014 4. TITLE AND SUBTITLE Quantum-Mechanical Definition of Atoms and Chemical Bonds in Molecules...indistinguishable electrons to particular atomic nuclei in a chemical aggregate has seemingly precluded quantum-mechanical definition of fragment atomic

  20. Fractional angular momentum in noncommutative generalized Chern-Simons quantum mechanics

    NASA Astrophysics Data System (ADS)

    Zhang, Xi-Lun; Sun, Yong-Li; Wang, Qing; Long, Zheng-Wen; Jing, Jian

    2016-07-01

    The noncommutative generalized Chern-Simons quantum mechanics, i.e., the Chern-Simons quantum mechanics on the noncommutative plane in the presence of Aharonov-Bohm magnetic vector potentials, is studied in this paper. We focus our attention on the canonical orbital angular momentum and show that there are two different approaches to produce the fractional angular momentum in the noncommutative generalized Chern-Simons quantum mechanics.

  1. Emergence and mechanism in the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Bain, Jonathan

    2016-11-01

    For some authors, an adequate notion of emergence must include an account of a mechanism by means of which emergent behavior is realized. This appeal to mechanism is problematic in the case of the fractional quantum Hall effect (FQHE). There is a consensus among physicists that the FQHE exhibits emergent phenomena, but there are at least four alternative explanations of the latter that, arguably, appeal to ontologically distinct mechanisms, both at the microphysics level and at the level of general organizing principles. In light of this underdetermination of mechanism, one is faced with the following options: (I) deny that emergence is present in the FQHE; (II) argue for the priority of one mechanistic explanation over the others; or (III) temper the desire for a mechanism-centric account of emergence. I will argue that there are good reasons to reject (I) and (II) and accept (III). In particular, I will suggest that a law-centric account of emergence does just fine in explaining the emergent phenomena associated with the FQHE.

  2. Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light

    NASA Astrophysics Data System (ADS)

    Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B.; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I.; Bowen, Warwick P.; Gehring, Tobias; Andersen, Ulrik L.

    2016-11-01

    Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.

  3. Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light

    PubMed Central

    Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B.; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I.; Bowen, Warwick P.; Gehring, Tobias; Andersen, Ulrik L.

    2016-01-01

    Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics. PMID:27897181

  4. Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.

    PubMed

    Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I; Bowen, Warwick P; Gehring, Tobias; Andersen, Ulrik L

    2016-11-29

    Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.

  5. An opto-magneto-mechanical quantum interface between distant superconducting qubits

    PubMed Central

    Xia, Keyu; Vanner, Michael R.; Twamley, Jason

    2014-01-01

    A quantum internet, where widely separated quantum devices are coherently connected, is a fundamental vision for local and global quantum information networks and processing. Superconducting quantum devices can now perform sophisticated quantum engineering locally on chip and a detailed method to achieve coherent optical quantum interconnection between distant superconducting devices is a vital, but highly challenging, goal. We describe a concrete opto-magneto-mechanical system that can interconvert microwave-to-optical quantum information with high fidelity. In one such node we utilise the magnetic fields generated by the supercurrent of a flux qubit to coherently modulate a mechanical oscillator that is part of a high-Q optical cavity to achieve high fidelity microwave-to-optical quantum information exchange. We analyze the transfer between two spatially distant nodes connected by an optical fibre and using currently accessible parameters we predict that the fidelity of transfer could be as high as ~80%, even with significant loss. PMID:24994063

  6. Reply to "Comment on 'Fractional quantum mechanics' and 'Fractional Schrödinger equation' ".

    PubMed

    Laskin, Nick

    2016-06-01

    The fractional uncertainty relation is a mathematical formulation of Heisenberg's uncertainty principle in the framework of fractional quantum mechanics. Two mistaken statements presented in the Comment have been revealed. The origin of each mistaken statement has been clarified and corrected statements have been made. A map between standard quantum mechanics and fractional quantum mechanics has been presented to emphasize the features of fractional quantum mechanics and to avoid misinterpretations of the fractional uncertainty relation. It has been shown that the fractional probability current equation is correct in the area of its applicability. Further studies have to be done to find meaningful quantum physics problems with involvement of the fractional probability current density vector and the extra term emerging in the framework of fractional quantum mechanics.

  7. Suppression of the quantum-mechanical collapse by repulsive interactions in a quantum gas

    SciTech Connect

    Sakaguchi, Hidetsugu; Malomed, Boris A.

    2011-01-15

    The quantum-mechanical collapse (alias fall onto the center of particles attracted by potential -r{sup -2}) is a well-known issue in quantum theory. It is closely related to the quantum anomaly, i.e., breaking of the scaling invariance of the respective Hamiltonian by quantization. We demonstrate that the mean-field repulsive nonlinearity prevents the collapse and thus puts forward a solution to the quantum-anomaly problem that differs from that previously developed in the framework of the linear quantum-field theory. This solution may be realized in the 3D or 2D gas of dipolar bosons attracted by a central charge and in the 2D gas of magnetic dipoles attracted by a current filament. In the 3D setting, the dipole-dipole interactions are also taken into regard, in the mean-field approximation, resulting in a redefinition of the scattering length which accounts for the contact repulsion between the bosons. In lieu of the collapse, the cubic nonlinearity creates a 3D ground state (GS), which does not exist in the respective linear Schroedinger equation. The addition of the harmonic trap gives rise to a tristability, in the case when the Schroedinger equation still does not lead to the collapse. In the 2D setting, the cubic nonlinearity is not strong enough to prevent the collapse; however, the quintic term does it, creating the GS, as well as its counterparts carrying the angular momentum (vorticity). Counterintuitively, such self-trapped 2D modes exist even in the case of a weakly repulsive potential r{sup -2}. The 2D vortical modes avoid the phase singularity at the pivot (r=0) by having the amplitude diverging at r{yields}0 instead of the usual situation with the amplitude of the vortical mode vanishing at r{yields}0 (the norm of the mode converges despite of the singularity of the amplitude at r{yields}0). In the presence of the harmonic trap, the 2D quintic model with a weakly repulsive central potential r{sup -2} gives rise to three confined modes, the middle

  8. Wall-crossing invariants: from quantum mechanics to knots

    SciTech Connect

    Galakhov, D. E-mail: galakhov@physics.rutgers.edu; Mironov, A. Morozov, A.

    2015-03-15

    We offer a pedestrian-level review of the wall-crossing invariants. The story begins from the scattering theory in quantum mechanics where the spectrum reshuffling can be related to permutations of S-matrices. In nontrivial situations, starting from spin chains and matrix models, the S-matrices are operatorvalued and their algebra is described in terms of R- and mixing (Racah) U-matrices. Then the Kontsevich-Soibelman (KS) invariants are nothing but the standard knot invariants made out of these data within the Reshetikhin-Turaev-Witten approach. The R and Racah matrices acquire a relatively universal form in the semiclassical limit, where the basic reshufflings with the change of moduli are those of the Stokes line. Natural from this standpoint are matrices provided by the modular transformations of conformal blocks (with the usual identification R = T and U = S), and in the simplest case of the first degenerate field (2, 1), when the conformal blocks satisfy a second-order Shrödinger-like equation, the invariants coincide with the Jones (N = 2) invariants of the associated knots. Another possibility to construct knot invariants is to realize the cluster coordinates associated with reshufflings of the Stokes lines immediately in terms of check-operators acting on solutions of the Knizhnik-Zamolodchikov equations. Then the R-matrices are realized as products of successive mutations in the cluster algebra and are manifestly described in terms of quantum dilogarithms, ultimately leading to the Hikami construction of knot invariants.

  9. A delayed random choice quantum mechanics experiment using light quanta

    NASA Astrophysics Data System (ADS)

    Jakubowicz, O. G.

    1984-01-01

    Wheeler has often articulated during the past seven years several delayed choice Gendanken experiments which are intended to focus attention on the meaning of the elementary quantum phenomenon. Attempts to realize a delayed choice Gendanken xperiment in the spirit John Wheeler's thinking were undertaken. Short laser pulses attenuated to the single photon detection level are introduced into a Mach-Zehnder interferometer one at a time. There is a very fast completely random choice (yes/no) optical switch in one of the arms. Any photons in that arm would be reflected out and into a photomultiplier (PMT) if the optical switch decided to be closed. And any photon in the other arm would have equal probability of going into either of the PMTs that normally monitor interference. If the optical switch chooses to leave the pathway in its arm clear (open) then the photon must split at the beamsplitter and no photons will be detected in the PMT waiting for reflections out of that arm. Additionally, the phase of the interferometer may be set beforehand so that one PMT monitoring interference will register the photon and the other PMT monitoring interference will have zero probability of photon registration. The results are consistent with conventional quantum mechanics even if the decision to block or unblock one arm of the interferometer occurs after the single photon light pulse has passed the entrance beamsplitter of the interferometer.

  10. Three-Hilbert-Space Formulation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    2009-01-01

    In paper [Znojil M., Phys. Rev. D 78 (2008), 085003, 5 pages, arXiv:0809.2874] the two-Hilbert-space (2HS, a.k.a. cryptohermitian) formulation of Quantum Mechanics has been revisited. In the present continuation of this study (with the spaces in question denoted as H(auxiliary) and H(standard)) we spot a weak point of the 2HS formalism which lies in the double role played by H(auxiliary). As long as this confluence of roles may (and did!) lead to confusion in the literature, we propose an amended, three-Hilbert-space (3HS) reformulation of the same theory. As a byproduct of our analysis of the formalism we offer an amendment of the Dirac's bra-ket notation and we also show how its use clarifies the concept of covariance in time-dependent cases. Via an elementary example we finally explain why in certain quantum systems the generator H(gen) of the time-evolution of the wave functions may differ from their Hamiltonian H.

  11. A hands-on introduction to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Jackson, David

    2015-03-01

    At Dickinson College, we have implemented a series of experiments that are designed to expose students to the strange and fascinating world of quantum mechanics. These experiments are employed in our sophomore-level course titled Introduction to Relativistic and Quantum Physics, our version of the traditional Modern Physics course. The experiments make use of a correlated light source produced via the process of Spontaneous Parametric Down Conversion (SPDC). Using such a light source, students can experimentally verify that when a single photon is incident on a beam splitter, the photon is either transmitted or reflected--it never goes both ways. If instead the photons are directed into a Mach-Zehnder interferometer, students then observe an interference pattern, suggesting that each photon must somehow take both paths in the interferometer (in apparent contradiction of the first experiment). Finally, the interference pattern is observed to disappear if the photons are ``tagged'' to distinguish which path they take, only to mysteriously reappear if that path information is ``erased'' after emerging from the interferometer. In this talk, I will provide an overview of these experiments and the accompanying theory that students learn in this course. This work was supported, in part, by NSF Grant 0737230.

  12. Quantum Mechanics and the Principle of Least Radix Economy

    NASA Astrophysics Data System (ADS)

    Garcia-Morales, Vladimir

    2015-03-01

    A new variational method, the principle of least radix economy, is formulated. The mathematical and physical relevance of the radix economy, also called digit capacity, is established, showing how physical laws can be derived from this concept in a unified way. The principle reinterprets and generalizes the principle of least action yielding two classes of physical solutions: least action paths and quantum wavefunctions. A new physical foundation of the Hilbert space of quantum mechanics is then accomplished and it is used to derive the Schrödinger and Dirac equations and the breaking of the commutativity of spacetime geometry. The formulation provides an explanation of how determinism and random statistical behavior coexist in spacetime and a framework is developed that allows dynamical processes to be formulated in terms of chains of digits. These methods lead to a new (pre-geometrical) foundation for Lorentz transformations and special relativity. The Parker-Rhodes combinatorial hierarchy is encompassed within our approach and this leads to an estimate of the interaction strength of the electromagnetic and gravitational forces that agrees with the experimental values to an error of less than one thousandth. Finally, it is shown how the principle of least-radix economy naturally gives rise to Boltzmann's principle of classical statistical thermodynamics. A new expression for a general (path-dependent) nonequilibrium entropy is proposed satisfying the Second Law of Thermodynamics.

  13. Continuum mechanics for quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Vignale, Giovanni; Tao, Jianmin; Gao, Xianlong; Tokatly, Ilya

    2010-03-01

    Continuum mechanics is a theory of the dynamics of classical liquids and solids in which the state of the body is described by a small set of collective, such as density and current. A similar description is possible for quantum many-body systems, and indeed its existence is guaranteed by the basic theorems of time-dependent current density functional theory. In this paper we show how the exact Heisenberg equation of motion for the current density of a many-body system can be closed by expressing the quantum stress tensor as a functional of the current density. Several approximation schemes for this functional are discussed. The simplest scheme allows us to bypass the solution of the time-dependent Schr"odinger equation, resulting in an equation of motion for the current that requires only ground-state properties as an input. We illustrate the formalism by applying it to the calculation of excitation energies in simple one- and two-electron systems.

  14. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    PubMed

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  15. Einstein's Materialism and Modern Tests of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Vigier, J. P.

    After a presentation of Einstein's and Bohr's antagonistic point of view on the interpretation of Quantum Mechanics an illustration of their conflicting positions in the particular case of Young's double slit experiment is presented. It is then shown that in their most recent form (i. e. time dependent neutron interferometry) these experiments suggest (if one accepts absolute energymomentum conservation in all individual microprocesses) that Einstein was right in the Bohr-Einstein controversy.Translated AbstractEinsteins Materialismus und heutige Tests der QuantenmechanikNach einer Darstellung von Einsteins und Bohrs antagonistischen Standpunkten in der Interpretation der Quantenmechanik werden ihre widersprüchlichen Positionen im speziellen Fall des Youngschen Doppelspaltexperiments dargestellt. Es wird dann gezeigt, daß diese Experimente in ihrer neuesten Form (d. h. zeitabhängige Neutroneninterferometrie) Einstein in der Bohr-Einsteinkontroverse recht gaben (wenn man absolute Energie-Impulserhaltung bei allen individuellen Mikroprozessen annimmt).

  16. Can We Describe Biological Systems with Quantum Mechanics?

    NASA Astrophysics Data System (ADS)

    Granados-Ramírez, C. G.; Benítez-Cardoza, C. G.; Carbajal-Tinoco, M. D.

    2016-03-01

    Quantum Mechanics is the favourite theory to predict the structure of any group of atoms, including biological molecules. Due to numerous difficulties, however, it is necessary to introduce a series of approximations to overcome such impediments. We present a coarse-grained model of circular dichroism (CD) that is based on the theory of optical activity, developed by DeVoe, in order to predict CD spectra. In first stage, we determine the polarisability of individual monomers (residues, in the case of peptides) from experiments of molar absorptivity. The complex polarisabilities are used together with peptide structures obtained by density functional theory and other methods to determine their corresponding CD spectra, which are in reasonable agreement with their experimental counterparts.

  17. Thermal and Quantum Mechanical Noise of a Superfluid Gyroscope

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Penanen, Konstantin

    2004-01-01

    A potential application of a superfluid gyroscope is for real-time measurements of the small variations in the rotational speed of the Earth, the Moon, and Mars. Such rotational jitter, if not measured and corrected for, will be a limiting factor on the resolution potential of a GPS system. This limitation will prevent many automation concepts in navigation, construction, and biomedical examination from being realized. We present the calculation of thermal and quantum-mechanical phase noise across the Josephson junction of a superfluid gyroscope. This allows us to derive the fundamental limits on the performance of a superfluid gyroscope. We show that the fundamental limit on real-time GPS due to rotational jitter can be reduced to well below 1 millimeter/day. Other limitations and their potential mitigation will also be discussed.

  18. Conformational analysis of small molecules: NMR and quantum mechanics calculations.

    PubMed

    Tormena, Cláudio F

    2016-08-01

    This review deals with conformational analysis in small organic molecules, and describes the stereoelectronic interactions responsible for conformational stability. Conformational analysis is usually performed using NMR spectroscopy through measurement of coupling constants at room or low temperature in different solvents to determine the populations of conformers in solution. Quantum mechanical calculations are used to address the interactions responsible for conformer stability. The conformational analysis of a large number of small molecules is described, using coupling constant measurements in different solvents and at low temperature, as well as recent applications of through-space and through-hydrogen bond coupling constants JFH as tools for the conformational analysis of fluorinated molecules. Besides NMR parameters, stereoelectronic interactions such as conjugative, hyperconjugative, steric and intramolecular hydrogen bond interactions involved in conformational preferences are discussed.

  19. Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, M. H.; Salman, M.; Shalaby, A.; Wiese, U.-J.

    2013-10-01

    We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.

  20. Perspective: Quantum mechanical methods in biochemistry and biophysics

    PubMed Central

    Cui, Qiang

    2016-01-01

    In this perspective article, I discuss several research topics relevant to quantum mechanical (QM) methods in biophysical and biochemical applications. Due to the immense complexity of biological problems, the key is to develop methods that are able to strike the proper balance of computational efficiency and accuracy for the problem of interest. Therefore, in addition to the development of novel ab initio and density functional theory based QM methods for the study of reactive events that involve complex motifs such as transition metal clusters in metalloenzymes, it is equally important to develop inexpensive QM methods and advanced classical or quantal force fields to describe different physicochemical properties of biomolecules and their behaviors in complex environments. Maintaining a solid connection of these more approximate methods with rigorous QM methods is essential to their transferability and robustness. Comparison to diverse experimental observables helps validate computational models and mechanistic hypotheses as well as driving further development of computational methodologies. PMID:27782516

  1. Vibrational spectra and quantum mechanical calculations of antiretroviral drugs: Nevirapine

    NASA Astrophysics Data System (ADS)

    Ayala, A. P.; Siesler, H. W.; Wardell, S. M. S. V.; Boechat, N.; Dabbene, V.; Cuffini, S. L.

    2007-02-01

    Nevirapine (11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b:2',3'e][1,4]diazepin-6-one) is an antiretroviral drug belonging to the class of the non-nucleoside inhibitors of the HIV-1 virus reverse transcriptase. As most of this kind of antiretroviral drugs, nevirapine displays a butterfly-like conformation which is preserved in complexes with the HIV-1 reverse transcriptase. In this work, we present a detailed vibrational spectroscopy investigation of nevirapine by using mid-infrared, near-infrared, and Raman spectroscopies. These data are supported by quantum mechanical calculations, which allow us to characterize completely the vibrational spectra of this compound. Based on these results, we discuss the correlation between the vibrational modes and the crystalline structure of the most stable form of nevirapine.

  2. Synergies Between Quantum Mechanics and Machine Learning in Reaction Prediction.

    PubMed

    Sadowski, Peter; Fooshee, David; Subrahmanya, Niranjan; Baldi, Pierre

    2016-11-28

    Machine learning (ML) and quantum mechanical (QM) methods can be used in two-way synergy to build chemical reaction expert systems. The proposed ML approach identifies electron sources and sinks among reactants and then ranks all source-sink pairs. This addresses a bottleneck of QM calculations by providing a prioritized list of mechanistic reaction steps. QM modeling can then be used to compute the transition states and activation energies of the top-ranked reactions, providing additional or improved examples of ranked source-sink pairs. Retraining the ML model closes the loop, producing more accurate predictions from a larger training set. The approach is demonstrated in detail using a small set of organic radical reactions.

  3. Fundamental Entangling Operators in Quantum Mechanics and Their Properties

    NASA Astrophysics Data System (ADS)

    Dao-Ming, Lu

    2016-07-01

    For the first time, we introduce so-called fundamental entangling operators e^{iQ1 P2} and e^{iP1 Q2 } for composing bipartite entangled states of continuum variables, where Q i and P i ( i = 1, 2) are coordinate and momentum operator, respectively. We then analyze how these entangling operators naturally appear in the quantum image of classical quadratic coordinate transformation ( q 1, q 2) → ( A q 1 + B q 2, C q 1 + D q 2), where A D- B C = 1, which means even the basic coordinate transformation ( Q 1, Q 2) → ( A Q 1 + B Q 2, C Q 1 + D Q 2) involves entangling mechanism. We also analyse their Lie algebraic properties and use the integration technique within an ordered product of operators to show they are also one- and two- mode combinatorial squeezing operators.

  4. Perspective: Quantum mechanical methods in biochemistry and biophysics.

    PubMed

    Cui, Qiang

    2016-10-14

    In this perspective article, I discuss several research topics relevant to quantum mechanical (QM) methods in biophysical and biochemical applications. Due to the immense complexity of biological problems, the key is to develop methods that are able to strike the proper balance of computational efficiency and accuracy for the problem of interest. Therefore, in addition to the development of novel ab initio and density functional theory based QM methods for the study of reactive events that involve complex motifs such as transition metal clusters in metalloenzymes, it is equally important to develop inexpensive QM methods and advanced classical or quantal force fields to describe different physicochemical properties of biomolecules and their behaviors in complex environments. Maintaining a solid connection of these more approximate methods with rigorous QM methods is essential to their transferability and robustness. Comparison to diverse experimental observables helps validate computational models and mechanistic hypotheses as well as driving further development of computational methodologies.

  5. Supersymmetric quantum mechanics and Painlevé equations

    SciTech Connect

    Bermudez, David; Fernández C, David J.

    2014-01-08

    In these lecture notes we shall study first the supersymmetric quantum mechanics (SUSY QM), specially when applied to the harmonic and radial oscillators. In addition, we will define the polynomial Heisenberg algebras (PHA), and we will study the general systems ruled by them: for zero and first order we obtain the harmonic and radial oscillators, respectively; for second and third order the potential is determined by solutions to Painlevé IV (PIV) and Painlevé V (PV) equations. Taking advantage of this connection, later on we will find solutions to PIV and PV equations expressed in terms of confluent hypergeometric functions. Furthermore, we will classify them into several solution hierarchies, according to the specific special functions they are connected with.

  6. Conservation laws in the quantum mechanics of closed systems

    SciTech Connect

    Hartle, J.B. ||; Laflamme, R. |; Marolf, D.

    1995-06-15

    We investigate conservation laws in the quantum mechanics of closed systems and begin by reviewing an argument that exact decoherence implies the exact conservation of quantities that commute with the Hamiltonian. However, we also show that decoherence limits the alternatives that can be included in sets of histories that assess the conservation of these quantities. In the case of charge and energy, these limitations would be severe were these quantities not coupled to a gauge field. However, for the realistic cases of electric charge coupled to the electromagnetic field and mass coupled to spacetime curvature, we show that when alternative values of charge and mass decohere they always decohere exactly and are exactly conserved. Further, while decohering histories that describe possible changes in time of the total charge and mass are also subject to the limitations mentioned above, we show that these do not, in fact, restrict {ital physical} alternatives and are therefore not really limitations at all.

  7. Perspective: Quantum mechanical methods in biochemistry and biophysics

    NASA Astrophysics Data System (ADS)

    Cui, Qiang

    2016-10-01

    In this perspective article, I discuss several research topics relevant to quantum mechanical (QM) methods in biophysical and biochemical applications. Due to the immense complexity of biological problems, the key is to develop methods that are able to strike the proper balance of computational efficiency and accuracy for the problem of interest. Therefore, in addition to the development of novel ab initio and density functional theory based QM methods for the study of reactive events that involve complex motifs such as transition metal clusters in metalloenzymes, it is equally important to develop inexpensive QM methods and advanced classical or quantal force fields to describe different physicochemical properties of biomolecules and their behaviors in complex environments. Maintaining a solid connection of these more approximate methods with rigorous QM methods is essential to their transferability and robustness. Comparison to diverse experimental observables helps validate computational models and mechanistic hypotheses as well as driving further development of computational methodologies.

  8. Einstein's Boxes: Incompleteness of Quantum Mechanics Without a Separation Principle

    NASA Astrophysics Data System (ADS)

    Held, Carsten

    2015-09-01

    Einstein made several attempts to argue for the incompleteness of quantum mechanics (QM), not all of them using a separation principle. One unpublished example, the box parable, has received increased attention in the recent literature. Though the example is tailor-made for applying a separation principle and Einstein indeed applies one, he begins his discussion without it. An analysis of this first part of the parable naturally leads to an argument for incompleteness not involving a separation principle. I discuss the argument and its systematic import. Though it should be kept in mind that the argument is not the one Einstein intends, I show how it suggests itself and leads to a conflict between QM's completeness and a physical principle more fundamental than the separation principle, i.e. a principle saying that QM should deliver probabilities for physical systems possessing properties at definite times.

  9. Gauge transformations and conserved quantities in classical and quantum mechanics

    NASA Astrophysics Data System (ADS)

    Berche, Bertrand; Malterre, Daniel; Medina, Ernesto

    2016-08-01

    We are taught that gauge transformations in classical and quantum mechanics do not change the physics of the problem. Nevertheless, here we discuss three broad scenarios where under gauge transformations: (i) conservation laws are not preserved in the usual manner; (ii) non-gauge-invariant quantities can be associated with physical observables; and (iii) there are changes in the physical boundary conditions of the wave function that render it non-single-valued. We give worked examples that illustrate these points, in contrast to general opinions from classic texts. We also give a historical perspective on the development of Abelian gauge theory in relation to our particular points. Our aim is to provide a discussion of these issues at the graduate level.

  10. Teaching Quantum Mechanics through Project-based Learning

    NASA Astrophysics Data System (ADS)

    Duda, Gintaras; Ward, Kristina

    2014-03-01

    Project/Problem-based learning (PBL) is an active area of research within the physics education research (PER) community, however, work done to date has focused on introductory courses. This talk will explore research on upper division quantum mechanics, a junior/senior level course at Creighton University, which was taught using PBL pedagogy with no in-class lectures. Course time was primarily spent on lecture tutorials and projects, which included alpha decay of Uranium, neutrino oscillations, and FTIR spectroscopy of HCl. This talk will explore: 1. student learning in light of the new pedagogy and embedded meta-cognitive self-monitoring exercises, 2. the effect of the PBL curriculum on student attitudes, motivation, and students' epistemologies, and 3. the use of explicit written reflections within a physics course to probe student understanding.

  11. Scheme for teleportation of quantum states onto a mechanical resonator.

    PubMed

    Mancini, Stefano; Vitali, David; Tombesi, Paolo

    2003-04-04

    We propose an experimentally feasible scheme to teleport an unkown quantum state onto the vibrational degree of freedom of a macroscopic mirror. The quantum channel between the two parties is established by exploiting radiation pressure effects.

  12. Condensed-matter physics: Quantum mechanics in a spin

    NASA Astrophysics Data System (ADS)

    Balents, Leon

    2016-12-01

    Quantum spin liquids are exotic states of matter first predicted more than 40 years ago. An inorganic material has properties consistent with these predictions, revealing details about the nature of quantum matter. See Letter p.559

  13. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology.

    PubMed

    van der Kamp, Marc W; Mulholland, Adrian J

    2013-04-23

    Computational enzymology is a rapidly maturing field that is increasingly integral to understanding mechanisms of enzyme-catalyzed reactions and their practical applications. Combined quantum mechanics/molecular mechanics (QM/MM) methods are important in this field. By treating the reacting species with a quantum mechanical method (i.e., a method that calculates the electronic structure of the active site) and including the enzyme environment with simpler molecular mechanical methods, enzyme reactions can be modeled. Here, we review QM/MM methods and their application to enzyme-catalyzed reactions to investigate fundamental and practical problems in enzymology. A range of QM/MM methods is available, from cheaper and more approximate methods, which can be used for molecular dynamics simulations, to highly accurate electronic structure methods. We discuss how modeling of reactions using such methods can provide detailed insight into enzyme mechanisms and illustrate this by reviewing some recent applications. We outline some practical considerations for such simulations. Further, we highlight applications that show how QM/MM methods can contribute to the practical development and application of enzymology, e.g., in the interpretation and prediction of the effects of mutagenesis and in drug and catalyst design.

  14. Time as an Observable in Nonrelativistic Quantum Mechanics

    NASA Technical Reports Server (NTRS)

    Hahne, G. E.

    2003-01-01

    The argument follows from the viewpoint that quantum mechanics is taken not in the usual form involving vectors and linear operators in Hilbert spaces, but as a boundary value problem for a special class of partial differential equations-in the present work, the nonrelativistic Schrodinger equation for motion of a structureless particle in four- dimensional space-time in the presence of a potential energy distribution that can be time-as well as space-dependent. The domain of interest is taken to be one of two semi-infinite boxes, one bounded by two t=constant planes and the other by two t=constant planes. Each gives rise to a characteristic boundary value problem: one in which the initial, input values on one t=constant wall are given, with zero asymptotic wavefunction values in all spatial directions, the output being the values on the second t=constant wall; the second with certain input values given on both z=constant walls, with zero asymptotic values in all directions involving time and the other spatial coordinates, the output being the complementary values on the z=constant walls. The first problem corresponds to ordinary quantum mechanics; the second, to a fully time-dependent version of a problem normally considered only for the steady state (time-independent Schrodinger equation). The second problem is formulated in detail. A conserved indefinite metric is associated with space-like propagation, where the sign of the norm of a unidirectional state corresponds to its spatial direction of travel.

  15. A novel quantum-mechanical interpretation of the Dirac equation

    NASA Astrophysics Data System (ADS)

    K-H Kiessling, M.; Tahvildar-Zadeh, A. S.

    2016-04-01

    A novel interpretation is given of Dirac’s ‘wave equation for the relativistic electron’ as a quantum-mechanical one-particle equation. In this interpretation the electron and the positron are merely the two different ‘topological spin’ states of a single more fundamental particle, not distinct particles in their own right. The new interpretation is backed up by the existence of such ‘bi-particle’ structures in general relativity, in particular the ring singularity present in any spacelike section of the spacetime singularity of the maximal-analytically extended, topologically non-trivial, electromagnetic Kerr-Newman (KN)spacetime in the zero-gravity limit (here, ‘zero-gravity’ means the limit G\\to 0, where G is Newton’s constant of universal gravitation). This novel interpretation resolves the dilemma that Dirac’s wave equation seems to be capable of describing both the electron and the positron in ‘external’ fields in many relevant situations, while the bi-spinorial wave function has only a single position variable in its argument, not two—as it should if it were a quantum-mechanical two-particle wave equation. A Dirac equation is formulated for such a ring-like bi-particle which interacts with a static point charge located elsewhere in the topologically non-trivial physical space associated with the moving ring particle, the motion being governed by a de Broglie-Bohm type law extracted from the Dirac equation. As an application, the pertinent general-relativistic zero-gravity hydrogen problem is studied in the usual Born-Oppenheimer approximation. Its spectral results suggest that the zero-G KN magnetic moment be identified with the so-called ‘anomalous magnetic moment of the physical electron,’ not with the Bohr magneton, so that the ring radius is only a tiny fraction of the electron’s reduced Compton wavelength.

  16. Quantum-limited mechanical resonator measurement and back-action cooling to near the quantum ground state

    NASA Astrophysics Data System (ADS)

    Rocheleau, Tristan Orion

    For decades, quantum mechanics has been a hugely successful theory for understanding the microscopic world. Despite its seemingly non-physical predictions, such as superposition or cat states, the accuracy of the theory has been verified time and again for microscopic systems composed of single atoms or other quantum particles. Up till now, however, our understanding of how and if these quantum predictions scale to larger systems closer to our everyday perceptions, where we do not see quantum "weirdness", is an open question. One platform to pursue observation of quantum effects in a system composed of large ensembles of atoms rather than single particles is that of nanomechanical resonators. Several schemes have been proposed to observe quantum effects in these systems, eg [1],[41], but a common feature is the requirement that the mechanical resonator be at or near its quantum ground state, which has proved challenging to achieve. In this dissertation, a novel mechanical motion readout scheme using superconducting resonators is presented and shown to allow near quantum limited detection. In any strong measurement of a system, quantum mechanics dictates that the measurement will inherently produce some "back-action" on the measured system. It will be shown that for the measurement system presented, back-action forces can additionally be used to cool a single mode of a mechanical resonator to near its quantum ground state, with the lowest observed occupation factor at 3.8 +/- 1.3 quanta. This is a low enough occupation level that the nanoresonator is in its ground state statistically 21% of the time and opens up the possibility of preforming further quantum experiments. The system investigated in this dissertation is composed of a nanoscale mechanical resonator capacitively coupled to a superconducting coplanar waveguide resonator. The resonators were nanofabricated on a silicon substrate and cooled to low temperature in a dilution refrigerator system. Applying

  17. Heat control in opto-mechanical system using quantum non-classicality

    NASA Astrophysics Data System (ADS)

    Sharma, Sushamana; Senwar, Subash

    2016-05-01

    Cooling of matter to the quantum ground state is a primary directive of quantum control. In other words, to extract entropy from a quantum system, efficient indirect quantum measurements may be implemented. The main objective is the cooling of the oscillator either to its motional ground state or to non-classical states, such as low-number Fock states, squeezed states or entangled states. It is shown that the use of quantum control procedure is better choice for even experimental realizations because it leads to a squeezed steady state with less than one phonon on average. The steady state of system corresponds to cooling of the system.

  18. Keratins as the main component for the mechanical integrity of keratinocytes.

    PubMed

    Ramms, Lena; Fabris, Gloria; Windoffer, Reinhard; Schwarz, Nicole; Springer, Ronald; Zhou, Chen; Lazar, Jaroslav; Stiefel, Simone; Hersch, Nils; Schnakenberg, Uwe; Magin, Thomas M; Leube, Rudolf E; Merkel, Rudolf; Hoffmann, Bernd

    2013-11-12

    Keratins are major components of the epithelial cytoskeleton and are believed to play a vital role for mechanical integrity at the cellular and tissue level. Keratinocytes as the main cell type of the epidermis express a differentiation-specific set of type I and type II keratins forming a stable network and are major contributors of keratinocyte mechanical properties. However, owing to compensatory keratin expression, the overall contribution of keratins to cell mechanics was difficult to examine in vivo on deletion of single keratin genes. To overcome this problem, we used keratinocytes lacking all keratins. The mechanical properties of these cells were analyzed by atomic force microscopy (AFM) and magnetic tweezers experiments. We found a strong and highly significant softening of keratin-deficient keratinocytes when analyzed by AFM on the cell body and above the nucleus. Magnetic tweezers experiments fully confirmed these results showing, in addition, high viscous contributions to magnetic bead displacement in keratin-lacking cells. Keratin loss neither affected actin or microtubule networks nor their overall protein concentration. Furthermore, depolymerization of actin preserves cell softening in the absence of keratin. On reexpression of the sole basal epidermal keratin pair K5/14, the keratin filament network was reestablished, and mechanical properties were restored almost to WT levels in both experimental setups. The data presented here demonstrate the importance of keratin filaments for mechanical resilience of keratinocytes and indicate that expression of a single keratin pair is sufficient for almost complete reconstitution of their mechanical properties.

  19. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification

    PubMed Central

    Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.

    2016-01-01

    The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities. PMID:27108814

  20. Early atomic models - from mechanical to quantum (1904-1913)

    NASA Astrophysics Data System (ADS)

    Baily, C.

    2013-01-01

    A complete history of early atomic models would fill volumes, but a reasonably coherent tale of the path from mechanical atoms to the quantum can be told by focusing on the relevant work of three great contributors to atomic physics, in the critically important years between 1904 and 1913: J.J. Thomson, Ernest Rutherford and Niels Bohr. We first examine the origins of Thomson's mechanical atomic models, from his ethereal vortex atoms in the early 1880's, to the myriad "corpuscular" atoms he proposed following the discovery of the electron in 1897. Beyond qualitative predictions for the periodicity of the elements, the application of Thomson's atoms to problems in scattering and absorption led to quantitative predictions that were confirmed by experiments with high-velocity electrons traversing thin sheets of metal. Still, the much more massive and energetic α-particles being studied by Rutherford were better suited for exploring the interior of the atom, and careful measurements on the angular dependence of their scattering eventually allowed him to infer the existence of an atomic nucleus. Niels Bohr was particularly troubled by the radiative instability inherent to any mechanical atom, and succeeded in 1913 where others had failed in the prediction of emission spectra, by making two bold hypotheses that were in contradiction to the laws of classical physics, but necessary in order to account for experimental facts.

  1. Going Beyond Calculation and Concepts: Students' Interpretation and Knowledge Structures in Quantum Mechanics.

    NASA Astrophysics Data System (ADS)

    Finkelstein, Noah; Hoehn, Jessica

    2017-01-01

    Learning quantum mechanics requires students to develop not only new mathematical skills and conceptual understanding, but also has students reason about what these mean and how to organize understanding of quantum mechanical principles, tools and concepts. Towards this instructional goal, we present current research that examines how students make interpretations, probes understanding of student ontologies, and curricula that explicitly addresses interpretation of quantum phenomena and student reasoning structures (ontologies).

  2. A quantum mechanical/molecular mechanical approach to the investigation of particle-molecule interactions

    NASA Astrophysics Data System (ADS)

    Sloth, Marianne; Bilde, Merete; Mikkelsen, Kurt V.

    2003-06-01

    A quantum mechanical/molecular mechanical aerosol model is developed to describe the interaction between gas phase molecules and atmospheric particles. The model enables the calculation of interaction energies and time-dependent properties. We use the model to investigate how a succinic acid molecule interacts with an aqueous particle. We show how the interaction energies and linear response properties (excitation energies, transition moments, and polarizabilities) depend on the distance between aerosol particle and molecule and on their relative orientation. The results are compared with those obtained previously using a dielectric continuum model [Sloth et al., J. Phys. Chem. (submitted)].

  3. Teaching the Philosophical Interpretations of Quantum Mechanics and Quantum Chemistry Through Controversies

    NASA Astrophysics Data System (ADS)

    Garritz, Andoni

    2013-07-01

    This study has the key premise of teaching history and philosophy of physical sciences to illustrate how controversies and rivalries among scientists play a key role in the progress of science and why scientific development is not only founded on the accumulation of experimental data. The author is a defender of teachers who consider philosophical, historical and socio-scientific issues. In particular, the disputes can be used in science teaching to promote students awareness of the "historicity" of science and to facilitate the understanding of scientific progress beyond that of inductive generalizations. The establishment of a theory is accompanied with philosophical interpretations all the way. The author will try to show that it gives excellent results in teaching and learning to bring to the foreground the complexity that surrounds the development of ideas in science, illustrating how controversies, presuppositions, contradictions and inconsistencies find a place in the work of scientists and philosophers alike. In this sense, the case of quantum mechanics and quantum chemistry is very solid because it is historically full of controversies among their heads: Einstein, Bohr, De Broglie, Heisenberg, Schrödinger, Born, Lewis, Langmuir, Bader, Hoffmann and Pauling, at least.

  4. The contextual and modal character of quantum mechanics : a formal and philosophical analysis in the foundations of physics

    NASA Astrophysics Data System (ADS)

    de Ronde, C.

    2011-11-01

    This doctoral dissertation contains four main elements: 1. We put forward an interpretational map of quantum mechanics in general and of the modal interpretation in particular based on metaphysical and anti-metaphysical stances. 2. In contraposition to what we characterize as the anti-metaphysical and classical metaphysical stances we collect arguments in favor of a constructive metaphysical stance. 3. We analyze the meaning of contextuality and possibility in quantum theory in general, and in the modal interpretation in particular. 4. Finally, we end up with a proposal for the development of a possible constructive metaphysical scheme based on the notion of potentiality. Although some of these problems are well known in the literature we attempt to cast new light on the discussion through the analysis of the concepts involved and their relation to the formalism. We attempt to make explicit the tension in between the theoretical conditions and the conceptual structure of the theory, in order to discuss and disclose the metaphysical ideas involved within the different interpretational problems of quantum mechanics. We believe that this analysis can help us to understand much of the implicit background of such theoretical conditions. The dissertation centers itself on the modal and contextual character of quantum mechanics. On the one hand, we discuss the contextual character of quantum possibility through the development of a Modal Kochen-Specker theorem, and on the other hand, we analyze the contextual character of quantum correlations through the distinction of properties. In the last part we discuss some more speculative ideas related to the possible metaphysical developments of quantum mechanics based on the notion of potentiality.

  5. A Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2015-04-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. We describe a theoretical framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates the effects of diversity in students' prior preparation, goals and motivation for taking upper-level physics courses in general as well as the ``paradigm shift'' from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics will be discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a theoretical framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics. Support from the National Science Foundation is gratefully acknowledged.

  6. Quantum-Mechanical Method for the Soliton Transported Bio-energy in Protein

    NASA Astrophysics Data System (ADS)

    Pang, Xiaofeng

    1993-07-01

    The equations of motion of the soliton transported bio-energy in the protein, were heretofore already obtained by a combination of quantum-mechanical and classical methods, but here have been derived based completely on quantum mechanics. And we point out the shortcoming of no self-consistency of the Davydov theory. Some interesting results have also been got.

  7. Teaching the Common Aspects in Mechanical, Electromagnetic and Quantum Waves at Interfaces and Waveguides

    ERIC Educational Resources Information Center

    Rojas, R.; Robles, P.

    2011-01-01

    We discuss common features in mechanical, electromagnetic and quantum systems, supporting identical results for the transmission and reflection coefficients of waves arriving perpendicularly at a plane interface. Also, we briefly discuss the origin of special notions such as refractive index in quantum mechanics, massive photons in wave guides and…

  8. Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics

    ERIC Educational Resources Information Center

    Marshman, Emily; Singh, Chandralekha

    2015-01-01

    Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that…

  9. Student Ability to Distinguish between Superposition States and Mixed States in Quantum Mechanics

    ERIC Educational Resources Information Center

    Passante, Gina; Emigh, Paul J.; Shaffer, Peter S.

    2015-01-01

    Superposition gives rise to the probabilistic nature of quantum mechanics and is therefore one of the concepts at the heart of quantum mechanics. Although we have found that many students can successfully use the idea of superposition to calculate the probabilities of different measurement outcomes, they are often unable to identify the…

  10. Quantum Mechanics for Everyone: Hands-On Activities Integrated with Technology.

    ERIC Educational Resources Information Center

    Zollman, Dean A.; Rebello, N. Sanjay; Hogg, Kirsten

    2002-01-01

    Explains a hands-on approach to teaching quantum mechanics that challenges the belief shared by many physics instructors that quantum mechanics is a very abstract subject that cannot be understood until students have learned much of the classical physics. (Contains 23 references.) (Author/YDS)

  11. Nontrivial systems and the necessity of the scalar quantum mechanics axioms

    SciTech Connect

    Kotulek, Jan

    2009-06-15

    We discuss the necessity of the axioms of scalar quantum mechanics introduced by Paschke and clearly demonstrate their geometric and/or physical meaning. We show that reasonable nonrelativistic quantum mechanics is exactly specified by the axioms. A system describing the electric Aharonov-Bohm effect is presented. It illustrates the topological obstructions for the existence of a Hamiltonian.

  12. The main problems in the mechanical engineering sector and some possible directions of their solution

    NASA Astrophysics Data System (ADS)

    Strizhakova, E.

    2016-04-01

    The article shows the problems of the sector of mechanical engineering in the industrial system in Russia. The author's method of estimating the relative level of risk and the method of determining the de-industrialization degree of the sector based on the aggregated level of adaptability are given. According to them we have analysed the key indicators, such as basic, developed and advanced technologies, and investments in an old or new technology of industrial sectors. The main directions of the impact of industrial policy allowing a change in the current situation in mechanical engineering are given. The results can be applied in practice in formation of directions and actual control actions to improve the overall efficiency of mechanical engineering industry.

  13. Reality Without Realism: On the Ontological and Epistemological Architecture of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Plotnitsky, Arkady; Khrennikov, Andrei

    2015-10-01

    First, this article considers the nature of quantum reality (the reality responsible for quantum phenomena) and the concept of realism (our ability to represent this reality) in quantum theory, in conjunction with the roles of locality, causality, and probability and statistics there. Second, it offers two interpretations of quantum mechanics, developed by the authors of this article, the second of which is also a different (from quantum mechanics) theory of quantum phenomena. Both of these interpretations are statistical. The first interpretation, by A. Plotnitsky, "the statistical Copenhagen interpretation," is nonrealist, insofar as the description or even conception of the nature of quantum objects and processes is precluded. The second, by A. Khrennikov, is ultimately realist, because it assumes that the quantum-mechanical level of reality is underlain by a deeper level of reality, described, in a realist fashion, by a model, based in the pre-quantum classical statistical field theory, the predictions of which reproduce those of quantum mechanics. Moreover, because the continuous fields considered in this model are transformed into discrete clicks of detectors, experimental outcomes in this model depend on the context of measurement in accordance with N. Bohr's interpretation and the statistical Copenhagen interpretation, which coincides with N. Bohr's interpretation in this regard.

  14. An adaptive quantum mechanics/molecular mechanics method for the infrared spectrum of water: incorporation of the quantum effect between solute and solvent.

    PubMed

    Watanabe, Hiroshi C; Banno, Misa; Sakurai, Minoru

    2016-03-14

    Quantum effects in solute-solvent interactions, such as the many-body effect and the dipole-induced dipole, are known to be critical factors influencing the infrared spectra of species in the liquid phase. For accurate spectrum evaluation, the surrounding solvent molecules, in addition to the solute of interest, should be treated using a quantum mechanical method. However, conventional quantum mechanics/molecular mechanics (QM/MM) methods cannot handle free QM solvent molecules during molecular dynamics (MD) simulation because of the diffusion problem. To deal with this problem, we have previously proposed an adaptive QM/MM "size-consistent multipartitioning (SCMP) method". In the present study, as the first application of the SCMP method, we demonstrate the reproduction of the infrared spectrum of liquid-phase water, and evaluate the quantum effect in comparison with conventional QM/MM simulations.

  15. CALL FOR PAPERS: Progress in Supersymmetric Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    2003-12-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General dedicated to the subject of Supersymmetric Quantum Mechanics as featured in the International Conference in Supersymmetric Quantum Mechanics (PSQM03), 15--19 July 2003, University of Valladolid, Spain (http://metodos.fam.cie.uva.es/~susy_qm_03/). Participants at that meeting, as well as other researchers working in this area or in related fields, are invited to submit a research paper to this issue. The Editorial Board has invited Irina Areféva, David J Fernández, Véronique Hussin, Javier Negro, Luis M Nieto and Boris F Samsonov to act as Guest Editors for the special issue. Their criteria for acceptance of contributions are as follows: bullet The subject of the paper should be in the general area covered by the PSQM03 conference. bullet Contributions will be refereed and processed according to the usual mechanisms of the journal. bullet Papers should present substantial new results (they should not be simply reviews of authors' own work that is already published elsewhere). The guidelines for the preparation of contributions are as follows: bullet DEADLINE for submission of contributions is 15 January 2004. This deadline will allow the special issue to appear in approximately September 2004. bullet There is a page limit of 15 pages per research contribution. Further advice on publishing your work in Journal of Physics A: Mathematical and General may be found at www.iop.org/Journals/jphysa. bullet Contributions to the special issue should if possible be submitted electronically at www.iop.org/Journals/jphysa or by e-mail to jphysa@iop.org, quoting `JPhysA special issue --- PSQM03'. Submissions should ideally be in either standard LaTeX form or Microsoft Word. Please see the web site for further information on electronic submissions. bullet Authors unable to submit by email may send hard copy contributions to: Journal of Physics A, Institute of Physics Publishing

  16. The transport mechanism of the integer quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Hui, Tan; LiMing, W.; Liang, Shi-Dong

    2016-11-01

    The integer quantum Hall effect (IQHE) is analysed using a mechanism of the electron transport in the form of semi-classic wave packages in this paper. Due to the confinement of the edges of a slab the Landau levels of electrons in a strong magnetic field go up at large wave-vectors to form energy bands. The slopes of the energy bands give the group velocities of electron wave packages and thus contribute to the current. Certain magnetic fields separate the electron transport in the slab into two branches with opposite and large wave vectors, which are localized at the two edges of the slab, respectively. In this case back scattering of electrons is prohibited due to the localization of these two branches. Thus the slab exhibits zero longitudinal resistance and plateaus of Hall resistance. When the Fermi level is sweeping over a Landau level at some magnetic fields, however, the electron waves locate around the central axis of the slab and overlap each other thus back scattering of electrons takes place frequently. Then longitudinal resistance appears and the Hall resistance goes up from one plateau to a new one. This transport mechanism is much clearer and more intuitive than the conventional explanations to the IQHE.

  17. Analysis of femtosecond quantum control mechanisms with colored double pulses

    SciTech Connect

    Vogt, Gerhard; Nuernberger, Patrick; Selle, Reimer; Dimler, Frank; Brixner, Tobias; Gerber, Gustav

    2006-09-15

    Fitness landscapes based on a limited number of laser pulse shape parameters can elucidate reaction pathways and can help to find the underlying control mechanism of optimal pulses determined by adaptive femtosecond quantum control. In a first experiment, we employ colored double pulses and systematically scan both the temporal subpulse separation and the relative amplitude of the two subpulses to acquire fitness landscapes. Comparison with results obtained from a closed-loop experiment demonstrates the capability of fitness landscapes for the revelation of possible control mechanisms. In a second experiment, using transient absorption spectroscopy, we investigate and compare the dependence of the excitation efficiency of the solvated dye molecule 5,5{sup '}-dichloro-11-diphenylamino-3,3{sup '}-diethyl-10,12-ethylene thiatricarbocyanine perchlorate (IR140) on selected pulse shapes in two parametrizations. The results show that very different pulse profiles can be equivalently adequate to maximize a given control objective. Fitness landscapes thus provide valuable information about different pathways along which a molecular system can be controlled with shaped laser pulses.

  18. Quantum Mechanics Action of ELF Electromagnetic Fields on Living Organisms

    NASA Astrophysics Data System (ADS)

    Godina-Nava, J. J.

    2010-10-01

    There is presently an intense discussion if extremely low frequency electromagnetic field (ELF-EMF) exposure has consequences for human health. This include exposure to structures and appliances from this range of frequency in the electromagnetic (EM) spectrum. Biological effects of such exposures have been noted frequently, although the implications for specific health effects is not that clear. The basic interactions mechanisms between such fields and living matter is unknown. Numerous hypotheses have been suggested, although none is convincingly supported by experimental data. Various cellular components, processes, and systems can be affected by EMF exposure. Since it is unlikely that EMF can induce DNA damage directly, most studies have examined EMF effects on the cell membrane level, general and specific gene expression, and signal transduction pathways. Even more, a large number of studies have been performed regarding cell proliferation, cell cycle regulation, cell differentiation, metabolism, and various physiological characteristics of cells. The aim of this letter is present the hypothesis of a possible quantum mechanic effect generated by the exposure of ELF EMF, an event which is compatible with the multitude of effects observed after exposure. Based on an extensive literature review, we suggest that ELF EMF exposure is able to perform such activation restructuring the electronic level of occupancy of free radicals in molecules interacting with DNA structures.

  19. Quantum mechanical mechanisms of inelastic and reactive H + D(2)(v = 0, j = 2) collisions.

    PubMed

    Aldegunde, Jesús; Jambrina, P G; Sáez-Rábanos, Vicente; de Miranda, Marcelo P; Aoiz, F J

    2010-11-07

    This article analyses the mechanisms of inelastic and reactive H + D(2)(v = 0, j = 2) collisions that result in highly vibrationally excited products when the collision energy is 1.70 eV. The analytical method is entirely quantum mechanical and focuses on correlations between the polarization of the reactant molecule and the direction of product scattering. Two viewpoints are used. The "intrinsic" viewpoint reveals the reactant polarizations that lead to the largest cross section at each value of the scattering angle (the angle between the reactant-approach and product-recoil directions); the "extrinsic" viewpoint reveals how the dependence of the collision cross section on the scattering angle changes when the reactant polarization is fixed at each one of a set of experimentally feasible alternatives. Comparison of processes correlating with the same range of impact parameters is also used, to facilitate isolation and identification of directional effects. When products are scattered in the backward and sideways regions, the results for inelastic and reactive collisions are rather similar. When products are scattered in the forward region, the results for inelastic and reactive collisions are clearly different: a side-on collision geometry that largely increases the inelastic cross section hardly affects the reactive cross section. This feature is the quantum mechanical signature of the so-called "tug-of-war" mechanism.

  20. Quantum mechanical treatment of parametric amplification in an absorptive nonlinear medium

    NASA Astrophysics Data System (ADS)

    Inoue, K.

    2017-01-01

    Generally, loss phenomena are known to affect the quantum properties of a light wave. This paper describes a quantum mechanical treatment of parametric amplification in an absorptive nonlinear medium. An expression of the quantum mechanical field operator in such a physical system is presented based on the Heisenberg equation, using which the quantum properties of traveling light suffering from medium absorption are quantitatively evaluated. Calculations using the obtained operator indicate that some degradation of noise performance is caused by the absorption. The influence of the absorption on the squeezing performance in phase-sensitive parametric amplification is also evaluated.

  1. Cultural Diffusion Was the Main Driving Mechanism of the Neolithic Transition in Southern Africa

    PubMed Central

    Jerardino, Antonieta; Fort, Joaquim; Isern, Neus; Rondelli, Bernardo

    2014-01-01

    It is well known that the Neolithic transition spread across Europe at a speed of about 1 km/yr. This result has been previously interpreted as a range expansion of the Neolithic driven mainly by demic diffusion (whereas cultural diffusion played a secondary role). However, a long-standing problem is whether this value (1 km/yr) and its interpretation (mainly demic diffusion) are characteristic only of Europe or universal (i.e. intrinsic features of Neolithic transitions all over the world). So far Neolithic spread rates outside Europe have been barely measured, and Neolithic spread rates substantially faster than 1 km/yr have not been previously reported. Here we show that the transition from hunting and gathering into herding in southern Africa spread at a rate of about 2.4 km/yr, i.e. about twice faster than the European Neolithic transition. Thus the value 1 km/yr is not a universal feature of Neolithic transitions in the world. Resorting to a recent demic-cultural wave-of-advance model, we also find that the main mechanism at work in the southern African Neolithic spread was cultural diffusion (whereas demic diffusion played a secondary role). This is in sharp contrast to the European Neolithic. Our results further suggest that Neolithic spread rates could be mainly driven by cultural diffusion in cases where the final state of this transition is herding/pastoralism (such as in southern Africa) rather than farming and stockbreeding (as in Europe). PMID:25517968

  2. Cultural diffusion was the main driving mechanism of the Neolithic transition in southern Africa.

    PubMed

    Jerardino, Antonieta; Fort, Joaquim; Isern, Neus; Rondelli, Bernardo

    2014-01-01

    It is well known that the Neolithic transition spread across Europe at a speed of about 1 km/yr. This result has been previously interpreted as a range expansion of the Neolithic driven mainly by demic diffusion (whereas cultural diffusion played a secondary role). However, a long-standing problem is whether this value (1 km/yr) and its interpretation (mainly demic diffusion) are characteristic only of Europe or universal (i.e. intrinsic features of Neolithic transitions all over the world). So far Neolithic spread rates outside Europe have been barely measured, and Neolithic spread rates substantially faster than 1 km/yr have not been previously reported. Here we show that the transition from hunting and gathering into herding in southern Africa spread at a rate of about 2.4 km/yr, i.e. about twice faster than the European Neolithic transition. Thus the value 1 km/yr is not a universal feature of Neolithic transitions in the world. Resorting to a recent demic-cultural wave-of-advance model, we also find that the main mechanism at work in the southern African Neolithic spread was cultural diffusion (whereas demic diffusion played a secondary role). This is in sharp contrast to the European Neolithic. Our results further suggest that Neolithic spread rates could be mainly driven by cultural diffusion in cases where the final state of this transition is herding/pastoralism (such as in southern Africa) rather than farming and stockbreeding (as in Europe).

  3. Is Relativistic Quantum Mechanics Compatible with Special Relativity?

    NASA Astrophysics Data System (ADS)

    Lavenda, B. H.

    2001-05-01

    The transformation from a time-dependent random walk to quantum mechanics converts a modi­fied Bessel function into an ordinary one together with a phase factor e,ir/2 for each time the electron flips both direction and handedness. Causality requires the argument to be greater than the order of the Bessel function. Assuming equal probabilities for jumps ± 1 , the normalized modified Bessel function of an imaginary argument is the solution of the finite difference differential Schrödinger equation whereas the same function of a real argument satisfies the diffusion equation. In the nonrelativistic limit, the stability condition of the difference scheme contains the mass whereas in the ultrarelativistic limit only the velocity of light appears. Particle waves in the nonrelativistic limit become elastic waves in the ultrarelativistic limit with a phase shift in the frequency and wave number of 7r/2. The ordinary Bessel function satisfies a second order recurrence relation which is a finite difference differential wave equation, using non-nearest neighbors, whose solutions are the chirality components of a free-particle in the zero fermion mass limit. Reintroducing the mass by a phase transformation transforms the wave equation into the Klein-Gordon equation but does not admit a solution in terms of ordinary Bessel functions. However, a sign change of the mass term permits a solution in terms of a modified Bessel function whose recurrence formulas produce all the results of special relativity. The Lorentz transformation maximizes the integral of the modified Bessel function and determines the paths of steepest descent in the classical limit. If the definitions of frequency and wave number in terms of the phase were used in special relativity, the condition that the frame be inertial would equate the superluminal phase velocity with the particle velocity in violation of causality. In order to get surfaces of constant phase to move at the group velocity, an

  4. Simple example of definitions of truth, validity, consistency, and completeness in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Benioff, Paul

    1999-06-01

    Besides their use for efficient computation, quantum computers and quantum robots form a base for studying quantum systems that create valid physical theories using mathematics and physics. If quantum mechanics is universally applicable, then quantum mechanics must describe its own validation by these quantum systems. An essential part of this process is the development of a coherent theory of mathematics and quantum-mechanics together. It is expected that such a theory will include a coherent combination of mathematical logical concepts with quantum mechanics. That this might be possible is shown here by defining truth, validity, consistency, and completeness for a quantum-mechanical version of a simple (classical) expression enumeration machine described by Smullyan. Some of the expressions are chosen as sentences denoting the presence or absence of other expressions in the enumeration. Two of the sentences are self-referential. It is seen that, for an interpretation based on a Feynman path sum over expression paths, truth, consistency, and completeness for the quantum system have different properties than for the classical system. For instance, the truth of a sentence S is defined only on those paths containing S. It is undefined elsewhere. Also S and its negation can both be true provided they appear on separate paths. This satisfies the definition of consistency. The definitions of validity and completeness connect the dynamics of the system to the truth of the sentences. It is proved that validity implies consistency. It is seen that the requirements of validity and maximal completeness strongly restrict the allowable dynamics for the quantum system. Aspects of the existence of a valid, maximally complete dynamics are discussed. An exponentially efficient quantum computer is described that is also valid and complete for the set of sentences considered here.

  5. Simple example of definitions of truth, validity, consistency, and completeness in quantum mechanics

    SciTech Connect

    Benioff, P.

    1999-06-01

    Besides their use for efficient computation, quantum computers and quantum robots form a base for studying quantum systems that create valid physical theories using mathematics and physics. If quantum mechanics is universally applicable, then quantum mechanics must describe its own validation by these quantum systems. An essential part of this process is the development of a coherent theory of mathematics and quantum-mechanics together. It is expected that such a theory will include a coherent combination of mathematical logical concepts with quantum mechanics. That this might be possible is shown here by defining truth, validity, consistency, and completeness for a quantum-mechanical version of a simple (classical) expression enumeration machine described by Smullyan. Some of the expressions are chosen as sentences denoting the presence or absence of other expressions in the enumeration. Two of the sentences are self-referential. It is seen that, for an interpretation based on a Feynman path sum over expression paths, truth, consistency, and completeness for the quantum system have different properties than for the classical system. For instance, the truth of a sentence {ital S} is defined only on those paths containing {ital S}. It is undefined elsewhere. Also {ital S} and its negation can both be true provided they appear on separate paths. This satisfies the definition of consistency. The definitions of validity and completeness connect the dynamics of the system to the truth of the sentences. It is proved that validity implies consistency. It is seen that the requirements of validity and maximal completeness strongly restrict the allowable dynamics for the quantum system. Aspects of the existence of a valid, maximally complete dynamics are discussed. An exponentially efficient quantum computer is described that is also valid and complete for the set of sentences considered here. {copyright} {ital 1999} {ital The American Physical Society}

  6. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1.

    PubMed

    Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng

    2013-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

  7. A quantum mechanics/molecular mechanics study on the hydrolysis mechanism of New Delhi metallo-β-lactamase-1

    NASA Astrophysics Data System (ADS)

    Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng

    2013-03-01

    New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.

  8. PREFACE: Singular interactions in quantum mechanics: solvable models

    NASA Astrophysics Data System (ADS)

    Dell'Antonio, Gianfausto; Exner, Pavel; Geyler, Vladimir

    2005-06-01

    This issue comprises two dozen research papers which are all in one sense or another devoted to models in which the interaction is singular and sharply localized; a typical example is a quantum particle interacting with a family of δ-type potentials. Such an idealization usually makes analysis of their properties considerably easier, sometimes allowing us to reduce it to a simple algebraic problem—this is why one speaks about solvable models. The subject can be traced back to the early days of quantum mechanics; however, the progress in this field was slow and uneven until the 1960s, mostly because singular interactions are often difficult to deal with mathematically and intuitive arguments do not work. After overcoming the initial difficulties the `classical' theory of point interactions was developed, and finally summarized in 1988 in a monograph by Albeverio, Gesztesy, Høegh-Krohn, and Holden, which you will find quoted in numerous places within this issue. A reliable way to judge theories is to observe the progress they make within one or two decades. In this case there is no doubt that the field has witnessed a continuous development and covered areas which nobody had thought of when the subject first emerged. The reader may see it in the second edition of the aforementioned book which was published by AMS Chelsea only recently and contained a brief survey of these new achievements. It is no coincidence that this topical issue appears at the same time; it has been conceived as its counterpart and a forum at which fresh results in the field can demonstrated. Let us briefly survey the contents of the issue. While the papers included have in common the basic subject, they represent a broad spectrum philosophically as well as technically, and any attempt to classify them is somewhat futile. Nevertheless, we will divide them into a few groups. The first comprises contributions directly related to the usual point-interaction ideology. M Correggi and one of the

  9. Quantum mechanics of hyperbolic orbits in the Kepler problem

    SciTech Connect

    Rauh, Alexander; Parisi, Juergen

    2011-04-15

    The problem of deriving macroscopic properties from the Hamiltonian of the hydrogen atom is resumed by extending previous results in the literature, which predicted elliptic orbits, into the region of hyperbolic orbits. As a main tool, coherent states of the harmonic oscillator are used which are continued to imaginary frequencies. The Kustaanheimo-Stiefel (KS) map is applied to transform the original configuration space into the product space of four harmonic oscillators with a constraint. The relation derived between real time and oscillator (pseudo) time includes quantum corrections. In the limit ({h_bar}/2{pi}){yields}0, the time-dependent mean values of position and velocity describe the classical motion on a hyperbola and a circular hodograph, respectively. Moreover, the connection between pseudotime and real time comes out in analogy to Kepler's equation for elliptic orbits. The mean-square-root deviations of position and velocity components behave similarly in time to the corresponding ones of a spreading Gaussian wave packet in free space. To check the approximate treatment of the constraint, its contribution to the mean energy is determined with the result that it is negligible except for energy values close to the parabolic orbit with eccentricity equal to 1. It is inevitable to introduce a suitable scalar product in R{sup 4} which makes both the transformed Hamiltonian and the velocity operators Hermitian. An elementary necessary criterion is given for the energy interval where the constraint can be approximated by averaging.

  10. A mechanism for offshore initiation of harmful algal blooms in the coastal Gulf of Maine

    USGS Publications Warehouse

    McGillicuddy, D.J.; Signell, R.P.; Stock, C.A.; Keafer, B.A.; Keller, M.D.; Hetland, R.D.; Anderson, D.M.

    2003-01-01

    A combination of observations and model results suggest a mechanism by which coastal blooms of the toxic dinoflagellate Alexandrium fundyense can be initiated from dormant cysts located in offshore sediments. The mechanism arises from the joint effects of organism behavior and the wind-driven response of a surface-trapped plume of fresh water originating from riverine sources. During upwelling-favorable winds, the plume thins vertically and extends offshore; downwelling winds thicken the plume and confine it to the nearshore region. In the western Gulf of Maine, the offshore extent of the river plume during upwelling conditions is suffcient to entrain upward-swimming A. fundyense cells germinated from offshore cyst beds. Subsequent downwelling conditions then transport those populations towards the coast.

  11. Phosphorylation Reaction in cAPK Protein Kinase - Free Energy Quantum Mechanic/Molecular Mechanics Simulations.

    SciTech Connect

    Valiev, Marat; Yang, Jie; Adams, Joseph; Taylor, Susan S.; Weare, John H.

    2007-11-29

    Protein kinases catalyze the transfer of the γ-phosphoryl group from ATP, a key regulatory process governing signalling pathways in eukaryotic cells. The structure of the active site in these enzymes is highly conserved implying common catalytic mechanism. In this work we investigate the reaction process in cAPK protein kinase (PKA) using a combined quantum mechanics and molecular mechanics approach. The novel computational features of our work include reaction pathway determination with nudged elastic band methodology and calculation of free energy profiles of the reaction process taking into account finite temperature fluctuations of the protein environment. We find that the transfer of the γ-phosphoryl group in the protein environment is an exothermic reaction with the reaction barrier of 15 kcal/mol.

  12. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    PubMed

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  13. The Foundations of Quantum Mechanics: Historical Analysis and Open Questions -- Cesena, 2004

    NASA Astrophysics Data System (ADS)

    Garola, Claudio; Rossi, Arcangelo; Sozzo, Sandro

    Introduction / C. Garola, A. Rossi and S. Sozzo -- If Bertlmann had three feet / A. Afriat -- Macroscopic interpretability of quantum component systems / R. Ascoli -- Premeasurement versus measurement: a basic form of complementarity / G. Auletta and G. Tarozzi -- Remarks on conditioning / E. G. Beltrametti -- Entangled state preparation in experiments on quantum non-locality / V. Berardi and A. Garuccio -- The first steps of quantum electrodynamics: what is it that's being quantized? / S. Bergia -- On the meaning of element in the science of italic tradition, the question of physical objectivity (and/or physical meaning) and quantum mechanics / G. Boscarino -- Mathematics and epistemology in Planck's theoretical work (1898-1915) / P. Campogalliani -- On the free motion with noise / B. Carazza and R. Tedeschi -- Field quantization and wave/particle duality / M. Cini -- Parastatistics in econophysics? / D. Costantini and U. Garibaldi -- Theory-laden instruments and quantum mechanics / S. D'Agostino -- Quantum non-locality and the mathematical representation of experience / V. Fano -- On the notion of proposition in classical and quantum mechanics / C. Garola and S. Sozzo -- The electromagnetic conception of nature and the origins of quantum physics / E. A. Giannetto -- What we talk about when we talk about universe computability / S. Guccione -- Bohm and Bohmian mechanics / G. Introzzi and M. Rossetti -- An objective background for quantum theory relying on thermodynamic concepts / L. Lanz and B. Vacchini -- The entrance of quantum mechanics in Italy: from Garbasso to Fermi / M. Leone and N. Robotti -- The measure of momentum in quantum mechanics / F. Logiurato and C. Tarsitani -- On the two-slit interference experiment: a statistical discussion / M. Minozzo -- Why the reactivity of the elements is a relational property, and why it matters / V. Mosini -- Detecting non compatible properties in double-slit experiment without erasure / G. Nisticò -- If you can

  14. Parallelism in computational chemistry: Applications in quantum and statistical mechanics

    NASA Astrophysics Data System (ADS)

    Clementi, E.; Corongiu, G.; Detrich, J. H.; Kahnmohammadbaigi, H.; Chin, S.; Domingo, L.; Laaksonen, A.; Nguyen, N. L.

    1985-08-01

    Often very fundamental biochemical and biophysical problems defy simulations because of limitation in today's computers. We present and discuss a distributed system composed of two IBM-4341 and one IBM-4381, as front-end processors, and ten FPS-164 attached array processors. This parallel system-called LCAP-has presently a peak performance of about 120 MFlops; extensions to higher performance are discussed. Presently, the system applications use a modified version of VM/SP as the operating system: description of the modifications is given. Three applications programs have migrated from sequential to parallel; a molecular quantum mechanical, a Metropolis-Monte Carlo and a Molecular Dynamics program. Descriptions of the parallel codes are briefly outlined. As examples and tests of these applications we report on a study for proton tunneling in DNA base-pairs, very relevant to spontaneous mutations in genetics. As a second example, we present a Monte Carlo study of liquid water at room temperature where not only two- and three-body interactions are considered but-for the first time-also four-body interactions are included. Finally we briefly summarize a molecular dynamics study where two- and three-body interactions have been considered. These examples, and very positive performance comparison with today's supercomputers allow us to conclude that parallel computers and programming of the type we have considered, represent a pragmatic answer to many computer intensive problems.

  15. Indivisibility, Complementarity and Ontology: A Bohrian Interpretation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Roldán-Charria, Jairo

    2014-12-01

    The interpretation of quantum mechanics presented in this paper is inspired by two ideas that are fundamental in Bohr's writings: indivisibility and complementarity. Further basic assumptions of the proposed interpretation are completeness, universality and conceptual economy. In the interpretation, decoherence plays a fundamental role for the understanding of measurement. A general and precise conception of complementarity is proposed. It is fundamental in this interpretation to make a distinction between ontological reality, constituted by everything that does not depend at all on the collectivity of human beings, nor on their decisions or limitations, nor on their existence, and empirical reality constituted by everything that not being ontological is, however, intersubjective. According to the proposed interpretation, neither the dynamical properties, nor the constitutive properties of microsystems like mass, charge and spin, are ontological. The properties of macroscopic systems and space-time are also considered to belong to empirical reality. The acceptance of the above mentioned conclusion does not imply a total rejection of the notion of ontological reality. In the paper, utilizing the Aristotelian ideas of general cause and potentiality, a relation between ontological reality and empirical reality is proposed. Some glimpses of ontological reality, in the form of what can be said about it, are finally presented.

  16. Exploring the Dynamics of a Quantum-Mechanical Compton Generator

    NASA Astrophysics Data System (ADS)

    Kandes, Martin; Carretero, Ricardo

    2017-01-01

    In 1913, when American physicist Arthur Compton was an undergraduate, he invented a simple way to measure the rotation rate of the Earth with a tabletop-sized experiment. The experiment consisted of a large diameter circular ring of thin glass tubing filled with water and oil droplets. After placing the ring in a plane perpendicular to the surface of the Earth and allowing the fluid mixture of oil and water to come to rest, he then abruptly rotated the ring, flipping it 180 degrees about an axis passing through its own plane. The result of the experiment was that the water acquired a measurable drift velocity due to the Coriolis effect arising from the daily rotation of the Earth about its own axis. Compton measured this induced drift velocity by observing the motion of the oil droplets in the water with a microscope. This device, which is now named after him, is known as a Compton generator. The fundamental research objective of this project is to explore the dynamics of a quantum-mechanical analogue to the classical Compton generator experiment through the use of numerical simulations. We present our preliminary results on this system and the future direction of the project. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant Number ACI-1053575.

  17. Quantum-mechanical investigation of large water clusters

    SciTech Connect

    Kirschner, K.N.; Shields, G.C.

    1994-12-31

    The PM3 quantum-mechanical method has been used to study large water clusters ranging from 8 to 42 water molecules. These large clusters are built from smaller building blocks. The building blocks include cyclic tetramers, pentamers, octamers, and a pentagonal dodecahedron cage. The correlations between the strain energy resulting from bending of the hydrogen bonds formed by different cluster motifs and the number of waters involved in the cluster are discussed. The PM3 results are compared with TIP4P potential and ab initio results. The number of net hydrogen bonds per water increases with the cluster size. This places a limit on the size of clusters that would fit the Benson model of liquid water. Many of the 20-mer clusters fit the Benson model well. Calculations of the ion cluster (H{sub 2}O){sub 40}(H{sub 3}O{sup +}){sub 2} reveal that the m/e ratio obtainable by mass spectrometry experiments can uniquely indicate the conformation of the 20 water pentagonal dodecahedron cage present in the larger clusters.

  18. Annular tautomerism: experimental observations and quantum mechanics calculations

    NASA Astrophysics Data System (ADS)

    Cruz-Cabeza, Aurora J.; Schreyer, Adrian; Pitt, William R.

    2010-06-01

    The use of MP2 level quantum mechanical (QM) calculations on isolated heteroaromatic ring systems for the prediction of the tautomeric propensities of whole molecules in a crystalline environment was examined. A Polarisable Continuum Model was used in the calculations to account for environment effects on the tautomeric relative stabilities. The calculated relative energies of tautomers were compared to relative abundances within the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). The work was focussed on 84 annular tautomeric forms of 34 common ring systems. Good agreement was found between the calculations and the experimental data even if the quantity of these data was limited in many cases. The QM results were compared to those produced by much faster semiempirical calculations. In a search for other sources of the useful experimental data, the relative numbers of known compounds in which prototropic positions were often substituted by heavy atoms were also analysed. A scheme which groups all annular tautomeric transformations into 10 classes was developed. The scheme was designed to encompass a comprehensive set of known and theoretically possible tautomeric ring systems generated as part of a previous study. General trends across analogous ring systems were detected as a result. The calculations and statistics collected on crystallographic data as well as the general trends observed should be useful for the better modelling of annular tautomerism in the applications such as computer-aided drug design, small molecule crystal structure prediction, the naming of compounds and the interpretation of protein—small molecule crystal structures.

  19. The von Neumann model of measurement in quantum mechanics

    SciTech Connect

    Mello, Pier A.

    2014-01-08

    We describe how to obtain information on a quantum-mechanical system by coupling it to a probe and detecting some property of the latter, using a model introduced by von Neumann, which describes the interaction of the system proper with the probe in a dynamical way. We first discuss single measurements, where the system proper is coupled to one probe with arbitrary coupling strength. The goal is to obtain information on the system detecting the probe position. We find the reduced density operator of the system, and show how Lüders rule emerges as the limiting case of strong coupling. The von Neumann model is then generalized to two probes that interact successively with the system proper. Now we find information on the system by detecting the position-position and momentum-position correlations of the two probes. The so-called 'Wigner's formula' emerges in the strong-coupling limit, while 'Kirkwood's quasi-probability distribution' is found as the weak-coupling limit of the above formalism. We show that successive measurements can be used to develop a state-reconstruction scheme. Finally, we find a generalized transform of the state and the observables based on the notion of successive measurements.

  20. Cosmological model with decaying vacuum energy from quantum mechanics

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek

    2015-06-01

    We construct the cosmological model to explain the cosmological constant problem. We built the extension of the standard cosmological model Λ CDM by consideration of decaying vacuum energy represented by the running cosmological term. From the principles of quantum mechanics one can find that in the long-term behavior survival probability of unstable states is a decreasing function of the cosmological time and has the inverse powerlike form. This implies that cosmological constant ρvac=Λ (t )=Λbare+α/t2 where Λbare and α are constants. We investigate the dynamics of this model using dynamical system methods due to a link to the Λ (H ) cosmologies. We have found the exact solution for the scale factor as well as the indicators of its variability like the deceleration parameter and the jerk. From the calculation of the jerk we obtain a simple test of the decaying vacuum in the Friedman-Robertson-Walker universe. Using astronomical data [SNIa, H (z ), CMB, BAO] we have estimated the model parameters and compared this model with the Λ CDM model. Our statistical results indicate that the decaying vacuum model is a little worse than the Λ CDM model. But the decaying vacuum cosmological model explains the small value of the cosmological constant today.