Origin of Dynamical Quantum Non-locality
NASA Astrophysics Data System (ADS)
Pachon, Cesar E.; Pachon, Leonardo A.
2014-03-01
Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.
Understanding quantum non-locality through pseudo-telepathy game
NASA Astrophysics Data System (ADS)
Kunkri, Samir
2006-11-01
Usually by quantum non-locality we mean that quantum mechanics can not be replaced by local realistic theory. On the other hand this nonlocal feature of quantum mechanics can not be used for instantaneous communication and hence it respect Einstein's special theory of relativity. But still it is not trivial as proved by various quantum information processing using entangled states. Recently there have been studies of hypothetical non-local system again respecting no-signalling which is beyond quantum mechanics. Here we study the power of such a hypothetical nonlocal box first suggested by Popescu et.al. in the context of recently suggested pseudo-telepathy game constructed from a Kochen-Specker set.
A scalable quantum architecture using efficient non-local gates
NASA Astrophysics Data System (ADS)
Brennen, Gavin
2003-03-01
Many protocols for quantum information processing use a control sequence or circuit of interactions between qubits and control fields wherein arbitrary qubits can be made to interact with one another. The primary problem with many ``physically scalable" architectures is that the qubits are restricted to nearest neighbor interactions and quantum wires between distant qubits do not exist. Because of errors, nearest neighbor interactions often present difficulty with scalability. We describe a protocol that efficiently performs non-local gates between elements of separated static logical qubits using a bus of dynamic qubits as a refreshable entanglement resource. Imperfect resource preparation due to error propagation from noisy gates and measurement errors can purified within the bus channel. Because of the inherent parallelism of entanglement swapping, communication latency within the quantum computer can be significantly reduced.
Non-local classical optical correlation and implementing analogy of quantum teleportation.
Sun, Yifan; Song, Xinbing; Qin, Hongwei; Zhang, Xiong; Yang, Zhenwei; Zhang, Xiangdong
2015-01-01
This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein-Podolsky-Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information. PMID:25779977
Non-local classical optical correlation and implementing analogy of quantum teleportation
Sun, Yifan; Song, Xinbing; Qin, Hongwei; Zhang, Xiong; Yang, Zhenwei; Zhang, Xiangdong
2015-01-01
This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein–Podolsky–Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information. PMID:25779977
Non-local classical optical correlation and implementing analogy of quantum teleportation.
Sun, Yifan; Song, Xinbing; Qin, Hongwei; Zhang, Xiong; Yang, Zhenwei; Zhang, Xiangdong
2015-01-01
This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein-Podolsky-Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information.
Non Locality Proofs in Quantum Mechanics Analyzed by Ordinary Mathematical Logic
NASA Astrophysics Data System (ADS)
Nisticò, Giuseppe
2014-10-01
The so-called non-locality theorems aim to show that Quantum Mechanics is not consistent with the Locality Principle. Their proofs require, besides the standard postulates of Quantum Theory, further conditions, as for instance the Criterion of Reality, which cannot be formulated in the language of Standard Quantum Theory; this difficulty makes the proofs not verifiable according to usual logico-mathematical methods, and therefore it is a source of the controversial debate about the real implications of these theorems. The present work addresses this difficulty for Bell-type and Stapp's arguments of non-locality. We supplement the formalism of Quantum Mechanics with formal statements inferred from the further conditions in the two different cases. Then an analysis of the two arguments is performed according to ordinary mathematical logic.
The origin of quantum non-locality and a new approach to generation of energy
NASA Astrophysics Data System (ADS)
Berkovich, Simon
2010-02-01
According to our work [1], the peculiarity of quantum mechanics behavior stems from interactive holography feedbacks. This organization naturally captures the features of quantum non-separability and wave-particle duality; sliced holographic processing immediately elucidates the inscrutability of quantum entanglement. Traditional physics is an approximation to the holistic picture of the Universe, yet non-locality does not come out as a small correction to contact interactions. Challenging relativity, a battery of suggested tests could reveal the absolute positioning of the underlying holographic mechanism. In view of A. Einstein, if quantum entanglement ``is correct, it signifies the end of physics as a science''. So, the counter-arguments against the surmised operational potentials of non-locality are irrelevant. It is meaningless to oppose the consequences of what you could not believe to exist in the first place. Remarkably, the holographic infrastructure shows exciting prospects for concentrating and producing energy. The following hypothetical possibilities will be discussed: (1) nuclear fusion fixation with teleportation of D+D-reaction; (2) ball lightning creation through entanglement of SHF; (3) motility of ``artificial muscle''. [1] S.Y. Berkovich, ``A comprehensive explanation of quantum mechanics, the keyword is interactive holography'', http://www.cs.gwu.edu/research/reports detail.php?trnumber=TR-GWU-CS-09-001 )
Milgrom, L R
2002-10-01
A metaphor for homeopathy is developed in which the potentised medicine, the patient, and the practitioner are seen as forming a non-local therapeutically 'entangled' triad, qualitatively described in terms of the transactional interpretation of quantum mechanics.
A Non-local Reality: Is There a Phase Uncertainty in Quantum Mechanics?
NASA Astrophysics Data System (ADS)
Gould, Elizabeth S.; Afshordi, Niayesh
2015-12-01
A century after the advent of quantum mechanics and general relativity, both theories enjoy incredible empirical success, constituting the cornerstones of modern physics. Yet, paradoxically, they suffer from deep-rooted, so-far intractable, conflicts. Motivations for violations of the notion of relativistic locality include the Bell's inequalities for hidden variable theories, the cosmological horizon problem, and Lorentz-violating approaches to quantum geometrodynamics, such as Horava-Lifshitz gravity. Here, we explore a recent proposal for a "real ensemble" non-local description of quantum mechanics, in which "particles" can copy each others' observable values AND phases, independent of their spatial separation. We first specify the exact theory, ensuring that it is consistent and has (ordinary) quantum mechanics as a fixed point, where all particles with the same values for a given observable have the same phases. We then study the stability of this fixed point numerically, and analytically, for simple models. We provide evidence that most systems (in our study) are locally stable to small deviations from quantum mechanics, and furthermore, the phase variance per value of the observable, as well as systematic deviations from quantum mechanics, decay as ˜ (energy × time)^{-2n}, where n ≥ 1. Interestingly, this convergence is controlled by the absolute value of energy (and not energy difference), suggesting a possible connection to gravitational physics. Finally, we discuss different issues related to this theory, as well as potential novel applications for the spectrum of primordial cosmological perturbations and the cosmological constant problem.
From Einstein's theorem to Bell's theorem: a history of quantum non-locality
NASA Astrophysics Data System (ADS)
Wiseman, H. M.
2006-04-01
In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.
Tunnelling of the 3rd kind: A test of the effective non-locality of quantum field theory
NASA Astrophysics Data System (ADS)
Gardiner, Simon A.; Gies, Holger; Jaeckel, Joerg; Wallace, Chris J.
2013-03-01
Integrating out virtual quantum fluctuations in an originally local quantum field theory results in an effective theory which is non-local. In this letter we argue that tunnelling of the 3rd kind —where particles traverse a barrier by splitting into a pair of virtual particles which recombine only after a finite distance— provides a direct test of this non-locality. We sketch a quantum-optical setup to test this effect, and investigate observable effects in a simple toy model.
NASA Astrophysics Data System (ADS)
Filk, Thomas
2013-04-01
In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.
NASA Astrophysics Data System (ADS)
Liu, Cheng-cheng; Shi, Jia-dong; Ding, Zhi-yong; Ye, Liu
2016-08-01
In this paper, the effect of external magnet field g on the relationship among the quantum discord, Bell non-locality and quantum phase transition by employing quantum renormalization-group (QRG) method in the one-dimensional transverse Ising model is investigated. In our model, external magnet field g can influence the phase diagrams. The results have shown that both the two quantum correlation measures can develop two saturated values, which are associated with two distinct phases: long-ranged ordered Ising phase and the paramagnetic phase with the number of QRG iterations increasing. Additionally, quantum non-locality always existent in the long-ranged ordered Ising phase no matter whatever the value of g is and what times QRG steps are carried out and we conclude that the quantum non-locality always exists not only suitable for the two sites of block, but for nearest-neighbor blocks in the long-ranged ordered Ising phase. However, the block-block correlation in the paramagnetic phase is not strong enough to violate the Bell-CHSH inequality as the size of system becomes large. Furthermore, when the system violates the CHSH inequality, i.e., satisfies quantum non-locality, it needs to be entangled. On the other way, if the system obeys the CHSH inequality, it may be entangled or not. To gain further insight, the non-analytic and scaling behavior of QD and Bell non-locality have also been analyzed in detail and this phenomenon indicates that the behavior of the correlation can perfectly help one to observe the quantum critical properties of the model.
Non-local correlation and quantum discord in two atoms in the non-degenerate model
Mohamed, A.-B.A.
2012-12-15
By using geometric quantum discord (GQD) and measurement-induced nonlocality (MIN), quantum correlation is investigated for two atoms in the non-degenerate two-photon Tavis-Cummings model. It is shown that there is no asymptotic decay for MIN while asymptotic decay exists for GQD. Quantum correlations can be strengthened by introducing the dipole-dipole interaction. The evolvement period of quantum correlation gets shorter with the increase in the dipole-dipole parameter. It is found that there exists not only quantum nonlocality without entanglement but also quantum nonlocality without quantum discord. Also, the MIN and GQD are raised rather than entanglement, and also with weak initial entanglement, there are MIN and entanglement in a interval of death quantum discord. - Highlights: Black-Right-Pointing-Pointer Geometric quantum discord (GQD) and measurement induced nonlocality (MIN) are used to investigate the correlations of two two-level atoms. Black-Right-Pointing-Pointer There is no asymptotic decay for MIN while asymptotic decay exists for GQD. Black-Right-Pointing-Pointer Quantum correlations can be strengthened by introducing the dipole-dipole interaction. Black-Right-Pointing-Pointer There exists not only quantum nonlocality without entanglement but also without discord. Black-Right-Pointing-Pointer Weak initial entanglement leads to MIN and entanglement in intervals of death discord.
Quantum Complexity in Graphene
NASA Astrophysics Data System (ADS)
Baskaran, G.
Carbon has a unique position among elements in the periodic table. It produces an allotrope, graphene, a mechanically robust two dimensional semimetal. The multifarious properties that graphene exhibits has few parallels among elemental metals. From simplicity, namely carbon atoms connected by pure sp2 bonds, a wealth of novel quantum properties emerge. In classical complex systems such as a spin glass or a finance market, several competing agents or elements are responsible for unanticipated and difficult to predict emergent properties. The complex (sic) structure of quantum mechanics is responsbile for an unanticipated set of emergent properties in graphene. We call this quantum complexity. In fact, most quantum systems, phenomena and modern quantum field theory could be viewed as examples of quantum complexity. After giving a brief introduction to the quantum complexity we focus on our own work, which indicates the breadth in the type of quantum phenomena that graphene could support. We review our theoretical suggestions of, (i) spin-1 collective mode in netural graphene, (ii) relativistic type of phenomena in crossed electric and magnetic fields, (iii) room temperature superconductivity in doped graphene and (iv) composite Fermi sea in neutral graphene in uniform magnetic field and (v) two-channel Kondo effect. Except for the relativistic type of phenomena, the rest depend in a fundamental way on a weak electron correlation that exists in the broad two-dimensional band of graphene.
Levin, Michael
2012-01-01
Establishment of shape during embryonic development, and the maintenance of shape against injury or tumorigenesis, requires constant coordination of cell behaviors toward the patterning needs of the host organism. Molecular cell biology and genetics have made great strides in understanding the mechanisms that regulate cell function. However, generalized rational control of shape is still largely beyond our current capabilities. Significant instructive signals function at long range to provide positional information and other cues to regulate organism-wide systems properties like anatomical polarity and size control. Is complex morphogenesis best understood as the emergent property of local cell interactions, or as the outcome of a computational process that is guided by a physically-encoded map or template of the final goal state? Here I review recent data and molecular mechanisms relevant to morphogenetic fields: large-scale systems of physical properties that have been proposed to store patterning information during embryogenesis, regenerative repair, and cancer suppression that ultimately controls anatomy. Placing special emphasis on the role of endogenous bioelectric signals as an important component of the morphogenetic field, I speculate on novel approaches for the computational modeling and control of these fields with applications to synthetic biology, regenerative medicine, and evolutionary developmental biology. PMID:22542702
Increasing complexity with quantum physics.
Anders, Janet; Wiesner, Karoline
2011-09-01
We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task. PMID:21974665
Increasing complexity with quantum physics.
Anders, Janet; Wiesner, Karoline
2011-09-01
We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.
Quantum Kolmogorov complexity and bounded quantum memory
Miyadera, Takayuki
2011-04-15
The effect of bounded quantum memory in a primitive information protocol has been examined using the quantum Kolmogorov complexity as a measure of information. We employed a toy two-party protocol in which Bob, by using a bounded quantum memory and an unbounded classical memory, estimates a message that was encoded in qubits by Alice in one of the bases X or Z. Our theorem gave a nontrivial effect of the memory boundedness. In addition, a generalization of the uncertainty principle in the presence of quantum memory has been obtained.
Orieux, Adeline; Boutari, Joelle; Barbieri, Marco; Paternostro, Mauro; Mataloni, Paolo
2014-01-01
Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring. PMID:25418153
Quantum Computing: Solving Complex Problems
DiVincenzo, David [IBM Watson Research Center
2016-07-12
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
Can EPR non-locality be geometrical?
Ne`eman, Y. |; Botero, A.
1995-10-01
The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3.
Kirpichnikov, M P; Yartzev, A P; Minchenkova, L E; Chernov, B K; Ivanov, V I
1985-12-01
The Interaction of the cro protein of lambda phage with a synthetic OR3 operator having 17 base pairs in length and with its 9 bp fragment has been studied using the circular dichroism (CD) method. In both cases, a considerable change in the CD of the samples was found in the region 260-300 nm upon the addition of the cro protein. The stoichiometry obtained by the CD titration was identical for OR3 and its 9 bp fragment: one duplex per dimeric cro. NaCl addition makes the complexes dissociate so that the 9 bp fragment becomes free at [NaCl] greater than 0.2 M while the whole OR3 becomes free at [NaCl] greater than 0.5 M. The CD spectra of both the free duplexes show a typical B-form conservative pattern with a positive CD band (270 nm) and a negative one (250 nm). The specific complexing of both the duplexes results in a substantial CD depression in the positive band. The most pronounced effect occurs at 280 nm. This spectral change is quite distinct from those in the B to A transition and in the non-cooperative winding of the DNA within the B-family of forms. The interaction of the cro protein with the non-operator DNAs, calf thymus DNA and a synthetic 10 bp duplex, reveals no visible CD changes at all. An inference is drawn that the CD change in the specific complexes is mainly due to the induced CD in tyr-26 upon its interaction with a specific base pair in the operator or its fragment, the operator DNA conformation being conserved in a B-like form as a whole.(ABSTRACT TRUNCATED AT 250 WORDS)
Quantum physics and complex networks
NASA Astrophysics Data System (ADS)
Biamonte, Jacob
2014-03-01
There is a widely used and successful theory of ``chemical reaction networks,'' which provides a framework describing systems governed by mass action kinetics. Computer science and population biology use the same ideas under a different name: ``stochastic Petri nets.'' But if we look at these theories from the perspective of quantum theory, they turn out to involve creation and annihilation operators, coherent states and other well-known ideas--yet in a context where probabilities replace amplitudes. I will explain this connection as part of a detailed analogy between quantum mechanics and stochastic mechanics which we've produced several results on recently, including the recent analytical results uniting quantum physics and complex networks. Our general idea is about merging concepts from quantum physics and complex network theory to provide a bidirectional bridge between both disciplines. Support is acknowledged from the Foundational Questions Institute (FQXi) and the Compagnia di San Paolo Foundation.
Chaudhury, Kunal N; Singer, Amit
2012-11-01
In this letter, we note that the denoising performance of Non-Local Means (NLM) can be improved at large noise levels by replacing the mean by the Euclidean median. We call this new denoising algorithm the Non-Local Euclidean Medians (NLEM). At the heart of NLEM is the observation that the median is more robust to outliers than the mean. In particular, we provide a simple geometric insight that explains why NLEM performs better than NLM in the vicinity of edges, particularly at large noise levels. NLEM can be efficiently implemented using iteratively reweighted least squares, and its computational complexity is comparable to that of NLM. We provide some preliminary results to study the proposed algorithm and to compare it with NLM.
Non-locality in Modern Physics: Counter Arguments
NASA Astrophysics Data System (ADS)
Kracklauer, A. F.
Non-locality, i.e., some sort of instantaneous interaction or correlation determination, has been identified with the theory of Quantum Mechanics in recent times. Being in direct conflict with the basic principles of Relativity Theory, it posses a challenge. Herein various critical arguments raised in the past and judged to be particularly incisive are reviewed. These include, the identification of an error in the derivation of Bell Inequalities, the observation that Bohm inadvertently selected a non-quantum venue for experimental tests of Bell Inequalities and finally, an examination of the complexities that have rendered classical simulations of these experiments unsatisfactory.
Loop quantum cosmology with complex Ashtekar variables
NASA Astrophysics Data System (ADS)
Ben Achour, Jibril; Grain, Julien; Noui, Karim
2015-01-01
We construct and study loop quantum cosmology (LQC) when the Barbero-Immirzi parameter takes the complex value γ =+/- i. We refer to this new approach to quantum cosmology as complex LQC. This formulation is obtained via an analytic continuation of the Hamiltonian constraint (with no inverse volume corrections) from real γ to γ =+/- i, in the simple case of a flat FLRW Universe coupled to a massless scalar field with no cosmological constant. For this, we first compute the non-local curvature operator (defined by the trace of the holonomy of the connection around a fundamental plaquette) evaluated in an arbitrary spin j representation, and find a new close formula for its expression. This allows us to define explicitly a one parameter family of regularizations of the Hamiltonian constraint in LQC, parametrized by the spin j. It is immediate to see that any spin j regularization leads to a bouncing scenario. Then, motivated in particular by previous results on black hole thermodynamics, we perform the analytic continuation of the Hamiltonian constraint to values of the Barbero-Immirzi parameter given by γ =+/- i and to spins j=\\frac{1}{2}(-1+is) where s is real. Even if the area spectrum then becomes continuous, we show that the complex LQC defined in this way does also replace the initial big-bang singularity by a big-bounce. In addition to this, the maximal density and the minimal volume of the Universe are obviously independent of γ . Furthermore, the dynamics before and after the bounce is not symmetrical anymore, which makes a clear distinction between these two phases of the evolution of the Universe.
Algorithmic complexity and entanglement of quantum states.
Mora, Caterina E; Briegel, Hans J
2005-11-11
We define the algorithmic complexity of a quantum state relative to a given precision parameter, and give upper bounds for various examples of states. We also establish a connection between the entanglement of a quantum state and its algorithmic complexity.
Quantum interference within the complex quantum Hamilton-Jacobi formalism
Chou, Chia-Chun; Sanz, Angel S.; Miret-Artes, Salvador; Wyatt, Robert E.
2010-10-15
Quantum interference is investigated within the complex quantum Hamilton-Jacobi formalism. As shown in a previous work [Phys. Rev. Lett. 102 (2009) 250401], complex quantum trajectories display helical wrapping around stagnation tubes and hyperbolic deflection near vortical tubes, these structures being prominent features of quantum caves in space-time Argand plots. Here, we further analyze the divergence and vorticity of the quantum momentum function along streamlines near poles, showing the intricacy of the complex dynamics. Nevertheless, despite this behavior, we show that the appearance of the well-known interference features (on the real axis) can be easily understood in terms of the rotation of the nodal line in the complex plane. This offers a unified description of interference as well as an elegant and practical method to compute the lifetime for interference features, defined in terms of the average wrapping time, i.e., considering such features as a resonant process.
Bohmian mechanics with complex action: a new trajectory-based formulation of quantum mechanics.
Goldfarb, Yair; Degani, Ilan; Tannor, David J
2006-12-21
In recent years there has been a resurgence of interest in Bohmian mechanics as a numerical tool because of its local dynamics, which suggest the possibility of significant computational advantages for the simulation of large quantum systems. However, closer inspection of the Bohmian formulation reveals that the nonlocality of quantum mechanics has not disappeared-it has simply been swept under the rug into the quantum force. In this paper we present a new formulation of Bohmian mechanics in which the quantum action, S, is taken to be complex. This leads to a single equation for complex S, and ultimately complex x and p but there is a reward for this complexification-a significantly higher degree of localization. The quantum force in the new approach vanishes for Gaussian wave packet dynamics, and its effect on barrier tunneling processes is orders of magnitude lower than that of the classical force. In fact, the current method is shown to be a rigorous extension of generalized Gaussian wave packet dynamics to give exact quantum mechanics. We demonstrate tunneling probabilities that are in virtually perfect agreement with the exact quantum mechanics down to 10(-7) calculated from strictly localized quantum trajectories that do not communicate with their neighbors. The new formulation may have significant implications for fundamental quantum mechanics, ranging from the interpretation of non-locality to measures of quantum complexity.
Noncommutative complex structures on quantum homogeneous spaces
NASA Astrophysics Data System (ADS)
Ó Buachalla, Réamonn
2016-01-01
A new framework for noncommutative complex geometry on quantum homogeneous spaces is introduced. The main ingredients used are covariant differential calculi and Takeuchi's categorical equivalence for quantum homogeneous spaces. A number of basic results are established, producing a simple set of necessary and sufficient conditions for noncommutative complex structures to exist. Throughout, the framework is applied to the quantum projective spaces endowed with the Heckenberger-Kolb calculus.
Community Detection in Quantum Complex Networks
NASA Astrophysics Data System (ADS)
Faccin, Mauro; Migdał, Piotr; Johnson, Tomi H.; Bergholm, Ville; Biamonte, Jacob D.
2014-10-01
Determining community structure is a central topic in the study of complex networks, be it technological, social, biological or chemical, static or in interacting systems. In this paper, we extend the concept of community detection from classical to quantum systems—a crucial missing component of a theory of complex networks based on quantum mechanics. We demonstrate that certain quantum mechanical effects cannot be captured using current classical complex network tools and provide new methods that overcome these problems. Our approaches are based on defining closeness measures between nodes, and then maximizing modularity with hierarchical clustering. Our closeness functions are based on quantum transport probability and state fidelity, two important quantities in quantum information theory. To illustrate the effectiveness of our approach in detecting community structure in quantum systems, we provide several examples, including a naturally occurring light-harvesting complex, LHCII. The prediction of our simplest algorithm, semiclassical in nature, mostly agrees with a proposed partitioning for the LHCII found in quantum chemistry literature, whereas our fully quantum treatment of the problem uncovers a new, consistent, and appropriately quantum community structure.
Quantum vortices within the complex quantum Hamilton-Jacobi formalism.
Chou, Chia-Chun; Wyatt, Robert E
2008-06-21
Quantum vortices are investigated in the framework of the quantum Hamilton-Jacobi formalism. A quantum vortex forms around a node in the wave function in the complex space, and the quantized circulation integral originates from the discontinuity in the real part of the complex action. Although the quantum momentum field displays hyperbolic flow around a node, the corresponding Polya vector field displays circular flow. It is shown that the Polya vector field of the quantum momentum function is parallel to contours of the probability density. A nonstationary state constructed from eigenstates of the harmonic oscillator is used to illustrate the formation of a transient excited state quantum vortex, and the coupled harmonic oscillator is used to illustrate quantization of the circulation integral in the multidimensional complex space. This study not only analyzes the formation of quantum vortices but also demonstrates the local structures for the quantum momentum field and for the Polya vector field near a node of the wave function. PMID:18570490
Quantum-information processing in disordered and complex quantum systems
Sen, Aditi; Sen, Ujjwal; Ahufinger, Veronica; Briegel, Hans J.; Sanpera, Anna; Lewenstein, Maciej
2006-12-15
We study quantum information processing in complex disordered many body systems that can be implemented by using lattices of ultracold atomic gases and trapped ions. We demonstrate, first in the short range case, the generation of entanglement and the local realization of quantum gates in a disordered magnetic model describing a quantum spin glass. We show that in this case it is possible to achieve fidelities of quantum gates higher than in the classical case. Complex systems with long range interactions, such as ions chains or dipolar atomic gases, can be used to model neural network Hamiltonians. For such systems, where both long range interactions and disorder appear, it is possible to generate long range bipartite entanglement. We provide an efficient analytical method to calculate the time evolution of a given initial state, which in turn allows us to calculate its quantum correlations.
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Quantum-classical transitions in complex networks
NASA Astrophysics Data System (ADS)
Javarone, Marco Alberto; Armano, Giuliano
2013-04-01
The inherent properties of specific physical systems can be used as metaphors for investigation of the behavior of complex networks. This insight has already been put into practice in previous work, e.g., studying the network evolution in terms of phase transitions of quantum gases or representing distances among nodes as if they were particle energies. This paper shows that the emergence of different structures in complex networks, such as the scale-free and the winner-takes-all networks, can be represented in terms of a quantum-classical transition for quantum gases. In particular, we propose a model of fermionic networks that allows us to investigate the network evolution and its dependence on the system temperature. Simulations, performed in accordance with the cited model, clearly highlight the separation between classical random and winner-takes-all networks, in full correspondence with the separation between classical and quantum regions for quantum gases. We deem this model useful for the analysis of synthetic and real complex networks.
Relativistic three-partite non-locality
NASA Astrophysics Data System (ADS)
Moradpour, Hooman; Montakhab, Afshin
2016-05-01
Bell-like inequalities have been used in order to distinguish non-local quantum pure states by various authors. The behavior of such inequalities under Lorentz transformation (LT) has been a source of debate and controversies in the past. In this paper, we consider the two most commonly studied three-particle pure states, that of W and Greenberger-Horne-Zeilinger (GHZ) states which exhibit distinctly different types of entanglement. We discuss the various types of three-particle inequalities used in previous studies and point to their corresponding shortcomings and strengths. Our main result is that if one uses Czachor’s relativistic spin operator and Svetlichny’s inequality as the main measure of non-locality and uses the same angles in the rest frame (S) as well as the moving frame (S‧), then maximally violated inequality in S will decrease in the moving frame, and will eventually lead to lack of non-locality (i.e. satisfaction of inequality) in the v→c limit. This is shown for both the GHZ and W states and in two different configurations which are commonly studied (Cases 1 and 2). Our results are in line with a more familiar case of two particle case. We also show that the satisfaction of Svetlichny’s inequality in the v→c limit is independent of initial particles’ velocity. Our study shows that whenever we use Czachor’s relativistic spin operator, results draws a clear picture of three-particle non-locality making its general properties consistent with previous studies on two-particle systems regardless of the W state or the GHZ state is involved. Throughout the paper, we also address the results of using Pauli’s operator in investigating the behavior of |Sv| under LT for both of the GHZ and W states and two cases (Cases 1 and 2). Our investigation shows that the violation of |Sv| in moving frame depends on the particle’s energy in the lab frame, which is in agreement with some previous works on two and three-particle systems. Our work may
Liouville quantum gravity on complex tori
NASA Astrophysics Data System (ADS)
David, François; Rhodes, Rémi; Vargas, Vincent
2016-02-01
In this paper, we construct Liouville Quantum Field Theory (LQFT) on the toroidal topology in the spirit of the 1981 seminal work by Polyakov [Phys. Lett. B 103, 207 (1981)]. Our approach follows the construction carried out by the authors together with Kupiainen in the case of the Riemann sphere ["Liouville quantum gravity on the Riemann sphere," e-print arXiv:1410.7318]. The difference is here that the moduli space for complex tori is non-trivial. Modular properties of LQFT are thus investigated. This allows us to integrate the LQFT on complex tori over the moduli space, to compute the law of the random Liouville modulus, therefore recovering (and extending) formulae obtained by physicists, and make conjectures about the relationship with random planar maps of genus one, eventually weighted by a conformal field theory and conformally embedded onto the torus.
Complex quantum trajectories for barrier scattering
NASA Astrophysics Data System (ADS)
Rowland, Bradley Allen
We have directed much attention towards developing quantum trajectory methods which can accurately predict the transmission probabilities for a variety of quantum mechanical barrier scattering processes. One promising method involves solving the complex quantum Hamilton-Jacobi equation with the Derivative Propagation Method (DPM). We present this method, termed complex valued DPM (CVDPM(n)). CVDPM(n) has been successfully employed in the Lagrangian frame to accurately compute transmission probabilities on 'thick' one dimensional Eckart and Gaussian potential surfaces. CVDPM(n) is able to reproduce accurate results with a much lower order of approximation than is required by real valued quantum trajectory methods, from initial wave packet energies ranging from the tunneling case (Eo = 0) to high energy cases (twice the barrier height). We successfully extended CVDPM(n) to two-dimensional problems (one translational degree of freedom representing an Eckart or Gaussian barrier coupled to a vibrational degree of freedom) in the Lagrangian framework with great success. CVDPM helps to explain why barrier scattering from "thick" barriers is a much more well posed problem than barrier scattering from "thin" barriers. Though results in these two cases are in very good agreement with grid methods, the search for an appropriate set of initial conditions (termed an 'isochrone) from which to launch the trajectories leads to a time-consuming search problem that is reminiscent of the root-searching problem from semi-classical dynamics. In order to circumvent the isochrone problem, we present CVDPM(n) equations of motion which are derived and implemented in the arbitrary Lagrangian-Eulerian frame for a metastable potential as well as the Eckart and Gaussian surfaces. In this way, the isochrone problem can be circumvented but at the cost of introducing other computational difficulties. In order to understand why CVDPM may give better transmission probabilities than real valued
Quantum streamlines within the complex quantum Hamilton-Jacobi formalism
Chou, C.-C.; Wyatt, Robert E.
2008-09-28
Quantum streamlines are investigated in the framework of the quantum Hamilton-Jacobi formalism. The local structures of the quantum momentum function (QMF) and the Polya vector field near a stagnation point or a pole are analyzed. Streamlines near a stagnation point of the QMF may spiral into or away from it, or they may become circles centered on this point or straight lines. Additionally, streamlines near a pole display east-west and north-south opening hyperbolic structure. On the other hand, streamlines near a stagnation point of the Polya vector field for the QMF display general hyperbolic structure, and streamlines near a pole become circles enclosing the pole. Furthermore, the local structures of the QMF and the Polya vector field around a stagnation point are related to the first derivative of the QMF; however, the magnitude of the asymptotic structures for these two fields near a pole depends only on the order of the node in the wave function. Two nonstationary states constructed from the eigenstates of the harmonic oscillator are used to illustrate the local structures of these two fields and the dynamics of the streamlines near a stagnation point or a pole. This study presents the abundant dynamics of the streamlines in the complex space for one-dimensional time-dependent problems.
Quantum streamlines within the complex quantum Hamilton-Jacobi formalism.
Chou, Chia-Chun; Wyatt, Robert E
2008-09-28
Quantum streamlines are investigated in the framework of the quantum Hamilton-Jacobi formalism. The local structures of the quantum momentum function (QMF) and the Polya vector field near a stagnation point or a pole are analyzed. Streamlines near a stagnation point of the QMF may spiral into or away from it, or they may become circles centered on this point or straight lines. Additionally, streamlines near a pole display east-west and north-south opening hyperbolic structure. On the other hand, streamlines near a stagnation point of the Polya vector field for the QMF display general hyperbolic structure, and streamlines near a pole become circles enclosing the pole. Furthermore, the local structures of the QMF and the Polya vector field around a stagnation point are related to the first derivative of the QMF; however, the magnitude of the asymptotic structures for these two fields near a pole depends only on the order of the node in the wave function. Two nonstationary states constructed from the eigenstates of the harmonic oscillator are used to illustrate the local structures of these two fields and the dynamics of the streamlines near a stagnation point or a pole. This study presents the abundant dynamics of the streamlines in the complex space for one-dimensional time-dependent problems. PMID:19045012
Optimal control of complex atomic quantum systems
NASA Astrophysics Data System (ADS)
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-10-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations.
Optimal control of complex atomic quantum systems
van Frank, S.; Bonneau, M.; Schmiedmayer, J.; Hild, S.; Gross, C.; Cheneau, M.; Bloch, I.; Pichler, T.; Negretti, A.; Calarco, T.; Montangero, S.
2016-01-01
Quantum technologies will ultimately require manipulating many-body quantum systems with high precision. Cold atom experiments represent a stepping stone in that direction: a high degree of control has been achieved on systems of increasing complexity. However, this control is still sub-optimal. In many scenarios, achieving a fast transformation is crucial to fight against decoherence and imperfection effects. Optimal control theory is believed to be the ideal candidate to bridge the gap between early stage proof-of-principle demonstrations and experimental protocols suitable for practical applications. Indeed, it can engineer protocols at the quantum speed limit – the fastest achievable timescale of the transformation. Here, we demonstrate such potential by computing theoretically and verifying experimentally the optimal transformations in two very different interacting systems: the coherent manipulation of motional states of an atomic Bose-Einstein condensate and the crossing of a quantum phase transition in small systems of cold atoms in optical lattices. We also show that such processes are robust with respect to perturbations, including temperature and atom number fluctuations. PMID:27725688
Cui, Yiqian; Shi, Junyou; Wang, Zili
2015-11-01
Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction.
Equivalent bosonic theory for the massive Thirring model with a non-local interaction
NASA Astrophysics Data System (ADS)
Li, Kang; Naón, Carlos
1998-10-01
We study, through path-integral methods, an extension of the massive Thirring model in which the interaction between currents is non-local. By examining the mass expansion of the partition function we show that this non-local massive Thirring model is equivalent to a certain non-local extension of the sine-Gordon theory. Thus, we establish a non-local generalization of the well known Coleman's equivalence. We also discuss some possible applications of this result in the context of one-dimensional strongly correlated systems and finite-size quantum field theories.
Measurement and Information Extraction in Complex Dynamics Quantum Computation
NASA Astrophysics Data System (ADS)
Casati, Giulio; Montangero, Simone
Quantum Information processing has several di.erent applications: some of them can be performed controlling only few qubits simultaneously (e.g. quantum teleportation or quantum cryptography) [1]. Usually, the transmission of large amount of information is performed repeating several times the scheme implemented for few qubits. However, to exploit the advantages of quantum computation, the simultaneous control of many qubits is unavoidable [2]. This situation increases the experimental di.culties of quantum computing: maintaining quantum coherence in a large quantum system is a di.cult task. Indeed a quantum computer is a many-body complex system and decoherence, due to the interaction with the external world, will eventually corrupt any quantum computation. Moreover, internal static imperfections can lead to quantum chaos in the quantum register thus destroying computer operability [3]. Indeed, as it has been shown in [4], a critical imperfection strength exists above which the quantum register thermalizes and quantum computation becomes impossible. We showed such e.ects on a quantum computer performing an e.cient algorithm to simulate complex quantum dynamics [5,6].
Focus on coherent control of complex quantum systems
NASA Astrophysics Data System (ADS)
Whaley, Birgitta; Milburn, Gerard
2015-10-01
The rapid growth of quantum information sciences over the past few decades has fueled a corresponding rise in high profile applications in fields such as metrology, sensors, spintronics, and attosecond dynamics, in addition to quantum information processing. Realizing this potential of today’s quantum science and the novel technologies based on this requires a high degree of coherent control of quantum systems. While early efforts in systematizing methods for high fidelity quantum control focused on isolated or closed quantum systems, recent advances in experimental design, measurement and monitoring, have stimulated both need and interest in the control of complex or large scale quantum systems that may also be coupled to an interactive environment or reservoir. This focus issue brings together new theoretical and experimental work addressing the formulation and implementation of quantum control for a broad range of applications in quantum science and technology today.
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
NASA Astrophysics Data System (ADS)
Chou, Chia-Chun
2016-10-01
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton-Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.
Quantum communication complexity advantage implies violation of a Bell inequality.
Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii
2016-03-22
We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs. PMID:26957600
Quantum communication complexity advantage implies violation of a Bell inequality
Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii
2016-01-01
We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs. PMID:26957600
Quantum communication complexity advantage implies violation of a Bell inequality
NASA Astrophysics Data System (ADS)
Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii
2016-03-01
We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs.
Quantum communication complexity advantage implies violation of a Bell inequality.
Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii
2016-03-22
We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs.
A generalized non-local optical response theory for plasmonic nanostructures.
Mortensen, N A; Raza, S; Wubs, M; Søndergaard, T; Bozhevolnyi, S I
2014-05-02
Metallic nanostructures exhibit a multitude of optical resonances associated with localized surface plasmon excitations. Recent observations of plasmonic phenomena at the sub-nanometre to atomic scale have stimulated the development of various sophisticated theoretical approaches for their description. Here instead we present a comparatively simple semiclassical generalized non-local optical response theory that unifies quantum pressure convection effects and induced charge diffusion kinetics, with a concomitant complex-valued generalized non-local optical response parameter. Our theory explains surprisingly well both the frequency shifts and size-dependent damping in individual metallic nanoparticles as well as the observed broadening of the crossover regime from bonding-dipole plasmons to charge-transfer plasmons in metal nanoparticle dimers, thus unravelling a classical broadening mechanism that even dominates the widely anticipated short circuiting by quantum tunnelling. We anticipate that our theory can be successfully applied in plasmonics to a wide class of conducting media, including doped semiconductors and low-dimensional materials such as graphene.
Non-locality breaking qubit channels: the case for CHSH inequality
NASA Astrophysics Data System (ADS)
Pal, Rajarshi; Ghosh, Sibasish
2015-04-01
Entanglement breaking channels play a significant role in quantum information theory. In this work we investigate qubit channels through their property of ‘non-locality breaking’, which is defined in a natural way but within the purview of CHSH non-locality. This also provides a different perspective on the relationship between entanglement and non-locality through the dual picture of quantum channels instead of through states. For a channel to be entanglement breaking, it is sufficient to ‘break’ the entanglement of maximally entangled states. We provide examples to show that for CHSH nonlocality breaking such a property does not hold in general, although for certain channels and for a restricted class of states for all channels this holds. We also consider channels whose output remains local under SLOCC and call them ‘strongly non-locality breaking’. We provide a closed-form necessary-sufficient condition for any two-qubit state to show hidden CHSH non-locality, which is likely to be useful for other purposes as well. This in turn allows us to characterize all strongly non-locality breaking qubit channels. It turns out that unital qubit channels breaking non-locality of maximally entangled states are strongly non-locality breaking while extremal qubit channels cannot be so unless they are entanglement breaking.
Complex quantum network geometries: Evolution and phase transitions.
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Complex quantum network geometries: Evolution and phase transitions
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Reducing computational complexity of quantum correlations
NASA Astrophysics Data System (ADS)
Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal
2015-12-01
We address the issue of reducing the resource required to compute information-theoretic quantum correlation measures such as quantum discord and quantum work deficit in two qubits and higher-dimensional systems. We show that determination of the quantum correlation measure is possible even if we utilize a restricted set of local measurements. We find that the determination allows us to obtain a closed form of quantum discord and quantum work deficit for several classes of states, with a low error. We show that the computational error caused by the constraint over the complete set of local measurements reduces fast with an increase in the size of the restricted set, implying usefulness of constrained optimization, especially with the increase of dimensions. We perform quantitative analysis to investigate how the error scales with the system size, taking into account a set of plausible constructions of the constrained set. Carrying out a comparative study, we show that the resource required to optimize quantum work deficit is usually higher than that required for quantum discord. We also demonstrate that minimization of quantum discord and quantum work deficit is easier in the case of two-qubit mixed states of fixed ranks and with positive partial transpose in comparison to the corresponding states having nonpositive partial transpose. Applying the methodology to quantum spin models, we show that the constrained optimization can be used with advantage in analyzing such systems in quantum information-theoretic language. For bound entangled states, we show that the error is significantly low when the measurements correspond to the spin observables along the three Cartesian coordinates, and thereby we obtain expressions of quantum discord and quantum work deficit for these bound entangled states.
Exponential rise of dynamical complexity in quantum computing through projections.
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-10-10
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.
Exponential rise of dynamical complexity in quantum computing through projections
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-01-01
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once ‘observed’ as outlined above. Conversely, we show that any complex quantum dynamics can be ‘purified’ into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics. PMID:25300692
Complexity of the Quantum Adiabatic Algorithm
NASA Technical Reports Server (NTRS)
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
Degree Distribution in Quantum Walks on Complex Networks
NASA Astrophysics Data System (ADS)
Faccin, Mauro; Johnson, Tomi; Biamonte, Jacob; Kais, Sabre; Migdał, Piotr
2013-10-01
In this theoretical study, we analyze quantum walks on complex networks, which model network-based processes ranging from quantum computing to biology and even sociology. Specifically, we analytically relate the average long-time probability distribution for the location of a unitary quantum walker to that of a corresponding classical walker. The distribution of the classical walker is proportional to the distribution of degrees, which measures the connectivity of the network nodes and underlies many methods for analyzing classical networks, including website ranking. The quantum distribution becomes exactly equal to the classical distribution when the walk has zero energy, and at higher energies, the difference, the so-called quantumness, is bounded by the energy of the initial state. We give an example for which the quantumness equals a Rényi entropy of the normalized weighted degrees, guiding us to regimes for which the classical degree-dependent result is recovered and others for which quantum effects dominate.
Consistent theory for causal non-locality beyond the Born's rule
NASA Astrophysics Data System (ADS)
Son, Wonmin
2014-02-01
According to the theory of relativity and causality, a special type of correlation beyond quantum mechanics is possible in principle under the name of a non-local box. The concept has been introduced from the principle of non-locality, which satisfies relativistic causality. In this paper, we show that a correlation leading to the non-local box can be derived consistently if we release one of major axioms in quantum mechanics, Born's rule. This allows us to obtain a theory that in one end of the spectrum agrees with the classical probability and in the other end agrees with the theory of non-local causality. At the same time, we argue that the correlation lies in a space with special mathematical constraints such that a physical realization of the correlation through a probability measure is not possible in one direction of its limit, but is possible in the other limit.
Cui, Yiqian; Shi, Junyou; Wang, Zili
2015-11-01
Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. PMID:26277609
Bellʼs inequality and extremal non-local box from Hardyʼs test for non-locality
NASA Astrophysics Data System (ADS)
Yu, Sixia
2014-10-01
Bell showed 50 years ago that quantum theory is non-local via his celebrated inequalities, turning the issue of quantum non-locality from a matter of taste into a matter of test. Years later, Hardy proposed a test for non-locality without inequality, which is a kind of ‘something-versus-nothing’ argument. Hardy's test for n particles induces an n-partite Bell's inequality with two dichotomic local measurements for each observer, which has been shown to be violated by all entangled pure states. Our first result is to show that the Bell-Hardy inequality arising form Hardy's non-locality test is tight for an arbitrary number of parties, i.e., it defines a facet of the Bell polytope in the given scenario. On the other hand quantum theory is not that non-local since it forbids signaling and even not as non-local as allowed by non-signaling conditions, i.e., quantum mechanical predictions form a strict subset of the so called non-signaling polytope. In the scenario of each observer measuring two dichotomic observables, Fritz established a duality between the Bell polytope and the non-signaling polytope: tight Bell's inequalities, the facets of the Bell polytope, are in a one-to-one correspondence with extremal non-signaling boxes, the vertices of the non-signaling polytope. Our second result is to provide an alternative and more direct formula for this duality. As an example, the tight Bell-Hardy inequality gives rise to an extremal non-signaling box that serves as a natural multipartite generalization of Popescu-Rohrlich box. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.
Non-local MRI denoising using random sampling.
Hu, Jinrong; Zhou, Jiliu; Wu, Xi
2016-09-01
In this paper, we propose a random sampling non-local mean (SNLM) algorithm to eliminate noise in 3D MRI datasets. Non-local means (NLM) algorithms have been implemented efficiently for MRI denoising, but are always limited by high computational complexity. Compared to conventional methods, which raster through the entire search window when computing similarity weights, the proposed SNLM algorithm randomly selects a small subset of voxels which dramatically decreases the computational burden, together with competitive denoising result. Moreover, structure tensor which encapsulates high-order information was introduced as an optimal sampling pattern for further improvement. Numerical experiments demonstrated that the proposed SNLM method can get a good balance between denoising quality and computation efficiency. At a relative sampling ratio (i.e. ξ=0.05), SNLM can remove noise as effectively as full NLM, meanwhile the running time can be reduced to 1/20 of NLM's. PMID:27114338
Complex Wavelet Transform of the Two-mode Quantum States
NASA Astrophysics Data System (ADS)
Song, Jun; Zhou, Jun; Yuan, Hao; He, Rui; Fan, Hong-Yi
2016-08-01
By employing the bipartite entangled state representation and the technique of integration within an ordered product of operators, the classical complex wavelet transform of a complex signal function can be recast to a matrix element of the squeezing-displacing operator U 2( μ, σ) between the mother wavelet vector < ψ| and the two-mode quantum state vector | f> to be transformed. < ψ| U 2( μ, σ)| f> can be considered as the spectrum for analyzing the two-mode quantum state | f>. In this way, for some typical two-mode quantum states, such as two-mode coherent state and two-mode Fock state, we derive the complex wavelet transform spectrum and carry out the numerical calculation. This kind of wavelet-transform spectrum can be used to recognize quantum states.
Quantum complex sine-Gordon dressed boundaries
NASA Astrophysics Data System (ADS)
Bowcock, P.; Umpleby, J. M.
2008-11-01
In this paper we investigate the quantum reflection factor for the CSG dressed boundary, previously constructed by dressing the Dirichlet boundary with the integrable CSG defect [1]. We analyse classical bound states and use semi-classical methods to investigate the quantum boundary spectrum. We conjecture a fully quantum reflection matrix for a particle reflecting from an unexcited boundary. By using the reflection and boundary bootstrap equations, the reflection matrix for a charge Q = +n soliton reflecting from the mth excited boundary is constructed. Evidence supporting our conjecture is given by checking that the bootstrap closes and that the reflection matrices agrees with known results in the classical limit. A partial analysis of the poles in the reflection matrices which arise from Coleman-Thun diagrams is given.
NASA Astrophysics Data System (ADS)
Glick, Aaron; Carr, Lincoln; Calarco, Tommaso; Montangero, Simone
2014-03-01
In order to investigate the emergence of complexity in quantum systems, we present a quantum game of life, inspired by Conway's classic game of life. Through Matrix Product State (MPS) calculations, we simulate the evolution of quantum systems, dictated by a Hamiltonian that defines the rules of our quantum game. We analyze the system through a number of measures which elicit the emergence of complexity in terms of spatial organization, system dynamics, and non-local mutual information within the network. Funded by NSF
Switching non-local vector median filter
NASA Astrophysics Data System (ADS)
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2016-04-01
This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.
Identifying the quantum correlations in light-harvesting complexes
Bradler, Kamil; Wilde, Mark M.; Vinjanampathy, Sai; Uskov, Dmitry B.
2010-12-15
One of the major efforts in the quantum biological program is to subject biological systems to standard tests or measures of quantumness. These tests and measures should elucidate whether nontrivial quantum effects may be present in biological systems. Two such measures of quantum correlations are the quantum discord and the relative entropy of entanglement. Here, we show that the relative entropy of entanglement admits a simple analytic form when dynamics and accessible degrees of freedom are restricted to a zero- and single-excitation subspace. We also simulate and calculate the amount of quantum discord that is present in the Fenna-Matthews-Olson protein complex during the transfer of an excitation from a chlorosome antenna to a reaction center. We find that the single-excitation quantum discord and single-excitation relative entropy of entanglement are equal for all of our numerical simulations, but a proof of their general equality for this setting evades us for now. Also, some of our simulations demonstrate that the relative entropy of entanglement without the single-excitation restriction is much lower than the quantum discord. The first picosecond of dynamics is the relevant time scale for the transfer of the excitation, according to some sources in the literature. Our simulation results indicate that quantum correlations contribute a significant fraction of the total correlation during this first picosecond in many cases, at both cryogenic and physiological temperatures.
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán
2014-03-11
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
Non-local formulation for multiscale flow in porous media
NASA Astrophysics Data System (ADS)
Delgoshaie, Amir H.; Meyer, Daniel W.; Jenny, Patrick; Tchelepi, Hamdi A.
2015-12-01
The multiscale nature of geological formations is reflected in the flow and transport behaviors of the pore fluids. For example, multiple pathways between different locations in the porous medium are usually present. The topology, length, and strength of these flow paths can vary significantly, and the total flow at a given location can be the result of contributions from a wide range of pathways between the points of interest. We use a high-resolution pore network of a natural porous formation as an example of the multiscale connectivity of the pore space. A single continuum model can capture the contributions from all the flow paths properly only if the control volume (computational cell) is much larger than the longest pathway. However, depending on the densities and lengths of these long pathways, choosing the appropriate size of the control volume that allows for a single continuum description of the properties, such as conductivity and transmissibility, may conflict with the desire to resolve the flow field properly. To capture the effects of the multiscale pathways on the flow, a non-local continuum model is described. The model can represent non-local effects, for which Darcy's law is not valid. In the limit where the longest connections are much smaller than the size of the control volume, the model is consistent with Darcy's law. The non-local model is used to describe the flow in complex pore networks. The pressure distributions obtained from the non-local model are compared with pore-network flow simulations, and the results are in excellent agreement. Importantly, such multiscale flow behaviors cannot be represented using the local Darcy law.
Thermal Quantum Correlations in Photosynthetic Light-Harvesting Complexes
NASA Astrophysics Data System (ADS)
Mahdian, M.; Kouhestani, H.
2015-08-01
Photosynthesis is one of the ancient biological processes, playing crucial role converting solar energy to cellular usable currency. Environmental factors and external perturbations has forced nature to choose systems with the highest efficiency and performance. Recent theoretical and experimental studies have proved the presence of quantum properties in biological systems. Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum entanglement between sites of Bacteriophylla molecules in protein environment and presence of decoherence. Complex biological systems implement more truthful mechanisms beside chemical-quantum correlations to assure system's efficiency. In this study we investigate thermal quantum correlations in FMO protein of the photosynthetic apparatus of green sulfur bacteria by quantum discord measure. The results confirmed existence of remarkable quantum correlations of of BChla pigments in room temperature. This results approve involvement of quantum correlation mechanisms for information storage and retention in living organisms that could be useful for further evolutionary studies. Inspired idea of this study is potentially interesting to practice by the same procedure in genetic data transfer mechanisms.
Complex quantum networks as structured environments: engineering and probing
Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki
2016-01-01
We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity. PMID:27230125
Complex quantum networks as structured environments: engineering and probing
NASA Astrophysics Data System (ADS)
Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki
2016-05-01
We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity.
Complex quantum networks as structured environments: engineering and probing.
Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki
2016-05-27
We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity.
Retro-causation, Minimum Contradictions and Non-locality
NASA Astrophysics Data System (ADS)
Kafatos, Menas; Nassikas, Athanassios A.
2011-11-01
Retro-causation has been experimentally verified by Bem and proposed by Kafatos in the form of space-time non-locality in the quantum framework. Every theory includes, beyond its specific axioms, the principles of logical communication (logical language), through which it is defined. This communication obeys the Aristotelian logic (Classical Logic), the Leibniz Sufficient Reason Principle, and a hidden axiom, which basically states that there is anterior-posterior relationship everywhere in communication. By means of a theorem discussed here, it can be proved that the communication mentioned implies contradictory statements, which can only be transcended through silence, i.e. the absence of any statements. Moreover, the breaking of silence is meaningful through the claim for minimum contradictions, which implies the existence of both a logical and an illogical dimension; contradictions refer to causality, implying its opposite, namely retro-causation, and the anterior posterior axiom, implying space-time non-locality. The purpose of this paper is to outline a framework accounting for retro-causation, through both purely theoretical and reality based points of view.
Non-local models for ductile failure
NASA Astrophysics Data System (ADS)
César de Sá, José; Azinpour, Erfan; Santos, Abel
2016-08-01
Ductile damage can be dealt with continuous descriptions of material, resorting, for example, to continuous damage mechanic descriptions or micromechanical constitutive models. When it comes to describe material behaviour near and beyond fracture these approaches are no longer sufficient or valid and continuous/discontinuous approaches can be adopted to track fracture initiation and propagation. Apart from more pragmatic solutions like element erosion or remeshing techniques more advanced approaches based on the X-FEM concept, in particular associated with non-local formulations, may be adopted to numerically model these problems. Nevertheless, very often, for practical reasons, some important aspects are somewhat left behind, specially energetic requirements to promote the necessary transition of energy release associated with material damage and fracture energy associated to a crack creation and evolution. Phase-field methods may combine advantages of regularised continuous models by providing a similar description to non-local thermodynamical continuous damage mechanics, as well as, a "continuous" approach to numerically follow crack evolution and branching
Limited-path-length entanglement percolation in quantum complex networks
NASA Astrophysics Data System (ADS)
Cuquet, Martí; Calsamiglia, John
2011-03-01
We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.
Limited-path-length entanglement percolation in quantum complex networks
Cuquet, Marti; Calsamiglia, John
2011-03-15
We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.
Universally optimal noisy quantum walks on complex networks
NASA Astrophysics Data System (ADS)
Caruso, Filippo
2014-05-01
Transport properties play a crucial role in several fields of science, for example biology, chemistry, sociology, information science and physics. The behavior of many dynamical processes running over complex networks is known to be closely related to the geometry of the underlying topology, but this connection becomes even harder to understand when quantum effects come into play. Here, we exploit the Kossakowski-Lindblad formalism of quantum stochastic walks to investigate the capability of quickly and robustly transmitting energy (or information) between two distant points in very large complex structures, remarkably assisted by external noise and quantum features such as coherence. An optimal mixing of classical and quantum transport is, very surprisingly, quite universal for a large class of complex networks. This widespread behavior turns out to be also extremely robust with respect to geometry changes. These results might pave the way for designing optimal bio-inspired geometries of efficient transport nanostructures that can be used for solar energy and also quantum information and communication technologies.
Epistemic view of quantum states and communication complexity of quantum channels.
Montina, Alberto
2012-09-14
The communication complexity of a quantum channel is the minimal amount of classical communication required for classically simulating a process of state preparation, transmission through the channel and subsequent measurement. It establishes a limit on the power of quantum communication in terms of classical resources. We show that classical simulations employing a finite amount of communication can be derived from a special class of hidden variable theories where quantum states represent statistical knowledge about the classical state and not an element of reality. This special class has attracted strong interest very recently. The communication cost of each derived simulation is given by the mutual information between the quantum state and the classical state of the parent hidden variable theory. Finally, we find that the communication complexity for single qubits is smaller than 1.28 bits. The previous known upper bound was 1.85 bits.
Applications of fidelity measures to complex quantum systems.
Wimberger, Sandro
2016-06-13
We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space. PMID:27140967
Quantum simulations of small electron-hole complexes
Lee, M.A.; Kalia, R.K.; Vashishta, P.D.
1984-09-01
The Green's Function Monte Carlo method is applied to the calculation of the binding energies of electron-hole complexes in semiconductors. The quantum simulation method allows the unambiguous determination of the ground state energy and the effects of band anisotropy on the binding energy. 22 refs., 1 fig.
Phase transition of light on complex quantum networks.
Halu, Arda; Garnerone, Silvano; Vezzani, Alessandro; Bianconi, Ginestra
2013-02-01
Recent advances in quantum optics and atomic physics allow for an unprecedented level of control over light-matter interactions, which can be exploited to investigate new physical phenomena. In this work we are interested in the role played by the topology of quantum networks describing coupled optical cavities and local atomic degrees of freedom. In particular, using a mean-field approximation, we study the phase diagram of the Jaynes-Cummings-Hubbard model on complex networks topologies, and we characterize the transition between a Mott-like phase of localized polaritons and a superfluid phase. We found that, for complex topologies, the phase diagram is nontrivial and well defined in the thermodynamic limit only if the hopping coefficient scales like the inverse of the maximal eigenvalue of the adjacency matrix of the network. Furthermore we provide numerical evidences that, for some complex network topologies, this scaling implies an asymptotically vanishing hopping coefficient in the limit of large network sizes. The latter result suggests the interesting possibility of observing quantum phase transitions of light on complex quantum networks even with very small couplings between the optical cavities.
Network geometry with flavor: From complexity to quantum geometry
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but
Network geometry with flavor: From complexity to quantum geometry.
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its
Network geometry with flavor: From complexity to quantum geometry.
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its
Multipartite quantum entanglement evolution in photosynthetic complexes.
Zhu, Jing; Kais, Sabre; Aspuru-Guzik, Alán; Rodriques, Sam; Brock, Ben; Love, Peter J
2012-08-21
We investigate the evolution of entanglement in the Fenna-Matthew-Olson (FMO) complex based on simulations using the scaled hierarchical equations of motion approach. We examine the role of entanglement in the FMO complex by direct computation of the convex roof. We use monogamy to give a lower bound for entanglement and obtain an upper bound from the evaluation of the convex roof. Examination of bipartite measures for all possible bipartitions provides a complete picture of the multipartite entanglement. Our results support the hypothesis that entanglement is maximum primary along the two distinct electronic energy transfer pathways. In addition, we note that the structure of multipartite entanglement is quite simple, suggesting that there are constraints on the mixed state entanglement beyond those due to monogamy.
Non-locality Sudden Death in Tripartite Systems
Jaeger, Gregg; Ann, Kevin
2009-03-10
Bell non-locality sudden death is the disappearance of non-local properties in finite times under local phase noise, which decoheres states only in the infinite-time limit. We consider the relationship between decoherence, disentanglement, and Bell non-locality sudden death in bipartite and tripartite systems in specific large classes of state preparation.
Complex weak values in quantum measurement
Jozsa, Richard
2007-10-15
In the weak value formalism of Aharonov et al., the weak value A{sub w} of any observable A is generally a complex number. We derive a physical interpretation of its value in terms of the shift in the measurement pointer's mean position and mean momentum. In particular, we show that the mean position shift contains a term jointly proportional to the imaginary part of the weak value and the rate at which the pointer is spreading in space as it enters the measurement interaction.
Quantum ferroelectricity in charge-transfer complex crystals.
Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori
2015-01-01
Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4-n bromine substituents (QBr4-nIn, n=0-4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF-QBr2I2 exhibits a ferroelectric neutral-ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral-ionic transition compounds, such as well-known ferroelectric complex of TTF-QCl4 and quantum antiferroelectric of dimethyl-TTF-QBr4. By contrast, TTF-QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656
Quantum trajectories in complex phase space: multidimensional barrier transmission.
Wyatt, Robert E; Rowland, Brad A
2007-07-28
The quantum Hamilton-Jacobi equation for the action function is approximately solved by propagating individual Lagrangian quantum trajectories in complex-valued phase space. Equations of motion for these trajectories are derived through use of the derivative propagation method (DPM), which leads to a hierarchy of coupled differential equations for the action function and its spatial derivatives along each trajectory. In this study, complex-valued classical trajectories (second order DPM), along which is transported quantum phase information, are used to study low energy barrier transmission for a model two-dimensional system involving either an Eckart or Gaussian barrier along the reaction coordinate coupled to a harmonic oscillator. The arrival time for trajectories to reach the transmitted (product) region is studied. Trajectories launched from an "equal arrival time surface," defined as an isochrone, all reach the real-valued subspace in the transmitted region at the same time. The Rutherford-type diffraction of trajectories around poles in the complex extended Eckart potential energy surface is described. For thin barriers, these poles are close to the real axis and present problems for computing the transmitted density. In contrast, for the Gaussian barrier or the thick Eckart barrier where the poles are further from the real axis, smooth transmitted densities are obtained. Results obtained using higher-order quantum trajectories (third order DPM) are described for both thick and thin barriers, and some issues that arise for thin barriers are examined. PMID:17672677
Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit
NASA Astrophysics Data System (ADS)
Buchmann, L. F.; Schreppler, S.; Kohler, J.; Spethmann, N.; Stamper-Kurn, D. M.
2016-07-01
A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation.
The detectability lemma and its applications to quantum Hamiltonian complexity
NASA Astrophysics Data System (ADS)
Aharonov, Dorit; Arad, Itai; Vazirani, Umesh; Landau, Zeph
2011-11-01
Quantum Hamiltonian complexity, an emerging area at the intersection of condensed matter physics and quantum complexity theory, studies the properties of local Hamiltonians and their ground states. In this paper we focus on a seemingly specialized technical tool, the detectability lemma (DL), introduced in the context of the quantum PCP challenge (Aharonov et al 2009 arXiv:0811.3412), which is a major open question in quantum Hamiltonian complexity. We show that a reformulated version of the lemma is a versatile tool that can be used in place of the celebrated Lieb-Robinson (LR) bound to prove several important results in quantum Hamiltonian complexity. The resulting proofs are much simpler, more combinatorial and provide a plausible path toward tackling some fundamental open questions in Hamiltonian complexity. We provide an alternative simpler proof of the DL that removes a key restriction in the original statement (Aharonov et al 2009 arXiv:0811.3412), making it more suitable for the broader context of quantum Hamiltonian complexity. Specifically, we first use the DL to provide a one-page proof of Hastings' result that the correlations in the ground states of gapped Hamiltonians decay exponentially with distance (Hastings 2004 Phys. Rev. B 69 104431). We then apply the DL to derive a simpler and more intuitive proof of Hastings' seminal one-dimensional (1D) area law (Hastings 2007 J. Stat. Mech. (2007) P8024) (both these proofs are restricted to frustration-free systems). Proving the area law for two and higher dimensions is one of the most important open questions in the field of Hamiltonian complexity, and the combinatorial nature of the DL-based proof holds out hope for a possible generalization. Indeed, soon after the first publication of the methods presented here, they were applied to derive exponential improvements to Hastings' result (Arad et al 2011, Aharonov et al 2011) in the case of frustration-free 1D systems. Finally, we also provide a more general
On the complexity of search for keys in quantum cryptography
NASA Astrophysics Data System (ADS)
Molotkov, S. N.
2016-03-01
The trace distance is used as a security criterion in proofs of security of keys in quantum cryptography. Some authors doubted that this criterion can be reduced to criteria used in classical cryptography. The following question has been answered in this work. Let a quantum cryptography system provide an ɛ-secure key such that ½‖ρ XE - ρ U ⊗ ρ E ‖1 < ɛ, which will be repeatedly used in classical encryption algorithms. To what extent does the ɛ-secure key reduce the number of search steps (guesswork) as compared to the use of ideal keys? A direct relation has been demonstrated between the complexity of the complete consideration of keys, which is one of the main security criteria in classical systems, and the trace distance used in quantum cryptography. Bounds for the minimum and maximum numbers of search steps for the determination of the actual key have been presented.
Probing non local order parameters in highly correlated Bose insulators
NASA Astrophysics Data System (ADS)
Altman, Ehud
2008-03-01
Ground states of integer spin chains are known since the late 80's to sustain highly non local order described by infinite string operators of the spins. Such states defy the usual Landau theory description and can be considered simple prototypes of topological order. Recently we showed that spinless Bose insulators with nearest neighbor or longer range repulsion in one dimension can exhibit similar string order in terms of the boson density [1]. The tunability of cold atomic systems would allow much more flexibility in probing the non local order than spin systems do. For example the bosons can be tuned across a quantum phase transition between the exotic insulator, which we term Haldane insulator, and the usual Mott insulator. Investigating how the transition responds to external perturbations lends direct access to properties of the string order parameter. I will demonstrate this with several new results obtained from a field theoretic description of the phases and confirmed by numerical calculations using DMRG. Particularly revealing of the unusual character of the string order is the prediction that any external perturbation, which breaks the lattice inversion symmetry, would eliminate the distinction between the Haldane and Mott phases and allow a fully gapped adiabatic connection between them. This is remarkable given that neither phase involves spontaneous breaking of lattice inversion symmetry. We also predict that inter-chain tunneling destroys the direct phase transition between the two insulators by establishing an intermediate superfluid phase. Finally I will discuss how the new phases and phase transitions may be realized and probed in actual experiments with ultra cold atoms or polar molecules. [1] E. G. Dalla Torre, E. Berg and E. Altman, Phys. Rev. Lett. 97, 260401 (2006)
Embracing chaos and complexity: a quantum change for public health.
Resnicow, Kenneth; Page, Scott E
2008-08-01
Public health research and practice have been guided by a cognitive, rational paradigm where inputs produce linear, predictable changes in outputs. However, the conceptual and statistical assumptions underlying this paradigm may be flawed. In particular, this perspective does not adequately account for nonlinear and quantum influences on human behavior. We propose that health behavior change is better understood through the lens of chaos theory and complex adaptive systems. Key relevant principles include that behavior change (1) is often a quantum event; (2) can resemble a chaotic process that is sensitive to initial conditions, highly variable, and difficult to predict; and (3) occurs within a complex adaptive system with multiple components, where results are often greater than the sum of their parts. PMID:18556599
Design of magnetic coordination complexes for quantum computing.
Aromí, Guillem; Aguilà, David; Gamez, Patrick; Luis, Fernando; Roubeau, Olivier
2012-01-21
A very exciting prospect in coordination chemistry is to manipulate spins within magnetic complexes for the realization of quantum logic operations. An introduction to the requirements for a paramagnetic molecule to act as a 2-qubit quantum gate is provided in this tutorial review. We propose synthetic methods aimed at accessing such type of functional molecules, based on ligand design and inorganic synthesis. Two strategies are presented: (i) the first consists in targeting molecules containing a pair of well-defined and weakly coupled paramagnetic metal aggregates, each acting as a carrier of one potential qubit, (ii) the second is the design of dinuclear complexes of anisotropic metal ions, exhibiting dissimilar environments and feeble magnetic coupling. The first systems obtained from this synthetic program are presented here and their properties are discussed.
Non-Markovian Complexity in the Quantum-to-Classical Transition.
Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco
2015-08-25
The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free.
ACCELERATED MRI USING ITERATIVE NON-LOCAL SHRINKAGE
Mohsin, Yasir Q.; Ongie, Gregory; Jacob, Mathews
2015-01-01
We introduce a fast iterative non-local shrinkage algorithm to recover MRI data from undersampled Fourier measurements. This approach is enabled by the reformulation of current non-local schemes as an alternating algorithm to minimize a global criterion. The proposed algorithm alternates between a non-local shrinkage step and a quadratic subproblem. The resulting algorithm is observed to be considerably faster than current alternating non-local algorithms. We use efficient continuation strategies to minimize local minima issues. The comparisons of the proposed scheme with state-of-the-art regularization schemes show a considerable reduction in alias artifacts and preservation of edges. PMID:25570265
On the complexity of classical and quantum algorithms for numerical problems in quantum mechanics
NASA Astrophysics Data System (ADS)
Bessen, Arvid J.
Our understanding of complex quantum mechanical processes is limited by our inability to solve the equations that govern them except for simple cases. Numerical simulation of quantum systems appears to be our best option to understand, design and improve quantum systems. It turns out, however, that computational problems in quantum mechanics are notoriously difficult to treat numerically. The computational time that is required often scales exponentially with the size of the problem. One of the most radical approaches for treating quantum problems was proposed by Feytiman in 1982 [46]: he suggested that quantum mechanics itself showed a promising way to simulate quantum physics. This idea, the so called quantum computer, showed its potential convincingly in one important regime with the development of Shor's integer factorization algorithm which improves exponentially on the best known classical algorithm. In this thesis we explore six different computational problems from quantum mechanics, study their computational complexity and try to find ways to remedy them. In the first problem we investigate the reasons behind the improved performance of Shor's and similar algorithms. We show that the key quantum part in Shor's algorithm, the quantum phase estimation algorithm, achieves its good performance through the use of power queries and we give lower bounds for all phase estimation algorithms that use power queries that match the known upper bounds. Our research indicates that problems that allow the use of power queries will achieve similar exponential improvements over classical algorithms. We then apply our lower bound technique for power queries to the Sturm-Liouville eigenvalue problem and show matching lower bounds to the upper bounds of Papageorgiou and Wozniakowski [85]. It seems to be very difficult, though, to find nontrivial instances of the Sturm-Lionville problem for which power queries can be simulated efficiently. A quantum computer differs from a
Computational complexity of nonequilibrium steady states of quantum spin chains
NASA Astrophysics Data System (ADS)
Marzolino, Ugo; Prosen, Tomaž
2016-03-01
We study nonequilibrium steady states (NESS) of spin chains with boundary Markovian dissipation from the computational complexity point of view. We focus on X X chains whose NESS are matrix product operators, i.e., with coefficients of a tensor operator basis described by transition amplitudes in an auxiliary space. Encoding quantum algorithms in the auxiliary space, we show that estimating expectations of operators, being local in the sense that each acts on disjoint sets of few spins covering all the system, provides the answers of problems at least as hard as, and believed by many computer scientists to be much harder than, those solved by quantum computers. We draw conclusions on the hardness of the above estimations.
Rooted-tree network for optimal non-local gate implementation
NASA Astrophysics Data System (ADS)
Vyas, Nilesh; Saha, Debashis; Panigrahi, Prasanta K.
2016-09-01
A general quantum network for implementing non-local control-unitary gates, between remote parties at minimal entanglement cost, is shown to be a rooted-tree structure. Starting from a five-party scenario, we demonstrate the local implementation of simultaneous class of control-unitary(Hermitian) and multiparty control-unitary gates in an arbitrary n-party network. Previously, established networks are turned out to be special cases of this general construct.
Rooted-tree network for optimal non-local gate implementation
NASA Astrophysics Data System (ADS)
Vyas, Nilesh; Saha, Debashis; Panigrahi, Prasanta K.
2016-06-01
A general quantum network for implementing non-local control-unitary gates, between remote parties at minimal entanglement cost, is shown to be a rooted-tree structure. Starting from a five-party scenario, we demonstrate the local implementation of simultaneous class of control-unitary(Hermitian) and multiparty control-unitary gates in an arbitrary n-party network. Previously, established networks are turned out to be special cases of this general construct.
Upper bounds on quantum uncertainty products and complexity measures
Guerrero, Angel; Sanchez-Moreno, Pablo; Dehesa, Jesus S.
2011-10-15
The position-momentum Shannon and Renyi uncertainty products of general quantum systems are shown to be bounded not only from below (through the known uncertainty relations), but also from above in terms of the Heisenberg-Kennard product . Moreover, the Cramer-Rao, Fisher-Shannon, and Lopez-Ruiz, Mancini, and Calbet shape measures of complexity (whose lower bounds have been recently found) are also bounded from above. The improvement of these bounds for systems subject to spherically symmetric potentials is also explicitly given. Finally, applications to hydrogenic and oscillator-like systems are done.
Positron-atom complexes as quantum halo states.
Mitroy, J
2005-01-28
The wave functions of a number of positron-atom complexes are analyzed and three of the systems, namely, e(+)Be, e(+)Na, and e(+)He((3)S(e)), are seen to exhibit quantum halo structures with 45%-50% of their probability distribution lying in the large r classically forbidden region. The mean square distance between the large r fragments (e(+) + Be, Ps + Na+, Ps + He+) for these systems range from 1.8 to 2.2 times larger than the square of the classical turning point, another indication of their halolike nature.
Quantum Computer Games: Quantum Minesweeper
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Tests of non-local interferences in kaon physics at asymmetric [phi]-factories
Eberhard, P.H.
1993-04-16
Tests of non-local interference effects in the two-kaon system are proposed. The first kind of tests consists of measuring the amount of destructive interference between K[sub S] [yields] K[sub L] regeneration processes of two distant kaons. The second kind deals with constructive interference. These tests could be performed at an asymmetric [phi]-factory. Estimates are given of the number of events predicted by orthodox quantum mechanics and kaon regeneration theory in various suitable experimental conditions. The impact on local theories if the predictions of quantum mechanics hold is discussed.
Tests of non-local interferences in kaon physics at asymmetric {phi}-factories
Eberhard, P.H.
1993-04-16
Tests of non-local interference effects in the two-kaon system are proposed. The first kind of tests consists of measuring the amount of destructive interference between K{sub S} {yields} K{sub L} regeneration processes of two distant kaons. The second kind deals with constructive interference. These tests could be performed at an asymmetric {phi}-factory. Estimates are given of the number of events predicted by orthodox quantum mechanics and kaon regeneration theory in various suitable experimental conditions. The impact on local theories if the predictions of quantum mechanics hold is discussed.
Effect of the interface resistance in non-local Hanle measurements
Villamor, Estitxu; Hueso, Luis E.; Casanova, Fèlix
2015-06-14
We use lateral spin valves with varying interface resistance to measure non-local Hanle effect in order to extract the spin-diffusion length of the non-magnetic channel. A general expression that describes spin injection and transport, taking into account the influence of the interface resistance, is used to fit our results. Whereas the fitted spin-diffusion length value is in agreement with the one obtained from standard non-local measurements in the case of a finite interface resistance, in the case of transparent contacts a clear disagreement is observed. The use of a corrected expression, recently proposed to account for the anisotropy of the spin absorption at the ferromagnetic electrodes, still yields a deviation of the fitted spin-diffusion length which increases for shorter channel distances. This deviation shows how sensitive the non-local Hanle fittings are, evidencing the complexity of obtaining spin transport information from such type of measurements.
Non-local gravity and comparison with observational datasets
Dirian, Yves; Foffa, Stefano; Kunz, Martin; Maggiore, Michele; Pettorino, Valeria E-mail: stefano.foffa@unige.ch E-mail: michele.maggiore@unige.ch
2015-04-01
We study the cosmological predictions of two recently proposed non-local modifications of General Relativity. Both models have the same number of parameters as ΛCDM, with a mass parameter m replacing the cosmological constant. We implement the cosmological perturbations of the non-local models into a modification of the CLASS Boltzmann code, and we make a full comparison to CMB, BAO and supernova data. We find that the non-local models fit these datasets very well, at the same level as ΛCDM. Among the vast literature on modified gravity models, this is, to our knowledge, the only example which fits data as well as ΛCDM without requiring any additional parameter. For both non-local models parameter estimation using Planck +JLA+BAO data gives a value of H{sub 0} slightly higher than in ΛCDM.
Universality at Breakdown of Quantum Transport on Complex Networks
NASA Astrophysics Data System (ADS)
Kulvelis, Nikolaj; Dolgushev, Maxim; Mülken, Oliver
2015-09-01
We consider single-particle quantum transport on parametrized complex networks. Based on general arguments regarding the spectrum of the corresponding Hamiltonian, we derive bounds for a measure of the global transport efficiency defined by the time-averaged return probability. For treelike networks, we show analytically that a transition from efficient to inefficient transport occurs depending on the (average) functionality of the nodes of the network. In the infinite system size limit, this transition can be characterized by an exponent which is universal for all treelike networks. Our findings are corroborated by analytic results for specific deterministic networks, dendrimers and Vicsek fractals, and by Monte Carlo simulations of iteratively built scale-free trees.
Superlocalization spectral imaging microscopy of a multicolor quantum dot complex.
Shi, Xingbo; Xie, Zhongqiu; Song, Yuehong; Tan, Yongjun; Yeung, Edward S; Gai, Hongwei
2012-02-01
The key factor of realizing super-resolution optical microscopy at the single-molecule level is to separately position two adjacent molecules. An opportunity to independently localize target molecules is provided by the intermittency (blinking) in fluorescence of a quantum dot (QD) under the condition that the blinking of each emitter can be recorded and identified. Herein we develop a spectral imaging based color nanoscopy which is capable of determining which QD is blinking in the multicolor QD complex through tracking the first-order spectrum, and thus, the distance at tens of nanometers between two QDs is measured. Three complementary oligonucleotides with lengths of 15, 30, and 45 bp are constructed as calibration rulers. QD585 and QD655 are each linked at one end. The measured average distances are in good agreement with the calculated lengths with a precision of 6 nm, and the intracellular dual-color QDs within a diffraction-limited spot are distinguished.
Non-local F(R)-mimetic gravity
NASA Astrophysics Data System (ADS)
Myrzakulov, Ratbay; Sebastiani, Lorenzo
2016-06-01
In this paper, we study non-local F(R)-mimetic gravity. We implement mimetic gravity in the framework of non-local F(R)-theories of gravity. Given some specific class of models and using a potential on the mimetic field, we investigate some scenarios related to the early-time universe, namely the inflation and the cosmological bounce, which bring to Einstein's gravity with cold dark matter at the late-time.
Quantum Chemistry Meets Rotational Spectroscopy for Astrochemistry: Increasing Molecular Complexity
NASA Astrophysics Data System (ADS)
Puzzarini, Cristina
2016-06-01
For many years, scientists suspected that the interstellar medium was too hostile for organic species and that only a few simple molecules could be formed under such extreme conditions. However, the detection of approximately 180 molecules in interstellar or circumstellar environments in recent decades has changed this view dramatically. A rich chemistry has emerged, and relatively complex molecules such as C60 and C70 are formed. Recently, researchers have also detected complex organic and potentially prebiotic molecules, such as amino acids, in meteorites and in other space environments. Those discoveries have further stimulated the debate on the origin of the building blocks of life in the universe. Rotational spectroscopy plays a crucial role in the investigation of planetary atmosphere and the interstellar medium. Increasingly these astrochemical investigations are assisted by quantum-mechanical calculations of structures as well as spectroscopic and thermodynamic properties to guide and support observations, line assignments, and data analysis in these new and chemically complicated situations. However, it has proved challenging to extend accurate quantum-chemical computational approaches to larger systems because of the unfavorable scaling with the number of degrees of freedom (both electronic and nuclear). In this contribution, it is demonstrated that it is now possible to compute physicochemical properties of building blocks of biomolecules with an accuracy rivaling that of the most sophisticated experimental techniques. We analyze the spectroscopic properties of representative building blocks of DNA bases (uracil and thiouracil), of proteins (glycine and glycine dipeptide analogue), and also of PAH (phenalenyl radical and cation). V. Barone, M. Biczysko, C. Puzzarini 2015, Acc. Chem. Res., 48, 1413
Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach
Ananth, Nandini
2008-01-01
One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex
Quantum trajectories in complex space: one-dimensional stationary scattering problems.
Chou, Chia-Chun; Wyatt, Robert E
2008-04-21
One-dimensional time-independent scattering problems are investigated in the framework of the quantum Hamilton-Jacobi formalism. The equation for the local approximate quantum trajectories near the stagnation point of the quantum momentum function is derived, and the first derivative of the quantum momentum function is related to the local structure of quantum trajectories. Exact complex quantum trajectories are determined for two examples by numerically integrating the equations of motion. For the soft potential step, some particles penetrate into the nonclassical region, and then turn back to the reflection region. For the barrier scattering problem, quantum trajectories may spiral into the attractors or from the repellers in the barrier region. Although the classical potentials extended to complex space show different pole structures for each problem, the quantum potentials present the same second-order pole structure in the reflection region. This paper not only analyzes complex quantum trajectories and the total potentials for these examples but also demonstrates general properties and similar structures of the complex quantum trajectories and the quantum potentials for one-dimensional time-independent scattering problems. PMID:18433189
Gurvits, L.
2002-01-01
Classical matching theory can be defined in terms of matrices with nonnegative entries. The notion of Positive operator, central in Quantum Theory, is a natural generalization of matrices with non-negative entries. Based on this point of view, we introduce a definition of perfect Quantum (operator) matching. We show that the new notion inherits many 'classical' properties, but not all of them. This new notion goes somewhere beyound matroids. For separable bipartite quantum states this new notion coinsides with the full rank property of the intersection of two corresponding geometric matroids. In the classical situation, permanents are naturally associated with perfects matchings. We introduce an analog of permanents for positive operators, called Quantum Permanent and show how this generalization of the permanent is related to the Quantum Entanglement. Besides many other things, Quantum Permanents provide new rational inequalities necessary for the separability of bipartite quantum states. Using Quantum Permanents, we give deterministic poly-time algorithm to solve Hidden Matroids Intersection Problem and indicate some 'classical' complexity difficulties associated with the Quantum Entanglement. Finally, we prove that the weak membership problem for the convex set of separable bipartite density matrices is NP-HARD.
Non-local magnetoresistance in YIG/Pt nanostructures
Goennenwein, Sebastian T. B. Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans; Schlitz, Richard; Ganzhorn, Kathrin; Althammer, Matthias
2015-10-26
We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.
Dynamics of Crowd Behaviors: From Complex Plane to Quantum Random Fields
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
The following sections are included: * Complex Plane Dynamics of Crowds and Groups * Introduction * Complex-Valued Dynamics of Crowd and Group Behaviors * Kähler Geometry of Crowd and Group Dynamics * Computer Simulations of Crowds and Croups Dynamics * Braids of Agents' Behaviors in the Complex Plane * Hilbert-Space Control of Crowds and Groups Dynamics * Quantum Random Fields: A Unique Framework for Simulation, Optimization, Control and Learning * Introduction * Adaptive Quantum Oscillator * Optimization and Learning on Banach and Hilbert Spaces * Appendix * Complex-Valued Image Processing * Linear Integral Equations * Riemann-Liouville Fractional Calculus * Rigorous Geometric Quantization * Supervised Machine-Learning Methods * First-Order Logic and Quantum Random Fields
Quantum walks on complex networks with connection instabilities and community structure
Tsomokos, Dimitris I.
2011-05-15
A continuous-time quantum walk is investigated on complex networks with the characteristic property of community structure, which is shared by most real-world networks. Motivated by the prospect of viable quantum networks, I focus on the effects of network instabilities in the form of broken links, and examine the response of the quantum walk to such failures. It is shown that the reconfiguration of the quantum walk is determined by the community structure of the network. In this context, quantum walks based on the adjacency and Laplacian matrices of the network are compared, and their responses to link failures is analyzed.
Jammed Clusters and Non-locality in Dense Granular Flows
NASA Astrophysics Data System (ADS)
Kharel, Prashidha; Rognon, Pierre
We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
To the non-local theory of cold nuclear fusion.
Alexeev, Boris V
2014-10-01
In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the 'acoustic CF' could be realized from the position of the non-local hydrodynamics. PMID:26064528
To the non-local theory of cold nuclear fusion.
Alexeev, Boris V
2014-10-01
In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the 'acoustic CF' could be realized from the position of the non-local hydrodynamics.
Comparison for non-local hydrodynamic thermal conduction models
Marocchino, A.; Atzeni, S.; Schiavi, A.; Tzoufras, M.; Nicolaie, Ph. D.; Mallet, J.; Tikhonchuk, V.; Feugeas, J.-L.
2013-02-15
Inertial confinement fusion and specifically shock ignition involve temperatures and temperature gradients for which the classical Spitzer-Haerm thermal conduction breaks down and a non-local operator is required. In this article, two non-local electron thermal conduction models are tested against kinetic Vlasov-Fokker-Planck simulations. Both models are shown to reproduce the main features of thermal heat front propagation at kinetic timescales. The reduction of the thermal conductivity as a function of the scalelength of the temperature gradient is also recovered. Comparisons at nanosecond timescales show that the models agree on the propagation velocity of the heat front, but major differences appear in the thermal precursor.
On non-local transport processes in the solar atmosphere
NASA Technical Reports Server (NTRS)
Macneice, P.
1992-01-01
We review two mechanisms which can lend a non-local character to energy transport in the solar atmosphere, heat flux propagating in the form of collisionless electrons, and non-equilibrium ionization of hydrogen driven by ambipolar diffusion. Application of these processes to modelling of the lower transition region and upper chromosphere is considered.
NASA Astrophysics Data System (ADS)
Carr, Lincoln; Maeda, Kenji; Wall, Michael L.
2015-03-01
Ultracold molecules trapped in optical lattices present a new regime of physical chemistry and a new state of matter: complex dipolar matter. Such systems open up the prospect of tunable quantum complexity. We present models for the quantum many-body statics and dynamics of present experiments on polar bi-alkali dimer molecules. We are developing Hamiltonians and simulations for upcoming experiments on dimers beyond the alkali metals, including biologically and chemically important naturally occurring free radicals like the hydroxyl free radical (OH), as well as symmetric top polyatomic molecules like methyl fluoride (CH3F). These systems offer surprising opportunities in modeling and design of new materials. For example, symmetric top polyatomics can be used to study quantum molecular magnets and quantum liquid crystals. We use matrix-product-state (MPS) algorithms, supplemented by exact diagonalization, variational, perturbative, and other approaches. MPS algorithms not only produce experimentally measurable quantum phase diagrams but also explore the dynamical interplay between internal and external degrees of freedom inherent in complex dipolar matter. We maintain open source code (openTEBD and openMPS) available freely and used widely. Funded by NSF and AFOSR.
NASA Astrophysics Data System (ADS)
Coecke, Bob
2010-01-01
Why did it take us 50 years since the birth of the quantum mechanical formalism to discover that unknown quantum states cannot be cloned? Yet, the proof of the 'no-cloning theorem' is easy, and its consequences and potential for applications are immense. Similarly, why did it take us 60 years to discover the conceptually intriguing and easily derivable physical phenomenon of 'quantum teleportation'? We claim that the quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. Using a technical term from computer science, the quantum mechanical formalism is 'low-level'. In this review we present steps towards a diagrammatic 'high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. The diagrammatic language as it currently stands allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports 'automation': it enables a (classical) computer to reason about interacting quantum systems, prove theorems, and design protocols. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly
Dynamical symmetries in Kondo tunneling through complex quantum dots.
Kuzmenko, T; Kikoin, K; Avishai, Y
2002-10-01
Kondo tunneling reveals hidden SO(n) dynamical symmetries of evenly occupied quantum dots. As is exemplified for an experimentally realizable triple quantum dot in parallel geometry, the possible values n=3,4,5,7 can be easily tuned by gate voltages. Following construction of the corresponding o(n) algebras, scaling equations are derived and Kondo temperatures are calculated. The symmetry group for a magnetic field induced anisotropic Kondo tunneling is SU(2) or SO(4).
Cosmological perturbations in non-local higher-derivative gravity
Craps, Ben; Jonckheere, Tim De; Koshelev, Alexey S. E-mail: Tim.De.Jonckheere@vub.ac.be
2014-11-01
We study cosmological perturbations in a non-local higher-derivative model of gravity introduced by Biswas, Mazumdar and Siegel. We extend previous work, which had focused on classical scalar perturbations around a cosine hyperbolic bounce solution, in three ways. First, we point out the existence of a Starobinsky solution in this model, which is more attractive from a phenomenological point of view (even though it has no bounce). Second, we study classical vector and tensor pertuxsxrbations. Third, we show how to quantize scalar and tensor perturbations in a de Sitter phase (for choices of parameters such that the model is ghost-free). Our results show that the model is well-behaved at this level, and are very similar to corresponding results in local f(R) models. In particular, for the Starobinsky solution of non-local higher-derivative gravity, we find the same tensor-to-scalar ratio as for the conventional Starobinsky model.
To the non-local theory of cold nuclear fusion
Alexeev, Boris V.
2014-01-01
In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the ‘acoustic CF’ could be realized from the position of the non-local hydrodynamics. PMID:26064528
MRI noise estimation and denoising using non-local PCA.
Manjón, José V; Coupé, Pierrick; Buades, Antonio
2015-05-01
This paper proposes a novel method for MRI denoising that exploits both the sparseness and self-similarity properties of the MR images. The proposed method is a two-stage approach that first filters the noisy image using a non local PCA thresholding strategy by automatically estimating the local noise level present in the image and second uses this filtered image as a guide image within a rotationally invariant non-local means filter. The proposed method internally estimates the amount of local noise presents in the images that enables applying it automatically to images with spatially varying noise levels and also corrects the Rician noise induced bias locally. The proposed approach has been compared with related state-of-the-art methods showing competitive results in all the studied cases. PMID:25725303
Contourlet based seismic reflection data non-local noise suppression
NASA Astrophysics Data System (ADS)
Li, Qiang; Gao, Jinghuai
2013-08-01
In this paper, we propose a non-local, transform domain noise suppression framework to improve the quality of seismic reflection data. The original non-local means (NLM) algorithm measures similarities in the data domain and we generalize it in the nonsubsampled contourlet transform (NSCT) domain. NSCT gives a multiscale, multiresolution and anisotropy representation of the noisy input. The redundancy information in NSCT subbands can be utilized to enhance the structures in the original seismic data. Like the wavelet transform, NSCT coefficients in each subband follow the generalized Gaussian distribution and the parameters can be estimated using appropriate techniques. These parameters are used to construct our proposed NSCT domain filtering algorithm. Applications for synthetic and real seismic data of the proposed algorithm demonstrate its effectiveness on seismic data random noise suppression.
Deinterlacing algorithm with an advanced non-local means filter
NASA Astrophysics Data System (ADS)
Wang, Jin; Jeon, Gwanggil; Jeong, Jechang
2012-04-01
The authors introduce an efficient intra-field deinterlacing algorithm using an advanced non-local means filter. The non-local means (NLM) method has received considerable attention due to its high performance and simplicity. The NLM method adaptively obtains the missing pixel by the weighted average of the gray values of all pixels within the image, and then automatically eliminates unrelated neighborhoods from the weighted average. However, spatial location distance is another important issue for the deinterlacing method. Therefore we introduce an advanced NLM (ANLM) filter while consider neighborhood similarity and patch distance. Moreover, the search region of the conventional NLM is the whole image, while, the ANLM can just utilize the limited search region and achieve good performance and high efficiency. When compared with existing deinterlacing algorithms, the proposed algorithm improves the peak signal-to-noise-ratio while maintaining high efficiency.
Multiple-Trace Operators and Non-Local String Theories
Silverstein, Eva M
2001-07-25
We propose that a novel deformation of string perturbation theory, involving non-local interactions between strings, is required to describe the gravity duals of field theories deformed by multiple-trace operators. The new perturbative expansion involves a new parameter, which is neither the string coupling nor the coefficient of a vertex operator on the worldsheet. We explore some of the properties of this deformation, focusing on a special case where the deformation in the field theory is exactly marginal.
NASA Astrophysics Data System (ADS)
Morrison, C.; Casteleiro, C.; Leadley, D. R.; Myronov, M.
2016-09-01
The complex quantum transport of a strained Ge quantum well (QW) modulation doped heterostructure with two types of mobile carriers has been observed. The two dimensional hole gas (2DHG) in the Ge QW exhibits an exceptionally high mobility of 780 000 cm2/Vs at temperatures below 10 K. Through analysis of Shubnikov de-Haas oscillations in the magnetoresistance of this 2DHG below 2 K, the hole effective mass is found to be 0.065 m0. Anomalous conductance peaks are observed at higher fields which deviate from standard Shubnikov de-Haas and quantum Hall effect behaviour due to conduction via multiple carrier types. Despite this complex behaviour, analysis using a transport model with two conductive channels explains this behaviour and allows key physical parameters such as the carrier effective mass, transport, and quantum lifetimes and conductivity of the electrically active layers to be extracted. This finding is important for electronic device applications, since inclusion of highly doped interlayers which are electrically active, for enhancement of, for example, room temperature carrier mobility, does not prevent analysis of quantum transport in a QW.
Critical thresholds in flocking hydrodynamics with non-local alignment
Tadmor, Eitan; Tan, Changhui
2014-01-01
We study the large-time behaviour of Eulerian systems augmented with non-local alignment. Such systems arise as hydrodynamic descriptions of agent-based models for self-organized dynamics, e.g. Cucker & Smale (2007 IEEE Trans. Autom. Control 52, 852–862. (doi:10.1109/TAC.2007.895842)) and Motsch & Tadmor (2011 J. Stat. Phys. 144, 923–947. (doi:10.1007/s10955-011-0285-9)) models. We prove that, in analogy with the agent-based models, the presence of non-local alignment enforces strong solutions to self-organize into a macroscopic flock. This then raises the question of existence of such strong solutions. We address this question in one- and two-dimensional set-ups, proving global regularity for subcritical initial data. Indeed, we show that there exist critical thresholds in the phase space of the initial configuration which dictate the global regularity versus a finite-time blow-up. In particular, we explore the regularity of non-local alignment in the presence of vacuum. PMID:25288813
Non-local crime density estimation incorporating housing information
Woodworth, J. T.; Mohler, G. O.; Bertozzi, A. L.; Brantingham, P. J.
2014-01-01
Given a discrete sample of event locations, we wish to produce a probability density that models the relative probability of events occurring in a spatial domain. Standard density estimation techniques do not incorporate priors informed by spatial data. Such methods can result in assigning significant positive probability to locations where events cannot realistically occur. In particular, when modelling residential burglaries, standard density estimation can predict residential burglaries occurring where there are no residences. Incorporating the spatial data can inform the valid region for the density. When modelling very few events, additional priors can help to correctly fill in the gaps. Learning and enforcing correlation between spatial data and event data can yield better estimates from fewer events. We propose a non-local version of maximum penalized likelihood estimation based on the H1 Sobolev seminorm regularizer that computes non-local weights from spatial data to obtain more spatially accurate density estimates. We evaluate this method in application to a residential burglary dataset from San Fernando Valley with the non-local weights informed by housing data or a satellite image. PMID:25288817
NASA Astrophysics Data System (ADS)
Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav
2016-09-01
In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.
Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav
2016-09-01
In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.
Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav
2016-09-01
In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability. PMID:27636460
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free
Bianconi, Ginestra; Rahmede, Christoph
2015-01-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces. PMID:26356079
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free.
Bianconi, Ginestra; Rahmede, Christoph
2015-09-10
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension d. We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the δ-faces of the d-dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the δ-faces.
Exploring the complexity of quantum control optimization trajectories.
Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel
2015-01-01
The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.
Chou, Chia-Chun
2014-03-14
The complex quantum Hamilton-Jacobi equation-Bohmian trajectories (CQHJE-BT) method is introduced as a synthetic trajectory method for integrating the complex quantum Hamilton-Jacobi equation for the complex action function by propagating an ensemble of real-valued correlated Bohmian trajectories. Substituting the wave function expressed in exponential form in terms of the complex action into the time-dependent Schrödinger equation yields the complex quantum Hamilton-Jacobi equation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation describing the rate of change in the complex action transported along Bohmian trajectories is simultaneously integrated with the guidance equation for Bohmian trajectories, and the time-dependent wave function is readily synthesized. The spatial derivatives of the complex action required for the integration scheme are obtained by solving one moving least squares matrix equation. In addition, the method is applied to the photodissociation of NOCl. The photodissociation dynamics of NOCl can be accurately described by propagating a small ensemble of trajectories. This study demonstrates that the CQHJE-BT method combines the considerable advantages of both the real and the complex quantum trajectory methods previously developed for wave packet dynamics.
Chou, Chia-Chun
2014-03-14
The complex quantum Hamilton-Jacobi equation-Bohmian trajectories (CQHJE-BT) method is introduced as a synthetic trajectory method for integrating the complex quantum Hamilton-Jacobi equation for the complex action function by propagating an ensemble of real-valued correlated Bohmian trajectories. Substituting the wave function expressed in exponential form in terms of the complex action into the time-dependent Schrödinger equation yields the complex quantum Hamilton-Jacobi equation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation describing the rate of change in the complex action transported along Bohmian trajectories is simultaneously integrated with the guidance equation for Bohmian trajectories, and the time-dependent wave function is readily synthesized. The spatial derivatives of the complex action required for the integration scheme are obtained by solving one moving least squares matrix equation. In addition, the method is applied to the photodissociation of NOCl. The photodissociation dynamics of NOCl can be accurately described by propagating a small ensemble of trajectories. This study demonstrates that the CQHJE-BT method combines the considerable advantages of both the real and the complex quantum trajectory methods previously developed for wave packet dynamics. PMID:24628169
Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
Hildner, Richard; Brinks, Daan; Nieder, Jana B; Cogdell, Richard J; van Hulst, Niek F
2013-06-21
The initial steps of photosynthesis comprise the absorption of sunlight by pigment-protein antenna complexes followed by rapid and highly efficient funneling of excitation energy to a reaction center. In these transport processes, signatures of unexpectedly long-lived coherences have emerged in two-dimensional ensemble spectra of various light-harvesting complexes. Here, we demonstrate ultrafast quantum coherent energy transfer within individual antenna complexes of a purple bacterium under physiological conditions. We find that quantum coherences between electronically coupled energy eigenstates persist at least 400 femtoseconds and that distinct energy-transfer pathways that change with time can be identified in each complex. Our data suggest that long-lived quantum coherence renders energy transfer in photosynthetic systems robust in the presence of disorder, which is a prerequisite for efficient light harvesting.
Scalar field cosmology via non-local integrals of motion
NASA Astrophysics Data System (ADS)
Dimakis, N.
2016-08-01
In re-parametrization invariant systems, such as mini-superspace Lagrangians, the existence of constraints can lead to the emergence of additional non-local integrals of motion defined in phase space. In the case of a FLRW flat/non-flat space-time minimally coupled to an arbitrary scalar field, we manage to use such conserved quantities to completely integrate the system of equations of motion. This is achieved without constraining the potential in any way. Thus, obtaining the most general solution that encompasses all possible cosmological scenarios which can be based on the existence of a scalar field.
Travelling fronts in non-local evolution equations
NASA Astrophysics Data System (ADS)
de Masi, A.; Gobron, T.; Presutti, E.
1995-06-01
The existence of travelling fronts and their uniqueness modulo translations are proved in the context of a one-dimensional, non-local, evolution equation derived in [5] from Ising systems with Glauber dynamics and Kac potentials. The front describes the moving interface between the stable and the metastable phases and it is shown to attract all the profiles which at ± ∞ are in the domain of attraction of the stable and, respectively, the metastable states. The results are compared with those of Fife & McLeod [13] for the Allen-Cahn equation.
Quantum effects in energy and charge transfer in an artificial photosynthetic complex
NASA Astrophysics Data System (ADS)
Ghosh, Pulak Kumar; Smirnov, Anatoly Yu.; Nori, Franco
2011-06-01
We investigate the quantum dynamics of energy and charge transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. This complex consists of six light-harvesting chromophores and an electron-acceptor fullerene. To describe quantum effects on a femtosecond time scale, we derive the set of exact non-Markovian equations for the Heisenberg operators of this photosynthetic complex in contact with a Gaussian heat bath. With these equations we can analyze the regime of strong system-bath interactions, where reorganization energies are of the order of the intersite exciton couplings. We show that the energy of the initially excited antenna chromophores is efficiently funneled to the porphyrin-fullerene reaction center, where a charge-separated state is set up in a few picoseconds, with a quantum yield of the order of 95%. In the single-exciton regime, with one antenna chromophore being initially excited, we observe quantum beatings of energy between two resonant antenna chromophores with a decoherence time of ˜100 fs. We also analyze the double-exciton regime, when two porphyrin molecules involved in the reaction center are initially excited. In this regime we obtain pronounced quantum oscillations of the charge on the fullerene molecule with a decoherence time of about 20 fs (at liquid nitrogen temperatures). These results show a way to directly detect quantum effects in artificial photosynthetic systems.
A non-local computational boundary condition for duct acoustics
NASA Technical Reports Server (NTRS)
Zorumski, William E.; Watson, Willie R.; Hodge, Steve L.
1994-01-01
A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.
Sequential generation of polynomial invariants and N-body non-local correlations
NASA Astrophysics Data System (ADS)
Sharma, S. Shelly; Sharma, N. K.
2016-09-01
We report an inductive process that allows for sequential construction of local unitary invariant polynomials of state coefficients for multipartite quantum states. The starting point can be a physically meaningful invariant of a smaller part of the system. The process is applied to construct a chain of invariants that quantify non-local N-way correlations in an N-qubit pure state. It also yields the invariants to quantify the sum of N-way and (N-1)-way correlations. Analytic expressions for four-way and three-way correlation quantifiers for four-qubit states, as well as, five-way and four-way correlation quantifiers for five-qubit pure states are given.
FRET efficiency in surface complexes of CdSe/ZnS quantum dots with azo-dyes
NASA Astrophysics Data System (ADS)
Annas, Kirill I.; Gromova, Yuliya A.; Orlova, Anna O.; Maslov, Vladimir G.; Fedorov, Anatoly V.; Baranov, Alexander V.
2016-04-01
Photoinduced dissociation of surface complexes of CdSe/ZnS quantum dots with azo-dye 1-(2- pyridylazo)-2-naphthol (PAN) was investigated. It was shown that the Förster resonance energy transfer contributes in the complexes photodissociation rate, which depends on resonance condition between electronic levels of donor (quantum dots) and acceptor (azo-dye) and donor photoluminescent quantum yield. It has allowed to estimate energy transfer efficiency in the complexes and disclosed a new nonradiative channel that has minor contribution in the deactivation of excited states of quantum dots in the complexes.
New insights on emergence from the perspective of weak values and dynamical non-locality
NASA Astrophysics Data System (ADS)
Tollaksen, Jeff
2014-04-01
In this article, we will examine new fundamental aspects of "emergence" and "information" using novel approaches to quantum mechanics which originated from the group around Aharonov. The two-state vector formalism provides a complete description of pre- and post-selected quantum systems and has uncovered a host of new quantum phenomena which were previously hidden. The most important feature is that any weak coupling to a pre- and post-selected system is effectively a coupling to a "weak value" which is given by a simple expression depending on the two-state vector. In particular, weak values, are the outcomes of so called "weak measurements" which have recently become a very powerful tool for ultra-sensitive measurements. Using weak values, we will show how to separate a particle from its properties, not unlike the Cheshire cat story: "Well! I've often seen a cat without a grin," thought Alice; "but a grin without a cat! It's the most curious thing I ever saw in all my life!" Next, we address the question whether the physics on different scales "emerges" from quantum mechanics or whether the laws of physics at those scales are fundamental. We show that the classical limit of quantum mechanics is a far more complicated issue; it is in fact dramatically more involved and it requires a complete revision of all our intuitions. The revised intuitions can then serve as a guide to finding novel quantum effects. Next we show that novel experimental aspects of contextuality can be demonstrated with weak measurements and these suggest new restrictions on hidden variable approaches. Next we emphasize that the most important implication of the Aharonov-Bohm effect is the existence of non-local interactions which do not violate causality. Finally, we review some generalizations of quantum mechanics and their implications for "emergence" and "information." First, we review an alternative approach to quantum evolution in which each moment of time is viewed as a new "universe
The Physics of Life and Quantum Complex Matter: A Case of Cross-Fertilization.
Poccia, Nicola; Bianconi, Antonio
2011-09-29
Progress in the science of complexity, from the Big Bang to the coming of humankind, from chemistry and biology to geosciences and medicine, and from materials engineering to energy sciences, is leading to a shift of paradigm in the physical sciences. The focus is on the understanding of the non-equilibrium process in fine tuned systems. Quantum complex materials such as high temperature superconductors and living matter are both non-equilibrium and fine tuned systems. These topics have been subbjects of scientific discussion in the Rome Symposium on the "Quantum Physics of Living Matter".
Bridging quantum and classical plasmonics with a quantum-corrected model.
Esteban, Ruben; Borisov, Andrei G; Nordlander, Peter; Aizpurua, Javier
2012-01-01
Electromagnetic coupling between plasmonic resonances in metallic nanoparticles allows for engineering of the optical response and generation of strong localized near-fields. Classical electrodynamics fails to describe this coupling across sub-nanometer gaps, where quantum effects become important owing to non-local screening and the spill-out of electrons. However, full quantum simulations are not presently feasible for realistically sized systems. Here we present a novel approach, the quantum-corrected model (QCM), that incorporates quantum-mechanical effects within a classical electrodynamic framework. The QCM approach models the junction between adjacent nanoparticles by means of a local dielectric response that includes electron tunnelling and tunnelling resistivity at the gap and can be integrated within a classical electrodynamical description of large and complex structures. The QCM predicts optical properties in excellent agreement with fully quantum mechanical calculations for small interacting systems, opening a new venue for addressing quantum effects in realistic plasmonic systems.
Simple algorithm for computing the communication complexity of quantum communication processes
NASA Astrophysics Data System (ADS)
Hansen, A.; Montina, A.; Wolf, S.
2016-04-01
A two-party quantum communication process with classical inputs and outcomes can be simulated by replacing the quantum channel with a classical one. The minimal amount of classical communication required to reproduce the statistics of the quantum process is called its communication complexity. In the case of many instances simulated in parallel, the minimal communication cost per instance is called the asymptotic communication complexity. Previously, we reduced the computation of the asymptotic communication complexity to a convex minimization problem. In most cases, the objective function does not have an explicit analytic form, as the function is defined as the maximum over an infinite set of convex functions. Therefore, the overall problem takes the form of a minimax problem and cannot directly be solved by standard optimization methods. In this paper, we introduce a simple algorithm to compute the asymptotic communication complexity. For some special cases with an analytic objective function one can employ available convex-optimization libraries. In the tested cases our method turned out to be notably faster. Finally, using our method we obtain 1.238 bits as a lower bound on the asymptotic communication complexity of a noiseless quantum channel with the capacity of 1 qubit. This improves the previous bound of 1.208 bits.
Non-local mean denoising in diffusion tensor space
SU, BAIHAI; LIU, QIANG; CHEN, JIE; WU, XI
2014-01-01
The aim of the present study was to present a novel non-local mean (NLM) method to denoise diffusion tensor imaging (DTI) data in the tensor space. Compared with the original NLM method, which uses intensity similarity to weigh the voxel, the proposed method weighs the voxel using tensor similarity measures in the diffusion tensor space. Euclidean distance with rotational invariance, and Riemannian distance and Log-Euclidean distance with affine invariance were implemented to compare the geometric and orientation features of the diffusion tensor comprehensively. The accuracy and efficacy of the proposed novel NLM method using these three similarity measures in DTI space, along with unbiased novel NLM in diffusion-weighted image space, were compared quantitatively and qualitatively in the present study. PMID:25009599
Bound and scattering states with non-local potentials.
Viviani, M; Girlanda, L; Kievsky, A; Marcucci, L E; Rosati, S; Schiavilla, R
2007-06-01
The application of the hyperspherical harmonics method to the case of non-local potentials is described. Given the properties of the hyperspherical harmonic functions, there are no difficulties in considering the approach in both coordinate and momentum space. The results for the 3H and 4He binding energies and n - 3H scattering lengths are found to be in good agreement with those obtained with other different techniques. A study of the 4He form factor is also reported, with a careful investigation of the contribution from isospin symmetry violation. Its effect on parity violating elastic scattering of polarized electrons from 4He is investigated. In particular, a simple analysis of the recently measured left-right asymmetry at low Q2 shows that the contribution of these isospin admixture are found of comparable magnitude to that associated with strangeness components in the nucleon electric form factor.
Inflationary magnetogenesis and non-local actions: the conformal anomaly
NASA Astrophysics Data System (ADS)
Kamal El-Menoufi, Basem
2016-02-01
We discuss the possibility of successful magnetogenesis during inflation by employing the one-loop effective action of massless QED. The action is strictly non-local and results from the long distance fluctuations of massless charged particles present at the inflationary scale. Most importantly, it encodes the conformal anomaly of QED which is crucial to avoid the vacuum preservation in classical electromagnetism. In particular, we find a blue spectrum for the magnetic field with spectral index nB simeq 2 - αe where αe depends on both the number of e-folds during inflation as well as the coefficient of the one-loop beta function. In particular, the sign of the beta function has important bearing on the final result. A low reheating temperature is required for the present day magnetic field to be consistent with the lower bound inferred on the field in the intergalactic medium.
Synthesis and characterization of chitosan-based polyelectrolyte complexes, doped by quantum dots
NASA Astrophysics Data System (ADS)
Abuzova, N. V.; Gerasimova, M. A.; Slabko, V. V.; Slyusareva, E. A.
2015-12-01
Doping of polymer particles by a fluorophores results in the sensitization within the visible spectral region becoming very promising materials for sensor applications. Colloids of biocompatible chitosan-based polyelectrolyte complexes (PECs) doped with quantum dots (QD) of CdTe and CdSe/ZnS (with sizes of 2.0-2.4 nm) were synthesized and characterized by scanning electron microscopy, dynamic light scattering, ζ-potential measurements, absorption and luminescence (including time-resolved) spectroscopy. The influence of ionic strength (0.02-1.5 M) on absorption and photoluminescence properties of encapsulated into PEC and unencapsulated quantum dots was investigated. The stability of the emission intensity of the encapsulated quantum dots has been shown to be strongly dependent on concentration of quantum dots.
Average-Case Complexity Versus Approximate Simulation of Commuting Quantum Computations
NASA Astrophysics Data System (ADS)
Bremner, Michael J.; Montanaro, Ashley; Shepherd, Dan J.
2016-08-01
We use the class of commuting quantum computations known as IQP (instantaneous quantum polynomial time) to strengthen the conjecture that quantum computers are hard to simulate classically. We show that, if either of two plausible average-case hardness conjectures holds, then IQP computations are hard to simulate classically up to constant additive error. One conjecture relates to the hardness of estimating the complex-temperature partition function for random instances of the Ising model; the other concerns approximating the number of zeroes of random low-degree polynomials. We observe that both conjectures can be shown to be valid in the setting of worst-case complexity. We arrive at these conjectures by deriving spin-based generalizations of the boson sampling problem that avoid the so-called permanent anticoncentration conjecture.
Average-Case Complexity Versus Approximate Simulation of Commuting Quantum Computations.
Bremner, Michael J; Montanaro, Ashley; Shepherd, Dan J
2016-08-19
We use the class of commuting quantum computations known as IQP (instantaneous quantum polynomial time) to strengthen the conjecture that quantum computers are hard to simulate classically. We show that, if either of two plausible average-case hardness conjectures holds, then IQP computations are hard to simulate classically up to constant additive error. One conjecture relates to the hardness of estimating the complex-temperature partition function for random instances of the Ising model; the other concerns approximating the number of zeroes of random low-degree polynomials. We observe that both conjectures can be shown to be valid in the setting of worst-case complexity. We arrive at these conjectures by deriving spin-based generalizations of the boson sampling problem that avoid the so-called permanent anticoncentration conjecture. PMID:27588839
Rowland, Brad A; Wyatt, Robert E
2007-10-28
One of the major obstacles in employing complex-valued trajectory methods for quantum barrier scattering calculations is the search for isochrones. In this study, complex-valued derivative propagation method trajectories in the arbitrary Lagrangian-Eulerian frame are employed to solve the complex Hamilton-Jacobi equation for quantum barrier scattering problems employing constant velocity trajectories moving along rectilinear paths whose initial points can be in the complex plane or even along the real axis. It is shown that this effectively removes the need for isochrones for barrier transmission problems. Model problems tested include the Eckart, Gaussian, and metastable quadratic+cubic potentials over a variety of wave packet energies. For comparison, the "exact" solution is computed from the time-dependent Schrodinger equation via pseudospectral methods. PMID:17979316
Towards a Social Theory of School Administrative Practice in a Complex, Chaotic, Quantum World.
ERIC Educational Resources Information Center
Beavis, Allan K.
Educational administration, like many other social sciences, has traditionally followed the rubrics of classical science with its emphasis on prediction and control and attempts to understand the whole by understanding in ever finer detail how the parts fit together. However, the "new" science (especially quantum mechanics, complexity, and chaos…
Non-local damage rheology and size effect
NASA Astrophysics Data System (ADS)
Lyakhovsky, V.
2011-12-01
We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time
Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.
Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian
2015-07-01
For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.
Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review
NASA Astrophysics Data System (ADS)
Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian
2015-07-01
For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.
Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.
Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian
2015-07-01
For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features. PMID:26194028
EDITORIAL: How to control decoherence and entanglement in quantum complex systems?
NASA Astrophysics Data System (ADS)
Akulin, V. M.; Kurizki, G.; Lidar, D. A.
2007-05-01
Theory and experiment have not fully resolved the apparent dichotomy, which has agonized physics for the past eighty years: on the one hand, the description of microsystems by quantum mechanics and, on the other, the description of macrosystems by classical dynamics or statistical mechanics. Derivations of the time-irreversible Liouville equation for an open quantum system, based on projecting out its environment, have narrowed the gap between the quantum and classical descriptions. Yet our `classical' intuition continues to be confronted by quantum-mechanical results like the Einstein--Podolsky--Rosen paradox that challenges the classical notion of locality, or the quantum Zeno effect which suggests that the isolation of a system is not the only way to preserve its quantum state. There are two key concepts in any discussion of such issues. The first, which is responsible for the most salient nonclassical properties, is entanglement, that is partial or complete correlation or, more generally, inseparability of the elements comprising a quantum ensemble. Even after their interaction has ceased, this inseparability, originating from their past interaction, can affect the state of one element when another element is subject to a nonunitary action, such as its measurement, tracing- out, or thermalization. The second key concept is decoherence of open quantum systems, which is the consequence of their entanglement with their environment, a `meter' or a thermal `reservoir', followed by the tracing-out of the latter. Despite new insights into entanglement and decoherence, there are still no complete, unequivocal answers to the fundamental questions of the transition from quantal to classical behaviour: how do irreversibility and classicality emerge from unitarity as systems and their environments become increasingly complex? At what stage does system--meter entanglement give rise to a classical readout of the meter? Is there an upper limit on the size or complexity of
Measuring the complex admittance of a nearly isolated graphene quantum dot
Zhang, Miao-Lei; Wei, Da; Deng, Guang-Wei; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping; Jiang, Hong-Wen
2014-08-18
We measured the radio-frequency reflection spectrum of an on-chip reflection line resonator coupled to a graphene double quantum dot (DQD), which was etched almost isolated from the reservoir and reached the low tunnel rate region. The charge stability diagram of DQD was investigated via dispersive phase and magnitude shift of the resonator with a high quality factor. Its complex admittance and low tunnel rate to the reservoir was also determined from the reflected signal of the on-chip resonator. Our method may provide a non-invasive and sensitive way of charge state readout in isolated quantum dots.
Dissipative quantum dynamics in low-energy collisions of complex nuclei
Diaz-Torres, A.; Hinde, D. J.; Dasgupta, M.; Milburn, G. J.; Tostevin, J. A.
2008-12-15
Model calculations that include the effects of irreversible, environmental couplings on top of a coupled-channels dynamical description of the collision of two complex nuclei are presented. The Liouville-von Neumann equation for the time evolution of the density matrix of a dissipative system is solved numerically providing a consistent transition from coherent to decoherent (and dissipative) dynamics during the collision. Quantum decoherence and dissipation are clearly manifested in the model calculations. Energy dissipation, due to the irreversible decay of giant-dipole vibrational states of the colliding nuclei, is shown to result in a hindrance of quantum tunneling and fusion.
What the complex joint probabilities observed in weak measurements can tell us about quantum physics
Hofmann, Holger F.
2014-12-04
Quantummechanics does not permit joint measurements of non-commuting observables. However, it is possible to measure the weak value of a projection operator, followed by the precise measurement of a different property. The results can be interpreted as complex joint probabilities of the two non-commuting measurement outcomes. Significantly, it is possible to predict the outcome of completely different measurements by combining the joint probabilities of the initial state with complex conditional probabilities relating the new measurement to the possible combinations of measurement outcomes used in the characterization of the quantum state. We can therefore conclude that the complex conditional probabilities observed in weak measurements describe fundamental state-independent relations between non-commuting properties that represent the most fundamental form of universal laws in quantum physics.
Optimal control of many-body quantum dynamics: Chaos and complexity
NASA Astrophysics Data System (ADS)
Poggi, P. M.; Wisniacki, D. A.
2016-09-01
Achieving full control of the time-evolution of a many-body quantum system is currently a major goal in physics. In this work we investigate the different ways in which the controllability of a quantum system can be influenced by its complexity, or even its chaotic properties. By using optimal control theory, we are able to derive the control fields necessary to drive various physical processes in a spin chain. Then, we study the spectral properties of such fields and how they relate to different aspects of the system complexity. We find that the spectral bandwidth of the fields is, quite generally, independent of the system dimension. Conversely, the spectral complexity of such fields does increase with the number of particles. Nevertheless, we find that the regular or chaotic nature of the system does not affect significantly its controllability.
Dynamics of non-local interactions in isotropic turbulence
NASA Astrophysics Data System (ADS)
Maqui, Agustin; Donzis, Diego
2011-11-01
A large database of isotropic turbulence with Rλ ranging from 38 to 1100 and resolutions up to 40963 is used to study aspects of the dynamic response of the small scales to forcing at the largest scales. Time correlations of spectra and transfer show that changes in the large scales have an immediate effect on the smallest dissipative scales. Furthermore, these non-local interactions are strongly anti-correlated for wavenumbers beyond the so-called bottleneck. While the applied large-scale forcing is Gaussian, the probability density function of individual modes of the energy spectrum is skewed for all wavenumbers. On the other hand, transfer spectra shows departures from Gaussianity only at high wavenumbers. Short-term behavior is studied through the evolution of the ratio of spectral levels at different wavenumbers as forcing is abruptly introduced or discontinued. All results demonstrate the direct connection between distant scales. More importantly, the observed trends do not appear to decrease as the Reynolds numbers increases. Different models for the spectral transfer are shown to capture some of the observed behavior. Further consequences of the results will be discussed.
Cosmological evolution of generalized non-local gravity
NASA Astrophysics Data System (ADS)
Zhang, Xue; Wu, Ya-Bo; Li, Song; Liu, Yu-Chen; Chen, Bo-Hai; Chai, Yun-Tian; Shu, Shuang
2016-07-01
We construct a class of generalized non-local gravity (GNLG) model which is the modified theory of general relativity (GR) obtained by adding a term m2n‑2 R□‑nR to the Einstein-Hilbert action. Concretely, we not only study the gravitational equation for the GNLG model by introducing auxiliary scalar fields, but also analyse the classical stability and examine the cosmological consequences of the model for different exponent n. We find that the half of the scalar fields are always ghost-like and the exponent n must be taken even number for a stable GNLG model. Meanwhile, the model spontaneously generates three dominant phases of the evolution of the universe, and the equation of state parameters turn out to be phantom-like. Furthermore, we clarify in another way that exponent n should be even numbers by the spherically symmetric static solutions in Newtonian gauge. It is worth stressing that the results given by us can include ones in refs. [28, 34] as the special case of n=2.
NABS: non-local automatic brain hemisphere segmentation.
Romero, José E; Manjón, José V; Tohka, Jussi; Coupé, Pierrick; Robles, Montserrat
2015-05-01
In this paper, we propose an automatic method to segment the five main brain sub-regions (i.e. left/right hemispheres, left/right cerebellum and brainstem) from magnetic resonance images. The proposed method uses a library of pre-labeled brain images in a stereotactic space in combination with a non-local label fusion scheme for segmentation. The main novelty of the proposed method is the use of a multi-label block-wise label fusion strategy specifically designed to deal with the classification of main brain sub-volumes that process only specific parts of the brain images significantly reducing the computational burden. The proposed method has been quantitatively evaluated against manual segmentations. The evaluation showed that the proposed method was faster while producing more accurate segmentations than a current state-of-the-art method. We also present evidences suggesting that the proposed method was more robust against brain pathologies than the compared method. Finally, we demonstrate the clinical value of our method compared to the state-of-the-art approach in terms of the asymmetry quantification in Alzheimer's disease. PMID:25660644
Cosmological evolution of generalized non-local gravity
NASA Astrophysics Data System (ADS)
Zhang, Xue; Wu, Ya-Bo; Li, Song; Liu, Yu-Chen; Chen, Bo-Hai; Chai, Yun-Tian; Shu, Shuang
2016-07-01
We construct a class of generalized non-local gravity (GNLG) model which is the modified theory of general relativity (GR) obtained by adding a term m2n-2 R□-nR to the Einstein-Hilbert action. Concretely, we not only study the gravitational equation for the GNLG model by introducing auxiliary scalar fields, but also analyse the classical stability and examine the cosmological consequences of the model for different exponent n. We find that the half of the scalar fields are always ghost-like and the exponent n must be taken even number for a stable GNLG model. Meanwhile, the model spontaneously generates three dominant phases of the evolution of the universe, and the equation of state parameters turn out to be phantom-like. Furthermore, we clarify in another way that exponent n should be even numbers by the spherically symmetric static solutions in Newtonian gauge. It is worth stressing that the results given by us can include ones in refs. [28, 34] as the special case of n=2.
Generalized non-local means filtering for image denoising
NASA Astrophysics Data System (ADS)
Dolui, Sudipto; Salgado Patarroyo, Iván. C.; Michailovich, Oleg V.
2014-02-01
Non-local means (NLM) filtering has been shown to outperform alternative denoising methodologies under the model of additive white Gaussian noise contamination. Recently, several theoretical frameworks have been developed to extend this class of algorithms to more general types of noise statistics. However, many of these frameworks are specifically designed for a single noise contamination model, and are far from optimal across varying noise statistics. The NLM filtering techniques rely on the definition of a similarity measure, which quantifies the similarity of two neighbourhoods along with their respective centroids. The key to the unification of the NLM filter for different noise statistics lies in the definition of a universal similarity measure which is guaranteed to provide favourable performance irrespective of the statistics of the noise. Accordingly, the main contribution of this work is to provide a rigorous statistical framework to derive such a universal similarity measure, while highlighting some of its theoretical and practical favourable characteristics. Additionally, the closed form expressions of the proposed similarity measure are provided for a number of important noise scenarios and the practical utility of the proposed similarity measure is demonstrated through numerical experiments.
NASA Astrophysics Data System (ADS)
Tamulis, Arvydas; Majauskaite, Kristina; Kairys, Visvaldas; Zborowski, Krzysztof; Adhikari, Kapil; Krisciukaitis, Sarunas
2016-09-01
Implementation of liquid state quantum information processing based on spatially localized electronic spin in the neurotransmitter stable acetylcholine (ACh) neutral molecular radical is discussed. Using DFT quantum calculations we proved that this molecule possesses stable localized electron spin, which may represent a qubit in quantum information processing. The necessary operating conditions for ACh molecule are formulated in self-assembled dimer and more complex systems. The main quantum mechanical research result of this paper is that the neurotransmitter ACh systems, which were proposed, include the use of quantum molecular spintronics arrays to control the neurotransmission in neural networks.
Diagrammatic quantum mechanics
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.; Lomonaco, Samuel J.
2015-05-01
This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.
Linear-algebraic bath transformation for simulating complex open quantum systems
NASA Astrophysics Data System (ADS)
Huh, Joonsuk; Mostame, Sarah; Fujita, Takatoshi; Yung, Man-Hong; Aspuru-Guzik, Alán
2014-12-01
In studying open quantum systems, the environment is often approximated as a collection of non-interacting harmonic oscillators, a configuration also known as the star-bath model. It is also well known that the star-bath can be transformed into a nearest-neighbor interacting chain of oscillators. The chain-bath model has been widely used in renormalization group approaches. The transformation can be obtained by recursion relations or orthogonal polynomials. Based on a simple linear algebraic approach, we propose a bath partition strategy to reduce the system-bath coupling strength. As a result, the non-interacting star-bath is transformed into a set of weakly coupled multiple parallel chains. The transformed bath model allows complex problems to be practically implemented on quantum simulators, and it can also be employed in various numerical simulations of open quantum dynamics.
Quantum Effects in Cosmochemistry: Complexation Energy and Van Der Waals Radii
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Wilson, T. L.
2007-01-01
The subject of quantum effects in cosmochemistry was recently addressed with the goal of understanding how they contribute to Q-phase noble gas abundances found in meteorites. It was the pursuit of the Q-phase carrier of noble gases and their anomalous abundances that ultimately led to the identification, isolation, and discovery of presolar grains. In spite of its importance, Q-phase investigations have led a number of authors to reach conclusions that do not seem to be supported by quantum chemistry. In view of the subject's fundamental significance, additional study is called for. Two quantum properties of Q-phase candidates known as endohedral carbon-cage clathrates such as fullerenes will be addressed here. These are complexation energy and instability induced by Pauli blocking (exclusion principle).
Higher-order local and non-local correlations for 1D strongly interacting Bose gas
NASA Astrophysics Data System (ADS)
Nandani, EJKP; Römer, Rudolf A.; Tan, Shina; Guan, Xi-Wen
2016-05-01
The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, g M , of the one-dimensional (1D) strongly repulsive Bose gas within the Lieb-Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter α =1-2/γ , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via {k}i≈ α {k}iF with i=1,\\ldots ,N. Here γ is the dimensionless interaction strength within the Lieb-Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions g M in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g 2 and g 3 with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions < {{{\\Psi }}}\\dagger ({x}1)\\cdots {{{\\Psi }}}\\dagger ({x}M){{\\Psi }}({y}M)\\cdots {{\\Psi }}({y}1)> of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here {{\\Psi }}(x) is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the
Self-organized criticality revisited: non-local transport by turbulent amplification
NASA Astrophysics Data System (ADS)
Milovanov, A. V.; Rasmussen, J. J.
2015-12-01
> We revise the applications of self-organized criticality (SOC) as a paradigmatic model for tokamak plasma turbulence. The work, presented here, is built around the idea that some systems do not develop a pure critical state associable with SOC, since their dynamical evolution involves as a competing key factor an inverse cascade of the energy in reciprocal space. Then relaxation of slowly increasing stresses will give rise to intermittent bursts of transport in real space and outstanding transport events beyond the range of applicability of the `conventional' SOC. Also, we are concerned with the causes and origins of non-local transport in magnetized plasma, and show that this type of transport occurs naturally in self-consistent strong turbulence via a complexity coupling to the inverse cascade. We expect these coupling phenomena to occur in the parameter range of strong nonlinearity and time scale separation when the Rhines time in the system is small compared with the instability growth time.
Quantum entanglement and the communication complexity of the inner product function
Cleve, R.; Dam, W. van |; Nielsen, M. |; Tapp, A.
1998-08-01
The authors consider the communication complexity of the binary inner product function in a variation of the two-party scenario where the parties have an a priori supply of particles in an entangled quantum state. They prove linear lower bounds for both exact protocols, as well as for protocols that determine the answer with bounded-error probability. The proofs employ a novel kind of quantum reduction from multibit communication problems to the problem of computing the inner product. The communication required for the former problem can then be bounded by an application of Holevo`s theorem. They also give a specific example of a probabilistic scenario where entanglement reduces the communication complexity of the inner product function by one bit.
Franz, Dennis; Reich, Aina; Strelow, Christian; Wang, Zhe; Kornowski, Andreas; Kipp, Tobias; Mews, Alf
2014-11-12
One-dimensional semiconductor nanostructures combine electron mobility in length direction with the possibility of tailoring the physical properties by confinement effects in radial direction. Here we show that thin CdSe quantum nanowires exhibit low-temperature fluorescence spectra with a specific universal structure of several sharp lines. The structure strongly resembles the pattern of bulk spectra but show a diameter-dependent shift due to confinement effects. Also the fluorescence shows a pronounced complex blinking behavior with very different blinking dynamics of different emission lines in one and the same spectrum. Time- and space-resolved optical spectroscopy are combined with high-resolution transmission electron microscopy of the very same quantum nanowires to establish a detailed structure-property relationship. Extensive numerical simulations strongly suggest that excitonic complexes involving donor and acceptor sites are the origin of the feature-rich spectra.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
Zamstein, Noa; Tannor, David J.
2012-12-14
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Equivalent dynamical complexity in a many-body quantum and collective human system
NASA Astrophysics Data System (ADS)
Johnson, Neil F.; Ashkenazi, Josef; Zhao, Zhenyuan; Quiroga, Luis
2011-03-01
Proponents of Complexity Science believe that the huge variety of emergent phenomena observed throughout nature, are generated by relatively few microscopic mechanisms. Skeptics however point to the lack of concrete examples in which a single mechanistic model manages to capture relevant macroscopic and microscopic properties for two or more distinct systems operating across radically different length and time scales. Here we show how a single complexity model built around cluster coalescence and fragmentation, can cross the fundamental divide between many-body quantum physics and social science. It simultaneously (i) explains a mysterious recent finding of Fratini et al. concerning quantum many-body effects in cuprate superconductors (i.e. scale of 10-9 - 10-4 meters and 10-12 - 10-6 seconds), (ii) explains the apparent universality of the casualty distributions in distinct human insurgencies and terrorism (i.e. scale of 103 - 106 meters and 104 - 108 seconds), (iii) shows consistency with various established empirical facts for financial markets, neurons and human gangs and (iv) makes microscopic sense for each application. Our findings also suggest that a potentially productive shift can be made in Complexity research toward the identification of equivalent many-body dynamics in both classical and quantum regimes.
Benet, L.; Chadderton, L. T.; Kun, S. Yu.; Qi Wang
2007-06-15
We study coherent superpositions of clockwise and anticlockwise rotating intermediate complexes with overlapping resonances formed in bimolecular chemical reactions. Disintegration of such complexes represents an analog of a famous double-slit experiment. The time for disappearance of the interference fringes is estimated from heuristic arguments related to fingerprints of chaotic dynamics of a classical counterpart of the coherently rotating complex. Validity of this estimate is confirmed numerically for the H+D{sub 2} chemical reaction. Thus we demonstrate the quantum-classical transition in temporal behavior of highly excited quantum many-body systems in the absence of external noise and coupling to an environment.
Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar
2015-09-15
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
Complex-time singularity and locality estimates for quantum lattice systems
Bouch, Gabriel
2015-12-15
We present and prove a well-known locality bound for the complex-time dynamics of a general class of one-dimensional quantum spin systems. Then we discuss how one might hope to extend this same procedure to higher dimensions using ideas related to the Eden growth process and lattice trees. Finally, we demonstrate with a specific family of lattice trees in the plane why this approach breaks down in dimensions greater than one and prove that there exist interactions for which the complex-time dynamics blows-up in finite imaginary time. .
Complex-time singularity and locality estimates for quantum lattice systems
NASA Astrophysics Data System (ADS)
Bouch, Gabriel
2015-12-01
We present and prove a well-known locality bound for the complex-time dynamics of a general class of one-dimensional quantum spin systems. Then we discuss how one might hope to extend this same procedure to higher dimensions using ideas related to the Eden growth process and lattice trees. Finally, we demonstrate with a specific family of lattice trees in the plane why this approach breaks down in dimensions greater than one and prove that there exist interactions for which the complex-time dynamics blows-up in finite imaginary time.
NASA Astrophysics Data System (ADS)
Chou, Chia-Chun
2015-08-01
The complex quantum Hamilton-Jacobi equation for the complex action is approximately solved by propagating individual Bohmian trajectories in real space. Equations of motion for the complex action and its spatial derivatives are derived through use of the derivative propagation method. We transform these equations into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. Setting higher-order derivatives equal to zero, we obtain a truncated system of equations of motion describing the rate of change in the complex action and its spatial derivatives transported along approximate Bohmian trajectories. A set of test trajectories is propagated to determine appropriate initial positions for transmitted trajectories. Computational results for transmitted wave packets and transmission probabilities are presented and analyzed for a one-dimensional Eckart barrier and a two-dimensional system involving either a thick or thin Eckart barrier along the reaction coordinate coupled to a harmonic oscillator.
Excitonic fine structure and binding energies of excitonic complexes in single InAs quantum dashes
NASA Astrophysics Data System (ADS)
Mrowiński, P.; Zieliński, M.; Świderski, M.; Misiewicz, J.; Somers, A.; Reithmaier, J. P.; Höfling, S.; Sek, G.
2016-09-01
The fundamental electronic and optical properties of elongated InAs nanostructures embedded in quaternary InGaAlAs barrier are investigated by means of high-resolution optical spectroscopy and many-body atomistic tight-binding theory. These wire-like shaped, self-assembled nanostructures are known as quantum dashes and are typically formed during the molecular beam epitaxial growth on InP substrates. In this paper, we study properties of excitonic complexes confined in quantum dashes emitting in a broad spectral range from below 1.2 to 1.55 μm. We find peculiar trends for the biexciton and negative trion binding energies, with pronounced trion binding in smaller size quantum dashes. These experimental findings are then compared and qualitatively explained by atomistic theory. The theoretical analysis shows a fundamental role of correlation effects for the absolute values of excitonic binding energies. Eventually, we determine the bright exciton fine structure splitting (FSS), where both the experiment and theory predict a broad distribution of the splitting varying from below 50 to almost 180 μeV. We identify several key factors determining the FSS values in such nanostructures, including quantum dash size variation and composition fluctuations.
NASA Astrophysics Data System (ADS)
Vieira, Marcelo A. C.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Borges, Lucas R.; Bakic, Predrag R.; Barufaldi, Bruno; Acciavatti, Raymond J.; Maidment, Andrew D. A.
2015-03-01
The main purpose of this work is to study the ability of denoising algorithms to reduce the radiation dose in Digital Breast Tomosynthesis (DBT) examinations. Clinical use of DBT is normally performed in "combo-mode", in which, in addition to DBT projections, a 2D mammogram is taken with the standard radiation dose. As a result, patients have been exposed to radiation doses higher than used in digital mammography. Thus, efforts to reduce the radiation dose in DBT examinations are of great interest. However, a decrease in dose leads to an increased quantum noise level, and related decrease in image quality. This work is aimed at addressing this problem by the use of denoising techniques, which could allow for dose reduction while keeping the image quality acceptable. We have studied two "state of the art" denoising techniques for filtering the quantum noise due to the reduced dose in DBT projections: Non-local Means (NLM) and Block-matching 3D (BM3D). We acquired DBT projections at different dose levels of an anthropomorphic physical breast phantom with inserted simulated microcalcifications. Then, we found the optimal filtering parameters where the denoising algorithms are capable of recovering the quality from the DBT images acquired with the standard radiation dose. Results using objective image quality assessment metrics showed that BM3D algorithm achieved better noise adjustment (mean difference in peak signal to noise ratio < 0.1dB) and less blurring (mean difference in image sharpness ~ 6%) than the NLM for the projections acquired with lower radiation doses.
Romera, Elvira; Calixto, Manuel; Nagy, Ágnes
2014-07-01
We obtain a characterization of quantum shape-phase transitions in the terms of complexity measures in the two-dimensional limit of the vibron model based on the spectrum generating algebra U(3). Complexity measures (in terms of the Rényi entropies) have been calculated for different values of the control parameter for the ground state of this model giving sharp signatures of the quantum shape-phase transition from linear to bent molecules. PMID:24948526
Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation.
Zamstein, Noa; Tannor, David J
2012-12-14
We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)] to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)]. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations.
Explicit relation between all lower bound techniques for quantum query complexity
NASA Astrophysics Data System (ADS)
Magnin, Loïck; Roland, Jérémie
2015-11-01
The polynomial method and the adversary method are the two main techniques to prove lower bounds on quantum query complexity, and they have so far been considered as unrelated approaches. Here, we show an explicit reduction from the polynomial method to the multiplicative adversary method. The proof goes by extending the polynomial method from Boolean functions to quantum state generation problems. In the process, the bound is even strengthened. We then show that this extended polynomial method is a special case of the multiplicative adversary method with an adversary matrix that is independent of the function. This new result therefore provides insight on the reason why in some cases the adversary method is stronger than the polynomial method. It also reveals a clear picture of the relation between the different lower bound techniques, as it implies that all known techniques reduce to the multiplicative adversary method.
Barrier scattering with complex-valued quantum trajectories: Taxonomy and analysis of isochrones
David, Julianne K.; Wyatt, Robert E.
2008-03-07
To facilitate the search for isochrones when using complex-valued trajectory methods for quantum barrier scattering calculations, the structure and shape of isochrones in the complex plane were studied. Isochrone segments were categorized based on their distinguishing features, which are shared by each situation studied: High and low energy wave packets, scattering from both thick and thin Gaussian and Eckart barriers of varying height. The characteristic shape of the isochrone is a trifurcated system: Trajectories that transmit the barrier are launched from the lower branch (T), while the middle and upper branches form the segments for reflected trajectories (F and B). In addition, a model is presented for the curved section of the lower branch (from which transmitted trajectories are launched), and important features of the complex extension of the initial wave packet are identified.
Semiconductor quantum dot/albumin complex is a long-life and highly photostable endosome marker.
Hanaki, Ken-ichi; Momo, Asami; Oku, Taisuke; Komoto, Atsushi; Maenosono, Shinya; Yamaguchi, Yukio; Yamamoto, Kenji
2003-03-14
For the purpose of selecting the efficient dispersion condition of hydrophilic semiconductor quantum dots (QDs) in biological buffers, the dispersion of the QDs mixed with a serum albumin from 9 different species or an ovalbumin was compared by a fluorescence intensity analysis. The QDs mixed with sheep serum albumin (SSA) showed the highest fluorescence of all when the mixtures were dissolved in Dulbecco's MEM. QD/SSA complexes were accumulated in the endosome/lysosome of Vero cells and the fluorescence could be detected over a 5-day post-incubation period. The photostability of QD/SSA complexes associated with the endosomes was detectable, at least, 30 times as long as that of fluorescein-labeled dextran involved in endosomes. QD/SSA complex, therefore, can be used as a long-life and highly photostable endosome marker.
Direct evidence of memory retrieval as a source of difficulty in non-local dependencies in language.
Fedorenko, Evelina; Woodbury, Rebecca; Gibson, Edward
2013-03-01
Linguistic dependencies between non-adjacent words have been shown to cause comprehension difficulty, compared with local dependencies. According to one class of sentence comprehension accounts, non-local dependencies are difficult because they require the retrieval of the first dependent from memory when the second dependent is encountered. According to these memory-based accounts, making the first dependent accessible at the time when the second dependent is encountered should help alleviate the difficulty associated with the processing of non-local dependencies. In a dual-task paradigm, participants read sentences that did or did not contain a non-local dependency (i.e., object- and subject-extracted cleft constructions) while simultaneously remembering a word. The memory task was aimed at making the word held in memory accessible throughout the sentence. In an object-extracted cleft (e.g., It was Ellen whom John consulted…), the object (Ellen) must be retrieved from memory when consulted is encountered. In the critical manipulation, the memory word was identical to the verb's object (ELLEN). In these conditions, the extraction effect was reduced in the comprehension accuracy data and eliminated in the reading time data. These results add to the body of evidence supporting memory-based accounts of syntactic complexity.
When do perturbative approaches accurately capture the dynamics of complex quantum systems?
NASA Astrophysics Data System (ADS)
Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.
2016-06-01
Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model.
When do perturbative approaches accurately capture the dynamics of complex quantum systems?
Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.
2016-01-01
Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model. PMID:27335176
High-order harmonics in a quantum dot and metallic nanorod complex.
Yang, Wen-Xing
2015-11-01
We investigate the high-order harmonic generation (HHG) in a semiconductor quantum dot (SQD) and metallic nanorod (MNR) complex driven by a moderate intensity (<10(12) W/cm(2)) frequency-chirped Gaussian few-cycle pulse. Our numerical results indicate that the cutoff energy of the HHG can be controlled by optimizing the shape of the MNR and surface-to-surface distance between the SQD and the MNR. We also show that the extreme ultraviolet supercontinuum harmonics (25 eV maximal photon energy) and isolated ultrashort pulses (2.67-4.36 fs FWHM) are achievable. PMID:26512479
Detecting the community structure in complex networks based on quantum mechanics
NASA Astrophysics Data System (ADS)
Niu, Yan Qing; Hu, Bao Qing; Zhang, Wen; Wang, Min
2008-10-01
In this paper, we develop a novel method to detect the community structure in complex networks. This approach is based on the combination of kernel-based clustering using quantum mechanics, the spectral clustering technique and the concept of the Bayesian information criterion. We test the proposed algorithm on Zachary’s karate club network and the world of American college football. Experimental results indicate that our algorithm is efficient and effective at finding both the optimal number of clusters, and the best clustering of community structures.
Sine-Gordon quantum mechanics on the complex plane and N=2 gauge theory
He Wei
2010-05-15
We study the relation between the N=2 gauge theory in the {Omega} background and the quantized integral system recently proposed by Nekrasov and Shatashvili. We focus on the simplest case, the pure Yang-Mills theory with the SU(2) gauge group and the corresponding sine-Gordon integral model on the complex plane. We analyze the periodic wave function and the corresponding energy spectrum of the sine-Gordon quantum mechanics, and find this model contains information of the low energy effective theory of the gauge theory.
NASA Astrophysics Data System (ADS)
Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Vitiello, Giuseppe
2009-07-01
These proceedings present the Invited Lectures and Contributed Papers of the Fourth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2008, held at Castello Pasquini, Castiglioncello (Tuscany), 22-26 September 2008. We deliver these proceedings as a means to document to the interested public, to the wider scientific community, and to the participants themselves the stimulating exchange of ideas at this conference. The steadily growing number of participants, among them acclaimed scientists in their respective fields, show its increasing attraction and a fruitful concept, based on bringing leading researchers together and in contact with a mix of advanced students and scholars. Thus, this series of meetings successfully continued from the beginning with DICE 2002, (Decoherence and Entropy in Complex Systems ed H-T Elze Lecture Notes in Physics 633 (Berlin: Springer, 2004)) followed by DICE 2004 (Proceedings of the Second International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2004 ed H-T Elze Braz. Journ. Phys. 35, 2A & 2B (2005) pp 205-529 free access at: www.sbfisica.org.br/bjp) and by DICE 2006, (Proceedings of the Third International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2006 eds H-T Elze, L Diósi and G Vitiello Journal of Physics: Conference Series 67 (2007); free access at: http://www.iop.org/EJ/toc/1742-6596/67/1) uniting about one hundred participants from more than twenty different countries worldwide this time. It has been a great honour and inspiration for all of us to have Professor Sir Roger Penrose from the Mathematical Institute at the University of Oxford with us, who presented the lecture ``Black holes, quantum theory and cosmology'' (included in this volume). Discussions under the wider theme ``From Quantum Mechanics through Complexity to Spacetime: the role of emergent dynamical structures'' took place in the very pleasant and inspiring atmosphere of Castello
Including Quantum Effects in the Dynamics of Complex (i.e., Large)Molecular Systems
Miller, William H.
2006-04-27
The development in the 1950's and 60's of crossed molecular beam methods for studying chemical reactions at the single-collision molecular level stimulated the need and desire for theoretical methods to describe these and other dynamical processes in molecular systems. Chemical dynamics theory has made great strides in the ensuing decades, so that methods are now available for treating the quantum dynamics of small molecular systems essentially completely. For the large molecular systems that are of so much interest nowadays (e.g. chemical reactions in solution, in clusters, in nano-structures, in biological systems, etc.), however, the only generally available theoretical approach is classical molecular dynamics (MD) simulations. Much effort is currently being devoted to the development of approaches for describing the quantum dynamics of these complex systems. This paper reviews some of these approaches, especially the use of semiclassical approximations for adding quantum effects to classical MD simulations, also showing some new versions that should make these semiclassical approaches even more practical and accurate.
The small length scale effect for a non-local cantilever beam: a paradox solved.
Challamel, N; Wang, C M
2008-08-27
Non-local continuum mechanics allows one to account for the small length scale effect that becomes significant when dealing with microstructures or nanostructures. This paper presents some simplified non-local elastic beam models, for the bending analyses of small scale rods. Integral-type or gradient non-local models abandon the classical assumption of locality, and admit that stress depends not only on the strain value at that point but also on the strain values of all points on the body. There is a paradox still unresolved at this stage: some bending solutions of integral-based non-local elastic beams have been found to be identical to the classical (local) solution, i.e. the small scale effect is not present at all. One example is the Euler-Bernoulli cantilever nanobeam model with a point load which has application in microelectromechanical systems and nanoelectromechanical systems as an actuator. In this paper, it will be shown that this paradox may be overcome with a gradient elastic model as well as an integral non-local elastic model that is based on combining the local and the non-local curvatures in the constitutive elastic relation. The latter model comprises the classical gradient model and Eringen's integral model, and its application produces small length scale terms in the non-local elastic cantilever beam solution. PMID:21730658
Complex rotation in two-dimensional mesh calculations for quantum systems in uniform electric fields
NASA Astrophysics Data System (ADS)
Ivanov, Mikhail V.
2001-06-01
A computational method for calculations of quasi-steady states of quantum systems is developed on the basis of a complex coordinate transformation and multi-dimensional mesh solution of Schrödinger equations. The two-dimensional implementation of the method is applied to the hydrogen atom, a hydrogen-like system with a screened Coulomb interaction potential and the hydrogen molecular ion H2+ in external electric and parallel electric and magnetic fields. Detailed calculations are carried out for the ground state of the hydrogen atom in parallel electric and magnetic fields. All the systems are considered in cylindrical coordinates (ρ,z). The complex coordinate transformation is applied to the coordinate z, both in the form of a classical complex rotation (atom-like systems) and in the form of a smooth exterior complex scaling. The boundaries of applicability of these methods are studied. In comparison with the boundary-condition method, developed previously, the complex coordinate transformation approach allows one to obtain more precise and stable results for the strong electric field regimes with |ImE|≈|ReE|.
Physical realization of a quantum spin liquid based on a complex frustration mechanism
NASA Astrophysics Data System (ADS)
Balz, Christian; Lake, Bella; Reuther, Johannes; Luetkens, Hubertus; Schönemann, Rico; Herrmannsdörfer, Thomas; Singh, Yogesh; Nazmul Islam, A. T. M.; Wheeler, Elisa M.; Rodriguez-Rivera, Jose A.; Guidi, Tatiana; Simeoni, Giovanna G.; Baines, Chris; Ryll, Hanjo
2016-10-01
Unlike conventional magnets where the magnetic moments are partially or completely static in the ground state, in a quantum spin liquid they remain in collective motion down to the lowest temperatures. The importance of this state is that it is coherent and highly entangled without breaking local symmetries. In the case of magnets with isotropic interactions, spin-liquid behaviour is sought in simple lattices with antiferromagnetic interactions that favour antiparallel alignments of the magnetic moments and are incompatible with the lattice geometries. Despite an extensive search, experimental realizations remain very few. Here we investigate the novel, unexplored magnet Ca10Cr7O28, which has a complex Hamiltonian consisting of several different isotropic interactions and where the ferromagnetic couplings are stronger than the antiferromagnetic ones. We show both experimentally and theoretically that it displays all the features expected of a quantum spin liquid. Thus spin-liquid behaviour in isotropic magnets is not restricted to the simple idealized models currently investigated, but can be compatible with complex structures and ferromagnetic interactions.
Kubicki, James D; Halada, Gary P; Jha, Prashant; Phillips, Brian L
2009-01-01
Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI), U(V), U(IV), U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG), and U-2-Keto-3-doxyoctanoate (KDO) with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI) to U(IV) is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V)- and U(IV)-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI) and U(IV) rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules) are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids. PMID:19689800
The non-local bootstrap--estimation of uncertainty in diffusion MRI.
Yap, Pew-Thian; An, Hongyu; Chen, Yasheng; Shen, Dinggang
2013-01-01
Diffusion MRI is a noninvasive imaging modality that allows for the estimation and visualization of white matter connectivity patterns in the human brain. However, due to the low signal-to-noise ratio (SNR) nature of diffusion data, deriving useful statistics from the data is adversely affected by different sources of measurement noise. This is aggravated by the fact that the sampling distribution of the statistic of interest is often complex and unknown. In situations as such, the bootstrap, due to its distribution-independent nature, is an appealing tool for the estimation of the variability of almost any statistic, without relying on complicated theoretical calculations, but purely on computer simulation. In this work, we present new bootstrap strategies for variability estimation of diffusion statistics in association with noise. In contrast to the residual bootstrap, which relies on a predetermined data model, or the repetition bootstrap, which requires repeated signal measurements, our approach, called the non-local bootstrap (NLB), is non-parametric and obviates the need for time-consuming multiple acquisitions. The key assumption of NLB is that local image structures recur in the image. We exploit this self-similarity via a multivariate non-parametric kernel regression framework for bootstrap estimation of uncertainty. Evaluation of NLB using a set of high-resolution diffusion-weighted images, with lower than usual SNR due to the small voxel size, indicates that NLB is markedly more robust to noise and results in more accurate inferences.
NASA Astrophysics Data System (ADS)
Shilova, S. V.; Romanova, K. A.; Galyametdinov, Yu. G.; Tret'yakova, A. Ya.; Barabanov, V. P.
2016-06-01
The complexing of protonated chitosan with dodecyl sulfate ions in water solutions is studied using IR spectroscopy data and quantum-chemical calculations. It is established that the electrostatic interaction between the protonated amino groups of chitosan and dodecyl sulfate ions is apparent in the IR spectrum as a band at 833 cm-1. The need to consider the effect the solvent has on the formation of hydrogen-bound ion pairs [CTS+ ṡ C12H25O 3 - ] is shown via a quantum-chemical simulation of the equilibrium geometry and the energy characteristics of complexing and hydration.
NASA Astrophysics Data System (ADS)
Kuznetsova, Vera; Orlova, Anna; Martynenko, Irina; Kundelev, Evgeny; Maslov, Vladimir; Fedorov, Anatoly; Baranov, Alexander; Gun'ko, Yurii
2016-04-01
Here we report our investigations of the formation conditions and photophysical properties of complexes between luminescent semiconducting nanoparticles (quantum dots, QDs) and the photosensitizer chlorin e6, which is widely used for the photodynamic therapy. In our complexes, bovine serum albumin (BSA), the most abundant protein in blood serum, was used as a linker between QDs and chlorin e6 molecules. The influence of BSA on the optical properties of Ce6 and QDs in complexes was properly examined using spectral-luminescent methods. It was found that BSA passivated QD surface and substantially QD quantum yield of luminescence was increased. In addition, BSA prevented the aggregation of chlorin e6 molecules in complexes with QDs. We demonstrated that the use of BSA as a linker allows to create functional QD-chlorin e6 complexes with effective photoexcitation energy transfer from QDs to the molecules.
Electrical modulation of the complex refractive index in mid-infrared quantum cascade lasers.
Teissier, J; Laurent, S; Manquest, C; Sirtori, C; Bousseksou, A; Coudevylle, J R; Colombelli, R; Beaudoin, G; Sagnes, I
2012-01-16
We have demonstrated an integrated three terminal device for the modulation of the complex refractive index of a distributed feedback quantum cascade laser (QCL). The device comprises an active region to produce optical gain vertically stacked with a control region made of asymmetric coupled quantum wells (ACQW). The optical mode, centered on the gain region, has a small overlap also with the control region. Owing to the three terminals an electrical bias can be applied independently on both regions: on the laser for producing optical gain and on the ACQW for tuning the energy of the intersubband transition. This allows the control of the optical losses at the laser frequency as the absorption peak associated to the intersubband transition can be electrically brought in and out the laser transition. By using this function a laser modulation depth of about 400 mW can be achieved by injecting less than 1 mW in the control region. This is four orders of magnitude less than the electrical power needed using direct current modulation and set the basis for the realisation of electrical to optical transducers.
Non-local ocean mixing model and a new plume model for deep convection
NASA Astrophysics Data System (ADS)
Canuto, V. M.; Cheng, Y.; Howard, A. M.
Turbulent fluxes can be represented by a diffusivity tensor, the symmetric part of which describes " turbulent diffusion" while the anti-symmetric part describes " advection". Diffusion is a local process in the sense that it depends only on the local gradients of the mean fields while advection is non-local for it is represented by an integral over all length scales (all eddies) that can "fit" from say the bottom of the physical domain to the z where the fluxes are computed. In the ocean, there are two main regimes where non-local transport is important. One regime is where storms release a sudden burst of mechanical energy to the ocean surface that is then transported downward by energetic eddies that deepen the mixed layer. Even relatively simple non-local models yield results considerably more realistic than those of local models. The second regime is deep convection (DC) caused by loss of surface buoyancy, the description of which is required for a reliable assessment of water masses formation. At present, there is no reliable model for either of these non-local regimes individually or much less a formalism capable of accounting for both regimes simultaneously. The goal of this paper is to present a formalism that provides the expressions for the non-local fluxes for momentum, heat and salinity encompassing both cases. Since the resulting number of dynamic equations involves is however large, we work out two sub-models, one when only shear must be treated non-locally (e.g., when storms release mechanical energy) and one when only buoyancy is to be treated non-locally (the DC case). We employ the Reynolds Stress formalism in which non-locality is represented by the third-order moments which in turn depend on the fourth-order moments for which we employ a new model that has been tested against LES data, aircraft data and a full PBL simulation. For the DC case, we rewrite the non-local model in terms of Plumes since thus far the only non-local model used to treat
Bio serves nano: biological light-harvesting complex as energy donor for semiconductor quantum dots.
Werwie, Mara; Xu, Xiangxing; Haase, Mathias; Basché, Thomas; Paulsen, Harald
2012-04-01
Light-harvesting complex (LHCII) of the photosynthetic apparatus in plants is attached to type-II core-shell CdTe/CdSe/ZnS nanocrystals (quantum dots, QD) exhibiting an absorption band at 710 nm and carrying a dihydrolipoic acid coating for water solubility. LHCII stays functional upon binding to the QD surface and enhances the light utilization of the QDs significantly, similar to its light-harvesting function in photosynthesis. Electronic excitation energy transfer of about 50% efficiency is shown by donor (LHCII) fluorescence quenching as well as sensitized acceptor (QD) emission and corroborated by time-resolved fluorescence measurements. The energy transfer efficiency is commensurable with the expected efficiency calculated according to Förster theory on the basis of the estimated donor-acceptor separation. Light harvesting is particularly efficient in the red spectral domain where QD absorption is relatively low. Excitation over the entire visible spectrum is further improved by complementing the biological pigments in LHCII with a dye attached to the apoprotein; the dye has been chosen to absorb in the "green gap" of the LHCII absorption spectrum and transfers its excitation energy ultimately to QD. This is the first report of a biological light-harvesting complex serving an inorganic semiconductor nanocrystal. Due to the charge separation between the core and the shell in type-II QDs the presented LHCII-QD hybrid complexes are potentially interesting for sensitized charge-transfer and photovoltaic applications.
Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes
Mohseni, M.; Shabani, A.; Lloyd, S.; Rabitz, H.
2014-01-21
Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy λ, bath frequency cutoff γ, temperature T, and bath spatial correlations. We identify the ratio of k{sub B}λT/ℏγg as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap.
Ray, Anamika; Santhosh, Kotni; Bhattacharya, Sumanta
2011-05-01
The present paper reports the photophysical investigations on supramolecular interaction of a phthalocyanine derivative, namely, 2,9,16,23-tetra-tert-butyl-29H,31H-Pc (1) with C(60) and C(70) in toluene. The binding constants of the C(60) and C(70) complexes of 1 are estimated to be 27,360 and 25,205 dm(3), respectively. Transient absorption measurements in the visible region establishes that energy transfer from C60*T (and C70*T) to 1 occurs predominantly in toluene which is subsequently confirmed by the consecutive appearance of the triplet states of 1. Quantum chemical calculations at DFT level of theory explore the geometry and electronic structure of the supramolecules and testify the significant redistribution of charge between fullerenes and 1.
Probing degradation in complex engineering silicones by 1H multiple quantum NMR
Maxwell, R S; Chinn, S C; Giuliani, J; Herberg, J L
2007-09-05
Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.
Teleportation - Travel in the Quantum and Relativistic Realms and Bejond
NASA Astrophysics Data System (ADS)
Teodorani, M.
2007-01-01
This book, which is devoted to the description and discussion of several methods leading to teleportation, is divided into three main parts: a) foundations of quantum non-locality, quantum particle teleportation and quantum computing; b) foundations of quantum-relativistic teleportation, warp drive propulsion methods and search for extraterrestrial visitation; c) experiments in "psychic teleportation" and problems related to quantum consciousness studies.
Megow, Jörg; Röder, Beate; Kulesza, Alexander; Bonačić-Koutecký, Vlasta; May, Volkhard
2011-02-25
Electronic excitation energy transfer (EET) is described theoretically for the chromophore complex P(4) formed by a butanediamine dendrimer to which four pheophorbide-a molecules are covalently linked. To achieve a description with atomic resolution, and to account for the effect of an ethanol solvent, a mixed quantum-classical methodology is utilized. Room-temperature molecular dynamics simulations are used to describe the nuclear dynamics, and EET is accounted for in utilizing a mixed quantum-classical formulation of the transition rates. Therefore, the full quantum expression of the EET rates is given and the change to a mixed quantum-classical version is briefly explained. The description results in the calculation of transition rates which coincide rather satisfactory with available experimental data on P(4). It is also shown that different assumptions of classical Förster theory are not valid for P(4). The temporal behavior of EET deduced from the rate equations is confronted with that following from the solution of the time-dependent Schrödinger equation entering the mixed quantum-classical description of EET. From this we can conclude that EET in flexible chromophore complexes such as P(4) can be rather satisfactory estimated by single transition rates. A correct description, however, is only achievable by using a sufficiently large set of rates that correspond to the various possible equilibrium configurations of the complex.
Non-local bias contribution to third-order galaxy correlations
NASA Astrophysics Data System (ADS)
Bel, J.; Hoffmann, K.; Gaztañaga, E.
2015-10-01
We study halo clustering bias with second- and third-order statistics of halo and matter density fields in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge simulation. We verify that two-point correlations deliver reliable estimates of the linear bias parameters at large scales, while estimations from the variance can be significantly affected by non-linear and possibly non-local contributions to the bias function. Combining three-point auto- and cross-correlations we find, for the first time in configuration space, evidence for the presence of such non-local contributions. These contributions are consistent with predicted second-order non-local effects on the bias functions originating from the dark matter tidal field. Samples of massive haloes show indications of bias (local or non-local) beyond second order. Ignoring non-local bias causes 20-30 and 5-10 per cent overestimation of the linear bias from three-point auto- and cross-correlations, respectively. We study two third-order bias estimators that are not affected by second-order non-local contributions. One is a combination of three-point auto- and cross-correlations. The other is a combination of third-order one- and two-point cumulants. Both methods deliver accurate estimations of the linear bias. Ignoring non-local bias causes higher values of the second-order bias from three-point correlations. Our results demonstrate that third-order statistics can be employed for breaking the growth-bias degeneracy.
Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?
NASA Astrophysics Data System (ADS)
Batle, J.; Ooi, C. H. Raymond; Farouk, Ahmed; Abutalib, M.; Abdalla, S.
2016-08-01
Quantum correlations are thought to be the reason why certain quantum algorithms overcome their classical counterparts. Since the nature of this resource is still not fully understood, we shall investigate how multipartite entanglement and non-locality among qubits vary as the quantum computation runs. We shall encounter that quantum measures on the whole system cannot account for their corresponding speedup.
Emergence of quantum mechanics from a sub-quantum statistical mechanics
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2014-07-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wavefunctions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" non-locality.
NASA Astrophysics Data System (ADS)
Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Vitiello, Giuseppe
2009-07-01
These proceedings present the Invited Lectures and Contributed Papers of the Fourth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2008, held at Castello Pasquini, Castiglioncello (Tuscany), 22-26 September 2008. We deliver these proceedings as a means to document to the interested public, to the wider scientific community, and to the participants themselves the stimulating exchange of ideas at this conference. The steadily growing number of participants, among them acclaimed scientists in their respective fields, show its increasing attraction and a fruitful concept, based on bringing leading researchers together and in contact with a mix of advanced students and scholars. Thus, this series of meetings successfully continued from the beginning with DICE 2002, (Decoherence and Entropy in Complex Systems ed H-T Elze Lecture Notes in Physics 633 (Berlin: Springer, 2004)) followed by DICE 2004 (Proceedings of the Second International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2004 ed H-T Elze Braz. Journ. Phys. 35, 2A & 2B (2005) pp 205-529 free access at: www.sbfisica.org.br/bjp) and by DICE 2006, (Proceedings of the Third International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2006 eds H-T Elze, L Diósi and G Vitiello Journal of Physics: Conference Series 67 (2007); free access at: http://www.iop.org/EJ/toc/1742-6596/67/1) uniting about one hundred participants from more than twenty different countries worldwide this time. It has been a great honour and inspiration for all of us to have Professor Sir Roger Penrose from the Mathematical Institute at the University of Oxford with us, who presented the lecture ``Black holes, quantum theory and cosmology'' (included in this volume). Discussions under the wider theme ``From Quantum Mechanics through Complexity to Spacetime: the role of emergent dynamical structures'' took place in the very pleasant and inspiring atmosphere of Castello
Filho, Manoel A. M.; Dutra, José Diogo L.; Rocha, Gerd B.; Simas, Alfredo M.
2016-01-01
The RM1 quantum chemical model for the calculation of complexes of Tm(III), Yb(III) and Lu(III) is advanced. Subsequently, we tested the models by fully optimizing the geometries of 126 complexes. We then compared the optimized structures with known crystallographic ones from the Cambridge Structural Database. Results indicate that, for thulium complexes, the accuracy in terms of the distances between the lanthanide ion and its directly coordinated atoms is about 2%. Corresponding results for ytterbium and lutetium are both 3%, levels of accuracy useful for the design of lanthanide complexes, targeting their countless applications. PMID:27223475
Filho, Manoel A M; Dutra, José Diogo L; Rocha, Gerd B; Simas, Alfredo M; Freire, Ricardo O
2016-01-01
The RM1 quantum chemical model for the calculation of complexes of Tm(III), Yb(III) and Lu(III) is advanced. Subsequently, we tested the models by fully optimizing the geometries of 126 complexes. We then compared the optimized structures with known crystallographic ones from the Cambridge Structural Database. Results indicate that, for thulium complexes, the accuracy in terms of the distances between the lanthanide ion and its directly coordinated atoms is about 2%. Corresponding results for ytterbium and lutetium are both 3%, levels of accuracy useful for the design of lanthanide complexes, targeting their countless applications.
Filho, Manoel A M; Dutra, José Diogo L; Rocha, Gerd B; Simas, Alfredo M; Freire, Ricardo O
2016-01-01
The RM1 quantum chemical model for the calculation of complexes of Tm(III), Yb(III) and Lu(III) is advanced. Subsequently, we tested the models by fully optimizing the geometries of 126 complexes. We then compared the optimized structures with known crystallographic ones from the Cambridge Structural Database. Results indicate that, for thulium complexes, the accuracy in terms of the distances between the lanthanide ion and its directly coordinated atoms is about 2%. Corresponding results for ytterbium and lutetium are both 3%, levels of accuracy useful for the design of lanthanide complexes, targeting their countless applications. PMID:27223475
Non-local total variation method for despeckling of ultrasound images
NASA Astrophysics Data System (ADS)
Feng, Jianbin; Ding, Mingyue; Zhang, Xuming
2014-03-01
Despeckling of ultrasound images, as a very active topic research in medical image processing, plays an important or even indispensable role in subsequent ultrasound image processing. The non-local total variation (NLTV) method has been widely applied to denoising images corrupted by Gaussian noise, but it cannot provide satisfactory restoration results for ultrasound images corrupted by speckle noise. To address this problem, a novel non-local total variation despeckling method is proposed for speckle reduction. In the proposed method, the non-local gradient is computed on the images restored by the optimized Bayesian non-local means (OBNLM) method and it is introduced into the total variation method to suppress speckle in ultrasound images. Comparisons of the restoration performance are made among the proposed method and such state-of-the-art despeckling methods as the squeeze box filter (SBF), the non-local means (NLM) method and the OBNLM method. The quantitative comparisons based on synthetic speckled images show that the proposed method can provide higher Peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) than compared despeckling methods. The subjective visual comparisons based on synthetic and real ultrasound images demonstrate that the proposed method outperforms other compared algorithms in that it can achieve better performance of noise reduction, artifact avoidance, edge and texture preservation.
Quantum chemical study on surface complex structures of phosphate on gibbsite
NASA Astrophysics Data System (ADS)
Luengo, Carina V.; Castellani, Norberto J.; Ferullo, Ricardo M.
2015-08-01
Quantum mechanics calculations based on the density functional theory (DFT) were used to identify phosphate surface complexes on gibbsite at low and high pH. The different phosphate species were represented using the Al6(OH)18(H2O)6 cluster model considering four different geometries: monodentate mononuclear (Pmm), monodentate binuclear (Pmb), bidentate mononuclear (Pbm) and bidentate binuclear (Pbb). The corresponding adsorption reactions were modelled via ligand exchange between phosphate species and surface functional groups (hydroxyls and protonated hydroxyls at high and low pH, respectively). The theoretical results indicate that phosphate surface complexes are thermodynamically more favored at acid pH, in agreement with experimental evidences. The first step in these reactions, i.e., the generation of required aluminum vacant sites, was predicted to be particularly favorable when singly coordinated aquo groups are released. Stretching and bending vibrational frequencies associated with the different surface structures were calculated at both pH conditions. The corresponding values at low pH were found to be shifted to higher frequencies with respect to those ones at high pH. ATR-FTIR studies were also carried out. The resulting spectra are dominated by a strong band within the 800-840 cm-1 interval due to P-OH stretching modes. The corresponding peak appearing around 820 cm-1 at high pH is shifted to lower frequencies with respect to the position at low pH, a tendency well predicted by DFT calculations.
NASA Astrophysics Data System (ADS)
Arjunan, V.; Marchewka, Mariusz K.; Kalaivani, M.
2012-10-01
The molecular complex of betaine with selenious acid namely, betaine dihydrogen selenite (C5H13NO5Se, BDHSe) was synthesised by the reaction of betaine and SeO2 in a 1:1:1 solution of isopropanol, methanol and water. Crystals were grown from this solution by cooling to 253 K for few days. The complex was formed without accompanying proton transfer from selenious acid molecule to betaine. The complete vibrational assignments and analysis of BDHSe have been performed by FTIR, FT-Raman and far-infrared spectral studies. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP) method using 6-311++G∗∗, 6-31G∗∗, cc-pVDZ and 3-21G basis sets. The structural parameters, energies, thermodynamic parameters and the NBO charges of BDHSe were determined by the DFT method. The 1H and 13C isotropic chemical shifts (δ ppm) of BDHSe with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. SHG experiment was carried out using Kurtz-Perry powder technique. The efficiency of second harmonic generation for BDHSe was estimated relatively to KDP: deff = 0.97 deff (KDP).
A Non-Local Low-Rank Approach to Enforce Integrability.
Badri, Hicham; Yahia, Hussein
2016-08-01
We propose a new approach to enforce integrability using recent advances in non-local methods. Our formulation consists in a sparse gradient data-fitting term to handle outliers together with a gradient-domain non-local low-rank prior. This regularization has two main advantages: 1) the low-rank prior ensures similarity between non-local gradient patches, which helps recovering high-quality clean patches from severe outliers corruption and 2) the low-rank prior efficiently reduces dense noise as it has been shown in recent image restoration works. We propose an efficient solver for the resulting optimization formulation using alternate minimization. Experiments show that the new method leads to an important improvement compared with previous optimization methods and is able to efficiently handle both outliers and dense noise mixed together. PMID:27214898
Pion-to-Photon Transition Distribution Amplitudes in the Non-Local Chiral Quark Model
NASA Astrophysics Data System (ADS)
Kotko, P.; Praszałowicz, M.
2009-01-01
We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross-section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDAs. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.
Is Transport in Accretion Disks Primarily Local or Non-local?
NASA Astrophysics Data System (ADS)
Blackman, Eric G.
2014-10-01
Accretion disks likely involve some combination of local and non-local angular momentum transport. Coronae and jets provide evidence for large scale transport and disk thermal emission may provide evidence for local transport. Identifying the principles that determine the relative local vs. nonlocal fraction poses a set of challenges and highlights a significant gap between numerical simulation results and improved, practical mean field accretion theory. The dominant mechanisms of transport may in fact be non-local and non-viscous. Even the magneto-rotational instability (MRI) for example, often invoked as a source of local turbulence, may produce predominantly non-local transport. I will overview progress and open issues on these themes, drawing in concepts from disk theory, dynamo theory, and corona formation.
A Non-Local Low-Rank Approach to Enforce Integrability.
Badri, Hicham; Yahia, Hussein
2016-08-01
We propose a new approach to enforce integrability using recent advances in non-local methods. Our formulation consists in a sparse gradient data-fitting term to handle outliers together with a gradient-domain non-local low-rank prior. This regularization has two main advantages: 1) the low-rank prior ensures similarity between non-local gradient patches, which helps recovering high-quality clean patches from severe outliers corruption and 2) the low-rank prior efficiently reduces dense noise as it has been shown in recent image restoration works. We propose an efficient solver for the resulting optimization formulation using alternate minimization. Experiments show that the new method leads to an important improvement compared with previous optimization methods and is able to efficiently handle both outliers and dense noise mixed together.
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-08-01
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance. PMID:26254660
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-08-01
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.
Del Ben, Mauro Hutter, Jürg; VandeVondele, Joost
2015-08-07
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.
Cosmological perturbations in SFT inspired non-local scalar field models
NASA Astrophysics Data System (ADS)
Koshelev, Alexey S.; Vernov, Sergey Yu.
2012-10-01
We study cosmological perturbations in models with a single non-local scalar field originating from the string field theory description of the rolling tachyon dynamics. We construct the equation for the energy density perturbations of the non-local scalar field and explicitly prove that for the free field it is identical to a system of local cosmological perturbation equations in a particular model with multiple (maybe infinitely many) local free scalar fields. We also show that vector and tensor perturbations are absent in this set-up.
[A fast non-local means algorithm for denoising of computed tomography images].
Kang, Changqing; Cao, Wenping; Fang, Lei; Hua, Li; Cheng, Hong
2012-11-01
A fast non-local means image denoising algorithm is presented based on the single motif of existing computed tomography images in medical archiving systems. The algorithm is carried out in two steps of prepossessing and actual possessing. The sample neighborhood database is created via the data structure of locality sensitive hashing in the prepossessing stage. The CT image noise is removed by non-local means algorithm based on the sample neighborhoods accessed fast by locality sensitive hashing. The experimental results showed that the proposed algorithm could greatly reduce the execution time, as compared to NLM, and effectively preserved the image edges and details.
Barone, Vincenzo; Biczysko, Malgorzata; Puzzarini, Cristina
2015-05-19
For many years, scientists suspected that the interstellar medium was too hostile for organic species and that only a few simple molecules could be formed under such extreme conditions. However, the detection of approximately 180 molecules in interstellar or circumstellar environments in recent decades has changed this view dramatically. A rich chemistry has emerged, and relatively complex molecules such as C60 and C70 are formed. Recently, researchers have also detected complex organic and potentially prebiotic molecules, such as amino acids, in meteorites and in other space environments. Those discoveries have further stimulated the debate on the origin of the building blocks of life in the universe. Many efforts continue to focus on the physical, chemical, and astrophysical processes by which prebiotic molecules can be formed in the interstellar dust and dispersed to Earth or to other planets.Spectroscopic techniques, which are widely used to infer information about molecular structure and dynamics, play a crucial role in the investigation of planetary atmosphere and the interstellar medium. Increasingly these astrochemical investigations are assisted by quantum-mechanical calculations of structures as well as spectroscopic and thermodynamic properties, such as transition frequencies and reaction enthalpies, to guide and support observations, line assignments, and data analysis in these new and chemically complicated situations. However, it has proved challenging to extend accurate quantum-chemical computational approaches to larger systems because of the unfavorable scaling with the number of degrees of freedom (both electronic and nuclear).In this Account, we show that it is now possible to compute physicochemical properties of building blocks of biomolecules with an accuracy rivaling that of the most sophisticated experimental techniques, and we summarize specific contributions from our groups. As a test case, we present the underlying computational machinery
Barone, Vincenzo; Biczysko, Malgorzata; Puzzarini, Cristina
2015-05-19
For many years, scientists suspected that the interstellar medium was too hostile for organic species and that only a few simple molecules could be formed under such extreme conditions. However, the detection of approximately 180 molecules in interstellar or circumstellar environments in recent decades has changed this view dramatically. A rich chemistry has emerged, and relatively complex molecules such as C60 and C70 are formed. Recently, researchers have also detected complex organic and potentially prebiotic molecules, such as amino acids, in meteorites and in other space environments. Those discoveries have further stimulated the debate on the origin of the building blocks of life in the universe. Many efforts continue to focus on the physical, chemical, and astrophysical processes by which prebiotic molecules can be formed in the interstellar dust and dispersed to Earth or to other planets.Spectroscopic techniques, which are widely used to infer information about molecular structure and dynamics, play a crucial role in the investigation of planetary atmosphere and the interstellar medium. Increasingly these astrochemical investigations are assisted by quantum-mechanical calculations of structures as well as spectroscopic and thermodynamic properties, such as transition frequencies and reaction enthalpies, to guide and support observations, line assignments, and data analysis in these new and chemically complicated situations. However, it has proved challenging to extend accurate quantum-chemical computational approaches to larger systems because of the unfavorable scaling with the number of degrees of freedom (both electronic and nuclear).In this Account, we show that it is now possible to compute physicochemical properties of building blocks of biomolecules with an accuracy rivaling that of the most sophisticated experimental techniques, and we summarize specific contributions from our groups. As a test case, we present the underlying computational machinery
Martynenko, Irina V; Orlova, Anna O; Maslov, Vladimir G; Fedorov, Anatoly V; Berwick, Kevin; Baranov, Alexander V
2016-01-01
The formation of nonluminescent aggregates of aluminium sulfonated phthalocyanine in complexes with CdSe/ZnS quantum dots causes a decrease of the intracomplex energy transfer efficiency with increasing phthalocyanine concentration. This was confirmed by steady-state absorption and photoluminescent spectroscopy. A corresponding physical model was developed that describes well the experimental data. The results can be used at designing of QD/molecule systems with the desired spatial arrangement for photodynamic therapy. PMID:27547619
Martynenko, Irina V; Maslov, Vladimir G; Fedorov, Anatoly V; Berwick, Kevin; Baranov, Alexander V
2016-01-01
Summary The formation of nonluminescent aggregates of aluminium sulfonated phthalocyanine in complexes with CdSe/ZnS quantum dots causes a decrease of the intracomplex energy transfer efficiency with increasing phthalocyanine concentration. This was confirmed by steady-state absorption and photoluminescent spectroscopy. A corresponding physical model was developed that describes well the experimental data. The results can be used at designing of QD/molecule systems with the desired spatial arrangement for photodynamic therapy. PMID:27547619
Magnetic field and contact resistance dependence of non-local charge imbalance.
Kleine, A; Baumgartner, A; Trbovic, J; Golubev, D S; Zaikin, A D; Schönenberger, C
2010-07-01
Crossed Andreev reflection (CAR) in metallic nanostructures, a possible basis for solid-state electron entangler devices, is usually investigated by detecting non-local voltages in multi-terminal superconductor/normal metal devices. This task is difficult because other subgap processes may mask the effects of CAR. One of these processes is the generation of charge imbalance (CI) and the diffusion of non-equilibrium quasi-particles in the superconductor. Here we demonstrate a characteristic dependence of non-local CI on a magnetic field applied parallel to the superconducting wire, which can be understood by a generalization of the standard description of CI to non-local experiments. These results can be used to distinguish CAR and CI and to extract CI relaxation times in superconducting nanostructures. In addition, we investigate the dependence of non-local CI on the resistance of the injector and detector contacts and demonstrate a quantitative agreement with a recent theory using only material and junction characteristics extracted from separate direct measurements.
ERIC Educational Resources Information Center
Findikoglu, Melike Nur
2012-01-01
A two-phased qualitative study was conducted to explore the facilitators of non-local (i.e. domestic or international) partnerships formed by small- and medium-sized firms (SME). Rooted in trust, proximity and dynamic capabilities lenses, the study focused on behaviors of SMEs performing in dynamic, competitive and highly interlinked industry, the…
A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING
A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-08-15
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
NASA Astrophysics Data System (ADS)
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-08-01
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
Looked after Children: Non-Local Authority Placements and Meeting Educational Needs
ERIC Educational Resources Information Center
Thomson, Aicha Isabel
2007-01-01
Research consistently reports an educational disadvantage of being looked after. There is a lack of literature pertaining specifically to young people who are placed out of their local authority. The following research reports on an investigation of educational psychologists' views on the educational implications of non-local authority residential…
Quality Assurance of Non-Local Accounting Programs Conducted in Hong Kong
ERIC Educational Resources Information Center
Cheng, Mei-Ai; Leung, Noel W.
2014-01-01
This study examines the current government policy and institutional practice on quality assurance of non-local accounting programs conducted in Hong Kong. Both international guidelines, national regulations and institutional frameworks in higher education and transnational higher education, and professional practice in accounting education are…
Reducing sequencing complexity in dynamical quantum error suppression by Walsh modulation
Hayes, David; Khodjasteh, Kaveh; Viola, Lorenza; Biercuk, Michael J.
2011-12-15
We study dynamical error suppression from the perspective of reducing sequencing complexity, with an eye toward facilitating the development of efficient semiautonomous quantum-coherent systems. To this end, we focus on digital sequences where all interpulse time periods are integer multiples of a minimum clock period and compatibility with digital classical control circuitry is intrinsic. We use so-called Walsh functions as a unifying mathematical framework; the Walsh functions are an orthonormal set of basis functions which may be associated directly with the control propagator for a digital modulation scheme. Using this insight, we characterize the suite of resulting Walsh dynamical decoupling sequences--including both familiar and novel control sequences--and identify the number of periodic square-wave (Rademacher) functions required to generate the associated Walsh function as the key determinant of the error-suppressing features. We also show how Walsh modulation may be employed for the protection of certain nontrivial logic gates. Based on these insights, we identify Walsh modulation as a digital-efficient approach for physical-layer error suppression.
Quantum entanglement, quantum communication and the limits of quantum computing
NASA Astrophysics Data System (ADS)
Ambainis, Andris
Quantum entanglement is a term describing the quantum correlations between different parts of a quantum system. Quantum information theory has developed sophisticated techniques to quantify and study quantum entanglement. In this thesis, we show how to apply those techniques to problems in quantum algorithms, complexity theory, communication and cryptography. The main results are: (1) quantum communication protocols that are exponentially more efficient that conventional (classical) communication protocols, (2) unconditionally secure quantum protocols for cryptographic problems, (3) a new "quantum adversary" method for proving lower bounds on quantum algorithms, (4) a study of "one clean qubit computation", a model related to the experimental implementation of quantum computers using NMR (nucleo-magnetic resonance) technology.
NASA Astrophysics Data System (ADS)
Voller, V. R.; Falcini, F.; Foufoula-Georgiou, E.; Ganti, V.; Paola, C.; Hill, K. M.; Swenson, J. B.; Longjas, A.
2013-12-01
The purpose of this work is to suggest how experiments might be constructed to provide data to test recently proposed phenomenological non-local model of depositional transport; formulated on the basis of morphological arguments but with limited data. A sound methodology for developing models of geological systems is to first collect significant data and then carefully identify an appropriate model form and parameters. An alternative approach is to construct what might be referred to as a phenomenological model, where limited observation of the system is used to suggest an appropriate mathematical form that matches the critical nature of the physical system behavior. By their nature, phenomenological models are often developed within a fairly narrow range of observations. In this way, interesting findings can occur when the models are modified and exercised across wider physical domains, in particular in domains where there is an absence of hard data to corroborate or invalidate the model predictions. Although this approach might be frown on my some, it is important to recognize the stellar and proven track record of phenomenological models, which despite the original scarcity of data, often pave the way to new perspectives and important findings. The poster child example is the Higgs boson. In the early 60's manipulation of the quantum field equations revealed a critical inconsistency related to the masses of fundamental particles that could only be mathematically resolved by assuming that they operated within a field that would exert drag; this conjecture took almost fifty years and the vast experimental operation of the Large Hadron Collider to physically confirm. In this work we examine a current phenomenological model used to describe non-local transport in fluvial sediment domains. This model has its genesis in attempting to describe the shapes of hill slope profiles, while acknowledging the fact that two points of the landscape with the same local slope are
Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul
2015-04-01
The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.
Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes.
Scott, Amy M; Algar, W Russ; Stewart, Michael H; Trammell, Scott A; Blanco-Canosa, Juan B; Dawson, Philip E; Deschamps, Jeffrey R; Goswami, Ramasis; Oh, Eunkeu; Huston, Alan L; Medintz, Igor L
2014-05-01
Charge transfer processes with semiconductor quantum dots (QDs) have generated much interest for potential utility in energy conversion. Such configurations are generally nonbiological; however, recent studies have shown that a redox-active ruthenium(II)-phenanthroline complex (Ru(2+)-phen) is particularly efficient at quenching the photoluminescence (PL) of QDs, and this mechanism demonstrates good potential for application as a generalized biosensing detection modality since it is aqueous compatible. Multiple possibilities for charge transfer and/or energy transfer mechanisms exist within this type of assembly, and there is currently a limited understanding of the underlying photophysical processes in such biocomposite systems where nanomaterials are directly interfaced with biomolecules such as proteins. Here, we utilize redox reactions, steady-state absorption, PL spectroscopy, time-resolved PL spectroscopy, and femtosecond transient absorption spectroscopy (FSTA) to investigate PL quenching in biological assemblies of CdSe/ZnS QDs formed with peptide-linked Ru(2+)-phen. The results reveal that QD quenching requires the Ru(2+) oxidation state and is not consistent with Förster resonance energy transfer, strongly supporting a charge transfer mechanism. Further, two colors of CdSe/ZnS core/shell QDs with similar macroscopic optical properties were found to have very different rates of charge transfer quenching, by Ru(2+)-phen with the key difference between them appearing to be the thickness of their ZnS outer shell. The effect of shell thickness was found to be larger than the effect of increasing distance between the QD and Ru(2+)-phen when using peptides of increasing persistence length. FSTA and time-resolved upconversion PL results further show that exciton quenching is a rather slow process consistent with other QD conjugate materials that undergo hole transfer. An improved understanding of the QD-Ru(2+)-phen system can allow for the design of more
Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes
2015-01-01
Charge transfer processes with semiconductor quantum dots (QDs) have generated much interest for potential utility in energy conversion. Such configurations are generally nonbiological; however, recent studies have shown that a redox-active ruthenium(II)–phenanthroline complex (Ru2+-phen) is particularly efficient at quenching the photoluminescence (PL) of QDs, and this mechanism demonstrates good potential for application as a generalized biosensing detection modality since it is aqueous compatible. Multiple possibilities for charge transfer and/or energy transfer mechanisms exist within this type of assembly, and there is currently a limited understanding of the underlying photophysical processes in such biocomposite systems where nanomaterials are directly interfaced with biomolecules such as proteins. Here, we utilize redox reactions, steady-state absorption, PL spectroscopy, time-resolved PL spectroscopy, and femtosecond transient absorption spectroscopy (FSTA) to investigate PL quenching in biological assemblies of CdSe/ZnS QDs formed with peptide-linked Ru2+-phen. The results reveal that QD quenching requires the Ru2+ oxidation state and is not consistent with Förster resonance energy transfer, strongly supporting a charge transfer mechanism. Further, two colors of CdSe/ZnS core/shell QDs with similar macroscopic optical properties were found to have very different rates of charge transfer quenching, by Ru2+-phen with the key difference between them appearing to be the thickness of their ZnS outer shell. The effect of shell thickness was found to be larger than the effect of increasing distance between the QD and Ru2+-phen when using peptides of increasing persistence length. FSTA and time-resolved upconversion PL results further show that exciton quenching is a rather slow process consistent with other QD conjugate materials that undergo hole transfer. An improved understanding of the QD–Ru2+-phen system can allow for the design of more sophisticated
Lin, Adam Y; Young, Joseph K; Nixon, Ariel V; Drezek, Rebekah A
2014-09-21
Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl)trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals excited at the same wavelength were used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs are altered and the luminescent output is significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation. PMID:25096858
Lin, Adam Y; Young, Joseph K; Nixon, Ariel V; Drezek, Rebekah A
2014-09-21
Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl)trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals excited at the same wavelength were used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs are altered and the luminescent output is significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation.
Lin, Adam Y.; Young, Joseph K.; Nixon, Ariel V.; Drezek, Rebekah A.
2015-01-01
Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl) trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals were excited at the same wavelength used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs is altered and the luminescent output significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation. PMID:25096858
Time-evolution of quantum systems via a complex nonlinear Riccati equation. II. Dissipative systems
NASA Astrophysics Data System (ADS)
Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar
2016-10-01
In our former contribution (Cruz et al., 2015), we have shown the sensitivity to the choice of initial conditions in the evolution of Gaussian wave packets via the nonlinear Riccati equation. The formalism developed in the previous work is extended to effective approaches for the description of dissipative quantum systems. By means of simple examples we show the effects of the environment on the quantum uncertainties, correlation function, quantum energy contribution and tunnelling currents. We prove that the environmental parameter γ is strongly related with the sensitivity to the choice of initial conditions.
Observation of the non-local electron transport effect by using phase zone plate
NASA Astrophysics Data System (ADS)
Takeda, K.; Sakaiya, T.; Otani, K.; Watari, T.; Hosoda, H.; Fujiwara, T.; Azechi, H.; Shiraga, H.; Shigemori, K.; Mima, K.
2008-05-01
Non-local electron transport effect plays a significant role in inertial confinement fusion because it potentially preheats the fusion fuel and lowers the target density. Non-local electron transport effect is more pronounced for longer laser wave-length and higher intensity. We measured the density of the plastic target irradiated with 0.53 μm laser by using a phase zone plate (PZP) that has spatial resolution of about 2 μm. The target density predicted by the ILESTA-1D simulation with Spitzer-Härm thermal conduction is 1.5 times as large as that predicted with Fokker-Planck thermal conduction. The measured density profile is close to the density profile predicted by the simulation with Fokker-Planck thermal conduction.
Non-linear non-local molecular electrodynamics with nano-optical fields.
Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul
2015-10-28
The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.
NASA Astrophysics Data System (ADS)
Yang, Yue
2016-06-01
The recent progress on non-local Lagrangian and quasi-Lagrangian structures in turbulence is reviewed. The quasi-Lagrangian structures, e.g., vortex surfaces in viscous flow, gas-liquid interfaces in multi-phase flow, and flame fronts in premixed combustion, can show essential Lagrangian following properties, but they are able to have topological changes in the temporal evolution. In addition, they can represent or influence the turbulent flow field. The challenges for the investigation of the non-local structures include their identification, characterization, and evolution. The improving understanding of the quasi-Lagrangian structures is expected to be helpful to elucidate crucial dynamics and develop structure-based predictive models in turbulence.
Stable bounce and inflation in non-local higher derivative cosmology
Biswas, Tirthabir; Koshelev, Alexey S.; Mazumdar, Anupam; Vernov, Sergey Yu. E-mail: alexey.koshelev@vub.ac.be E-mail: svernov@theory.sinp.msu.ru
2012-08-01
One of the greatest problems of primordial inflation is that the inflationary space-time is past-incomplete. This is mainly because Einstein's GR suffers from a space-like Big Bang singularity. It has recently been shown that ghost-free, non-local higher-derivative ultra-violet modifications of Einstein's gravity may be able to resolve the cosmological Big Bang singularity via a non-singular bounce. Within the framework of such non-local cosmological models, we are going to study both sub- and super-Hubble perturbations around an inflationary trajectory which is preceded by the Big Bounce in the past, and demonstrate that the inflationary trajectory has an ultra-violet completion and that perturbations do not suffer from any pathologies.
Definition of current density in the presence of a non-local potential.
Li, Changsheng; Wan, Langhui; Wei, Yadong; Wang, Jian
2008-04-16
In the presence of a non-local potential arising from electron-electron interaction, the conventional definition of current density J(c) = (e/2m)([(p-eA)ψ](*)ψ-ψ(*)[(p-eA)ψ]) cannot satisfy the condition of current conservation, i.e., [Formula: see text] in the steady state. In order to solve this problem, we give a new definition of current density including the contribution due to the non-local potential. We show that the current calculated based on the new definition of current density conserves the current and is the same as that obtained from the Landauer-Büttiker formula. Examples are given to demonstrate our results.
Non-local Effects in a Stratified Glow Discharge With Dusty Particles
Sukhinin, G. I.; Fedoseev, A. V.; Ramazanov, T. S.; Amangaliyeva, R. Zh.; Dosbolayev, M. K.; Jumabekov, A. N.
2008-09-07
The work is aimed to describe non-local effects in the positive column of a low pressure stratified DC glow discharge in argon with dusty particles in a vertical cylindrical discharge tube. The numerical calculations of plasma parameters in the axis of the discharge tube were performed with the help of hybrid model based on the solution of non-local Boltzmann equation for EEDF. Distributions of optical emission from striations were measured experimentally. It is shown that in a stratified positive column the EEDF is not Maxwellian and even non-monotonous. Also, the effect of displacing of optical emission distribution relative to the electric field is shown both by numerical simulation and experimental measurements.
Riemann problems with non--local point constraints and capacity drop.
Andreianov, Boris; Donadello, Carlotta; Razafison, Ulrich; Rosini, Massimiliano D
2015-04-01
In the present note we discuss in details the Riemann problem for a one-dimensional hyperbolic conservation law subject to a point constraint. We investigate how the regularity of the constraint operator impacts the well--posedness of the problem, namely in the case, relevant for numerical applications, of a discretized exit capacity. We devote particular attention to the case in which the constraint is given by a non--local operator depending on the solution itself. We provide several explicit examples. We also give the detailed proof of some results announced in the paper [Andreianov, Donadello, Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop], which is devoted to existence and stability for a more general class of Cauchy problems subject to Lipschitz continuous non--local point constraints. PMID:25811434
Non-linear non-local molecular electrodynamics with nano-optical fields.
Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul
2015-10-28
The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields. PMID:26520498
Freund, Christelle; Porzio, William; Giovanella, Umberto; Vignali, Francesco; Pasini, Mariacecilia; Destri, Silvia; Mech, Agnieszka; Di Pietro, Sebastiano; Di Bari, Lorenzo; Mineo, Placido
2011-06-20
The synthesis and the molecular and photophysical characterization, together with solid state and solution structure analysis, of a series of europium complexes based on β-diketonate ligands are reported. The Eu(III) complex emission, specifically its photoluminescence quantum yield (PL-QY), can be tuned by changing ligands which finely modifies the environment of the metal ion. Steady-state and time-resolved emission spectroscopy and overall PL-QY measurements are reported and related to geometrical features observed in crystal structures of some selected compounds. Moreover, paramagnetic NMR, based on the analogous complexes with other lanthanides, are use to demonstrate that there is a significant structural reorganization upon dissolution, which justifies the observed differences in the emission properties between solid and solution states. The energy of the triplet levels of the ligands and the occurrence of nonradiative deactivation processes clearly account for the luminescence efficiencies of the complexes in the series.
Non-Local Ductile Damage Formulations for Sheet Bulk Metal Forming
NASA Astrophysics Data System (ADS)
Beese, Steffen; Loehnert, Stefan; Wriggers, Peter
2016-08-01
A ductile damage model for sheet bulk metal forming processes and its efficient and accurate treatment in the context of the Finite Element Method is presented. The damage is introduced as a non-local field to overcome pathological mesh dependency. Since standard elements tend to show volumetric locking in the bulk forming process a mixed formulation is implemented in the commercial software simufact.forming to obtain better results.
Global stability of travelling wave fronts for non-local diffusion equations with delay
NASA Astrophysics Data System (ADS)
Wang, X.; Lv, G.
2014-04-01
This paper is concerned with the global stability of travelling wave fronts for non-local diffusion equations with delay. We prove that the non-critical travelling wave fronts are globally exponentially stable under perturbations in some exponentially weighted L^\\infty-spaces. Moreover, we obtain the decay rates of \\sup_{x\\in{R}}\\vert u(x,t)-\\varphi(x+ct)\\vert using weighted energy estimates.
Continuous time random walks for non-local radial solute transport
NASA Astrophysics Data System (ADS)
Dentz, Marco; Kang, Peter K.; Le Borgne, Tanguy
2015-08-01
This study formulates and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneous advection in a mobile region and mass transfer between mobile and immobile regions. The expected solute breakthrough behavior is studied using numerical random walk particle tracking simulations. This behavior is analyzed by explicit analytical expressions for the asymptotic solute breakthrough curves. We observe clear power-law tails of the solute breakthrough for broad (power-law) distributions of particle transit times (heterogeneous advection) and particle trapping times (MRMT model). The combined model displays two distinct time regimes. An intermediate regime, in which the solute breakthrough is dominated by the particle transit times in the mobile zones, and a late time regime that is governed by the distribution of particle trapping times in immobile zones. These radial CTRW formulations allow for the identification of heterogeneous advection and mobile-immobile processes as drivers of anomalous transport, under conditions relevant for field tracer
Heat Diffusion in a Non-Local Tokomak Stochastic Magnetic Field
NASA Astrophysics Data System (ADS)
Gao, Hong; Yao, Li; Zhong, Haiyang; Liu, Wei; Yang, Kun; Shao, Ying; Xia, Wenwen; li, Qian
2011-04-01
Heat transport across a non-local stochastic magnetic field was studied for the first time. Eleven incompact low m perturbed magnetic islands were used in our calculation. Parallel heat diffusion coefficient to the perpendicular coefficient was found still to be a key factor in influencing the effective radial heat conductivity and the results in this paper were compared with earlier studies in a local stochastic magnetic field.
NASA Astrophysics Data System (ADS)
Alcolea, A.; Renard, P.
2008-12-01
Geological scenarios often present well connected lithofacies distributions. Multiple Point statistical techniques have been traditionally used to delineate connectivity patterns from local lithofacies data in such scenarios. Yet, little attention has been paid to the conditioning to non-local connectivity data and dependent state variables (e.g., heads). These data sets contain valuable information on the connectivity patterns and must be accounted for in meaningful models. This work is a step in that direction. A novel direct iterative sampler, termed Blocking Moving Window (BMW) is presented. The BMW algorithm couples an MP simulator with a fast groundwater flow simulator. First, an MP simulation of lithofacies is delineated from training images, local lithofacies from available well logs and non-local connectivity data sets. Only a random portion of the domain (the Moving Window) is simulated at a given iteration. This makes the search less random and therefore, more efficient. Second, values of hydraulic properties at the intrafacies are assigned. Next, state variables are simulated. The MP simulation is rejected if the fit of measured state variables is poor. We analyze the performance of the BMW algorithm on a 2D toy example mimicking the groundwater flow to a well in a channel-type geological setting. We explore the sensitivity to the size of the Moving Window and the role of the state variable and non-local connectivity data sets. Results show that, (1) the size of the Moving Window must be optimum; (2) conditioning to state variables enhances dramatically the initial MP characterization (i.e., conditioned to raw geological data only) and (3) the use of non-local connectivity data increases the reliability of the characterization and speeds up the convergence of the algorithm.
New Exact Solutions of the CDGSK Equation Related to a Non-local Symmetry
NASA Astrophysics Data System (ADS)
Lou, Senyue; Ruan, Hangyu; Chen, Weizhong; Wang, Zhenli; Chen, Lili
1994-10-01
A non-local symmetry of the Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGSK) equation has been used for finding exact solution in two different ways. Firstly, using the standard prolongation approach, we obtain the finite Lie Bäcklund transformation and the single soliton solution. Secondly, combining some local symmetries and the nonlocal symmetry, we get the group invariant solution which is described by the Weierstrass elliptic function and is deduced to the so-called interacting soliton for a special parameter.
Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms
Lebensohn, Ricardo A.; Needleman, Alan
2016-03-28
Here, we present the numerical implementation of a non-local polycrystal plasticity theory using the FFT-based formulation of Suquet and co-workers. Gurtin (2002) non-local formulation, with geometry changes neglected, has been incorporated in the EVP-FFT algorithm of Lebensohn et al. (2012). Numerical procedures for the accurate estimation of higher order derivatives of micromechanical fields, required for feedback into single crystal constitutive relations, are identified and applied. A simple case of a periodic laminate made of two fcc crystals with different plastic properties is first used to assess the soundness and numerical stability of the proposed algorithm and to study the influencemore » of different model parameters on the predictions of the non-local model. Different behaviors at grain boundaries are explored, and the one consistent with the micro-clamped condition gives the most pronounced size effect. The formulation is applied next to 3-D fcc polycrystals, illustrating the possibilities offered by the proposed numerical scheme to analyze the mechanical response of polycrystalline aggregates in three dimensions accounting for size dependence arising from plastic strain gradients with reasonable computing times.« less
Non-local magnetoelectric effects via Coulomb interaction in TI-FMI heterostructures
NASA Astrophysics Data System (ADS)
Rex, Stefan; Nogueira, Flavio S.; Sudbø, Asle
Magnetic order on the surface of a 3 D topological insulator (TI) has been predicted to evoke a topological magnetoelectric effect (TME) by the breaking of time-reversal invariance. In the TME, an electric field leads to a magnetic polarization in the same direction as the field and vice versa. Here, we consider heterostructures of TI and ferromagnetic insulator (FMI) layers. We show that in the presence of long-range Coulomb interactions the magnetization couples non-locally to the fluctuating electric field (non-local TME) by performing a field-theoretic calculation of the vacuum polarization. In addition, we obtain a Landau-Lifshitz equation for the magnetization dynamics, and find that charged magnetic textures lead to a net magnetization even at a large distance. Such textures can be induced by an external electric field with nonzero in-plane divergence. We apply this effect to a FMI-TI-FMI trilayer heterostructure with two parallel interfaces being well-separated by the bulk TI, where we propose to non-locally control the magnetic texture at one interface by proper gating of the other interface. A preprint can be found at arXiv:1510.04285 Supported by the Norwegian Research Council, Grants 205591/V20 and 216700/F20, and the Collaborative Research Center SFB 1143 ''Correlated Magnetism: From Frustration to Topology''.
Strongly non-local modelling of dislocation transport and pile-up
NASA Astrophysics Data System (ADS)
Rezaei Mianroodi, Jaber; Peerlings, Ron; Svendsen, Bob
2016-04-01
The purpose of this work is the continuum modelling of transport and pile-up of infinite discrete dislocation walls driven by non-local interaction and external loading. To this end, the underlying model for dislocation wall interaction is based on the non-singular Peierls-Nabarro (PN) model for the dislocation stress field. For simplicity, attention is restricted to walls consisting of single-sign dislocations and to continuous wall distributions on a single glide plane. In this context, the influence of strongly non-local (SNL; long-range) interaction, and its approximation as weakly non-local (WNL; short-range) are studied in the context of interaction- and external-load-driven wall pile-up at a boundary. The pile-up boundary is modelled via a spatially dependent dislocation mobility which decreases to zero at the boundary. The pile-up behaviour predicted by the current SNL-based continuous wall distribution modelling is consistent with that predicted by discrete wall distribution modelling. Both deviate substantially from the pile-up behaviour predicted by WNL-based continuous wall distribution modelling. As such, it is clearly essential to account in continuum models for the intrinsic SNL character of the interaction between same-sign dislocations 'close' to the boundary. Gradient-based WNL 'approximation' of this interaction is not justified.
Non-local scalar fields inflationary mechanism in light of Planck 2013
NASA Astrophysics Data System (ADS)
Sheikhahmadi, Haidar; Ghorbani, Soheyla; Saaidi, Khaled
2015-06-01
A generalization of the canonical and non-canonical theory of inflation is introduced in which the kinetic energy term in action is written as non-local term. The inflationary universe within the framework of considering this non-locality will be studied. To investigate the effects of non-locality on the inflationary parameters we consider two well known models of the inflationary scenario including chaotic and exponential inflation proposals. For such scenarios some important parameters include slow roll parameters, scalar and tensor power spectra, spectral indices, the tensor-to-scalar ratio and so on for both mentioned models, chaotic and exponential inflationary scenarios, will be calculated. Also the Hamilton-Jacobi formalism, as an easiest way to study the effect of perturbation based on e-folding number N, to investigate inflationary attractors will be used. The free theoretical parameters of this model will be compared with observations by means of Planck 2013, WMAP9+ eCMB+ BAO+ H 0 data sets in addition to BICEP2 data surveying. It will be shown that our theoretical results are in acceptable range in comparison to observations. For instance the tensor-to-scalar ratio for exponential potential, by considering BICEP2 is in best agreement in comparison with chaotic inflation.
2015-01-01
A major challenge for realizing quantum computation is finding suitable systems to embody quantum bits (qubits) and quantum gates (qugates) in a robust and scalable architecture. An emerging bottom-up approach uses the electronic spins of lanthanides. Universal qugates may then be engineered by arranging in a molecule two interacting and different lanthanide ions. Preparing heterometallic lanthanide species is, however, extremely challenging. We have discovered a method to obtain [LnLn′] complexes with the appropriate requirements. Compound [CeEr] is deemed to represent an ideal situation. Both ions have a doubly degenerate magnetic ground state and can be addressed individually. Their isotopes have mainly zero nuclear spin, which enhances the electronic spin coherence. The analogues [Ce2], [Er2], [CeY], and [LaEr] have also been prepared to assist in showing that [CeEr] meets the qugate requirements, as revealed through magnetic susceptibility, specific heat, and EPR. Molecules could now be used for quantum information processing. PMID:25203521
Tirler, Andreas O; Hofer, Thomas S
2014-11-13
This investigation presents the characterization of structural and dynamical properties of uranyl tricarbonate in aqueous solution employing an extended hybrid quantum mechanical/molecular mechanical (QM/MM) approach. It is shown that the inclusion of explicit solvent molecules in the quantum chemical treatment is essential to mimic the complex interaction occurring in an aqueous environment. Thus, in contrast to gas phase cluster calculations on a quantum chemical level proposing a 6-fold coordination of the three carbonates, the QMCF MD simulation proposes a 5-fold coordination. An extensive comparison of the simulation results to structural and dynamical data available in the literature was found to be in excellent agreement. Furthermore, this work is the first theoretical study on a quantum chemical level of theory able to observe the conversion of carbonate (CO₃²⁻) to bicarbonate (HCO₃⁻) in the equatorial coordination sphere of the uranyl ion. From a comparison of the free energy ΔG values for the unprotonated educt [UO₂(CO₃)₃]⁴⁻ and the protonated [UO₂(CO₃)₂(HCO₃)]³⁻, it could be concluded that the reaction equilibrium is strongly shifted toward the product state confirming the benignity for the observed protonation reaction. Structural properties and the three-dimensional arrangement of carbonate ligands were analyzed via pair-, three-body, and angular distributions, the dynamical properties were evaluated by hydrogen-bond correlation functions and vibrational power spectra.
Alrawashdeh, Lubna R; Cronin, Michael P; Woodward, Clifford E; Day, Anthony I; Wallace, Lynne
2016-07-01
The weaker emission typically seen for iridium(III) cyclometalated complexes in aqueous medium can be reversed via encapsulation in cucurbit[10]uril (Q[10]). The Q[10] cavity is shown to effectively maximize quantum yields for the complexes, compared to any other medium. This may provide significant advantages for a number of sensor applications. NMR studies show that the complexes are accommodated similarly within the host molecule, even with cationic substituents attached to the ppy ligands, indicating that the hydrophobic effect is the dominant driving force for binding. Cavity-encapsulated 1:1 host-guest species dominate the emission, but 1:2 species are also indicated, which also give some enhancement of intensity. Results demonstrate that the enhancement is due primarily to much lower rates of nonradiative decay but also suggest that the encapsulation can cause a change in character of the emitting state.
Alrawashdeh, Lubna R; Cronin, Michael P; Woodward, Clifford E; Day, Anthony I; Wallace, Lynne
2016-07-01
The weaker emission typically seen for iridium(III) cyclometalated complexes in aqueous medium can be reversed via encapsulation in cucurbit[10]uril (Q[10]). The Q[10] cavity is shown to effectively maximize quantum yields for the complexes, compared to any other medium. This may provide significant advantages for a number of sensor applications. NMR studies show that the complexes are accommodated similarly within the host molecule, even with cationic substituents attached to the ppy ligands, indicating that the hydrophobic effect is the dominant driving force for binding. Cavity-encapsulated 1:1 host-guest species dominate the emission, but 1:2 species are also indicated, which also give some enhancement of intensity. Results demonstrate that the enhancement is due primarily to much lower rates of nonradiative decay but also suggest that the encapsulation can cause a change in character of the emitting state. PMID:27315543
Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces
Khrennikov, Andrei
2010-08-15
One of the crucial differences between mathematical models of classical and quantum mechanics (QM) is the use of the tensor product of the state spaces of subsystems as the state space of the corresponding composite system. (To describe an ensemble of classical composite systems, one uses random variables taking values in the Cartesian product of the state spaces of subsystems.) We show that, nevertheless, it is possible to establish a natural correspondence between the classical and the quantum probabilistic descriptions of composite systems. Quantum averages for composite systems (including entangled) can be represented as averages with respect to classical random fields. It is essentially what Albert Einstein dreamed of. QM is represented as classical statistical mechanics with infinite-dimensional phase space. While the mathematical construction is completely rigorous, its physical interpretation is a complicated problem. We present the basic physical interpretation of prequantum classical statistical field theory in Sec. II. However, this is only the first step toward real physical theory.
Zhao, Jiang; Yu, Yue; Yang, Xiaolong; Yan, Xiaogang; Zhang, Huiming; Xu, Xianbin; Zhou, Guijiang; Wu, Zhaoxin; Ren, Yixia; Wong, Wai-Yeung
2015-11-11
A series of heteroleptic functional Ir(III) complexes bearing different fluorinated aromatic sulfonyl groups has been synthesized. Their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. These complexes emit intense yellow phosphorescence with exceptionally high quantum yields (ΦP > 0.9) at room temperature, and the emission maxima of these complexes can be finely tuned depending upon the number of the fluorine substituents on the pendant phenyl ring of the sulfonyl group. Furthermore, the electrochemical properties and electron injection/transporting (EI/ET) abilities of these Ir(III) phosphors can also be effectively tuned by the fluorinated aromatic sulfonyl group to furnish some desired characters for enhancing the EL performance. Hence, the maximum luminance efficiency (ηL) of 81.2 cd A(-1), corresponding to power efficiency (ηP) of 64.5 lm W(-1) and external quantum efficiency (ηext) of 19.3%, has been achieved, indicating the great potential of these novel phosphors in the field of organic light-emitting diodes (OLEDs). Furthermore, a clear picture has been drawn for the relationship between their optoelectronic properties and chemical structures. These results should provide important information for developing highly efficient phosphors. PMID:26458215
Zhao, Jiang; Yu, Yue; Yang, Xiaolong; Yan, Xiaogang; Zhang, Huiming; Xu, Xianbin; Zhou, Guijiang; Wu, Zhaoxin; Ren, Yixia; Wong, Wai-Yeung
2015-11-11
A series of heteroleptic functional Ir(III) complexes bearing different fluorinated aromatic sulfonyl groups has been synthesized. Their photophysical features, electrochemical behaviors, and electroluminescent (EL) properties have been characterized in detail. These complexes emit intense yellow phosphorescence with exceptionally high quantum yields (ΦP > 0.9) at room temperature, and the emission maxima of these complexes can be finely tuned depending upon the number of the fluorine substituents on the pendant phenyl ring of the sulfonyl group. Furthermore, the electrochemical properties and electron injection/transporting (EI/ET) abilities of these Ir(III) phosphors can also be effectively tuned by the fluorinated aromatic sulfonyl group to furnish some desired characters for enhancing the EL performance. Hence, the maximum luminance efficiency (ηL) of 81.2 cd A(-1), corresponding to power efficiency (ηP) of 64.5 lm W(-1) and external quantum efficiency (ηext) of 19.3%, has been achieved, indicating the great potential of these novel phosphors in the field of organic light-emitting diodes (OLEDs). Furthermore, a clear picture has been drawn for the relationship between their optoelectronic properties and chemical structures. These results should provide important information for developing highly efficient phosphors.
Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials
Ishii, Satoshi; Narimanov, Evgenii
2015-01-01
Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites. PMID:26670600
Electrodynamics of Nearly Ferroelectric Superconductors in the non-local Pippard limit
NASA Astrophysics Data System (ADS)
Aparajita, Upali; Birman, Joseph
2011-03-01
We report the structure of the magnetic field and secular current in a Nearly Ferroelectric Superconducting (NFE-SC) thin film. It was shown that unlike in conventional superconducting films, the external radiation causes alternating pattern of current strips. The strength of the innermost current torrents is governed by the laser field intensity as well as resonance with the ferroelectric component. The latter is modeled by secular reflection and random scattering in the Pippard non-local limit. Our calculations suggest that corresponding magnetic field pattern affects vortex formation in such material. We acknowlege support from FRAP-PSC-CUNY.
Evidence of non-local impact ionization in CNT and HgCdTe
NASA Astrophysics Data System (ADS)
Marsland, J. S.; Atanu, A. G.
2009-11-01
Two aspects of the non-local nature of impact ionization, dead space and resonance, are investigated. The very small excess noise factor measured for mercury cadmium telluride photodiodes can only be explained if the hole to electron ionization coefficient ratio, k, is very small and the impact ionization dead space is also considered. A maximum value of k for HgCdTe is estimated in this paper. In addition, recent measurements of the reverse photocurrent in single wall carbon nanotubes show a well defined flat region at a multiplication of 1.6. This is argued to be evidence for resonant behaviour in impact ionization for carbon nanotubes.
On a competitive system under chemotactic effects with non-local terms
NASA Astrophysics Data System (ADS)
Negreanu, Mihaela; Tello, J. Ignacio
2013-04-01
In this paper, we study a system of partial differential equations describing the evolution of a population under chemotactic effects with non-local reaction terms. We consider an external application of chemoattractant in the system and study the cases of one and two populations in competition. By introducing global competitive/cooperative factors in terms of the total mass of the populations, we obtain, for a range of parameters, that any solution with positive and bounded initial data converges to a spatially homogeneous state with positive components. The proofs rely on the maximum principle for spatially homogeneous sub- and super-solutions.
Modern or post-modern? Local or non-local? A response to Leick.
Walach, Harald
2008-04-01
Most debates in science and the humanities that cannot be settled are not about truth, nor about data, but about beliefs and world views. Philippe Leick's comment on entanglement models of homeopathy are a good example. Because of this, no argument, however, convincing to some, will settle that debate. The only thing that can resolve it is a large cultural shift. My own ideas about non-local models, for a whole category of possibly similar events of which homeopathy is but one example.
Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials.
Ishii, Satoshi; Narimanov, Evgenii
2015-01-01
Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites. PMID:26670600
NASA Astrophysics Data System (ADS)
Lin, Adam Y.; Young, Joseph K.; Nixon, Ariel V.; Drezek, Rebekah A.
2014-08-01
Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl)trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals excited at the same wavelength were used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs are altered and the luminescent output is significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation.Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs
NASA Astrophysics Data System (ADS)
Vera, R.
Non-local relativity NLR is a general theory based on optical physics and the equivalence principle according to which particles and standing waves obey the same inertial and gravitational G laws 1 2 3 The theoretical inertial and G properties of a particle model PM made up of standing waves correspond with all of them the Einstein s equivalence principle EEP special relativity quantum mechanics the conventional G tests and more critical ones presented here From NLR gravitation is a refraction phenomenon produced by a gradient of the relative refraction index of the space with respect to any observer at rest in the field During a free fall the relative mass-energy of a PM with respect to an observer at rest in the field is conserved After a stop the proportional changes of its basic relative properties are just equal to the proportional energy released i e to the change of GP Thus the relative changes occurring to bodies and observers after changes of velocity or of GP and universe expansion cannot be locally detected because they occur in common proportions To the contrary of current physics the cosmological red-shifts don t increase with the time The G energy comes not from the G field but from a fraction of the mass-energy of the body This is opposed to a the hypothesis in that the relative rest-mass of a body with respect to the observer is independent on the difference of GP between them b The Einstein s G field energy hypothesis In the conventional tests of GR such errors of opposite signs are compensated
NASA Astrophysics Data System (ADS)
Dattani, Nikesh S.
2013-06-01
Functional quantum systems is an emerging research field which includes quantum engineering (the design of technologies that make use of quantum mechanics to outperform their classical counterparts, such as quantum computers, quantum communication devices, quantum thermometers, quantum telescopes, etc.) and the study of natural processes where quantum mechanics provides some improvement that cannot be realized with classical mechanics (possible examples are photosynthesis, animal navigation, the sense of smell, etc.). Being able to predict how a quantum mechanical system changes (ie, how its density matrix changes), given its hamiltonian, is paramount in quantum engineering as one needs to know which hamiltonian will give the desired outcome. Likewise, being able to predict density matrix dynamics in natural systems can help in understanding the system's mechanism, in controlling the system's processes, and can be helpful if designing a technology which attempts to mimic a natural process. State of the art techniques for calculating density matrix dynamics of functional quantum systems in real-time, and with numerically exact accuracy, have been developed over the last year. These techniques will be presented, followed by applications for quantum dot based quantum computing, and for calculating the 2D spectra of large biological systems.
Robust Non-Local Multi-Atlas Segmentation of the Optic Nerve.
Asman, Andrew J; Delisi, Michael P; Mawn; Galloway, Robert L; Landman, Bennett A
2013-03-13
Labeling or segmentation of structures of interest on medical images plays an essential role in both clinical and scientific understanding of the biological etiology, progression, and recurrence of pathological disorders. Here, we focus on the optic nerve, a structure that plays a critical role in many devastating pathological conditions - including glaucoma, ischemic neuropathy, optic neuritis and multiple-sclerosis. Ideally, existing fully automated procedures would result in accurate and robust segmentation of the optic nerve anatomy. However, current segmentation procedures often require manual intervention due to anatomical and imaging variability. Herein, we propose a framework for robust and fully-automated segmentation of the optic nerve anatomy. First, we provide a robust registration procedure that results in consistent registrations, despite highly varying data in terms of voxel resolution and image field-of-view. Additionally, we demonstrate the efficacy of a recently proposed non-local label fusion algorithm that accounts for small scale errors in registration correspondence. On a dataset consisting of 31 highly varying computed tomography (CT) images of the human brain, we demonstrate that the proposed framework consistently results in accurate segmentations. In particular, we show (1) that the proposed registration procedure results in robust registrations of the optic nerve anatomy, and (2) that the non-local statistical fusion algorithm significantly outperforms several of the state-of-the-art label fusion algorithms. PMID:24478826
Single Image Super-Resolution Using Local Geometric Duality and Non-Local Similarity.
Ren, Chao; He, Xiaohai; Teng, Qizhi; Wu, Yuanyuan; Nguyen, Truong Q
2016-05-01
Super-resolution (SR) from a single image plays an important role in many computer vision applications. It aims to estimate a high-resolution (HR) image from an input low- resolution (LR) image. To ensure a reliable and robust estimation of the HR image, we propose a novel single image SR method that exploits both the local geometric duality (GD) and the non-local similarity of images. The main principle is to formulate these two typically existing features of images as effective priors to constrain the super-resolved results. In consideration of this principle, the robust soft-decision interpolation method is generalized as an outstanding adaptive GD (AGD)-based local prior. To adaptively design weights for the AGD prior, a local non-smoothness detection method and a directional standard-deviation-based weights selection method are proposed. After that, the AGD prior is combined with a variational-framework-based non-local prior. Furthermore, the proposed algorithm is speeded up by a fast GD matrices construction method, which primarily relies on the selective pixel processing. The extensive experimental results verify the effectiveness of the proposed method compared with several state-of-the-art SR algorithms.
Ahmad, Munir; Shahzad, Tasawar; Masood, Khalid; Rashid, Khalid; Tanveer, Muhammad; Iqbal, Rabail; Hussain, Nasir; Shahid, Abubakar; Fazal-E-Aleem
2016-06-01
Emission tomographic image reconstruction is an ill-posed problem due to limited and noisy data and various image-degrading effects affecting the data and leads to noisy reconstructions. Explicit regularization, through iterative reconstruction methods, is considered better to compensate for reconstruction-based noise. Local smoothing and edge-preserving regularization methods can reduce reconstruction-based noise. However, these methods produce overly smoothed images or blocky artefacts in the final image because they can only exploit local image properties. Recently, non-local regularization techniques have been introduced, to overcome these problems, by incorporating geometrical global continuity and connectivity present in the objective image. These techniques can overcome drawbacks of local regularization methods; however, they also have certain limitations, such as choice of the regularization function, neighbourhood size or calibration of several empirical parameters involved. This work compares different local and non-local regularization techniques used in emission tomographic imaging in general and emission computed tomography in specific for improved quality of the resultant images.
Energy spectra of Penning electrons in non-local plasma at middle and high pressures
NASA Astrophysics Data System (ADS)
Stefanova, M.; Pramatarov, P.; Kudryavtsev, A.; Peyeva, R.
2014-05-01
A recently-developed collisional electron spectroscopy (CES) method enabled us to measure the energy spectra of groups of fast non-local electrons in a collisional mode at high pressures, where no collisional energy relaxation of electrons in the different groups takes place in the volume, and the different groups of electrons behave independently of each other. We recorded the energy spectra of groups of fast electrons created via Penning ionization of Ar and N2 impurities by metastable He atoms at He pressures of 30 and 200 Torr. The experiments were conducted in the non-local negative glow plasma of a short dc microdischarge. The Penning electrons' energy spectra were recorded by means of an additional electrode - a sensor located at the boundary of the discharge volume, in contrast with the classical Langmuir probe. The spectra are characterized by the appearance of maxima at characteristic energies corresponding to the energy of the electrons released via Penning reactions. Using the Penning electrons' energy spectra, one can detect and identify the presence of different atomic and molecular admixtures in He at high pressures.
Effects of self generated magnetic fields and non local heat transport in laser experiments.
NASA Astrophysics Data System (ADS)
Schurtz, Guy; Nicolai, Philippe; Dattolo, Evelyne; Babonneau, Danielle
2002-11-01
Electron conduction is known to be a leading transport process in laser created plasmas. Several effects may cause the heat flux to depart from the classical linear Spitzer-Harm theory. First of all, kinetic effects result in the non locality of the heat flux in case of strong temperature gradients. A two dimensionnal non local model has been developed by the authors and implemented in the FCI2 hydrocode (G.P. Schurtz et al., Ph.Plasmas,7,10,4238, 2000). Conduction may also be affected by magnetic fields. FCI2 simulations including a MHD model and Braginskii conduction indicate that magnetic fields with intensities up to several MG may be generated and strongly inhibit electron heat flow. In this communication, we briefly discuss the strategy we use in FCI2 in order to couple both models and compare code predictions to experimental data over a wide range of experiments in open and close (hohlraum) geometries. As compared to flux limited Spitzer Harm conduction, this new model succeeds as well in restituting global energy balance (e.g. radiation production in hohlraums) but predicts large differences in hydrodynamics, which are actually observed in experiments.
Monotone waves for non-monotone and non-local monostable reaction-diffusion equations
NASA Astrophysics Data System (ADS)
Trofimchuk, Elena; Pinto, Manuel; Trofimchuk, Sergei
2016-07-01
We propose a new approach for proving existence of monotone wavefronts in non-monotone and non-local monostable diffusive equations. This allows to extend recent results established for the particular case of equations with local delayed reaction. In addition, we demonstrate the uniqueness (modulo translations) of obtained monotone wavefront within the class of all monotone wavefronts (such a kind of conditional uniqueness was recently established for the non-local KPP-Fisher equation by Fang and Zhao). Moreover, we show that if delayed reaction is local then each monotone wavefront is unique (modulo translations) within the class of all non-constant traveling waves. Our approach is based on the construction of suitable fundamental solutions for linear integral-differential equations. We consider two alternative scenarios: in the first one, the fundamental solution is negative (typically holds for the Mackey-Glass diffusive equations) while in the second one, the fundamental solution is non-negative (typically holds for the KPP-Fisher diffusive equations).
Image-Guided Non-Local Dense Matching with Three-Steps Optimization
NASA Astrophysics Data System (ADS)
Huang, Xu; Zhang, Yongjun; Yue, Zhaoxi
2016-06-01
This paper introduces a new image-guided non-local dense matching algorithm that focuses on how to solve the following problems: 1) mitigating the influence of vertical parallax to the cost computation in stereo pairs; 2) guaranteeing the performance of dense matching in homogeneous intensity regions with significant disparity changes; 3) limiting the inaccurate cost propagated from depth discontinuity regions; 4) guaranteeing that the path between two pixels in the same region is connected; and 5) defining the cost propagation function between the reliable pixel and the unreliable pixel during disparity interpolation. This paper combines the Census histogram and an improved histogram of oriented gradient (HOG) feature together as the cost metrics, which are then aggregated based on a new iterative non-local matching method and the semi-global matching method. Finally, new rules of cost propagation between the valid pixels and the invalid pixels are defined to improve the disparity interpolation results. The results of our experiments using the benchmarks and the Toronto aerial images from the International Society for Photogrammetry and Remote Sensing (ISPRS) show that the proposed new method can outperform most of the current state-of-the-art stereo dense matching methods.
A novel iterative non-local means algorithm for speckle reduction
NASA Astrophysics Data System (ADS)
Zhan, Yi; Zhang, Xuming; Ding, Mingyue
2012-02-01
Despeckling of ultrasound images is a crucial step for facilitating subsequent image processing. The non-local means (NLM) filter has been widely applied for denoising images corrupted by Gaussian noise. However, the direct application of this filter in ultrasound images cannot provide satisfactory restoration results. To address this problem, a novel iterative adaptive non-local means (IANLM) filter is proposed to despeckle ultrasound images. In the proposed filter, the speckle noise is firstly transformed into additive Gaussian noise by square root operation. Then the decay parameter is estimated based on a selected homogeneous region. Finally, an iterative strategy combined with the local clustering method based on pixel intensities is adopted to realize effective image smoothing while preserving image edges. Comparisons of the restoration performance of IANLM filter with other state-of-the-art despeckling methods are made. The quantitative comparisons of despeckling synthetic images based on Peak signal-to-noise ratio (PSNR) show that the IANLM filter can provide the best restoration performance among all the evaluated filters. The subjective visual comparisons of the denoised synthetic and ultrasound images demonstrate that the IANLM filter outperforms other compared algorithms in that it can achieve better performance of noise reduction, artifact avoidance, edges and textures preservation and contrast enhancement.
Single infrared image super-resolution combining non-local means with kernel regression
NASA Astrophysics Data System (ADS)
Yu, Hui; Chen, Fu-sheng; Zhang, Zhi-jie; Wang, Chen-sheng
2013-11-01
In many infrared imaging systems, the focal plane array is not sufficient dense to adequately sample the scene with the desired field of view. Therefore, there are not enough high frequency details in the infrared image generally. Super-resolution (SR) technology can be used to increase the resolution of low-resolution (LR) infrared image. In this paper, a novel super-resolution algorithm is proposed based on non-local means (NLM) and steering kernel regression (SKR). Based on that there are a large number of similar patches within an infrared image, NLM method can abstract the non-local similarity information and then the value of high-resolution (HR) pixel can be estimated. SKR method is derived based on the local smoothness of the natural images. In this paper the SKR is used to give the regularization term which can restrict the image noise and protect image edges. The estimated SR image is obtained by minimizing a cost function. In the experiments the proposed algorithm is compared with state-of-the-art algorithms. The comparison results show that the proposed method is robust to the noise and it can restore higher quality image both in quantitative term and visual effect.
Lopez-Chavez, Ernesto; Garcia-Quiroz, Alberto; Gonzalez-Garcia, Gerardo; Orozco-Duran, Gabriela E; Zamudio-Rivera, Luis S; Martinez-Magadan, José M; Buenrostro-Gonzalez, Eduardo; Hernandez-Altamirano, Raul
2014-06-01
In this work, we present a quantum chemical study pertaining to some supramolecular complexes acting as wettability modifiers of oil-water-limestone system. The complexes studied are derived from zwitterionic liquids of the types N'-alkyl-bis, N-alquenil, N-cycloalkyl, N-amyl-bis-beta amino acid or salts acting as sparkling agents. We studied two molecules of zwitterionic liquids (ZL10 and ZL13), HOMO and LUMO levels, and the energy gap between them, were calculated, as well as the electron affinity (EA) and ionization potential (IP), chemical potential, chemical hardness, chemical electrophilicity index and selectivity descriptors such Fukui indices. In this work, electrochemical comparison was realized with cocamidopropyl betaine (CPB), which is a structure zwitterionic liquid type, nowadays widely applied in enhanced recovery processes.
Ebenstein, Yuval; Gassman, Natalie; Kim, Soohong; Weiss, Shimon
2009-01-01
Atomic force microscopy (AFM) and fluorescence microscopy are widely used for the study of protein-DNA interactions. While AFM excels in its ability to elucidate structural detail and spatial arrangement, it lacks the ability to distinguish between similarly sized objects in a complex system. This information is readily accessible to optical imaging techniques via site-specific fluorescent labels, which enable the direct detection and identification of multiple components simultaneously. Here, we show how the utilization of semiconductor quantum dots (QDs), serving as contrast agents for both AFM topography and fluorescence imaging, facilitates the combination of both imaging techniques, and with the addition of a flow based DNA extension method for sample deposition, results in a powerful tool for the study of protein-DNA complexes. We demonstrate the inherent advantages of this novel combination of techniques by imaging individual RNA polymerases (RNAP) on T7 genomic DNA.
Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems
NASA Astrophysics Data System (ADS)
Suwa, Hidemaro
2013-03-01
We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad
Boda, Aalu Kumar, D. Sanjeev; Chatterjee, Ashok; Mukhopadhyay, Soma
2015-06-24
The ground state energy of a hydrogenic D{sup 0} complex trapped in a three-dimensional GaAs quantum dot with Gaussian confinement is calculated variationally incorporating the effect of Rashba spin-orbit interaction. The results are obtained as a function of the quantum dot size and the Rashba spin-orbit interaction. The results show that the Rashba interaction reduces the ground state energy of the system.
Bhushan, Chitresh; Chong, Minqi; Choi, Soyoung; Joshi, Anand A.; Haldar, Justin P.; Damasio, Hanna; Leahy, Richard M.
2016-01-01
Intensity variations over time in resting BOLD fMRI exhibit spatial correlation patterns consistent with a set of large scale cortical networks. However, visualizations of this data on the brain surface, even after extensive preprocessing, are dominated by local intensity fluctuations that obscure larger scale behavior. Our novel adaptation of non-local means (NLM) filtering, which we refer to as temporal NLM or tNLM, reduces these local fluctuations without the spatial blurring that occurs when using standard linear filtering methods. We show examples of tNLM filtering that allow direct visualization of spatio-temporal behavior on the cortical surface. These results reveal patterns of activity consistent with known networks as well as more complex dynamic changes within and between these networks. This ability to directly visualize brain activity may facilitate new insights into spontaneous brain dynamics. Further, temporal NLM can also be used as a preprocessor for resting fMRI for exploration of dynamic brain networks. We demonstrate its utility through application to graph-based functional cortical parcellation. Simulations with known ground truth functional regions demonstrate that tNLM filtering prior to parcellation avoids the formation of false parcels that can arise when using linear filtering. Application to resting fMRI data from the Human Connectome Project shows significant improvement, in comparison to linear filtering, in quantitative agreement with functional regions identified independently using task-based experiments as well as in test-retest reliability. PMID:27391481
Bhushan, Chitresh; Chong, Minqi; Choi, Soyoung; Joshi, Anand A; Haldar, Justin P; Damasio, Hanna; Leahy, Richard M
2016-01-01
Intensity variations over time in resting BOLD fMRI exhibit spatial correlation patterns consistent with a set of large scale cortical networks. However, visualizations of this data on the brain surface, even after extensive preprocessing, are dominated by local intensity fluctuations that obscure larger scale behavior. Our novel adaptation of non-local means (NLM) filtering, which we refer to as temporal NLM or tNLM, reduces these local fluctuations without the spatial blurring that occurs when using standard linear filtering methods. We show examples of tNLM filtering that allow direct visualization of spatio-temporal behavior on the cortical surface. These results reveal patterns of activity consistent with known networks as well as more complex dynamic changes within and between these networks. This ability to directly visualize brain activity may facilitate new insights into spontaneous brain dynamics. Further, temporal NLM can also be used as a preprocessor for resting fMRI for exploration of dynamic brain networks. We demonstrate its utility through application to graph-based functional cortical parcellation. Simulations with known ground truth functional regions demonstrate that tNLM filtering prior to parcellation avoids the formation of false parcels that can arise when using linear filtering. Application to resting fMRI data from the Human Connectome Project shows significant improvement, in comparison to linear filtering, in quantitative agreement with functional regions identified independently using task-based experiments as well as in test-retest reliability. PMID:27391481
Large- N limit of the non-local 2D Yang Mills and generalized Yang Mills theories on a cylinder
NASA Astrophysics Data System (ADS)
Saaidi, K.; Khorrami, M.
2002-04-01
The large-group behavior of the non-local YM_2's and gYM_2's on a cylinder or a disk is investigated. It is shown that this behavior is similar to that of the corresponding local theory, but with the area of the cylinder replaced by an effective area depending on the dominant representation. The critical areas for non-local YM_2's on a cylinder with some special boundary conditions are also obtained.
What might rice piles tell us about non-local sediment transport?
NASA Astrophysics Data System (ADS)
Longjas, A.; Voller, V. R.; Paola, C.; Filipovitch, N.
2014-12-01
Our research objective is to identify sediment transport systems that exhibit non local signals, such as those seen in the long-profile of fluvial surfaces. In previous work we have shown that appropriate nonlocal models of sediment transport under various tectonic forcing, can lead to fluvial surface shapes that are distinct from those obtained with local models. For example, in the study of a sediment bypass system, a nonlocal model for the sediment flux predicts a concave down fluvial surface in contrast to the linear surface predicted with a local flux model. It is well known that hold ups and fast paths in transport systems lead to non-local behaviors. And we think that the mechanism that creates the unexpected curvatures in fluvial profiles is one of "storage and release". Perhaps the classic storage and release system is that seen in rice pile experiments. One set up for this experiment involves the formation of a rice pile in the gap (~25mm) between two vertical glass plates resting on a solid surface. In this system rice is added at a constant rate at the left and allowed to freely exit a distance (~0.5m) downstream; the system is run until a steady state is approached. Of course, an exact steady state is not reached because the rice does not move steadily down the pile surface but rather advances in a series of avalanches, with multiple length scales, separated by waiting times; in other words is transported via storage and release. The naive expectancy is that at the steady state the surface of the rice pile will exhibit a constant angle of repose. Our experiments with the system, however, indicate that while the storage and release mechanism invokes large temporal fluctuations in the pile its surface exhibits a persistent concave down shape. In this paper, we present the main findings of our rice pile experiment, explore models that might explain the persistence of the curved surface, and uncover the behavioral links between the rice pile model and non-local
A remark on the role of indeterminism and non-locality in the violation of Bell’s inequalities
Sassoli de Bianchi, Massimiliano
2014-03-15
Diederik Aerts was the first in the eighties to develop a concrete example of a macroscopic “classical” entity violating Bell’s inequalities (BI). In more recent years, he also developed a macroscopic model in which the amount of non-locality and indeterminism can be continuously varied, and used it to show that by increasing non-locality one increases the degree of violation of BI, whereas by increasing indeterminism one decreases the degree of violation of BI. In this article we introduce and analyze a different macroscopic model in which the amount of non-locality and indeterminism can also be parameterized, and therefore varied, and find that, in accordance with the model of Aerts, an increase of non-locality does produce a stronger violation of BI. However, differently from his model, we also find that, depending on the initial state in which the system is prepared, an increase of indeterminism can either strengthen or weaken the degree of violation of BI. -- Highlights: •There are macroscopic models that can violate Bell’s inequalities (BI). •We describe a model in which non-locality and indeterminism can be continuously varied. •An increase of non-locality produces a stronger violation of BI. •An increase of indeterminism can either produce a stronger or weaker violation of BI, depending on the initial state.
Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.
NASA Astrophysics Data System (ADS)
Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan
2014-05-01
Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots.
Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan
2014-01-01
Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617
Biswas, Tirthabir; Koivisto, Tomi; Mazumdar, Anupam E-mail: T.S.Koivisto@uu.nl
2010-11-01
One of the greatest problems of standard cosmology is the Big Bang singularity. Previously it has been shown that non-local ghostfree higher-derivative modifications of Einstein gravity in the ultra-violet regime can admit non-singular bouncing solutions. In this paper we study in more details the dynamical properties of the equations of motion for these theories of gravity in presence of positive and negative cosmological constants and radiation. We find stable inflationary attractor solutions in the presence of a positive cosmological constant which renders inflation geodesically complete, while in the presence of a negative cosmological constant a cyclic universe emerges. We also provide an algorithm for tracking the super-Hubble perturbations during the bounce and show that the bouncing solutions are free from any perturbative instability.
A non-local free boundary problem arising in a theory of financial bubbles
Berestycki, Henri; Monneau, Regis; Scheinkman, José A.
2014-01-01
We consider an evolution non-local free boundary problem that arises in the modelling of speculative bubbles. The solution of the model is the speculative component in the price of an asset. In the framework of viscosity solutions, we show the existence and uniqueness of the solution. We also show that the solution is convex in space, and establish several monotonicity properties of the solution and of the free boundary with respect to parameters of the problem. To study the free boundary, we use, in particular, the fact that the odd part of the solution solves a more standard obstacle problem. We show that the free boundary is and describe the asymptotics of the free boundary as c, the cost of transacting the asset, goes to zero. PMID:25288815
Thermal engineering of non-local resistance in lateral spin valves
Kasai, S. Takahashi, Y. K.; Hirayama, S.; Mitani, S.; Hono, K.; Adachi, H.; Ieda, J.; Maekawa, S.
2014-04-21
We study the non-local spin transport in Permalloy/Cu lateral spin valves (LSVs) fabricated on thermally oxidized Si and MgO substrates. While these LSVs show the same magnitude of spin signals, significant substrate dependence of the baseline resistance was observed. The baseline resistance shows much weaker dependence on the inter-electrode distance than that of the spin transport observed in the Cu wires. A simple analysis of voltage-current characteristics in the baseline resistance indicates the observed result can be explained by a combination of the Peltier and Seebeck effects at the injector and detector junctions, suggesting the usage of high thermal conductivity substrate (or under-layer) is effective to reduce the baseline resistance.
Sparse angular CT reconstruction using non-local means based iterative-correction POCS.
Huang, Jing; Ma, Jianhua; Liu, Nan; Zhang, Hua; Bian, Zhaoying; Feng, Yanqiu; Feng, Qianjin; Chen, Wufan
2011-04-01
In divergent-beam computed tomography (CT), sparse angular sampling frequently leads to conspicuous streak artifacts. In this paper, we propose a novel non-local means (NL-means) based iterative-correction projection onto convex sets (POCS) algorithm, named as NLMIC-POCS, for effective and robust sparse angular CT reconstruction. The motivation for using NLMIC-POCS is that NL-means filtered image can produce an acceptable priori solution for sequential POCS iterative reconstruction. The NLMIC-POCS algorithm has been tested on simulated and real phantom data. The experimental results show that the presented NLMIC-POCS algorithm can significantly improve the image quality of the sparse angular CT reconstruction in suppressing streak artifacts and preserving the edges of the image.
Non-diffusive, non-local transport in fluids and plasmas
Del-Castillo-Negrete, Diego B
2010-01-01
A review on non-diffusive transport in fluids and plasmas is presented. In the fluid context, non-diffusive chaotic transport by Rossby waves in zonal flows is studied following a Lagrangian approach. In the plasma physics context the problem of interest is test particle transport in pressure-gradient-driven plasma turbulence. In both systems the probability density function (PDF) of particle displacements is strongly non-Gaussian and the statistical moments exhibit super-diffusive anomalous scaling. Fractional diffusion models are proposed and tested in the quantitative description of the non-diffusive Lagrangian statistics of the fluid and plasma problems. Also, fractional diffusion operators are used to construct non-local transport models exhibiting up-hill transport, multivalued flux-gradient relations, fast pulse propagation phenomena, and tunneling of perturbations across transport barriers.
A non-local free boundary problem arising in a theory of financial bubbles.
Berestycki, Henri; Monneau, Regis; Scheinkman, José A
2014-11-13
We consider an evolution non-local free boundary problem that arises in the modelling of speculative bubbles. The solution of the model is the speculative component in the price of an asset. In the framework of viscosity solutions, we show the existence and uniqueness of the solution. We also show that the solution is convex in space, and establish several monotonicity properties of the solution and of the free boundary with respect to parameters of the problem. To study the free boundary, we use, in particular, the fact that the odd part of the solution solves a more standard obstacle problem. We show that the free boundary is [Formula: see text] and describe the asymptotics of the free boundary as c, the cost of transacting the asset, goes to zero. PMID:25288815
Can non-local or higher derivative theories provide alternatives to inflation?
Geshnizjani, Ghazal; Ahmadi, Nahid E-mail: nahmadi@ut.ac.ir
2013-11-01
The standard mechanism for producing the observed scale-invariant power spectrum from adiabatic vacuum fluctuations relies on first order derivative of fields in the action for curvature perturbations. It has been proven [1] that, under this ansatz, any theory of early universe that matches cosmological observations should include a phase of accelerated expansion (i.e. inflation) or it has to break at least one of the following tenets of classical general relativity: Null Energy Conditions (NEC), subluminal signal propagation, or sub-Planckian energy densities. We extend this proof to a large class of theories with higher (spatial) derivative or non-local terms in the action. Interestingly, only theories in the neighborhood of Lifshitz points with ω{sub k}∝k{sup 0} and k{sup 3} remain viable.
A systematic approach to interpreting Hanle spin precession data in non-local spin valves
NASA Astrophysics Data System (ADS)
Swartz, Adrian G.; McCreary, Kathleen M.; Han, Wei; Wen, Hua; Kawakami, Roland K.
2013-09-01
Graphene's two dimensional nature and high surface sensitivity have led to fascinating predictions regarding induced spin-based phenomena through careful control of adsorbates on the graphene surface, including the extrinsic spin Hall effect, band gap opening, and induced magnetism. By taking advantage of atomic scale control provided by MBE, we have investigated submonolayer deposition of adsorbates and their interactions with graphene. Spin transport measurements performed in-situ during systematic introduction of atomic hydrogen demonstrated that hydrogen adsorbed on graphene forms magnetic moments that couple via exchange to the injected spin current. The effects of induced magnetic moments are evident in the non-local magnetoresistance and Hanle spin precession. Exchange coupling between the injected spin current and the induced moments impact the Hanle curves through an effective exchange field leading to new interpretations of Hanle spin precession data and analysis. Here we present a simple procedure in which Hanle curves can be reliably interpreted.
Rain detection and removal algorithm using motion-compensated non-local mean filter
NASA Astrophysics Data System (ADS)
Song, B. C.; Seo, S. J.
2015-03-01
This paper proposed a novel rain detection and removal algorithm robust against camera motions. It is very difficult to detect and remove rain in video with camera motion. So, most previous works assume that camera is fixed. However, these methods are not useful for application. The proposed algorithm initially detects possible rain streaks by using spatial properties such as luminance and structure of rain streaks. Then, the rain streak candidates are selected based on Gaussian distribution model. Next, a non-rain block matching algorithm is performed between adjacent frames to find similar blocks to each including rain pixels. If the similar blocks to the block are obtained, the rain region of the block is reconstructed by non-local mean (NLM) filtering using the similar neighbors. Experimental results show that the proposed method outperforms previous works in terms of objective and subjective visual quality.
Non-local statistical label fusion for multi-atlas segmentation
Asman, Andrew J.; Landman, Bennett A.
2012-01-01
Multi-atlas segmentation provides a general purpose, fully-automated approach for transferring spatial information from an existing dataset (“atlases”) to a previously unseen context (“target”) through image registration. The method to resolve voxelwise label conflicts between the registered atlases (“label fusion”) has a substantial impact on segmentation quality. Ideally, statistical fusion algorithms (e.g., STAPLE) would result in accurate segmentations as they provide a framework to elegantly integrate models of rater performance. The accuracy of statistical fusion hinges upon accurately modeling the underlying process of how raters err. Despite success on human raters, current approaches inaccurately model multi-atlas behavior as they fail to seamlessly incorporate exogenous intensity information into the estimation process. As a result, locally weighted voting algorithms represent the de facto standard fusion approach in clinical applications. Moreover, regardless of the approach, fusion algorithms are generally dependent upon large atlas sets and highly accurate registration as they implicitly assume that the registered atlases form a collectively unbiased representation of the target. Herein, we propose a novel statistical fusion algorithm, Non-Local STAPLE (NLS). NLS reformulates the STAPLE framework from a non-local means perspective in order to learn what label an atlas would have observed, given perfect correspondence. Through this reformulation, NLS (1) seamlessly integrates intensity into the estimation process, (2) provides a theoretically consistent model of multi-atlas observation error, and (3) largely diminishes the need for large atlas sets and very high-quality registrations. We assess the sensitivity and optimality of the approach and demonstrate significant improvement in two empirical multi-atlas experiments. PMID:23265798
Non-local convergence coupling in a simple stochastic convection model
NASA Astrophysics Data System (ADS)
Brenowitz, N. D.; Frenkel, Y.; Majda, A. J.
2016-06-01
Observational studies show a strong correlation between large-scale wind convergence and precipitation. However, using this as a convective closure assumption to determine the total precipitation in a numerical model typically leads to deleterious wave-CISK behavior such as grid-scale noise. The quasi-equilibrium (QE) schemes ameliorate this issue and smooth the precipitation field, but still inadequately represent the intermittent and organized nature of tropical convection. However, recent observational evidence highlights that the large-scale convergence field primarily affects precipitation by increasing the overall convective cloud fraction rather than the energetics of individual convective elements. In this article, the dynamical consequences of this diagnostic observation are studied using a simple one baroclinic mode stochastic model for convectively coupled waves. A version of this model is implemented which couples the stochastic formation of convective elements to the wind convergence. Linearized analysis shows that using the local convergence results in a classic wave-CISK standing instability where the growth rate increases with the wavenumber. However, using a large-scale averaged convergence restricts the instability to physically plausible scales. Convergence coupling is interpreted as a surrogate for the non-local effects of gregarious convection. In nonlinear stochastic simulations with a non-uniform imposed sea surface temperature (SST) field, the non-local convergence coupling introduces desirable intermittent variability on intraseasonal time scales. Convergence coupling leads to a circulation with a similar mean but higher variability than the equivalent parameterization without convergence coupling. Finally, the model is shown to retain these features on fine and coarse mesh sizes.
Non-local order in Mott insulators, duality and Wilson loops
Rath, Steffen Patrick; Simeth, Wolfgang; Endres, Manuel; Zwerger, Wilhelm
2013-07-15
It is shown that the Mott insulating and superfluid phases of bosons in an optical lattice may be distinguished by a non-local ‘parity order parameter’ which is directly accessible via single site resolution imaging. In one dimension, the lattice Bose model is dual to a classical interface roughening problem. We use known exact results from the latter to prove that the parity order parameter exhibits long range order in the Mott insulating phase, consistent with recent experiments by Endres et al. [M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross, L. Mazza, M.C. Bañuls, L. Pollet, I. Bloch, et al., Science 334 (2011) 200]. In two spatial dimensions, the parity order parameter can be expressed in terms of an equal time Wilson loop of a non-trivial U(1) gauge theory in 2+1 dimensions which exhibits a transition between a Coulomb and a confining phase. The negative logarithm of the parity order parameter obeys a perimeter law in the Mott insulator and is enhanced by a logarithmic factor in the superfluid. -- Highlights: •Number statistics of cold atoms in optical lattices show non-local correlations. •These correlations are measurable via single site resolution imaging. •Incompressible phases exhibit an area law in particle number fluctuations. •This leads to long-range parity order of Mott-insulators in one dimension. •Parity order in 2d is connected with a Wilson-loop in a lattice gauge theory.
Stewart, Michael H; Huston, Alan L; Scott, Amy M; Efros, Alexander L; Melinger, Joseph S; Gemmill, Kelly Boeneman; Trammell, Scott A; Blanco-Canosa, Juan B; Dawson, Philip E; Medintz, Igor L
2012-06-26
The ability of luminescent semiconductor quantum dots (QDs) to engage in diverse energy transfer processes with organic dyes, light-harvesting proteins, metal complexes, and redox-active labels continues to stimulate interest in developing them for biosensing and light-harvesting applications. Within biosensing configurations, changes in the rate of energy transfer between the QD and the proximal donor, or acceptor, based upon some external (biological) event form the principle basis for signal transduction. However, designing QD sensors to function optimally is predicated on a full understanding of all relevant energy transfer mechanisms. In this report, we examine energy transfer between a range of CdSe-ZnS core-shell QDs and a redox-active osmium(II) polypyridyl complex. To facilitate this, the Os complex was synthesized as a reactive isothiocyanate and used to label a hexahistidine-terminated peptide. The Os-labeled peptide was ratiometrically self-assembled to the QDs via metal affinity coordination, bringing the Os complex into close proximity of the nanocrystal surface. QDs displaying different emission maxima were assembled with increasing ratios of Os-peptide complex and subjected to detailed steady-state, ultrafast transient absorption, and luminescence lifetime decay analyses. Although the possibility exists for charge transfer quenching interactions, we find that the QD donors engage in relatively efficient Förster resonance energy transfer with the Os complex acceptor despite relatively low overall spectral overlap. These results are in contrast to other similar QD donor-redox-active acceptor systems with similar separation distances, but displaying far higher spectral overlap, where charge transfer processes were reported to be the dominant QD quenching mechanism.
NASA Astrophysics Data System (ADS)
Ells, K. D.; Murray, A.
2011-12-01
Advances in the understanding of the wave-angle dependence of large-scale sandy coastline evolution have allowed exploratory modeling investigations into the emergence of large-scale coastline features such as sandwaves, capes, and spits; the possible responses of these complex coastline shapes to changing wave climates; and the dynamic coupling of natural coastal processes with economic decisions for shoreline stabilization. Recent numerical-model experiments found that beach nourishment on a complex-shaped coastline can significantly alter rates of shoreline change on spatial scales commensurate with the alongshore distance of adjacent features (up to 100 km). While the effect of beach nourishment is to fix a given shoreline position while maintaining a saturated sediment flux locally, hard structured stabilization methods (e.g. seawalls, revetments, or groynes) tend to reduce local alongshore fluxes of sediment. In long-term numerical experiments (decades to centuries), the effects of local stabilization propagate both progressively alongshore and through a non-local mechanism (wave shadowing). Comparing these two fundamentally different methods of shoreline stabilization on various locations along a cuspate cape coastline, we find that both the local and regional responses to hard structures greatly contrast those of beach nourishment. Sustained nourishment near the tip of a cape tends to extend the cape both seaward and in the direction of alongshore flux, increasing the effect that wave shadowing would have otherwise had on distant shorelines, leading to a negative (landward) perturbation to an adjacent cape. A hard structure at the same location, however, completely fixes the cape's original location, decreasing the shadowing effect and resulting in a positive (seaward) perturbation to the downdrift cape. Recent extensions of this work examine how different stabilization methods affect long-term coastline morphodynamics on other coastline types, starting
Quantum Processes and Dynamic Networks in Physical and Biological Systems.
NASA Astrophysics Data System (ADS)
Dudziak, Martin Joseph
Quantum theory since its earliest formulations in the Copenhagen Interpretation has been difficult to integrate with general relativity and with classical Newtonian physics. There has been traditionally a regard for quantum phenomena as being a limiting case for a natural order that is fundamentally classical except for microscopic extrema where quantum mechanics must be applied, more as a mathematical reconciliation rather than as a description and explanation. Macroscopic sciences including the study of biological neural networks, cellular energy transports and the broad field of non-linear and chaotic systems point to a quantum dimension extending across all scales of measurement and encompassing all of Nature as a fundamentally quantum universe. Theory and observation lead to a number of hypotheses all of which point to dynamic, evolving networks of fundamental or elementary processes as the underlying logico-physical structure (manifestation) in Nature and a strongly quantized dimension to macroscalar processes such as are found in biological, ecological and social systems. The fundamental thesis advanced and presented herein is that quantum phenomena may be the direct consequence of a universe built not from objects and substance but from interacting, interdependent processes collectively operating as sets and networks, giving rise to systems that on microcosmic or macroscopic scales function wholistically and organically, exhibiting non-locality and other non -classical phenomena. The argument is made that such effects as non-locality are not aberrations or departures from the norm but ordinary consequences of the process-network dynamics of Nature. Quantum processes are taken to be the fundamental action-events within Nature; rather than being the exception quantum theory is the rule. The argument is also presented that the study of quantum physics could benefit from the study of selective higher-scale complex systems, such as neural processes in the brain
Hydrogen storage in C3Ti complex using quantum chemical methods and molecular dynamics simulations.
Kalamse, Vijayanand; Wadnerkar, Nitin; Chaudhari, Ajay
2012-06-01
The hydrogen storage capacity of C(3)Ti and C(3)Ti(+) complex was studied using second order Møller-Plesset (MP2) and density functional theory (DFT) methods with different exchange and correlation functionals. Four and five H(2) molecules can be adsorbed on C(3)Ti and C(3)Ti(+) complex respectively at all the levels of theory used. This corresponds to the gravimetric H(2) uptake capacity of 8.77 and 10.73 wt % for the former and the latter respectively. The nature of interactions between different molecules in H(2) adsorbed complexes is also studied using many-body analysis approach. In the case of C(3)Ti(4H(2)) complex, total five-body interactions is negligible whereas for C(3)Ti(+)(5H(2)) relaxation energy is negligible. All the many-body energies have significant contribution to the binding energy of a respective complex. Atom-centered density matrix propagation molecular dynamics simulations were carried out using different methods to confirm whether H(2) molecules remain adsorbed on C(3)Ti and C(3)Ti(+) complex at room temperature. Adsorption Gibbs free energies show that four and five H(2) molecule adsorption on C(3)Ti and C(3)Ti(+) at room temperature is energetically favorable and unfavorable respectively using MP2 as well as DFT methods used here. H(2) adsorption is thermodynamically favorable over a wide range of temperature on the C(3)Ti than C(3)Ti(+)complex.
Rota, R.; Casulleras, J.; Mazzanti, F.; Boronat, J.
2015-03-21
We present a method based on the path integral Monte Carlo formalism for the calculation of ground-state time correlation functions in quantum systems. The key point of the method is the consideration of time as a complex variable whose phase δ acts as an adjustable parameter. By using high-order approximations for the quantum propagator, it is possible to obtain Monte Carlo data all the way from purely imaginary time to δ values near the limit of real time. As a consequence, it is possible to infer accurately the spectral functions using simple inversion algorithms. We test this approach in the calculation of the dynamic structure function S(q, ω) of two one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω) can be exactly calculated. We notice a clear improvement in the calculation of the dynamic response with respect to the common approach based on the inverse Laplace transform of the imaginary-time correlation function.
Rota, R; Casulleras, J; Mazzanti, F; Boronat, J
2015-03-21
We present a method based on the path integral Monte Carlo formalism for the calculation of ground-state time correlation functions in quantum systems. The key point of the method is the consideration of time as a complex variable whose phase δ acts as an adjustable parameter. By using high-order approximations for the quantum propagator, it is possible to obtain Monte Carlo data all the way from purely imaginary time to δ values near the limit of real time. As a consequence, it is possible to infer accurately the spectral functions using simple inversion algorithms. We test this approach in the calculation of the dynamic structure function S(q, ω) of two one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω) can be exactly calculated. We notice a clear improvement in the calculation of the dynamic response with respect to the common approach based on the inverse Laplace transform of the imaginary-time correlation function. PMID:25796238
Boda, Łukasz Boczar, Marek; Gług, Maciej; Wójcik, Marek J.
2015-11-28
Interaction energies, molecular structure and vibrational frequencies of the binary complex formed between H(D)Cl and dimethyl ether have been obtained using quantum-chemical methods. Equilibrium and vibrationally averaged structures, harmonic and anharmonic wavenumbers of the complex and its deuterated isotopomer were calculated using harmonic and anharmonic second-order perturbation theory procedures with Density Functional Theory B3LYP and B2PLYP-D and ab initio Møller-Plesset second-order methods, and a 6-311++G(3d,3p) basis set. A phenomenological model describing anharmonic-type vibrational couplings within hydrogen bonds was developed to explain the unique broadening and fine structure, as well as the isotope effect of the Cl–H and Cl–D stretching IR absorption bands in the gaseous complexes with dimethyl ether, as an effect of hydrogen bond formation. Simulations of the rovibrational structure of the Cl–H and Cl–D stretching bands were performed and the results were compared with experimental spectra.
NASA Astrophysics Data System (ADS)
Ye, Renlong; Nie, Xuemei; Zhou, Yumei; Wong, Chung F.; Gong, Xuedong; Jiang, Wei; Tang, Weihua; Wang, Yan A.; Heine, Thomas; Zhou, Baojing
2016-03-01
We introduce a molecular dynamics/quantum mechanics/continuum solvent model (MD/QM/CSM) approach to investigate binding mechanisms of host-guest systems. The representative conformations of host, guest, and their complex generated from MD simulations at the molecular-mechanics level are used for binding free energy calculations based on a QM/CSM model. We use this approach to explore the binding mechanisms of β-cyclodextrin (β-CD) and 2, 6-di-methyl-β-CD (DM-β-CD) with various guest molecules. Our results suggest that solvent effects play a more important role in determining the relative binding affinities of DM-β-CD than those of β-CD mainly because the former is more flexible than the latter.
Benioff, Paul
2009-01-01
Tmore » his work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices.he frame field has an iterative structure such that the contents of a stage j frame have images in a stage j - 1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames.he resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also described.« less
NASA Astrophysics Data System (ADS)
Liu, Yuemin; Liu, Yucheng; Murru, Siva; Tzeng, Nianfeng; Srivastava, Radhey S.
2015-10-01
In this study, repulsive π-π interactions within iron azodioxide complex Fe[Ph(O)NN(O)Ph]3 were quantum mechanically characterized using DFT, MP2 and CCSD(T) methods. Flexibility of six phenyl moieties in this complex structure was also investigated by structural optimization approach using the DFT methods. Our MP2 and CCSD(T) calculations of the closest pair provided interaction energy of 6.62 and 8.29 kcal/mol respectively, which indicate a strongest repulsion among these intra-molecular π-π interactions. Interaction energy of the particular π-π pair calculated from 24 hybrid DFT methods ranges from 4.56 kcal/mol from BHandH method to 15.15 kcal/mol from O3LYP method. Cares should be exercised when interpreting interaction energy and geometry optimization from DFT simulation of systems containing π-π interaction. Comparison between the DFT results and the benchmark CCSD(T) results shows that the DFT calculations of π-π interaction are reasonable but still need to be interpreted with caution. Furthermore, MP2 interaction energy of -44.69 kcal/mol between two substituted π systems/phenyl rings Ph(O)N-moieties suggested that above energetically unfavorable π-π interaction can be compensated by the covalent bond N-N in a single ligand Ph(O)NN(O)Ph, which allows for a reasonable stability across the complex molecules. Optimizations of the entire complex molecule using B3LYP and M06HF methods produced a large variation of π-π distances and orientations, which implied that the complex molecule may perform catalysis at room temperature.
Quantum-dot-based quantitative identification of pathogens in complex mixture
NASA Astrophysics Data System (ADS)
Lim, Sun Hee; Bestwater, Felix; Buchy, Philippe; Mardy, Sek; Yu, Alexey Dan Chin
2010-02-01
In the present study we describe sandwich design hybridization probes consisting of magnetic particles (MP) and quantum dots (QD) with target DNA, and their application in the detection of avian influenza virus (H5N1) sequences. Hybridization of 25-, 40-, and 100-mer target DNA with both probes was analyzed and quantified by flow cytometry and fluorescence microscopy on the scale of single particles. The following steps were used in the assay: (i) target selection by MP probes and (ii) target detection by QD probes. Hybridization efficiency between MP conjugated probes and target DNA hybrids was controlled by a fluorescent dye specific for nucleic acids. Fluorescence was detected by flow cytometry to distinguish differences in oligo sequences as short as 25-mer capturing in target DNA and by gel-electrophoresis in the case of QD probes. This report shows that effective manipulation and control of micro- and nanoparticles in hybridization assays is possible.
Hernández-Rojas, Javier; Calvo, Florent; Noya, Eva Gonzalez
2015-03-10
The semiclassical method of quantum thermal baths by colored noise thermostats has been used to simulate various atomic systems in the molecular and bulk limits, at finite temperature and in moderately to strongly anharmonic regimes. In all cases, the method performs relatively well against alternative approaches in predicting correct energetic properties, including in the presence of phase changes, provided that vibrational delocalization is not too strong-neon appearing already as an upper limiting case. In contrast, the dynamical behavior inferred from global indicators such as the root-mean-square bond length fluctuation index or the vibrational spectrum reveals more marked differences caused by zero-point energy leakage, except in the case of isolated molecules with well separated vibrational modes. To correct for such deficiencies and reduce the undesired transfer among modes, empirical modifications of the noise power spectral density were attempted to better describe thermal equilibrium but still failed when used as semiclassical preparation for microcanonical trajectories. PMID:26579740
Kondo Physics at Interfaces in Metallic Non-Local Spin Transport Devices
NASA Astrophysics Data System (ADS)
Leighton, Chris
2015-03-01
Despite the maturity of metallic spintronics there remain large gaps in our understanding of spin transport in metals, particularly with injection of spins across ferromagnetic/non-magnetic (FM/NM) interfaces, and their subsequent diffusion and relaxation. Unresolved issues include the limits of applicability of Elliott-Yafet spin relaxation, quantification of the influence of defects, surfaces, and interfaces on spin relaxation at nanoscopic dimensions, and the importance of magnetic and spin-orbit scattering. The non-local spin-valve is an enabling device in this context as, in addition to offering potentially disruptive applications, it allows for the separation of charge and spin currents. One particularly perplexing issue in metallic non-local spin valves is the widely observed non-monotonicity in the T-dependent spin accumulation, where the spin signal actually decreases at low T, in contrast to simple expectations. In this work, by studying an expanded range of FM/NM combinations (encompassing Ni80Fe20, Ni, Fe, Co, Cu, and Al), we demonstrate that this effect is not a property of a given FM or NM, but rather of the FM/NM pair. The non-monotonicity is in fact strongly correlated with the ability of the FM to form a dilute local magnetic moment in the NM. We show that local moments, resulting in this case from the ppm-level tail of the FM/NM interdiffusion profile, suppress the injected spin polarization and diffusion length via a novel manifestation of the Kondo effect, explaining all observations associated with the low T downturn in spin accumulation. We further show: (a) that this effect can be promoted by thermal annealing, at which point the conventional charge transport Kondo effect is simultaneously detected in the NM, and (b) that this suppression in spin accumulation can be quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer. Important implications for room temperature
Quantum-chemical studies of dimethylformamide 1 : 1 complexes with phosphoric acid
NASA Astrophysics Data System (ADS)
Krest'yaninov, M. A.; Kiselev, M. G.; Safonova, L. P.
2012-12-01
The structures of two phosphoric acid conformations, dimethylformamide (DMFA), four protonated DMFA forms, and nine DMFA-H3PO4 complexes in which the proton acceptor is a oxygen or nitrogen atom of the DMFA molecule are optimized by DFT/B3LYP using the 6-31++G( d, p) basis set. The structural changes in DMFA that occur upon its protonation are discussed. The stabilization energy and transferred charge values upon the formation of a hydrogen bond are calculated for all of the studied complexes by means of NBO analysis. The potential energy surface is scanned to study the possibility of proton transfer.
Potts, Jonathan R; Bastille-Rousseau, Guillaume; Murray, Dennis L; Schaefer, James A; Lewis, Mark A
2014-01-01
Predicting space use patterns of animals from their interactions with the environment is fundamental for understanding the effect of habitat changes on ecosystem functioning. Recent attempts to address this problem have sought to unify resource selection analysis, where animal space use is derived from available habitat quality, and mechanistic movement models, where detailed movement processes of an animal are used to predict its emergent utilization distribution. Such models bias the animal's movement towards patches that are easily available and resource-rich, and the result is a predicted probability density at a given position being a function of the habitat quality at that position. However, in reality, the probability that an animal will use a patch of the terrain tends to be a function of the resource quality in both that patch and the surrounding habitat. We propose a mechanistic model where this non-local effect of resources naturally emerges from the local movement processes, by taking into account the relative utility of both the habitat where the animal currently resides and that of where it is moving. We give statistical techniques to parametrize the model from location data and demonstrate application of these techniques to GPS location data of caribou (Rangifer tarandus) in Newfoundland. Steady-state animal probability distributions arising from the model have complex patterns that cannot be expressed simply as a function of the local quality of the habitat. In particular, large areas of good habitat are used more intensively than smaller patches of equal quality habitat, whereas isolated patches are used less frequently. Both of these are real aspects of animal space use missing from previous mechanistic resource selection models. Whilst we focus on habitats in this study, our modelling framework can be readily used with any environmental covariates and therefore represents a unification of mechanistic modelling and step selection approaches to
Hausmann, David; Kuzmanoski, Ana; Feldmann, Claus
2016-04-21
The reaction of manganese(ii) bromide and the crown ether 18-crown-6 in the ionic liquid [(n-Bu)3MeN][N(Tf)2] under mild conditions (80-130 °C) resulted in the formation of three different coordination compounds: MnBr2(18-crown-6) (), Mn3Br6(18-crown-6)2 () and Mn3Br6(18-crown-6) (). In general, the local coordination and the crystal structure of all compounds are driven by the mismatch between the small radius of the Mn(2+) cation (83 pm) and the ring opening of 18-crown-6 as a chelating ligand (about 300 pm). This improper situation leads to different types of coordination and bonding. MnBr2(18-crown-6) represents a molecular compound with Mn(2+) coordinated by two bromine atoms and only five oxygen atoms of 18-crown-6. Mn3Br6(18-crown-6)2 falls into a [MnBr(18-crown-6)](+) cation - with Mn(2+) coordinated by six oxygen atoms and Br - and a [MnBr(18-crown-6)MnBr4](-) anion. In this anion, Mn(2+) is coordinated by five oxygen atoms of the crown ether as well as by two bromine atoms, one of them bridging to an isolated (MnBr4) tetrahedron. Mn3Br6(18-crown-6), finally, forms an infinite, non-charged [Mn2(18-crown-6)(MnBr6)] chain. Herein, 18-crown-6 is exocyclically coordinated by two Mn(2+) cations. All compounds show intense luminescence in the yellow to red spectral range and exhibit remarkable quantum yields of 70% (Mn3Br6(18-crown-6)) and 98% (Mn3Br6(18-crown-6)2). The excellent quantum yield of Mn3Br6(18-crown-6)2 and its differentiation from MnBr2(18-crown-6) and Mn3Br6(18-crown-6) can be directly correlated to the local coordination. PMID:26956783
Environment effects on the CO vibrational shifts in erbium complexes: a quantum chemical study.
Ottonelli, Massimo; Musso, Gianfranco; Dellepiane, Giovanna
2008-11-20
The stability of lanthanide complexes and the efficiency of the energy transfer process, which makes these molecules interesting materials for technological applications, are correlated to the chemical environment surrounding the metal ion. In particular the efficiency depends on the relative position of the antenna (the ligand moiety that acts as photon absorption center) and the lanthanide ion (the emitting center), while the stability of the complex is correlated to the strength of the coordination between the rare earth and the ligands. For these reasons, knowledge of the structural properties of the complex is an interesting task to achieve. Since a large number of ligand structures hold the carboxylate group (COO(-)), which is used as an anchor for binding the antennae to the lanthanide ion, in this work we will show how the vibrational shifts of this group, induced by the interactions between the carboxylate moiety and the metal center of the lanthanide complex, can be used for obtaining in a simple way information on the structure of the chemical environment surrounding the lanthanide ion.
Circular dichroism spectroscopy of complexes of semiconductor quantum dots with chlorin e6
NASA Astrophysics Data System (ADS)
Kundelev, Evgeny V.; Orlova, Anna O.; Maslov, Vladimir G.; Baranov, Alexsander V.; Fedorov, Anatoly V.
2016-04-01
Experimental investigation of circular dichroism (CD) spectra of complexes based on ZnS:Mn/ZnS and CdSe/ZnS QDs and chlorin e6 (Ce6) molecules in aqua solutions at different pH level, in methanol and in DMSO were carried out. The changes in CD spectra of Ce6 upon its bonding in complex with semiconductor QDs were analyzed. Application of CD spectroscopy allowed to obtain the CD spectrum of luminescent Ce6 dimer for the first time, and to discover a nonluminescent Ce6 aggregate, preliminary identified as a "tetramer", dissymmetry factor of which is 40 times larger than that for its monomer. The analysis of obtained data showed that in complexes with QDs Ce6 can be either in the monomeric form or in the form of non-luminescent tetramer. The interaction of relatively unstable luminescent Ce6 dimerwith QDs leads to its partial monomerization and formation complexes with chlorin e6 in monomeric form.
Extracting quantum coherence via steering
Hu, Xueyuan; Fan, Heng
2016-01-01
As the precious resource for quantum information processing, quantum coherence can be created remotely if the involved two sites are quantum correlated. It can be expected that the amount of coherence created should depend on the quantity of the shared quantum correlation, which is also a resource. Here, we establish an operational connection between coherence induced by steering and the quantum correlation. We find that the steering-induced coherence quantified by such as relative entropy of coherence and trace-norm of coherence is bounded from above by a known quantum correlation measure defined as the one-side measurement-induced disturbance. The condition that the upper bound saturated by the induced coherence varies for different measures of coherence. The tripartite scenario is also studied and similar conclusion can be obtained. Our results provide the operational connections between local and non-local resources in quantum information processing. PMID:27682450
NASA Astrophysics Data System (ADS)
Burova, T. G.; Nurlygayanova, M. H.; Ten, G. N.; Yakovleva, A. A.
2013-03-01
The relative intensities of lines in resonance Raman scattering spectra of isolated skatole and skatole-water complex have been calculated quantum mechanically. The influence of the intermolecular interaction on these spectra has been considered. Particular features of the intensity distribution in the resonance Raman scattering spectra of indole and skatole have been compared.
NASA Astrophysics Data System (ADS)
Assadi, Leila; Jafarpour, Mojtaba
2016-07-01
We use concurrence to study bipartite entanglement, Meyer-Wallach measure and its generalizations to study multi-partite entanglement and MABK and SASA inequalities to study the non-local properties of the 4-qubit entangled graph states, quantitatively. Then, we present 3 classifications, each one in accordance with one of the aforementioned properties. We also observe that the classification according to multipartite entanglement does exactly coincide with that according to nonlocal properties, but does not match with that according to bipartite entanglement. This observation signifies the fact that non-locality and multipartite entanglement enjoy the same basic underlying principles, while bipartite entanglement may not reveal the non-locality issue in its entirety.
NASA Astrophysics Data System (ADS)
Yankovich, Andrew B.; Zhang, Chenyu; Oh, Albert; Slater, Thomas J. A.; Azough, Feridoon; Freer, Robert; Haigh, Sarah J.; Willett, Rebecca; Voyles, Paul M.
2016-09-01
Image registration and non-local Poisson principal component analysis (PCA) denoising improve the quality of characteristic x-ray (EDS) spectrum imaging of Ca-stabilized Nd2/3TiO3 acquired at atomic resolution in a scanning transmission electron microscope. Image registration based on the simultaneously acquired high angle annular dark field image significantly outperforms acquisition with a long pixel dwell time or drift correction using a reference image. Non-local Poisson PCA denoising reduces noise more strongly than conventional weighted PCA while preserving atomic structure more faithfully. The reliability of and optimal internal parameters for non-local Poisson PCA denoising of EDS spectrum images is assessed using tests on phantom data.
Efficient quantum walk on a quantum processor.
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Efficient quantum walk on a quantum processor
NASA Astrophysics Data System (ADS)
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-05-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.
Efficient quantum walk on a quantum processor.
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F
2016-05-05
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Nguyen, Tuan-Anh; Nakib, Amir; Nguyen, Huy-Nam
2016-06-01
The Non-local means denoising filter has been established as gold standard for image denoising problem in general and particularly in medical imaging due to its efficiency. However, its computation time limited its applications in real world application, especially in medical imaging. In this paper, a distributed version on parallel hybrid architecture is proposed to solve the computation time problem and a new method to compute the filters' coefficients is also proposed, where we focused on the implementation and the enhancement of filters' parameters via taking the neighborhood of the current voxel more accurately into account. In terms of implementation, our key contribution consists in reducing the number of shared memory accesses. The different tests of the proposed method were performed on the brain-web database for different levels of noise. Performances and the sensitivity were quantified in terms of speedup, peak signal to noise ratio, execution time, the number of floating point operations. The obtained results demonstrate the efficiency of the proposed method. Moreover, the implementation is compared to that of other techniques, recently published in the literature. PMID:27084318
Non-local Impact of South and East Asian Aerosols on Monsoon Onset and Withdrawal
NASA Astrophysics Data System (ADS)
Bollasina, M. A.; Bartlett, R. E.; Booth, B.; Dunstone, N. J.; Marenco, F.
2015-12-01
The powerful Asian monsoon is of vital importance to the billions of people who are reliant on its rainfall, especially considering that society within its domain is largely agrarian. This monsoon system comprises smaller regional components, including the Indian monsoon and East Asian monsoon. These components are linked to one another through large scale circulation. The impacts of rapidly increasing anthropogenic aerosols over Asia on the monsoon have been widely studied. However, most studies consider only regional impacts, and not the subsequent effects on other geographical components of the system. We use observational and modelling methods to investigate the links between the regional components of the Asian monsoon and how they are affected by aerosols. Satellite observations of aerosol optical depth are used in conjunction with precipitation and atmospheric reanalysis data to investigate the problem at interannual timescales. Modelling experiments using HadGEM2-ES and GFDL CM3 are used to look at longer timescales and the potential influence of long term feedbacks. The HadGEM2 experiments use three time-evolving future anthropogenic aerosol emissions scenarios with the same time-evolving greenhouse gases. The GFDL CM3 experiments are forced by historical regional anthropogenic aerosol emissions. Using these methods, we look at the separate impact that South and East Asian aerosols have on monsoon onset and withdrawal. We focus on impacts in regions non-local to the aerosol source. We will also present proposed mechanisms for the apparent effects based on analysis of large scale circulation and atmospheric heating.
Nguyen, Tuan-Anh; Nakib, Amir; Nguyen, Huy-Nam
2016-06-01
The Non-local means denoising filter has been established as gold standard for image denoising problem in general and particularly in medical imaging due to its efficiency. However, its computation time limited its applications in real world application, especially in medical imaging. In this paper, a distributed version on parallel hybrid architecture is proposed to solve the computation time problem and a new method to compute the filters' coefficients is also proposed, where we focused on the implementation and the enhancement of filters' parameters via taking the neighborhood of the current voxel more accurately into account. In terms of implementation, our key contribution consists in reducing the number of shared memory accesses. The different tests of the proposed method were performed on the brain-web database for different levels of noise. Performances and the sensitivity were quantified in terms of speedup, peak signal to noise ratio, execution time, the number of floating point operations. The obtained results demonstrate the efficiency of the proposed method. Moreover, the implementation is compared to that of other techniques, recently published in the literature.
Non-local thermal spin injection to study spin diffusion in yttrium iron garnet
NASA Astrophysics Data System (ADS)
Giles, Brandon; Yang, Zihao; Jamison, John; Myers, Roberto
Understanding the generation, detection, and manipulation of spin current is critical for the development of devices that depend on spin transport for information processing and storage. Recent studies have shown that spin transport over long distances is possible in the magnetic insulator yttrium iron garnet (YIG) through the diffusion of non-equilibrium magnons. Electrically excited magnons have been shown to diffuse up to 40um at room temperature, while thermally injected magnons were detected at ranges greater than 125um at 23K. However, much work is still required to fully understand the processes responsible for magnon diffusion. Here, we present an in-depth study of the diffusion of magnons in YIG. By using the non-local thermal spin detection method, we analyze spin transport as a function of temperature. Spin diffusion maps, which can be used to experimentally determine the spin diffusion length in YIG as a function of temperature, are presented Work supported by the Army Research Office MURI W911NF-14-1-0016.
Non local resonances in weak turbulence of gravity-capillary water waves
NASA Astrophysics Data System (ADS)
Mordant, Nicolas; Aubourg, Quentin
2015-11-01
We investigate experimentally the statistical properties of wave turbulence of surface waves on water. In the limit of weak non linearity an energy cascade in scale is predicted by the Weak Turbulence Theory. Energy transfers are predicted to occur among resonant waves. We use a Fourier Transform Profilometry technique that provides a 2D measurement of the water surface deformation that is resolved in time and scale. The principle is to project a pattern on the surface of water which diffuses light thanks to the addition of a Titanium oxyde powder. The pattern can then be inverted to provide the elevation of the water surface. Our wave tank is 70 cm long and we investigate waves that lie is the vicinity of the capillary-gravity crossover with frequencies between 1Hz and 100 Hz. We compute 3-wave correlations so that to study the non linear coupling and the energy transfers among resonant waves. We observe a 3-wave non linear coupling which is dominantly unidirectional and non local in scale: a low frequency gravity wave can be coupled to 2 high frequency capillary waves. We will also discuss the importance of approximate resonances in the wave coupling.
On characterizing non-locality and anisotropy for the magnetorotational instability
NASA Astrophysics Data System (ADS)
Nauman, Farrukh; Blackman, Eric G.
2014-07-01
The extent to which angular momentum transport in accretion discs is primarily local or non-local and what determines this is an important avenue of study for understanding accretion engines. Taking a step along this path, we analyse simulations of the magnetorotational instability (MRI) by calculating energy and stress power spectra in stratified isothermal shearing box simulations in several new ways. We divide our boxes in two regions, disc and corona where the disc is the MRI unstable region and corona is the magnetically dominated region. We calculate the fractional power in different quantities, including magnetic energy and Maxwell stresses and find that they are dominated by contributions from the lowest wave numbers. This is even more dramatic for the corona than the disc, suggesting that transport in the corona region is dominated by larger structures than the disc. By calculating averaged power spectra in one direction of k space at a time, we also show that the MRI turbulence is strongly anisotropic on large scales when analysed by this method, but isotropic on small scales. Although the shearing box itself is meant to represent a local section of an accretion disc, the fact that the stress and energy are dominated by the largest scales highlights that the locality is not captured within the box. This helps to quantify the intuitive importance of global simulations for addressing the question of locality of transport, for which similar analyses can be performed.
Non-local closure model for vertical mixing in the convective boundary layer
Pleim, J.E.; Chang, J.S.
1993-01-01
A simple non-local closure model for vertical mixing in Convective Boundary Layers (CBL) has been developed specifically for application in regional or meso-scale atmospheric chemistry models. The model, named the Asymmetrical Convective Model (ACM), is based on the concept that vertical transport within the CBL is inherently asymmetrical. Upward transport by buoyant plumes originating in the surface layer is simulated by mixing from the lowest model layer directly to all other layers in the CBL. Downward transport, however, proceeds only to the next lower layer in order to emulate gradual compensatory subsidence. The realism of the ACM is tested through comparisons to large-eddy simulations of several idealized test cases. The ACM is also tested in the context of the Regional Acid Deposition Model (RADM) both to determine sensitivity to different CBL mixing schemes and to compare to vertically resolved aircraft measurements. These tests demonstrate quicker upward transport of ground level emissions by the ACM as compared to the eddy diffusion scheme currently used in RADM. The ACM also affects ozone photochemistry in the boundary layer resulting in lower ozone concentrations in areas of high NOx emissions.
Rapid computation of spectrally integrated non-local thermodynamic equilibrium limb emission
NASA Technical Reports Server (NTRS)
Mlynczak, Martin G.; Olander, Daphne S.; Lopez-Puertas, Manuel
1994-01-01
The interpretation of infrared radiance measurements made by satellite-borne limb-scanning broadband radiometers requires accurate and computationally fast techniques with which to evaluate the equation of radiative transfer. This requirement is made even more stringent when analyzing measurements of non-local thermodynamic equilibrium (non-LTE) emission from the terrestrial mesosphere and lower thermosphere. In principle, line-by-line calculations which explicitly account for the departure from thermodynamic equilibrium in both the source functions and the transmittances are necessary. In this paper we extend the emissivity growth approximation (EGA) technique developed for local thermodynamic equilibrium (LTE) limb radiance for the molecular oxygen dayglow (1.27 micrometers and 762 nm), ozone and carbon dioxide in the 9- to 11-micrometer spectral interval, carbon monoxide (4.6 micrometers), nitric oxide (5.3 micrometers), and the carbon dioxide bands (15 micrometers) are presented. Using the non-LTE form of the EGA, the spectrally integrated limb emission is calculated for 35 tangent heights in the mesosphere and lower thermosphere (a total of 1200 atmospheric layers) with line-by-line accuracy in approximately 0.35 s of CPU time on readily available desktop computer hardware, while the corresponding line-by-line calculations may require several minutes. The non-LTE EGA technique will allow kinetic temperature and minor constituend retrieval algorithms to readily include non-LTE efects limited only by the a priori knowledge of the departure from LTE in the observed bands.
Dynamical renormalization group study for a class of non-local interface equations
NASA Astrophysics Data System (ADS)
Nicoli, Matteo; Cuerno, Rodolfo; Castro, Mario
2011-10-01
We provide a detailed dynamic renormalization group study for a class of stochastic equations that describe non-conserved interface growth mediated by non-local interactions. We consider explicitly both the morphologically stable case, and the less studied case in which pattern formation occurs, for which flat surfaces are linearly unstable to periodic perturbations. We show that the latter leads to non-trivial scaling behavior in an appropriate parameter range when combined with the Kardar-Parisi-Zhang (KPZ) nonlinearity, which nevertheless does not correspond to the KPZ universality class. This novel asymptotic behavior is characterized by two scaling laws that fix the critical exponents to dimension-independent values, which agree with previous reports from numerical simulations and experimental systems. We show that the precise form of the linear stabilizing terms does not modify the hydrodynamic behavior of these equations. One of the scaling laws, usually associated with Galilean invariance, is shown to derive from a vertex cancellation that occurs (at least to one loop order) for any choice of linear terms in the equation of motion and is independent of the morphological stability of the surface, hence generalizing this well-known property of the KPZ equation. Moreover, the argument carries over to other systems such as the Lai-Das Sarma-Villain equation, in which vertex cancellation is known not to imply an associated symmetry of the equation.
A non-local, ordinary-state-based viscoelasticity model for peridynamics.
Mitchell, John Anthony
2011-10-01
A non-local, ordinary-state-based, peridynamics viscoelasticity model is developed. In this model, viscous effects are added to deviatoric deformations and the bulk response remains elastic. The model uses internal state variables and is conceptually similar to linearized isotropic viscolelasticity in the local theory. The modulus state, which is used to form the Jacobian matrix in Newton-Raphson algorithms, is presented. The model is shown to satisfy the 2nd law of thermodynamics and is applicable to problems in solid continuum mechanics where fracture and rate effects are important; it inherits all the advantages for modeling fracture associated with peridynamics. By combining this work with the previously published ordinary-state-based plasticity model, the model may be amenable to viscoplasticity problems where plasticity and rate effects are simultaneously important. Also, the model may be extended to include viscous effects for spherical deformations as well. The later two extensions are not presented and may be the subject of further work.
A multi-scale non-local means algorithm for image de-noising
NASA Astrophysics Data System (ADS)
Nercessian, Shahan; Panetta, Karen A.; Agaian, Sos S.
2012-06-01
A highly studied problem in image processing and the field of electrical engineering in general is the recovery of a true signal from its noisy version. Images can be corrupted by noise during their acquisition or transmission stages. As noisy images are visually very poor in quality, and complicate further processing stages of computer vision systems, it is imperative to develop algorithms which effectively remove noise in images. In practice, it is a difficult task to effectively remove the noise while simultaneously retaining the edge structures within the image. Accordingly, many de-noising algorithms have been considered attempt to intelligent smooth the image while still preserving its details. Recently, a non-local means (NLM) de-noising algorithm was introduced, which exploited the redundant nature of images to achieve image de-noising. The algorithm was shown to outperform current de-noising standards, including Gaussian filtering, anisotropic diffusion, total variation minimization, and multi-scale transform coefficient thresholding. However, the NLM algorithm was developed in the spatial domain, and therefore, does not leverage the benefit that multi-scale transforms provide a framework in which signals can be better distinguished by noise. Accordingly, in this paper, a multi-scale NLM (MS-NLM) algorithm is proposed, which combines the advantage of the NLM algorithm and multi-scale image processing techniques. Experimental results via computer simulations illustrate that the MS-NLM algorithm outperforms the NLM, both visually and quantitatively.
Adaptive non-local means filtering based on local noise level for CT denoising
NASA Astrophysics Data System (ADS)
Li, Zhoubo; Yu, Lifeng; Trzasko, Joshua D.; Fletcher, Joel G.; McCollough, Cynthia H.; Manduca, Armando
2012-03-01
Radiation dose from CT scans is an increasing health concern in the practice of radiology. Higher dose scans can produce clearer images with high diagnostic quality, but may increase the potential risk of radiation-induced cancer or other side effects. Lowering radiation dose alone generally produces a noisier image and may degrade diagnostic performance. Recently, CT dose reduction based on non-local means (NLM) filtering for noise reduction has yielded promising results. However, traditional NLM denoising operates under the assumption that image noise is spatially uniform noise, while in CT images the noise level varies significantly within and across slices. Therefore, applying NLM filtering to CT data using a global filtering strength cannot achieve optimal denoising performance. In this work, we have developed a technique for efficiently estimating the local noise level for CT images, and have modified the NLM algorithm to adapt to local variations in noise level. The local noise level estimation technique matches the true noise distribution determined from multiple repetitive scans of a phantom object very well. The modified NLM algorithm provides more effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with the clinical workflow.
Adaptive non-local means method for speckle reduction in ultrasound images
NASA Astrophysics Data System (ADS)
Ai, Ling; Ding, Mingyue; Zhang, Xuming
2016-03-01
Noise removal is a crucial step to enhance the quality of ultrasound images. However, some existing despeckling methods cannot ensure satisfactory restoration performance. In this paper, an adaptive non-local means (ANLM) filter is proposed for speckle noise reduction in ultrasound images. The distinctive property of the proposed method lies in that the decay parameter will not take the fixed value for the whole image but adapt itself to the variation of the local features in the ultrasound images. In the proposed method, the pre-filtered image will be obtained using the traditional NLM method. Based on the pre-filtered result, the local gradient will be computed and it will be utilized to determine the decay parameter adaptively for each image pixel. The final restored image will be produced by the ANLM method using the obtained decay parameters. Simulations on the synthetic image show that the proposed method can deliver sufficient speckle reduction while preserving image details very well and it outperforms the state-of-the-art despeckling filters in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Experiments on the clinical ultrasound image further demonstrate the practicality and advantage of the proposed method over the compared filtering methods.
Grant, Daniel J; Stewart, Timothy J; Bau, Robert; Miller, Kevin A; Mason, Sax A; Gutmann, Matthias; McIntyre, Garry J; Gagliardi, Laura; Evans, William J
2012-03-19
The unusual uranium reaction system in which uranium(4+) and uranium(3+) hydrides interconvert by formal bimetallic reductive elimination and oxidative addition reactions, [(C(5)Me(5))(2)UH(2)](2) (1) ⇌ [(C(5)Me(5))(2)UH](2) (2) + H(2), was studied by employing multiconfigurational quantum chemical and density functional theory methods. 1 can act as a formal four-electron reductant, releasing H(2) gas as the byproduct of four H(2)/H(-) redox couples. The calculated structures for both reactants and products are in good agreement with the X-ray diffraction data on 2 and 1 and the neutron diffraction data on 1 obtained under H(2) pressure as part of this study. The interconversion of the uranium(4+) and uranium(3+) hydride species was calculated to be near thermoneutral (~-2 kcal/mol). Comparison with the unknown thorium analogue, [(C(5)Me(5))(2)ThH](2), shows that the thorium(4+) to thorium(3+) hydride interconversion reaction is endothermic by 26 kcal/mol.
Fracchia, Francesco; Filippi, Claudia; Amovilli, Claudio
2014-01-01
We present here several novel features of our recently proposed Jastrow linear generalized valence bond (J-LGVB) wave functions, which allow a consistently accurate description of complex potential energy surfaces (PES) of medium-large systems within quantum Monte Carlo (QMC). In particular, we develop a multilevel scheme to treat different regions of the molecule at different levels of the theory. As prototypical study case, we investigate the decomposition of α-hydroxy-dimethylnitrosamine, a carcinogenic metabolite of dimethylnitrosamine (NDMA), through a two-step mechanism of isomerization followed by a retro-ene reaction. We compute a reliable reaction path with the quadratic configuration interaction method and employ QMC for the calculation of the electronic energies. We show that the use of multideterminantal wave functions is very important to correctly describe the critical points of this PES within QMC, and that our multilevel J-LGVB approach is an effective tool to significantly reduce the cost of QMC calculations without loss of accuracy. As regards the complex PES of α-hydroxy-dimethylnitrosamine, the accurate energies computed with our approach allows us to confirm the validity of the two-step reaction mechanism of decomposition originally proposed within density functional theory, but with some important differences in the barrier heights of the individual steps.
NASA Astrophysics Data System (ADS)
Rotter, I.; Sadreev, A. F.
2005-03-01
We study the spectrum of an open double quantum dot as a function of different system parameters in order to receive information on the geometric phases of branch points in the complex plane (BPCP). We relate them to the geometrical phases of the diabolic points (DPs) of the corresponding closed system. The double dot consists of two single dots and a wire connecting them. The two dots and the wire are represented by only a single state each. The spectroscopic values follow from the eigenvalues and eigenfunctions of the Hamiltonian describing the double dot system. They are real when the system is closed, and complex when the system is opened by attaching leads to it. The discrete states as well as the narrow resonance states avoid crossing. The DPs are points within the avoided level crossing scenario of discrete states. At the BPCP, width bifurcation occurs. Here, different Riemann sheets evolve and the levels do not cross anymore. The BPCP are physically meaningful. The DPs are unfolded into two BPCP with different chirality when the system is opened. The geometric phase that arises by encircling the DP in the real plane, is different from the phase that appears by encircling the BPCP. This is found to be true even for a weakly opened system and the two BPCP into which the DP is unfolded.
NASA Astrophysics Data System (ADS)
Chatfield, David C.; Reeves, Melissa S.; Truhlar, Donald G.; Duneczky, Csilla; Schwenke, David W.
1992-12-01
Complex dense matrices corresponding to the D + H2 and O + HD reactions were solved using a complex generalized minimal residual (GMRes) algorithm described by Saad and Schultz (1986) and Saad (1990). To provide a test case with a different structure, the H + H2 system was also considered. It is shown that the computational effort for solutions with the GMRes algorithm depends on the dimension of the linear system, the total energy of the scattering problem, and the accuracy criterion. In several cases with dimensions in the range 1110-5632, the GMRes algorithm outperformed the LAPACK direct solver, with speedups for the linear equation solution as large as a factor of 23.
NASA Technical Reports Server (NTRS)
Chatfield, David C.; Reeves, Melissa S.; Truhlar, Donald G.; Duneczky, Csilla; Schwenke, David W.
1992-01-01
Complex dense matrices corresponding to the D + H2 and O + HD reactions were solved using a complex generalized minimal residual (GMRes) algorithm described by Saad and Schultz (1986) and Saad (1990). To provide a test case with a different structure, the H + H2 system was also considered. It is shown that the computational effort for solutions with the GMRes algorithm depends on the dimension of the linear system, the total energy of the scattering problem, and the accuracy criterion. In several cases with dimensions in the range 1110-5632, the GMRes algorithm outperformed the LAPACK direct solver, with speedups for the linear equation solution as large as a factor of 23.
Kim, Hyun Woo; Kelly, Aaron; Park, Jae Woo; Rhee, Young Min
2012-07-18
Although photosynthetic pigment-protein complexes are in noisy environments, recent experimental and theoretical results indicate that their excitation energy transfer (EET) can exhibit coherent characteristics for over hundreds of femtoseconds. Despite the almost universal observations of the coherence to some degree, questions still remain regarding the detailed role of the protein and the extent of high-temperature coherence. Here we adopt a theoretical method that incorporates an all-atom description of the photosynthetic complex within a semiclassical framework in order to study EET in the Fenna-Matthews-Olson complex. We observe that the vibrational modes of the chromophore tend to diminish the coherence at the ensemble level, yet much longer-lived coherences may be observed at the single-complex level. We also observe that coherent oscillations in the site populations also commence within tens of femtoseconds even when the system is initially prepared in a non-oscillatory stationary state. We show that the protein acts to maintain the electronic couplings among the system of embedded chromophores. We also investigate the extent to which the protein's electrostatic modulation that disperses the chromophore electronic energies may affect the coherence lifetime. Further, we observe that even though mutation-induced disruptions in the protein structure may change the coupling pattern, a relatively strong level of coupling and associated coherence in the dynamics still remain. Finally, we demonstrate that thermal fluctuations in the chromophore couplings induce some redundancy in the coherent energy-transfer pathway. Our results indicate that a description of both chromophore coupling strengths and their fluctuations is crucial to better understand coherent EET processes in photosynthetic systems. PMID:22708971
A complex guided spectral transform Lanczos method for studying quantum resonance states
Yu, Hua-Gen
2014-12-28
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO₂, and compared to previous calculations.
A complex guided spectral transform Lanczos method for studying quantum resonance states
Yu, Hua-Gen
2014-12-28
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the originalmore » Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO₂, and compared to previous calculations.« less
A complex guided spectral transform Lanczos method for studying quantum resonance states
Yu, Hua-Gen
2014-12-28
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths, and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore, the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO{sub 2}, and compared to previous calculations.
Magnetic-field- and pressure-induced quantum phases in complex materials.
Kim, Minjung; Barath, Harini; Chen, Xiaoqian; Joe, Young-Il; Fradkin, Eduardo; Abbamonte, Peter; Cooper, S Lance
2010-03-12
This Progress Report presents temperature-, magnetic-field-, and pressure-dependent Raman measurements of strongly correlated materials such as the charge-ordering manganese perovskites, the multiferroic material TbMnO(3), and the charge-density wave (CDW) materials 1T-TiSe(2) and Cu(x)TiSe(2). These studies illustrate the rich array of phases and properties that can be accessed with field and pressure tuning in these materials, and demonstrate the efficacy of using magnetic-field- and pressure-dependent scattering methods to elucidate the microscopic changes associated with highly tunable behavior in complex materials. PMID:20401939
Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport
Xie, Hang Kwok, Yanho; Chen, GuanHua; Jiang, Feng; Zheng, Xiao
2014-10-28
Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.
Non-local means-based nonuniformity correction for infrared focal-plane array detectors
NASA Astrophysics Data System (ADS)
Yu, Hui; Zhang, Zhi-jie; Chen, Fu-sheng; Wang, Chen-sheng
2014-11-01
The infrared imaging systems are normally based on the infrared focal-plane array (IRFPA) which can be considered as an array of independent detectors aligned at the focal plane of the imaging system. Unfortunately, every detector on the IRFPA may have a different response to the same input infrared signal which is known as the nonuniformity problem. Then we can observe the fixed pattern noise (FPN) from the resulting images. Standard nonuniformity correction (NUC) methods need to be recalibrated after a short period of time due the temporal drift of the FPN. Scene-based nonuniformity correction (NUC) techniques eliminate the need for calibration by correction coefficients based on the scene being viewed. However, in the scene-based NUC method the problem of ghosting artifacts widely seriously decreases the image quality, which can degrade the performance of many applications such as target detection and track. This paper proposed an improved scene-based method based on the retina-like neural network approach. The method incorporates the use of non-local means (NLM) method into the estimation of the gain and the offset of each detector. This method can not only estimates the accurate correction coefficient but also restrict the ghosting artifacts efficiently. The proposed method relies on the use of NLM method which is a very successful image denoising method. And then the NLM used here can preserve the image edges efficiently and obtain a reliable spatial estimation. We tested the proposed NUC method by applying it to an IR sequence of frames. The performance of the proposed method was compared the other well-established adaptive NUC techniques.
Non-Local Means Inpainting of MS Lesions in Longitudinal Image Processing.
Guizard, Nicolas; Nakamura, Kunio; Coupé, Pierrick; Fonov, Vladimir S; Arnold, Douglas L; Collins, D Louis
2015-01-01
In medical imaging, multiple sclerosis (MS) lesions can lead to confounding effects in automatic morphometric processing tools such as registration, segmentation and cortical extraction, and subsequently alter individual longitudinal measurements. Multiple magnetic resonance imaging (MRI) inpainting techniques have been proposed to decrease the impact of MS lesions in medical image processing, however, most of these methods make the assumption that lesions only affect white matter. Here, we propose a method to fill lesion regions using the patch-based non-local mean (NLM) strategy. The method consists of a hierarchical concentric filling strategy after identification of the lesion region. The lesion is filled iteratively, based on the surrounding tissue intensity, using an onion peel strategy. This concentric technique presents the advantage of preserving the local information and therefore the continuity of the anatomy and does not require identification of any a priori normal brain tissues. The method is first evaluated on 20 healthy subjects with simulated artificial MS lesions where we assessed our technique by measuring the peak signal-to-noise ratio (PSNR) of the images with inpainted lesion and the original healthy images. Second, in order to assess the impact of lesion filling on longitudinal image analyses, we performed a power analysis with sample size estimation to evaluate brain atrophy and ventricular growth in patients with MS. The method was compared to two different publicly available methods (FSL lesion fill and Lesion LEAP) and a more classic method, which fills the region with intensities similar to that of the surrounding healthy white matter tissue or mask the lesions. The proposed method was shown to exceed the other methods in reproducing the fidelity of healthy subject images where the lesions were inpainted. The method also improved the power to detect brain atrophy or ventricular growth by decreasing the sample size by 25% in the presence
Non-Local Means Inpainting of MS Lesions in Longitudinal Image Processing
Guizard, Nicolas; Nakamura, Kunio; Coupé, Pierrick; Fonov, Vladimir S.; Arnold, Douglas L.; Collins, D. Louis
2015-01-01
In medical imaging, multiple sclerosis (MS) lesions can lead to confounding effects in automatic morphometric processing tools such as registration, segmentation and cortical extraction, and subsequently alter individual longitudinal measurements. Multiple magnetic resonance imaging (MRI) inpainting techniques have been proposed to decrease the impact of MS lesions in medical image processing, however, most of these methods make the assumption that lesions only affect white matter. Here, we propose a method to fill lesion regions using the patch-based non-local mean (NLM) strategy. The method consists of a hierarchical concentric filling strategy after identification of the lesion region. The lesion is filled iteratively, based on the surrounding tissue intensity, using an onion peel strategy. This concentric technique presents the advantage of preserving the local information and therefore the continuity of the anatomy and does not require identification of any a priori normal brain tissues. The method is first evaluated on 20 healthy subjects with simulated artificial MS lesions where we assessed our technique by measuring the peak signal-to-noise ratio (PSNR) of the images with inpainted lesion and the original healthy images. Second, in order to assess the impact of lesion filling on longitudinal image analyses, we performed a power analysis with sample size estimation to evaluate brain atrophy and ventricular growth in patients with MS. The method was compared to two different publicly available methods (FSL lesion fill and Lesion LEAP) and a more classic method, which fills the region with intensities similar to that of the surrounding healthy white matter tissue or mask the lesions. The proposed method was shown to exceed the other methods in reproducing the fidelity of healthy subject images where the lesions were inpainted. The method also improved the power to detect brain atrophy or ventricular growth by decreasing the sample size by 25% in the presence
Noise suppression for energy-resolved CT using similarity-based non-local filtration
NASA Astrophysics Data System (ADS)
Harms, Joe; Wang, Tonghe; Petrongolo, Michael; Zhu, Lei
2016-03-01
In energy-resolved CT, images are reconstructed independently at different energy levels, resulting in images with different qualities but the same structures. We propose a similarity-based non-local filtration method to extract structural information from these images for noise suppression. For each pixel, we calculate its similarity to other pixels based on CT number. The calculation is repeated on each image at different energy levels and similarity values are averaged to generate a similarity matrix. Noise suppression is achieved by multiplying the image vector by the similarity matrix. Multiple scans on a tabletop CT system are used to simulate 6-channel energy-resolved CT, with energies ranging from 75 to 125 kVp. Phantom studies show that the proposed method improves average contrast-to-noise ratio (CNR) of seven materials on the 75 kVp image by a factor of 22. Compared with averaging CT images for noise suppression, our method achieves a higher CNR and reduces the CT number error of iodine solutions from 16.5% to 3.5% and the overall image root of mean-square error (RMSE) from 3.58% to 0.93%. On the phantom with line-pair structures, our algorithm reduces noise standard deviation (STD) by a factor of 23 while maintaining 7 lp/cm spatial resolution. Additionally, anthropomorphic head phantom studies show noise STD reduction by a factor or 26 with no loss of spatial resolution. The noise suppression achieved by the similarity-based method is clinically attractive, especially for CNRs of iodine in contrast-enhanced CT.
Non-local thermodynamic equilibrium 1.5D modeling of red giant stars
Young, Mitchell E.; Short, C. Ian
2014-05-20
Spectra for two-dimensional (2D) stars in the 1.5D approximation are created from synthetic spectra of one-dimensional (1D) non-local thermodynamic equilibrium (NLTE) spherical model atmospheres produced by the PHOENIX code. The 1.5D stars have the spatially averaged Rayleigh-Jeans flux of a K3-4 III star while varying the temperature difference between the two 1D component models (ΔT {sub 1.5D}) and the relative surface area covered. Synthetic observable quantities from the 1.5D stars are fitted with quantities from NLTE and local thermodynamic equilibrium (LTE) 1D models to assess the errors in inferred T {sub eff} values from assuming horizontal homogeneity and LTE. Five different quantities are fit to determine the T {sub eff} of the 1.5D stars: UBVRI photometric colors, absolute surface flux spectral energy distributions (SEDs), relative SEDs, continuum normalized spectra, and TiO band profiles. In all cases except the TiO band profiles, the inferred T {sub eff} value increases with increasing ΔT {sub 1.5D}. In all cases, the inferred T {sub eff} value from fitting 1D LTE quantities is higher than from fitting 1D NLTE quantities and is approximately constant as a function of ΔT {sub 1.5D} within each case. The difference between LTE and NLTE for the TiO bands is caused indirectly by the NLTE temperature structure of the upper atmosphere, as the bands are computed in LTE. We conclude that the difference between T {sub eff} values derived from NLTE and LTE modeling is relatively insensitive to the degree of the horizontal inhomogeneity of the star being modeled and largely depends on the observable quantity being fit.
Integrated photonic quantum walks
NASA Astrophysics Data System (ADS)
Gräfe, Markus; Heilmann, René; Lebugle, Maxime; Guzman-Silva, Diego; Perez-Leija, Armando; Szameit, Alexander
2016-10-01
Over the last 20 years quantum walks (QWs) have gained increasing interest in the field of quantum information science and processing. In contrast to classical walkers, quantum objects exhibit intrinsic properties like non-locality and non-classical many-particle correlations, which renders QWs a versatile tool for quantum simulation and computation as well as for a deeper understanding of genuine quantum mechanics. Since they are highly controllable and hardly interact with their environment, photons seem to be ideally suited quantum walkers. In order to study and exploit photonic QWs, lattice structures that allow low loss coherent evolution of quantum states are demanded. Such requirements are perfectly met by integrated optical waveguide devices that additionally allow a substantial miniaturization of experimental settings. Moreover, by utilizing the femtosecond direct laser writing technique three-dimensional waveguide structures are capable of analyzing QWs also on higher dimensional geometries. In this context, advances and findings of photonic QWs are discussed in this review. Various concepts and experimental results are presented covering, such as different quantum transport regimes, the Boson sampling problem, and the discrete fractional quantum Fourier transform.
Contextuality supplies the 'magic' for quantum computation.
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-19
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms. PMID:24919152
Contextuality supplies the 'magic' for quantum computation.
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-19
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.
Contextuality supplies the `magic' for quantum computation
NASA Astrophysics Data System (ADS)
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-01
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via `magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple `hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.
ERIC Educational Resources Information Center
de Groot, Carola; Daalhuizen, Femke B. C.; van Dam, Frank; Mulder, Clara H.
2012-01-01
One of the most pressing questions in the rural gentrification literature is whether rural residents face difficulties in finding a home within their locality due to the influx of more wealthy newcomers. In this paper, we investigate the extent to which intended local movers and intended non-local movers have realised their rural residential…
Direct Evidence of Memory Retrieval as a Source of Difficulty in Non-Local Dependencies in Language
ERIC Educational Resources Information Center
Fedorenko, Evelina; Woodbury, Rebecca; Gibson, Edward
2013-01-01
Linguistic dependencies between non-adjacent words have been shown to cause comprehension difficulty, compared with local dependencies. According to one class of sentence comprehension accounts, non-local dependencies are difficult because they require the retrieval of the first dependent from memory when the second dependent is encountered.…
Berger, Andrew J. Page, Michael R.; Bhallamudi, Vidya P.; Chris Hammel, P.; Wen, Hua; Kawakami, Roland K.; McCreary, Kathleen M.
2015-10-05
Using simultaneous magnetic force microscopy and transport measurements of a graphene spin valve, we correlate the non-local spin signal with the magnetization of the device electrodes. The imaged magnetization states corroborate the influence of each electrode within a one-dimensional spin transport model and provide evidence linking domain wall pinning to additional features in the transport signal.
Temperature dependence of the non-local spin signal in Cu-based lateral spin-valves
NASA Astrophysics Data System (ADS)
Erickson, M. J.; Leighton, C.; Crowell, P. A.
2009-03-01
We report on measurements of the T dependence of the non-local spin signal in lateral metallic spin valves, focusing on the limit of transparent ferromagnet (FM) / normal metal (Cu) interfaces. Devices with channel width 250 nm and contact widths 100 nm (Ni80Fe20 or Co) were fabricated using in-situ shadow masking. We employed high purity sources in UHV, enabling one-shot deposition with no air exposure of the interface. Multiple contact separations (250 -- 800 nm) were fabricated on a single substrate to facilitate measurement of the spin diffusion length (λs). NiFe/Cu devices with 250 nm contact separation show a maximum non-local transresistance of 420 μφ. Analysis of Hanle effect measurements yields spin lifetimes 8 ps at low T which compare well to those extracted from the measured λs (300 nm) and resistivity (1.5 μφcm), demonstrating consistency of our analysis. We observe a qualitatively different T dependence of the non-local signal depending on the relative sizes of the contact separation and λs. When the separation becomes comparable to λs we observe a maximum in the non-local spin signal at 35 -- 85 K, with strongly thickness dependent magnitude. These measurements of spin lifetime, resistivity, and λs vs T allow a quantitative comparison with the conductivity mismatch model. Work supported by the NSF MRSEC program.
Communication: Overcoming the root search problem in complex quantum trajectory calculations
Zamstein, Noa; Tannor, David J.
2014-01-28
Three new developments are presented regarding the semiclassical coherent state propagator. First, we present a conceptually different derivation of Huber and Heller's method for identifying complex root trajectories and their equations of motion [D. Huber and E. J. Heller, J. Chem. Phys. 87, 5302 (1987)]. Our method proceeds directly from the time-dependent Schrödinger equation and therefore allows various generalizations of the formalism. Second, we obtain an analytic expression for the semiclassical coherent state propagator. We show that the prefactor can be expressed in a form that requires solving significantly fewer equations of motion than in alternative expressions. Third, the semiclassical coherent state propagator is used to formulate a final value representation of the time-dependent wavefunction that avoids the root search, eliminates problems with caustics and automatically includes interference. We present numerical results for the 1D Morse oscillator showing that the method may become an attractive alternative to existing semiclassical approaches.
Iodine-polyphenylacetylene charge-transfer complex: an ab initio quantum-chemical assessment
NASA Astrophysics Data System (ADS)
Andreocci, M. V.; Bossa, M.; Furlani, A.; Polzonetti, G.; Russo, M. V.
1991-07-01
The ab initio MO-LCAO-HF method has been used to calculate the electronic structure of the iodine-polyphenylacetylene charge-transfer complex (PPAI 2). Two models have been considered for the PPA molecule: a simple one containing two phenyl groups and a more realistic one containing six phenyl groups. The calculations give automatically the charge separation between I 5 and the polymer, and show that the total charge separation can be less than 1 e at short distances. The computed charges at the energy minimum have been succesfully introduced into the curve fitting of the I-3d 5/2 core level spectrum of PPAI 2 films, giving good agreement between experimental and theoretical results.
Communication: overcoming the root search problem in complex quantum trajectory calculations.
Zamstein, Noa; Tannor, David J
2014-01-28
Three new developments are presented regarding the semiclassical coherent state propagator. First, we present a conceptually different derivation of Huber and Heller's method for identifying complex root trajectories and their equations of motion [D. Huber and E. J. Heller, J. Chem. Phys. 87, 5302 (1987)]. Our method proceeds directly from the time-dependent Schrödinger equation and therefore allows various generalizations of the formalism. Second, we obtain an analytic expression for the semiclassical coherent state propagator. We show that the prefactor can be expressed in a form that requires solving significantly fewer equations of motion than in alternative expressions. Third, the semiclassical coherent state propagator is used to formulate a final value representation of the time-dependent wavefunction that avoids the root search, eliminates problems with caustics and automatically includes interference. We present numerical results for the 1D Morse oscillator showing that the method may become an attractive alternative to existing semiclassical approaches.
Zhu, J.; Kais, S.; Rebentrost, P.; Aspuru-Guzik, Alan
2011-02-17
We present a detailed theoretical study of the transfer of electronic excitation energy through the Fenna-Matthews-Olson (FMO) pigment-protein complex, using the newly developed modified scaled hierarchical approach (Shi, Q.; et al. J. Chem. Phys.2009, 130, 084105). We show that this approach is computationally more efficient than the original hierarchical approach. The modified approach reduces the truncation levels of the auxiliary density operators and the correlation function. We provide a systematic study of how the number of auxiliary density operators and the higher-order correlation functions affect the exciton dynamics. The time scales of the coherent beating are consistent with experimental observations. Furthermore, our theoretical results exhibit population beating at physiological temperature. Additionally, the method does not require a low-temperature correction to obtain the correct thermal equilibrium at long times.
NASA Astrophysics Data System (ADS)
Ceotto, Michele; Tantardini, Gian Franco; Aspuru-Guzik, Alán
2011-12-01
Semiclassical methods face numerical challenges as the dimensionality of the system increases. In the general context of the theory of differential equations, this is known as the "curse of dimensionality." In the present manuscript, we apply the recently-introduced multi-coherent states semiclassical initial value representation (MC-SC-IVR) approach to extend the applicability of first-principles semiclassical calculations. The proposed strategy involves the use of non-local coherent states with the goal of increasing accuracy in the Fourier transforms, and on the other hand, allows for the selection of peaks of different frequencies. The ability to filter desired peaks is important for analyzing the power spectra of complex systems. The MC-SC-IVR approach allows us to solve a 19-dimensional test system and to resolve on-the-fly the power spectra of the formaldehyde molecule with very few classical trajectories.
Ceotto, Michele; Tantardini, Gian Franco; Aspuru-Guzik, Alán
2011-12-01
Semiclassical methods face numerical challenges as the dimensionality of the system increases. In the general context of the theory of differential equations, this is known as the "curse of dimensionality." In the present manuscript, we apply the recently-introduced multi-coherent states semiclassical initial value representation (MC-SC-IVR) approach to extend the applicability of first-principles semiclassical calculations. The proposed strategy involves the use of non-local coherent states with the goal of increasing accuracy in the Fourier transforms, and on the other hand, allows for the selection of peaks of different frequencies. The ability to filter desired peaks is important for analyzing the power spectra of complex systems. The MC-SC-IVR approach allows us to solve a 19-dimensional test system and to resolve on-the-fly the power spectra of the formaldehyde molecule with very few classical trajectories. PMID:22149780
Varfolomeev, Mikhail A; Klimovitskii, Alexander E; Abaidullina, Dilyara I; Madzhidov, Timur I; Solomonov, Boris N
2012-06-01
Experimental study of hydrogen bond cooperativity in hetero-complexes in the gas phase was carried out by IR-spectroscopy method. Stretching vibration frequencies of O-H groups in phenol and catechol molecules as well as of their complexes with nitriles and ethers were determined in the gas phase using a specially designed cell. O-H groups experimental frequency shifts in the complexes of catechol induced by the formation of intermolecular hydrogen bonds are significantly higher than in the complexes of phenol due to the hydrogen bond cooperativity. It was shown that the cooperativity factors of hydrogen bonds in the complexes of catechol with nitriles and ethers in the gas phase are approximately the same. Quantum chemical calculations of the studied systems have been performed using density functional theory (DFT) methods. It was shown, that theoretically obtained cooperativity factors of hydrogen bonds in the complexes of catechol with proton acceptors are in good agreement with experimental values. Cooperative effects lead to a strengthening of intermolecular hydrogen bonds in the complexes of catechol on about 30%, despite the significant difference in the proton acceptor ability of the bases. The analysis within quantum theory of atoms in molecules was carried out for the explanation of this fact.
Tokunaga, Ken
2009-03-14
Signal transmission through Creutz-Taube complexes [(NH(3))(5)Ru-BL-Ru(NH(3))(5)](5+)(BL = pyrazine (py), 4,4'-bipyridine (bpy)), which are simplified models of the molecular quantum-dot cellular automata (molecular QCA), is discussed both statically and dynamically with a view to designing useful molecular QCA. In the static treatment, the difference between stationary states before and after the switch of the input to the molecular QCA is discussed. In the dynamic treatment, time-evolution of electronic structure after the moment of the switch is simulated, and a simple method for the simulation is also proposed. Geometric and electronic structures are obtained by density functional theory (UB3LYP) and Hartree-Fock (UHF) calculations, and discussions are based on the Mulliken charge. It is found that signal amplitude (A) is strongly dependent on the position and charge of the input to the molecular QCA, but signal period (T) is almost independent of them. These results are explained from molecular orbitals and orbital energies, and a set of large A (large overlap between orbitals) and small T (large energy gap) generally leads to a prompt signal transmission.
Saleh, Nidal; Zrig, Samia; Roisnel, Thierry; Guy, Laure; Bast, Radovan; Saue, Trond; Darquié, Benoît; Crassous, Jeanne
2013-07-14
With their rich electronic, vibrational, rotational and hyperfine structure, molecular systems have the potential to play a decisive role in precision tests of fundamental physics. For example, electroweak nuclear interactions should cause small energy differences between the two enantiomers of chiral molecules, a signature of parity symmetry breaking. Enantioenriched oxorhenium(VII) complexes S-(-)- and R-(+)-3 bearing a chiral 2-methyl-1-thio-propanol ligand have been prepared as potential candidates for probing molecular parity violation effects via high resolution laser spectroscopy of the Re=O stretching. Although the rhenium atom is not a stereogenic centre in itself, experimental vibrational circular dichroism (VCD) spectra revealed a surrounding chiral environment, evidenced by the Re=O bond stretching mode signal. The calculated VCD spectrum of the R enantiomer confirmed the position of the sulfur atom cis to the methyl, as observed in the solid-state X-ray crystallographic structure, and showed the presence of two conformers of comparable stability. Relativistic quantum chemistry calculations indicate that the vibrational shift between enantiomers due to parity violation is above the target sensitivity of an ultra-high resolution infrared spectroscopy experiment under active preparation.
Quantum optics and cavity QED Quantum network with individual atoms and photons
NASA Astrophysics Data System (ADS)
Rempe, G.
2013-08-01
Quantum physics allows a new approach to information processing. A grand challenge is the realization of a quantum network for long-distance quantum communication and large-scale quantum simulation. This paper highlights a first implementation of an elementary quantum network with two fibre-linked high-finesse optical resonators, each containing a single quasi-permanently trapped atom as a stationary quantum node. Reversible quantum state transfer between the two atoms and entanglement of the two atoms are achieved by the controlled exchange of a time-symmetric single photon. This approach to quantum networking is efficient and offers a clear perspective for scalability. It allows for arbitrary topologies and features controlled connectivity as well as, in principle, infinite-range interactions. Our system constitutes the largest man-made material quantum system to date and is an ideal test bed for fundamental investigations, e.g. quantum non-locality.
Excitonic complexes in single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy
Sergent, S.; Kako, S.; Bürger, M.; Schupp, T.; As, D. J.; Arakawa, Y.
2014-10-06
We study by microphotoluminescence the optical properties of single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy. We show evidences of both excitonic and multiexcitonic recombinations in individual quantum dots with radiative lifetimes shorter than 287 ± 8 ps. Owing to large band offsets and a large exciton binding energy, the excitonic recombinations of single zinc-blende GaN/AlN quantum dots can be observed up to 300 K.
Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission
NASA Astrophysics Data System (ADS)
Jacquet, L.; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G.
2015-12-01
The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and the
Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission
Jacquet, L. Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G.
2015-12-15
The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and
Quantum error correction for quantum memories
NASA Astrophysics Data System (ADS)
Terhal, Barbara M.
2015-04-01
Active quantum error correction using qubit stabilizer codes has emerged as a promising, but experimentally challenging, engineering program for building a universal quantum computer. In this review the formalism of qubit stabilizer and subsystem stabilizer codes and their possible use in protecting quantum information in a quantum memory are considered. The theory of fault tolerance and quantum error correction is reviewed, and examples of various codes and code constructions, the general quantum error-correction conditions, the noise threshold, the special role played by Clifford gates, and the route toward fault-tolerant universal quantum computation are discussed. The second part of the review is focused on providing an overview of quantum error correction using two-dimensional (topological) codes, in particular, the surface code architecture. The complexity of decoding and the notion of passive or self-correcting quantum memories are discussed. The review does not focus on a particular technology but discusses topics that will be relevant for various quantum technologies.
Quantum Mechanics and the Principle of Maximal Variety
NASA Astrophysics Data System (ADS)
Smolin, Lee
2016-06-01
Quantum mechanics is derived from the principle that the universe contain as much variety as possible, in the sense of maximizing the distinctiveness of each subsystem. The quantum state of a microscopic system is defined to correspond to an ensemble of subsystems of the universe with identical constituents and similar preparations and environments. A new kind of interaction is posited amongst such similar subsystems which acts to increase their distinctiveness, by extremizing the variety. In the limit of large numbers of similar subsystems this interaction is shown to give rise to Bohm's quantum potential. As a result the probability distribution for the ensemble is governed by the Schroedinger equation. The measurement problem is naturally and simply solved. Microscopic systems appear statistical because they are members of large ensembles of similar systems which interact non-locally. Macroscopic systems are unique, and are not members of any ensembles of similar systems. Consequently their collective coordinates may evolve deterministically. This proposal could be tested by constructing quantum devices from entangled states of a modest number of quits which, by its combinatorial complexity, can be expected to have no natural copies.
NASA Astrophysics Data System (ADS)
Chun, Se Young; Fessler, Jeffrey A.; Dewaraja, Yuni K.
2013-09-01
Quantitative SPECT techniques are important for many applications including internal emitter therapy dosimetry where accurate estimation of total target activity and activity distribution within targets are both potentially important for dose-response evaluations. We investigated non-local means (NLM) post-reconstruction filtering for accurate I-131 SPECT estimation of both total target activity and the 3D activity distribution. We first investigated activity estimation versus number of ordered-subsets expectation-maximization (OSEM) iterations. We performed simulations using the XCAT phantom with tumors containing a uniform and a non-uniform activity distribution, and measured the recovery coefficient (RC) and the root mean squared error (RMSE) to quantify total target activity and activity distribution, respectively. We observed that using more OSEM iterations is essential for accurate estimation of RC, but may or may not improve RMSE. We then investigated various post-reconstruction filtering methods to suppress noise at high iteration while preserving image details so that both RC and RMSE can be improved. Recently, NLM filtering methods have shown promising results for noise reduction. Moreover, NLM methods using high-quality side information can improve image quality further. We investigated several NLM methods with and without CT side information for I-131 SPECT imaging and compared them to conventional Gaussian filtering and to unfiltered methods. We studied four different ways of incorporating CT information in the NLM methods: two known (NLM CT-B and NLM CT-M) and two newly considered (NLM CT-S and NLM CT-H). We also evaluated the robustness of NLM filtering using CT information to erroneous CT. NLM CT-S and NLM CT-H yielded comparable RC values to unfiltered images while substantially reducing RMSE. NLM CT-S achieved -2.7 to 2.6% increase of RC compared to no filtering and NLM CT-H yielded up to 6% decrease in RC while other methods yielded lower RCs
NASA Astrophysics Data System (ADS)
Wei, Huazhou; Fu, Shiwei
We report our work on the spin transport properties in the F/N/F(ferromagnets/normal metal/ferromagnets) spintronic structure from a new theoretical perspective. A significant problem in the field is to explain the inferior measured order of magnitude for spin lifetime. Based on the known non-local resistance formula and the mechanism analysis of spin-flipping within the interfaces between F and N, we analytically derive a broadly applicable new non-local resistance expression and a generalized Hanle curve formula. After employing them in the F/N/F structure under different limits, especially in the case of graphene channel, we find that the fitting from experimental data would yield a longer spin lifetime, which approaches its theoretical predicted value in graphene. The authors acknowledge the financial support by China University of Petroleum-Beijing and the Key Laboratory of Optical Detection Technology for Oil and Gas in this institution.
NASA Astrophysics Data System (ADS)
Parry, A. O.; Rascón, C.; Bernardino, N. R.; Romero-Enrique, J. M.
2007-10-01
In our first paper, we showed how a non-local effective Hamiltonian for short-ranged wetting may be derived from an underlying Landau-Ginzburg-Wilson model. Here, we combine the Green's function method with standard perturbation theory to determine the general diagrammatic form of the binding potential functional beyond the double-parabola approximation for the Landau-Ginzburg-Wilson bulk potential. The main influence of cubic and quartic interactions is simply to alter the coefficients of the double parabola-like zigzag diagrams and also to introduce curvature and tube-interaction corrections (also represented diagrammatically), which are of minor importance. Non-locality generates effective long-ranged many-body interfacial interactions due to the reflection of tube-like fluctuations from the wall. Alternative wall boundary conditions (with a surface field and enhancement) and the diagrammatic description of tricritical wetting are also discussed.
NASA Astrophysics Data System (ADS)
Frigeri, Sergio; Grasselli, Maurizio; Rocca, Elisabetta
2015-05-01
We consider a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids with matched constant densities. This model consists of the Navier-Stokes system coupled with a convective non-local Cahn-Hilliard equation with non-constant mobility. We first prove the existence of a global weak solution in the case of non-degenerate mobilities and regular potentials of polynomial growth. Then we extend the result to degenerate mobilities and singular (e.g. logarithmic) potentials. In the latter case we also establish the existence of a global attractor in dimension two. Using a similar technique, we show that there is a global attractor for the convective non-local Cahn-Hilliard equation with degenerate mobility and singular potential in dimension three.
Li, Kai Ming; Tao, Hongdan
2014-01-01
The classic Weyl-van der Pol (WVDP) formula is a well-known asymptotic solution for accurately predicting sound fields above a locally reacting ground surface. However, the form of the WVDP formula is inadequate for predicting sound fields in the vicinity of non-locally reacting surfaces; a correction term is often required in the formula to provide accurate numerical solutions. Even with this correction, there is a singularity in the diffraction wave term when the source is located directly above or below the receiver. This paper explores a heuristic method to remove this singularity and suggests an analytical form comparable to the WVDP formula. This improved formula offers a physically interpretable solution and allows for accurate predictions of the total sound field above locally and non-locally reacting surfaces for all geometrical configurations.
Osses de Eicker, Margarita; Hischier, Roland; Hurni, Hans; Zah, Rainer
2010-04-15
Nine non-local databases were evaluated with respect to their suitability for the environmental assessment of industrial activities in Latin America. Three assessment methods were considered, namely Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA) and air emission inventories. The analysis focused on data availability in the databases and the applicability of their international data to Latin American industry. The study showed that the European EMEP/EEA Guidebook and the U.S. EPA AP-42 database are the most suitable ones for air emission inventories, whereas the LCI database Ecoinvent is the most suitable one for LCA and EIA. Due to the data coverage in the databases, air emission inventories are easier to develop than LCA or EIA, which require more comprehensive information. One strategy to overcome the limitations of non-local databases for Latin American industry is the combination of validated data from international databases with newly developed local datasets.
A pseudo-spectral method for a non-local KdV-Burgers equation posed on R
NASA Astrophysics Data System (ADS)
de la Hoz, Francisco; Cuesta, Carlota M.
2016-04-01
In this paper, we present a new pseudo-spectral method to solve the initial value problem associated to a non-local KdV-Burgers equation involving a Caputo-type fractional derivative. The basic idea is, using an algebraic map, to transform the whole real line into a bounded interval where we can apply a Fourier expansion. Special attention is given to the correct computation of the fractional derivative in this setting.
NASA Astrophysics Data System (ADS)
Liu, Bin; Sang, Xinzhu; Xing, Shujun; Wang, Bo
2014-11-01
Combining non-local means (NLM) filter with appropriate fuzzy cluster criterion, objective and subjective manners with synthetic brain Magnetic Resonance Imaging(MRI) are evaluated. Experimental results show that noise is effectively suppressed while image details are well kept, compared with the traditional NLM method. Meanwhile, quantitative and qualitative results indicate that artifacts are greatly reduced in our proposed method and brain MR images are typically enhanced.
Plane wave scattering from a plasmonic nanowire-film system with the inclusion of non-local effects.
Trivedi, Rahul; Sharma, Yashna; Dhawan, Anuj
2015-10-01
In this paper we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire-film system. The analytical solution accounts for both the dispersive as well as non-local nature of the plasmonic media. The physical structure comprises of a plasmonic nanowire made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric parameters such as spacer thickness and nanowire radius, which makes it favorable for various sensing applications. The non-locality of the plasmonic medium, which can be captured using the hydrodynamic model, significantly affects the resonant wavelength of this system for structures of small dimensions (~ less than 5 nm gap between the nanowire and the film). We present an analytical method that can be used to predict the effect of non-locality on the resonances of the system. To validate the analytical method, we also report a comparison of our analytical solution with a numerical Finite Difference Time Domain analysis (FDTD) of the same structure with the plasmonic medium being treated as local in nature.
Non-Local Means Filter for Polarimetric SAR Speckle Reduction-Experiments Using Terrasar-X Data
NASA Astrophysics Data System (ADS)
Hu, J.; Guo, R.; Zhu, X.; Baier, G.; Wang, Y.
2015-03-01
The speckle is omnipresent in synthetic aperture radar (SAR) images as an intrinsic characteristic. However, it is unwanted in certain applications. Therefore, intelligent filters for speckle reduction are of great importance. It has been demonstrated in several literatures that the non-local means filter can reduce noise while preserving details. This paper discusses non-local means filter for polarimetric SAR (PolSAR) speckle reduction. The impact of different similarity approaches, weight kernels, and parameters in the filter were analysed. A data-driven adaptive weight kernel was proposed. Combined with different similarity measures, it is compared with existing algorithms, using fully polarimetric TerraSAR-X data acquired during the commissioning phase. The proposed approach has overall the best performance in terms of speckle reduction, detail preservation, and polarimetric information preservation. This study suggests the high potential of using the developed non- local means filer for speckle reduction of PolSAR data acquired by the next generation SAR missions, e.g. TanDEM-L and TerraSAR-X NG.
Plane wave scattering from a plasmonic nanowire-film system with the inclusion of non-local effects.
Trivedi, Rahul; Sharma, Yashna; Dhawan, Anuj
2015-10-01
In this paper we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire-film system. The analytical solution accounts for both the dispersive as well as non-local nature of the plasmonic media. The physical structure comprises of a plasmonic nanowire made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric parameters such as spacer thickness and nanowire radius, which makes it favorable for various sensing applications. The non-locality of the plasmonic medium, which can be captured using the hydrodynamic model, significantly affects the resonant wavelength of this system for structures of small dimensions (~ less than 5 nm gap between the nanowire and the film). We present an analytical method that can be used to predict the effect of non-locality on the resonances of the system. To validate the analytical method, we also report a comparison of our analytical solution with a numerical Finite Difference Time Domain analysis (FDTD) of the same structure with the plasmonic medium being treated as local in nature. PMID:26480121
An elementary quantum network of single atoms in optical cavities.
Ritter, Stephan; Nölleke, Christian; Hahn, Carolin; Reiserer, Andreas; Neuzner, Andreas; Uphoff, Manuel; Mücke, Martin; Figueroa, Eden; Bochmann, Joerg; Rempe, Gerhard
2012-04-11
Quantum networks are distributed quantum many-body systems with tailored topology and controlled information exchange. They are the backbone of distributed quantum computing architectures and quantum communication. Here we present a prototype of such a quantum network based on single atoms embedded in optical cavities. We show that atom-cavity systems form universal nodes capable of sending, receiving, storing and releasing photonic quantum information. Quantum connectivity between nodes is achieved in the conceptually most fundamental way-by the coherent exchange of a single photon. We demonstrate the faithful transfer of an atomic quantum state and the creation of entanglement between two identical nodes in separate laboratories. The non-local state that is created is manipulated by local quantum bit (qubit) rotation. This efficient cavity-based approach to quantum networking is particularly promising because it offers a clear perspective for scalability, thus paving the way towards large-scale quantum networks and their applications.
NASA Astrophysics Data System (ADS)
Rubinstein, Alexander I.; Sabirianov, Renat F.; Namavar, Fereydoon
2016-10-01
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ˜80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein
Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon
2016-10-14
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein
Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon
2016-10-14
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein
NASA Astrophysics Data System (ADS)
Hitomi, Y.; Arakaki, T.
2009-12-01
Redox cycles of iron in the aquatic environment affect formation of reactive oxygen species such as hydrogen peroxide and hydroxyl radicals, which in turn determines lifetimes of many organic compounds. Although aqueous Fe(III)-dicarboxylate complexes are considered to be important sources of photo-formed Fe(II), molar absorptivity and quantum yield of Fe(II) formation for individual species are not well understood. We initiated a study to characterize Fe(II) photo-formation from Fe(III)-dicarboxylates with the concentration ranges that are relevant to the natural aquatic environment. The Visual MINTEQ computer program was used to calculate the equilibrium concentrations of individual Fe(III)-dicarboxylate species. The molar absorptivity of Fe(III)-dicarboxylate species was obtained by UV-VIS spectrophotometer, and the product of the quantum yield and the molar absorptivity of Fe(III)-dicarboxylate species were obtained from photochemical experiments. These experimental data were combined with the calculated equilibrium Fe(III)-dicarboxylate concentrations to determine individual molar absorptivity and quantum yield of Fe(II) photo-formation for a specific Fe(III)-dicarboxylate species. We used initial concentrations of less than 10 micromolar Fe(III) to study the photochemical formation of Fe(II). Dicarboxylate compounds studied include oxalate, malonate, succinate, malate, and phthalate. We report molar absorptivity and concentration-dependent quantum yields of Fe(II) photo-formation of individual Fe(III)-dicarboxylates.
Deterministic quantum teleportation with feed-forward in a solid state system.
Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A
2013-08-15
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes. PMID:23955231
Deterministic quantum teleportation with feed-forward in a solid state system.
Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A
2013-08-15
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.
Tan, Rui Shan; Zhai, Huan Chen; Gao, Feng; Tong, Dianmin; Lin, Shi Ying
2016-06-21
We carried out accurate quantum wave packet as well as quasi-classical trajectory (QCT) calculations for H + CaCl (νi = 0, ji = 0) reaction occurring on an adiabatic ground state using the recent ab initio potential energy surface to obtain the quantum and QCT reaction probabilities for several partial waves (J = 0, 10, and 20) as well as state resolved QCT integral and differential cross sections. The complete list of vibrational energy levels supported by the intermediate HCaCl complex is also obtained using the Lanczos algorithm. The QCT reaction probabilities show excellent agreement with the quantum ones except for the failure in reproducing the highly oscillatory resonance structure. Despite the fact that the reaction is exothermic and the existence of a barrier that is energetically lower than the bottom of the reactant valley, the reaction probability for J = 0 shows threshold-like behavior and the reactivity all through the energies is very low (<0.1). The dynamical features at two different energy regions (<0.35 eV and >0.35 eV) are found to be different drastically from each other. The analyses of these results suggest that the reaction is governed by one of the two different types of reaction mechanism, one is the direct mechanism at the high energy region and the other is the indirect mechanism at the low energy region by which the reaction proceeds through the long-lived intermediate complex followed by a statistical dissociation into asymptotic channels.
Chow, Pui-Keong; Cheng, Gang; Tong, Glenna So Ming; To, Wai-Pong; Kwong, Wai-Lun; Low, Kam-Hung; Kwok, Chi-Chung; Ma, Chensheng; Che, Chi-Ming
2015-02-01
Luminescent pincer-type Pt(II) complexes supported by C-deprotonated π-extended tridentate RC^N^NR' ligands and pentafluorophenylacetylide ligands show emission quantum yields up to almost unity. Femtosecond time-resolved fluorescence measurements and time-dependent DFT calculations together reveal the dependence of excited-state structural distortions of [Pt(RC^N^NR')(CC-C6 F5 )] on the positional isomers of the tridentate ligand. Pt complexes [Pt(R-C^N^NR')(CC-Ar)] are efficient photocatalysts for visible-light-induced reductive CC bond formation. The [Pt(R-C^N^NR')(CC-C6 F5 )] complexes perform strongly as phosphorescent dopants for green- and red-emitting organic light-emitting diodes (OLEDs) with external quantum efficiency values over 22.1 %. These complexes are also applied in two-photon cellular imaging when incorporated into mesoporous silica nanoparticles (MSNs).
NASA Astrophysics Data System (ADS)
Ahmedova, Anife; Marinova, Petja; Marinov, Marin; Stoyanov, Neyko
2016-03-01
The reactivities of (9‧-fluorene)-spiro-5-hydantoin and its thio-analogue with Cu(II) were studied in different reaction conditions and the formed products were characterized by spectroscopic methods (IR, NMR and/or EPR). It was found that unlike the 2,4-dithio- analogue, both the (9‧-fluorene)-spiro-5-hydantoin and its 2-thio derivative form Cu(II) complexes only in presence of a strong base. We identified the coordination mode of the ligands and the structure of the complexes through geometry optimization of different models and calculations of the corresponding spectroscopic parameters using ab initio quantum chemical methods. The comparison between the experimental and the theoretical data suggested monodentate coordination of the fluorene-hydantoin ligands after deprotonation of one amido group. Additional confirmations of this proposition were obtained from the experimental and DFT-calculated EPR parameters (g-factor and A-tensor), which allowed for determination of the most probable geometry of the complexes. We further employed the quantum chemical methods to explain the observed differences in the complexation abilities of variously spiro-5-substituted thio- and dithio-hydantoins, accounting for the structural effects on the electron density and acidity of the hydantoin ring.
Randomness: Quantum versus classical
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2016-05-01
Recent tremendous development of quantum information theory has led to a number of quantum technological projects, e.g. quantum random generators. This development had stimulated a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is the elaboration of a consistent and commonly accepted interpretation of a quantum state. Closely related problem is the clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review, we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. We also discuss briefly “digital philosophy”, its role in physics (classical and quantum) and its coupling to the information interpretation of quantum mechanics (QM).
NASA Astrophysics Data System (ADS)
Bardakci, Tayyibe; Kumru, Mustafa; Altun, Ahmet
2016-06-01
Transition metal complexes play an important role in coordination chemistry as well as in the formation of metal-based drugs. In order to obtain accurate results for studying these type of complexes quantum chemical studies are performed and especially density functional theory (DFT) has become a promising choice. This talk represents molecular structures, charge distributions and vibrational analysis of Ni(II), Zn(II), and Cd(II) iodide complexes of p-toluidine and m-toluidine by means of DFT. Stable structures of the ligands and the related complexes have been obtained in the gas phase at B3LYP/def2-TZVP level and calculations predict Ni(II) complexes as distorted polymeric octahedral whereas Zn(II) and Cd(II) complexes as distorted tetrahedral geometries. Charge distribution analysis have been performed by means of Mulliken, NBO and APT methods and physically most meaningful method for our compounds is explained. Vibrational spectra of the title compounds are computed from the optimized geometries and theoretical frequencies are compared with the previously obtained experimental data. Since coordination occurs via nitrogen atoms of the free ligands, N-H stretching bands of the ligands are shifted towards lower wavenumbers in the complexes whereas NH_2 wagging and twisting vibrations are shifted towards higher wavenumbers.
Quantum Indeterminacy of Cosmic Systems
Hogan, Craig J.
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Deterministic quantum teleportation of atomic qubits.
Barrett, M D; Chiaverini, J; Schaetz, T; Britton, J; Itano, W M; Jost, J D; Knill, E; Langer, C; Leibfried, D; Ozeri, R; Wineland, D J
2004-06-17
Quantum teleportation provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication and quantum computation. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables, and with liquid-state nuclear magnetic resonance. Here we report unconditional teleportation of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system.
NASA Astrophysics Data System (ADS)
Armstrong, G. A.; French, W. D.
1992-12-01
To model bipolar snapback in thin film SOI transistors accurately, it is necessary to employ a non-local model of impact ionisation. Such a model, based on the "Lucky electron" theory, has been incorporated in a two-dimensional device simulator. Accurate prediction of bipolar holding voltage has been obtained for SOI transistors with sub-micron gate lengths. The model has been applied to analyse separately the effects of both lightly doped source and lightly doped drain in maximising the holding voltage. The advantage of using ultra thin highly doped SOI films in conjunction with a lightly doped drain is discussed.
Louis, H; Tlidi, M; Louvergneaux, E
2016-07-11
We perform a statistical analysis of the optical solitary wave propagation in an ultra-slow stochastic non-local focusing Kerr medium such as liquid crystals. Our experimental results show that the localized beam trajectory presents a dynamical random walk whose beam position versus the propagation distance z depicts two different kind of evolutions A power law is found for the beam position standard deviation during the first stage of propagation. It obeys approximately z^{3}/^{2} up to ten times the power threshold for solitary wave generation. PMID:27410886
Louis, H; Tlidi, M; Louvergneaux, E
2016-07-11
We perform a statistical analysis of the optical solitary wave propagation in an ultra-slow stochastic non-local focusing Kerr medium such as liquid crystals. Our experimental results show that the localized beam trajectory presents a dynamical random walk whose beam position versus the propagation distance z depicts two different kind of evolutions A power law is found for the beam position standard deviation during the first stage of propagation. It obeys approximately z^{3}/^{2} up to ten times the power threshold for solitary wave generation. PMID:27410887
Bylaska, Eric J; Weare, Jonathan Q; Weare, John H
2013-08-21
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0[ellipsis (horizontal)]tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution/timeparallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a
NASA Astrophysics Data System (ADS)
Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.
2013-08-01
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0…tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution time/parallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing
Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.
2013-08-21
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}…t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} − f(x{sub (i−1})]{sub i} {sub =1,M} = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up
Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.
2013-08-21
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f , (e.g. Verlet algorithm) is available to propagate the system from time ti (trajectory positions and velocities xi = (ri; vi)) to time ti+1 (xi+1) by xi+1 = fi(xi), the dynamics problem spanning an interval from t0 : : : tM can be transformed into a root finding problem, F(X) = [xi - f (x(i-1)]i=1;M = 0, for the trajectory variables. The root finding problem is solved using a variety of optimization techniques, including quasi-Newton and preconditioned quasi-Newton optimization schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed and the effectiveness of various approaches to solving the root finding problem are tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl+4H2O AIMD simulation at the MP2 level. The maximum speedup obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow TCP/IP networks. Scripts
Labud, P A; Ludwig, A; Wieck, A D; Bester, G; Reuter, D
2014-01-31
We present capacitance-voltage spectra for the conduction band states of InAs quantum dots obtained under continuous illumination. The illumination leads to the appearance of additional charging peaks that we attribute to the charging of electrons into quantum dots containing a variable number of illumination-induced holes. By this we demonstrate an electrical measurement of excitonic states in quantum dots. Magnetocapacitance-voltage spectroscopy reveals that the electron always tunnels into the lowest electronic state. This allows us to directly extract, from the highly correlated many-body states, the correlation energy. The results are compared quantitatively to state of the art atomistic configuration interaction calculations, showing very good agreement for a lower level of excitations and also limitations of the approach for an increasing number of particles. Our experiments offer a rare benchmark to many-body theoretical calculations. PMID:24580478
NASA Astrophysics Data System (ADS)
Boda, Aalu; Chatterjee, Ashok
2016-09-01
The problem of a neutral hydrogenic donor (D0) centre located at the centre of a GaAs quantum dot with Gaussian confinement is studied in the presence of an external magnetic field. The ground and the first excited state energies and the corresponding binding energies are obtained as functions of the potential strength, quantum dot radius and the magnetic field using a variational method. It is suggested that the first excited state of the D0 centre is bound for sufficiently strong confinement potential. The 1 s - 2p- transition energy and the magnetic susceptibilities for the ground and the first excited states are also determined.
Schmatz, Stefan
2005-06-15
The vibrational resonance states of the complexes formed in the nucleophilic bimolecular substitution (S{sub N}2) reaction Cl{sup -}+CH{sub 3}Br{yields}ClCH{sub 3}+Br{sup -} were calculated by means of the filter diagonalization method employing a coupled-cluster potential-energy surface and a Hamiltonian that incorporates an optical potential and is formulated in Radau coordinates for the carbon-halogen stretching modes. The four-dimensional model also includes the totally symmetric vibrations of the methyl group (C-H stretch and umbrella bend). The vast majority of bound states and many resonance states up to the first overtone of the symmetric stretching vibration in the exit channel complex have been calculated, analyzed, and assigned four quantum numbers. The resonances are classified into entrance channel, exit channel, and delocalized states. The resonance widths fluctuate over six orders of magnitude. In addition to a majority of Feshbach-type resonances there are also exceedingly long-lived shape resonances, which are associated with the entrance channel and can only decay by tunneling. The state-selective decay of the resonances was studied in detail. The linewidths of the resonances, and thus the coupling to the energetic continuum, increase with excitation in any mode. Due to the strong mixing of the many progressions in the intermolecular stretching modes of the intermediate complexes, this increase as a function of the corresponding quantum numbers is not monotonic, but exhibits pronounced fluctuations.
Valente, Mário; Sousa, Sérgio Filipe; Magalhães, Alexandre L; Freire, Cristina
2012-11-01
In this paper we report a quantum chemical study performed at the B3LYP/6-311G++(d,p) level of theory on structural and energetic aspects of the sequential dehydration of a tetra-hydrated polyethylene-glycol type podand (1,2-bis-{2-[2-(2-methoxy-ethoxy)-ethoxy]-ethoxy}-benzene, hereafter b33) and its complex with the K⁺ cation. Thermodynamical parameters were determined by hessian quantum calculations performed using a self-consistent reaction field (SCRF) method, taking into account solvent (dichloromethane) effects. The results allowed the estimation of dehydration enthalpies, entropies and free energies for the hydrated free b33 podand and its corresponding K⁺ cation complex in dichloromethane. The low absolute values found for the dehydration free energies as well as the structural features found for the optimized structures and the corresponding basis superposition calculated interaction energies, support the hypothesis of an interfacial complexation type mechanism governing the assisted extraction of K⁺ from an aqueous toward an organic phase, in liquid/liquid extraction.
Multiscale quantum optical networks
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2007-04-01
Quantum experiments are described in terms of time-dependent networks of quantum bits, each qubit representing an elementary information gateway. The emphasis is on the signal properties of apparatus rather than on systems under observation (SUOs), with the quantum states of the theory (the labstates) representing the observer's information about the state of their apparatus, rather than of any SUO. The formalism gives an efficient quantum register description related to the formalism of quantum computation. Experiments conventionally described by the PVM and POVM formalisms are treated in identical terms, the formalism providing an efficient modular approach to quantum optics experiments of arbitrary complexity.
Cavity quantum electrodynamics with carbon nanotube quantum dots
NASA Astrophysics Data System (ADS)
Kontos, Takis
Cavity quantum electrodynamics techniques have turned out to be instrumental to probe or manipulate the electronic states of nanoscale circuits. Recently, cavity QED architectures have been extended to quantum dot circuits. These circuits are appealing since other degrees of freedom than the traditional ones (e.g. those of superconducting circuits) can be investigated. I will show how one can use carbon nanotube based quantum dots in that context. In particular, I will focus on the coherent coupling of a single spin or non-local Cooper pairs to cavity photons. Quantum dots also exhibit a wide variety of many body phenomena. The cQED architecture could also be instrumental for understanding them. One of the most paradigmatic phenomenon is the Kondo effect which is at the heart of many electron correlation effects. I will show that a cQED architecture has allowed us to observe the decoupling of spin and charge excitations in a Kondo system.
NASA Astrophysics Data System (ADS)
Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.
2016-09-01
We construct a model atom for Ti I-II using more than 3600 measured and predicted energy levels of Ti I and 1800 energy levels of Ti II, and quantum mechanical photoionization cross-sections. Non-local thermodynamical equilibrium (NLTE) line formation for Ti I and Ti II is treated through a wide range of spectral types from A to K, including metal-poor stars with [Fe/H] down to -2.6 dex. NLTE leads to weakened Ti I lines and positive abundance corrections. The magnitude of NLTE corrections is smaller compared to the literature data for FGK atmospheres. NLTE leads to strengthened Ti II lines and negative NLTE abundance corrections. For the first time, we have performed NLTE calculations for Ti I-II in the 6500 ≤ Teff ≤ 13 000 K range. For four A-type stars, we derived in LTE an abundance discrepancy of up to 0.22 dex between Ti I and Ti II, which vanishes in NLTE. For four other A-B stars, with only Ti II lines observed, NLTE leads to a decrease of line-to-line scatter. An efficiency of inelastic Ti I + H I collisions was estimated from an analysis of Ti I and Ti II lines in 17 cool stars with -2.6 ≤ [Fe/H] ≤ 0.0. Consistent NLTE abundances from Ti I and Ti II were obtained by applying classical Drawinian rates for the stars with log g ≥ 4.1, and neglecting inelastic collisions with H I for the very metal-poor (VMP) giant HD 122563. For the VMP turn-off stars ([Fe/H] ≤ -2 and log g ≤ 4.1), we obtained the positive abundance difference Ti I-II already in LTE, which increases in NLTE. Accurate collisional data for Ti I and Ti II are necessary to help solve this problem.
A two-scale non-local model of swelling porous media incorporating ion size correlation effects
NASA Astrophysics Data System (ADS)
Le, T. D.; Moyne, C.; Murad, M. A.; Lima, S. A.
2013-12-01
A new two-scale model is proposed for derivation of the macroscopic modified effective stress principle for swelling porous media saturated by an electrolyte solution containing finite size ions. A non-local pore-scale model is developed within the framework of Statistical Mechanics in conjunction with the thermodynamic approach based on Density Functional Theory leading to a nonlinear integral Fredholm equation of second kind for the ion/nanopore correlation function coupled with Poisson problem for the electric double layer potential. When combined with the fluid equilibrium condition such non-local electrochemical problem gives rise to a constitutive law for the fluid stress tensor in terms of the disjoining pressure which is decomposed into several components of different nature. The homogenization procedure based on formal asymptotic expansions is applied to up-scale the model to the macroscale leading to a two-scale constitutive law for the swelling pressure appearing in the modified effective stress principle with improved accuracy incorporating the deviations from the Gouy-Chapman Poisson-Boltzmann-based theory due to the finite size short-range ion-ion correlation effects. The integro-differential problem posed in a periodic cell is discretized by collocation schemes. Numerical results are obtained for a stratified arrangement of parallel macromolecules showing that the effects of ion-ion correlation forces give rise to anomalous attraction patterns between the particles for divalent ions.
Snyder, Robin E
2011-03-01
It is widely understood that in the presence of asynchronous environmental variation, seeds disperse to escape disturbances, avoid crowding or colonize newly favourable habitat before a superior competitor can arrive. If seeds are dispersing for any of these reasons, it seems intuitive that they should travel far enough to reach conditions uncorrelated with their natal environment: why 'escape in space' only to land somewhere more or less like where they started? However, in this paper, I present a series of mathematical experiments which show that the evolutionarily stable mean dispersal distance remains well short of the spatial correlation length of the environmental variation, regardless of disturbance severity, coevolution with a superior competitor or the presence of a small fraction of seeds which travel well beyond the mean distance. Non-local dispersal arises only as part of a polymorphism that evolves when favourable conditions are fleeting. To the degree that non-local dispersal is a response to environmental variation, it appears to be a response to environmental unpredictability.
NASA Astrophysics Data System (ADS)
Joglekar, Archis; Thomas, Alec; Ridgers, Chris; Kingham, Rob
2015-11-01
In this study, we present full-scale 2D kinetic modeling of externally imposed magnetic fields on hohlraums with laser heating. We observe magnetic field cavitation and compression due to thermal energy transport. Self-consistent modeling of the electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's Law. A complete Ohm's Law contains magnetic field advection through the Nernst mechanism that arises due to the heat flow. Magnetic field amplification by a factor of 3 occurs due to magnetic flux pile-up from Nernst convection. The magnetic field cavitates towards the hohlraum axis over a 0.5 ns time scale due to Nernst convection. This results in significantly different magnetic field profiles and slower cavitation than can be expected due to the plasma bulk flow. Non-local electrons contribute to the heat flow down the density gradient resulting in an augmented Nernst convection mechanism that is included self-consistently through kinetic modeling. In addition to showing the prevalence of non-local heat flows, we show effects such as anomalous heat flow up the density gradient induced by inverse bremsstrahlung heating. This research was supported by the DOE through Grant No. DE SC0010621 and in part through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor.
Tressoldi, Patrizio E.
2011-01-01
Starting from the famous phrase “extraordinary claims require extraordinary evidence,” we will present the evidence supporting the concept that human visual perception may have non-local properties, in other words, that it may operate beyond the space and time constraints of sensory organs, in order to discuss which criteria can be used to define evidence as extraordinary. This evidence has been obtained from seven databases which are related to six different protocols used to test the reality and the functioning of non-local perception, analyzed using both a frequentist and a new Bayesian meta-analysis statistical procedure. According to a frequentist meta-analysis, the null hypothesis can be rejected for all six protocols even if the effect sizes range from 0.007 to 0.28. According to Bayesian meta-analysis, the Bayes factors provides strong evidence to support the alternative hypothesis (H1) over the null hypothesis (H0), but only for three out of the six protocols. We will discuss whether quantitative psychology can contribute to defining the criteria for the acceptance of new scientific ideas in order to avoid the inconclusive controversies between supporters and opponents. PMID:21713069
Bennett, D. L.; Nielsen, H. B.
1997-06-15
We present our theoretical predictions for the three gauge coupling constants of the Standard Model (SM). For the famous finestructure constant our prediction is {alpha}{sup -1}=137{+-}9. These predictions are based on our Anti-Grand-Unified Theory (Anti-GUT) gauge group and the Multiple Point Criticality Principle (MPCP). Both Anti-GUT and MPCP are proposed as principles or laws underlying the SM. Both were originally suggested by our observation that the experimentally determined Standard Model Group (SMG) gauge couplings have non-generic patterns of values that could be explained by these two new principles. The observation that the gauge couplings assume values corresponding to a maximally degenerate vacuum lead to the MPCP. As the transitions between the different vacuua are first order, the MPCP provides a way of finetuning constants of Nature - without finetuned imput - in a manner reminescent of how temperature is 'finetuned' to 0 deg. C. In an equilibrated mixture of ice and water. In a 4-dimensional field theory, this mechanism for finetuning suggests a form of non-locality that, however, is phenomenologically tolerable because the only effect is the modification of the values of coupling constants. We argue that the time-machine type of paradoxes that plague non-local theories are avoided precisely when Nature obeys the MPCP.
NASA Astrophysics Data System (ADS)
Madeo, Angela; Barbagallo, Gabriele; d'Agostino, Marco Valerio; Placidi, Luca; Neff, Patrizio
2016-06-01
In this paper, we propose the first estimate of some elastic parameters of the relaxed micromorphic model on the basis of real experiments of transmission of longitudinal plane waves across an interface separating a classical Cauchy material (steel plate) and a phononic crystal (steel plate with fluid-filled holes). A procedure is set up in order to identify the parameters of the relaxed micromorphic model by superimposing the experimentally based profile of the reflection coefficient (plotted as function of the wave-frequency) with the analogous profile obtained via numerical simulations. We determine five out of six constitutive parameters which are featured by the relaxed micromorphic model in the isotropic case, plus the determination of the micro-inertia parameter. The sixth elastic parameter, namely the Cosserat couple modulus μc, still remains undetermined, since experiments on transverse incident waves are not yet available. A fundamental result of this paper is the estimate of the non-locality intrinsically associated with the underlying microstructure of the metamaterial. We show that the characteristic length Lc measuring the non-locality of the phononic crystal is of the order of 1/3 of the diameter of its fluid-filled holes.
Non-local Atlas-guided Multi-channel Forest Learning for Human Brain Labeling
Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang
2015-01-01
Labeling MR brain images into anatomically meaningful regions is important in many quantitative brain researches. In many existing label fusion methods, appearance information is widely used. Meanwhile, recent progress in computer vision suggests that the context feature is very useful in identifying an object from a complex scene. In light of this, we propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). In particular, we employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and the target labels (i.e., corresponding to certain anatomical structures). Moreover, to accommodate the high inter-subject variations, we further extend our learning-based label fusion to a multi-atlas scenario, i.e., we train a random forest for each atlas and then obtain the final labeling result according to the consensus of all atlases. We have comprehensively evaluated our method on both LONI-LBPA40 and IXI datasets, and achieved the highest labeling accuracy, compared to the state-of-the-art methods in the literature. PMID:26942235
NASA Astrophysics Data System (ADS)
Bengtsson, Ingemar; Zyczkowski, Karol
2007-12-01
Preface; 1. Convexity, colours and statistics; 2. Geometry of probability distributions; 3. Much ado about spheres; 4. Complex projective spaces; 5. Outline of quantum mechanics; 6. Coherent states and group actions; 7. The stellar representation; 8. The space of density matrices; 9. Purification of mixed quantum states; 10. Quantum operations; 11. Duality: maps versus states; 12. Density matrices and entropies; 13. Distinguishability measures; 14. Monotone metrics and measures; 15. Quantum entanglement; Epilogue; Appendices; References; Index.
Quantum theory of extended particle dynamics in the presence of EM radiation-reaction
NASA Astrophysics Data System (ADS)
Cremaschini, Claudio; Tessarotto, Massimo
2015-08-01
In this paper a trajectory-based relativistic quantum wave equation is established for extended charged spinless particles subject to the action of the electromagnetic (EM) radiation-reaction (RR) interaction. The quantization pertains the particle dynamics, in which both the external and self EM fields are treated classically. The new equation proposed here is referred to as the RR quantum wave equation. This is shown to be an evolution equation for a complex scalar quantum wave function and to be realized by a first-order PDE with respect to a quantum proper time s . The latter is uniquely prescribed by representing the RR quantum wave equation in terms of the corresponding quantum hydrodynamic equations and introducing a parametrization in terms of Lagrangian paths associated with the quantum fluid velocity. Besides the explicit proper time dependence, the theory developed here exhibits a number of additional notable features. First, the wave equation is variational and is consistent with the principle of manifest covariance. Second, it permits the definition of a strictly positive 4-scalar quantum probability density on the Minkowski space-time, in terms of which a flow-invariant probability measure is established. Third, the wave equation is non-local, due to the characteristic EM RR retarded interaction. Fourth, the RR wave equation recovers the Schrödinger equation in the non-relativistic limit and the customary Klein-Gordon wave equation when the EM RR is negligible or null. Finally, the consistency with the classical RR Hamilton-Jacobi equation is established in the semi-classical limit.
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; Gordley, Larry L.; Russell, James M., III
2002-01-01
The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment was launched onboard the TIMED satellite in December, 2001. SABER is designed to provide measurements of the key radiative and chemical sources and sinks of energy in the mesosphere and lower thermosphere (MLT). SABER measures Earth limb emission in 10 broadband radiometer channels ranging from 1.27 micrometers to 17 micrometers. Measurements are made both day and night over the latitude range from 54 deg. S to 87 deg. N with alternating hemisphere coverage every 60 days. In this paper we concentrate on retrieved profiles of kinetic temperature (T(sub k)) and CO2 volume mixing ratio (vmr), inferred from SABER-observed 15 micrometer and 4.3 micrometer limb emissions, respectively. SABER-measured limb radiances are in non-local thermodynamic equilibrium (non-LTE) in the MLT region. The complexity of non-LTE radiation transfer combined with the large volume of data measured by SABER requires new retrieval approaches and radiative transfer techniques to accurately and efficiently retrieve the data products. In this paper we present the salient features of the coupled non-LTE T(sub k)/CO2 retrieval algorithm, along with preliminary results.
NASA Astrophysics Data System (ADS)
Vojta, Danijela; Višnjevac, Aleksandar; Leka, Zorica; Kosović, Milica; Vazdar, Mario
2016-01-01
We describe temperature-induced water release from the complexes of triammonium N,N-diacetatedithiocarbamate (dadtc) with Co(III) (1), Mo(VI) (2) and Pt(II) (3), by the combination of temperature-dependent IR spectroscopy and quantum chemical calculations. Transmission IR spectra show that in the compounds 1 and 2, where water molecules are hydrogen-bonded with complex moieties, water release occurs at about 80 °C. In the compound 3 water most probably exist as non-hydrogen-bonded and remains within the sample above 100 °C. The influence of an inert salt in maintaining the water and consequently bringing up the artefacts in spectra is eliminated by recording the spectra in the internal reflection regime (ATR). Possible interplay of water release from the samples 1 and 2 and samples phase transition is presumed and indicated by the baseline analysis of temperature-dependent transmission IR spectra.
Tan, Rui Shan; Zhai, Huan Chen; Gao, Feng; Tong, Dianmin; Lin, Shi Ying
2016-06-21
We carried out accurate quantum wave packet as well as quasi-classical trajectory (QCT) calculations for H + CaCl (νi = 0, ji = 0) reaction occurring on an adiabatic ground state using the recent ab initio potential energy surface to obtain the quantum and QCT reaction probabilities for several partial waves (J = 0, 10, and 20) as well as state resolved QCT integral and differential cross sections. The complete list of vibrational energy levels supported by the intermediate HCaCl complex is also obtained using the Lanczos algorithm. The QCT reaction probabilities show excellent agreement with the quantum ones except for the failure in reproducing the highly oscillatory resonance structure. Despite the fact that the reaction is exothermic and the existence of a barrier that is energetically lower than the bottom of the reactant valley, the reaction probability for J = 0 shows threshold-like behavior and the reactivity all through the energies is very low (<0.1). The dynamical features at two different energy regions (<0.35 eV and >0.35 eV) are found to be different drastically from each other. The analyses of these results suggest that the reaction is governed by one of the two different types of reaction mechanism, one is the direct mechanism at the high energy region and the other is the indirect mechanism at the low energy region by which the reaction proceeds through the long-lived intermediate complex followed by a statistical dissociation into asymptotic channels. PMID:27224034
Turbulent intermittent structure in non-homogeneous non-local flows
NASA Astrophysics Data System (ADS)
Mahjoub, O. B.; Castilla, R.; Vindel, J. M.; Redondo, J. M.
2010-05-01
Data from SABLES98 experimental campaign have been used in order to study the influence of stability (from weak to strong stratification) on intermittency [1]. Standard instrumentation, 14 thermocouples and 3 sonic anemometers at three levels (5.8, 13.5 and 32 m) were available in September 1998 and calculations are done in order to evaluate structure functions and the scale to scale characteristics. Using BDF [2-4] as well as other models of cascades, the spectral equilibrium values were used to calculate fluxes of momentum and heat as well as non-homogeneous models and the turbulent mixing produced. The differences in structure and higher order moments between stable, convective and neutral turbulence were used to identify differences in turbulent intermittent mixing and velocity PDF's. The intermittency of atmospheric turbulence in strongly stable situations affected by buoyancy and internal waves are seen to modify the structure functions exponents and intermittency, depending on the modulus of the Richardson's number,Ri, as well as of the Monin-Obukhov and Ozmidov lengthscales. The topological aspects of the turbulence affected by stratification reduce the vertical length-scales to a maximum described by the Thorpe and the Ozmidov lenth-scales, but intermittency, Kurtosis and other higher order descriptors of the turbulence based on spectral wavelet analysis are also affected in a complex way [5,6]. The relationship between stratification, intermittency, µ(Ri) and the fractal dimension of the stable flows and between the dispersion, the fractal dimension are discussed. The data analyzed is from the campaign SABLES-98 at the north-west Iberian Peninsula plateau.(Cuxart et al. 2000). Conditional statistics of the relationship between µ(Ri) are confirmed as in (Vindel et al 2008)[4] and compared with laboratory experiments and with 2D-3D aspects of the turbulence cascade. The use of BDF [3] model comparing the corresponding relative scaling exponents which are
Atomic physics: A milestone in quantum computing
NASA Astrophysics Data System (ADS)
Bartlett, Stephen D.
2016-08-01
Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63
EPR & Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization
NASA Astrophysics Data System (ADS)
Payandeh, Farrin
2015-07-01
Negative energy states are applied in Krein space quantization approach to achieve a naturally renormalized theory. For example, this theory by taking the full set of Dirac solutions, could be able to remove the propagator Green function's divergences and automatically without any normal ordering, to vanish the expected value for vacuum state energy. However, since it is a purely mathematical theory, the results are under debate and some efforts are devoted to include more physics in the concept. Whereas Krein quantization is a pure mathematical approach, complex quantum Hamiltonian dynamics is based on strong foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics. Based on complex quantum Hamilton-Jacobi theory, complex spacetime is a natural consequence of including quantum effects in the relativistic mechanics, and is a bridge connecting the causality in special relativity and the non-locality in quantum mechanics, i.e. extending special relativity to the complex domain leads to relativistic quantum mechanics. So that, considering both relativistic and quantum effects, the Klein-Gordon equation could be derived as a special form of the Hamilton-Jacobi equation. Characterizing the complex time involved in an entangled energy state and writing the general form of energy considering quantum potential, two sets of positive and negative energies will be realized. The new states enable us to study the spacetime in a relativistic entangled “space-time” state leading to 12 extra wave functions than the four solutions of Dirac equation for a free particle. Arguing the entanglement of particle and antiparticle leads to a contradiction with experiments. So, in order to correct the results, along with a previous investigation [1], we realize particles and antiparticles as physical entities with positive energy instead of considering antiparticles with negative energy. As an application of modified descriptions for entangled (space
NASA Astrophysics Data System (ADS)
Neuweiler, I.; Dentz, M.; Erdal, D.
2012-04-01
Infiltration into dry strongly heterogeneous media, such as fractured rocks, can often not be modelled by a standard Richards equation with homogeneous parameters, as the averaged water content is not in equilibrium with the averaged pressure. Often, double continua approaches are used for such cases. We describe infiltration into strongly heterogeneous media by a Richards model for the mobile domain, that is characterized by a memory kernel that encodes the local mass transfer dynamics as well as the geometry of the immobile zone. This approach is based on the assumption that capillary flow can be approximated as diffusion. We demonstrate that this approximation is in many cases justified. Comparison of the model predictions to the results of numerical simulations of infiltration into vertically layered media shows that the non-local approach describes well non-equilibrium effects due to mass transfer between high and low conductivity zones.
NASA Astrophysics Data System (ADS)
Li, Lijun; Lee, Inyeal; Lim, Dongsuk; Rathi, Servin; Kang, Moonshik; Uemura, Tetsuya; Kim, Gil-Ho
2016-08-01
We fabricated a non-local spin valve with a thin layer of graphite with Co transparent electrodes. The spin-valve effect and spin precession were observed at room temperature. The magnitude of the mangetoresistance increases when temperature decreases. The spin-relaxation time, {τ }s, obtained from the fitting of the Hanle curves increases with decreasing temperature with a weak dependence ∼ {T}-0.065 while the spin-diffusion constant D decreases. At room temperature, {τ }s exceeds 100 ps and the spin-diffusion length, {λ }s, is ∼2 μm. The temperature dependence of {λ }s is not monotonic, and it has the largest value at room temperature. Our results show that multilayer graphene is a suitable material for spintronic devices.
Stability of Planar Fronts for a Non-Local Phase Kinetics Equation with a Conservation Law in D ≤ 3
NASA Astrophysics Data System (ADS)
Carlen, Eric A.; Orlandi, Enza
2012-05-01
We consider, in a D-dimensional cylinder, a non-local evolution equation that describes the evolution of the local magnetization in a continuum limit of an Ising spin system with Kawasaki dynamics and Kac potentials. We consider sub-critical temperatures, for which there are two local spatially homogeneous equilibria, and show a local nonlinear stability result for the minimum free energy profiles for the magnetization at the interface between regions of these two different local equilibrium; i.e. the planar fronts: We show that an initial perturbation of a front that is sufficiently small in L2 norm, and sufficiently localized yields a solution that relaxes to another front, selected by a conservation law, in the L1 norm at an algebraic rate that we explicitly estimate. We also obtain rates for the relaxation in the L2 norm and the rate of decrease of the excess free energy.
NASA Astrophysics Data System (ADS)
Schaaf, Christian; Gekle, Stephan
2016-08-01
We use molecular dynamics simulations to compute the spatially resolved static dielectric constant of water in cylindrical and spherical nanopores as occurring, e.g., in protein water pockets or carbon nanotubes. For this, we derive a linear-response formalism which correctly takes into account the dielectric boundary conditions in the considered geometries. We find that in cylindrical confinement, the axial component behaves similar as the local density akin to what is known near planar interfaces. The radial dielectric constant shows some oscillatory features when approaching the surface if their radius is larger than about 2 nm. Most importantly, however, the radial component exhibits pronounced oscillations at the center of the cavity. These surprising features are traced back quantitatively to the non-local dielectric nature of bulk water.
NASA Astrophysics Data System (ADS)
Földes, I. B.; Eidmann, K.; Veres, G.; Bakos, J. S.; Witte, K.
2001-07-01
X-ray self-emission of radiatively heated materials with different values of Z has been investigated. Thin foils were uniformly heated by a 120-eV Hohlraum radiation of 400-ps duration in order to study the self-emission of a homogeneous, optically thin material. The x-ray emission spectra were followed for more than 2 ns. The spectrally integrated emission shows not only a strong Z dependence, but different temporal behaviors for different values of Z. The lower is the value of Z of the x-ray heated matter, the longer is the duration of self-emission. Theoretical comparison with a hydrocode and FLY post-processing shows a non-local-thermal equilibrium behavior caused by direct photoionization due to the thermal pumping radiation, which has a higher brightness temperature than the matter temperature of the heated material.
Schaaf, Christian; Gekle, Stephan
2016-08-28
We use molecular dynamics simulations to compute the spatially resolved static dielectric constant of water in cylindrical and spherical nanopores as occurring, e.g., in protein water pockets or carbon nanotubes. For this, we derive a linear-response formalism which correctly takes into account the dielectric boundary conditions in the considered geometries. We find that in cylindrical confinement, the axial component behaves similar as the local density akin to what is known near planar interfaces. The radial dielectric constant shows some oscillatory features when approaching the surface if their radius is larger than about 2 nm. Most importantly, however, the radial component exhibits pronounced oscillations at the center of the cavity. These surprising features are traced back quantitatively to the non-local dielectric nature of bulk water. PMID:27586940
Goudon, Thierry; Parisot, Martin
2012-10-15
In the so-called Spitzer-Haerm regime, equations of plasma physics reduce to a nonlinear parabolic equation for the electronic temperature. Coming back to the derivation of this limiting equation through hydrodynamic regime arguments, one is led to construct a hierarchy of models where the heat fluxes are defined through a non-local relation which can be reinterpreted as well by introducing coupled diffusion equations. We address the question of designing numerical methods to simulate these equations. The basic requirement for the scheme is to be asymptotically consistent with the Spitzer-Haerm regime. Furthermore, the constraints of physically realistic simulations make the use of unstructured meshes unavoidable. We develop a Finite Volume scheme, based on Vertex-Based discretization, which reaches these objectives. We discuss on numerical grounds the efficiency of the method, and the ability of the generalized models in capturing relevant phenomena missed by the asymptotic problem.
Kjellander, Roland
2016-07-28
Screened electrostatic surface forces, also called double layer forces, between surfaces in ionic liquids can, depending on the circumstances, decay in an exponentially damped, oscillatory manner or in a plain exponential way (the latter as in dilute electrolyte solutions where ion-ion correlations are very weak). The occurrence of both of these behaviors in dense ionic liquids, where ion-ion correlations are very strong, is analyzed in the current work using exact statistical mechanics formulated in a manner that is physically transparent. A vital ingredient in understanding the decay behaviors is the fact that electrostatics in dense electrolytes have a non-local nature caused by the strong correlations. It is shown that the effects of non-locality can be elucidated by a remarkably simple, general expression for the decay parameter κ that replaces the classical expression for the inverse Debye length κDH of the Debye-Hückel (DH) and non-linear Poisson-Boltzmann approximations. This exact expression is valid for both the plain exponential and the oscillatory cases. It shows how strong correlations can give rise to plain exponential decay with a long decay length. Such a decay can arise from anion-cation associations of various kinds, for instance transient ion pairing or association caused by many-body correlations; ion pairing is a possibility but not a necessity for this to occur. Theoretical analysis is done for systems consisting of ions with an arbitrary shape and internal charge density and immersed planar walls with arbitrary internal charge distribution and any short-range ion-surface interaction. The screened electrostatic surface force between two walls is at large separations proportional to the product of effective surface charge densities of each wall. For the oscillatory case, each wall contributes with a phase shift to the oscillations of the interaction. PMID:27356099
2014-01-01
Background Optical coherence tomography (OCT) is a minimally invasive imaging technique, which utilizes the spatial and temporal coherence properties of optical waves backscattered from biological material. Recent advances in tunable lasers and infrared camera technologies have enabled an increase in the OCT imaging speed by a factor of more than 100, which is important for retinal imaging where we wish to study fast physiological processes in the biological tissue. However, the high scanning rate causes proportional decrease of the detector exposure time, resulting in a reduction of the system signal-to-noise ratio (SNR). One approach to improving the image quality of OCT tomograms acquired at high speed is to compensate for the noise component in the images without compromising the sharpness of the image details. Methods In this study, we propose a novel reconstruction method for rapid OCT image acquisitions, based on a noise-compensated homotopic modified James-Stein non-local regularized optimization strategy. The performance of the algorithm was tested on a series of high resolution OCT images of the human retina acquired at different imaging rates. Results Quantitative analysis was used to evaluate the performance of the algorithm using two state-of-art denoising strategies. Results demonstrate significant SNR improvements when using our proposed approach when compared to other approaches. Conclusions A new reconstruction method based on a noise-compensated homotopic modified James-Stein non-local regularized optimization strategy was developed for the purpose of improving the quality of rapid OCT image acquisitions. Preliminary results show the proposed method shows considerable promise as a tool to improve the visualization and analysis of biological material using OCT. PMID:25319186
Palik, D J; Snow, A A; Stottlemyer, A L; Miriti, M N; Heaton, E A
2016-01-01
The possibility of increased invasiveness in cultivated varieties of native perennial species is a question of interest in biofuel risk assessment. Competitive success is a key factor in the fitness and invasive potential of perennial plants, and thus the large-scale release of high-yielding biomass cultivars warrants empirical comparisons with local conspecifics in the presence of competitors. We evaluated the performance of non-local cultivars and local wild biotypes of the tallgrass species Panicum virgatum L. (switchgrass) in competition experiments during two growing seasons in Ohio and Iowa. At each location, we measured growth and reproductive traits (plant height, tiller number, flowering time, aboveground biomass, and seed production) of four non-locally sourced cultivars and two locally collected wild biotypes. Plants were grown in common garden experiments under three types of competition, referred to as none, moderate (with Schizachyrium scoparium), and high (with Bromus inermis). In both states, the two "lowland" cultivars grew taller, flowered later, and produced between 2x and 7.5x more biomass and between 3x and 34x more seeds per plant than local wild biotypes, while the other two cultivars were comparable to wild biotypes in these traits. Competition did not affect relative differences among biotypes, with the exception of shoot number, which was more similar among biotypes under high competition. Insights into functional differences between cultivars and wild biotypes are crucial for developing biomass crops while mitigating the potential for invasiveness. Here, two of the four cultivars generally performed better than wild biotypes, indicating that these biotypes may pose more of a risk in terms of their ability to establish vigorous feral populations in new regions outside of their area of origin. Our results support an ongoing assessment of switchgrass cultivars developed for large-scale planting for biofuels. PMID:27120201
Palik, D. J.; Snow, A. A.; Stottlemyer, A. L.; Miriti, M. N.; Heaton, E. A.
2016-01-01
The possibility of increased invasiveness in cultivated varieties of native perennial species is a question of interest in biofuel risk assessment. Competitive success is a key factor in the fitness and invasive potential of perennial plants, and thus the large-scale release of high-yielding biomass cultivars warrants empirical comparisons with local conspecifics in the presence of competitors. We evaluated the performance of non-local cultivars and local wild biotypes of the tallgrass species Panicum virgatum L. (switchgrass) in competition experiments during two growing seasons in Ohio and Iowa. At each location, we measured growth and reproductive traits (plant height, tiller number, flowering time, aboveground biomass, and seed production) of four non-locally sourced cultivars and two locally collected wild biotypes. Plants were grown in common garden experiments under three types of competition, referred to as none, moderate (with Schizachyrium scoparium), and high (with Bromus inermis). In both states, the two “lowland” cultivars grew taller, flowered later, and produced between 2x and 7.5x more biomass and between 3x and 34x more seeds per plant than local wild biotypes, while the other two cultivars were comparable to wild biotypes in these traits. Competition did not affect relative differences among biotypes, with the exception of shoot number, which was more similar among biotypes under high competition. Insights into functional differences between cultivars and wild biotypes are crucial for developing biomass crops while mitigating the potential for invasiveness. Here, two of the four cultivars generally performed better than wild biotypes, indicating that these biotypes may pose more of a risk in terms of their ability to establish vigorous feral populations in new regions outside of their area of origin. Our results support an ongoing assessment of switchgrass cultivars developed for large-scale planting for biofuels. PMID:27120201
Dimitriadis, Alexandros I.; Kantartzis, Nikolaos V.; Tsiboukis, Theodoros D.; Hafner, Christian
2015-01-15
Highlights: •Formulas for E/M fields radiated by continuous surface polarization distributions. •Non-local effective surface susceptibility model for periodic metafilms. •Generalized reflection and transmission coefficients for an arbitrary metafilm. •Successful treatment of non-planar scatterer arrays and spatial dispersion effects. -- Abstract: A non-local surface susceptibility model for the consistent description of periodic metafilms formed by arbitrarily-shaped, electrically-small, bianisotropic scatterers is developed in this paper. The rigorous scheme is based on the point-dipole approximation technique and is valid for any polarization and propagation direction of an electromagnetic wave impinging upon the metafilm, unlike existing approaches whose applicability is practically confined to very specific cases of incidence. Next, the universal form of the resulting surface susceptibility matrix is employed for the derivation of the generalized Fresnel coefficients for such surfaces, which enable the comprehensive interpretation of several significant, yet relatively unexamined, physical interactions. Essentially, these coefficients include eight distinct terms, corresponding to the co-polarized and cross-polarized reflection and transmission coefficients for the two orthogonal eigenpolarizations of a linearly-polarized incident plane wave. The above formulas are, then, utilized for the prediction of the scattering properties of metafilms with different planar and non-planar resonators, which are characterized via the featured model and two previously reported local ones. Their comparison with numerical simulation outcomes substantiates the merits of the proposed method, reveals important aspects of the underlying physics, and highlights the differences between the various modeling procedures.
NASA Astrophysics Data System (ADS)
Buchleitner, Andreas; Burghardt, Irene; Cheng, Yuan-Chung; Scholes, Gregory D.; Schwarz, Ulrich T.; Weber-Bargioni, Alexander; Wellens, Thomas
2014-10-01
Technologies which convert light into energy, and vice versa, rely on complex, microscopic transport processes in the condensed phase, which obey the laws of quantum mechanics, but hitherto lack systematic analysis and modeling. Given our much improved understanding of multicomponent, disordered, highly structured, open quantum systems, this ‘focus on’ collection collects cutting-edge research on theoretical and experimental aspects of quantum transport in truly complex systems as defined, e.g., by the macromolecular functional complexes at the heart of photosynthesis, by organic quantum wires, or even photovoltaic devices. To what extent microscopic quantum coherence effects can (be made to) impact on macroscopic transport behavior is an equally challenging and controversial question, and this ‘focus on’ collection provides a setting for the present state of affairs, as well as for the ‘quantum opportunities’ on the horizon.
Course 10: Basic Concepts in Quantum Computation
NASA Astrophysics Data System (ADS)
Ekert, A.; Hayden, P. M.; Inamori, H.
Contents 1 Qubits, gates and networks 2 Quantum arithmetic and function evaluations 3 Algorithms and their complexity 4 From interferometers to computers 5 The first quantum algorithms 6 Quantum search 7 Optimal phase estimation 8 Periodicity and quantum factoring 9 Cryptography 10 Conditional quantum dynamics 11 Decoherence and recoherence 12 Concluding remarks
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Theo M.; Mehmani, Bahar; Špička, Václav; Aghdami, Maryam J.; Khrennikov, Andrei Yu
2007-09-01
pt. A. Introductions. The mathematical basis for deterministic quantum mechanics / G.'t Hooft. What did we learn from quantum gravity? / A. Ashtekar. Bose-Einstein condensates and EPR quantum non-locality / F. Laloe. The quantum measurement process: lessons from an exactly solvable model / A.E. Allahverdyan, R. Balian and Th. M. Nieuwenhuizen -- pt. B. Quantum mechanics and quantum information. POVMs: a small but important step beyond standard quantum mechanics / W. M. de Muynck. State reduction by measurements with a null result / G. Nienhuis. Solving open questions in the Bose-Einstein condensation of an ideal gas via a hybrid mixture of laser and statistical physics / M. Kim, A. Svidzinsky and M.O. Scully. Twin-Photon light scattering and causality / G. Puentes, A. Aiello and J. P. Woerdman. Simultaneous measurement of non-commuting observables / G. Aquino and B. Mehmani. Quantum decoherence and gravitational waves / M.T. Jaekel ... [et al.]. Role of various entropies in the black hole information loss problem / Th. M. Nieuwenhuizen and I.V. Volovich. Quantum and super-quantum correlations / G.S. Jaeger -- pt. C. Long distance correlations and bell inequalities. Understanding long-distance quantum correlations / L. Marchildon. Connection of probability models to EPR experiments: probability spaces and Bell's theorem / K. Hess and W. Philipp. Fair sampling vs no-signalling principle in EPR experiments / G. Adenier and A. Yu. Khrennikov -- pt. D. Mathematical foundations. Where the mathematical structure of quantum mechanics comes from / G.M. D'Ariano. Phase space description of quantum mechanics and non-commutative geometry: Wigner-Moyal and Bohm in a wider context / B.J. Hiley. Quantum mechanics as simple algorithm for approximation of classical integrals / A. Yu. Khrennikov. Noncommutative quantum mechanics viewed from Feynman Formalism / J. Lages ... [et al.]. Beyond the quantum in Snyder space / J.F.S. van Huele and M. K. Transtrum -- pt. E. Stochastic
Weiss, Emily A.
2015-11-06
Within the research program funded through the Early Career Research Award we designed complexes of colloidal semiconductor quantum dots (QDs) and organic molecules in which the interfacial chemistry controls the electronic structure and dynamics of the excitonic state of the QD. The program included two main projects; (1) investigation of the mechanisms by which organic surfactants control the quantum confinement of excitonic charge carriers; and (2) development of models for electron transfer between QDs and adsorbed molecules as a function of interfacial chemistry. This project was extremely successful in that our achievements in those two areas addressed the great majority of questions we outlined in the original proposal and answered questions I did not think to ask in that original proposal. Our work led to the discovery of “exciton delocalizing ligands”, which change the electronic structure of colloidal semiconductor nanocrystals by altering, with small synthetic modifications to their surfaces, their most defining characteristic – the quantum confinement of their excited states. It also led to detailed, quantitative descriptions of how the surface chemistry of a QD dictates, thermodynamically and kinetically, the probability of exchange of electrons between the QD and a small molecule. We used two of the three major techniques in the proposal (transient photoluminescence and transient absorption). Electrogenerated chemiluminescence was also proposed, but was too technically difficult with these systems to be useful. Instead, NMR spectroscopy emerged as a major analytical tool in our studies. With the fundamental advancements we made with this project, we believe that we can design QDs to be the next great class of visible-light photocatalysts.
Quantum error correction assisted by two-way noisy communication.
Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C H
2014-01-01
Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1
Quantum error correction assisted by two-way noisy communication
NASA Astrophysics Data System (ADS)
Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C. H.
2014-11-01
Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1
Quantum error correction assisted by two-way noisy communication
Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C. H.
2014-01-01
Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1
Quantum variance: A measure of quantum coherence and quantum correlations for many-body systems
NASA Astrophysics Data System (ADS)
Frérot, Irénée; Roscilde, Tommaso
2016-08-01
Quantum coherence is a fundamental common trait of quantum phenomena, from the interference of matter waves to quantum degeneracy of identical particles. Despite its importance, estimating and measuring quantum coherence in generic, mixed many-body quantum states remains a formidable challenge, with fundamental implications in areas as broad as quantum condensed matter, quantum information, quantum metrology, and quantum biology. Here, we provide a quantitative definition of the variance of quantum coherent fluctuations (the quantum variance) of any observable on generic quantum states. The quantum variance generalizes the concept of thermal de Broglie wavelength (for the position of a free quantum particle) to the space of eigenvalues of any observable, quantifying the degree of coherent delocalization in that space. The quantum variance is generically measurable and computable as the difference between the static fluctuations and the static susceptibility of the observable; despite its simplicity, it is found to provide a tight lower bound to most widely accepted estimators of "quantumness" of observables (both as a feature as well as a resource), such as the Wigner-Yanase skew information and the quantum Fisher information. When considering bipartite fluctuations in an extended quantum system, the quantum variance expresses genuine quantum correlations among the two parts. In the case of many-body systems, it is found to obey an area law at finite temperature, extending therefore area laws of entanglement and quantum fluctuations of pure states to the mixed-state context. Hence the quantum variance paves the way to the measurement of macroscopic quantum coherence and quantum correlations in most complex quantum systems.
Measuring entanglement entropy in a quantum many-body system
NASA Astrophysics Data System (ADS)
Rispoli, Matthew; Preiss, Philipp; Tai, Eric; Lukin, Alex; Schittko, Robert; Kaufman, Adam; Ma, Ruichao; Islam, Rajibul; Greiner, Markus
2016-05-01
The presence of large-scale entanglement is a defining characteristic of exotic quantum phases of matter. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. However, measuring entanglement remains a challenge. This is especially true in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. We demonstrate a novel approach to the measurement of entanglement entropy of any bosonic system, using a quantum gas microscope with tailored potential landscapes. This protocol enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. In general, these experiments exemplify a method enabling the measurement and characterization of quantum phase transitions and in particular would be apt for studying systems such as magnetic ordering within the quantum Ising model.
Dynamics in the quantum/classical limit based on selective use of the quantum potential
Garashchuk, Sophya Dell’Angelo, David; Rassolov, Vitaly A.
2014-12-21
A classical limit of quantum dynamics can be defined by compensation of the quantum potential in the time-dependent Schrödinger equation. The quantum potential is a non-local quantity, defined in the trajectory-based form of the Schrödinger equation, due to Madelung, de Broglie, and Bohm, which formally generates the quantum-mechanical features in dynamics. Selective inclusion of the quantum potential for the degrees of freedom deemed “quantum,” defines a hybrid quantum/classical dynamics, appropriate for molecular systems comprised of light and heavy nuclei. The wavefunction is associated with all of the nuclei, and the Ehrenfest, or mean-field, averaging of the force acting on the classical degrees of freedom, typical of the mixed quantum/classical methods, is avoided. The hybrid approach is used to examine evolution of light/heavy systems in the harmonic and double-well potentials, using conventional grid-based and approximate quantum-trajectory time propagation. The approximate quantum force is defined on spatial domains, which removes unphysical coupling of the wavefunction fragments corresponding to distinct classical channels or configurations. The quantum potential, associated with the quantum particle, generates forces acting on both quantum and classical particles to describe the backreaction.
NASA Astrophysics Data System (ADS)
Kozma, Robert; Hu, Sanqing
2015-12-01
For millennia, causality served as a powerful guiding principle to our understanding of natural processes, including the functioning of our body, mind, and brain. The target paper presents an impressive vista of the field of causality in brain networks, starting from philosophical issues, expanding on neuroscience effects, and addressing broad engineering and societal aspects as well. The authors conclude that the concept of stochastic causality is more suited to characterize the experimentally observed complex dynamical processes in large-scale brain networks, rather than the more traditional view of deterministic causality. We strongly support this conclusion and provide two additional examples that may enhance and complement this review: (i) a generalization of the Wiener-Granger Causality (WGC) to fit better the complexity of brain networks; (ii) employment of criticality as a key concept highly relevant to interpreting causality and non-locality in large-scale brain networks.
Quantum signatures of chimera states
NASA Astrophysics Data System (ADS)
Bastidas, V. M.; Omelchenko, I.; Zakharova, A.; Schöll, E.; Brandes, T.
2015-12-01
Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.
Quantum signatures of chimera states.
Bastidas, V M; Omelchenko, I; Zakharova, A; Schöll, E; Brandes, T
2015-12-01
Chimera states are complex spatiotemporal patterns in networks of identical oscillators, characterized by the coexistence of synchronized and desynchronized dynamics. Here we propose to extend the phenomenon of chimera states to the quantum regime, and uncover intriguing quantum signatures of these states. We calculate the quantum fluctuations about semiclassical trajectories and demonstrate that chimera states in the quantum regime can be characterized by bosonic squeezing, weighted quantum correlations, and measures of mutual information. Our findings reveal the relation of chimera states to quantum information theory, and give promising directions for experimental realization of chimera states in quantum systems.
Woods, Christopher J; Shaw, Katherine E; Mulholland, Adrian J
2015-01-22
The applicability of combined quantum mechanics/molecular mechanics (QM/MM) methods for the calculation of absolute binding free energies of conserved water molecules in protein/ligand complexes is demonstrated. Here, we apply QM/MM Monte Carlo simulations to investigate binding of water molecules to influenza neuraminidase. We investigate five different complexes, including those with the drugs oseltamivir and peramivir. We investigate water molecules in two different environments, one more hydrophobic and one hydrophilic. We calculate the free-energy change for perturbation of a QM to MM representation of the bound water molecule. The calculations are performed at the BLYP/aVDZ (QM) and TIP4P (MM) levels of theory, which we have previously demonstrated to be consistent with one another for QM/MM modeling. The results show that the QM to MM perturbation is significant in both environments (greater than 1 kcal mol(-1)) and larger in the more hydrophilic site. Comparison with the same perturbation in bulk water shows that this makes a contribution to binding. The results quantify how electronic polarization differences in different environments affect binding affinity and also demonstrate that extensive, converged QM/MM free-energy simulations, with good levels of QM theory, are now practical for protein/ligand complexes.
Su, Chen; Liu, Yufei; Ye, Tai; Xiang, Xia; Ji, Xinghu; He, Zhike
2015-01-01
In this work, a new, label-free, homogeneous, highly sensitive, and selective fluorescent biosensor for DNA detection is developed by using rolling-circle amplification (RCA) based single-color quantum dots-ruthenium complex (QDs-Ru) assembling dyads. This strategy includes three steps: (1) the target DNA initiates RCA reaction and generates linear RCA products; (2) the complementary DNA hybridizes with the RCA products to form long double-strand DNA (dsDNA); (3) [Ru(phen)2(dppx)](2+) (dppx=7,8-dimethyldipyrido [3,2-a:2',3'-c] phenanthroline) intercalates into the long dsDNA with strong fluorescence emission. Due to its strong binding propensity with the long dsDNA, [Ru(phen)2(dppx)](2+) is removed from the surface of the QDs, resulting in restoring the fluorescence of the QDs, which has been quenched by [Ru(phen)2(dppx)](2+) through a photoinduced electron transfer process and is overlaid with the fluorescence of dsDNA bonded Ru(II) polypyridyl complex (Ru-dsDNA). Thus, high fluorescence intensity is observed, and is related to the concentration of target. This sensor exhibits not only high sensitivity for hepatitis B virus (HBV) ssDNA with a low detection limit (0.5 pM), but also excellent selectivity in the complex matrix. Moreover, this strategy applies QDs-Ru assembling dyads to the detection of single-strand DNA (ssDNA) without any functionalization and separation techniques.
NASA Astrophysics Data System (ADS)
Dehestani, M.; Pourestarabadi, S.; Zeidabadinejad, L.
2016-06-01
To characterize the structural, thermochemical and electronic aspects in complexes of leucine, vanillin and mechlorethamine with α-, β-, and γ-cyclodextrins (CDs), a density functional theory (DFT) study has been conducted in combination with quantum theory of atoms in molecules (QTAIM) analysis. The QTAIM method has been utilized to explore the nature of various possible interactions between leucine, vanillin and mechlorethamine with CDs in terms of bond critical points (BCPs). HOMO and LUMO and atomic charges studies show charge transfer occurs between drugs and cyclodextrins. This behavior has been also investigated via QTAIM charge analysis. On the other hand, based on QTAIM electronic energy indicators we have discussed electrostatic character of interactions between vanillin, leucine and mechlorethamine with inner surface CDs in the coordination sphere.
NASA Astrophysics Data System (ADS)
Yanov, Ilya; Kholod, Yana; Simeon, Tomekia; Kaczmarek, Anna; Leszczynski, Jerzy
The results of an ab initio quantum chemical study of the Sc3N@C80 endohedral complex are reported. The Hartree-Fock (HF) and B3LYP levels of theory were employed in conjunction with STO-3G and 6-31G(d) basis sets to determine the geometry and properties of the local minima conformations of Sc3N cluster inside the C80 cage. Weak bonding between the Sc3N and C80 molecule and a number of very close geometry and nearly identical by energy local minima structures can explain the large mobility of the endohedral cluster, but complicate determination of the global minimum structure. The effect of the endohedral cluster on the vibrational spectrum of Sc3N@C80 is revealed. Based on the theoretical infrared (IR) spectra, the experimental method to distinguish local minima structures of Sc3N@C80 is proposed.
Shao, Dan; Li, Jing; Guan, Fengying; Pan, Yue; Xiao, Xuanang; Zhang, Ming; Zhang, Hong; Chen, Li
2014-01-01
Using the intrinsic toxicity of nanomaterials for anticancer therapy is an emerging concept. In this work, we discovered that CdTe/CdS quantum dots, when coated with lipids (QD-LC) instead of popular liposomes, polymers, or dendrimers, demonstrated extraordinarily high specificity for cancer cells, which was due to the difference in the macropinocytosis uptake pathways of QD-LC between the cancer cells and the normal cells. QD-LC-induced HepG2 cell apoptosis was concomitant with the activation of the JNK/caspase-3 signaling pathway. Moreover, QD-LC treatment resulted in a delay in the latent period for microtumor formation of mouse hepatocarcinoma H22 cells and inhibited tumor growth, with a reduction of 53.2% in tumor volume without toxicity in major organs after intratumoral administrations to tumor-bearing mice. Our results demonstrate that QD-LC could be a very promising theranostic agent against liver cancer. PMID:25525357
Geng, Yao; Lin, Dajie; Shao, Lijia; Yan, Feng; Ju, Huangxian
2013-01-01
A quantum dot (QD)-bound hybridization probe was designed for detection of intracellular pre-miRNA using chitosan (CS)/poly(γ-glutamic acid) (γ-PGA) complex as a gene vector. The probe was prepared by assembling thiolated RNA to gold nanoparticle (Au NP) via Au-S bond and then binding 3'-end amine of the RNA to the carboxy group capped on quantum dot surface. The QD-RNA-Au NP probe was assembled on the vector by mixing with aqueous γ-PGA solution and then CS solution to construct a gene delivery system for highly effective cellular uptake and delivery. After the probe was released from CS/γ-PGA complex to the cytoplasm by electrostatic repulsion at intracellular pH, it hybridized with pre-miRNA precursor as target. The formed product was then cleaved by RNase III Dicer, leading to the separation of QDs from Au NPs and fluorescence emission of QDs, which could be detected by confocal microscopic imaging to monitor the amount of the intracellular pre-miRNA precursor. The in vitro assays revealed that the QD-RNA-Au NP was a robust, sensitive and selective probe for quantitative detection of target pre-miRNA. Using MDA-MB231 and MCF-7 breast cancer cells as models, the relative amount of pre-miRNA let-7a could be successfully compared. Since the amount of miRNA is related to the progress and prognosis of cancer, this strategy could be expected to hold promising application potential in medical research and clinical diagnostics.
Kolmann, Stephen J; D'Arcy, Jordan H; Jordan, Meredith J T
2013-12-21
Quantum and anharmonic effects are investigated in H2-Li(+)-benzene, a model for hydrogen adsorption in metal-organic frameworks and carbon-based materials. Three- and 8-dimensional quantum diffusion Monte Carlo (QDMC) and rigid-body diffusion Monte Carlo (RBDMC) simulations are performed on potential energy surfaces interpolated from electronic structure calculations at the M05-2X/6-31+G(d,p) and M05-2X/6-311+G(2df,p) levels of theory using a three-dimensional spline or a modified Shepard interpolation. These calculations investigate the intermolecular interactions in this system, with three- and 8-dimensional 0 K H2 binding enthalpy estimates, ΔH(bind) (0 K), being 16.5 kJ mol(-1) and 12.4 kJ mol(-1), respectively: 0.1 and 0.6 kJ mol(-1) higher than harmonic values. Zero-point energy effects are 35% of the value of ΔH(bind) (0 K) at M05-2X/6-311+G(2df,p) and cannot be neglected; uncorrected electronic binding energies overestimate ΔHbind (0 K) by at least 6 kJ mol(-1). Harmonic intermolecular binding enthalpies can be corrected by treating the H2 "helicopter" and "ferris wheel" rotations as free and hindered rotations, respectively. These simple corrections yield results within 2% of the 8-dimensional anharmonic calculations. Nuclear ground state probability density histograms obtained from the QDMC and RBDMC simulations indicate the H2 molecule is delocalized above the Li(+)-benzene system at 0 K.
Revealing the quantum regime in tunnelling plasmonics.
Savage, Kevin J; Hawkeye, Matthew M; Esteban, Rubén; Borisov, Andrei G; Aizpurua, Javier; Baumberg, Jeremy J
2012-11-22
When two metal nanostructures are placed nanometres apart, their optically driven free electrons couple electrically across the gap. The resulting plasmons have enhanced optical fields of a specific colour tightly confined inside the gap. Many emerging nanophotonic technologies depend on the careful control of this plasmonic coupling, including optical nanoantennas for high-sensitivity chemical and biological sensors, nanoscale control of active devices, and improved photovoltaic devices. But for subnanometre gaps, coherent quantum tunnelling becomes possible and the system enters a regime of extreme non-locality in which previous classical treatments fail. Electron correlations across the gap that are driven by quantum tunnelling require a new description of non-local transport, which is crucial in nanoscale optoelectronics and single-molecule electronics. Here, by simultaneously measuring both the electrical and optical properties of two gold nanostructures with controllable subnanometre separation, we reveal the quantum regime of tunnelling plasmonics in unprecedented detail. All observed phenomena are in good agreement with recent quantum-based models of plasmonic systems, which eliminate the singularities predicted by classical theories. These findings imply that tunnelling establishes a quantum limit for plasmonic field confinement of about 10(-8)λ(3) for visible light (of wavelength λ). Our work thus prompts new theoretical and experimental investigations into quantum-domain plasmonic systems, and will affect the future of nanoplasmonic device engineering and nanoscale photochemistry.