Origin of Dynamical Quantum Non-locality
NASA Astrophysics Data System (ADS)
Pachon, Cesar E.; Pachon, Leonardo A.
2014-03-01
Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.
The philosophical implications of quantum non-locality
NASA Astrophysics Data System (ADS)
Jeffries, Paul Christopher
2000-07-01
The overarching metaphysics encompassing almost all of science incorporates notions readily recognizable as basic intuitions, such as the separability of nature into parts, and a causal architecture necessitating that influences going from one place to another transit every point in between. Astonishingly, developments in quantum mechanics have all but proven this metaphysics false. An overview of Bell's Theorem sets the stage for a discussion of the philosophical significance of quantum non-locality. An account of the overarching metaphysics of Western science explicates why the violation of the Bell Inequalities is so astonishing, drawing particular attention to the historical and metaphysical issues surrounding action-at-a-distance, and the demands for causal continuity and a finite propagation speed for causal influences. The Chapter Three exegesis of the Einstein-Podolsky-Rosen (EPR) argument contends that a modified version of their ``reality criterion'' side-steps the impression that the argument only goes through under an overly strong realist position, but the truly surprising story underlying the EPR correlations-unforeseen by Einstein and Bohr-comes in the next chapter's examination of Jon P. Jarrett's analysis of non-locality into two composite conditions associated with Einstein's underlying metaphysical principles. This in turn leads to a deeper analysis of the philosophical basis for Einstein's resistance to quantum mechanics. Having seen that a range of ordinary causal and common- cause explanations for the EPR correlations are excluded or burdened with untoward implications, Chapter Seven proposes an information-theoretic analysis of the holistic connection exhibited in quantum phenomena, helping us to better understand in what way constraints on relational holism are responsible for the world appearing to be causally classical. These constraints lead to ``local locality'': the apparent manifestation of a local causal structure when the domain is
A scalable quantum architecture using efficient non-local gates
NASA Astrophysics Data System (ADS)
Brennen, Gavin
2003-03-01
Many protocols for quantum information processing use a control sequence or circuit of interactions between qubits and control fields wherein arbitrary qubits can be made to interact with one another. The primary problem with many ``physically scalable" architectures is that the qubits are restricted to nearest neighbor interactions and quantum wires between distant qubits do not exist. Because of errors, nearest neighbor interactions often present difficulty with scalability. We describe a protocol that efficiently performs non-local gates between elements of separated static logical qubits using a bus of dynamic qubits as a refreshable entanglement resource. Imperfect resource preparation due to error propagation from noisy gates and measurement errors can purified within the bus channel. Because of the inherent parallelism of entanglement swapping, communication latency within the quantum computer can be significantly reduced.
Non-local classical optical correlation and implementing analogy of quantum teleportation
Sun, Yifan; Song, Xinbing; Qin, Hongwei; Zhang, Xiong; Yang, Zhenwei; Zhang, Xiangdong
2015-01-01
This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein–Podolsky–Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information. PMID:25779977
Non-local classical optical correlation and implementing analogy of quantum teleportation.
Sun, Yifan; Song, Xinbing; Qin, Hongwei; Zhang, Xiong; Yang, Zhenwei; Zhang, Xiangdong
2015-01-01
This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein-Podolsky-Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information. PMID:25779977
Non-locality in quantum field theory due to general relativity
NASA Astrophysics Data System (ADS)
Calmet, Xavier; Croon, Djuna; Fritz, Christopher
2015-12-01
We show that general relativity coupled to a quantum field theory generically leads to non-local effects in the matter sector. These non-local effects can be described by non-local higher dimensional operators which remarkably have an approximate shift symmetry. When applied to inflationary models, our results imply that small non-Gaussianities are a generic feature of models based on general relativity coupled to matter fields. However, these effects are too small to be observable in the cosmic microwave background.
Novel non-local effects in three-terminal hybrid devices with quantum dot
Michałek, G.; Domański, T.; Bułka, B.R.; Wysokiński, K.I.
2015-01-01
We predict non-local effect in the three-terminal hybrid device consisting of the quantum dot (QD) tunnel coupled to two normal and one superconducting reservoirs. It manifests itself as the negative non-local resistance and results from the competition between the ballistic electron transfer (ET) and the crossed Andreev scattering (CAR). The effect is robust both in the linear and non-linear regimes. In the latter case the screening of charges and the long-range interactions play significant role. We show that sign change of the non-local conductance depends on the subgap Shiba/Andreev states, and it takes place even in absence of the Coulomb interactions. The effect is large and can be experimentally verified using the four probe setup. Since the induced non-local voltage changes sign and magnitude upon varying the gate potential and/or coupling of the quantum dot to the superconducting lead, such measurement could hence provide a controlled and precise method to determine the positions of the Shiba/Andreev states. Our predictions ought to be contrasted with non-local effects observed hitherto in the three-terminal planar junctions where the residual negative non-local conductance has been observed at large voltages, related to the Thouless energy of quasiparticles tunneling through the superconducting slab. PMID:26415683
Novel non-local effects in three-terminal hybrid devices with quantum dot
NASA Astrophysics Data System (ADS)
Michałek, G.; Domański, T.; Bułka, B. R.; Wysokiński, K. I.
2015-09-01
We predict non-local effect in the three-terminal hybrid device consisting of the quantum dot (QD) tunnel coupled to two normal and one superconducting reservoirs. It manifests itself as the negative non-local resistance and results from the competition between the ballistic electron transfer (ET) and the crossed Andreev scattering (CAR). The effect is robust both in the linear and non-linear regimes. In the latter case the screening of charges and the long-range interactions play significant role. We show that sign change of the non-local conductance depends on the subgap Shiba/Andreev states, and it takes place even in absence of the Coulomb interactions. The effect is large and can be experimentally verified using the four probe setup. Since the induced non-local voltage changes sign and magnitude upon varying the gate potential and/or coupling of the quantum dot to the superconducting lead, such measurement could hence provide a controlled and precise method to determine the positions of the Shiba/Andreev states. Our predictions ought to be contrasted with non-local effects observed hitherto in the three-terminal planar junctions where the residual negative non-local conductance has been observed at large voltages, related to the Thouless energy of quasiparticles tunneling through the superconducting slab.
Probing the non-locality of Majorana fermions via quantum correlations
NASA Astrophysics Data System (ADS)
Li, Jun; Yu, Ting; Lin, Hai-Qing; You, J. Q.
2014-05-01
Majorana fermions (MFs) are exotic particles that are their own anti-particles. Recently, the search for the MFs occurring as quasi-particle excitations in solid-state systems has attracted widespread interest, because of their fundamental importance in fundamental physics and potential applications in topological quantum computation based on solid-state devices. Here we study the quantum correlations between two spatially separate quantum dots induced by a pair of MFs emerging at the two ends of a semiconductor nanowire, in order to develop a new method for probing the MFs. We find that without the tunnel coupling between these paired MFs, quantum entanglement cannot be induced from an unentangled (i.e., product) state, but quantum discord is observed due to the intrinsic nonlocal correlations of the paired MFs. This finding reveals that quantum discord can indeed demonstrate the intrinsic non-locality of the MFs formed in the nanowire. Also, quantum discord can be employed to discriminate the MFs from the regular fermions. Furthermore, we propose an experimental setup to measure the onset of quantum discord due to the nonlocal correlations. Our approach provides a new, and experimentally accessible, method to study the Majorana bound states by probing their intrinsic non-locality signature.
The origin of quantum non-locality and a new approach to generation of energy
NASA Astrophysics Data System (ADS)
Berkovich, Simon
2010-02-01
According to our work [1], the peculiarity of quantum mechanics behavior stems from interactive holography feedbacks. This organization naturally captures the features of quantum non-separability and wave-particle duality; sliced holographic processing immediately elucidates the inscrutability of quantum entanglement. Traditional physics is an approximation to the holistic picture of the Universe, yet non-locality does not come out as a small correction to contact interactions. Challenging relativity, a battery of suggested tests could reveal the absolute positioning of the underlying holographic mechanism. In view of A. Einstein, if quantum entanglement ``is correct, it signifies the end of physics as a science''. So, the counter-arguments against the surmised operational potentials of non-locality are irrelevant. It is meaningless to oppose the consequences of what you could not believe to exist in the first place. Remarkably, the holographic infrastructure shows exciting prospects for concentrating and producing energy. The following hypothetical possibilities will be discussed: (1) nuclear fusion fixation with teleportation of D+D-reaction; (2) ball lightning creation through entanglement of SHF; (3) motility of ``artificial muscle''. [1] S.Y. Berkovich, ``A comprehensive explanation of quantum mechanics, the keyword is interactive holography'', http://www.cs.gwu.edu/research/reports detail.php?trnumber=TR-GWU-CS-09-001 )
Non-locality and locality in the stochastic interpretation of quantum mechanics
NASA Astrophysics Data System (ADS)
Bohm, D.; Hiley, B. J.
1989-01-01
We review the stochastic interpretation of the quantum theory and show that, like the causal interpretation it necessarily involves non-locality. We compare and contrast our approach with that of Nelson. We then extend the stochastic interpretation to the Pauli equation. This lays the ground for a further extension to the Dirac equation and therefore enables us to discuss this interpretation in a relativistic context. We find that a co consistent treatment of non-locality can be given and that it is indeed possible further to regard this non-locality as a limiting case of a purely local theory in which the transmission of what we have called active information is not restricted to the speed of light. In this case both quantum theory and relativity come out as very good statistical approximations. However, because this basically local theory implies that these latter are not exactly valid, it is possible to propose tests that could in principle distinguish such a theory from the current theories.
Quantum non-locality in a two-slit interferometer for short-lived particles
Klein, Spencer R.; Nystrand, Joakim
2001-12-01
We describe a new test of quantum nonlocality, using an interferometer for short-lived particles. The separation is large compared with the particle lifetimes. This interferometer is realized by vector meson production in distant heavy ion collisions. The mesons decay before waves from the two sources (ions) can overlap, so interference is only possible among the decay products. The post-decay wave function must retain amplitudes for all possible decays. The decay products are spatially separated, necessitating a non-local wave function. The interference is measurable by summing the product momenta. Alternately, the products positions could be observed, allowing new tests of the EPR paradox.
From Einstein's theorem to Bell's theorem: a history of quantum non-locality
NASA Astrophysics Data System (ADS)
Wiseman, H. M.
2006-04-01
In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.
NASA Astrophysics Data System (ADS)
Filk, Thomas
2013-04-01
In this article I investigate several possibilities to define the concept of "temporal non-locality" within the standard framework of quantum theory. In particular, I analyze the notions of "temporally non-local states", "temporally non-local events" and "temporally non-local observables". The idea of temporally non-local events is already inherent in the standard formalism of quantum mechanics, and Basil Hiley recently defined an operator in order to measure the degree of such a temporal non-locality. The concept of temporally non-local states enters as soon as "clock-representing states" are introduced in the context of special and general relativity. It is discussed in which way temporally non-local measurements may find an interesting application for experiments which test temporal versions of Bell inequalities.
NASA Astrophysics Data System (ADS)
Liu, Cheng-cheng; Shi, Jia-dong; Ding, Zhi-yong; Ye, Liu
2016-08-01
In this paper, the effect of external magnet field g on the relationship among the quantum discord, Bell non-locality and quantum phase transition by employing quantum renormalization-group (QRG) method in the one-dimensional transverse Ising model is investigated. In our model, external magnet field g can influence the phase diagrams. The results have shown that both the two quantum correlation measures can develop two saturated values, which are associated with two distinct phases: long-ranged ordered Ising phase and the paramagnetic phase with the number of QRG iterations increasing. Additionally, quantum non-locality always existent in the long-ranged ordered Ising phase no matter whatever the value of g is and what times QRG steps are carried out and we conclude that the quantum non-locality always exists not only suitable for the two sites of block, but for nearest-neighbor blocks in the long-ranged ordered Ising phase. However, the block-block correlation in the paramagnetic phase is not strong enough to violate the Bell-CHSH inequality as the size of system becomes large. Furthermore, when the system violates the CHSH inequality, i.e., satisfies quantum non-locality, it needs to be entangled. On the other way, if the system obeys the CHSH inequality, it may be entangled or not. To gain further insight, the non-analytic and scaling behavior of QD and Bell non-locality have also been analyzed in detail and this phenomenon indicates that the behavior of the correlation can perfectly help one to observe the quantum critical properties of the model.
Non-local correlation and quantum discord in two atoms in the non-degenerate model
Mohamed, A.-B.A.
2012-12-15
By using geometric quantum discord (GQD) and measurement-induced nonlocality (MIN), quantum correlation is investigated for two atoms in the non-degenerate two-photon Tavis-Cummings model. It is shown that there is no asymptotic decay for MIN while asymptotic decay exists for GQD. Quantum correlations can be strengthened by introducing the dipole-dipole interaction. The evolvement period of quantum correlation gets shorter with the increase in the dipole-dipole parameter. It is found that there exists not only quantum nonlocality without entanglement but also quantum nonlocality without quantum discord. Also, the MIN and GQD are raised rather than entanglement, and also with weak initial entanglement, there are MIN and entanglement in a interval of death quantum discord. - Highlights: Black-Right-Pointing-Pointer Geometric quantum discord (GQD) and measurement induced nonlocality (MIN) are used to investigate the correlations of two two-level atoms. Black-Right-Pointing-Pointer There is no asymptotic decay for MIN while asymptotic decay exists for GQD. Black-Right-Pointing-Pointer Quantum correlations can be strengthened by introducing the dipole-dipole interaction. Black-Right-Pointing-Pointer There exists not only quantum nonlocality without entanglement but also without discord. Black-Right-Pointing-Pointer Weak initial entanglement leads to MIN and entanglement in intervals of death discord.
Correlation energy as a measure of non-locality: Quantum entanglement of helium-like systems
NASA Astrophysics Data System (ADS)
Esquivel, R. O.; López-Rosa, S.; Dehesa, J. S.
2015-08-01
In this work we discuss the essential quantum origin of correlation energy as measured through the wave function regardless of any extrinsic Hamiltonian. The ambiguous physical meaning of correlation energy is clarified by identifying the non-dynamical correlations inherent in the system state of Slater rank different than one with the quantum phenomenon of nonlocality. This is achieved by relating correlation energy to entanglement as measured through the von Neumann and the linear entropies. Indeed, for helium-like systems with varying Z we observe one-to-one correspondence between entanglement and correlation energy. We present numerical evidence of the linear relation between the correlation energy E\\textit{corr} and the quantum entanglement for various members of the helium isoelectronic series by use of highly correlated wave functions of configuration-interaction type.
Horizons and non-local time evolution of quantum mechanical systems
NASA Astrophysics Data System (ADS)
Casadio, Roberto
2015-04-01
According to general relativity, trapping surfaces and horizons are classical causal structures that arise in systems with sharply defined energy and corresponding gravitational radius. The latter concept can be extended to a quantum mechanical matter state simply by means of the spectral decomposition, which allows one to define an associated "horizon wave-function". Since this auxiliary wave-function contains crucial information about the causal structure of space-time, a new proposal is formulated for the time evolution of quantum systems in order to account for the fundamental classical property that outer observers cannot receive signals from inside a horizon. The simple case of a massive free particle at rest is used throughout the paper as a toy model to illustrate the main ideas.
Levin, Michael
2012-01-01
Establishment of shape during embryonic development, and the maintenance of shape against injury or tumorigenesis, requires constant coordination of cell behaviors toward the patterning needs of the host organism. Molecular cell biology and genetics have made great strides in understanding the mechanisms that regulate cell function. However, generalized rational control of shape is still largely beyond our current capabilities. Significant instructive signals function at long range to provide positional information and other cues to regulate organism-wide systems properties like anatomical polarity and size control. Is complex morphogenesis best understood as the emergent property of local cell interactions, or as the outcome of a computational process that is guided by a physically-encoded map or template of the final goal state? Here I review recent data and molecular mechanisms relevant to morphogenetic fields: large-scale systems of physical properties that have been proposed to store patterning information during embryogenesis, regenerative repair, and cancer suppression that ultimately controls anatomy. Placing special emphasis on the role of endogenous bioelectric signals as an important component of the morphogenetic field, I speculate on novel approaches for the computational modeling and control of these fields with applications to synthetic biology, regenerative medicine, and evolutionary developmental biology. PMID:22542702
Quantum Complexity in Graphene
NASA Astrophysics Data System (ADS)
Baskaran, G.
Carbon has a unique position among elements in the periodic table. It produces an allotrope, graphene, a mechanically robust two dimensional semimetal. The multifarious properties that graphene exhibits has few parallels among elemental metals. From simplicity, namely carbon atoms connected by pure sp2 bonds, a wealth of novel quantum properties emerge. In classical complex systems such as a spin glass or a finance market, several competing agents or elements are responsible for unanticipated and difficult to predict emergent properties. The complex (sic) structure of quantum mechanics is responsbile for an unanticipated set of emergent properties in graphene. We call this quantum complexity. In fact, most quantum systems, phenomena and modern quantum field theory could be viewed as examples of quantum complexity. After giving a brief introduction to the quantum complexity we focus on our own work, which indicates the breadth in the type of quantum phenomena that graphene could support. We review our theoretical suggestions of, (i) spin-1 collective mode in netural graphene, (ii) relativistic type of phenomena in crossed electric and magnetic fields, (iii) room temperature superconductivity in doped graphene and (iv) composite Fermi sea in neutral graphene in uniform magnetic field and (v) two-channel Kondo effect. Except for the relativistic type of phenomena, the rest depend in a fundamental way on a weak electron correlation that exists in the broad two-dimensional band of graphene.
NASA Astrophysics Data System (ADS)
Liu, Cheng-cheng; Shi, Jia-dong; Ding, Zhi-yong; Ye, Liu
2016-05-01
Quantum coherence is an important physical resource in quantum computation and quantum information processing. In this paper, we firstly obtain an uncertainty-like expression relating two coherences contained in corresponding local bipartite quantum system. This uncertainty-like inequality shows that the larger the coherence of one subsystem, the less coherence contained in other subsystems. Further, we discuss in detail the uncertainty-like relation among three single-partite quantum systems. We show that the coherence contained in pure tripartite quantum system is greater than the sum of the coherence of all local subsystems.
Orieux, Adeline; Boutari, Joelle; Barbieri, Marco; Paternostro, Mauro; Mataloni, Paolo
2014-01-01
Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring. PMID:25418153
Quantum Kolmogorov complexity and bounded quantum memory
Miyadera, Takayuki
2011-04-15
The effect of bounded quantum memory in a primitive information protocol has been examined using the quantum Kolmogorov complexity as a measure of information. We employed a toy two-party protocol in which Bob, by using a bounded quantum memory and an unbounded classical memory, estimates a message that was encoded in qubits by Alice in one of the bases X or Z. Our theorem gave a nontrivial effect of the memory boundedness. In addition, a generalization of the uncertainty principle in the presence of quantum memory has been obtained.
Quantum walks on simplicial complexes
NASA Astrophysics Data System (ADS)
Matsue, Kaname; Ogurisu, Osamu; Segawa, Etsuo
2016-05-01
We construct a new type of quantum walks on simplicial complexes as a natural extension of the well-known Szegedy walk on graphs. One can numerically observe that our proposing quantum walks possess linear spreading and localization as in the case of the Grover walk on lattices. Moreover, our numerical simulation suggests that localization of our quantum walks reflects not only topological but also geometric structures. On the other hand, our proposing quantum walk contains an intrinsic problem concerning exhibition of non-trivial behavior, which is not seen in typical quantum walks such as Grover walks on graphs.
Generalized conservation laws in non-local field theories
NASA Astrophysics Data System (ADS)
Kegeles, Alexander; Oriti, Daniele
2016-04-01
We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalized conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalization of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose-Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity.
Can EPR non-locality be geometrical?
Ne`eman, Y. |; Botero, A.
1995-10-01
The presence in Quantum Mechanics of non-local correlations is one of the two fundamentally non-intuitive features of that theory. The non-local correlations themselves fall into two classes: EPR and Geometrical. The non-local characteristics of the geometrical type are well-understood and are not suspected of possibly generating acausal features, such as faster-than-light propagation of information. This has especially become true since the emergence of a geometrical treatment for the relevant gauge theories, i.e. Fiber Bundle geometry, in which the quantum non-localities are seen to correspond to pure homotopy considerations. This aspect is reviewed in section 2. Contrary-wise, from its very conception, the EPR situation was felt to be paradoxical. It has been suggested that the non-local features of EPR might also derive from geometrical considerations, like all other non-local characteristics of QM. In[7], one of the authors was able to point out several plausibility arguments for this thesis, emphasizing in particular similarities between the non-local correlations provided by any gauge field theory and those required by the preservation of the quantum numbers of the original EPR state-vector, throughout its spatially-extended mode. The derivation was, however, somewhat incomplete, especially because of the apparent difference between, on the one hand, the closed spatial loops arising in the analysis of the geometrical non-localities, from Aharonov-Bohm and Berry phases to magnetic monopoles and instantons, and on the other hand, in the EPR case, the open line drawn by the positions of the two moving decay products of the disintegrating particle. In what follows, the authors endeavor to remove this obstacle and show that as in all other QM non-localities, EPR is somehow related to closed loops, almost involving homotopy considerations. They develop this view in section 3.
Quantum Computing: Solving Complex Problems
DiVincenzo, David [IBM Watson Research Center
2009-09-01
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
Quantum Computing: Solving Complex Problems
DiVincenzo, David
2007-04-12
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
Quantum Computing: Solving Complex Problems
DiVincenzo, David
2007-04-11
One of the motivating ideas of quantum computation was that there could be a new kind of machine that would solve hard problems in quantum mechanics. There has been significant progress towards the experimental realization of these machines (which I will review), but there are still many questions about how such a machine could solve computational problems of interest in quantum physics. New categorizations of the complexity of computational problems have now been invented to describe quantum simulation. The bad news is that some of these problems are believed to be intractable even on a quantum computer, falling into a quantum analog of the NP class. The good news is that there are many other new classifications of tractability that may apply to several situations of physical interest.
Quantum physics and complex networks
NASA Astrophysics Data System (ADS)
Biamonte, Jacob
2014-03-01
There is a widely used and successful theory of ``chemical reaction networks,'' which provides a framework describing systems governed by mass action kinetics. Computer science and population biology use the same ideas under a different name: ``stochastic Petri nets.'' But if we look at these theories from the perspective of quantum theory, they turn out to involve creation and annihilation operators, coherent states and other well-known ideas--yet in a context where probabilities replace amplitudes. I will explain this connection as part of a detailed analogy between quantum mechanics and stochastic mechanics which we've produced several results on recently, including the recent analytical results uniting quantum physics and complex networks. Our general idea is about merging concepts from quantum physics and complex network theory to provide a bidirectional bridge between both disciplines. Support is acknowledged from the Foundational Questions Institute (FQXi) and the Compagnia di San Paolo Foundation.
Loop quantum cosmology with complex Ashtekar variables
NASA Astrophysics Data System (ADS)
Ben Achour, Jibril; Grain, Julien; Noui, Karim
2015-01-01
We construct and study loop quantum cosmology (LQC) when the Barbero-Immirzi parameter takes the complex value γ =+/- i. We refer to this new approach to quantum cosmology as complex LQC. This formulation is obtained via an analytic continuation of the Hamiltonian constraint (with no inverse volume corrections) from real γ to γ =+/- i, in the simple case of a flat FLRW Universe coupled to a massless scalar field with no cosmological constant. For this, we first compute the non-local curvature operator (defined by the trace of the holonomy of the connection around a fundamental plaquette) evaluated in an arbitrary spin j representation, and find a new close formula for its expression. This allows us to define explicitly a one parameter family of regularizations of the Hamiltonian constraint in LQC, parametrized by the spin j. It is immediate to see that any spin j regularization leads to a bouncing scenario. Then, motivated in particular by previous results on black hole thermodynamics, we perform the analytic continuation of the Hamiltonian constraint to values of the Barbero-Immirzi parameter given by γ =+/- i and to spins j=\\frac{1}{2}(-1+is) where s is real. Even if the area spectrum then becomes continuous, we show that the complex LQC defined in this way does also replace the initial big-bang singularity by a big-bounce. In addition to this, the maximal density and the minimal volume of the Universe are obviously independent of γ . Furthermore, the dynamics before and after the bounce is not symmetrical anymore, which makes a clear distinction between these two phases of the evolution of the Universe.
Quantum interference within the complex quantum Hamilton-Jacobi formalism
Chou, Chia-Chun; Sanz, Angel S.; Miret-Artes, Salvador; Wyatt, Robert E.
2010-10-15
Quantum interference is investigated within the complex quantum Hamilton-Jacobi formalism. As shown in a previous work [Phys. Rev. Lett. 102 (2009) 250401], complex quantum trajectories display helical wrapping around stagnation tubes and hyperbolic deflection near vortical tubes, these structures being prominent features of quantum caves in space-time Argand plots. Here, we further analyze the divergence and vorticity of the quantum momentum function along streamlines near poles, showing the intricacy of the complex dynamics. Nevertheless, despite this behavior, we show that the appearance of the well-known interference features (on the real axis) can be easily understood in terms of the rotation of the nodal line in the complex plane. This offers a unified description of interference as well as an elegant and practical method to compute the lifetime for interference features, defined in terms of the average wrapping time, i.e., considering such features as a resonant process.
Noncommutative complex structures on quantum homogeneous spaces
NASA Astrophysics Data System (ADS)
Ó Buachalla, Réamonn
2016-01-01
A new framework for noncommutative complex geometry on quantum homogeneous spaces is introduced. The main ingredients used are covariant differential calculi and Takeuchi's categorical equivalence for quantum homogeneous spaces. A number of basic results are established, producing a simple set of necessary and sufficient conditions for noncommutative complex structures to exist. Throughout, the framework is applied to the quantum projective spaces endowed with the Heckenberger-Kolb calculus.
Community Detection in Quantum Complex Networks
NASA Astrophysics Data System (ADS)
Faccin, Mauro; Migdał, Piotr; Johnson, Tomi H.; Bergholm, Ville; Biamonte, Jacob D.
2014-10-01
Determining community structure is a central topic in the study of complex networks, be it technological, social, biological or chemical, static or in interacting systems. In this paper, we extend the concept of community detection from classical to quantum systems—a crucial missing component of a theory of complex networks based on quantum mechanics. We demonstrate that certain quantum mechanical effects cannot be captured using current classical complex network tools and provide new methods that overcome these problems. Our approaches are based on defining closeness measures between nodes, and then maximizing modularity with hierarchical clustering. Our closeness functions are based on quantum transport probability and state fidelity, two important quantities in quantum information theory. To illustrate the effectiveness of our approach in detecting community structure in quantum systems, we provide several examples, including a naturally occurring light-harvesting complex, LHCII. The prediction of our simplest algorithm, semiclassical in nature, mostly agrees with a proposed partitioning for the LHCII found in quantum chemistry literature, whereas our fully quantum treatment of the problem uncovers a new, consistent, and appropriately quantum community structure.
Quantum navigation and ranking in complex networks.
Sánchez-Burillo, Eduardo; Duch, Jordi; Gómez-Gardeñes, Jesús; Zueco, David
2012-01-01
Complex networks are formal frameworks capturing the interdependencies between the elements of large systems and databases. This formalism allows to use network navigation methods to rank the importance that each constituent has on the global organization of the system. A key example is Pagerank navigation which is at the core of the most used search engine of the World Wide Web. Inspired in this classical algorithm, we define a quantum navigation method providing a unique ranking of the elements of a network. We analyze the convergence of quantum navigation to the stationary rank of networks and show that quantumness decreases the number of navigation steps before convergence. In addition, we show that quantum navigation allows to solve degeneracies found in classical ranks. By implementing the quantum algorithm in real networks, we confirm these improvements and show that quantum coherence unveils new hierarchical features about the global organization of complex systems. PMID:22930671
Quantum Navigation and Ranking in Complex Networks
Sánchez-Burillo, Eduardo; Duch, Jordi; Gómez-Gardeñes, Jesús; Zueco, David
2012-01-01
Complex networks are formal frameworks capturing the interdependencies between the elements of large systems and databases. This formalism allows to use network navigation methods to rank the importance that each constituent has on the global organization of the system. A key example is Pagerank navigation which is at the core of the most used search engine of the World Wide Web. Inspired in this classical algorithm, we define a quantum navigation method providing a unique ranking of the elements of a network. We analyze the convergence of quantum navigation to the stationary rank of networks and show that quantumness decreases the number of navigation steps before convergence. In addition, we show that quantum navigation allows to solve degeneracies found in classical ranks. By implementing the quantum algorithm in real networks, we confirm these improvements and show that quantum coherence unveils new hierarchical features about the global organization of complex systems. PMID:22930671
Quantum vortices within the complex quantum Hamilton-Jacobi formalism.
Chou, Chia-Chun; Wyatt, Robert E
2008-06-21
Quantum vortices are investigated in the framework of the quantum Hamilton-Jacobi formalism. A quantum vortex forms around a node in the wave function in the complex space, and the quantized circulation integral originates from the discontinuity in the real part of the complex action. Although the quantum momentum field displays hyperbolic flow around a node, the corresponding Polya vector field displays circular flow. It is shown that the Polya vector field of the quantum momentum function is parallel to contours of the probability density. A nonstationary state constructed from eigenstates of the harmonic oscillator is used to illustrate the formation of a transient excited state quantum vortex, and the coupled harmonic oscillator is used to illustrate quantization of the circulation integral in the multidimensional complex space. This study not only analyzes the formation of quantum vortices but also demonstrates the local structures for the quantum momentum field and for the Polya vector field near a node of the wave function. PMID:18570490
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Relativistic three-partite non-locality
NASA Astrophysics Data System (ADS)
Moradpour, Hooman; Montakhab, Afshin
2016-05-01
Bell-like inequalities have been used in order to distinguish non-local quantum pure states by various authors. The behavior of such inequalities under Lorentz transformation (LT) has been a source of debate and controversies in the past. In this paper, we consider the two most commonly studied three-particle pure states, that of W and Greenberger-Horne-Zeilinger (GHZ) states which exhibit distinctly different types of entanglement. We discuss the various types of three-particle inequalities used in previous studies and point to their corresponding shortcomings and strengths. Our main result is that if one uses Czachor’s relativistic spin operator and Svetlichny’s inequality as the main measure of non-locality and uses the same angles in the rest frame (S) as well as the moving frame (S‧), then maximally violated inequality in S will decrease in the moving frame, and will eventually lead to lack of non-locality (i.e. satisfaction of inequality) in the v→c limit. This is shown for both the GHZ and W states and in two different configurations which are commonly studied (Cases 1 and 2). Our results are in line with a more familiar case of two particle case. We also show that the satisfaction of Svetlichny’s inequality in the v→c limit is independent of initial particles’ velocity. Our study shows that whenever we use Czachor’s relativistic spin operator, results draws a clear picture of three-particle non-locality making its general properties consistent with previous studies on two-particle systems regardless of the W state or the GHZ state is involved. Throughout the paper, we also address the results of using Pauli’s operator in investigating the behavior of |Sv| under LT for both of the GHZ and W states and two cases (Cases 1 and 2). Our investigation shows that the violation of |Sv| in moving frame depends on the particle’s energy in the lab frame, which is in agreement with some previous works on two and three-particle systems. Our work may
Quantum mechanics in complex systems
NASA Astrophysics Data System (ADS)
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Quantum electrodynamics with complex fermion mass
McKellar, B.J.H. . School of Physics); Wu, D.D. . School of Physics Academia Sinica, Beijing, BJ . Inst. of High Energy Physics Superconducting Super Collider Lab., Dallas, TX )
1991-08-01
The quantum electrodynamics (QED) with a complex fermion mass -- that is, a fermion mass with a chiral phase -- is restudied, together with its chirally rotated version. We show how fake electric dipole moment can be obtained and how to avoid it. 10 refs.
Quantum Google in a Complex Network
Paparo, Giuseppe Davide; Müller, Markus; Comellas, Francesc; Martin-Delgado, Miguel Angel
2013-01-01
We investigate the behaviour of the recently proposed Quantum PageRank algorithm, in large complex networks. We find that the algorithm is able to univocally reveal the underlying topology of the network and to identify and order the most relevant nodes. Furthermore, it is capable to clearly highlight the structure of secondary hubs and to resolve the degeneracy in importance of the low lying part of the list of rankings. The quantum algorithm displays an increased stability with respect to a variation of the damping parameter, present in the Google algorithm, and a more clearly pronounced power-law behaviour in the distribution of importance, as compared to the classical algorithm. We test the performance and confirm the listed features by applying it to real world examples from the WWW. Finally, we raise and partially address whether the increased sensitivity of the quantum algorithm persists under coordinated attacks in scale-free and random networks. PMID:24091980
Liouville quantum gravity on complex tori
NASA Astrophysics Data System (ADS)
David, François; Rhodes, Rémi; Vargas, Vincent
2016-02-01
In this paper, we construct Liouville Quantum Field Theory (LQFT) on the toroidal topology in the spirit of the 1981 seminal work by Polyakov [Phys. Lett. B 103, 207 (1981)]. Our approach follows the construction carried out by the authors together with Kupiainen in the case of the Riemann sphere ["Liouville quantum gravity on the Riemann sphere," e-print arXiv:1410.7318]. The difference is here that the moduli space for complex tori is non-trivial. Modular properties of LQFT are thus investigated. This allows us to integrate the LQFT on complex tori over the moduli space, to compute the law of the random Liouville modulus, therefore recovering (and extending) formulae obtained by physicists, and make conjectures about the relationship with random planar maps of genus one, eventually weighted by a conformal field theory and conformally embedded onto the torus.
Superrenormalizable quantum gravity with complex ghosts
NASA Astrophysics Data System (ADS)
Modesto, Leonardo; Shapiro, Ilya L.
2016-04-01
We suggest and briefly review a new sort of superrenormalizable models of higher derivative quantum gravity. The higher derivative terms in the action can be introduced in such a way that all the unphysical massive states have complex poles. According to the literature on Lee-Wick quantization, in this case the theory can be formulated as unitary, since all massive ghosts-like degrees of freedom are unstable.
Complex quantum trajectories for barrier scattering
NASA Astrophysics Data System (ADS)
Rowland, Bradley Allen
We have directed much attention towards developing quantum trajectory methods which can accurately predict the transmission probabilities for a variety of quantum mechanical barrier scattering processes. One promising method involves solving the complex quantum Hamilton-Jacobi equation with the Derivative Propagation Method (DPM). We present this method, termed complex valued DPM (CVDPM(n)). CVDPM(n) has been successfully employed in the Lagrangian frame to accurately compute transmission probabilities on 'thick' one dimensional Eckart and Gaussian potential surfaces. CVDPM(n) is able to reproduce accurate results with a much lower order of approximation than is required by real valued quantum trajectory methods, from initial wave packet energies ranging from the tunneling case (Eo = 0) to high energy cases (twice the barrier height). We successfully extended CVDPM(n) to two-dimensional problems (one translational degree of freedom representing an Eckart or Gaussian barrier coupled to a vibrational degree of freedom) in the Lagrangian framework with great success. CVDPM helps to explain why barrier scattering from "thick" barriers is a much more well posed problem than barrier scattering from "thin" barriers. Though results in these two cases are in very good agreement with grid methods, the search for an appropriate set of initial conditions (termed an 'isochrone) from which to launch the trajectories leads to a time-consuming search problem that is reminiscent of the root-searching problem from semi-classical dynamics. In order to circumvent the isochrone problem, we present CVDPM(n) equations of motion which are derived and implemented in the arbitrary Lagrangian-Eulerian frame for a metastable potential as well as the Eckart and Gaussian surfaces. In this way, the isochrone problem can be circumvented but at the cost of introducing other computational difficulties. In order to understand why CVDPM may give better transmission probabilities than real valued
Quantum streamlines within the complex quantum Hamilton-Jacobi formalism
Chou, C.-C.; Wyatt, Robert E.
2008-09-28
Quantum streamlines are investigated in the framework of the quantum Hamilton-Jacobi formalism. The local structures of the quantum momentum function (QMF) and the Polya vector field near a stagnation point or a pole are analyzed. Streamlines near a stagnation point of the QMF may spiral into or away from it, or they may become circles centered on this point or straight lines. Additionally, streamlines near a pole display east-west and north-south opening hyperbolic structure. On the other hand, streamlines near a stagnation point of the Polya vector field for the QMF display general hyperbolic structure, and streamlines near a pole become circles enclosing the pole. Furthermore, the local structures of the QMF and the Polya vector field around a stagnation point are related to the first derivative of the QMF; however, the magnitude of the asymptotic structures for these two fields near a pole depends only on the order of the node in the wave function. Two nonstationary states constructed from the eigenstates of the harmonic oscillator are used to illustrate the local structures of these two fields and the dynamics of the streamlines near a stagnation point or a pole. This study presents the abundant dynamics of the streamlines in the complex space for one-dimensional time-dependent problems.
Quantum streamlines within the complex quantum Hamilton-Jacobi formalism.
Chou, Chia-Chun; Wyatt, Robert E
2008-09-28
Quantum streamlines are investigated in the framework of the quantum Hamilton-Jacobi formalism. The local structures of the quantum momentum function (QMF) and the Polya vector field near a stagnation point or a pole are analyzed. Streamlines near a stagnation point of the QMF may spiral into or away from it, or they may become circles centered on this point or straight lines. Additionally, streamlines near a pole display east-west and north-south opening hyperbolic structure. On the other hand, streamlines near a stagnation point of the Polya vector field for the QMF display general hyperbolic structure, and streamlines near a pole become circles enclosing the pole. Furthermore, the local structures of the QMF and the Polya vector field around a stagnation point are related to the first derivative of the QMF; however, the magnitude of the asymptotic structures for these two fields near a pole depends only on the order of the node in the wave function. Two nonstationary states constructed from the eigenstates of the harmonic oscillator are used to illustrate the local structures of these two fields and the dynamics of the streamlines near a stagnation point or a pole. This study presents the abundant dynamics of the streamlines in the complex space for one-dimensional time-dependent problems. PMID:19045012
On Local Boundary CFT and Non-Local CFT on the Boundary
NASA Astrophysics Data System (ADS)
Rehren, Karl-Henning
The holographic relation between local boundary conformal quantum field theories (BCFT) and their non-local boundary restrictions is reviewed, and non-vacuum BCFT's, whose existence was conjectured previously, are constructed. (Based on joint work [18] with R. Longo.)
Measurement and Information Extraction in Complex Dynamics Quantum Computation
NASA Astrophysics Data System (ADS)
Casati, Giulio; Montangero, Simone
Quantum Information processing has several di.erent applications: some of them can be performed controlling only few qubits simultaneously (e.g. quantum teleportation or quantum cryptography) [1]. Usually, the transmission of large amount of information is performed repeating several times the scheme implemented for few qubits. However, to exploit the advantages of quantum computation, the simultaneous control of many qubits is unavoidable [2]. This situation increases the experimental di.culties of quantum computing: maintaining quantum coherence in a large quantum system is a di.cult task. Indeed a quantum computer is a many-body complex system and decoherence, due to the interaction with the external world, will eventually corrupt any quantum computation. Moreover, internal static imperfections can lead to quantum chaos in the quantum register thus destroying computer operability [3]. Indeed, as it has been shown in [4], a critical imperfection strength exists above which the quantum register thermalizes and quantum computation becomes impossible. We showed such e.ects on a quantum computer performing an e.cient algorithm to simulate complex quantum dynamics [5,6].
Complex flows in granular and quantum systems
NASA Astrophysics Data System (ADS)
Herrera, Mark Richard
In this thesis we investigate three problems involving complex flows in granular and quantum systems. (a) We first study the dynamics of granular particles in a split-bottom shear cell experiment. We utilize network theory to quantify the dynamics of the granular system at the mesoscopic scale. We find an apparent phase transition in the formation of a giant component of broken links as a function of applied shear. These results are compared to a numerical model where breakages are based on the amount of local stretching in the granular pile. (b) Moving to quantum mechanical systems, we study revival and echo phenomena in systems of anharmonically confined atoms, and find a novel phenomena we call the "pre-revival echo". We study the effect of size and symmetry of the perturbations on the various echoes and revivals, and form a perturbative model to describe the phenomena. We then model the effect of interactions using the Gross-Pitaevskii Equation and study interactions' effect on the revivals. (c) Lastly, we continue to study the effect of interactions on particles in weakly anharmonic traps. We numerically observe a "dynamical localization" phenomena in the presence of both anharmonicity and interactions. States may remain localized or become spread out in the potential depending on the strength and sign of the anharmonicity and interactions. We formulate a model for this phenomena in terms of a classical phase space.
Focus on coherent control of complex quantum systems
NASA Astrophysics Data System (ADS)
Whaley, Birgitta; Milburn, Gerard
2015-10-01
The rapid growth of quantum information sciences over the past few decades has fueled a corresponding rise in high profile applications in fields such as metrology, sensors, spintronics, and attosecond dynamics, in addition to quantum information processing. Realizing this potential of today’s quantum science and the novel technologies based on this requires a high degree of coherent control of quantum systems. While early efforts in systematizing methods for high fidelity quantum control focused on isolated or closed quantum systems, recent advances in experimental design, measurement and monitoring, have stimulated both need and interest in the control of complex or large scale quantum systems that may also be coupled to an interactive environment or reservoir. This focus issue brings together new theoretical and experimental work addressing the formulation and implementation of quantum control for a broad range of applications in quantum science and technology today.
Quantum communication complexity advantage implies violation of a Bell inequality.
Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii
2016-03-22
We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs. PMID:26957600
Quantum communication complexity advantage implies violation of a Bell inequality
NASA Astrophysics Data System (ADS)
Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii
2016-03-01
We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs.
Complex quantum network geometries: Evolution and phase transitions
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph; Wu, Zhihao
2015-08-01
Networks are topological and geometric structures used to describe systems as different as the Internet, the brain, or the quantum structure of space-time. Here we define complex quantum network geometries, describing the underlying structure of growing simplicial 2-complexes, i.e., simplicial complexes formed by triangles. These networks are geometric networks with energies of the links that grow according to a nonequilibrium dynamics. The evolution in time of the geometric networks is a classical evolution describing a given path of a path integral defining the evolution of quantum network states. The quantum network states are characterized by quantum occupation numbers that can be mapped, respectively, to the nodes, links, and triangles incident to each link of the network. We call the geometric networks describing the evolution of quantum network states the quantum geometric networks. The quantum geometric networks have many properties common to complex networks, including small-world property, high clustering coefficient, high modularity, and scale-free degree distribution. Moreover, they can be distinguished between the Fermi-Dirac network and the Bose-Einstein network obeying, respectively, the Fermi-Dirac and Bose-Einstein statistics. We show that these networks can undergo structural phase transitions where the geometrical properties of the networks change drastically. Finally, we comment on the relation between quantum complex network geometries, spin networks, and triangulations.
Reducing computational complexity of quantum correlations
NASA Astrophysics Data System (ADS)
Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal
2015-12-01
We address the issue of reducing the resource required to compute information-theoretic quantum correlation measures such as quantum discord and quantum work deficit in two qubits and higher-dimensional systems. We show that determination of the quantum correlation measure is possible even if we utilize a restricted set of local measurements. We find that the determination allows us to obtain a closed form of quantum discord and quantum work deficit for several classes of states, with a low error. We show that the computational error caused by the constraint over the complete set of local measurements reduces fast with an increase in the size of the restricted set, implying usefulness of constrained optimization, especially with the increase of dimensions. We perform quantitative analysis to investigate how the error scales with the system size, taking into account a set of plausible constructions of the constrained set. Carrying out a comparative study, we show that the resource required to optimize quantum work deficit is usually higher than that required for quantum discord. We also demonstrate that minimization of quantum discord and quantum work deficit is easier in the case of two-qubit mixed states of fixed ranks and with positive partial transpose in comparison to the corresponding states having nonpositive partial transpose. Applying the methodology to quantum spin models, we show that the constrained optimization can be used with advantage in analyzing such systems in quantum information-theoretic language. For bound entangled states, we show that the error is significantly low when the measurements correspond to the spin observables along the three Cartesian coordinates, and thereby we obtain expressions of quantum discord and quantum work deficit for these bound entangled states.
Exponential rise of dynamical complexity in quantum computing through projections
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-01-01
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once ‘observed’ as outlined above. Conversely, we show that any complex quantum dynamics can be ‘purified’ into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics. PMID:25300692
Apparatus independence in proofs of non-locality
NASA Astrophysics Data System (ADS)
Arntzenius, Frank
1992-12-01
In standard proofs of non-locality in quantum mechanics assumptions regarding the statistical independence of the states of the measuring apparatuses are made. Recently, proofs by A. Elby [1], and by R. Clifton, M. Redhead, and J. Butterfield [2,3] have been put forward in which it is claimed that such assumptions are not needed. In this paper I argue that Elby's proof and the first proof of Clifton, Redhead, and Butterfield are fallacious, and that their second proof, though valid, does make assumptions regarding the statistical independence of apparatus states. I further argue that any valid proof must make assumptions regarding the probabilities of apparatus states.
Consistent theory for causal non-locality beyond the Born's rule
NASA Astrophysics Data System (ADS)
Son, Wonmin
2014-02-01
According to the theory of relativity and causality, a special type of correlation beyond quantum mechanics is possible in principle under the name of a non-local box. The concept has been introduced from the principle of non-locality, which satisfies relativistic causality. In this paper, we show that a correlation leading to the non-local box can be derived consistently if we release one of major axioms in quantum mechanics, Born's rule. This allows us to obtain a theory that in one end of the spectrum agrees with the classical probability and in the other end agrees with the theory of non-local causality. At the same time, we argue that the correlation lies in a space with special mathematical constraints such that a physical realization of the correlation through a probability measure is not possible in one direction of its limit, but is possible in the other limit.
Minimized state complexity of quantum-encoded cryptic processes
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.
2016-05-01
The predictive information required for proper trajectory sampling of a stochastic process can be more efficiently transmitted via a quantum channel than a classical one. This recent discovery allows quantum information processing to drastically reduce the memory necessary to simulate complex classical stochastic processes. It also points to a new perspective on the intrinsic complexity that nature must employ in generating the processes we observe. The quantum advantage increases with codeword length: the length of process sequences used in constructing the quantum communication scheme. In analogy with the classical complexity measure, statistical complexity, we use this reduced communication cost as an entropic measure of state complexity in the quantum representation. Previously difficult to compute, the quantum advantage is expressed here in closed form using spectral decomposition. This allows for efficient numerical computation of the quantum-reduced state complexity at all encoding lengths, including infinite. Additionally, it makes clear how finite-codeword reduction in state complexity is controlled by the classical process's cryptic order, and it allows asymptotic analysis of infinite-cryptic-order processes.
Quantum dot-tetrapyrrole complexes as photodynamic therapy agents
NASA Astrophysics Data System (ADS)
Martynenko, Irina; Visheratina, Anastasia; Kuznetsova, Vera; Orlova, Anna; Maslov, Vladimir; Fedorov, Anatoly; Baranov, Alexander
2015-07-01
Photophysical properties of complexes of semiconductor quantum dots with conventional photosensitizers for photodynamic therapy (tetrapyrroles) were investigated. A luminescent study of complexes in aqueous solutions was performed using spectral- and time-resolved luminescence spectroscopy. It was found that increasing the photosensitizer relative concentration in complexes resulted in sharp drop of the nonradiative energy transfer efficiency and the quantum yield of the photosensitizer photoluminescence. This fact indicates that additional channels of nonradiative energy dissipation may take place in the complexes. Using complexes of Al(OH)-sulphophthalocyanine with CdSe/ZnS quantum dots in the aqueous solution as an typical example, we have demonstrated that new channels of the energy dissipation may arise due to aggregation of the photosensitizer molecules upon formation of the complexes with quantum dots. We also demonstrated that use of methods of complex formation preventing aggregation of photosensitizers allows to conserve the high energy transfer efficiency and quantum yield of the acceptor photoluminescence in complexes in wide range of the photosensitizer concentrations. We believe that our study allows obtaining new information about the physical mechanisms of nonradiative energy transfer in quantum dots-tetrapyrrole complexes perspective for photodynamic therapy.
Complexity of the Quantum Adiabatic Algorithm
NASA Technical Reports Server (NTRS)
Hen, Itay
2013-01-01
The Quantum Adiabatic Algorithm (QAA) has been proposed as a mechanism for efficiently solving optimization problems on a quantum computer. Since adiabatic computation is analog in nature and does not require the design and use of quantum gates, it can be thought of as a simpler and perhaps more profound method for performing quantum computations that might also be easier to implement experimentally. While these features have generated substantial research in QAA, to date there is still a lack of solid evidence that the algorithm can outperform classical optimization algorithms.
Measuring non-local Lagrangian peak bias
NASA Astrophysics Data System (ADS)
Biagetti, Matteo; Chan, Kwan Chuen; Desjacques, Vincent; Paranjape, Aseem
2014-06-01
We investigate non-local Lagrangian bias contributions involving gradients of the linear density field, for which we have predictions from the excursion set peak formalism. We begin by writing down a bias expansion which includes all the bias terms, including the non-local ones. Having checked that the model furnishes a reasonable fit to the halo mass function, we develop a one-point cross-correlation technique to measure bias factors associated with χ2-distributed quantities. We validate the method with numerical realizations of peaks of Gaussian random fields before we apply it to N-body simulations. We focus on the lowest (quadratic) order non-local contributions -2χ _{10}(k_1\\cdot k_2) and χ _{01}[3(k_1\\cdot k_2)^2-k_1^2 k_2^2], where k_1, k_2 are wave modes. We can reproduce our measurement of χ10 if we allow for an offset between the Lagrangian halo centre-of-mass and the peak position. The sign and magnitude of χ10 is consistent with Lagrangian haloes sitting near linear density maxima. The resulting contribution to the halo bias can safely be ignored for M = 1013 M⊙ h-1, but could become relevant at larger halo masses. For the second non-local bias χ01 however, we measure a much larger magnitude than predicted by our model. We speculate that some of this discrepancy might originate from non-local Lagrangian contributions induced by non-spherical collapse.
Non-local MRI denoising using random sampling.
Hu, Jinrong; Zhou, Jiliu; Wu, Xi
2016-09-01
In this paper, we propose a random sampling non-local mean (SNLM) algorithm to eliminate noise in 3D MRI datasets. Non-local means (NLM) algorithms have been implemented efficiently for MRI denoising, but are always limited by high computational complexity. Compared to conventional methods, which raster through the entire search window when computing similarity weights, the proposed SNLM algorithm randomly selects a small subset of voxels which dramatically decreases the computational burden, together with competitive denoising result. Moreover, structure tensor which encapsulates high-order information was introduced as an optimal sampling pattern for further improvement. Numerical experiments demonstrated that the proposed SNLM method can get a good balance between denoising quality and computation efficiency. At a relative sampling ratio (i.e. ξ=0.05), SNLM can remove noise as effectively as full NLM, meanwhile the running time can be reduced to 1/20 of NLM's. PMID:27114338
Cui, Yiqian; Shi, Junyou; Wang, Zili
2015-11-01
Quantum Neural Networks (QNN) models have attracted great attention since it innovates a new neural computing manner based on quantum entanglement. However, the existing QNN models are mainly based on the real quantum operations, and the potential of quantum entanglement is not fully exploited. In this paper, we proposes a novel quantum neuron model called Complex Quantum Neuron (CQN) that realizes a deep quantum entanglement. Also, a novel hybrid networks model Complex Rotation Quantum Dynamic Neural Networks (CRQDNN) is proposed based on Complex Quantum Neuron (CQN). CRQDNN is a three layer model with both CQN and classical neurons. An infinite impulse response (IIR) filter is embedded in the Networks model to enable the memory function to process time series inputs. The Levenberg-Marquardt (LM) algorithm is used for fast parameter learning. The networks model is developed to conduct time series predictions. Two application studies are done in this paper, including the chaotic time series prediction and electronic remaining useful life (RUL) prediction. PMID:26277609
Switching non-local vector median filter
NASA Astrophysics Data System (ADS)
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2016-04-01
This paper describes a novel image filtering method that removes random-valued impulse noise superimposed on a natural color image. In impulse noise removal, it is essential to employ a switching-type filtering method, as used in the well-known switching median filter, to preserve the detail of an original image with good quality. In color image filtering, it is generally preferable to deal with the red (R), green (G), and blue (B) components of each pixel of a color image as elements of a vectorized signal, as in the well-known vector median filter, rather than as component-wise signals to prevent a color shift after filtering. By taking these fundamentals into consideration, we propose a switching-type vector median filter with non-local processing that mainly consists of a noise detector and a noise removal filter. Concretely, we propose a noise detector that proactively detects noise-corrupted pixels by focusing attention on the isolation tendencies of pixels of interest not in an input image but in difference images between RGB components. Furthermore, as the noise removal filter, we propose an extended version of the non-local median filter, we proposed previously for grayscale image processing, named the non-local vector median filter, which is designed for color image processing. The proposed method realizes a superior balance between the preservation of detail and impulse noise removal by proactive noise detection and non-local switching vector median filtering, respectively. The effectiveness and validity of the proposed method are verified in a series of experiments using natural color images.
Complex Wavelet Transform of the Two-mode Quantum States
NASA Astrophysics Data System (ADS)
Song, Jun; Zhou, Jun; Yuan, Hao; He, Rui; Fan, Hong-Yi
2016-08-01
By employing the bipartite entangled state representation and the technique of integration within an ordered product of operators, the classical complex wavelet transform of a complex signal function can be recast to a matrix element of the squeezing-displacing operator U 2( μ, σ) between the mother wavelet vector < ψ| and the two-mode quantum state vector | f> to be transformed. < ψ| U 2( μ, σ)| f> can be considered as the spectrum for analyzing the two-mode quantum state | f>. In this way, for some typical two-mode quantum states, such as two-mode coherent state and two-mode Fock state, we derive the complex wavelet transform spectrum and carry out the numerical calculation. This kind of wavelet-transform spectrum can be used to recognize quantum states.
NASA Astrophysics Data System (ADS)
Glick, Aaron; Carr, Lincoln; Calarco, Tommaso; Montangero, Simone
2014-03-01
In order to investigate the emergence of complexity in quantum systems, we present a quantum game of life, inspired by Conway's classic game of life. Through Matrix Product State (MPS) calculations, we simulate the evolution of quantum systems, dictated by a Hamiltonian that defines the rules of our quantum game. We analyze the system through a number of measures which elicit the emergence of complexity in terms of spatial organization, system dynamics, and non-local mutual information within the network. Funded by NSF
Identifying the quantum correlations in light-harvesting complexes
Bradler, Kamil; Wilde, Mark M.; Vinjanampathy, Sai; Uskov, Dmitry B.
2010-12-15
One of the major efforts in the quantum biological program is to subject biological systems to standard tests or measures of quantumness. These tests and measures should elucidate whether nontrivial quantum effects may be present in biological systems. Two such measures of quantum correlations are the quantum discord and the relative entropy of entanglement. Here, we show that the relative entropy of entanglement admits a simple analytic form when dynamics and accessible degrees of freedom are restricted to a zero- and single-excitation subspace. We also simulate and calculate the amount of quantum discord that is present in the Fenna-Matthews-Olson protein complex during the transfer of an excitation from a chlorosome antenna to a reaction center. We find that the single-excitation quantum discord and single-excitation relative entropy of entanglement are equal for all of our numerical simulations, but a proof of their general equality for this setting evades us for now. Also, some of our simulations demonstrate that the relative entropy of entanglement without the single-excitation restriction is much lower than the quantum discord. The first picosecond of dynamics is the relevant time scale for the transfer of the excitation, according to some sources in the literature. Our simulation results indicate that quantum correlations contribute a significant fraction of the total correlation during this first picosecond in many cases, at both cryogenic and physiological temperatures.
Retro-causation, Minimum Contradictions and Non-locality
NASA Astrophysics Data System (ADS)
Kafatos, Menas; Nassikas, Athanassios A.
2011-11-01
Retro-causation has been experimentally verified by Bem and proposed by Kafatos in the form of space-time non-locality in the quantum framework. Every theory includes, beyond its specific axioms, the principles of logical communication (logical language), through which it is defined. This communication obeys the Aristotelian logic (Classical Logic), the Leibniz Sufficient Reason Principle, and a hidden axiom, which basically states that there is anterior-posterior relationship everywhere in communication. By means of a theorem discussed here, it can be proved that the communication mentioned implies contradictory statements, which can only be transcended through silence, i.e. the absence of any statements. Moreover, the breaking of silence is meaningful through the claim for minimum contradictions, which implies the existence of both a logical and an illogical dimension; contradictions refer to causality, implying its opposite, namely retro-causation, and the anterior posterior axiom, implying space-time non-locality. The purpose of this paper is to outline a framework accounting for retro-causation, through both purely theoretical and reality based points of view.
Thermal Quantum Correlations in Photosynthetic Light-Harvesting Complexes
NASA Astrophysics Data System (ADS)
Mahdian, M.; Kouhestani, H.
2015-08-01
Photosynthesis is one of the ancient biological processes, playing crucial role converting solar energy to cellular usable currency. Environmental factors and external perturbations has forced nature to choose systems with the highest efficiency and performance. Recent theoretical and experimental studies have proved the presence of quantum properties in biological systems. Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum entanglement between sites of Bacteriophylla molecules in protein environment and presence of decoherence. Complex biological systems implement more truthful mechanisms beside chemical-quantum correlations to assure system's efficiency. In this study we investigate thermal quantum correlations in FMO protein of the photosynthetic apparatus of green sulfur bacteria by quantum discord measure. The results confirmed existence of remarkable quantum correlations of of BChla pigments in room temperature. This results approve involvement of quantum correlation mechanisms for information storage and retention in living organisms that could be useful for further evolutionary studies. Inspired idea of this study is potentially interesting to practice by the same procedure in genetic data transfer mechanisms.
Complex quantum networks as structured environments: engineering and probing
Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki
2016-01-01
We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity. PMID:27230125
Complex quantum networks as structured environments: engineering and probing
NASA Astrophysics Data System (ADS)
Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki
2016-05-01
We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity.
Complex quantum networks as structured environments: engineering and probing.
Nokkala, Johannes; Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina; Piilo, Jyrki
2016-01-01
We consider structured environments modeled by bosonic quantum networks and investigate the probing of their spectral density, structure, and topology. We demonstrate how to engineer a desired spectral density by changing the network structure. Our results show that the spectral density can be very accurately detected via a locally immersed quantum probe for virtually any network configuration. Moreover, we show how the entire network structure can be reconstructed by using a single quantum probe. We illustrate our findings presenting examples of spectral densities and topology probing for networks of genuine complexity. PMID:27230125
Switching non-local median filter
NASA Astrophysics Data System (ADS)
Matsuoka, Jyohei; Koga, Takanori; Suetake, Noriaki; Uchino, Eiji
2015-06-01
This paper describes a novel image filtering method for removal of random-valued impulse noise superimposed on grayscale images. Generally, it is well known that switching-type median filters are effective for impulse noise removal. In this paper, we propose a more sophisticated switching-type impulse noise removal method in terms of detail-preserving performance. Specifically, the noise detector of the proposed method finds out noise-corrupted pixels by focusing attention on the difference between the value of a pixel of interest (POI) and the median of its neighboring pixel values, and on the POI's isolation tendency from the surrounding pixels. Furthermore, the removal of the detected noise is performed by the newly proposed median filter based on non-local processing, which has superior detail-preservation capability compared to the conventional median filter. The effectiveness and the validity of the proposed method are verified by some experiments using natural grayscale images.
Limited-path-length entanglement percolation in quantum complex networks
NASA Astrophysics Data System (ADS)
Cuquet, Martí; Calsamiglia, John
2011-03-01
We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.
Non-locality Sudden Death in Tripartite Systems
Jaeger, Gregg; Ann, Kevin
2009-03-10
Bell non-locality sudden death is the disappearance of non-local properties in finite times under local phase noise, which decoheres states only in the infinite-time limit. We consider the relationship between decoherence, disentanglement, and Bell non-locality sudden death in bipartite and tripartite systems in specific large classes of state preparation.
Applications of fidelity measures to complex quantum systems.
Wimberger, Sandro
2016-06-13
We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space. PMID:27140967
Quantum simulations of small electron-hole complexes
Lee, M.A.; Kalia, R.K.; Vashishta, P.D.
1984-09-01
The Green's Function Monte Carlo method is applied to the calculation of the binding energies of electron-hole complexes in semiconductors. The quantum simulation method allows the unambiguous determination of the ground state energy and the effects of band anisotropy on the binding energy. 22 refs., 1 fig.
Network geometry with flavor: From complexity to quantum geometry
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but
Network geometry with flavor: From complexity to quantum geometry.
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its
Probing non local order parameters in highly correlated Bose insulators
NASA Astrophysics Data System (ADS)
Altman, Ehud
2008-03-01
Ground states of integer spin chains are known since the late 80's to sustain highly non local order described by infinite string operators of the spins. Such states defy the usual Landau theory description and can be considered simple prototypes of topological order. Recently we showed that spinless Bose insulators with nearest neighbor or longer range repulsion in one dimension can exhibit similar string order in terms of the boson density [1]. The tunability of cold atomic systems would allow much more flexibility in probing the non local order than spin systems do. For example the bosons can be tuned across a quantum phase transition between the exotic insulator, which we term Haldane insulator, and the usual Mott insulator. Investigating how the transition responds to external perturbations lends direct access to properties of the string order parameter. I will demonstrate this with several new results obtained from a field theoretic description of the phases and confirmed by numerical calculations using DMRG. Particularly revealing of the unusual character of the string order is the prediction that any external perturbation, which breaks the lattice inversion symmetry, would eliminate the distinction between the Haldane and Mott phases and allow a fully gapped adiabatic connection between them. This is remarkable given that neither phase involves spontaneous breaking of lattice inversion symmetry. We also predict that inter-chain tunneling destroys the direct phase transition between the two insulators by establishing an intermediate superfluid phase. Finally I will discuss how the new phases and phase transitions may be realized and probed in actual experiments with ultra cold atoms or polar molecules. [1] E. G. Dalla Torre, E. Berg and E. Altman, Phys. Rev. Lett. 97, 260401 (2006)
Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit.
Buchmann, L F; Schreppler, S; Kohler, J; Spethmann, N; Stamper-Kurn, D M
2016-07-15
A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation. PMID:27472106
Complex Squeezing and Force Measurement Beyond the Standard Quantum Limit
NASA Astrophysics Data System (ADS)
Buchmann, L. F.; Schreppler, S.; Kohler, J.; Spethmann, N.; Stamper-Kurn, D. M.
2016-07-01
A continuous quantum field, such as a propagating beam of light, may be characterized by a squeezing spectrum that is inhomogeneous in frequency. We point out that homodyne detectors, which are commonly employed to detect quantum squeezing, are blind to squeezing spectra in which the correlation between amplitude and phase fluctuations is complex. We find theoretically that such complex squeezing is a component of ponderomotive squeezing of light through cavity optomechanics. We propose a detection scheme called synodyne detection, which reveals complex squeezing and allows the accounting of measurement backaction. Even with the optomechanical system subject to continuous measurement, such detection allows the measurement of one component of an external force with sensitivity only limited by the mechanical oscillator's thermal occupation.
Quantum ferroelectricity in charge-transfer complex crystals
Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori
2015-01-01
Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4–n bromine substituents (QBr4–nIn, n=0–4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF–QBr2I2 exhibits a ferroelectric neutral–ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral–ionic transition compounds, such as well-known ferroelectric complex of TTF–QCl4 and quantum antiferroelectric of dimethyl–TTF–QBr4. By contrast, TTF–QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656
Quantum ferroelectricity in charge-transfer complex crystals.
Horiuchi, Sachio; Kobayashi, Kensuke; Kumai, Reiji; Minami, Nao; Kagawa, Fumitaka; Tokura, Yoshinori
2015-01-01
Quantum phase transition achieved by fine tuning the continuous phase transition down to zero kelvin is a challenge for solid state science. Critical phenomena distinct from the effects of thermal fluctuations can materialize when the electronic, structural or magnetic long-range order is perturbed by quantum fluctuations between degenerate ground states. Here we have developed chemically pure tetrahalo-p-benzoquinones of n iodine and 4-n bromine substituents (QBr4-nIn, n=0-4) to search for ferroelectric charge-transfer complexes with tetrathiafulvalene (TTF). Among them, TTF-QBr2I2 exhibits a ferroelectric neutral-ionic phase transition, which is continuously controlled over a wide temperature range from near-zero kelvin to room temperature under hydrostatic pressure. Quantum critical behaviour is accompanied by a much larger permittivity than those of other neutral-ionic transition compounds, such as well-known ferroelectric complex of TTF-QCl4 and quantum antiferroelectric of dimethyl-TTF-QBr4. By contrast, TTF-QBr3I complex, another member of this compound family, shows complete suppression of the ferroelectric spin-Peierls-type phase transition. PMID:26076656
Quantum trajectories in complex phase space: multidimensional barrier transmission.
Wyatt, Robert E; Rowland, Brad A
2007-07-28
The quantum Hamilton-Jacobi equation for the action function is approximately solved by propagating individual Lagrangian quantum trajectories in complex-valued phase space. Equations of motion for these trajectories are derived through use of the derivative propagation method (DPM), which leads to a hierarchy of coupled differential equations for the action function and its spatial derivatives along each trajectory. In this study, complex-valued classical trajectories (second order DPM), along which is transported quantum phase information, are used to study low energy barrier transmission for a model two-dimensional system involving either an Eckart or Gaussian barrier along the reaction coordinate coupled to a harmonic oscillator. The arrival time for trajectories to reach the transmitted (product) region is studied. Trajectories launched from an "equal arrival time surface," defined as an isochrone, all reach the real-valued subspace in the transmitted region at the same time. The Rutherford-type diffraction of trajectories around poles in the complex extended Eckart potential energy surface is described. For thin barriers, these poles are close to the real axis and present problems for computing the transmitted density. In contrast, for the Gaussian barrier or the thick Eckart barrier where the poles are further from the real axis, smooth transmitted densities are obtained. Results obtained using higher-order quantum trajectories (third order DPM) are described for both thick and thin barriers, and some issues that arise for thin barriers are examined. PMID:17672677
On the complexity of search for keys in quantum cryptography
NASA Astrophysics Data System (ADS)
Molotkov, S. N.
2016-03-01
The trace distance is used as a security criterion in proofs of security of keys in quantum cryptography. Some authors doubted that this criterion can be reduced to criteria used in classical cryptography. The following question has been answered in this work. Let a quantum cryptography system provide an ɛ-secure key such that ½‖ρ XE - ρ U ⊗ ρ E ‖1 < ɛ, which will be repeatedly used in classical encryption algorithms. To what extent does the ɛ-secure key reduce the number of search steps (guesswork) as compared to the use of ideal keys? A direct relation has been demonstrated between the complexity of the complete consideration of keys, which is one of the main security criteria in classical systems, and the trace distance used in quantum cryptography. Bounds for the minimum and maximum numbers of search steps for the determination of the actual key have been presented.
Quantum Non-Locality and the Mathematical Representation of Experience
NASA Astrophysics Data System (ADS)
Fano, Vincenzo
2006-06-01
Four possible solutions of the Kantian problem "how the mathematisation of experience is possible?" are presented: Platonism, critical materialism, operationism and empiricism. Then the experimental violation of Bell's inequality is discussed. To avoid the proof of Bell's inequality, it is possible to deny different conditions, but experiments support only the refutation of factorizability as a whole. It is argued that this implies a confirmation of the empiricist's point of view.
Quantum Reality, Complex Numbers, and the Meteorological Butterfly Effect.
NASA Astrophysics Data System (ADS)
Palmer, T. N.
2005-04-01
Meteorology is a wonderfully interdisciplinary subject. But can nonlinear thinking about predictability of weather and climate contribute usefully to issues in fundamental physics? Although this might seem extremely unlikely at first sight, an attempt is made to answer the question positively. The long-standing conceptual problems of quantum theory are outlined, focusing on indeterminacy and nonlocal causality, problems that led Einstein to reject quantum mechanics as a fundamental theory of physics (a glossary of some of the key terms used in this paper is given in the sidebar). These conceptual problems are considered in the light of both low-order chaos and the more radical (and less well known) paradigm of the finite-time predictability horizon associated with the self-similar upscale cascade of uncertainty in a turbulent fluid. The analysis of these dynamical systems calls into doubt one of the key pieces of logic used in quantum nonlocality theorems: that of counterfactual reasoning. By considering an idealization of the upscale cascade (which provides a novel representation of complex numbers and quaternions), a case is made for reinterpreting the quantum wave function as a set of intricately encoded binary sequences. In this reinterpretation, it is argued that the quantum world has no need for dice-playing deities, undead cats, multiple universes, or “spooky action at a distance.”
Embracing Chaos and Complexity: A Quantum Change for Public Health
Resnicow, Kenneth; Page, Scott E.
2008-01-01
Public health research and practice have been guided by a cognitive, rational paradigm where inputs produce linear, predictable changes in outputs. However, the conceptual and statistical assumptions underlying this paradigm may be flawed. In particular, this perspective does not adequately account for nonlinear and quantum influences on human behavior. We propose that health behavior change is better understood through the lens of chaos theory and complex adaptive systems. Key relevant principles include that behavior change (1) is often a quantum event; (2) can resemble a chaotic process that is sensitive to initial conditions, highly variable, and difficult to predict; and (3) occurs within a complex adaptive system with multiple components, where results are often greater than the sum of their parts. PMID:18556599
ACCELERATED MRI USING ITERATIVE NON-LOCAL SHRINKAGE
Mohsin, Yasir Q.; Ongie, Gregory; Jacob, Mathews
2015-01-01
We introduce a fast iterative non-local shrinkage algorithm to recover MRI data from undersampled Fourier measurements. This approach is enabled by the reformulation of current non-local schemes as an alternating algorithm to minimize a global criterion. The proposed algorithm alternates between a non-local shrinkage step and a quadratic subproblem. The resulting algorithm is observed to be considerably faster than current alternating non-local algorithms. We use efficient continuation strategies to minimize local minima issues. The comparisons of the proposed scheme with state-of-the-art regularization schemes show a considerable reduction in alias artifacts and preservation of edges. PMID:25570265
What can quantum optics say about computational complexity theory?
Rahimi-Keshari, Saleh; Lund, Austin P; Ralph, Timothy C
2015-02-13
Considering the problem of sampling from the output photon-counting probability distribution of a linear-optical network for input Gaussian states, we obtain results that are of interest from both quantum theory and the computational complexity theory point of view. We derive a general formula for calculating the output probabilities, and by considering input thermal states, we show that the output probabilities are proportional to permanents of positive-semidefinite Hermitian matrices. It is believed that approximating permanents of complex matrices in general is a #P-hard problem. However, we show that these permanents can be approximated with an algorithm in the BPP^{NP} complexity class, as there exists an efficient classical algorithm for sampling from the output probability distribution. We further consider input squeezed-vacuum states and discuss the complexity of sampling from the probability distribution at the output. PMID:25723196
Black supernovae and black holes in non-local gravity
NASA Astrophysics Data System (ADS)
Bambi, Cosimo; Malafarina, Daniele; Modesto, Leonardo
2016-04-01
In a previous paper, we studied the interior solution of a collapsing body in a non-local theory of gravity super-renormalizable at the quantum level. We found that the classical singularity is replaced by a bounce, after which the body starts expanding. A black hole, strictly speaking, never forms. The gravitational collapse does not create an event horizon but only an apparent one for a finite time. In this paper, we solve the equations of motion assuming that the exterior solution is static. With such an assumption, we are able to reconstruct the solution in the whole spacetime, namely in both the exterior and interior regions. Now the gravitational collapse creates an event horizon in a finite comoving time, but the central singularity is approached in an infinite time. We argue that these black holes should be unstable, providing a link between the scenarios with and without black holes. Indeed, we find a non catastrophic ghost-instability of the metric in the exterior region. Interestingly, under certain conditions, the lifetime of our black holes exactly scales as the Hawking evaporation time.
Rooted-tree network for optimal non-local gate implementation
NASA Astrophysics Data System (ADS)
Vyas, Nilesh; Saha, Debashis; Panigrahi, Prasanta K.
2016-06-01
A general quantum network for implementing non-local control-unitary gates, between remote parties at minimal entanglement cost, is shown to be a rooted-tree structure. Starting from a five-party scenario, we demonstrate the local implementation of simultaneous class of control-unitary(Hermitian) and multiparty control-unitary gates in an arbitrary n-party network. Previously, established networks are turned out to be special cases of this general construct.
Computational complexity of nonequilibrium steady states of quantum spin chains
NASA Astrophysics Data System (ADS)
Marzolino, Ugo; Prosen, Tomaž
2016-03-01
We study nonequilibrium steady states (NESS) of spin chains with boundary Markovian dissipation from the computational complexity point of view. We focus on X X chains whose NESS are matrix product operators, i.e., with coefficients of a tensor operator basis described by transition amplitudes in an auxiliary space. Encoding quantum algorithms in the auxiliary space, we show that estimating expectations of operators, being local in the sense that each acts on disjoint sets of few spins covering all the system, provides the answers of problems at least as hard as, and believed by many computer scientists to be much harder than, those solved by quantum computers. We draw conclusions on the hardness of the above estimations.
Non-Markovian Complexity in the Quantum-to-Classical Transition
NASA Astrophysics Data System (ADS)
Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco
2015-08-01
The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free.
Non-Markovian Complexity in the Quantum-to-Classical Transition
Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco
2015-01-01
The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002
Upper bounds on quantum uncertainty products and complexity measures
NASA Astrophysics Data System (ADS)
Guerrero, Ángel; Sánchez-Moreno, Pablo; Dehesa, Jesús S.
2011-10-01
The position-momentum Shannon and Rényi uncertainty products of general quantum systems are shown to be bounded not only from below (through the known uncertainty relations), but also from above in terms of the Heisenberg-Kennard product
Upper bounds on quantum uncertainty products and complexity measures
Guerrero, Angel; Sanchez-Moreno, Pablo; Dehesa, Jesus S.
2011-10-15
The position-momentum Shannon and Renyi uncertainty products of general quantum systems are shown to be bounded not only from below (through the known uncertainty relations), but also from above in terms of the Heisenberg-Kennard product . Moreover, the Cramer-Rao, Fisher-Shannon, and Lopez-Ruiz, Mancini, and Calbet shape measures of complexity (whose lower bounds have been recently found) are also bounded from above. The improvement of these bounds for systems subject to spherically symmetric potentials is also explicitly given. Finally, applications to hydrogenic and oscillator-like systems are done.
Tests of non-local interferences in kaon physics at asymmetric {phi}-factories
Eberhard, P.H.
1993-04-16
Tests of non-local interference effects in the two-kaon system are proposed. The first kind of tests consists of measuring the amount of destructive interference between K{sub S} {yields} K{sub L} regeneration processes of two distant kaons. The second kind deals with constructive interference. These tests could be performed at an asymmetric {phi}-factory. Estimates are given of the number of events predicted by orthodox quantum mechanics and kaon regeneration theory in various suitable experimental conditions. The impact on local theories if the predictions of quantum mechanics hold is discussed.
Tests of non-local interferences in kaon physics at asymmetric [phi]-factories
Eberhard, P.H.
1993-04-16
Tests of non-local interference effects in the two-kaon system are proposed. The first kind of tests consists of measuring the amount of destructive interference between K[sub S] [yields] K[sub L] regeneration processes of two distant kaons. The second kind deals with constructive interference. These tests could be performed at an asymmetric [phi]-factory. Estimates are given of the number of events predicted by orthodox quantum mechanics and kaon regeneration theory in various suitable experimental conditions. The impact on local theories if the predictions of quantum mechanics hold is discussed.
Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes
NASA Astrophysics Data System (ADS)
Gromova, Yulia A.; Orlova, Anna O.; Maslov, Vladimir G.; Fedorov, Anatoly V.; Baranov, Alexander V.
2013-10-01
Fluorescence resonance energy transfer in complexes of semiconductor CdSe/ZnS quantum dots with molecules of heterocyclic azo dyes, 1-(2-pyridylazo)-2-naphthol and 4-(2-pyridylazo) resorcinol, formed at high quantum dot concentration in the polymer pore track membranes were studied by steady-state and transient PL spectroscopy. The effect of interaction between the complexes and free quantum dots on the efficiency of the fluorescence energy transfer and quantum dot luminescence quenching was found and discussed.
Effect of the interface resistance in non-local Hanle measurements
Villamor, Estitxu; Hueso, Luis E.; Casanova, Fèlix
2015-06-14
We use lateral spin valves with varying interface resistance to measure non-local Hanle effect in order to extract the spin-diffusion length of the non-magnetic channel. A general expression that describes spin injection and transport, taking into account the influence of the interface resistance, is used to fit our results. Whereas the fitted spin-diffusion length value is in agreement with the one obtained from standard non-local measurements in the case of a finite interface resistance, in the case of transparent contacts a clear disagreement is observed. The use of a corrected expression, recently proposed to account for the anisotropy of the spin absorption at the ferromagnetic electrodes, still yields a deviation of the fitted spin-diffusion length which increases for shorter channel distances. This deviation shows how sensitive the non-local Hanle fittings are, evidencing the complexity of obtaining spin transport information from such type of measurements.
Electron Transfer Reactions in Colloidal Quantum Dot-Ligand Complexes
NASA Astrophysics Data System (ADS)
Morris-Cohen, Adam Joshua
This thesis describes a quantitative analysis of the chemical composition of colloidal II-VI quantum dot (QD)-ligand complexes and transient absorption experiments analyzing the rates of electron transfer reactions in these complexes functionalized with redox active ligands. Chemical analysis reveals that phosphonate impurities in the surfactants used to synthesize CdSe QDs are the dominant ligands on the surface of the QDs, and these phosphonate impurities cause size-dependent Cd-enrichment of the QD surface. A study of the adsorption equilibrium of solution-phase CdS quantum dots and acid-derivatized viologen ligands (V2+) reveals that the structure of the surfaces of the QDs depends on the concentration of the QDs. A new model based on the Langmuir isotherm that treats both the number of adsorbed ligands per QD and the number of available binding sites per QD as binomially-distributed quantities is described. Transient absorption spectroscopy of solution-phase mixtures of colloidal CdS QDs and V2+ indicates electron transfer occurs from the conduction band of the QD to the LUMO of V2+. The rate constant for photoinduced electron transfer (PET) is independent of the number of methylene groups in the alkyl chain on the acid-derivatized viologen. The insensitivity of the electron transfer rate constant to the length of the functional groups on the viologen suggests a van der Waals (vdW) pathway for PET, where the electron bypasses the alkylcarboxylate and tunnels through the orbitals of the QD and of the bipyridinium core. The rate of PET from colloidal CdSe quantum dots (QDs) to oxo-centered triruthenium clusters (Ru 3O) depends on the structure of the chemical headgroup by which the Ru3O clusters adsorb to the QDs. Complexes comprising QDs and Ru 3O clusters adsorbed through a pyridine-4-carboxylic acid ligand have a PET rate constant of (4.9 ± 0.9)×109 s -1 whereas complexes comprising QDs and Ru3O clusters adsorbed through a 4-mercaptopyridine ligand have an
Quantum Computer Games: Quantum Minesweeper
ERIC Educational Resources Information Center
Gordon, Michal; Gordon, Goren
2010-01-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…
Non-local F(R)-mimetic gravity
NASA Astrophysics Data System (ADS)
Myrzakulov, Ratbay; Sebastiani, Lorenzo
2016-06-01
In this paper, we study non-local F(R)-mimetic gravity. We implement mimetic gravity in the framework of non-local F(R)-theories of gravity. Given some specific class of models and using a potential on the mimetic field, we investigate some scenarios related to the early-time universe, namely the inflation and the cosmological bounce, which bring to Einstein's gravity with cold dark matter at the late-time.
Universality at Breakdown of Quantum Transport on Complex Networks
NASA Astrophysics Data System (ADS)
Kulvelis, Nikolaj; Dolgushev, Maxim; Mülken, Oliver
2015-09-01
We consider single-particle quantum transport on parametrized complex networks. Based on general arguments regarding the spectrum of the corresponding Hamiltonian, we derive bounds for a measure of the global transport efficiency defined by the time-averaged return probability. For treelike networks, we show analytically that a transition from efficient to inefficient transport occurs depending on the (average) functionality of the nodes of the network. In the infinite system size limit, this transition can be characterized by an exponent which is universal for all treelike networks. Our findings are corroborated by analytic results for specific deterministic networks, dendrimers and Vicsek fractals, and by Monte Carlo simulations of iteratively built scale-free trees.
Universality at Breakdown of Quantum Transport on Complex Networks.
Kulvelis, Nikolaj; Dolgushev, Maxim; Mülken, Oliver
2015-09-18
We consider single-particle quantum transport on parametrized complex networks. Based on general arguments regarding the spectrum of the corresponding Hamiltonian, we derive bounds for a measure of the global transport efficiency defined by the time-averaged return probability. For treelike networks, we show analytically that a transition from efficient to inefficient transport occurs depending on the (average) functionality of the nodes of the network. In the infinite system size limit, this transition can be characterized by an exponent which is universal for all treelike networks. Our findings are corroborated by analytic results for specific deterministic networks, dendrimers and Vicsek fractals, and by Monte Carlo simulations of iteratively built scale-free trees. PMID:26430977
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2015-09-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces.
The Complexity of Relating Quantum Channels to Master Equations
NASA Astrophysics Data System (ADS)
Cubitt, Toby S.; Eisert, Jens; Wolf, Michael M.
2012-03-01
Completely positive, trace preserving (CPT) maps and Lindblad master equations are both widely used to describe the dynamics of open quantum systems. The connection between these two descriptions is a classic topic in mathematical physics. One direction was solved by the now famous result due to Lindblad, Kossakowski, Gorini and Sudarshan, who gave a complete characterisation of the master equations that generate completely positive semi-groups. However, the other direction has remained open: given a CPT map, is there a Lindblad master equation that generates it (and if so, can we find its form)? This is sometimes known as the Markovianity problem. Physically, it is asking how one can deduce underlying physical processes from experimental observations. We give a complexity theoretic answer to this problem: it is NP-hard. We also give an explicit algorithm that reduces the problem to integer semi-definite programming, a well-known NP problem. Together, these results imply that resolving the question of which CPT maps can be generated by master equations is tantamount to solving P = NP: any efficiently computable criterion for Markovianity would imply P = NP; whereas a proof that P = NP would imply that our algorithm already gives an efficiently computable criterion. Thus, unless P does equal NP, there cannot exist any simple criterion for determining when a CPT map has a master equation description. However, we also show that if the system dimension is fixed (relevant for current quantum process tomography experiments), then our algorithm scales efficiently in the required precision, allowing an underlying Lindblad master equation to be determined efficiently from even a single snapshot in this case. Our work also leads to similar complexity-theoretic answers to a related long-standing open problem in probability theory.
Quantum Dynamical Behaviour in Complex Systems - A Semiclassical Approach
Ananth, Nandini
2008-01-01
One of the biggest challenges in Chemical Dynamics is describing the behavior of complex systems accurately. Classical MD simulations have evolved to a point where calculations involving thousands of atoms are routinely carried out. Capturing coherence, tunneling and other such quantum effects for these systems, however, has proven considerably harder. Semiclassical methods such as the Initial Value Representation (SC-IVR) provide a practical way to include quantum effects while still utilizing only classical trajectory information. For smaller systems, this method has been proven to be most effective, encouraging the hope that it can be extended to deal with a large number of degrees of freedom. Several variations upon the original idea of the SCIVR have been developed to help make these larger calculations more tractable; these range from the simplest, classical limit form, the Linearized IVR (LSC-IVR) to the quantum limit form, the Exact Forward-Backward version (EFB-IVR). In this thesis a method to tune between these limits is described which allows us to choose exactly which degrees of freedom we wish to treat in a more quantum mechanical fashion and to what extent. This formulation is called the Tuning IVR (TIVR). We further describe methodology being developed to evaluate the prefactor term that appears in the IVR formalism. The regular prefactor is composed of the Monodromy matrices (jacobians of the transformation from initial to finial coordinates and momenta) which are time evolved using the Hessian. Standard MD simulations require the potential surfaces and their gradients, but very rarely is there any information on the second derivative. We would like to be able to carry out the SC-IVR calculation without this information too. With this in mind a finite difference scheme to obtain the Hessian on-the-fly is proposed. Wealso apply the IVR formalism to a few problems of current interest. A method to obtain energy eigenvalues accurately for complex
Quantum trajectories in complex space: one-dimensional stationary scattering problems.
Chou, Chia-Chun; Wyatt, Robert E
2008-04-21
One-dimensional time-independent scattering problems are investigated in the framework of the quantum Hamilton-Jacobi formalism. The equation for the local approximate quantum trajectories near the stagnation point of the quantum momentum function is derived, and the first derivative of the quantum momentum function is related to the local structure of quantum trajectories. Exact complex quantum trajectories are determined for two examples by numerically integrating the equations of motion. For the soft potential step, some particles penetrate into the nonclassical region, and then turn back to the reflection region. For the barrier scattering problem, quantum trajectories may spiral into the attractors or from the repellers in the barrier region. Although the classical potentials extended to complex space show different pole structures for each problem, the quantum potentials present the same second-order pole structure in the reflection region. This paper not only analyzes complex quantum trajectories and the total potentials for these examples but also demonstrates general properties and similar structures of the complex quantum trajectories and the quantum potentials for one-dimensional time-independent scattering problems. PMID:18433189
Non-local magnetoresistance in YIG/Pt nanostructures
Goennenwein, Sebastian T. B. Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans; Schlitz, Richard; Ganzhorn, Kathrin; Althammer, Matthias
2015-10-26
We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.
Jammed Clusters and Non-locality in Dense Granular Flows
NASA Astrophysics Data System (ADS)
Kharel, Prashidha; Rognon, Pierre
We investigate the micro-mechanisms underpinning dense granular flow behaviour from a series of DEM simulations of pure shear flows of dry grains. We observe the development of transient clusters of jammed particles within the flow. Typical size of such clusters is found to scale with the inertial number with a power law that is similar to the scaling of shear-rate profile relaxation lengths observed previously. Based on the simple argument that transient clusters of size l exist in the dense flow regime, the formulation of steady state condition for non-homogeneous shear flow results in a general non-local relation, which is similar in form to the non-local relation conjectured for soft glassy flows. These findings suggest the formation of jammed clusters to be the key micro-mechanism underpinning non-local behaviour in dense granular flows. Particles and Grains Laboratory, School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia.
To the non-local theory of cold nuclear fusion.
Alexeev, Boris V
2014-10-01
In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the 'acoustic CF' could be realized from the position of the non-local hydrodynamics. PMID:26064528
A theory of non-local linear drift wave transport
Moradi, S.; Anderson, J.; Weyssow, B.
2011-06-15
Transport events in turbulent tokamak plasmas often exhibit non-local or non-diffusive action at a distance features that so far have eluded a conclusive theoretical description. In this paper a theory of non-local transport is investigated through a Fokker-Planck equation with fractional velocity derivatives. A dispersion relation for density gradient driven linear drift modes is derived including the effects of the fractional velocity derivative in the Fokker-Planck equation. It is found that a small deviation (a few percent) from the Maxwellian distribution function alters the dispersion relation such that the growth rates are substantially increased and thereby may cause enhanced levels of transport.
Dynamics of Crowd Behaviors: From Complex Plane to Quantum Random Fields
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
The following sections are included: * Complex Plane Dynamics of Crowds and Groups * Introduction * Complex-Valued Dynamics of Crowd and Group Behaviors * Kähler Geometry of Crowd and Group Dynamics * Computer Simulations of Crowds and Croups Dynamics * Braids of Agents' Behaviors in the Complex Plane * Hilbert-Space Control of Crowds and Groups Dynamics * Quantum Random Fields: A Unique Framework for Simulation, Optimization, Control and Learning * Introduction * Adaptive Quantum Oscillator * Optimization and Learning on Banach and Hilbert Spaces * Appendix * Complex-Valued Image Processing * Linear Integral Equations * Riemann-Liouville Fractional Calculus * Rigorous Geometric Quantization * Supervised Machine-Learning Methods * First-Order Logic and Quantum Random Fields
Quantum walks on complex networks with connection instabilities and community structure
Tsomokos, Dimitris I.
2011-05-15
A continuous-time quantum walk is investigated on complex networks with the characteristic property of community structure, which is shared by most real-world networks. Motivated by the prospect of viable quantum networks, I focus on the effects of network instabilities in the form of broken links, and examine the response of the quantum walk to such failures. It is shown that the reconfiguration of the quantum walk is determined by the community structure of the network. In this context, quantum walks based on the adjacency and Laplacian matrices of the network are compared, and their responses to link failures is analyzed.
Two flavor superconductivity in non-local models
Duhau, R.; Grunfeld, A.G.; Scoccola, N.N.
2004-12-02
In the present work we study a relativistic quark model at finite temperature and density with non-local quark-antiquark and quark-quark interactions with SU(2) flavour and SU(3) color symmetries. After proper bosonization, we analyze the structure of the corresponding phase diagram and discuss the competition between the chiral and 2SC phases.
Non-local rheology for dense granular flows in avalanches
NASA Astrophysics Data System (ADS)
Izzet, Adrien; Clement, Eric; Andreotti, Bruno
A local constitutive relation was proposed to describe dense granular flows (GDR MiDi, EPJE 2004). It provides a rather good prediction of the flowing regime but does not foresee the existence of a ``creep regime'' as observed by Komatsu et al. (PRL 2001). In the context of a 2D shear cell, a relaxation length for the velocity profile was measured (Bouzid et al., PRL 2013) which confirmed the existence of a flow below the standard Coulomb yield threshold. A correction for the local rheology was proposed. To test further this non-local constitutive relation, we built an inclined narrow channel within which we monitor the flow from the side. We managed to observe the ``creep regime'' over five orders of magnitude in velocity and fit the velocity profiles in the depth with an asymptotic solution of the non-local equation. However, the boundary condition at the free surface needs to be selected in order to calibrate the non-local rheology over the whole range of stresses in the system. In this perspective, we complement the experimental results with 2D simulations of hard and frictional discs on an inclined plane in which we introduce a surface friction force proportional to the effective pressure in the granular. We analyze these results in the light of the non-local rheology.
Simulation of low-pressure inductively coupled plasmas: Non-local effects and pulsed power operation
NASA Astrophysics Data System (ADS)
Ramamurthi, Badri
For modeling of low-pressure Inductively Coupled Plasma (ICP) discharges, a number of approaches have been proposed with varying degree of complexity. A self-consistent 1-D model was developed in this work to study the effects of non-local electron conductivity on power absorption and plasma density profiles in a planar inductively coupled argon discharge at low pressures (< 10 mTorr). The self-consistent kinetic description of the discharge included three modules: (1) an EEDF module to compute a non-Maxwellian EEDF, (2) a non-local electron conductivity module which predicted current distribution in the plasma as an integral over the electric field and solved Maxwell's equations to find the self-consistent electric field as well as the non-local power deposition profile and (3) a Heavy Species Transport (HST) module which solved for the ion and metastable atom density and velocity. Results from the full model were then compared with those obtained by using a local conductivity model (Ohm's law) for the RF current. For 10 mTorr, the EEDF was found to be almost Maxwellian with electron temperature ˜ 3 V. As a result, the plasma density profiles obtained from the local and non-local cases were almost identical for the same total power. Interestingly, a similar result was obtained even for a pressure of 1 mTorr where the EEDF was non-Maxwellian. This suggests that as far as species density and flux are concerned, local conductivity models, with lesser computational expense, can be employed even in the non-local regime. Comparisons between simulation and experiment for RF field and current density showed better agreement for non-local model compared with local model. A two-dimensional (r,z) continuum model was then developed to study the spatio-temporal dynamics of a pulsed power (square-wave modulated) discharge in argon (electropositive) and chlorine (electronegative) sustained in an inductively coupled plasma (ICP) reactor with a planar coil. The self
NASA Astrophysics Data System (ADS)
Walschaers, Mattia; Schlawin, Frank; Wellens, Thomas; Buchleitner, Andreas
2016-03-01
We discuss recent research on quantum transport in complex materials, from photosynthetic light-harvesting complexes to photonic circuits. We identify finite, disordered networks as the underlying backbone and as a versatile framework to gain insight into the specific potential of nontrivial quantum dynamical effects to characterize and control transport on complex structures. We discriminate authentic quantum properties from classical aspects of complexity and briefly address the impact of interactions, nonlinearities, and noise. We stress the relevance of what we call the nonasymptotic realm, physical situations in which neither the relevant time- and length-scales, the number of degrees of freedom, or constituents tend to very small or very large values, nor do global symmetries or disorder fully govern the dynamics. Although largely uncharted territory, we argue that novel, intriguing and nontrivial questions for experimental and theoretical work emerge, with the prospect of a unified understanding of complex quantum transport phenomena in diverse physical settings.
Non-Locality Versus Locality:. the Epistemological Background of the Einstein Bohr Debate
NASA Astrophysics Data System (ADS)
Borzeszkowski, Horst-Heino V.; Wahsner, Renate
2000-08-01
In its core, the non-locality-locality debate is a discussion about the concept of the physical reality. The difference between the measurement bases of classical and quantum mechanics is often interpreted as a loss of reality arising in quantum mechanics. In this paper it is shown that this apparent loss occurs only if one believes that everyday experience determines the Euclidean space, instead of considering this space, both in classical and quantum mechanics, as a theoretical construction needed for measurement and representing one part of a dualistic space conception. From this point of view, Einstein's program of a unified field theory can be interpreted as the attempt to find a physical theory that is less dualistic. However, if one regards this dualism as resulting from the requirements of measurements, one can hope for a weakening of the dualism but not expect to remove it completely. Further, it follows from the requirements of measurements that the Heisenberg cut cannot be arbitrarily far moved towards the observer. Epistemological discussions on quantum mechanics yield two insights: (i) To acquire physical knowledge, means of cognition are always necessary, and measurement provides this means. (ii) The space of measurement and the space of the representation of physical dynamics must be distinguished conceptually; both coincide factually in classical physics, but not so in quantum mechanics.
Cosmological perturbations in non-local higher-derivative gravity
Craps, Ben; Jonckheere, Tim De; Koshelev, Alexey S. E-mail: Tim.De.Jonckheere@vub.ac.be
2014-11-01
We study cosmological perturbations in a non-local higher-derivative model of gravity introduced by Biswas, Mazumdar and Siegel. We extend previous work, which had focused on classical scalar perturbations around a cosine hyperbolic bounce solution, in three ways. First, we point out the existence of a Starobinsky solution in this model, which is more attractive from a phenomenological point of view (even though it has no bounce). Second, we study classical vector and tensor pertuxsxrbations. Third, we show how to quantize scalar and tensor perturbations in a de Sitter phase (for choices of parameters such that the model is ghost-free). Our results show that the model is well-behaved at this level, and are very similar to corresponding results in local f(R) models. In particular, for the Starobinsky solution of non-local higher-derivative gravity, we find the same tensor-to-scalar ratio as for the conventional Starobinsky model.
To the non-local theory of cold nuclear fusion
Alexeev, Boris V.
2014-01-01
In this paper, we revisit the cold fusion (CF) phenomenon using the generalized Bolzmann kinetics theory which can represent the non-local physics of this CF phenomenon. This approach can identify the conditions when the CF can take place as the soliton creation under the influence of the intensive sound waves. The vast mathematical modelling leads to affirmation that all parts of soliton move with the same velocity and with the small internal change of the pressure. The zone of the high density is shaped on the soliton's front. It means that the regime of the ‘acoustic CF’ could be realized from the position of the non-local hydrodynamics. PMID:26064528
Contourlet based seismic reflection data non-local noise suppression
NASA Astrophysics Data System (ADS)
Li, Qiang; Gao, Jinghuai
2013-08-01
In this paper, we propose a non-local, transform domain noise suppression framework to improve the quality of seismic reflection data. The original non-local means (NLM) algorithm measures similarities in the data domain and we generalize it in the nonsubsampled contourlet transform (NSCT) domain. NSCT gives a multiscale, multiresolution and anisotropy representation of the noisy input. The redundancy information in NSCT subbands can be utilized to enhance the structures in the original seismic data. Like the wavelet transform, NSCT coefficients in each subband follow the generalized Gaussian distribution and the parameters can be estimated using appropriate techniques. These parameters are used to construct our proposed NSCT domain filtering algorithm. Applications for synthetic and real seismic data of the proposed algorithm demonstrate its effectiveness on seismic data random noise suppression.
Deinterlacing algorithm with an advanced non-local means filter
NASA Astrophysics Data System (ADS)
Wang, Jin; Jeon, Gwanggil; Jeong, Jechang
2012-04-01
The authors introduce an efficient intra-field deinterlacing algorithm using an advanced non-local means filter. The non-local means (NLM) method has received considerable attention due to its high performance and simplicity. The NLM method adaptively obtains the missing pixel by the weighted average of the gray values of all pixels within the image, and then automatically eliminates unrelated neighborhoods from the weighted average. However, spatial location distance is another important issue for the deinterlacing method. Therefore we introduce an advanced NLM (ANLM) filter while consider neighborhood similarity and patch distance. Moreover, the search region of the conventional NLM is the whole image, while, the ANLM can just utilize the limited search region and achieve good performance and high efficiency. When compared with existing deinterlacing algorithms, the proposed algorithm improves the peak signal-to-noise-ratio while maintaining high efficiency.
NASA Astrophysics Data System (ADS)
Carr, Lincoln; Maeda, Kenji; Wall, Michael L.
2015-03-01
Ultracold molecules trapped in optical lattices present a new regime of physical chemistry and a new state of matter: complex dipolar matter. Such systems open up the prospect of tunable quantum complexity. We present models for the quantum many-body statics and dynamics of present experiments on polar bi-alkali dimer molecules. We are developing Hamiltonians and simulations for upcoming experiments on dimers beyond the alkali metals, including biologically and chemically important naturally occurring free radicals like the hydroxyl free radical (OH), as well as symmetric top polyatomic molecules like methyl fluoride (CH3F). These systems offer surprising opportunities in modeling and design of new materials. For example, symmetric top polyatomics can be used to study quantum molecular magnets and quantum liquid crystals. We use matrix-product-state (MPS) algorithms, supplemented by exact diagonalization, variational, perturbative, and other approaches. MPS algorithms not only produce experimentally measurable quantum phase diagrams but also explore the dynamical interplay between internal and external degrees of freedom inherent in complex dipolar matter. We maintain open source code (openTEBD and openMPS) available freely and used widely. Funded by NSF and AFOSR.
Non-local crime density estimation incorporating housing information
Woodworth, J. T.; Mohler, G. O.; Bertozzi, A. L.; Brantingham, P. J.
2014-01-01
Given a discrete sample of event locations, we wish to produce a probability density that models the relative probability of events occurring in a spatial domain. Standard density estimation techniques do not incorporate priors informed by spatial data. Such methods can result in assigning significant positive probability to locations where events cannot realistically occur. In particular, when modelling residential burglaries, standard density estimation can predict residential burglaries occurring where there are no residences. Incorporating the spatial data can inform the valid region for the density. When modelling very few events, additional priors can help to correctly fill in the gaps. Learning and enforcing correlation between spatial data and event data can yield better estimates from fewer events. We propose a non-local version of maximum penalized likelihood estimation based on the H1 Sobolev seminorm regularizer that computes non-local weights from spatial data to obtain more spatially accurate density estimates. We evaluate this method in application to a residential burglary dataset from San Fernando Valley with the non-local weights informed by housing data or a satellite image. PMID:25288817
Dynamical symmetries in Kondo tunneling through complex quantum dots.
Kuzmenko, T; Kikoin, K; Avishai, Y
2002-10-01
Kondo tunneling reveals hidden SO(n) dynamical symmetries of evenly occupied quantum dots. As is exemplified for an experimentally realizable triple quantum dot in parallel geometry, the possible values n=3,4,5,7 can be easily tuned by gate voltages. Following construction of the corresponding o(n) algebras, scaling equations are derived and Kondo temperatures are calculated. The symmetry group for a magnetic field induced anisotropic Kondo tunneling is SU(2) or SO(4). PMID:12366008
Lower Bounds on Quantum Query Complexity for Read-Once Formulas with XOR and MUX Operators
NASA Astrophysics Data System (ADS)
Fukuhara, Hideaki; Takimoto, Eiji
We introduce a complexity measure r for the class F of read-once formulas over the basis {AND, OR, NOT, XOR, MUX} and show that for any Boolean formula F in the class F, r(F) is a lower bound on the quantum query complexity of the Boolean function that F represents. We also show that for any Boolean function f represented by a formula in F, the deterministic query complexity of f is only quadratically larger than the quantum query complexity of f. Thus, the paper gives further evidence for the conjecture that there is an only quadratic gap for all functions.
NASA Astrophysics Data System (ADS)
Coecke, Bob
2010-01-01
Why did it take us 50 years since the birth of the quantum mechanical formalism to discover that unknown quantum states cannot be cloned? Yet, the proof of the 'no-cloning theorem' is easy, and its consequences and potential for applications are immense. Similarly, why did it take us 60 years to discover the conceptually intriguing and easily derivable physical phenomenon of 'quantum teleportation'? We claim that the quantum mechanical formalism doesn't support our intuition, nor does it elucidate the key concepts that govern the behaviour of the entities that are subject to the laws of quantum physics. The arrays of complex numbers are kin to the arrays of 0s and 1s of the early days of computer programming practice. Using a technical term from computer science, the quantum mechanical formalism is 'low-level'. In this review we present steps towards a diagrammatic 'high-level' alternative for the Hilbert space formalism, one which appeals to our intuition. The diagrammatic language as it currently stands allows for intuitive reasoning about interacting quantum systems, and trivialises many otherwise involved and tedious computations. It clearly exposes limitations such as the no-cloning theorem, and phenomena such as quantum teleportation. As a logic, it supports 'automation': it enables a (classical) computer to reason about interacting quantum systems, prove theorems, and design protocols. It allows for a wider variety of underlying theories, and can be easily modified, having the potential to provide the required step-stone towards a deeper conceptual understanding of quantum theory, as well as its unification with other physical theories. Specific applications discussed here are purely diagrammatic proofs of several quantum computational schemes, as well as an analysis of the structural origin of quantum non-locality. The underlying mathematical foundation of this high-level diagrammatic formalism relies on so-called monoidal categories, a product of a fairly
Cosmological observations in non-local F( R) cosmology
NASA Astrophysics Data System (ADS)
Farajollahi, H.; Tayebi, F.; Milani, F.; Enayati, M.
2012-02-01
In this article in a generalization of our previous work (Farajollahi and Milani in Mod. Phys. Lett. A 25:2349-2362, 2010), we investigate the dynamics of the non-local F( R) gravity after casting it into local form. The non-singular bouncing behavior and quintom model of dark energy are achieved without involving negative kinetic energy fields. Two cosmological tests are performed to constrain the model parameters. In case of phantom crossing the distance modulus predicted by the model best-fits the observational data. In comparison with the CPL parametrization for drift velocity, the model in some redshift intervals is in good agreement with the data.
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free
Bianconi, Ginestra; Rahmede, Christoph
2015-01-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension . We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the -faces of the -dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the -faces. PMID:26356079
Complex Quantum Network Manifolds in Dimension d > 2 are Scale-Free.
Bianconi, Ginestra; Rahmede, Christoph
2015-01-01
In quantum gravity, several approaches have been proposed until now for the quantum description of discrete geometries. These theoretical frameworks include loop quantum gravity, causal dynamical triangulations, causal sets, quantum graphity, and energetic spin networks. Most of these approaches describe discrete spaces as homogeneous network manifolds. Here we define Complex Quantum Network Manifolds (CQNM) describing the evolution of quantum network states, and constructed from growing simplicial complexes of dimension d. We show that in d = 2 CQNM are homogeneous networks while for d > 2 they are scale-free i.e. they are characterized by large inhomogeneities of degrees like most complex networks. From the self-organized evolution of CQNM quantum statistics emerge spontaneously. Here we define the generalized degrees associated with the δ-faces of the d-dimensional CQNMs, and we show that the statistics of these generalized degrees can either follow Fermi-Dirac, Boltzmann or Bose-Einstein distributions depending on the dimension of the δ-faces. PMID:26356079
Exploring the complexity of quantum control optimization trajectories.
Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel
2015-01-01
The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved. PMID:25377547
Chou, Chia-Chun
2014-03-14
The complex quantum Hamilton-Jacobi equation-Bohmian trajectories (CQHJE-BT) method is introduced as a synthetic trajectory method for integrating the complex quantum Hamilton-Jacobi equation for the complex action function by propagating an ensemble of real-valued correlated Bohmian trajectories. Substituting the wave function expressed in exponential form in terms of the complex action into the time-dependent Schrödinger equation yields the complex quantum Hamilton-Jacobi equation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation describing the rate of change in the complex action transported along Bohmian trajectories is simultaneously integrated with the guidance equation for Bohmian trajectories, and the time-dependent wave function is readily synthesized. The spatial derivatives of the complex action required for the integration scheme are obtained by solving one moving least squares matrix equation. In addition, the method is applied to the photodissociation of NOCl. The photodissociation dynamics of NOCl can be accurately described by propagating a small ensemble of trajectories. This study demonstrates that the CQHJE-BT method combines the considerable advantages of both the real and the complex quantum trajectory methods previously developed for wave packet dynamics.
Chou, Chia-Chun
2014-03-14
The complex quantum Hamilton-Jacobi equation-Bohmian trajectories (CQHJE-BT) method is introduced as a synthetic trajectory method for integrating the complex quantum Hamilton-Jacobi equation for the complex action function by propagating an ensemble of real-valued correlated Bohmian trajectories. Substituting the wave function expressed in exponential form in terms of the complex action into the time-dependent Schrödinger equation yields the complex quantum Hamilton-Jacobi equation. We transform this equation into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. The resulting equation describing the rate of change in the complex action transported along Bohmian trajectories is simultaneously integrated with the guidance equation for Bohmian trajectories, and the time-dependent wave function is readily synthesized. The spatial derivatives of the complex action required for the integration scheme are obtained by solving one moving least squares matrix equation. In addition, the method is applied to the photodissociation of NOCl. The photodissociation dynamics of NOCl can be accurately described by propagating a small ensemble of trajectories. This study demonstrates that the CQHJE-BT method combines the considerable advantages of both the real and the complex quantum trajectory methods previously developed for wave packet dynamics. PMID:24628169
Gold Nanocluster and Quantum Dot Complex in Protein for Biofriendly White-Light-Emitting Material.
Bhandari, Satyapriya; Pramanik, Sabyasachi; Khandelia, Rumi; Chattopadhyay, Arun
2016-01-27
We report the synthesis of a biofriendly highly luminescent white-light-emitting nanocomposite. The composite consisted of Au nanoclusters and ZnQ2 complex (on the surface of ZnS quantum dots) embedded in protein. The combination of red, green, and blue luminescence from clusters, complex, and protein, respectively, led to white light generation. PMID:26741861
Quantum coherent energy transfer over varying pathways in single light-harvesting complexes.
Hildner, Richard; Brinks, Daan; Nieder, Jana B; Cogdell, Richard J; van Hulst, Niek F
2013-06-21
The initial steps of photosynthesis comprise the absorption of sunlight by pigment-protein antenna complexes followed by rapid and highly efficient funneling of excitation energy to a reaction center. In these transport processes, signatures of unexpectedly long-lived coherences have emerged in two-dimensional ensemble spectra of various light-harvesting complexes. Here, we demonstrate ultrafast quantum coherent energy transfer within individual antenna complexes of a purple bacterium under physiological conditions. We find that quantum coherences between electronically coupled energy eigenstates persist at least 400 femtoseconds and that distinct energy-transfer pathways that change with time can be identified in each complex. Our data suggest that long-lived quantum coherence renders energy transfer in photosynthetic systems robust in the presence of disorder, which is a prerequisite for efficient light harvesting. PMID:23788794
Screening of Cosmological Constant in Non-Local Cosmology
NASA Astrophysics Data System (ADS)
Zhang, Ying-Li; Sasaki, Misao
We consider a model of non-local gravity with a large bare cosmological constant, Λ, and study its cosmological solutions. The model is characterized by a function f(ψ) = f0eαψ, where ψ = □-1R and α is a real dimensionless parameter. In the absence of matter, we find an expanding universe solution a ∝ tn with n < 1, that is, a universe with decelerated expansion without any fine-tuning of the parameter. Thus the effect of the cosmological constant is effectively shielded in this solution. It has been known that solutions in non-local gravity often suffer from the existence of ghost modes. In the present case, we find the solution is ghost-free if α > αcr ≈ 0.17. This is quite a weak condition. We argue that the solution is stable against the inclusion of matter fields. Thus our solution opens up new possibilities for solution to the cosmological constant problem.
Kondo physics in non-local metallic spin transport devices
NASA Astrophysics Data System (ADS)
O'Brien, L.; Erickson, M. J.; Spivak, D.; Ambaye, H.; Goyette, R. J.; Lauter, V.; Crowell, P. A.; Leighton, C.
2014-05-01
The non-local spin-valve is pivotal in spintronics, enabling separation of charge and spin currents, disruptive potential applications and the study of pressing problems in the physics of spin injection and relaxation. Primary among these problems is the perplexing non-monotonicity in the temperature-dependent spin accumulation in non-local ferromagnetic/non-magnetic metal structures, where the spin signal decreases at low temperatures. Here we show that this effect is strongly correlated with the ability of the ferromagnetic to form dilute local magnetic moments in the NM. This we achieve by studying a significantly expanded range of ferromagnetic/non-magnetic combinations. We argue that local moments, formed by ferromagnetic/non-magnetic interdiffusion, suppress the injected spin polarization and diffusion length via a manifestation of the Kondo effect, thus explaining all observations. We further show that this suppression can be completely quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer.
Kondo physics in non-local metallic spin transport devices.
O'Brien, L; Erickson, M J; Spivak, D; Ambaye, H; Goyette, R J; Lauter, V; Crowell, P A; Leighton, C
2014-01-01
The non-local spin-valve is pivotal in spintronics, enabling separation of charge and spin currents, disruptive potential applications and the study of pressing problems in the physics of spin injection and relaxation. Primary among these problems is the perplexing non-monotonicity in the temperature-dependent spin accumulation in non-local ferromagnetic/non-magnetic metal structures, where the spin signal decreases at low temperatures. Here we show that this effect is strongly correlated with the ability of the ferromagnetic to form dilute local magnetic moments in the NM. This we achieve by studying a significantly expanded range of ferromagnetic/non-magnetic combinations. We argue that local moments, formed by ferromagnetic/non-magnetic interdiffusion, suppress the injected spin polarization and diffusion length via a manifestation of the Kondo effect, thus explaining all observations. We further show that this suppression can be completely quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer. PMID:24873934
A Comprehensive Strategy to Boost the Quantum Yield of Luminescence of Europium Complexes
NASA Astrophysics Data System (ADS)
Lima, Nathalia B. D.; Gonçalves, Simone M. C.; Júnior, Severino A.; Simas, Alfredo M.
2013-08-01
Lanthanide luminescence has many important applications in anion sensing, protein recognition, nanosized phosphorescent devices, optoelectronic devices, immunoassays, etc. Luminescent europium complexes, in particular, act as light conversion molecular devices by absorbing ultraviolet (UV) light and by emitting light in the red visible spectral region. The quantum yield of luminescence is defined as the ratio of the number of photons emitted over the number of UV photons absorbed. The higher the quantum yield of luminescence, the higher the sensitivity of the application. Here we advance a conjecture that allows the design of europium complexes with higher values of quantum yields by simply increasing the diversity of good ligands coordinated to the lanthanide ion. Indeed, for the studied cases, the percent boost obtained on the quantum yield proved to be strong: of up to 81%, accompanied by faster radiative rate constants, since the emission becomes less forbidden.
A Comprehensive Strategy to Boost the Quantum Yield of Luminescence of Europium Complexes
Lima, Nathalia B. D.; Gonçalves, Simone M. C.; Júnior, Severino A.; Simas, Alfredo M.
2013-01-01
Lanthanide luminescence has many important applications in anion sensing, protein recognition, nanosized phosphorescent devices, optoelectronic devices, immunoassays, etc. Luminescent europium complexes, in particular, act as light conversion molecular devices by absorbing ultraviolet (UV) light and by emitting light in the red visible spectral region. The quantum yield of luminescence is defined as the ratio of the number of photons emitted over the number of UV photons absorbed. The higher the quantum yield of luminescence, the higher the sensitivity of the application. Here we advance a conjecture that allows the design of europium complexes with higher values of quantum yields by simply increasing the diversity of good ligands coordinated to the lanthanide ion. Indeed, for the studied cases, the percent boost obtained on the quantum yield proved to be strong: of up to 81%, accompanied by faster radiative rate constants, since the emission becomes less forbidden. PMID:23928866
New insights on emergence from the perspective of weak values and dynamical non-locality
NASA Astrophysics Data System (ADS)
Tollaksen, Jeff
2014-04-01
In this article, we will examine new fundamental aspects of "emergence" and "information" using novel approaches to quantum mechanics which originated from the group around Aharonov. The two-state vector formalism provides a complete description of pre- and post-selected quantum systems and has uncovered a host of new quantum phenomena which were previously hidden. The most important feature is that any weak coupling to a pre- and post-selected system is effectively a coupling to a "weak value" which is given by a simple expression depending on the two-state vector. In particular, weak values, are the outcomes of so called "weak measurements" which have recently become a very powerful tool for ultra-sensitive measurements. Using weak values, we will show how to separate a particle from its properties, not unlike the Cheshire cat story: "Well! I've often seen a cat without a grin," thought Alice; "but a grin without a cat! It's the most curious thing I ever saw in all my life!" Next, we address the question whether the physics on different scales "emerges" from quantum mechanics or whether the laws of physics at those scales are fundamental. We show that the classical limit of quantum mechanics is a far more complicated issue; it is in fact dramatically more involved and it requires a complete revision of all our intuitions. The revised intuitions can then serve as a guide to finding novel quantum effects. Next we show that novel experimental aspects of contextuality can be demonstrated with weak measurements and these suggest new restrictions on hidden variable approaches. Next we emphasize that the most important implication of the Aharonov-Bohm effect is the existence of non-local interactions which do not violate causality. Finally, we review some generalizations of quantum mechanics and their implications for "emergence" and "information." First, we review an alternative approach to quantum evolution in which each moment of time is viewed as a new "universe
FRET efficiency in surface complexes of CdSe/ZnS quantum dots with azo-dyes
NASA Astrophysics Data System (ADS)
Annas, Kirill I.; Gromova, Yuliya A.; Orlova, Anna O.; Maslov, Vladimir G.; Fedorov, Anatoly V.; Baranov, Alexander V.
2016-04-01
Photoinduced dissociation of surface complexes of CdSe/ZnS quantum dots with azo-dye 1-(2- pyridylazo)-2-naphthol (PAN) was investigated. It was shown that the Förster resonance energy transfer contributes in the complexes photodissociation rate, which depends on resonance condition between electronic levels of donor (quantum dots) and acceptor (azo-dye) and donor photoluminescent quantum yield. It has allowed to estimate energy transfer efficiency in the complexes and disclosed a new nonradiative channel that has minor contribution in the deactivation of excited states of quantum dots in the complexes.
Non-local mind from the perspective of social cognition
Chatel-Goldman, Jonas; Schwartz, Jean-Luc; Jutten, Christian; Congedo, Marco
2012-01-01
Two main conceptual approaches have been employed to study the mechanisms of social cognition, whether one considers isolated or interacting minds. Using neuro-imaging of subjects in isolation, the former approach has provided knowledge on the neural underpinning of a variety of social processes. However, it has been argued that considering one brain alone cannot account for all mechanisms subtending online social interaction. This challenge has been tackled recently by using neuro-imaging of multiple interacting subjects in more ecological settings. The present short review aims at offering a comprehensive view on various advances done in the last decade. We provide a taxonomy of existing research in neuroscience of social interaction, situating them in the frame of general organization principles of social cognition. Finally, we discuss the putative enabling role of emerging non-local social mechanisms—such as interpersonal brain and body coupling—in processes underlying our ability to create a shared world. PMID:23565084
Non-local mind from the perspective of social cognition.
Chatel-Goldman, Jonas; Schwartz, Jean-Luc; Jutten, Christian; Congedo, Marco
2013-01-01
Two main conceptual approaches have been employed to study the mechanisms of social cognition, whether one considers isolated or interacting minds. Using neuro-imaging of subjects in isolation, the former approach has provided knowledge on the neural underpinning of a variety of social processes. However, it has been argued that considering one brain alone cannot account for all mechanisms subtending online social interaction. This challenge has been tackled recently by using neuro-imaging of multiple interacting subjects in more ecological settings. The present short review aims at offering a comprehensive view on various advances done in the last decade. We provide a taxonomy of existing research in neuroscience of social interaction, situating them in the frame of general organization principles of social cognition. Finally, we discuss the putative enabling role of emerging non-local social mechanisms-such as interpersonal brain and body coupling-in processes underlying our ability to create a shared world. PMID:23565084
Inflationary magnetogenesis and non-local actions: the conformal anomaly
NASA Astrophysics Data System (ADS)
Kamal El-Menoufi, Basem
2016-02-01
We discuss the possibility of successful magnetogenesis during inflation by employing the one-loop effective action of massless QED. The action is strictly non-local and results from the long distance fluctuations of massless charged particles present at the inflationary scale. Most importantly, it encodes the conformal anomaly of QED which is crucial to avoid the vacuum preservation in classical electromagnetism. In particular, we find a blue spectrum for the magnetic field with spectral index nB simeq 2 - αe where αe depends on both the number of e-folds during inflation as well as the coefficient of the one-loop beta function. In particular, the sign of the beta function has important bearing on the final result. A low reheating temperature is required for the present day magnetic field to be consistent with the lower bound inferred on the field in the intergalactic medium.
Dynamical quenching with non-local α and downward pumping
NASA Astrophysics Data System (ADS)
Brandenburg, A.; Hubbard, A. Käpylä, P. J.
2015-01-01
In light of new results, the one-dimensional mean-field dynamo model of Brandenburg & Käpylä (2007) with dynamical quenching and a nonlocal Babcock-Leighton \\alpha effect is re-examined for the solar dynamo. We extend the one-dimensional model to include the effects of turbulent downward pumping (Kitchatinov & Olemskoy 2011), and to combine dynamical quenching with shear. We use both the conventional dynamical quenching model of Kleeorin & Ruzmaikin (1982) and the alternate one of Hubbard & Brandenburg (2011), and confirm that with varying levels of non-locality in the \\alpha effect, and possibly shear as well, the saturation field strength can be independent of the magnetic Reynolds number.
The Physics of Life and Quantum Complex Matter: A Case of Cross-Fertilization
Poccia, Nicola; Bianconi, Antonio
2011-01-01
Progress in the science of complexity, from the Big Bang to the coming of humankind, from chemistry and biology to geosciences and medicine, and from materials engineering to energy sciences, is leading to a shift of paradigm in the physical sciences. The focus is on the understanding of the non-equilibrium process in fine tuned systems. Quantum complex materials such as high temperature superconductors and living matter are both non-equilibrium and fine tuned systems. These topics have been subbjects of scientific discussion in the Rome Symposium on the “Quantum Physics of Living Matter”. PMID:26791661
Quantum chemical study of the O 3-HONO complex
NASA Astrophysics Data System (ADS)
Roohi, Hossein; Ashuri, Masomeh
2009-07-01
Gas phase hydrogen-bonded isomers of the O 3-HONO complex have been investigated by means of DFT(B3LYP), MP2, MP4(SDTQ), CCSD(T) and QCISD(T) methods in conjunction with the 6-311++G(2d,2p), 6-311++G(df,pd), AUG-cc-pVDZ and AUG-cc-pVTZ basis sets. Ten isomers were found for the O 3-HONO complex. The O⋯H and O⋯O interactions are predicted that participate in the formation of non-planar ring structure of the most stable isomer. The AIM calculations reveal that the O⋯H interaction in the most stable complex is stronger than others. In addition, both O⋯H and O⋯O interactions in O 3-HONO complexes are electrostatic in nature.
Simple algorithm for computing the communication complexity of quantum communication processes
NASA Astrophysics Data System (ADS)
Hansen, A.; Montina, A.; Wolf, S.
2016-04-01
A two-party quantum communication process with classical inputs and outcomes can be simulated by replacing the quantum channel with a classical one. The minimal amount of classical communication required to reproduce the statistics of the quantum process is called its communication complexity. In the case of many instances simulated in parallel, the minimal communication cost per instance is called the asymptotic communication complexity. Previously, we reduced the computation of the asymptotic communication complexity to a convex minimization problem. In most cases, the objective function does not have an explicit analytic form, as the function is defined as the maximum over an infinite set of convex functions. Therefore, the overall problem takes the form of a minimax problem and cannot directly be solved by standard optimization methods. In this paper, we introduce a simple algorithm to compute the asymptotic communication complexity. For some special cases with an analytic objective function one can employ available convex-optimization libraries. In the tested cases our method turned out to be notably faster. Finally, using our method we obtain 1.238 bits as a lower bound on the asymptotic communication complexity of a noiseless quantum channel with the capacity of 1 qubit. This improves the previous bound of 1.208 bits.
NASA Astrophysics Data System (ADS)
Smyth, Cathal
This thesis is a compilation of studies on delocalization measures, entanglement, and the role of quantum coherence in electronic energy transfer (EET) in light-harvesting complexes. The first two chapters after the introduction provide foundational knowledge of quantum information and light-harvesting, respectively. Chapter 2 introduces concepts from quantum information such as purity, bipartite entanglement and criteria for its measurement. The peripheral light-harvesting complex LH2, isolated from the anoxygenic purple bacterium Rhodopseudomonas acidophila, is employed as model system of interest. This light-harvesting complex, along with a description of the process of light-harvesting, the presence of quantum coherence, and the different models used to simulate EET, are described in chapter 3. In combination these two chapters lay the foundation for chapter 4, a critical assessment of the current measures of delocalization employed in EET studies, their relationship, and overall effectiveness. The conclusion is that entanglement based measures are most effective at measuring quantum effects, and that they can be related to more conventional delocalization measures such as the inverse participation ratio (IPR) by taking into account the entropy of the system under study. All the measures within this chapter are known as bipartite measures, and only measure the strength of correlation between two sites. The fifth chapter presents the core of this thesis. Following a brief introduction to the concept of multipartite entanglement, the development of multipartite delocalization measures that give high-resolution information on quantum coherence in light-harvesting complexes is detailed. In contrast to other measures, these analytical measures can detect many body correlations in large systems undergoing decoherence. We determine that, much like the bipartite entanglement based measures of chapter 4, these measures are also a function of system entropy, and have a
Matrix De Rham Complex and Quantum A-infinity algebras
NASA Astrophysics Data System (ADS)
Barannikov, S.
2014-04-01
I establish the relation of the non-commutative BV-formalism with super-invariant matrix integration. In particular, the non-commutative BV-equation, defining the quantum A ∞-algebras, introduced in Barannikov (Modular operads and non-commutative Batalin-Vilkovisky geometry. IMRN, vol. 2007, rnm075. Max Planck Institute for Mathematics 2006-48, 2007), is represented via de Rham differential acting on the supermatrix spaces related with Bernstein-Leites simple associative algebras with odd trace q( N), and gl( N| N). I also show that the matrix Lagrangians from Barannikov (Noncommutative Batalin-Vilkovisky geometry and matrix integrals. Isaac Newton Institute for Mathematical Sciences, Cambridge University, 2006) are represented by equivariantly closed differential forms.
Synthesis and characterization of chitosan-based polyelectrolyte complexes, doped by quantum dots
NASA Astrophysics Data System (ADS)
Abuzova, N. V.; Gerasimova, M. A.; Slabko, V. V.; Slyusareva, E. A.
2015-12-01
Doping of polymer particles by a fluorophores results in the sensitization within the visible spectral region becoming very promising materials for sensor applications. Colloids of biocompatible chitosan-based polyelectrolyte complexes (PECs) doped with quantum dots (QD) of CdTe and CdSe/ZnS (with sizes of 2.0-2.4 nm) were synthesized and characterized by scanning electron microscopy, dynamic light scattering, ζ-potential measurements, absorption and luminescence (including time-resolved) spectroscopy. The influence of ionic strength (0.02-1.5 M) on absorption and photoluminescence properties of encapsulated into PEC and unencapsulated quantum dots was investigated. The stability of the emission intensity of the encapsulated quantum dots has been shown to be strongly dependent on concentration of quantum dots.
Benchmark Measurements of the Ionization Balance of Non-Local-Thermodynamic-Equilibrium Gold Plasmas
Heeter, R. F.; Hansen, S. B.; Fournier, K. B.; Foord, M. E.; Froula, D. H.; Mackinnon, A. J.; May, M. J.; Schneider, M. B.; Young, B. K. F.
2007-11-09
We present a series of benchmark measurements of the ionization balance of well-characterized gold plasmas with and without external radiation fields at electron densities near 10{sup 21} cm{sup -3} and electron temperatures spanning the range 0.8 to 2.4 keV. We have analyzed time- and space-resolved M-shell gold emission spectra using a sophisticated collisional-radiative model with hybrid level structure, finding average ion charges
Non-local damage rheology and size effect
NASA Astrophysics Data System (ADS)
Lyakhovsky, V.
2011-12-01
We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time
Average-Case Complexity Versus Approximate Simulation of Commuting Quantum Computations.
Bremner, Michael J; Montanaro, Ashley; Shepherd, Dan J
2016-08-19
We use the class of commuting quantum computations known as IQP (instantaneous quantum polynomial time) to strengthen the conjecture that quantum computers are hard to simulate classically. We show that, if either of two plausible average-case hardness conjectures holds, then IQP computations are hard to simulate classically up to constant additive error. One conjecture relates to the hardness of estimating the complex-temperature partition function for random instances of the Ising model; the other concerns approximating the number of zeroes of random low-degree polynomials. We observe that both conjectures can be shown to be valid in the setting of worst-case complexity. We arrive at these conjectures by deriving spin-based generalizations of the boson sampling problem that avoid the so-called permanent anticoncentration conjecture. PMID:27588839
Rowland, Brad A; Wyatt, Robert E
2007-10-28
One of the major obstacles in employing complex-valued trajectory methods for quantum barrier scattering calculations is the search for isochrones. In this study, complex-valued derivative propagation method trajectories in the arbitrary Lagrangian-Eulerian frame are employed to solve the complex Hamilton-Jacobi equation for quantum barrier scattering problems employing constant velocity trajectories moving along rectilinear paths whose initial points can be in the complex plane or even along the real axis. It is shown that this effectively removes the need for isochrones for barrier transmission problems. Model problems tested include the Eckart, Gaussian, and metastable quadratic+cubic potentials over a variety of wave packet energies. For comparison, the "exact" solution is computed from the time-dependent Schrodinger equation via pseudospectral methods. PMID:17979316
Bhandari, Satyapriya; Roy, Shilaj; Pramanik, Sabyasachi; Chattopadhyay, Arun
2014-09-01
Chemical reaction between oleate-capped Zn(x)Cd(1-x)S quantum dots (Qdots) and 8-hydroxyquinoline (HQ) led to formation of a surface complex, which was accompanied by transfer of hydrophobic Qdots from nonpolar (hexane) to polar (water) medium with high efficiency. The stability of the complex on the surface was achieved via involvement of dangling sulfide bonds. Moreover, the transferred hydrophilic Qdots--herein called as quantum dot complex (QDC)--exhibited new and superior optical properties in comparison to bare inorganic complexes with retention of the dimension and core structure of the Qdots. Finally, the new and superior optical properties of water-soluble QDC make them potentially useful for biological--in addition to light emitting device (LED)--applications. PMID:25133937
Towards a Social Theory of School Administrative Practice in a Complex, Chaotic, Quantum World.
ERIC Educational Resources Information Center
Beavis, Allan K.
Educational administration, like many other social sciences, has traditionally followed the rubrics of classical science with its emphasis on prediction and control and attempts to understand the whole by understanding in ever finer detail how the parts fit together. However, the "new" science (especially quantum mechanics, complexity, and chaos…
Solution of coupled integral equations for quantum scattering in the presence of complex potentials
Franz, Jan
2015-01-15
In this paper, we present a method to compute solutions of coupled integral equations for quantum scattering problems in the presence of a complex potential. We show how the elastic and absorption cross sections can be obtained from the numerical solution of these equations in the asymptotic region at large radial distances.
Cosmological evolution of generalized non-local gravity
NASA Astrophysics Data System (ADS)
Zhang, Xue; Wu, Ya-Bo; Li, Song; Liu, Yu-Chen; Chen, Bo-Hai; Chai, Yun-Tian; Shu, Shuang
2016-07-01
We construct a class of generalized non-local gravity (GNLG) model which is the modified theory of general relativity (GR) obtained by adding a term m2n‑2 R□‑nR to the Einstein-Hilbert action. Concretely, we not only study the gravitational equation for the GNLG model by introducing auxiliary scalar fields, but also analyse the classical stability and examine the cosmological consequences of the model for different exponent n. We find that the half of the scalar fields are always ghost-like and the exponent n must be taken even number for a stable GNLG model. Meanwhile, the model spontaneously generates three dominant phases of the evolution of the universe, and the equation of state parameters turn out to be phantom-like. Furthermore, we clarify in another way that exponent n should be even numbers by the spherically symmetric static solutions in Newtonian gauge. It is worth stressing that the results given by us can include ones in refs. [28, 34] as the special case of n=2.
Persistence criteria for populations with non-local dispersion.
Berestycki, Henri; Coville, Jérôme; Vo, Hoang-Hung
2016-06-01
In this article, we analyse the non-local model: [Formula: see text]where J is a positive continuous dispersal kernel and f(x, u) is a heterogeneous KPP type non-linearity describing the growth rate of the population. The ecological niche of the population is assumed to be bounded (i.e. outside a compact set, the environment is assumed to be lethal for the population). For compactly supported dispersal kernels J, we derive an optimal persistence criteria. We prove that a positive stationary solution exists if and only if the generalised principal eigenvalue [Formula: see text] of the linear problem [Formula: see text]is negative. [Formula: see text] is a spectral quantity that we defined in the spirit of the generalised first eigenvalue of an elliptic operator. In addition, for any continuous non-negative initial data that is bounded or integrable, we establish the long time behaviour of the solution u(t, x). We also analyse the impact of the size of the support of the dispersal kernel on the persistence criteria. We exhibit situations where the dispersal strategy has "no impact" on the persistence of the species and other ones where the slowest dispersal strategy is not any more an "Ecological Stable Strategy". We also discuss persistence criteria for fat-tailed kernels. PMID:26162491
NABS: non-local automatic brain hemisphere segmentation.
Romero, José E; Manjón, José V; Tohka, Jussi; Coupé, Pierrick; Robles, Montserrat
2015-05-01
In this paper, we propose an automatic method to segment the five main brain sub-regions (i.e. left/right hemispheres, left/right cerebellum and brainstem) from magnetic resonance images. The proposed method uses a library of pre-labeled brain images in a stereotactic space in combination with a non-local label fusion scheme for segmentation. The main novelty of the proposed method is the use of a multi-label block-wise label fusion strategy specifically designed to deal with the classification of main brain sub-volumes that process only specific parts of the brain images significantly reducing the computational burden. The proposed method has been quantitatively evaluated against manual segmentations. The evaluation showed that the proposed method was faster while producing more accurate segmentations than a current state-of-the-art method. We also present evidences suggesting that the proposed method was more robust against brain pathologies than the compared method. Finally, we demonstrate the clinical value of our method compared to the state-of-the-art approach in terms of the asymmetry quantification in Alzheimer's disease. PMID:25660644
Generalized non-local means filtering for image denoising
NASA Astrophysics Data System (ADS)
Dolui, Sudipto; Salgado Patarroyo, Iván. C.; Michailovich, Oleg V.
2014-02-01
Non-local means (NLM) filtering has been shown to outperform alternative denoising methodologies under the model of additive white Gaussian noise contamination. Recently, several theoretical frameworks have been developed to extend this class of algorithms to more general types of noise statistics. However, many of these frameworks are specifically designed for a single noise contamination model, and are far from optimal across varying noise statistics. The NLM filtering techniques rely on the definition of a similarity measure, which quantifies the similarity of two neighbourhoods along with their respective centroids. The key to the unification of the NLM filter for different noise statistics lies in the definition of a universal similarity measure which is guaranteed to provide favourable performance irrespective of the statistics of the noise. Accordingly, the main contribution of this work is to provide a rigorous statistical framework to derive such a universal similarity measure, while highlighting some of its theoretical and practical favourable characteristics. Additionally, the closed form expressions of the proposed similarity measure are provided for a number of important noise scenarios and the practical utility of the proposed similarity measure is demonstrated through numerical experiments.
Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.
Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian
2015-07-01
For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features. PMID:26194028
Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review
NASA Astrophysics Data System (ADS)
Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian
2015-07-01
For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.
What the complex joint probabilities observed in weak measurements can tell us about quantum physics
Hofmann, Holger F.
2014-12-04
Quantummechanics does not permit joint measurements of non-commuting observables. However, it is possible to measure the weak value of a projection operator, followed by the precise measurement of a different property. The results can be interpreted as complex joint probabilities of the two non-commuting measurement outcomes. Significantly, it is possible to predict the outcome of completely different measurements by combining the joint probabilities of the initial state with complex conditional probabilities relating the new measurement to the possible combinations of measurement outcomes used in the characterization of the quantum state. We can therefore conclude that the complex conditional probabilities observed in weak measurements describe fundamental state-independent relations between non-commuting properties that represent the most fundamental form of universal laws in quantum physics.
What the complex joint probabilities observed in weak measurements can tell us about quantum physics
NASA Astrophysics Data System (ADS)
Hofmann, Holger F.
2014-12-01
Quantummechanics does not permit joint measurements of non-commuting observables. However, it is possible to measure the weak value of a projection operator, followed by the precise measurement of a different property. The results can be interpreted as complex joint probabilities of the two non-commuting measurement outcomes. Significantly, it is possible to predict the outcome of completely different measurements by combining the joint probabilities of the initial state with complex conditional probabilities relating the new measurement to the possible combinations of measurement outcomes used in the characterization of the quantum state. We can therefore conclude that the complex conditional probabilities observed in weak measurements describe fundamental state-independent relations between non-commuting properties that represent the most fundamental form of universal laws in quantum physics.
Measuring the complex admittance of a nearly isolated graphene quantum dot
Zhang, Miao-Lei; Wei, Da; Deng, Guang-Wei; Li, Shu-Xiao; Li, Hai-Ou; Cao, Gang; Tu, Tao; Xiao, Ming; Guo, Guang-Can; Guo, Guo-Ping; Jiang, Hong-Wen
2014-08-18
We measured the radio-frequency reflection spectrum of an on-chip reflection line resonator coupled to a graphene double quantum dot (DQD), which was etched almost isolated from the reservoir and reached the low tunnel rate region. The charge stability diagram of DQD was investigated via dispersive phase and magnitude shift of the resonator with a high quality factor. Its complex admittance and low tunnel rate to the reservoir was also determined from the reflected signal of the on-chip resonator. Our method may provide a non-invasive and sensitive way of charge state readout in isolated quantum dots.
A fast non-local image denoising algorithm
NASA Astrophysics Data System (ADS)
Dauwe, A.; Goossens, B.; Luong, H. Q.; Philips, W.
2008-02-01
In this paper we propose several improvements to the original non-local means algorithm introduced by Buades et al. which obtains state-of-the-art denoising results. The strength of this algorithm is to exploit the repetitive character of the image in order to denoise the image unlike conventional denoising algorithms, which typically operate in a local neighbourhood. Due to the enormous amount of weight computations, the original algorithm has a high computational cost. An improvement of image quality towards the original algorithm is to ignore the contributions from dissimilar windows. Even though their weights are very small at first sight, the new estimated pixel value can be severely biased due to the many small contributions. This bad influence of dissimilar windows can be eliminated by setting their corresponding weights to zero. Using the preclassification based on the first three statistical moments, only contributions from similar neighborhoods are computed. To decide whether a window is similar or dissimilar, we will derive thresholds for images corrupted with additive white Gaussian noise. Our accelerated approach is further optimized by taking advantage of the symmetry in the weights, which roughly halves the computation time, and by using a lookup table to speed up the weight computations. Compared to the original algorithm, our proposed method produces images with increased PSNR and better visual performance in less computation time. Our proposed method even outperforms state-of-the-art wavelet denoising techniques in both visual quality and PSNR values for images containing a lot of repetitive structures such as textures: the denoised images are much sharper and contain less artifacts. The proposed optimizations can also be applied in other image processing tasks which employ the concept of repetitive structures such as intra-frame super-resolution or detection of digital image forgery.
Virtual brain states and non-locality of the ERP.
Germine, Mark
2004-01-01
It has been previously proposed that conscious process involves the collapse of quantum, dynamical brain states through conscious observation. It has been further proposed that the brain process has an active role in selecting the status of uncertain stimuli. On the basis of these proposals it was predicted that event-related potentials (ERPs) would differ under unobserved versus pre-observed conditions. This has been found to be the case. Here we describe our most recent data, which shows that the difference between the pre-observed (inactive) and unobserved (active) conditions in ERPs is replicable, and seems to involve a selective process of matching stimulus and virtual brain state under the two conditions. Maximization of entropy by congruence of stimulus and brain potential through a quantum entropy operator is the proposed physical mechanism for this finding. The prefrontal lobe inhibition of perseverative brain states under the active condition is proposed to be the neurological mechanism of the findings. PMID:15050120
Higher-order local and non-local correlations for 1D strongly interacting Bose gas
NASA Astrophysics Data System (ADS)
Nandani, EJKP; Römer, Rudolf A.; Tan, Shina; Guan, Xi-Wen
2016-05-01
The correlation function is an important quantity in the physics of ultracold quantum gases because it provides information about the quantum many-body wave function beyond the simple density profile. In this paper we first study the M-body local correlation functions, g M , of the one-dimensional (1D) strongly repulsive Bose gas within the Lieb–Liniger model using the analytical method proposed by Gangardt and Shlyapnikov (2003 Phys. Rev. Lett. 90 010401; 2003 New J. Phys. 5 79). In the strong repulsion regime the 1D Bose gas at low temperatures is equivalent to a gas of ideal particles obeying the non-mutual generalized exclusion statistics with a statistical parameter α =1-2/γ , i.e. the quasimomenta of N strongly interacting bosons map to the momenta of N free fermions via {k}i≈ α {k}iF with i=1,\\ldots ,N. Here γ is the dimensionless interaction strength within the Lieb–Liniger model. We rigorously prove that such a statistical parameter α solely determines the sub-leading order contribution to the M-body local correlation function of the gas at strong but finite interaction strengths. We explicitly calculate the correlation functions g M in terms of γ and α at zero, low, and intermediate temperatures. For M = 2 and 3 our results reproduce the known expressions for g 2 and g 3 with sub-leading terms (see for instance (Vadim et al 2006 Phys. Rev. A 73 051604(R); Kormos et al 2009 Phys. Rev. Lett. 103 210404; Wang et al 2013 Phys. Rev. A 87 043634). We also express the leading order of the short distance non-local correlation functions < {{{\\Psi }}}\\dagger ({x}1)\\cdots {{{\\Psi }}}\\dagger ({x}M){{\\Psi }}({y}M)\\cdots {{\\Psi }}({y}1)> of the strongly repulsive Bose gas in terms of the wave function of M bosons at zero collision energy and zero total momentum. Here {{\\Psi }}(x) is the boson annihilation operator. These general formulas of the higher-order local and non-local correlation functions of the 1D Bose gas provide new insights into the
Quantum Effects in Cosmochemistry: Complexation Energy and Van Der Waals Radii
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.; Wilson, T. L.
2007-01-01
The subject of quantum effects in cosmochemistry was recently addressed with the goal of understanding how they contribute to Q-phase noble gas abundances found in meteorites. It was the pursuit of the Q-phase carrier of noble gases and their anomalous abundances that ultimately led to the identification, isolation, and discovery of presolar grains. In spite of its importance, Q-phase investigations have led a number of authors to reach conclusions that do not seem to be supported by quantum chemistry. In view of the subject's fundamental significance, additional study is called for. Two quantum properties of Q-phase candidates known as endohedral carbon-cage clathrates such as fullerenes will be addressed here. These are complexation energy and instability induced by Pauli blocking (exclusion principle).
Quantum theory of the complex dielectric constant of free carriers in polar semiconductors
Jensen, B.
1982-09-01
The optical constants and reflectivity of a semiconductor are known as functions of the real and imaginary parts of the complex dielectric constant. The imaginary part of the complex dielectric constant e/sub 2/ is proportional to the optical conductivity, which has recently been calculated from the quantum density matrix equation of motion. The expression obtained for e/sub 2/ reduces to the Drude result, as obtained from the quasi-classical Boltzmann transport equation, in the limit of low frequencies and elastic scattering mechanisms, and to the quantum result found using time dependent perturbation theory in the limit of high frequencies. This paper derives the real part of the complex dielectric constant e/sub 1/ for a III-V or II-VI semiconductor with the band structure of the Kane theory, using the quantum density matrix method. The relation of e/sub 1/ to the second order perturbation energy of the system is shown, and the reflectivity is a minimum when the second order perturbation energy vanishes. The quantum calculation for e/sub 1/ gives approximately the same result as the Drude theory, except near the fundamental absorption edge, and reduces to the Drude result at low frequencies. Using the complex dielectric constant, the real and imaginary parts of the complex refractive index, the skin depth, and surface impedance, and the reflectivity are found. The plasma resonance is examined. The surface impedance and the skin depth are shown to reduce to the usual classical result in the limit that e/sub 1/ = 0 and w tau << 1, where w is the angular frequency of the applied field and tau is the electron scattering time.
Diagrammatic quantum mechanics
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.; Lomonaco, Samuel J.
2015-05-01
This paper explores how diagrams of quantum processes can be used for modeling and for quantum epistemology. The paper is a continuation of the discussion where we began this formulation. Here we give examples of quantum networks that represent unitary transformations by dint of coherence conditions that constitute a new form of non-locality. Local quantum devices interconnected in space can form a global quantum system when appropriate coherence conditions are maintained.
Interactions between Redox Complexes and Semiconductor Quantum Dots Coupled via a Peptide Bridge
Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Grimes, Amy F.; English, Doug S.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi
2009-01-01
Colloidal quantum dots (QDs) have a large fraction of their atoms arrayed on their surfaces and are capped with bifunctional ligands, which make their photoluminescence highly sensitive to potential charge transfer to, or from, the surrounding environment. In this report, we used peptides as bridges between CdSe-ZnS QDs and metal complexes to promote charge transfer between the metal complexes and QDs. We found that quenching of the QD emission is highly dependent on the relative position of the oxidation levels of QDs and metal complex used; it also traces the number of metal complexes brought in close proximity of the nanocrystal surface. In addition, partial bleaching of the absorption was measured for the QD-metal complex assemblies. These proximity driven interactions were further used to construct sensing assemblies to detect proteolytic enzyme activity. PMID:19049466
Quantum coherence enabled determination of the energy landscape in light-harvesting complex II.
Calhoun, Tessa R; Ginsberg, Naomi S; Schlau-Cohen, Gabriela S; Cheng, Yuan-Chung; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R
2009-12-24
The near-unity efficiency of energy transfer in photosynthesis makes photosynthetic light-harvesting complexes a promising avenue for developing new renewable energy technologies. Knowledge of the energy landscape of these complexes is essential in understanding their function, but its experimental determination has proven elusive. Here, the observation of quantum coherence using two-dimensional electronic spectroscopy is employed to directly measure the 14 lowest electronic energy levels in light-harvesting complex II (LHCII), the most abundant antenna complex in plants containing approximately 50% of the world's chlorophyll. We observe that the electronically excited states are relatively evenly distributed, highlighting an important design principle of photosynthetic complexes that explains the observed ultrafast intracomplex energy transfer in LHCII. PMID:20014871
Entropy and complexity analysis of Dirac-delta-like quantum potentials
NASA Astrophysics Data System (ADS)
Bouvrie, P. A.; Angulo, J. C.; Dehesa, J. S.
2011-06-01
The Dirac-delta-like quantum-mechanical potentials are frequently used to describe and interpret numerous phenomena in many scientific fields including atomic and molecular physics, condensed matter and quantum computation. The entropy and complexity properties of potentials with one and two Dirac-delta functions are here analytically calculated and numerically discussed in both position and momentum spaces. We have studied the information-theoretic lengths of Fisher, Rényi and Shannon types as well as the Cramér-Rao, Fisher-Shannon and LMC shape complexities of the lowest-lying stationary states of one-delta and twin-delta. They allow us to grasp and quantify different facets of the spreading of the charge and momentum of the system far beyond the celebrated standard deviation.
Quantum entanglement and the communication complexity of the inner product function
Cleve, R.; Dam, W. van |; Nielsen, M. |; Tapp, A.
1998-08-01
The authors consider the communication complexity of the binary inner product function in a variation of the two-party scenario where the parties have an a priori supply of particles in an entangled quantum state. They prove linear lower bounds for both exact protocols, as well as for protocols that determine the answer with bounded-error probability. The proofs employ a novel kind of quantum reduction from multibit communication problems to the problem of computing the inner product. The communication required for the former problem can then be bounded by an application of Holevo`s theorem. They also give a specific example of a probabilistic scenario where entanglement reduces the communication complexity of the inner product function by one bit.
Quantum localization/delocalization of muonium in the glycine-K+ complex
NASA Astrophysics Data System (ADS)
Yoshikawa, Takehiro; Honda, Tomohiro; Takayanagi, Toshiyuki
2014-08-01
Previous electronic structure studies have revealed that the glycine-K+ complex has a low-barrier intramolecular proton-transfer pathway between zwitterionic and neutral forms. We have theoretically calculated quantum molecular structures of this complex including the proton-transfer process using a path-integral molecular dynamics technique on an interpolated potential energy surface developed at the B3LYP level of theory. When the transferring proton is substituted by muon, it was found that the muonium atom showed a broad distribution around the proton(muon)-transfer transition state region between the neutral and zwitterionic structures due to extreme nuclear quantum effects of a very light particle although the distribution peak is slightly deviated from the transition state. The present study demonstrates that Mu can be employed to probe transition-state regions of potential energy surfaces of proton-transfer chemical reactions.
Perfect state transfers by selective quantum interferences within complex spin networks
NASA Astrophysics Data System (ADS)
Álvarez, Gonzalo A.; Mishkovsky, Mor; Danieli, Ernesto P.; Levstein, Patricia R.; Pastawski, Horacio M.; Frydman, Lucio
2010-06-01
We present a method that implements directional, perfect state transfers within a branched spin network by exploiting quantum interferences in the time domain. This method provides a tool for isolating subsystems from a large and complex one. Directionality is achieved by interrupting the spin-spin coupled evolution with periods of free Zeeman evolutions, whose timing is tuned to be commensurate with the relative phases accrued by specific spin pairs. This leads to a resonant transfer between the chosen qubits and to a detuning of all remaining pathways in the network, using only global manipulations. Since the transfer is perfect when the selected pathway is mediated by two or three spins, distant state transfers over complex networks can be achieved by successive recouplings among specific pairs or triads of spins. These effects are illustrated with a quantum simulator involving C13 NMR on leucine’s backbone; a six-spin network.
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
NASA Astrophysics Data System (ADS)
Zamstein, Noa; Tannor, David J.
2012-12-01
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schrödinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)], 10.1063/1.4739845. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], 10.1063/1.459170, and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Franz, Dennis; Reich, Aina; Strelow, Christian; Wang, Zhe; Kornowski, Andreas; Kipp, Tobias; Mews, Alf
2014-11-12
One-dimensional semiconductor nanostructures combine electron mobility in length direction with the possibility of tailoring the physical properties by confinement effects in radial direction. Here we show that thin CdSe quantum nanowires exhibit low-temperature fluorescence spectra with a specific universal structure of several sharp lines. The structure strongly resembles the pattern of bulk spectra but show a diameter-dependent shift due to confinement effects. Also the fluorescence shows a pronounced complex blinking behavior with very different blinking dynamics of different emission lines in one and the same spectrum. Time- and space-resolved optical spectroscopy are combined with high-resolution transmission electron microscopy of the very same quantum nanowires to establish a detailed structure-property relationship. Extensive numerical simulations strongly suggest that excitonic complexes involving donor and acceptor sites are the origin of the feature-rich spectra. PMID:25343231
Non-adiabatic molecular dynamics with complex quantum trajectories. II. The adiabatic representation
Zamstein, Noa; Tannor, David J.
2012-12-14
We present a complex quantum trajectory method for treating non-adiabatic dynamics. Each trajectory evolves classically on a single electronic surface but with complex position and momentum. The equations of motion are derived directly from the time-dependent Schroedinger equation, and the population exchange arises naturally from amplitude-transfer terms. In this paper the equations of motion are derived in the adiabatic representation to complement our work in the diabatic representation [N. Zamstein and D. J. Tannor, J. Chem. Phys. 137, 22A517 (2012)]. We apply our method to two benchmark models introduced by John Tully [J. Chem. Phys. 93, 1061 (1990)], and get very good agreement with converged quantum-mechanical calculations. Specifically, we show that decoherence (spatial separation of wavepackets on different surfaces) is already contained in the equations of motion and does not require ad hoc augmentation.
Proof of Monogamy of non-local correlations in three and four qubit states
NASA Astrophysics Data System (ADS)
Sharma, Santosh Shelly; Sharma, Naresh Kumar
2015-03-01
Recently, we used the process of selective construction of invariants to obtain physically meaningful polynomial invariants for three and four qubit pure states. In this article, we report the exact relations between the concurrence of a two qubit reduced state and corresponding three or four qubit pure state invariants. Firstly, we obtain an analytical expression for concurrence of a given mixed state of two qubits in terms of determinants of negativity fonts in the three or four qubit pure state. For three qubits, a comparison with three tangle and squared negativity expressed in terms of determinants of negativity fonts leads to three relations. These three conditions satisfied by the two-way and three-way correlations sum together and lead to well known CKW inequality. When a qubit pair is part of a four qubit pure state, it may be entangled to the rest of the system through two-way, three-way and four-way correlations. Monogamy equalities, satisfied by two-way, three-way and four-way non-local quantum correlatios are presented for states belonging to classes of four qubit pure states with distinct entanglement types. We gratefully acknowledge financial support from CNPq and Capes Brazil.
Equivalent dynamical complexity in a many-body quantum and collective human system
NASA Astrophysics Data System (ADS)
Johnson, Neil F.; Ashkenazi, Josef; Zhao, Zhenyuan; Quiroga, Luis
2011-03-01
Proponents of Complexity Science believe that the huge variety of emergent phenomena observed throughout nature, are generated by relatively few microscopic mechanisms. Skeptics however point to the lack of concrete examples in which a single mechanistic model manages to capture relevant macroscopic and microscopic properties for two or more distinct systems operating across radically different length and time scales. Here we show how a single complexity model built around cluster coalescence and fragmentation, can cross the fundamental divide between many-body quantum physics and social science. It simultaneously (i) explains a mysterious recent finding of Fratini et al. concerning quantum many-body effects in cuprate superconductors (i.e. scale of 10-9 - 10-4 meters and 10-12 - 10-6 seconds), (ii) explains the apparent universality of the casualty distributions in distinct human insurgencies and terrorism (i.e. scale of 103 - 106 meters and 104 - 108 seconds), (iii) shows consistency with various established empirical facts for financial markets, neurons and human gangs and (iv) makes microscopic sense for each application. Our findings also suggest that a potentially productive shift can be made in Complexity research toward the identification of equivalent many-body dynamics in both classical and quantum regimes.
NASA Astrophysics Data System (ADS)
Vieira, Marcelo A. C.; de Oliveira, Helder C. R.; Nunes, Polyana F.; Borges, Lucas R.; Bakic, Predrag R.; Barufaldi, Bruno; Acciavatti, Raymond J.; Maidment, Andrew D. A.
2015-03-01
The main purpose of this work is to study the ability of denoising algorithms to reduce the radiation dose in Digital Breast Tomosynthesis (DBT) examinations. Clinical use of DBT is normally performed in "combo-mode", in which, in addition to DBT projections, a 2D mammogram is taken with the standard radiation dose. As a result, patients have been exposed to radiation doses higher than used in digital mammography. Thus, efforts to reduce the radiation dose in DBT examinations are of great interest. However, a decrease in dose leads to an increased quantum noise level, and related decrease in image quality. This work is aimed at addressing this problem by the use of denoising techniques, which could allow for dose reduction while keeping the image quality acceptable. We have studied two "state of the art" denoising techniques for filtering the quantum noise due to the reduced dose in DBT projections: Non-local Means (NLM) and Block-matching 3D (BM3D). We acquired DBT projections at different dose levels of an anthropomorphic physical breast phantom with inserted simulated microcalcifications. Then, we found the optimal filtering parameters where the denoising algorithms are capable of recovering the quality from the DBT images acquired with the standard radiation dose. Results using objective image quality assessment metrics showed that BM3D algorithm achieved better noise adjustment (mean difference in peak signal to noise ratio < 0.1dB) and less blurring (mean difference in image sharpness ~ 6%) than the NLM for the projections acquired with lower radiation doses.
Complex-time singularity and locality estimates for quantum lattice systems
NASA Astrophysics Data System (ADS)
Bouch, Gabriel
2015-12-01
We present and prove a well-known locality bound for the complex-time dynamics of a general class of one-dimensional quantum spin systems. Then we discuss how one might hope to extend this same procedure to higher dimensions using ideas related to the Eden growth process and lattice trees. Finally, we demonstrate with a specific family of lattice trees in the plane why this approach breaks down in dimensions greater than one and prove that there exist interactions for which the complex-time dynamics blows-up in finite imaginary time.
Complex-time singularity and locality estimates for quantum lattice systems
Bouch, Gabriel
2015-12-15
We present and prove a well-known locality bound for the complex-time dynamics of a general class of one-dimensional quantum spin systems. Then we discuss how one might hope to extend this same procedure to higher dimensions using ideas related to the Eden growth process and lattice trees. Finally, we demonstrate with a specific family of lattice trees in the plane why this approach breaks down in dimensions greater than one and prove that there exist interactions for which the complex-time dynamics blows-up in finite imaginary time. .
Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar
2015-09-15
The sensitivity of the evolution of quantum uncertainties to the choice of the initial conditions is shown via a complex nonlinear Riccati equation leading to a reformulation of quantum dynamics. This sensitivity is demonstrated for systems with exact analytic solutions with the form of Gaussian wave packets. In particular, one-dimensional conservative systems with at most quadratic Hamiltonians are studied.
NASA Astrophysics Data System (ADS)
Chou, Chia-Chun
2015-08-01
The complex quantum Hamilton-Jacobi equation for the complex action is approximately solved by propagating individual Bohmian trajectories in real space. Equations of motion for the complex action and its spatial derivatives are derived through use of the derivative propagation method. We transform these equations into the arbitrary Lagrangian-Eulerian version with the grid velocity matching the flow velocity of the probability fluid. Setting higher-order derivatives equal to zero, we obtain a truncated system of equations of motion describing the rate of change in the complex action and its spatial derivatives transported along approximate Bohmian trajectories. A set of test trajectories is propagated to determine appropriate initial positions for transmitted trajectories. Computational results for transmitted wave packets and transmission probabilities are presented and analyzed for a one-dimensional Eckart barrier and a two-dimensional system involving either a thick or thin Eckart barrier along the reaction coordinate coupled to a harmonic oscillator.
Mn(II/III) complexes as promising redox mediators in quantum-dot-sensitized solar cells.
Haring, Andrew J; Pomatto, Michelle E; Thornton, Miranda R; Morris, Amanda J
2014-09-10
The advancement of quantum dot sensitized solar cell (QDSSC) technology depends on optimizing directional charge transfer between light absorbing quantum dots, TiO2, and a redox mediator. The nature of the redox mediator plays a pivotal role in determining the photocurrent and photovoltage from the solar cell. Kinetically, reduction of oxidized quantum dots by the redox mediator should be rapid and faster than the back electron transfer between TiO2 and oxidized quantum dots to maintain photocurrent. Thermodynamically, the reduction potential of the redox mediator should be sufficiently positive to provide high photovoltages. To satisfy both criteria and enhance power conversion efficiencies, we introduced charge transfer spin-crossover Mn(II/III) complexes as promising redox mediator alternatives in QDSSCs. High photovoltages ∼ 1 V were achieved by a series of Mn poly(pyrazolyl)borates, with reduction potentials ∼ 0.51 V vs Ag/AgCl. Back electron transfer (recombination) rates were slower than Co(bpy)3, where bpy = 2,2'-bipyridine, evidenced by electron lifetimes up to 4 orders of magnitude longer. This is indicative of a large barrier to electron transport imposed by spin-crossover in these complexes. Low solubility prevented the redox mediators from sustaining high photocurrent due to mass transport limits. However, with high fill factors (∼ 0.6) and photovoltages, they demonstrate competitive efficiencies with Co(bpy)3 redox mediator at the same concentration. More positive reduction potentials and slower recombination rates compared to current redox mediators establish the viability of Mn poly(pyrazolyl)borates as promising redox mediators. By capitalizing on these characteristics, efficient Mn(II/III)-based QDSSCs can be achieved with more soluble Mn-complexes. PMID:25137595
Direct evidence of memory retrieval as a source of difficulty in non-local dependencies in language.
Fedorenko, Evelina; Woodbury, Rebecca; Gibson, Edward
2013-03-01
Linguistic dependencies between non-adjacent words have been shown to cause comprehension difficulty, compared with local dependencies. According to one class of sentence comprehension accounts, non-local dependencies are difficult because they require the retrieval of the first dependent from memory when the second dependent is encountered. According to these memory-based accounts, making the first dependent accessible at the time when the second dependent is encountered should help alleviate the difficulty associated with the processing of non-local dependencies. In a dual-task paradigm, participants read sentences that did or did not contain a non-local dependency (i.e., object- and subject-extracted cleft constructions) while simultaneously remembering a word. The memory task was aimed at making the word held in memory accessible throughout the sentence. In an object-extracted cleft (e.g., It was Ellen whom John consulted…), the object (Ellen) must be retrieved from memory when consulted is encountered. In the critical manipulation, the memory word was identical to the verb's object (ELLEN). In these conditions, the extraction effect was reduced in the comprehension accuracy data and eliminated in the reading time data. These results add to the body of evidence supporting memory-based accounts of syntactic complexity. PMID:23362990
A Laplace operator and harmonics on the quantum complex vector space
NASA Astrophysics Data System (ADS)
Iorgov, N. Z.; Klimyk, A. U.
2003-02-01
The aim of this article is to study the q-Laplace operator and q-harmonic polynomials on the quantum complex vector space generated by elements zi,wi, i=1,2,…,n, on which the quantum group GLq(n) [or Uq(n)] acts. The q-harmonic polynomials are defined as solutions of the equation Δqp=0, where p is a polynomial in zi,wi, i=1,2,…,n, and the q-Laplace operator Δq is determined in terms of q-derivatives. The q-Laplace operator Δq commutes with the action of GLq(n). The projector Hm,m':Am,m'→Hm,m' is constructed, where Am,m' and Hm,m' are the spaces of homogeneous (of degree m in zi and of degree m' in wi) polynomials and homogeneous q-harmonic polynomials, respectively. By using these projectors, a q-analog of the classical zonal spherical and associated spherical harmonics are constructed. They constitute an orthogonal basis of Hm,m'. A q-analog of separation of variables is given. The quantum algebra Uq(gln), acting on Hm,m', determines an irreducible representation of Uq(gln). This action is explicitly constructed. The results of the article lead to the dual pair (Uq(sl2),Uq(gln)) of quantum algebras.
Romera, Elvira; Calixto, Manuel; Nagy, Ágnes
2014-07-01
We obtain a characterization of quantum shape-phase transitions in the terms of complexity measures in the two-dimensional limit of the vibron model based on the spectrum generating algebra U(3). Complexity measures (in terms of the Rényi entropies) have been calculated for different values of the control parameter for the ground state of this model giving sharp signatures of the quantum shape-phase transition from linear to bent molecules. PMID:24948526
Quantum computer games: quantum minesweeper
NASA Astrophysics Data System (ADS)
Gordon, Michal; Gordon, Goren
2010-07-01
The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical minesweeper the goal of the game is to discover all the mines laid out on a board without triggering them, in the quantum version there are several classical boards in superposition. The goal is to know the exact quantum state, i.e. the precise layout of all the mines in all the superposed classical boards. The player can perform three types of measurement: a classical measurement that probabilistically collapses the superposition; a quantum interaction-free measurement that can detect a mine without triggering it; and an entanglement measurement that provides non-local information. The application of the concepts taught by quantum minesweeper to one-way quantum computing are also presented.
Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation
NASA Astrophysics Data System (ADS)
Zamstein, Noa; Tannor, David J.
2012-12-01
We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)], 10.1063/1.2400851 to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)], 10.1063/1.459170. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations.
Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation.
Zamstein, Noa; Tannor, David J
2012-12-14
We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)] to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)]. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations. PMID:23249054
Barrier scattering with complex-valued quantum trajectories: Taxonomy and analysis of isochrones
David, Julianne K.; Wyatt, Robert E.
2008-03-07
To facilitate the search for isochrones when using complex-valued trajectory methods for quantum barrier scattering calculations, the structure and shape of isochrones in the complex plane were studied. Isochrone segments were categorized based on their distinguishing features, which are shared by each situation studied: High and low energy wave packets, scattering from both thick and thin Gaussian and Eckart barriers of varying height. The characteristic shape of the isochrone is a trifurcated system: Trajectories that transmit the barrier are launched from the lower branch (T), while the middle and upper branches form the segments for reflected trajectories (F and B). In addition, a model is presented for the curved section of the lower branch (from which transmitted trajectories are launched), and important features of the complex extension of the initial wave packet are identified.
Uddayasankar, Uvaraj; Krull, Ulrich J
2015-07-28
The energy transfer between quantum dots (QDs) and gold nanoparticles (AuNPs) represents a popular transduction scheme in analytical assays that use nanomaterials. The impact of the spatial arrangement of the two types of nanoparticles on analytical performance has now been evaluated using a nucleic acid strand displacement assay. The first spatial arrangement (configuration 1) involved the assembly of a number of monovalently functionalized QD-oligonucleotide conjugates around a single central AuNP that was functionalized with complementary oligonucleotide sequences. The assembly of these complexes, and subsequent disassembly via target oligonucleotide-mediated displacement, were used to evaluate energy transfer efficiencies. Furthermore, the inner filter effect of AuNPs on the fluorescence intensity of the QD was studied. AuNPs of three different diameters (6, 13, and 30 nm) were used in these studies. Configuration 2 was based on the placement of monovalently functionalized AuNP-oligonucleotide conjugates around a single QD that was functionalized with a complementary oligonucleotide. The optimal assay configuration, established by evaluating energy transfer efficiencies and inner filter effects, was obtained by arranging at most 15 QDs around the 13 nm AuNP (configuration 1). These assays provided a 2.5-fold change in fluorescence intensity in the presence of target oligonucleotides. To obtain the same response with configuration 2 required the placement of three 6 nm AuNPs around the QD. This resulted in configuration 2 having a 5-fold lower fluorescence intensity when compared to configuration 1. The use of low-cost detection systems (digital camera) further emphasized the higher analytical performance of configuration 1. Response curves obtained using these detection systems demonstrated that configuration 1 had a 10-fold higher sensitivity when compared to configuration 2. This study provides an important framework for the development of sensitive assays
Spectroscopic studies of plasmon coupling between photosynthetic complexes and metallic quantum dots
NASA Astrophysics Data System (ADS)
Olejnik, Maria; Krajnik, Bartosz; Kowalska, Dorota; Lin, Guanhua; Mackowski, Sebastian
2013-05-01
Metallic quantum dots, or nanoparticles, have found an increasing number of applications not only in nanotechnology and nanoscience, but also in neighboring disciplines, such as chemistry and biology. Among the variety of ways to exploit the unique properties of metallic nanostructures is the notion that plasmonic effects associated with the movement of free carriers in metallic nanoparticles may enhance photosynthetic function in naturally evolved organisms. We report on optical microscopy and spectroscopy studies of three hybrid nanostructures composed of spherical gold nanoparticles and peridinin-chlorophyll-protein (PCP), a light-harvesting complex from algae. In the case of a bioconjugated structure we find efficient, concentration dependent quenching due to non-radiative energy transfer. In contrast, for the PCP complexes deposited directly on Au nanoparticles, the emission is increased as a result of the strong increase of the fluorescence quantum yield. Finally, for a structure with controlled separation between metallic nanoparticles and the light-harvesting complexes the emission features non-monotonic behavior with maximum enhancement of about 6, which is due to a combination of fluorescence and absorption rate increases. In this way we demonstrate how the design of plasmonic hybrid nanostructures determines the optical response, which is important for engineering novel systems for photovoltaics and sensor applications, for instance.
NASA Astrophysics Data System (ADS)
Medintz, Igor L.; Pons, Thomas; Trammell, Scott A.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Mattoussi, Hedi
2009-02-01
Luminescent colloidal semiconductor quantum dots (QDs) have unique optical and photonic properties and are highly sensitive to charge transfer in their surrounding environment. In this study we used synthetic peptides as physical bridges between CdSe-ZnS core-shell QDs and some of the most common redox-active metal complexes to understand the charge transfer interactions between the metal complexes and QDs. We found that QD emission underwent quenching that was highly dependent on the choice of metal complex used. We also found that quenching traces the valence or number of metal complexes brought into close proximity of the nanocrystal surface. Monitoring of the QD absorption bleaching in the presence of the metal complex provided insight into the charge transfer mechanism. The data suggest that two distinct charge transfer mechanisms can take place. One directly to the QD core states for neutral capping ligands and a second to surface states for negatively charged capping ligands. A basic understanding of the proximity driven charge-transfer and quenching interactions allowed us to construct proteolytic enzyme sensing assemblies with the QD-peptide-metal complex conjugates.
High-order harmonics in a quantum dot and metallic nanorod complex.
Yang, Wen-Xing
2015-11-01
We investigate the high-order harmonic generation (HHG) in a semiconductor quantum dot (SQD) and metallic nanorod (MNR) complex driven by a moderate intensity (<10(12) W/cm(2)) frequency-chirped Gaussian few-cycle pulse. Our numerical results indicate that the cutoff energy of the HHG can be controlled by optimizing the shape of the MNR and surface-to-surface distance between the SQD and the MNR. We also show that the extreme ultraviolet supercontinuum harmonics (25 eV maximal photon energy) and isolated ultrashort pulses (2.67-4.36 fs FWHM) are achievable. PMID:26512479
When do perturbative approaches accurately capture the dynamics of complex quantum systems?
Fruchtman, Amir; Lambert, Neill; Gauger, Erik M.
2016-01-01
Understanding the dynamics of higher-dimensional quantum systems embedded in a complex environment remains a significant theoretical challenge. While several approaches yielding numerically converged solutions exist, these are computationally expensive and often provide only limited physical insight. Here we address the question: when do more intuitive and simpler-to-compute second-order perturbative approaches provide adequate accuracy? We develop a simple analytical criterion and verify its validity for the case of the much-studied FMO dynamics as well as the canonical spin-boson model. PMID:27335176
NASA Astrophysics Data System (ADS)
Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Vitiello, Giuseppe
2009-07-01
These proceedings present the Invited Lectures and Contributed Papers of the Fourth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2008, held at Castello Pasquini, Castiglioncello (Tuscany), 22-26 September 2008. We deliver these proceedings as a means to document to the interested public, to the wider scientific community, and to the participants themselves the stimulating exchange of ideas at this conference. The steadily growing number of participants, among them acclaimed scientists in their respective fields, show its increasing attraction and a fruitful concept, based on bringing leading researchers together and in contact with a mix of advanced students and scholars. Thus, this series of meetings successfully continued from the beginning with DICE 2002, (Decoherence and Entropy in Complex Systems ed H-T Elze Lecture Notes in Physics 633 (Berlin: Springer, 2004)) followed by DICE 2004 (Proceedings of the Second International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2004 ed H-T Elze Braz. Journ. Phys. 35, 2A & 2B (2005) pp 205-529 free access at: www.sbfisica.org.br/bjp) and by DICE 2006, (Proceedings of the Third International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2006 eds H-T Elze, L Diósi and G Vitiello Journal of Physics: Conference Series 67 (2007); free access at: http://www.iop.org/EJ/toc/1742-6596/67/1) uniting about one hundred participants from more than twenty different countries worldwide this time. It has been a great honour and inspiration for all of us to have Professor Sir Roger Penrose from the Mathematical Institute at the University of Oxford with us, who presented the lecture ``Black holes, quantum theory and cosmology'' (included in this volume). Discussions under the wider theme ``From Quantum Mechanics through Complexity to Spacetime: the role of emergent dynamical structures'' took place in the very pleasant and inspiring atmosphere of Castello
Including Quantum Effects in the Dynamics of Complex (i.e., Large)Molecular Systems
Miller, William H.
2006-04-27
The development in the 1950's and 60's of crossed molecular beam methods for studying chemical reactions at the single-collision molecular level stimulated the need and desire for theoretical methods to describe these and other dynamical processes in molecular systems. Chemical dynamics theory has made great strides in the ensuing decades, so that methods are now available for treating the quantum dynamics of small molecular systems essentially completely. For the large molecular systems that are of so much interest nowadays (e.g. chemical reactions in solution, in clusters, in nano-structures, in biological systems, etc.), however, the only generally available theoretical approach is classical molecular dynamics (MD) simulations. Much effort is currently being devoted to the development of approaches for describing the quantum dynamics of these complex systems. This paper reviews some of these approaches, especially the use of semiclassical approximations for adding quantum effects to classical MD simulations, also showing some new versions that should make these semiclassical approaches even more practical and accurate.
Rossi, Mariana; Fang, Wei; Michaelides, Angelos
2015-11-01
Biomolecules are complex systems stabilized by a delicate balance of weak interactions, making it important to assess all energetic contributions in an accurate manner. However, it is a priori unclear which contributions make more of an impact. Here, we examine stacked polyglutamine (polyQ) strands, a peptide repeat often found in amyloid aggregates. We investigate the role of hydrogen bond (HB) cooperativity, van der Waals (vdW) dispersion interactions, and quantum contributions to free energies, including anharmonicities through density functional theory and ab initio path integral simulations. Of these various factors, we find that the largest impact on structural stabilization comes from vdW interactions. HB cooperativity is the second largest contribution as the size of the stacked chain grows. Competing nuclear quantum effects make the net quantum contribution small but very sensitive to anharmonicities, vdW, and the number of HBs. Our results suggest that a reliable treatment of these systems can only be attained by considering all of these components. PMID:26722963
Zhou, Xinran; Doty, Matthew
2014-10-28
Self-assembled InAs quantum dots (QDs) are of great interest as components of optoelectronic devices that can operate at the quantum limit. The charge configuration, interdot coupling, and symmetry of complexes containing multiple QDs can all be tuned with applied electric fields, but the magnitude and angle of the electric field required to control each of these parameters depend on the orientation of the QD complex. We present a 4-electrode device compatible with optical excitation and emission that allows application of electric fields with arbitrary magnitudes and angles relative to isolated QD complexes. We demonstrate the electric field tunability of this device with numerical simulations.
The non-local bootstrap--estimation of uncertainty in diffusion MRI.
Yap, Pew-Thian; An, Hongyu; Chen, Yasheng; Shen, Dinggang
2013-01-01
Diffusion MRI is a noninvasive imaging modality that allows for the estimation and visualization of white matter connectivity patterns in the human brain. However, due to the low signal-to-noise ratio (SNR) nature of diffusion data, deriving useful statistics from the data is adversely affected by different sources of measurement noise. This is aggravated by the fact that the sampling distribution of the statistic of interest is often complex and unknown. In situations as such, the bootstrap, due to its distribution-independent nature, is an appealing tool for the estimation of the variability of almost any statistic, without relying on complicated theoretical calculations, but purely on computer simulation. In this work, we present new bootstrap strategies for variability estimation of diffusion statistics in association with noise. In contrast to the residual bootstrap, which relies on a predetermined data model, or the repetition bootstrap, which requires repeated signal measurements, our approach, called the non-local bootstrap (NLB), is non-parametric and obviates the need for time-consuming multiple acquisitions. The key assumption of NLB is that local image structures recur in the image. We exploit this self-similarity via a multivariate non-parametric kernel regression framework for bootstrap estimation of uncertainty. Evaluation of NLB using a set of high-resolution diffusion-weighted images, with lower than usual SNR due to the small voxel size, indicates that NLB is markedly more robust to noise and results in more accurate inferences. PMID:24683985
Quantum chemical studies of the pyrrole-water and pyridine-water complexes
NASA Astrophysics Data System (ADS)
Martoprawiro, Muhamad A.; Bacskay, George B.
An ab initio quantum chemical study of the hydrogen bonded binary complexes pyrrole-water and pyridine-water is reported. The calculations were performed largely at the MP2 level of theory using basis sets of double-zeta-plus polarization functions quality and focus on properties of the complexes such as molecular geometries, energies, harmonic vibrational frequencies, dipole moments and 14N nuclear quadrupole coupling constants. Where possible, the results of the calculations are compared with experimental data. In addition, the interaction potentials are studied in some detail, specifically with regard to basis set superposition and its effect on geometries, intermolecular vibrational frequencies and binding energies. The nature of interaction, i.e., the importance of electrostatic, Pauli repulsion, polarization, charge transfer and dispersion contributions to the hydrogen bond energies, as obtained in constrained spatial orbital variation analyses, is also discussed.
Complex-time singularity and locality estimates for quantum lattice systems
NASA Astrophysics Data System (ADS)
Bouch, Gabriel D.
In a very general class of one-dimensional quantum spin systems, the infinite volume limit of the complex-time evolution of a local observable is an entire analytic function of the time variable and obeys a locality principle. This result has recently been used to prove a number of important results in statistical mechanics. In dimensions greater than one, although it has not been expected that the infinite volume limit of the complex-time evolution of a general local observable will be entire analytic, nothing rigorous has been established concerning the breakdown of analyticity or the nature of the singularities, if they exist. In this work we begin by presenting a possible approach to proving locality bounds for the complex-time dynamics of a general class of quantum spin systems in any dimension. Then we specifically apply this approach to the one-dimensional case, and establish entire analyticity of the dynamics as a corollary. In dimensions greater than one, ideas related to the much studied Eden growth process suggest that a similar locality result will also hold. In particular, we establish an upper bound on the expected perimeter of lattice animals grown according to an Eden growth process, and note that a similar upper bound on a closely related average perimeter would lead to a locality result in the plane. Finally, and perhaps unexpectedly, we demonstrate through a specific construction that such a locality result does not hold in general and that the infinite volume limit of the complex-time dynamics can blow up a finite distance along the imaginary-time axis.
Kubicki, James D; Halada, Gary P; Jha, Prashant; Phillips, Brian L
2009-01-01
Background Quantum mechanical calculations were performed on a variety of uranium species representing U(VI), U(V), U(IV), U-carbonates, U-phosphates, U-oxalates, U-catecholates, U-phosphodiesters, U-phosphorylated N-acetyl-glucosamine (NAG), and U-2-Keto-3-doxyoctanoate (KDO) with explicit solvation by H2O molecules. These models represent major U species in natural waters and complexes on bacterial surfaces. The model results are compared to observed EXAFS, IR, Raman and NMR spectra. Results Agreement between experiment and theory is acceptable in most cases, and the reasons for discrepancies are discussed. Calculated Gibbs free energies are used to constrain which configurations are most likely to be stable under circumneutral pH conditions. Reduction of U(VI) to U(IV) is examined for the U-carbonate and U-catechol complexes. Conclusion Results on the potential energy differences between U(V)- and U(IV)-carbonate complexes suggest that the cause of slower disproportionation in this system is electrostatic repulsion between UO2 [CO3]35- ions that must approach one another to form U(VI) and U(IV) rather than a change in thermodynamic stability. Calculations on U-catechol species are consistent with the observation that UO22+ can oxidize catechol and form quinone-like species. In addition, outer-sphere complexation is predicted to be the most stable for U-catechol interactions based on calculated energies and comparison to 13C NMR spectra. Outer-sphere complexes (i.e., ion pairs bridged by water molecules) are predicted to be comparable in Gibbs free energy to inner-sphere complexes for a model carboxylic acid. Complexation of uranyl to phosphorus-containing groups in extracellular polymeric substances is predicted to favor phosphonate groups, such as that found in phosphorylated NAG, rather than phosphodiesters, such as those in nucleic acids. PMID:19689800
Non-local ocean mixing model and a new plume model for deep convection
NASA Astrophysics Data System (ADS)
Canuto, V. M.; Cheng, Y.; Howard, A. M.
Turbulent fluxes can be represented by a diffusivity tensor, the symmetric part of which describes " turbulent diffusion" while the anti-symmetric part describes " advection". Diffusion is a local process in the sense that it depends only on the local gradients of the mean fields while advection is non-local for it is represented by an integral over all length scales (all eddies) that can "fit" from say the bottom of the physical domain to the z where the fluxes are computed. In the ocean, there are two main regimes where non-local transport is important. One regime is where storms release a sudden burst of mechanical energy to the ocean surface that is then transported downward by energetic eddies that deepen the mixed layer. Even relatively simple non-local models yield results considerably more realistic than those of local models. The second regime is deep convection (DC) caused by loss of surface buoyancy, the description of which is required for a reliable assessment of water masses formation. At present, there is no reliable model for either of these non-local regimes individually or much less a formalism capable of accounting for both regimes simultaneously. The goal of this paper is to present a formalism that provides the expressions for the non-local fluxes for momentum, heat and salinity encompassing both cases. Since the resulting number of dynamic equations involves is however large, we work out two sub-models, one when only shear must be treated non-locally (e.g., when storms release mechanical energy) and one when only buoyancy is to be treated non-locally (the DC case). We employ the Reynolds Stress formalism in which non-locality is represented by the third-order moments which in turn depend on the fourth-order moments for which we employ a new model that has been tested against LES data, aircraft data and a full PBL simulation. For the DC case, we rewrite the non-local model in terms of Plumes since thus far the only non-local model used to treat
Non-local bias contribution to third-order galaxy correlations
NASA Astrophysics Data System (ADS)
Bel, J.; Hoffmann, K.; Gaztañaga, E.
2015-10-01
We study halo clustering bias with second- and third-order statistics of halo and matter density fields in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge simulation. We verify that two-point correlations deliver reliable estimates of the linear bias parameters at large scales, while estimations from the variance can be significantly affected by non-linear and possibly non-local contributions to the bias function. Combining three-point auto- and cross-correlations we find, for the first time in configuration space, evidence for the presence of such non-local contributions. These contributions are consistent with predicted second-order non-local effects on the bias functions originating from the dark matter tidal field. Samples of massive haloes show indications of bias (local or non-local) beyond second order. Ignoring non-local bias causes 20-30 and 5-10 per cent overestimation of the linear bias from three-point auto- and cross-correlations, respectively. We study two third-order bias estimators that are not affected by second-order non-local contributions. One is a combination of three-point auto- and cross-correlations. The other is a combination of third-order one- and two-point cumulants. Both methods deliver accurate estimations of the linear bias. Ignoring non-local bias causes higher values of the second-order bias from three-point correlations. Our results demonstrate that third-order statistics can be employed for breaking the growth-bias degeneracy.
Non-local dynamics governing the self-induced motion of a planar vortex filament
NASA Astrophysics Data System (ADS)
Van Gorder, Robert A.
2015-06-01
While the Hasimoto planar vortex filament is one of the few exact solutions to the local induction approximation (LIA) approximating the self-induced motion of a vortex filament, it is natural to wonder whether such a vortex filament solution would exist for the non-local Biot-Savart dynamics exactly governing the filament motion, and if so, whether the non-local effects would drastically modify the solution properties. Both helical vortex filaments and vortex rings are known to exist under both the LIA and non-local Biot-Savart dynamics; however, the planar filament is a bit more complicated. In the present paper, we demonstrate that a planar vortex filament solution does exist for the non-local Biot-Savart formulation, provided that a specific non-linear integral equation (governing the spatial structure of such a filament) has a non-trivial solution. By using the Poincaré-Lindstedt method, we are able to obtain an accurate analytical approximation to the solution of this integral equation under physically reasonable assumptions. To obtain these solutions, we approximate local effects near the singularity of the integral equation using the LIA and non-local effects using the Biot-Savart formulation. Mathematically, the results constitute an analytical solution to an interesting nonlinear singular integro-differential equation in space and time variables. Physically, these results show that planar vortex filaments exist and maintain their forms under the non-local Biot-Savart formulation, as one would hope. Due to the regularization approach utilized, we are able to compare the structure of the planar filaments obtained under both LIA and Biot-Savart formulations in a rather straightforward manner, in order to determine the role of the non-locality on the structure of the planar filament.
Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures.
Küster, Achim; Heyn, Christian; Ungeheuer, Arne; Juska, Gediminas; Tommaso Moroni, Stefano; Pelucchi, Emanuele; Hansen, Wolfgang
2016-12-01
Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g ((2))(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs. PMID:27255902
Droplet etching of deep nanoholes for filling with self-aligned complex quantum structures
NASA Astrophysics Data System (ADS)
Küster, Achim; Heyn, Christian; Ungeheuer, Arne; Juska, Gediminas; Tommaso Moroni, Stefano; Pelucchi, Emanuele; Hansen, Wolfgang
2016-06-01
Strain-free epitaxial quantum dots (QDs) are fabricated by a combination of Al local droplet etching (LDE) of nanoholes in AlGaAs surfaces and subsequent hole filling with GaAs. The whole process is performed in a conventional molecular beam epitaxy (MBE) chamber. Autocorrelation measurements establish single-photon emission from LDE QDs with a very small correlation function g (2)(0)≃ 0.01 of the exciton emission. Here, we focus on the influence of the initial hole depth on the QD optical properties with the goal to create deep holes suited for filling with more complex nanostructures like quantum dot molecules (QDM). The depth of droplet etched nanoholes is controlled by the droplet material coverage and the process temperature, where a higher coverage or temperature yields deeper holes. The requirements of high quantum dot uniformity and narrow luminescence linewidth, which are often found in applications, set limits to the process temperature. At high temperatures, the hole depths become inhomogeneous and the linewidth rapidly increases beyond 640 °C. With the present process technique, we identify an upper limit of 40-nm hole depth if the linewidth has to remain below 100 μeV. Furthermore, we study the exciton fine-structure splitting which is increased from 4.6 μeV in 15-nm-deep to 7.9 μeV in 35-nm-deep holes. As an example for the functionalization of deep nanoholes, self-aligned vertically stacked GaAs QD pairs are fabricated by filling of holes with 35 nm depth. Exciton peaks from stacked dots show linewidths below 100 μeV which is close to that from single QDs.
NASA Astrophysics Data System (ADS)
Shilova, S. V.; Romanova, K. A.; Galyametdinov, Yu. G.; Tret'yakova, A. Ya.; Barabanov, V. P.
2016-06-01
The complexing of protonated chitosan with dodecyl sulfate ions in water solutions is studied using IR spectroscopy data and quantum-chemical calculations. It is established that the electrostatic interaction between the protonated amino groups of chitosan and dodecyl sulfate ions is apparent in the IR spectrum as a band at 833 cm-1. The need to consider the effect the solvent has on the formation of hydrogen-bound ion pairs [CTS+ ṡ C12H25O 3 - ] is shown via a quantum-chemical simulation of the equilibrium geometry and the energy characteristics of complexing and hydration.
NASA Astrophysics Data System (ADS)
Komatsu, Yu; Umemura, Masayuki; Shoji, Mitsuo; Kayanuma, Megumi; Yabana, Kazuhiro; Shiraishi, Kenji
For detecting life from reflectance spectra on extrasolar planets, several indicators called surface biosignatures have been proposed. One of them is the vegetation red edge (VRE) which derives from surface vegetation. VRE is observed in 700-750 nm on the Earth, but there is no guarantee that exovegetation show the red edge in this wavelength. Therefore it is necessary to check the validity of current standards of VRE as the signatures. In facts, M stars (cooler than Sun) will be the main targets in future missions, it is significantly important to know on the fundamental mechanisms in photosynthetic organism such as purple bacteria which absorb longer wavelength radiation. We investigated light absorptions and excitation energy transfers (EETs) in light harvesting complexes in purple bacteria (LH2s) by using quantum dynamics simulations. In LH2, effective EET is accomplished by corporative electronic excitation of the pigments. In our theoretical model, a dipole-dipole approximation was used for the electronic interactions between pigment excitations. Quantum dynamics simulations were performed according to Liouville equation to examine the EET process. The calculated oscillator strength and the transfer time between LH2 were good agreement with the experimental values. As the system size increases, the absorption bands shifted longer and the transfer velocities became larger. When two pigments in a LHC were exchanged to another pigments with lower excitation energy, faster and intensive light collection were observed.
NASA Astrophysics Data System (ADS)
Busch, Alexander Anthony
2003-10-01
This thesis reports a systematic study of near-band edge linear and nonlinear optical properties of doped and undoped semiconductor multiple quantum well samples, aimed at quantifying and separating the numerous contributions to the overall material response from photon excitation. Information obtained from both linear absorption and nonlinear, degenerate four-wave-mixing experiments is compared with elaborate numerical simulations. Accurate measures of 1S--2S binding energies and dephasing rates as a function of temperature from 5 to 40 K is established. The biexciton binding energy and dephasing rate over the temperature range 5 to 40 K is measured and, by comparison with theories reported in the literature, it is found that localization effects have a significant influence on the biexciton binding energy in 5 nm quantum wells. The first systematic attempt to quantitatively account for the continuum contribution to nonlinear response by fitting a series of spectra obtained at various input laser pulse detunings was conducted. Unique evidence for coherent beating between multi-exciton/free electron complexes in lightly doped material was also found.
Energy-scales convergence for optimal and robust quantum transport in photosynthetic complexes
Mohseni, M.; Shabani, A.; Lloyd, S.; Rabitz, H.
2014-01-21
Underlying physical principles for the high efficiency of excitation energy transfer in light-harvesting complexes are not fully understood. Notably, the degree of robustness of these systems for transporting energy is not known considering their realistic interactions with vibrational and radiative environments within the surrounding solvent and scaffold proteins. In this work, we employ an efficient technique to estimate energy transfer efficiency of such complex excitonic systems. We observe that the dynamics of the Fenna-Matthews-Olson (FMO) complex leads to optimal and robust energy transport due to a convergence of energy scales among all important internal and external parameters. In particular, we show that the FMO energy transfer efficiency is optimum and stable with respect to important parameters of environmental interactions including reorganization energy λ, bath frequency cutoff γ, temperature T, and bath spatial correlations. We identify the ratio of k{sub B}λT/ℏγg as a single key parameter governing quantum transport efficiency, where g is the average excitonic energy gap.
NASA Astrophysics Data System (ADS)
Pal, Rajat; Panigrahi, Swati; Bhattacharyya, Dhananjay; Chakraborti, Abhay Sankar
2013-08-01
Quercetin and several other bioflavonoids possess antioxidant property. These biomolecules can reduce the diabetic complications, but metabolize very easily in the body. Nanoparticle-mediated delivery of a flavonoid may further increase its efficacy. Gold nanoparticle is used by different groups as vehicle for drug delivery, as it is least toxic to human body. Prior to search for the enhanced efficacy, the gold nanoparticle-flavonoid complex should be prepared and well characterized. In this article, we report the interaction of gold nanoparticle with quercetin. The interaction is confirmed by different biophysical techniques, such as Scanning Electron Microscope (SEM), Circular Dichroism (CD), Fourier-Transform InfraRed (FT-IR) spectroscopy and Thermal Gravimetric Analysis (TGA) and cross checked by quantum chemical calculations. These studies indicate that gold clusters are covered by citrate groups, which are hydrogen bonded to the quercetin molecules in the complex. We have also provided evidences how capping is important in stabilizing the gold nanoparticle and further enhances its interaction with other molecules, such as drugs. Our finding also suggests that gold nanoparticle-quercetin complex can pass through the membranes of human red blood cells.
Non-local total variation method for despeckling of ultrasound images
NASA Astrophysics Data System (ADS)
Feng, Jianbin; Ding, Mingyue; Zhang, Xuming
2014-03-01
Despeckling of ultrasound images, as a very active topic research in medical image processing, plays an important or even indispensable role in subsequent ultrasound image processing. The non-local total variation (NLTV) method has been widely applied to denoising images corrupted by Gaussian noise, but it cannot provide satisfactory restoration results for ultrasound images corrupted by speckle noise. To address this problem, a novel non-local total variation despeckling method is proposed for speckle reduction. In the proposed method, the non-local gradient is computed on the images restored by the optimized Bayesian non-local means (OBNLM) method and it is introduced into the total variation method to suppress speckle in ultrasound images. Comparisons of the restoration performance are made among the proposed method and such state-of-the-art despeckling methods as the squeeze box filter (SBF), the non-local means (NLM) method and the OBNLM method. The quantitative comparisons based on synthetic speckled images show that the proposed method can provide higher Peak signal-to-noise ratio (PSNR) and structure similarity (SSIM) than compared despeckling methods. The subjective visual comparisons based on synthetic and real ultrasound images demonstrate that the proposed method outperforms other compared algorithms in that it can achieve better performance of noise reduction, artifact avoidance, edge and texture preservation.
Quantum spin fluctuations in quasi-one-dimensional chlorine-bridged platinum complexes
NASA Astrophysics Data System (ADS)
Wei, Xing; Donohoe, Robert J.; Wang, Wen Z.; Bishop, Alan R.; Gammel, Jan T.
1997-12-01
We report experimental and theoretical studies of spin dynamic process in the quasi-one-dimensional chlorine- bridged platinum complex, [PtII(en)2][PtIV(en)2Cl2](ClO4)4, where en equals ethylenediamine, C2N2H8. The process manifests itself in collapsing of the hyperfine and superhyperfine structures in the electron spin resonance spectrum and non-statistical distribution of spectral weight of the Pt isotopes. More surprisingly, it is activated only at temperatures below 6 K. We interpret the phenomenon in terms of quantum tunneling of the electronic spin in a strong electron-electron and electron-phonon coupling regime. This is modeled using a non-adiabatic many-body approach, in which polarons and solitons represent local spin-Peierls regions in a strongly disproportional charge- density-wave background and display intriguing spin-charge separation in the form of pinned charge and tunneling spin fluctuations.
Probing degradation in complex engineering silicones by 1H multiple quantum NMR
Maxwell, R S; Chinn, S C; Giuliani, J; Herberg, J L
2007-09-05
Static {sup 1}H Multiple Quantum Nuclear Magnetic Resonance (MQ NMR) has recently been shown to provide detailed insight into the network structure of pristine silicon based polymer systems. The MQ NMR method characterizes the residual dipolar couplings of the silicon chains that depend on the average molecular weight between physical or chemical constraints. Recently, we have employed MQ NMR methods to characterize the changes in network structure in a series of complex silicone materials subject to numerous degradation mechanisms, including thermal, radiative, and desiccative. For thermal degradation, MQ NMR shows that a combination of crosslinking due to post-curing reactions as well as random chain scissioning reactions occurs. For radiative degradation, the primary mechanisms are via crosslinking both in the network and at the interface between the polymer and the inorganic filler. For samples stored in highly desiccating environments, MQ NMR shows that the average segmental dynamics are slowed due to increased interactions between the filler and the network polymer chains.
Teleportation - Travel in the Quantum and Relativistic Realms and Bejond
NASA Astrophysics Data System (ADS)
Teodorani, M.
2007-01-01
This book, which is devoted to the description and discussion of several methods leading to teleportation, is divided into three main parts: a) foundations of quantum non-locality, quantum particle teleportation and quantum computing; b) foundations of quantum-relativistic teleportation, warp drive propulsion methods and search for extraterrestrial visitation; c) experiments in "psychic teleportation" and problems related to quantum consciousness studies.
A Non-Local Low-Rank Approach to Enforce Integrability.
Badri, Hicham; Yahia, Hussein
2016-08-01
We propose a new approach to enforce integrability using recent advances in non-local methods. Our formulation consists in a sparse gradient data-fitting term to handle outliers together with a gradient-domain non-local low-rank prior. This regularization has two main advantages: 1) the low-rank prior ensures similarity between non-local gradient patches, which helps recovering high-quality clean patches from severe outliers corruption and 2) the low-rank prior efficiently reduces dense noise as it has been shown in recent image restoration works. We propose an efficient solver for the resulting optimization formulation using alternate minimization. Experiments show that the new method leads to an important improvement compared with previous optimization methods and is able to efficiently handle both outliers and dense noise mixed together. PMID:27214898
Purely non-local Hamiltonian formalism, Kohno connections and ∨-systems
Arsie, Alessandro; Lorenzoni, Paolo
2014-11-15
In this paper, we extend purely non-local Hamiltonian formalism to a class of Riemannian F-manifolds, without assumptions on the semisimplicity of the product ○ or on the flatness of the connection ∇. In the flat case, we show that the recurrence relations for the principal hierarchy can be re-interpreted using a local and purely non-local Hamiltonian operators and in this case they split into two Lenard-Magri chains, one involving the even terms, the other involving the odd terms. Furthermore, we give an elementary proof that the Kohno property and the ∨-system condition are equivalent under suitable assumptions and we show how to associate a purely non-local Hamiltonian structure to any ∨-system, including degenerate ones.
Pion-to-Photon Transition Distribution Amplitudes in the Non-Local Chiral Quark Model
NASA Astrophysics Data System (ADS)
Kotko, P.; Praszałowicz, M.
2009-01-01
We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross-section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDAs. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.
Filho, Manoel A. M.; Dutra, José Diogo L.; Rocha, Gerd B.; Simas, Alfredo M.
2016-01-01
The RM1 quantum chemical model for the calculation of complexes of Tm(III), Yb(III) and Lu(III) is advanced. Subsequently, we tested the models by fully optimizing the geometries of 126 complexes. We then compared the optimized structures with known crystallographic ones from the Cambridge Structural Database. Results indicate that, for thulium complexes, the accuracy in terms of the distances between the lanthanide ion and its directly coordinated atoms is about 2%. Corresponding results for ytterbium and lutetium are both 3%, levels of accuracy useful for the design of lanthanide complexes, targeting their countless applications. PMID:27223475
Filho, Manoel A M; Dutra, José Diogo L; Rocha, Gerd B; Simas, Alfredo M; Freire, Ricardo O
2016-01-01
The RM1 quantum chemical model for the calculation of complexes of Tm(III), Yb(III) and Lu(III) is advanced. Subsequently, we tested the models by fully optimizing the geometries of 126 complexes. We then compared the optimized structures with known crystallographic ones from the Cambridge Structural Database. Results indicate that, for thulium complexes, the accuracy in terms of the distances between the lanthanide ion and its directly coordinated atoms is about 2%. Corresponding results for ytterbium and lutetium are both 3%, levels of accuracy useful for the design of lanthanide complexes, targeting their countless applications. PMID:27223475
Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?
NASA Astrophysics Data System (ADS)
Batle, J.; Ooi, C. H. Raymond; Farouk, Ahmed; Abutalib, M.; Abdalla, S.
2016-08-01
Quantum correlations are thought to be the reason why certain quantum algorithms overcome their classical counterparts. Since the nature of this resource is still not fully understood, we shall investigate how multipartite entanglement and non-locality among qubits vary as the quantum computation runs. We shall encounter that quantum measures on the whole system cannot account for their corresponding speedup.
Do multipartite correlations speed up adiabatic quantum computation or quantum annealing?
NASA Astrophysics Data System (ADS)
Batle, J.; Ooi, C. H. Raymond; Farouk, Ahmed; Abutalib, M.; Abdalla, S.
2016-04-01
Quantum correlations are thought to be the reason why certain quantum algorithms overcome their classical counterparts. Since the nature of this resource is still not fully understood, we shall investigate how multipartite entanglement and non-locality among qubits vary as the quantum computation runs. We shall encounter that quantum measures on the whole system cannot account for their corresponding speedup.
NASA Astrophysics Data System (ADS)
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-08-01
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.
Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost
2015-08-01
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance. PMID:26254660
Del Ben, Mauro Hutter, Jürg; VandeVondele, Joost
2015-08-07
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.
NASA Astrophysics Data System (ADS)
Diósi, Lajos; Elze, Hans-Thomas; Fronzoni, Leone; Halliwell, Jonathan; Vitiello, Giuseppe
2009-07-01
These proceedings present the Invited Lectures and Contributed Papers of the Fourth International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2008, held at Castello Pasquini, Castiglioncello (Tuscany), 22-26 September 2008. We deliver these proceedings as a means to document to the interested public, to the wider scientific community, and to the participants themselves the stimulating exchange of ideas at this conference. The steadily growing number of participants, among them acclaimed scientists in their respective fields, show its increasing attraction and a fruitful concept, based on bringing leading researchers together and in contact with a mix of advanced students and scholars. Thus, this series of meetings successfully continued from the beginning with DICE 2002, (Decoherence and Entropy in Complex Systems ed H-T Elze Lecture Notes in Physics 633 (Berlin: Springer, 2004)) followed by DICE 2004 (Proceedings of the Second International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2004 ed H-T Elze Braz. Journ. Phys. 35, 2A & 2B (2005) pp 205-529 free access at: www.sbfisica.org.br/bjp) and by DICE 2006, (Proceedings of the Third International Workshop on Decoherence, Information, Complexity and Entropy - DICE 2006 eds H-T Elze, L Diósi and G Vitiello Journal of Physics: Conference Series 67 (2007); free access at: http://www.iop.org/EJ/toc/1742-6596/67/1) uniting about one hundred participants from more than twenty different countries worldwide this time. It has been a great honour and inspiration for all of us to have Professor Sir Roger Penrose from the Mathematical Institute at the University of Oxford with us, who presented the lecture ``Black holes, quantum theory and cosmology'' (included in this volume). Discussions under the wider theme ``From Quantum Mechanics through Complexity to Spacetime: the role of emergent dynamical structures'' took place in the very pleasant and inspiring atmosphere of Castello
Emergence of quantum mechanics from a sub-quantum statistical mechanics
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
2014-07-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level. It is further demonstrated both analytically and with the aid of computer simulations that our model provides explanations for various quantum effects such as double-slit or n-slit interference. We show the averaged trajectories emerging from our model to be identical to Bohmian trajectories, albeit without the need to invoke complex wavefunctions or any other quantum mechanical tool. Finally, the model provides new insights into the origins of entanglement, and, in particular, into the phenomenon of a "systemic" non-locality.
Nunthaboot, Nadtanet; Pianwanit, Somsak; Parasuk, Vudhichai; Ebalunode, Jerry O.; Briggs, James M.; Kokpol, Sirirat
2007-01-01
Human immunodeficiency virus (HIV)-1 integrase (IN) is an attractive target for development of acquired immunodeficiency syndrome chemotherapy. In this study, conventional and coupled quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations of HIV-1 IN complexed with 5CITEP (IN-5CITEP) were carried out. In addition to differences in the bound position of 5CITEP, significant differences at the two levels of theory were observed in the metal coordination geometry and the areas involving residues 116–119 and 140–166. In the conventional MD simulation, the coordination of Mg2+ was found to be a near-perfect octahedral geometry whereas a distorted octahedral complex was observed in QM/MM. All of the above reasons lead to a different pattern of protein-ligand salt link formation that was not observed in the classical MD simulation. Furthermore to provide a theoretical understanding of inhibition mechanisms of 5CITEP and its derivative (DKA), hybrid QM/MM MD simulations of the two complexes (IN-5CITEP and IN-DKA) have been performed. The results reveal that areas involving residues 60–68, 116–119, and 140–149 were substantially different among the two systems. The two systems show similar pattern of metal coordination geometry, i.e., a distorted octahedron. In IN-DKA, both OD1 and OD2 of Asp-64 coordinate the Mg2+ in a monodentate fashion whereas only OD1 is chelated to the metal as observed in IN-5CITEP. The high potency of DKA as compared to 5CITEP is supported by a strong salt link formed between its carboxylate moiety and the ammonium group of Lys-159. Detailed comparisons between HIV-1 IN complexed with DKA and with 5CITEP provide information about ligand structure effects on protein-ligand interactions in particular with the Lys-159. This is useful for the design of new selective HIV-1 IN inhibitors. PMID:17693479
Quantization of non-local field theory and string field theory
NASA Astrophysics Data System (ADS)
Hata, Hiroyuki
1989-02-01
The interaction vertex in covariant string field theory (SFT) is non-local in the time coordinate and the conventional canonical quantization is inapplicable to it. As an approach to quantizing this system we apply Hayashi's theory of the Hamilton formalism for field theories with non-local interactions. We find that the resulting one-loop amplitudes in covariant closed SFT coincide with those in the light-cone gauge SFT. I would like to thank T. Kugo, H. Kunitomo, M.M. Nojiri, K. Ogawa and K. Suehiro for valuable discussions, and especially Professor S. Tanaka for directing my attention to Hayashi's theory.
Cosmological perturbations in SFT inspired non-local scalar field models
NASA Astrophysics Data System (ADS)
Koshelev, Alexey S.; Vernov, Sergey Yu.
2012-10-01
We study cosmological perturbations in models with a single non-local scalar field originating from the string field theory description of the rolling tachyon dynamics. We construct the equation for the energy density perturbations of the non-local scalar field and explicitly prove that for the free field it is identical to a system of local cosmological perturbation equations in a particular model with multiple (maybe infinitely many) local free scalar fields. We also show that vector and tensor perturbations are absent in this set-up.
Quantum chemical study on surface complex structures of phosphate on gibbsite
NASA Astrophysics Data System (ADS)
Luengo, Carina V.; Castellani, Norberto J.; Ferullo, Ricardo M.
2015-08-01
Quantum mechanics calculations based on the density functional theory (DFT) were used to identify phosphate surface complexes on gibbsite at low and high pH. The different phosphate species were represented using the Al6(OH)18(H2O)6 cluster model considering four different geometries: monodentate mononuclear (Pmm), monodentate binuclear (Pmb), bidentate mononuclear (Pbm) and bidentate binuclear (Pbb). The corresponding adsorption reactions were modelled via ligand exchange between phosphate species and surface functional groups (hydroxyls and protonated hydroxyls at high and low pH, respectively). The theoretical results indicate that phosphate surface complexes are thermodynamically more favored at acid pH, in agreement with experimental evidences. The first step in these reactions, i.e., the generation of required aluminum vacant sites, was predicted to be particularly favorable when singly coordinated aquo groups are released. Stretching and bending vibrational frequencies associated with the different surface structures were calculated at both pH conditions. The corresponding values at low pH were found to be shifted to higher frequencies with respect to those ones at high pH. ATR-FTIR studies were also carried out. The resulting spectra are dominated by a strong band within the 800-840 cm-1 interval due to P-OH stretching modes. The corresponding peak appearing around 820 cm-1 at high pH is shifted to lower frequencies with respect to the position at low pH, a tendency well predicted by DFT calculations.
Quantum chemical study on surface complex structures of phosphate on gibbsite.
Luengo, Carina V; Castellani, Norberto J; Ferullo, Ricardo M
2015-08-01
Quantum mechanics calculations based on the density functional theory (DFT) were used to identify phosphate surface complexes on gibbsite at low and high pH. The different phosphate species were represented using the Al₆(OH)₁₈(H₂O)₆ cluster model considering four different geometries: monodentate mononuclear (Pmm), monodentate binuclear (Pmb), bidentate mononuclear (Pbm) and bidentate binuclear (Pbb). The corresponding adsorption reactions were modelled via ligand exchange between phosphate species and surface functional groups (hydroxyls and protonated hydroxyls at high and low pH, respectively). The theoretical results indicate that phosphate surface complexes are thermodynamically more favored at acid pH, in agreement with experimental evidences. The first step in these reactions, i.e., the generation of required aluminum vacant sites, was predicted to be particularly favorable when singly coordinated aquo groups are released. Stretching and bending vibrational frequencies associated with the different surface structures were calculated at both pH conditions. The corresponding values at low pH were found to be shifted to higher frequencies with respect to those ones at high pH. ATR-FTIR studies were also carried out. The resulting spectra are dominated by a strong band within the 800-840 cm(-1) interval due to P-OH stretching modes. The corresponding peak appearing around 820 cm(-1) at high pH is shifted to lower frequencies with respect to the position at low pH, a tendency well predicted by DFT calculations. PMID:25841151
A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING
A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-08-15
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
NASA Astrophysics Data System (ADS)
Cao, Duc; Moses, Gregory; Delettrez, Jacques
2015-08-01
An implicit, non-local thermal conduction algorithm based on the algorithm developed by Schurtz, Nicolai, and Busquet (SNB) [Schurtz et al., Phys. Plasmas 7, 4238 (2000)] for non-local electron transport is presented and has been implemented in the radiation-hydrodynamics code DRACO. To study the model's effect on DRACO's predictive capability, simulations of shot 60 303 from OMEGA are completed using the iSNB model, and the computed shock speed vs. time is compared to experiment. Temperature outputs from the iSNB model are compared with the non-local transport model of Goncharov et al. [Phys. Plasmas 13, 012702 (2006)]. Effects on adiabat are also examined in a polar drive surrogate simulation. Results show that the iSNB model is not only capable of flux-limitation but also preheat prediction while remaining numerically robust and sacrificing little computational speed. Additionally, the results provide strong incentive to further modify key parameters within the SNB theory, namely, the newly introduced non-local mean free path. This research was supported by the Laboratory for Laser Energetics of the University of Rochester.
Neutral currents probed by non-local transport in graphene with 5 d metal adatoms
NASA Astrophysics Data System (ADS)
Wang, Yilin; Cai, Xinghan; Xiao, Shudong; Bao, Wenzhong; Reutt-Robey, Janice; Fuhrer, Michael
Adsorption of adatoms on graphene has been theoretically proposed as an effective means to enhance spin-orbit coupling in graphene. Here we use the non-local measurement geometry to detect neutral currents (spin, valley, energy) through their Hall and inverse Hall effects. Single-layer graphene devices are probed in-situ in ultra-high vacuum while depositing 5 d heavy metal atoms (Ir, Au) at a temperature of 7 K. Surprisingly, we detect a non-local signal in pristine devices as well as metal-atom modified devices, with a consistent dependence of the signal on length and gate voltage for several devices. Changes in the non-local signal upon deposition of 5 d metal atoms appear governed by charge carrier mobility (reduced with increasing metal atom concentration) and are difficult to understand with spin Hall/inverse spin Hall effects alone due to increased spin-orbit coupling in graphene. We will discuss other possible origins of the non-local signal. This work was supported by the U.S. ONR MURI. MSF was supported by an ARC Laureate Fellowship.
Quality Assurance of Non-Local Accounting Programs Conducted in Hong Kong
ERIC Educational Resources Information Center
Cheng, Mei-Ai; Leung, Noel W.
2014-01-01
This study examines the current government policy and institutional practice on quality assurance of non-local accounting programs conducted in Hong Kong. Both international guidelines, national regulations and institutional frameworks in higher education and transnational higher education, and professional practice in accounting education are…
ERIC Educational Resources Information Center
Findikoglu, Melike Nur
2012-01-01
A two-phased qualitative study was conducted to explore the facilitators of non-local (i.e. domestic or international) partnerships formed by small- and medium-sized firms (SME). Rooted in trust, proximity and dynamic capabilities lenses, the study focused on behaviors of SMEs performing in dynamic, competitive and highly interlinked industry, the…
Martynenko, Irina V; Orlova, Anna O; Maslov, Vladimir G; Fedorov, Anatoly V; Berwick, Kevin; Baranov, Alexander V
2016-01-01
The formation of nonluminescent aggregates of aluminium sulfonated phthalocyanine in complexes with CdSe/ZnS quantum dots causes a decrease of the intracomplex energy transfer efficiency with increasing phthalocyanine concentration. This was confirmed by steady-state absorption and photoluminescent spectroscopy. A corresponding physical model was developed that describes well the experimental data. The results can be used at designing of QD/molecule systems with the desired spatial arrangement for photodynamic therapy. PMID:27547619
Martynenko, Irina V; Maslov, Vladimir G; Fedorov, Anatoly V; Berwick, Kevin; Baranov, Alexander V
2016-01-01
Summary The formation of nonluminescent aggregates of aluminium sulfonated phthalocyanine in complexes with CdSe/ZnS quantum dots causes a decrease of the intracomplex energy transfer efficiency with increasing phthalocyanine concentration. This was confirmed by steady-state absorption and photoluminescent spectroscopy. A corresponding physical model was developed that describes well the experimental data. The results can be used at designing of QD/molecule systems with the desired spatial arrangement for photodynamic therapy. PMID:27547619
Barone, Vincenzo; Biczysko, Malgorzata; Puzzarini, Cristina
2015-05-19
For many years, scientists suspected that the interstellar medium was too hostile for organic species and that only a few simple molecules could be formed under such extreme conditions. However, the detection of approximately 180 molecules in interstellar or circumstellar environments in recent decades has changed this view dramatically. A rich chemistry has emerged, and relatively complex molecules such as C60 and C70 are formed. Recently, researchers have also detected complex organic and potentially prebiotic molecules, such as amino acids, in meteorites and in other space environments. Those discoveries have further stimulated the debate on the origin of the building blocks of life in the universe. Many efforts continue to focus on the physical, chemical, and astrophysical processes by which prebiotic molecules can be formed in the interstellar dust and dispersed to Earth or to other planets.Spectroscopic techniques, which are widely used to infer information about molecular structure and dynamics, play a crucial role in the investigation of planetary atmosphere and the interstellar medium. Increasingly these astrochemical investigations are assisted by quantum-mechanical calculations of structures as well as spectroscopic and thermodynamic properties, such as transition frequencies and reaction enthalpies, to guide and support observations, line assignments, and data analysis in these new and chemically complicated situations. However, it has proved challenging to extend accurate quantum-chemical computational approaches to larger systems because of the unfavorable scaling with the number of degrees of freedom (both electronic and nuclear).In this Account, we show that it is now possible to compute physicochemical properties of building blocks of biomolecules with an accuracy rivaling that of the most sophisticated experimental techniques, and we summarize specific contributions from our groups. As a test case, we present the underlying computational machinery
NASA Astrophysics Data System (ADS)
Voller, V. R.; Falcini, F.; Foufoula-Georgiou, E.; Ganti, V.; Paola, C.; Hill, K. M.; Swenson, J. B.; Longjas, A.
2013-12-01
The purpose of this work is to suggest how experiments might be constructed to provide data to test recently proposed phenomenological non-local model of depositional transport; formulated on the basis of morphological arguments but with limited data. A sound methodology for developing models of geological systems is to first collect significant data and then carefully identify an appropriate model form and parameters. An alternative approach is to construct what might be referred to as a phenomenological model, where limited observation of the system is used to suggest an appropriate mathematical form that matches the critical nature of the physical system behavior. By their nature, phenomenological models are often developed within a fairly narrow range of observations. In this way, interesting findings can occur when the models are modified and exercised across wider physical domains, in particular in domains where there is an absence of hard data to corroborate or invalidate the model predictions. Although this approach might be frown on my some, it is important to recognize the stellar and proven track record of phenomenological models, which despite the original scarcity of data, often pave the way to new perspectives and important findings. The poster child example is the Higgs boson. In the early 60's manipulation of the quantum field equations revealed a critical inconsistency related to the masses of fundamental particles that could only be mathematically resolved by assuming that they operated within a field that would exert drag; this conjecture took almost fifty years and the vast experimental operation of the Large Hadron Collider to physically confirm. In this work we examine a current phenomenological model used to describe non-local transport in fluvial sediment domains. This model has its genesis in attempting to describe the shapes of hill slope profiles, while acknowledging the fact that two points of the landscape with the same local slope are
NASA Astrophysics Data System (ADS)
Hanna, Gabriel; Kapral, Raymond
2008-04-01
Proton and deuteron transfer reactions in a hydrogen-bonded complex dissolved in a polar solution are studied using quantum-classical Liouville dynamics. Reactive-flux correlation functions that involve quantum-classical Liouville dynamics for species operators and quantum equilibrium sampling are used to calculate the rate constants. Adiabatic and nonadiabatic reaction rates are computed, compared, and analyzed. Large variations of the kinetic isotope effect (KIE) for this reaction have been observed in the literature, which depend on the nature of the approximate calculation used to estimate the proton and deuteron transfer rates. Our estimate of the KIE lies at the low end of the range of previously observed values, suggesting a rather small KIE for this reaction.
Quantum Spin Fluctuations in Quasi-One-Dimensional Chlorine-Bridged Platinum Complexes
Wei, X.; Donohoe, R. J.; Wang, W. Z.; Bishop, A. R.; Gammel, J. T.
1997-01-01
We report experimental and theoretical studies of spin dynamic process in the quasi-one-dimensional chlorine-bridged platinum complex, [Pt{sup II}(en){sub 2}][Pt{sup IV}(en){sub 2}Cl{sub 2}](ClO{sub 4}){sub 4}, where en = ethylenediamine, C{sub 2}N{sub 2}H{sub 8}. The process manifests itself in collapsing of the hyperfine and superhyperfine structures in the electron spin resonance (ESR) spectrum and non-statistical distribution of spectral weight of the Pt isotopes. More surprisingly, it is activated only at temperatures below 6 K. We interpret the phenomenon in terms of quantum tunneling of the electronic spin in a strong electron-electron and electron-phonon coupling regime. This is modeled using a non-adiabatic many-body approach, in which polarons and solitons represent local spin-Peierls regions in a strongly disproportional charge-density-wave background and display intriguing spin-charge separation in the form of pinned charge and tunneling spin fluctuations. 24 refs., 5 figs., 1 tab.
Reducing sequencing complexity in dynamical quantum error suppression by Walsh modulation
Hayes, David; Khodjasteh, Kaveh; Viola, Lorenza; Biercuk, Michael J.
2011-12-15
We study dynamical error suppression from the perspective of reducing sequencing complexity, with an eye toward facilitating the development of efficient semiautonomous quantum-coherent systems. To this end, we focus on digital sequences where all interpulse time periods are integer multiples of a minimum clock period and compatibility with digital classical control circuitry is intrinsic. We use so-called Walsh functions as a unifying mathematical framework; the Walsh functions are an orthonormal set of basis functions which may be associated directly with the control propagator for a digital modulation scheme. Using this insight, we characterize the suite of resulting Walsh dynamical decoupling sequences--including both familiar and novel control sequences--and identify the number of periodic square-wave (Rademacher) functions required to generate the associated Walsh function as the key determinant of the error-suppressing features. We also show how Walsh modulation may be employed for the protection of certain nontrivial logic gates. Based on these insights, we identify Walsh modulation as a digital-efficient approach for physical-layer error suppression.
Manifest and concealed correlations in quantum mechanics
NASA Astrophysics Data System (ADS)
de la Torre, A. C.; Iguain, J. L.
1998-11-01
The quantum covariance function is used to study correlations in quantum systems. Besides the obvious correlations due to the conservation of some quantity, the appearance of concealed quantum correlations like non-locality or non-separability is studied. The choice of an appropriate basis allows a complete analysis relating correlations with conservation laws and factorizability.
The basic properties of non-local parametrization of a turbulent exchange
NASA Astrophysics Data System (ADS)
Voloshchuk, V. M.; Boychenko, S. G.; Voloshchuk, I. V.
2010-07-01
At mathematical modeling of the dispersion of gas-aerosol impurity is used basically local parameterization of a turbulent exchange. In this case is supposed, that of a turbulent diffusion flow is proportional to a gradient of defunding substances concentration (n). This assumption is applicable only then when the characteristic size (l) of inhomogeneities of n essentially exceeds the characteristic size L of turbulent "moles". However, at solution of various applied problems rather frequently meet situations, when l ? L. It is natural, that in this case parameterization of a turbulent exchange should have non-local character. In this research one of possible scheme of non-local parameterizations of a turbulent exchange for situations, when l ~ L, is supposed and proved. This scheme is based on idea of representation of a turbulent flow j as Fredholm's convolution of function n and the function K, describing intensity of turbulent fluctuation of environment, namely j = - grad ? K(r -- ?)? dV, where V is a volume of dispersion of a gas-aerosol impurity, r?V, ? ? V, integrating carried out on a variable ? grad is the linear differential vector-operator (gradient) influencing on a variable r (other representation grad=?/?r), the function K is a non-local analogue of coefficient of diffusion (this function at L ? l ? 0 turn to Dirac's delta-function). The problems for which it is possible to receive the analytical solution of the equation of diffusion with the supposed non-local parameterizations of a turbulent exchange are formulated. The solutions of these problems are based on an opportunity of application of Fourier's transformation of the equation of diffusion. The analysis of these solutions is carried out with the purpose of an establishment what new features during a turbulent exchange appear at their mathematical modeling with the help of non-local parameterizations. It is proved, that for a situation l ? L the adequate mathematical modeling of a turbulent
Stable bounce and inflation in non-local higher derivative cosmology
Biswas, Tirthabir; Koshelev, Alexey S.; Mazumdar, Anupam; Vernov, Sergey Yu. E-mail: alexey.koshelev@vub.ac.be E-mail: svernov@theory.sinp.msu.ru
2012-08-01
One of the greatest problems of primordial inflation is that the inflationary space-time is past-incomplete. This is mainly because Einstein's GR suffers from a space-like Big Bang singularity. It has recently been shown that ghost-free, non-local higher-derivative ultra-violet modifications of Einstein's gravity may be able to resolve the cosmological Big Bang singularity via a non-singular bounce. Within the framework of such non-local cosmological models, we are going to study both sub- and super-Hubble perturbations around an inflationary trajectory which is preceded by the Big Bounce in the past, and demonstrate that the inflationary trajectory has an ultra-violet completion and that perturbations do not suffer from any pathologies.
Non-local Effects in a Stratified Glow Discharge With Dusty Particles
Sukhinin, G. I.; Fedoseev, A. V.; Ramazanov, T. S.; Amangaliyeva, R. Zh.; Dosbolayev, M. K.; Jumabekov, A. N.
2008-09-07
The work is aimed to describe non-local effects in the positive column of a low pressure stratified DC glow discharge in argon with dusty particles in a vertical cylindrical discharge tube. The numerical calculations of plasma parameters in the axis of the discharge tube were performed with the help of hybrid model based on the solution of non-local Boltzmann equation for EEDF. Distributions of optical emission from striations were measured experimentally. It is shown that in a stratified positive column the EEDF is not Maxwellian and even non-monotonous. Also, the effect of displacing of optical emission distribution relative to the electric field is shown both by numerical simulation and experimental measurements.
The auxiliary Hamiltonian approach and its generalization to non-local self-energies
NASA Astrophysics Data System (ADS)
Balzer, Karsten
2016-03-01
The recently introduced auxiliary Hamiltonian approach [Balzer K and Eckstein M 2014 Phys. Rev. B 89 035148] maps the problem of solving the two-time Kadanoff-Baym equations onto a noninteracting auxiliary system with additional bath degrees of freedom. While the original paper restricts the discussion to spatially local self-energies, we show that there exists a rather straightforward generalization to treat also non-local correlation effects. The only drawback is the loss of time causality due to a combined singular value and eigen decomposition of the two-time self-energy, the application of which inhibits one to establish the self-consistency directly on the time step. For derivation and illustration of the method, we consider the Hubbard model in one dimension and study the decay of the Néel state in the weak-coupling regime, using the local and non-local second-order Born approximation.
NASA Astrophysics Data System (ADS)
Yang, Yue
2016-02-01
The recent progress on non-local Lagrangian and quasi-Lagrangian structures in turbulence is reviewed. The quasi-Lagrangian structures, e.g., vortex surfaces in viscous flow, gas-liquid interfaces in multi-phase flow, and flame fronts in premixed combustion, can show essential Lagrangian following properties, but they are able to have topological changes in the temporal evolution. In addition, they can represent or influence the turbulent flow field. The challenges for the investigation of the non-local structures include their identification, characterization, and evolution. The improving understanding of the quasi-Lagrangian structures is expected to be helpful to elucidate crucial dynamics and develop structure-based predictive models in turbulence.
Riemann problems with non--local point constraints and capacity drop.
Andreianov, Boris; Donadello, Carlotta; Razafison, Ulrich; Rosini, Massimiliano D
2015-04-01
In the present note we discuss in details the Riemann problem for a one-dimensional hyperbolic conservation law subject to a point constraint. We investigate how the regularity of the constraint operator impacts the well--posedness of the problem, namely in the case, relevant for numerical applications, of a discretized exit capacity. We devote particular attention to the case in which the constraint is given by a non--local operator depending on the solution itself. We provide several explicit examples. We also give the detailed proof of some results announced in the paper [Andreianov, Donadello, Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop], which is devoted to existence and stability for a more general class of Cauchy problems subject to Lipschitz continuous non--local point constraints. PMID:25811434
Comparison of non-local and polar modelling of softening in hypoplasticity
NASA Astrophysics Data System (ADS)
Maier, Th.
2004-03-01
The paper deals with the comparison of a non-local and a polar (Cosserat) hypoplastic model. The hypoplastic constitutive law in the version of von Wolffersdorff is chosen as local reference model. For the comparison the results of biaxial tests on dense Hostun Rf sand are predicted with both enhanced models. The comparison is based on a strict separation of input data from triaxial- and oedometer tests and output data from biaxial tests. The comparison is drawn in terms of the shear band width, the load-displacement curves and the influence of the pressure level. Finally, the non-local and the polar hypoplastic model are applied on the strip foundation problem. Copyright
Non-linear non-local molecular electrodynamics with nano-optical fields.
Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul
2015-10-28
The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields. PMID:26520498
NASA Astrophysics Data System (ADS)
Pagura, V.; Gómez Dumm, D.; Scoccola, N. N.
2012-01-01
We study the deconfinement and chiral restoration transitions in the context of non-local PNJL models, considering the impact of the presence of dynamical quarks on the scale parameter appearing in the Polyakov potential. We show that the corresponding critical temperatures are naturally entangled for both zero and imaginary chemical potential, in good agreement with lattice QCD results. We also analyze the Roberge-Weiss transition, which is found to be first order at the associated endpoint.
Some optical properties of metal in non-local potential theory
NASA Astrophysics Data System (ADS)
Chrzanowski, Janusz
2007-04-01
On the grounds of the non-local potential we can obtain a modified Schrödinger equation which allows on simple turn to the transform domain. Thereby the total energy of electron understood in terms of quasiparticle becomes an explicit function of the wave number. In result the response of the metal surface to the external electromagnetic radiation one can analyze in more general way.
New Exact Solutions of the CDGSK Equation Related to a Non-local Symmetry
NASA Astrophysics Data System (ADS)
Lou, Senyue; Ruan, Hangyu; Chen, Weizhong; Wang, Zhenli; Chen, Lili
1994-10-01
A non-local symmetry of the Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGSK) equation has been used for finding exact solution in two different ways. Firstly, using the standard prolongation approach, we obtain the finite Lie Bäcklund transformation and the single soliton solution. Secondly, combining some local symmetries and the nonlocal symmetry, we get the group invariant solution which is described by the Weierstrass elliptic function and is deduced to the so-called interacting soliton for a special parameter.
Global stability of travelling wave fronts for non-local diffusion equations with delay
NASA Astrophysics Data System (ADS)
Wang, X.; Lv, G.
2014-04-01
This paper is concerned with the global stability of travelling wave fronts for non-local diffusion equations with delay. We prove that the non-critical travelling wave fronts are globally exponentially stable under perturbations in some exponentially weighted L^\\infty-spaces. Moreover, we obtain the decay rates of \\sup_{x\\in{R}}\\vert u(x,t)-\\varphi(x+ct)\\vert using weighted energy estimates.
NASA Astrophysics Data System (ADS)
Alcolea, A.; Renard, P.
2008-12-01
Geological scenarios often present well connected lithofacies distributions. Multiple Point statistical techniques have been traditionally used to delineate connectivity patterns from local lithofacies data in such scenarios. Yet, little attention has been paid to the conditioning to non-local connectivity data and dependent state variables (e.g., heads). These data sets contain valuable information on the connectivity patterns and must be accounted for in meaningful models. This work is a step in that direction. A novel direct iterative sampler, termed Blocking Moving Window (BMW) is presented. The BMW algorithm couples an MP simulator with a fast groundwater flow simulator. First, an MP simulation of lithofacies is delineated from training images, local lithofacies from available well logs and non-local connectivity data sets. Only a random portion of the domain (the Moving Window) is simulated at a given iteration. This makes the search less random and therefore, more efficient. Second, values of hydraulic properties at the intrafacies are assigned. Next, state variables are simulated. The MP simulation is rejected if the fit of measured state variables is poor. We analyze the performance of the BMW algorithm on a 2D toy example mimicking the groundwater flow to a well in a channel-type geological setting. We explore the sensitivity to the size of the Moving Window and the role of the state variable and non-local connectivity data sets. Results show that, (1) the size of the Moving Window must be optimum; (2) conditioning to state variables enhances dramatically the initial MP characterization (i.e., conditioned to raw geological data only) and (3) the use of non-local connectivity data increases the reliability of the characterization and speeds up the convergence of the algorithm.
Continuous time random walks for non-local radial solute transport
NASA Astrophysics Data System (ADS)
Dentz, Marco; Kang, Peter K.; Le Borgne, Tanguy
2015-08-01
This study formulates and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneous advection in a mobile region and mass transfer between mobile and immobile regions. The expected solute breakthrough behavior is studied using numerical random walk particle tracking simulations. This behavior is analyzed by explicit analytical expressions for the asymptotic solute breakthrough curves. We observe clear power-law tails of the solute breakthrough for broad (power-law) distributions of particle transit times (heterogeneous advection) and particle trapping times (MRMT model). The combined model displays two distinct time regimes. An intermediate regime, in which the solute breakthrough is dominated by the particle transit times in the mobile zones, and a late time regime that is governed by the distribution of particle trapping times in immobile zones. These radial CTRW formulations allow for the identification of heterogeneous advection and mobile-immobile processes as drivers of anomalous transport, under conditions relevant for field tracer
Non-local scalar fields inflationary mechanism in light of Planck 2013
NASA Astrophysics Data System (ADS)
Sheikhahmadi, Haidar; Ghorbani, Soheyla; Saaidi, Khaled
2015-06-01
A generalization of the canonical and non-canonical theory of inflation is introduced in which the kinetic energy term in action is written as non-local term. The inflationary universe within the framework of considering this non-locality will be studied. To investigate the effects of non-locality on the inflationary parameters we consider two well known models of the inflationary scenario including chaotic and exponential inflation proposals. For such scenarios some important parameters include slow roll parameters, scalar and tensor power spectra, spectral indices, the tensor-to-scalar ratio and so on for both mentioned models, chaotic and exponential inflationary scenarios, will be calculated. Also the Hamilton-Jacobi formalism, as an easiest way to study the effect of perturbation based on e-folding number N, to investigate inflationary attractors will be used. The free theoretical parameters of this model will be compared with observations by means of Planck 2013, WMAP9+ eCMB+ BAO+ H 0 data sets in addition to BICEP2 data surveying. It will be shown that our theoretical results are in acceptable range in comparison to observations. For instance the tensor-to-scalar ratio for exponential potential, by considering BICEP2 is in best agreement in comparison with chaotic inflation.
A non-local model of fractional heat conduction in rigid bodies
NASA Astrophysics Data System (ADS)
Borino, G.; di Paola, M.; Zingales, M.
2011-03-01
In recent years several applications of fractional differential calculus have been proposed in physics, chemistry as well as in engineering fields. Fractional order integrals and derivatives extend the well-known definitions of integer-order primitives and derivatives of the ordinary differential calculus to real-order operators. Engineering applications of fractional operators spread from viscoelastic models, stochastic dynamics as well as with thermoelasticity. In this latter field one of the main actractives of fractional operators is their capability to interpolate between the heat flux and its time-rate of change, that is related to the well-known second sound effect. In other recent studies a fractional, non-local thermoelastic model has been proposed as a particular case of the non-local, integral, thermoelasticity introduced at the mid of the seventies. In this study the autors aim to introduce a different non-local model of extended irreverible thermodynamics to account for second sound effect. Long-range heat flux is defined and it involves the integral part of the spatial Marchaud fractional derivatives of the temperature field whereas the second-sound effect is accounted for introducing time-derivative of the heat flux in the transport equation. It is shown that the proposed model does not suffer of the pathological problems of non-homogenoeus boundary conditions. Moreover the proposed model coalesces with the Povstenko fractional models in unbounded domains.
Non-local magnetoelectric effects via Coulomb interaction in TI-FMI heterostructures
NASA Astrophysics Data System (ADS)
Rex, Stefan; Nogueira, Flavio S.; Sudbø, Asle
Magnetic order on the surface of a 3 D topological insulator (TI) has been predicted to evoke a topological magnetoelectric effect (TME) by the breaking of time-reversal invariance. In the TME, an electric field leads to a magnetic polarization in the same direction as the field and vice versa. Here, we consider heterostructures of TI and ferromagnetic insulator (FMI) layers. We show that in the presence of long-range Coulomb interactions the magnetization couples non-locally to the fluctuating electric field (non-local TME) by performing a field-theoretic calculation of the vacuum polarization. In addition, we obtain a Landau-Lifshitz equation for the magnetization dynamics, and find that charged magnetic textures lead to a net magnetization even at a large distance. Such textures can be induced by an external electric field with nonzero in-plane divergence. We apply this effect to a FMI-TI-FMI trilayer heterostructure with two parallel interfaces being well-separated by the bulk TI, where we propose to non-locally control the magnetic texture at one interface by proper gating of the other interface. A preprint can be found at arXiv:1510.04285 Supported by the Norwegian Research Council, Grants 205591/V20 and 216700/F20, and the Collaborative Research Center SFB 1143 ''Correlated Magnetism: From Frustration to Topology''.
Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes
2015-01-01
Charge transfer processes with semiconductor quantum dots (QDs) have generated much interest for potential utility in energy conversion. Such configurations are generally nonbiological; however, recent studies have shown that a redox-active ruthenium(II)–phenanthroline complex (Ru2+-phen) is particularly efficient at quenching the photoluminescence (PL) of QDs, and this mechanism demonstrates good potential for application as a generalized biosensing detection modality since it is aqueous compatible. Multiple possibilities for charge transfer and/or energy transfer mechanisms exist within this type of assembly, and there is currently a limited understanding of the underlying photophysical processes in such biocomposite systems where nanomaterials are directly interfaced with biomolecules such as proteins. Here, we utilize redox reactions, steady-state absorption, PL spectroscopy, time-resolved PL spectroscopy, and femtosecond transient absorption spectroscopy (FSTA) to investigate PL quenching in biological assemblies of CdSe/ZnS QDs formed with peptide-linked Ru2+-phen. The results reveal that QD quenching requires the Ru2+ oxidation state and is not consistent with Förster resonance energy transfer, strongly supporting a charge transfer mechanism. Further, two colors of CdSe/ZnS core/shell QDs with similar macroscopic optical properties were found to have very different rates of charge transfer quenching, by Ru2+-phen with the key difference between them appearing to be the thickness of their ZnS outer shell. The effect of shell thickness was found to be larger than the effect of increasing distance between the QD and Ru2+-phen when using peptides of increasing persistence length. FSTA and time-resolved upconversion PL results further show that exciton quenching is a rather slow process consistent with other QD conjugate materials that undergo hole transfer. An improved understanding of the QD–Ru2+-phen system can allow for the design of more sophisticated
Lin, Adam Y; Young, Joseph K; Nixon, Ariel V; Drezek, Rebekah A
2014-09-21
Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl)trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals excited at the same wavelength were used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs are altered and the luminescent output is significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation. PMID:25096858
Lin, Adam Y.; Young, Joseph K.; Nixon, Ariel V.; Drezek, Rebekah A.
2015-01-01
Multifunction nanoparticle complexes have previously been developed to aid physicians in both diagnosis and treatment of cancerous tissue. Here, we designed a nanoparticle complex structure that consists of a plasmonically active hollow gold nanoshell core surrounded by photoluminescent quantum nanocrystals (QNs) in the form of PbS encapsulated by a silica layer. There are three main design variables including HGN synthesis and optical tuning, formation of the silica layer on the hollow gold nanoshell surface, and fabrication and photoluminescence tuning of PbS quantum nanocrystals. The hollow gold nanoshells were deliberately designed to function in the optical regimes that maximize tissue transmissivity (800 nm) and minimize tissue absorption (1100 nm). Secondly, several chemical ligands were tested such as (3-mercaptopropyl) trimethoxysilane and mercaptoundecanoic acid for controlled growth of the silica layer. Last, PbS QNs were synthesized and optimized with various capping agents, where the nanocrystals were excited at the same wavelength used to activate the photothermal properties of the hollow gold nanoshells. Upon irradiation of the complex with a lower power 800 nm laser, the nanocrystals luminesce at 1100 nm. At ablative temperatures the intrinsic luminescent properties of the QNs is altered and the luminescent output significantly reduced (>70%). While this paper focuses on synthesis and optimization of the QN-HGN complex, in the future we believe that this novel particle complex design may have the potential to serve as a triple theranostic agent, which will aid satellite tumor localization, photothermal treatment, and ablative confirmation. PMID:25096858
Taylor, P R; Baker, R E; Yates, C A
2014-01-01
In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations. PMID:25514045
NASA Astrophysics Data System (ADS)
Taylor, P. R.; Baker, R. E.; Yates, C. A.
2015-02-01
In this paper we explore lattice-based position-jump models of diffusion, and the implications of introducing non-local jumping; particles can jump to a range of nearby boxes rather than only to their nearest neighbours. We begin by deriving conditions for equivalence with traditional local jumping models in the continuum limit. We then generalize a previously postulated implementation of the Robin boundary condition for a non-local process of arbitrary maximum jump length, and present a novel implementation of flux boundary conditions, again generalized for a non-local process of arbitrary maximum jump length. In both these cases we validate our results using stochastic simulation. We then proceed to consider two variations on the basic diffusion model: a hybrid local/non-local scheme suitable for models involving sharp concentration gradients, and the implementation of biased jumping. In all cases we show that non-local jumping can deliver substantial time savings for stochastic simulations.
2015-01-01
A major challenge for realizing quantum computation is finding suitable systems to embody quantum bits (qubits) and quantum gates (qugates) in a robust and scalable architecture. An emerging bottom-up approach uses the electronic spins of lanthanides. Universal qugates may then be engineered by arranging in a molecule two interacting and different lanthanide ions. Preparing heterometallic lanthanide species is, however, extremely challenging. We have discovered a method to obtain [LnLn′] complexes with the appropriate requirements. Compound [CeEr] is deemed to represent an ideal situation. Both ions have a doubly degenerate magnetic ground state and can be addressed individually. Their isotopes have mainly zero nuclear spin, which enhances the electronic spin coherence. The analogues [Ce2], [Er2], [CeY], and [LaEr] have also been prepared to assist in showing that [CeEr] meets the qugate requirements, as revealed through magnetic susceptibility, specific heat, and EPR. Molecules could now be used for quantum information processing. PMID:25203521
Search complexity and resource scaling for the quantum optimal control of unitary transformations
Moore, Katharine W.; Riviello, Gregory; Rabitz, Herschel; Chakrabarti, Raj
2011-01-15
The optimal control of unitary transformations is a fundamental problem in quantum control theory and quantum information processing. The feasibility of performing such optimizations is determined by the computational and control resources required, particularly for systems with large Hilbert spaces. Prior work on unitary transformation control indicates that (i) for controllable systems, local extrema in the search landscape for optimal control of quantum gates have null measure, facilitating the convergence of local search algorithms, but (ii) the required time for convergence to optimal controls can scale exponentially with the Hilbert space dimension. Depending on the control-system Hamiltonian, the landscape structure and scaling may vary. This work introduces methods for quantifying Hamiltonian-dependent and kinematic effects on control optimization dynamics in order to classify quantum systems according to the search effort and control resources required to implement arbitrary unitary transformations.
NASA Astrophysics Data System (ADS)
Abolfath, Ramin M.; Trojnar, Anna; Roostaei, Bahman; Brabec, Thomas; Hawrylak, Pawel
2013-06-01
Dynamical magnetic and nuclear polarization in complex spin systems is discussed on the example of transfer of spin from exciton to the central spin of magnetic impurity in a quantum dot in the presence of a finite number of nuclear spins. The exciton is described in terms of electron and heavy-hole spins interacting via exchange interaction with magnetic impurity, via hyperfine interaction with a finite number of nuclear spins and via dipole interaction with photons. The time evolution of the exciton, magnetic impurity and nuclear spins is calculated exactly between quantum jumps corresponding to exciton radiative recombination. The collapse of the wavefunction and the refilling of the quantum dot with a new spin-polarized exciton is shown to lead to the build up of magnetization of the magnetic impurity as well as nuclear spin polarization. The competition between electron spin transfer to magnetic impurity and to nuclear spins simultaneous with the creation of dark excitons is elucidated. The technique presented here opens up the possibility of studying optically induced dynamical magnetic and nuclear polarization in complex spin systems.
NASA Astrophysics Data System (ADS)
Goldfarb, Yair; Degani, Ilan; Tannor, David J.
2007-11-01
In their comment, Sanz and Miret-Artés (SMA) describe previous trajectory-based formalisms based on the quantum Hamilton-Jacobi (QHJ) formalism. In this reply, we highlight our unique contributions: the identification of the smallness of the quantum force in the complex QHJ and its solution using complex trajectories. SMA also raise the question of how the term locality should be used in quantum mechanics. We suggest that at least certain aspects of nonlocality can depend on the method used to solve the problem.
Goldfarb, Yair; Degani, Ilan; Tannor, David J.
2007-11-21
In their comment, Sanz and Miret-Artes (SMA) describe previous trajectory-based formalisms based on the quantum Hamilton-Jacobi (QHJ) formalism. In this reply, we highlight our unique contributions: the identification of the smallness of the quantum force in the complex QHJ and its solution using complex trajectories. SMA also raise the question of how the term locality should be used in quantum mechanics. We suggest that at least certain aspects of nonlocality can depend on the method used to solve the problem.
Bursten, Bruce E; Drummond, Michael L; Li, Jun
2003-01-01
The field of modern quantum inorganic chemistry is just over 50 years old, dating back to 1951, when quantitative LCAO molecular orbital theory was developed and ferrocene was discovered. This Lecture provides a survey of the development of the field through about 1980, which has led to its current state. The application of modern quantum chemical techniques are illustrated via two disparate examples from the authors' research group. First, the recent discovery of uranium-noble gas bonds is discussed including the synergy between the theoretical and experimental investigations of this phenomenon. New theoretical results using coupled-cluster [CCSD(T)] methodology is contrasted to the original scalar-relativistic density functional theory results. Second, new applications of time-dependent density functional theory to the rich photochemistry of a dinuclear organometallic complex, (eta5-C5H5)2Fe2(mu-CO)2(CO)2, are discussed. PMID:14527206
Energy driven pattern formation in a non-local Cahn-Hilliard energy
NASA Astrophysics Data System (ADS)
Goldman, Dorian
We study the asymptotic behavior of the Ohta-Kawasaki energy in dimension 2. In that model, two phases appear, and they interact via a nonlocal Coulomb type energy. We focus on the regime where one of the phases has very small volume fraction, thus creating "droplets" of that phase in a sea of the other phase. We compute the Gamma-limit of the leading order energy and yield averaged information for almost minimizers, namely that the density of droplets should be uniform and almost spherical. We then derive a next order Gamma-limit energy determines which the geoemtric arrangement of the droplets. Without appealing at all to the Euler-Lagrange equation, we establish here for all configurations which have "almost minimal energy," the asymptotic roundness and radius of the droplets, and the fact that they asymptotically shrink to points whose arrangement should minimize this energy, in some averaged sense. This leads to expecting to see hexagonal lattices of droplets. In addition, we prove that the density of droplets of non-minimizing critical points of the energy is also uniform and that droplets are spherical in some averaged sense. Next we study a non-local isoperimetric problem in mathbb{R}2 and mathbb{T}2. We are able to show that the connectedcritical points are determined by perimeter alone, under mild assumptions on the boundary, in the small energy/mass regime. These results differ from the recent results of Julin and Muratov-Knupfer in that they concern general critical points rather than global minimizers to the energy. Our method demonstrates that not only does the perimeter dominate the non-locality when minimizing, but also that the change in perimeter slaves to the change of the non-local term in this scaling regime.
Collisional radiative model for heavy atoms in hot non-local-thermodynamical-equilibrium plasmas
NASA Astrophysics Data System (ADS)
Bar-Shalom, A.; Oreg, J.; Klapisch, M.
1997-07-01
A collisional radiative model for calculating non-local-thermodynamical-equilibrium (non-LTE) spectra of heavy atoms in hot plasmas has been developed, taking into account the numerous excited and autoionizing states. This model uses superconfigurations as effective levels with an iterative procedure which converges to the detailed configuration spectrum. The non-LTE opacities and emissivities may serve as a reliable benchmark for simpler on-line models in hydrodynamic code simulations. The model is tested against detailed configuration calculations of selenium and is applied to non-LTE optically thin plasma of lutetium.
Non-local susceptibility of the wire medium in the spatial domain considering material boundaries
NASA Astrophysics Data System (ADS)
Hanson, George W.; Silveirinha, Mário G.; Burghignoli, Paolo; Yakovlev, Alexander B.
2013-08-01
We show that the non-local susceptibility \\bar{\\boldsymbol{\\chi}}\\left (\\mathbf{r},\\mathbf{r}^{\\prime }\\right ) for a non-translationally invariant homogenized wire medium is, modulo a constant, given by a simple Green function related to the material geometry. We also show that two previous methods for solving wave interaction problems for bounded wire media (wave expansion method and transport equation) are equivalent to each other, and to a third method involving particle reflection at the boundary. We discuss the importance of the dead layer or virtual interface, and find it to be analogous to the excitonic semiconductor case. Several examples are provided to clarify the material.
Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials
NASA Astrophysics Data System (ADS)
Ishii, Satoshi; Narimanov, Evgenii
2015-12-01
Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites.
Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials
Ishii, Satoshi; Narimanov, Evgenii
2015-01-01
Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites. PMID:26670600
Non-local Optical Topological Transitions and Critical States in Electromagnetic Metamaterials.
Ishii, Satoshi; Narimanov, Evgenii
2015-01-01
Just as the topology of the Fermi surface defines the properties of the free electrons in metals and semiconductors, the geometry of the iso-frequency surface in the phase space of the propagating electromagnetic waves, determines the optical properties of the corresponding optical materials. Furthermore, in the direct analog to the Lifshitz transition in condensed matter physics, a change in the topology of iso-frequency surface has a dramatic effect on the emission, propagation and scattering of the electromagnetic waves. Here, we uncover a new class of such optical topological transitions in metamaterials, induced by the non-locality of the electromagnetic response inherent to these composites. PMID:26670600
Alrawashdeh, Lubna R; Cronin, Michael P; Woodward, Clifford E; Day, Anthony I; Wallace, Lynne
2016-07-01
The weaker emission typically seen for iridium(III) cyclometalated complexes in aqueous medium can be reversed via encapsulation in cucurbit[10]uril (Q[10]). The Q[10] cavity is shown to effectively maximize quantum yields for the complexes, compared to any other medium. This may provide significant advantages for a number of sensor applications. NMR studies show that the complexes are accommodated similarly within the host molecule, even with cationic substituents attached to the ppy ligands, indicating that the hydrophobic effect is the dominant driving force for binding. Cavity-encapsulated 1:1 host-guest species dominate the emission, but 1:2 species are also indicated, which also give some enhancement of intensity. Results demonstrate that the enhancement is due primarily to much lower rates of nonradiative decay but also suggest that the encapsulation can cause a change in character of the emitting state. PMID:27315543
Direct evidence of quantum transport in photosynthetic light-harvesting complexes.
Panitchayangkoon, Gitt; Voronine, Dmitri V; Abramavicius, Darius; Caram, Justin R; Lewis, Nicholas H C; Mukamel, Shaul; Engel, Gregory S
2011-12-27
The photosynthetic light-harvesting apparatus moves energy from absorbed photons to the reaction center with remarkable quantum efficiency. Recently, long-lived quantum coherence has been proposed to influence efficiency and robustness of photosynthetic energy transfer in light-harvesting antennae. The quantum aspect of these dynamics has generated great interest both because of the possibility for efficient long-range energy transfer and because biology is typically considered to operate entirely in the classical regime. Yet, experiments to date show only that coherence persists long enough that it can influence dynamics, but they have not directly shown that coherence does influence energy transfer. Here, we provide experimental evidence that interaction between the bacteriochlorophyll chromophores and the protein environment surrounding them not only prolongs quantum coherence, but also spawns reversible, oscillatory energy transfer among excited states. Using two-dimensional electronic spectroscopy, we observe oscillatory excited-state populations demonstrating that quantum transport of energy occurs in biological systems. The observed population oscillation suggests that these light-harvesting antennae trade energy reversibly between the protein and the chromophores. Resolving design principles evident in this biological antenna could provide inspiration for new solar energy applications. PMID:22167798
Non-local approach to kinetic effects on parallel transport in fluid models of the scrape-off layer
NASA Astrophysics Data System (ADS)
Omotani, J. T.; Dudson, B. D.
2013-05-01
Using a non-local model, fluid simulations can capture kinetic effects in the parallel electron heat-flux better than is possible using flux limiters in the usual diffusive models. Non-local and diffusive models are compared using a test case representative of an edge-localized mode crash in the JET scrape-off layer (SOL), simulated in one dimension. The non-local model shows substantially enhanced electron temperature gradients, which cannot be achieved using a flux limiter. The performance of the implementation, in the BOUT++ framework, is also analysed to demonstrate its suitability for application in three-dimensional simulations of turbulent transport in the SOL.
Yu, Hancheng; Gao, Jianlin; Li, Aiting
2016-03-01
In this Letter, a probability-based non-local means filter is proposed for speckle reduction in optical coherence tomography (OCT). Originally developed for additive white Gaussian noise, the non-local means filter is not suitable for multiplicative speckle noise suppression. This Letter presents a two-stage non-local means algorithm using the uncorrupted probability of each pixel to effectively reduce speckle noise in OCT. Experiments on real OCT images demonstrate that the proposed filter is competitive with other state-of-the-art speckle removal techniques and able to accurately preserve edges and structural details with small computational cost. PMID:26974099
Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces
Khrennikov, Andrei
2010-08-15
One of the crucial differences between mathematical models of classical and quantum mechanics (QM) is the use of the tensor product of the state spaces of subsystems as the state space of the corresponding composite system. (To describe an ensemble of classical composite systems, one uses random variables taking values in the Cartesian product of the state spaces of subsystems.) We show that, nevertheless, it is possible to establish a natural correspondence between the classical and the quantum probabilistic descriptions of composite systems. Quantum averages for composite systems (including entangled) can be represented as averages with respect to classical random fields. It is essentially what Albert Einstein dreamed of. QM is represented as classical statistical mechanics with infinite-dimensional phase space. While the mathematical construction is completely rigorous, its physical interpretation is a complicated problem. We present the basic physical interpretation of prequantum classical statistical field theory in Sec. II. However, this is only the first step toward real physical theory.
Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot.
Muller, Andreas; Fang, Wei; Lawall, John; Solomon, Glenn S
2008-07-11
The photoluminescence spectrum of a single quantum dot was recorded as a secondary resonant laser optically dressed either the vacuum-to-exciton or the exciton-to-biexciton transitions. High-resolution polarization-resolved measurements using a scanning Fabry-Pérot interferometer reveal splittings of the linearly polarized fine-structure states that are nondegenerate in an asymmetric quantum dot. These splittings manifest as either triplets or doublets and depend sensitively on laser intensity and detuning. Our approach realizes complete resonant control of a multiexcitonic system in emission, which can be either pulsed or continuous wave, and offers direct access to the emitted photons. PMID:18764226
Double-donor complex in vertically coupled quantum dots in a threading magnetic field.
Manjarres-García, Ramón; Escorcia-Salas, Gene Elizabeth; Manjarres-Torres, Javier; Mikhailov, Ilia D; Sierra-Ortega, José
2012-01-01
We consider a model of hydrogen-like artificial molecule formed by two vertically coupled quantum dots in the shape of axially symmetrical thin layers with on-axis single donor impurity in each of them and with the magnetic field directed along the symmetry axis. We present numerical results for energies of some low-lying levels as functions of the magnetic field applied along the symmetry axis for different quantum dot heights, radii, and separations between them. The evolution of the Aharonov-Bohm oscillations of the energy levels with the increase of the separation between dots is analyzed. PMID:23013550
Image-Guided Non-Local Dense Matching with Three-Steps Optimization
NASA Astrophysics Data System (ADS)
Huang, Xu; Zhang, Yongjun; Yue, Zhaoxi
2016-06-01
This paper introduces a new image-guided non-local dense matching algorithm that focuses on how to solve the following problems: 1) mitigating the influence of vertical parallax to the cost computation in stereo pairs; 2) guaranteeing the performance of dense matching in homogeneous intensity regions with significant disparity changes; 3) limiting the inaccurate cost propagated from depth discontinuity regions; 4) guaranteeing that the path between two pixels in the same region is connected; and 5) defining the cost propagation function between the reliable pixel and the unreliable pixel during disparity interpolation. This paper combines the Census histogram and an improved histogram of oriented gradient (HOG) feature together as the cost metrics, which are then aggregated based on a new iterative non-local matching method and the semi-global matching method. Finally, new rules of cost propagation between the valid pixels and the invalid pixels are defined to improve the disparity interpolation results. The results of our experiments using the benchmarks and the Toronto aerial images from the International Society for Photogrammetry and Remote Sensing (ISPRS) show that the proposed new method can outperform most of the current state-of-the-art stereo dense matching methods.
Monotone waves for non-monotone and non-local monostable reaction-diffusion equations
NASA Astrophysics Data System (ADS)
Trofimchuk, Elena; Pinto, Manuel; Trofimchuk, Sergei
2016-07-01
We propose a new approach for proving existence of monotone wavefronts in non-monotone and non-local monostable diffusive equations. This allows to extend recent results established for the particular case of equations with local delayed reaction. In addition, we demonstrate the uniqueness (modulo translations) of obtained monotone wavefront within the class of all monotone wavefronts (such a kind of conditional uniqueness was recently established for the non-local KPP-Fisher equation by Fang and Zhao). Moreover, we show that if delayed reaction is local then each monotone wavefront is unique (modulo translations) within the class of all non-constant traveling waves. Our approach is based on the construction of suitable fundamental solutions for linear integral-differential equations. We consider two alternative scenarios: in the first one, the fundamental solution is negative (typically holds for the Mackey-Glass diffusive equations) while in the second one, the fundamental solution is non-negative (typically holds for the KPP-Fisher diffusive equations).
Robust Non-Local Multi-Atlas Segmentation of the Optic Nerve.
Asman, Andrew J; Delisi, Michael P; Mawn; Galloway, Robert L; Landman, Bennett A
2013-03-13
Labeling or segmentation of structures of interest on medical images plays an essential role in both clinical and scientific understanding of the biological etiology, progression, and recurrence of pathological disorders. Here, we focus on the optic nerve, a structure that plays a critical role in many devastating pathological conditions - including glaucoma, ischemic neuropathy, optic neuritis and multiple-sclerosis. Ideally, existing fully automated procedures would result in accurate and robust segmentation of the optic nerve anatomy. However, current segmentation procedures often require manual intervention due to anatomical and imaging variability. Herein, we propose a framework for robust and fully-automated segmentation of the optic nerve anatomy. First, we provide a robust registration procedure that results in consistent registrations, despite highly varying data in terms of voxel resolution and image field-of-view. Additionally, we demonstrate the efficacy of a recently proposed non-local label fusion algorithm that accounts for small scale errors in registration correspondence. On a dataset consisting of 31 highly varying computed tomography (CT) images of the human brain, we demonstrate that the proposed framework consistently results in accurate segmentations. In particular, we show (1) that the proposed registration procedure results in robust registrations of the optic nerve anatomy, and (2) that the non-local statistical fusion algorithm significantly outperforms several of the state-of-the-art label fusion algorithms. PMID:24478826
Non-local gyrokinetic model of linear ion-temperature-gradient modes
Moradi, S.; Anderson, J.
2012-08-15
The non-local properties of anomalous transport in fusion plasmas are still an elusive topic. In this work, a theory of non-local linear ion-temperature-gradient (ITG) drift modes while retaining non-adiabatic electrons and finite temperature gradients is presented, extending the previous work [S. Moradi et al., Phys. Plasmas 18, 062106 (2011)]. A dispersion relation is derived to quantify the effects on the eigenvalues of the unstable ion temperature gradient modes and non-adiabatic electrons on the order of the fractional velocity operator in the Fokker-Planck equation. By solving this relation for a given eigenvalue, it is shown that as the linear eigenvalues of the modes increase, the order of the fractional velocity derivative deviates from two and the resulting equilibrium probability density distribution of the plasma, i.e., the solution of the Fokker-Planck equation, deviates from a Maxwellian and becomes Levy distributed. The relative effect of the real frequency of the ITG mode on the deviation of the plasma from Maxwellian is larger than from the growth rate. As was shown previously the resulting Levy distribution of the plasma may in turn significantly alter the transport as well.
Ahmad, Munir; Shahzad, Tasawar; Masood, Khalid; Rashid, Khalid; Tanveer, Muhammad; Iqbal, Rabail; Hussain, Nasir; Shahid, Abubakar; Fazal-E-Aleem
2016-06-01
Emission tomographic image reconstruction is an ill-posed problem due to limited and noisy data and various image-degrading effects affecting the data and leads to noisy reconstructions. Explicit regularization, through iterative reconstruction methods, is considered better to compensate for reconstruction-based noise. Local smoothing and edge-preserving regularization methods can reduce reconstruction-based noise. However, these methods produce overly smoothed images or blocky artefacts in the final image because they can only exploit local image properties. Recently, non-local regularization techniques have been introduced, to overcome these problems, by incorporating geometrical global continuity and connectivity present in the objective image. These techniques can overcome drawbacks of local regularization methods; however, they also have certain limitations, such as choice of the regularization function, neighbourhood size or calibration of several empirical parameters involved. This work compares different local and non-local regularization techniques used in emission tomographic imaging in general and emission computed tomography in specific for improved quality of the resultant images. PMID:26714680
Characterization of Aluminum Oxide Tunnel Barrier for use in a Non-Local Spin Detection Device
NASA Astrophysics Data System (ADS)
Abel, Joseph; Garramone, John; Sitnitsky, Ilona; Labella, Vincent
2010-03-01
Aluminum oxide can be utilized as an interface layer between ferromagnetic metals and silicon to achieve spin injection into silicon. The goal of our research is to inject and readout spins using a non-local measurement device that utilizes 1-2 nm aluminum oxide interface layers as tunnel barriers. An important step of fabricating a non-local measurement device out of silicon is the growth of an aluminum oxide tunnel barrierfootnotetextO. van't Erve, A. Hanbicki, M. Holub, C. Li, C. Awo-Affouda, P. Thompson and B. Jonker, Appl. Phys. Lett. 91, 212109 (2007).. Aluminum Oxide thin films where grown using a Knudsen cell to deposit 1 nm, 2 nm, and 3 nm of aluminum. The films were then oxidized in O2. X-ray photoelectron spectroscopy (XPS) was performed to characterize the film stoichiometry, and the band gap. We will also report on current voltage measurements of these films after they have been capped with metal and compare the resistance area product to those calculated for spin injection into siliconfootnotetextB.-C. Min, K. Motohashi, C. Lodder, and R. Jansen, Nat. Mater. 5, 817 (2006). .
A novel iterative non-local means algorithm for speckle reduction
NASA Astrophysics Data System (ADS)
Zhan, Yi; Zhang, Xuming; Ding, Mingyue
2012-02-01
Despeckling of ultrasound images is a crucial step for facilitating subsequent image processing. The non-local means (NLM) filter has been widely applied for denoising images corrupted by Gaussian noise. However, the direct application of this filter in ultrasound images cannot provide satisfactory restoration results. To address this problem, a novel iterative adaptive non-local means (IANLM) filter is proposed to despeckle ultrasound images. In the proposed filter, the speckle noise is firstly transformed into additive Gaussian noise by square root operation. Then the decay parameter is estimated based on a selected homogeneous region. Finally, an iterative strategy combined with the local clustering method based on pixel intensities is adopted to realize effective image smoothing while preserving image edges. Comparisons of the restoration performance of IANLM filter with other state-of-the-art despeckling methods are made. The quantitative comparisons of despeckling synthetic images based on Peak signal-to-noise ratio (PSNR) show that the IANLM filter can provide the best restoration performance among all the evaluated filters. The subjective visual comparisons of the denoised synthetic and ultrasound images demonstrate that the IANLM filter outperforms other compared algorithms in that it can achieve better performance of noise reduction, artifact avoidance, edges and textures preservation and contrast enhancement.
Single infrared image super-resolution combining non-local means with kernel regression
NASA Astrophysics Data System (ADS)
Yu, Hui; Chen, Fu-sheng; Zhang, Zhi-jie; Wang, Chen-sheng
2013-11-01
In many infrared imaging systems, the focal plane array is not sufficient dense to adequately sample the scene with the desired field of view. Therefore, there are not enough high frequency details in the infrared image generally. Super-resolution (SR) technology can be used to increase the resolution of low-resolution (LR) infrared image. In this paper, a novel super-resolution algorithm is proposed based on non-local means (NLM) and steering kernel regression (SKR). Based on that there are a large number of similar patches within an infrared image, NLM method can abstract the non-local similarity information and then the value of high-resolution (HR) pixel can be estimated. SKR method is derived based on the local smoothness of the natural images. In this paper the SKR is used to give the regularization term which can restrict the image noise and protect image edges. The estimated SR image is obtained by minimizing a cost function. In the experiments the proposed algorithm is compared with state-of-the-art algorithms. The comparison results show that the proposed method is robust to the noise and it can restore higher quality image both in quantitative term and visual effect.
NASA Technical Reports Server (NTRS)
Sun, Yan; Yu, Chin-Hui; Kouri, Donald J.; Schwenke, David W.; Halvick, Philippe
1989-01-01
A new formalism of the generalized Newton variational principle for the calculation of quantum mechanical state-to-state reaction probabilities is presented. The reformulation involves solving directly for the transition matrix rather than the reactance mtrix so that calculations may be carried out for individual columns of the transition matrix without obtaining solutions for all possible initial channels. The convergence of calculations with real and complex boundary conditions are compared for H + H2 - H2 + H, O + H2 - OH + H, and O + HD - OH + D and OD + H.
NASA Astrophysics Data System (ADS)
Figarova, S. R.; Hasiyeva, G. N.; Figarov, V. R.
2016-04-01
The effect of phonon scattering on electrical conductivity (EC) of 2D electron gas in quantum well (QW) systems with a complicated potential profile is described. Dependence of QW electrical conductivity on QW parameters (such as QW width, Fermi level positions etc.) when phonon scattering is employed has been calculated. NDC in EC when it varies with width of the QW has been found.
Bhushan, Chitresh; Chong, Minqi; Choi, Soyoung; Joshi, Anand A.; Haldar, Justin P.; Damasio, Hanna; Leahy, Richard M.
2016-01-01
Intensity variations over time in resting BOLD fMRI exhibit spatial correlation patterns consistent with a set of large scale cortical networks. However, visualizations of this data on the brain surface, even after extensive preprocessing, are dominated by local intensity fluctuations that obscure larger scale behavior. Our novel adaptation of non-local means (NLM) filtering, which we refer to as temporal NLM or tNLM, reduces these local fluctuations without the spatial blurring that occurs when using standard linear filtering methods. We show examples of tNLM filtering that allow direct visualization of spatio-temporal behavior on the cortical surface. These results reveal patterns of activity consistent with known networks as well as more complex dynamic changes within and between these networks. This ability to directly visualize brain activity may facilitate new insights into spontaneous brain dynamics. Further, temporal NLM can also be used as a preprocessor for resting fMRI for exploration of dynamic brain networks. We demonstrate its utility through application to graph-based functional cortical parcellation. Simulations with known ground truth functional regions demonstrate that tNLM filtering prior to parcellation avoids the formation of false parcels that can arise when using linear filtering. Application to resting fMRI data from the Human Connectome Project shows significant improvement, in comparison to linear filtering, in quantitative agreement with functional regions identified independently using task-based experiments as well as in test-retest reliability. PMID:27391481
Bhushan, Chitresh; Chong, Minqi; Choi, Soyoung; Joshi, Anand A; Haldar, Justin P; Damasio, Hanna; Leahy, Richard M
2016-01-01
Intensity variations over time in resting BOLD fMRI exhibit spatial correlation patterns consistent with a set of large scale cortical networks. However, visualizations of this data on the brain surface, even after extensive preprocessing, are dominated by local intensity fluctuations that obscure larger scale behavior. Our novel adaptation of non-local means (NLM) filtering, which we refer to as temporal NLM or tNLM, reduces these local fluctuations without the spatial blurring that occurs when using standard linear filtering methods. We show examples of tNLM filtering that allow direct visualization of spatio-temporal behavior on the cortical surface. These results reveal patterns of activity consistent with known networks as well as more complex dynamic changes within and between these networks. This ability to directly visualize brain activity may facilitate new insights into spontaneous brain dynamics. Further, temporal NLM can also be used as a preprocessor for resting fMRI for exploration of dynamic brain networks. We demonstrate its utility through application to graph-based functional cortical parcellation. Simulations with known ground truth functional regions demonstrate that tNLM filtering prior to parcellation avoids the formation of false parcels that can arise when using linear filtering. Application to resting fMRI data from the Human Connectome Project shows significant improvement, in comparison to linear filtering, in quantitative agreement with functional regions identified independently using task-based experiments as well as in test-retest reliability. PMID:27391481
What might rice piles tell us about non-local sediment transport?
NASA Astrophysics Data System (ADS)
Longjas, A.; Voller, V. R.; Paola, C.; Filipovitch, N.
2014-12-01
Our research objective is to identify sediment transport systems that exhibit non local signals, such as those seen in the long-profile of fluvial surfaces. In previous work we have shown that appropriate nonlocal models of sediment transport under various tectonic forcing, can lead to fluvial surface shapes that are distinct from those obtained with local models. For example, in the study of a sediment bypass system, a nonlocal model for the sediment flux predicts a concave down fluvial surface in contrast to the linear surface predicted with a local flux model. It is well known that hold ups and fast paths in transport systems lead to non-local behaviors. And we think that the mechanism that creates the unexpected curvatures in fluvial profiles is one of "storage and release". Perhaps the classic storage and release system is that seen in rice pile experiments. One set up for this experiment involves the formation of a rice pile in the gap (~25mm) between two vertical glass plates resting on a solid surface. In this system rice is added at a constant rate at the left and allowed to freely exit a distance (~0.5m) downstream; the system is run until a steady state is approached. Of course, an exact steady state is not reached because the rice does not move steadily down the pile surface but rather advances in a series of avalanches, with multiple length scales, separated by waiting times; in other words is transported via storage and release. The naive expectancy is that at the steady state the surface of the rice pile will exhibit a constant angle of repose. Our experiments with the system, however, indicate that while the storage and release mechanism invokes large temporal fluctuations in the pile its surface exhibits a persistent concave down shape. In this paper, we present the main findings of our rice pile experiment, explore models that might explain the persistence of the curved surface, and uncover the behavioral links between the rice pile model and non-local
Cheng, Jinghui; Zhou, Xiangge; Xiang, Haifeng
2015-11-01
Due to their wide range of applications and biological significance, fluorescent sensors have been an active research area in the past few years. In the present review, recent research developments on fluorescent chemosensors that detect metal ions via cation exchange reactions (transmetalation, metal displacement, or metal exchange reactions) of complexes, quantum dots, and metal-organic frameworks are described. These complex-based chemosensors might have a much better selectivity than the corresponding free ligands/receptors because of the shielding function of the filled-in metal ions. Moreover, not only the chemical structure of the ligands/receptors but also the identity of the central metal ions have a tremendous impact on the sensing performances. Therefore, sensing via cation exchange reactions potentially provides a new, simple, and powerful way to design fluorescent chemosensors. PMID:26375420
Lopez-Chavez, Ernesto; Garcia-Quiroz, Alberto; Gonzalez-Garcia, Gerardo; Orozco-Duran, Gabriela E; Zamudio-Rivera, Luis S; Martinez-Magadan, José M; Buenrostro-Gonzalez, Eduardo; Hernandez-Altamirano, Raul
2014-06-01
In this work, we present a quantum chemical study pertaining to some supramolecular complexes acting as wettability modifiers of oil-water-limestone system. The complexes studied are derived from zwitterionic liquids of the types N'-alkyl-bis, N-alquenil, N-cycloalkyl, N-amyl-bis-beta amino acid or salts acting as sparkling agents. We studied two molecules of zwitterionic liquids (ZL10 and ZL13), HOMO and LUMO levels, and the energy gap between them, were calculated, as well as the electron affinity (EA) and ionization potential (IP), chemical potential, chemical hardness, chemical electrophilicity index and selectivity descriptors such Fukui indices. In this work, electrochemical comparison was realized with cocamidopropyl betaine (CPB), which is a structure zwitterionic liquid type, nowadays widely applied in enhanced recovery processes. PMID:24907932
NASA Astrophysics Data System (ADS)
Dattani, Nikesh S.
2013-06-01
Functional quantum systems is an emerging research field which includes quantum engineering (the design of technologies that make use of quantum mechanics to outperform their classical counterparts, such as quantum computers, quantum communication devices, quantum thermometers, quantum telescopes, etc.) and the study of natural processes where quantum mechanics provides some improvement that cannot be realized with classical mechanics (possible examples are photosynthesis, animal navigation, the sense of smell, etc.). Being able to predict how a quantum mechanical system changes (ie, how its density matrix changes), given its hamiltonian, is paramount in quantum engineering as one needs to know which hamiltonian will give the desired outcome. Likewise, being able to predict density matrix dynamics in natural systems can help in understanding the system's mechanism, in controlling the system's processes, and can be helpful if designing a technology which attempts to mimic a natural process. State of the art techniques for calculating density matrix dynamics of functional quantum systems in real-time, and with numerically exact accuracy, have been developed over the last year. These techniques will be presented, followed by applications for quantum dot based quantum computing, and for calculating the 2D spectra of large biological systems.
Complex transport behaviors of rectangular graphene quantum dots subject to mechanical vibrations
NASA Astrophysics Data System (ADS)
Xu, Mengke; Wang, Yisen; Bao, Rui; Huang, Liang; Lai, Ying-Cheng
2016-05-01
Graphene-based mechanical resonators have attracted much attention due to their superior elastic properties and extremely low mass density. We investigate the effects of mechanical vibrations on electronic transport through graphene quantum dots, under the physically reasonable assumption that the time scale associated with electronic transport is much shorter than that with mechanical vibration so that, at any given time, an electron “sees” a static but deformed graphene sheet. We find that, besides periodic oscillation in the quantum transmission at the same frequency as that of mechanical vibrations, structures at finer scales can emerge as an intermediate state, which may lead to spurious higher-frequency components in the current through the device.
Modeling non-local thermodynamic equilibrium plasma using the Flexible Atomic Code data
NASA Astrophysics Data System (ADS)
Han, Bo; Wang, Feilu; Salzmann, David; Zhao, Gang
2015-04-01
We present a new code, RCF ("Radiative-Collisional code based on FAC"), which is used to simulate steady-state plasmas under non-local thermodynamic equilibrium condition, especially photoinization-dominated plasmas. RCF takes almost all of the radiative and collisional atomic processes into a rate equation to interpret the plasmas systematically. The Flexible Atomic Code (FAC) supplies all the atomic data needed for RCF, which insures calculating completeness and consistency of atomic data. With four input parameters relating to the radiation source and target plasma, RCF calculates the population of levels and charge states, as well as potential emission spectrum. In a preliminary application, RCF successfully reproduced the results of a photoionization experiment with reliable atomic data. The effects of the most important atomic processes on the charge state distribution are also discussed.
Non-diffusive, non-local transport in fluids and plasmas
Del-Castillo-Negrete, Diego B
2010-01-01
A review on non-diffusive transport in fluids and plasmas is presented. In the fluid context, non-diffusive chaotic transport by Rossby waves in zonal flows is studied following a Lagrangian approach. In the plasma physics context the problem of interest is test particle transport in pressure-gradient-driven plasma turbulence. In both systems the probability density function (PDF) of particle displacements is strongly non-Gaussian and the statistical moments exhibit super-diffusive anomalous scaling. Fractional diffusion models are proposed and tested in the quantitative description of the non-diffusive Lagrangian statistics of the fluid and plasma problems. Also, fractional diffusion operators are used to construct non-local transport models exhibiting up-hill transport, multivalued flux-gradient relations, fast pulse propagation phenomena, and tunneling of perturbations across transport barriers.
Biswas, Tirthabir; Koivisto, Tomi; Mazumdar, Anupam E-mail: T.S.Koivisto@uu.nl
2010-11-01
One of the greatest problems of standard cosmology is the Big Bang singularity. Previously it has been shown that non-local ghostfree higher-derivative modifications of Einstein gravity in the ultra-violet regime can admit non-singular bouncing solutions. In this paper we study in more details the dynamical properties of the equations of motion for these theories of gravity in presence of positive and negative cosmological constants and radiation. We find stable inflationary attractor solutions in the presence of a positive cosmological constant which renders inflation geodesically complete, while in the presence of a negative cosmological constant a cyclic universe emerges. We also provide an algorithm for tracking the super-Hubble perturbations during the bounce and show that the bouncing solutions are free from any perturbative instability.
Magnetic circular dichroism of non-local surface lattice resonances in magnetic nanoparticle arrays.
Kataja, Mikko; Pourjamal, Sara; van Dijken, Sebastiaan
2016-02-22
Subwavelength metallic particles support plasmon resonances that allow extreme confinement of light down to the nanoscale. Irradiation with left- and right hand circularly polarized light results in the excitation of circular plasmon modes with opposite helicity. The Lorenz force lifts the degeneracy of the two modes in magnetic nanoparticles. Consequently, the confinement and frequency of localized surface plasmon resonances can be tuned by an external magnetic field. In this paper, we experimentally demonstrate this effect for nickel nanoparticles using magnetic circular dichroism (MCD). Besides, we show that non-local surface lattice resonances in periodic arrays of the same nanoparticles significantly enhance the MCD signal. A numerical model based on the modified long wavelength approximation is used to reproduce the main features in the experimental spectra and provide design rules for large MCD effects in sensing applications. PMID:26907013
Thermal engineering of non-local resistance in lateral spin valves
Kasai, S. Takahashi, Y. K.; Hirayama, S.; Mitani, S.; Hono, K.; Adachi, H.; Ieda, J.; Maekawa, S.
2014-04-21
We study the non-local spin transport in Permalloy/Cu lateral spin valves (LSVs) fabricated on thermally oxidized Si and MgO substrates. While these LSVs show the same magnitude of spin signals, significant substrate dependence of the baseline resistance was observed. The baseline resistance shows much weaker dependence on the inter-electrode distance than that of the spin transport observed in the Cu wires. A simple analysis of voltage-current characteristics in the baseline resistance indicates the observed result can be explained by a combination of the Peltier and Seebeck effects at the injector and detector junctions, suggesting the usage of high thermal conductivity substrate (or under-layer) is effective to reduce the baseline resistance.
NASA Astrophysics Data System (ADS)
Thompson, Sally; Katul, Gabriel; Terborgh, John; Alvarez-Loayza, Patricia
2009-06-01
The Janzen-Connell (JC) effect, which hypothesizes that recruitment and growth of seedlings is positively correlated to the distance from the parent tree, is shown to generate highly organized vegetation biomass spatial patterns when coupled to a revised Fisher-Kolmogorov (FK) equation. Spatial organization arises through a novel mechanism of non-local activation and local inhibition. Over a single generation, the revised FK model calculations predict a “hen and chicks” dynamic pattern with mature trees surrounded by new seedlings growing at characteristic spatial distances in agreement with field data. Over longer timescales, the importance of stochastic dynamics, such as those associated with randomly occurring light gaps, increase thereby causing a substantial deviation between predictions from the deterministic FK model and its stochastic counterpart derived to account for such random disturbances. At still longer timescales, however, statistical measures of the spatial organization, specifically the spatial density of mature trees and their minimum spacing, converge between these two model representations.
Ertas, Metin; Yildirim, Isa; Kamasak, Mustafa; Akan, Aydin
2016-02-01
In this work, algebraic reconstruction technique (ART) is extended by using non-local means (NLM) and total variation (TV) for reduction of artifacts that are due to insufficient projection data. TV and NLM algorithms use different image models and their application in tandem becomes a powerful denoising method that reduces erroneous variations in the image while preserving edges and details. Simulations were performed on a widely used 2D Shepp-Logan phantom to demonstrate performance of the introduced method (ART + TV) NLM and compare it to TV based ART (ART + TV) and ART. The results indicate that (ART + TV) NLM achieves better reconstructions compared to (ART + TV) and ART. PMID:26890898
Non-local sub-characteristic zones of influence in unsteady interactive boundary-layers
NASA Technical Reports Server (NTRS)
Rothmayer, A. P.
1992-01-01
The properties of incompressible, unsteady, interactive, boundary layers are examined for a model hypersonic boundary layer and internal flow past humps or, equivalently, external flow past short-scaled humps. Using a linear high frequency analysis, it is shown that the domains of dependence within the viscous sublayer may be a strong function of position within the sublayer and may be strongly influenced by the pressure displacement interaction, or the prescribed displacement condition. Detailed calculations are presented for the hypersonic boundary layer. This effect is found to carry over directly to the fully viscous problem as well as the nonlinear problem. In the fully viscous problem, the non-local character of the domains of dependence manifests itself in the sub-characteristics. Potential implications of the domain of dependence structure on finite difference computations of unsteady boundary layers are briefly discussed.
Non--Local Approach to the Analysis of the Stress Distribution in Granular Systems.
NASA Astrophysics Data System (ADS)
Scott, J. E.; Kenkre, V. M.; Hurd, A. J.
1998-03-01
A continuum mechanical theory of the stress distribution in granular materials is presented, where the transformation of the vertical spatial coordinate into a formal time variable converts the study of the static stress distribution into a generally non--Markoffian, i.e., memory-possessing (non-local) propagation analysis. Previous treatments (J. -P). Bouchaud, M. E. Cates, and P. Claudin, J. Phys. I France 5, 639 (1995). (C. -h). Liu, S. R. Nagel, D. A. Schecter, S. N. Coppersmith, S. Majumdar, O. Narayan, and T. A. Witten, Science 269, 513 (1995). are shown to be particular cases of our theory corresponding to, respectively, wave-like and dif fusive limits of the general evolution. Calculations are presented for the example of ceramic or metal powder compaction in dies, with emphasis on the understanding of previously unexplained features as seen in experimental data found in the literature o ver the past 50 years. Specific proposals for new experimental investigations are presented.
A non-local free boundary problem arising in a theory of financial bubbles
Berestycki, Henri; Monneau, Regis; Scheinkman, José A.
2014-01-01
We consider an evolution non-local free boundary problem that arises in the modelling of speculative bubbles. The solution of the model is the speculative component in the price of an asset. In the framework of viscosity solutions, we show the existence and uniqueness of the solution. We also show that the solution is convex in space, and establish several monotonicity properties of the solution and of the free boundary with respect to parameters of the problem. To study the free boundary, we use, in particular, the fact that the odd part of the solution solves a more standard obstacle problem. We show that the free boundary is and describe the asymptotics of the free boundary as c, the cost of transacting the asset, goes to zero. PMID:25288815
A Dream of Yukawa — Non-Local Fields out of Non-Commutative Spacetime —
NASA Astrophysics Data System (ADS)
Naka, Shigefumi; Toyoda, Haruki; Takanashi, Takahiro; Umezawa, Eizo
The coordinates of κ-Minkowski spacetime form Lie algebraic elements, in which time and space coordinates do not commute in spite of that space coordinates commute each other. The non-commutativity is realized by a Planck-length-scale constant κ - 1( ne 0), which is a universal constant other than the light velocity under the κ-Poincare transformation. Such a non-commutative structure can be realized by SO(1,4) generators in dS4 spacetime. In this work, we try to construct a κ-Minkowski like spacetime with commutative 4-dimensional spacetime based on Adsn+1 spacetime. Another aim of this work is to study invariant wave equations in this spacetime from the viewpoint of non-local field theory by H. Yukawa, who expected to realize elementary particle theories without divergence according to this viewpoint.
Can non-local or higher derivative theories provide alternatives to inflation?
Geshnizjani, Ghazal; Ahmadi, Nahid E-mail: nahmadi@ut.ac.ir
2013-11-01
The standard mechanism for producing the observed scale-invariant power spectrum from adiabatic vacuum fluctuations relies on first order derivative of fields in the action for curvature perturbations. It has been proven [1] that, under this ansatz, any theory of early universe that matches cosmological observations should include a phase of accelerated expansion (i.e. inflation) or it has to break at least one of the following tenets of classical general relativity: Null Energy Conditions (NEC), subluminal signal propagation, or sub-Planckian energy densities. We extend this proof to a large class of theories with higher (spatial) derivative or non-local terms in the action. Interestingly, only theories in the neighborhood of Lifshitz points with ω{sub k}∝k{sup 0} and k{sup 3} remain viable.
Rain detection and removal algorithm using motion-compensated non-local mean filter
NASA Astrophysics Data System (ADS)
Song, B. C.; Seo, S. J.
2015-03-01
This paper proposed a novel rain detection and removal algorithm robust against camera motions. It is very difficult to detect and remove rain in video with camera motion. So, most previous works assume that camera is fixed. However, these methods are not useful for application. The proposed algorithm initially detects possible rain streaks by using spatial properties such as luminance and structure of rain streaks. Then, the rain streak candidates are selected based on Gaussian distribution model. Next, a non-rain block matching algorithm is performed between adjacent frames to find similar blocks to each including rain pixels. If the similar blocks to the block are obtained, the rain region of the block is reconstructed by non-local mean (NLM) filtering using the similar neighbors. Experimental results show that the proposed method outperforms previous works in terms of objective and subjective visual quality.
Geometrically Constructed Markov Chain Monte Carlo Study of Quantum Spin-phonon Complex Systems
NASA Astrophysics Data System (ADS)
Suwa, Hidemaro
2013-03-01
We have developed novel Monte Carlo methods for precisely calculating quantum spin-boson models and investigated the critical phenomena of the spin-Peierls systems. Three significant methods are presented. The first is a new optimization algorithm of the Markov chain transition kernel based on the geometric weight allocation. This algorithm, for the first time, satisfies the total balance generally without imposing the detailed balance and always minimizes the average rejection rate, being better than the Metropolis algorithm. The second is the extension of the worm (directed-loop) algorithm to non-conserved particles, which cannot be treated efficiently by the conventional methods. The third is the combination with the level spectroscopy. Proposing a new gap estimator, we are successful in eliminating the systematic error of the conventional moment method. Then we have elucidated the phase diagram and the universality class of the one-dimensional XXZ spin-Peierls system. The criticality is totally consistent with the J1 -J2 model, an effective model in the antiadiabatic limit. Through this research, we have succeeded in investigating the critical phenomena of the effectively frustrated quantum spin system by the quantum Monte Carlo method without the negative sign. JSPS Postdoctoral Fellow for Research Abroad
Non-local statistical label fusion for multi-atlas segmentation
Asman, Andrew J.; Landman, Bennett A.
2012-01-01
Multi-atlas segmentation provides a general purpose, fully-automated approach for transferring spatial information from an existing dataset (“atlases”) to a previously unseen context (“target”) through image registration. The method to resolve voxelwise label conflicts between the registered atlases (“label fusion”) has a substantial impact on segmentation quality. Ideally, statistical fusion algorithms (e.g., STAPLE) would result in accurate segmentations as they provide a framework to elegantly integrate models of rater performance. The accuracy of statistical fusion hinges upon accurately modeling the underlying process of how raters err. Despite success on human raters, current approaches inaccurately model multi-atlas behavior as they fail to seamlessly incorporate exogenous intensity information into the estimation process. As a result, locally weighted voting algorithms represent the de facto standard fusion approach in clinical applications. Moreover, regardless of the approach, fusion algorithms are generally dependent upon large atlas sets and highly accurate registration as they implicitly assume that the registered atlases form a collectively unbiased representation of the target. Herein, we propose a novel statistical fusion algorithm, Non-Local STAPLE (NLS). NLS reformulates the STAPLE framework from a non-local means perspective in order to learn what label an atlas would have observed, given perfect correspondence. Through this reformulation, NLS (1) seamlessly integrates intensity into the estimation process, (2) provides a theoretically consistent model of multi-atlas observation error, and (3) largely diminishes the need for large atlas sets and very high-quality registrations. We assess the sensitivity and optimality of the approach and demonstrate significant improvement in two empirical multi-atlas experiments. PMID:23265798
Non-local convergence coupling in a simple stochastic convection model
NASA Astrophysics Data System (ADS)
Brenowitz, N. D.; Frenkel, Y.; Majda, A. J.
2016-06-01
Observational studies show a strong correlation between large-scale wind convergence and precipitation. However, using this as a convective closure assumption to determine the total precipitation in a numerical model typically leads to deleterious wave-CISK behavior such as grid-scale noise. The quasi-equilibrium (QE) schemes ameliorate this issue and smooth the precipitation field, but still inadequately represent the intermittent and organized nature of tropical convection. However, recent observational evidence highlights that the large-scale convergence field primarily affects precipitation by increasing the overall convective cloud fraction rather than the energetics of individual convective elements. In this article, the dynamical consequences of this diagnostic observation are studied using a simple one baroclinic mode stochastic model for convectively coupled waves. A version of this model is implemented which couples the stochastic formation of convective elements to the wind convergence. Linearized analysis shows that using the local convergence results in a classic wave-CISK standing instability where the growth rate increases with the wavenumber. However, using a large-scale averaged convergence restricts the instability to physically plausible scales. Convergence coupling is interpreted as a surrogate for the non-local effects of gregarious convection. In nonlinear stochastic simulations with a non-uniform imposed sea surface temperature (SST) field, the non-local convergence coupling introduces desirable intermittent variability on intraseasonal time scales. Convergence coupling leads to a circulation with a similar mean but higher variability than the equivalent parameterization without convergence coupling. Finally, the model is shown to retain these features on fine and coarse mesh sizes.
Non-local order in Mott insulators, duality and Wilson loops
Rath, Steffen Patrick; Simeth, Wolfgang; Endres, Manuel; Zwerger, Wilhelm
2013-07-15
It is shown that the Mott insulating and superfluid phases of bosons in an optical lattice may be distinguished by a non-local ‘parity order parameter’ which is directly accessible via single site resolution imaging. In one dimension, the lattice Bose model is dual to a classical interface roughening problem. We use known exact results from the latter to prove that the parity order parameter exhibits long range order in the Mott insulating phase, consistent with recent experiments by Endres et al. [M. Endres, M. Cheneau, T. Fukuhara, C. Weitenberg, P. Schauß, C. Gross, L. Mazza, M.C. Bañuls, L. Pollet, I. Bloch, et al., Science 334 (2011) 200]. In two spatial dimensions, the parity order parameter can be expressed in terms of an equal time Wilson loop of a non-trivial U(1) gauge theory in 2+1 dimensions which exhibits a transition between a Coulomb and a confining phase. The negative logarithm of the parity order parameter obeys a perimeter law in the Mott insulator and is enhanced by a logarithmic factor in the superfluid. -- Highlights: •Number statistics of cold atoms in optical lattices show non-local correlations. •These correlations are measurable via single site resolution imaging. •Incompressible phases exhibit an area law in particle number fluctuations. •This leads to long-range parity order of Mott-insulators in one dimension. •Parity order in 2d is connected with a Wilson-loop in a lattice gauge theory.
Cortical organization of language pathways in children with non-localized cryptogenic epilepsy.
Frye, Richard Eugene; Liederman, Jacqueline
2014-01-01
Children with a history of epilepsy are almost six times more likely than their unaffected siblings to be referred for speech or language therapy. However, the abnormalities in neural pathway that cause these delays are poorly understood. We recorded evoked fields using whole-head magnetoencephalography during real and non-word visual and auditory rhyme tasks in 15 children with non-localized cryptogenic epilepsy. Basic phonological and orthographic language skills were assessed using Woodcock-Johnson Test of Achievement subtests. Dynamic statistical parameter mapping was used with individual participant magnetic resonance images. Significant cortical activity was visualized on average and performance weighted maps. For the auditory rhyme tasks, bilateral primary and secondary auditory cortices, the superior temporal sulcus, and insular cortex were activated early with later increases in left hemisphere activity. Visual rhyme tasks evoked early bilateral primary and secondary occipital cortical and angular gyri activity followed by later activation of the planum temporale and supramarginal gyri and the left ventral occipitotemporal area. For the auditory rhyme tasks, performance weighted maps demonstrated that early right hemisphere activation was associated with poorer reading skills while later activity was associated with better reading skills; for the left hemisphere, greater early activation of the secondary auditory cortex, including the planum temporale, was related to better reading skills while relatively later activation of these areas was associated with poorer reading skills. For the visual rhyme tasks, greater activity in the bilateral ventral occipitotemporal and insular areas and angular and supramarginal gyri were associated with better performance. These data suggest that spatiotemporal cortical activation patterns are associated with variations in language performance in non-localized cryptogenic epilepsy. PMID:25346681
The curious quantum statistics in the interval between measurements
NASA Astrophysics Data System (ADS)
Sharp, W. David; Shanks, Niall
1989-07-01
The claim of Albert, Aharonov and D'Amato that certain quantum ensembles entail the contextuality of quantum mechanics is defended against criticisms of Bub and Brown. It is argued that a prima facie case exists that the quantum mechanical description of the past must be both contextual and non-local.
Boda, Aalu Kumar, D. Sanjeev; Chatterjee, Ashok; Mukhopadhyay, Soma
2015-06-24
The ground state energy of a hydrogenic D{sup 0} complex trapped in a three-dimensional GaAs quantum dot with Gaussian confinement is calculated variationally incorporating the effect of Rashba spin-orbit interaction. The results are obtained as a function of the quantum dot size and the Rashba spin-orbit interaction. The results show that the Rashba interaction reduces the ground state energy of the system.
NASA Astrophysics Data System (ADS)
Ells, K. D.; Murray, A.
2011-12-01
Advances in the understanding of the wave-angle dependence of large-scale sandy coastline evolution have allowed exploratory modeling investigations into the emergence of large-scale coastline features such as sandwaves, capes, and spits; the possible responses of these complex coastline shapes to changing wave climates; and the dynamic coupling of natural coastal processes with economic decisions for shoreline stabilization. Recent numerical-model experiments found that beach nourishment on a complex-shaped coastline can significantly alter rates of shoreline change on spatial scales commensurate with the alongshore distance of adjacent features (up to 100 km). While the effect of beach nourishment is to fix a given shoreline position while maintaining a saturated sediment flux locally, hard structured stabilization methods (e.g. seawalls, revetments, or groynes) tend to reduce local alongshore fluxes of sediment. In long-term numerical experiments (decades to centuries), the effects of local stabilization propagate both progressively alongshore and through a non-local mechanism (wave shadowing). Comparing these two fundamentally different methods of shoreline stabilization on various locations along a cuspate cape coastline, we find that both the local and regional responses to hard structures greatly contrast those of beach nourishment. Sustained nourishment near the tip of a cape tends to extend the cape both seaward and in the direction of alongshore flux, increasing the effect that wave shadowing would have otherwise had on distant shorelines, leading to a negative (landward) perturbation to an adjacent cape. A hard structure at the same location, however, completely fixes the cape's original location, decreasing the shadowing effect and resulting in a positive (seaward) perturbation to the downdrift cape. Recent extensions of this work examine how different stabilization methods affect long-term coastline morphodynamics on other coastline types, starting
Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
DOE R&D Accomplishments Database
Marcus, R. A.
1964-01-01
In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.
The Foundations of Quantum Mechanics: Historical Analysis and Open Questions -- Cesena, 2004
NASA Astrophysics Data System (ADS)
Garola, Claudio; Rossi, Arcangelo; Sozzo, Sandro
Introduction / C. Garola, A. Rossi and S. Sozzo -- If Bertlmann had three feet / A. Afriat -- Macroscopic interpretability of quantum component systems / R. Ascoli -- Premeasurement versus measurement: a basic form of complementarity / G. Auletta and G. Tarozzi -- Remarks on conditioning / E. G. Beltrametti -- Entangled state preparation in experiments on quantum non-locality / V. Berardi and A. Garuccio -- The first steps of quantum electrodynamics: what is it that's being quantized? / S. Bergia -- On the meaning of element in the science of italic tradition, the question of physical objectivity (and/or physical meaning) and quantum mechanics / G. Boscarino -- Mathematics and epistemology in Planck's theoretical work (1898-1915) / P. Campogalliani -- On the free motion with noise / B. Carazza and R. Tedeschi -- Field quantization and wave/particle duality / M. Cini -- Parastatistics in econophysics? / D. Costantini and U. Garibaldi -- Theory-laden instruments and quantum mechanics / S. D'Agostino -- Quantum non-locality and the mathematical representation of experience / V. Fano -- On the notion of proposition in classical and quantum mechanics / C. Garola and S. Sozzo -- The electromagnetic conception of nature and the origins of quantum physics / E. A. Giannetto -- What we talk about when we talk about universe computability / S. Guccione -- Bohm and Bohmian mechanics / G. Introzzi and M. Rossetti -- An objective background for quantum theory relying on thermodynamic concepts / L. Lanz and B. Vacchini -- The entrance of quantum mechanics in Italy: from Garbasso to Fermi / M. Leone and N. Robotti -- The measure of momentum in quantum mechanics / F. Logiurato and C. Tarsitani -- On the two-slit interference experiment: a statistical discussion / M. Minozzo -- Why the reactivity of the elements is a relational property, and why it matters / V. Mosini -- Detecting non compatible properties in double-slit experiment without erasure / G. Nisticò -- If you can
Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan
2014-01-01
Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617
Excitonic complexes in natural InAs/GaAs quantum dots
NASA Astrophysics Data System (ADS)
Zieliński, M.; Gołasa, K.; Molas, M. R.; Goryca, M.; Kazimierczuk, T.; Smoleński, T.; Golnik, A.; Kossacki, P.; Nicolet, A. A. L.; Potemski, M.; Wasilewski, Z. R.; Babiński, A.
2015-02-01
The quantum confinement in a typical quantum dot (QD) is determined primarily by the nanosystem's dimensions and average composition. We demonstrate, however, that excitonic properties of natural QDs formed in the InAs/GaAs wetting layer are governed predominantly by effects of random fluctuations of the lattice composition. It is shown that the biexciton binding energy is a very sensitive function of the lattice randomness with a nearly flat dependence on the exciton energy. The large variation in different random realizations of a QD structure is shown to lead in some cases to the reversal of the order of excitonic lines. Results of theoretical calculations correspond to statistical properties of neutral excitons and biexcitons as well as trions confined to single natural QDs studied in our microspectroscopic measurements. We observe substantial variation of the biexciton and trion binding energies as well as a correlation of the trion and the biexciton energies. The transition from the negative to the positive binding energy of the trion is also observed, which strongly supports the attribution of the observed trion to the positively charged exciton.
Kondo Physics at Interfaces in Metallic Non-Local Spin Transport Devices
NASA Astrophysics Data System (ADS)
Leighton, Chris
2015-03-01
Despite the maturity of metallic spintronics there remain large gaps in our understanding of spin transport in metals, particularly with injection of spins across ferromagnetic/non-magnetic (FM/NM) interfaces, and their subsequent diffusion and relaxation. Unresolved issues include the limits of applicability of Elliott-Yafet spin relaxation, quantification of the influence of defects, surfaces, and interfaces on spin relaxation at nanoscopic dimensions, and the importance of magnetic and spin-orbit scattering. The non-local spin-valve is an enabling device in this context as, in addition to offering potentially disruptive applications, it allows for the separation of charge and spin currents. One particularly perplexing issue in metallic non-local spin valves is the widely observed non-monotonicity in the T-dependent spin accumulation, where the spin signal actually decreases at low T, in contrast to simple expectations. In this work, by studying an expanded range of FM/NM combinations (encompassing Ni80Fe20, Ni, Fe, Co, Cu, and Al), we demonstrate that this effect is not a property of a given FM or NM, but rather of the FM/NM pair. The non-monotonicity is in fact strongly correlated with the ability of the FM to form a dilute local magnetic moment in the NM. We show that local moments, resulting in this case from the ppm-level tail of the FM/NM interdiffusion profile, suppress the injected spin polarization and diffusion length via a novel manifestation of the Kondo effect, explaining all observations associated with the low T downturn in spin accumulation. We further show: (a) that this effect can be promoted by thermal annealing, at which point the conventional charge transport Kondo effect is simultaneously detected in the NM, and (b) that this suppression in spin accumulation can be quenched, even at interfaces that are highly susceptible to the effect, by insertion of a thin non-moment-supporting interlayer. Important implications for room temperature
Rota, R; Casulleras, J; Mazzanti, F; Boronat, J
2015-03-21
We present a method based on the path integral Monte Carlo formalism for the calculation of ground-state time correlation functions in quantum systems. The key point of the method is the consideration of time as a complex variable whose phase δ acts as an adjustable parameter. By using high-order approximations for the quantum propagator, it is possible to obtain Monte Carlo data all the way from purely imaginary time to δ values near the limit of real time. As a consequence, it is possible to infer accurately the spectral functions using simple inversion algorithms. We test this approach in the calculation of the dynamic structure function S(q, ω) of two one-dimensional model systems, harmonic and quartic oscillators, for which S(q, ω) can be exactly calculated. We notice a clear improvement in the calculation of the dynamic response with respect to the common approach based on the inverse Laplace transform of the imaginary-time correlation function. PMID:25796238
Perturbative N = 2 Supersymmetric Quantum Mechanics and L-Theory with Complex Coefficients
NASA Astrophysics Data System (ADS)
Berwick-Evans, Daniel
2016-01-01
We construct L-theory with complex coefficients from the geometry of 1|2-dimensional perturbative mechanics. Methods of perturbative quantization lead to wrong-way maps that we identify with those coming from the MSO orientation of L-theory tensored with the complex numbers. In particular, the total volume of a space of 1|2-dimensional vacua reads off the signature of a 4 k-dimensional oriented manifold.
Boda, Łukasz Boczar, Marek; Gług, Maciej; Wójcik, Marek J.
2015-11-28
Interaction energies, molecular structure and vibrational frequencies of the binary complex formed between H(D)Cl and dimethyl ether have been obtained using quantum-chemical methods. Equilibrium and vibrationally averaged structures, harmonic and anharmonic wavenumbers of the complex and its deuterated isotopomer were calculated using harmonic and anharmonic second-order perturbation theory procedures with Density Functional Theory B3LYP and B2PLYP-D and ab initio Møller-Plesset second-order methods, and a 6-311++G(3d,3p) basis set. A phenomenological model describing anharmonic-type vibrational couplings within hydrogen bonds was developed to explain the unique broadening and fine structure, as well as the isotope effect of the Cl–H and Cl–D stretching IR absorption bands in the gaseous complexes with dimethyl ether, as an effect of hydrogen bond formation. Simulations of the rovibrational structure of the Cl–H and Cl–D stretching bands were performed and the results were compared with experimental spectra.
NASA Astrophysics Data System (ADS)
Ye, Renlong; Nie, Xuemei; Zhou, Yumei; Wong, Chung F.; Gong, Xuedong; Jiang, Wei; Tang, Weihua; Wang, Yan A.; Heine, Thomas; Zhou, Baojing
2016-03-01
We introduce a molecular dynamics/quantum mechanics/continuum solvent model (MD/QM/CSM) approach to investigate binding mechanisms of host-guest systems. The representative conformations of host, guest, and their complex generated from MD simulations at the molecular-mechanics level are used for binding free energy calculations based on a QM/CSM model. We use this approach to explore the binding mechanisms of β-cyclodextrin (β-CD) and 2, 6-di-methyl-β-CD (DM-β-CD) with various guest molecules. Our results suggest that solvent effects play a more important role in determining the relative binding affinities of DM-β-CD than those of β-CD mainly because the former is more flexible than the latter.
Benioff, Paul
2009-01-01
Tmore » his work is based on the field of reference frames based on quantum representations of real and complex numbers described in other work. Here frame domains are expanded to include space and time lattices. Strings of qukits are described as hybrid systems as they are both mathematical and physical systems. As mathematical systems they represent numbers. As physical systems in each frame the strings have a discrete Schrodinger dynamics on the lattices.he frame field has an iterative structure such that the contents of a stage j frame have images in a stage j - 1 (parent) frame. A discussion of parent frame images includes the proposal that points of stage j frame lattices have images as hybrid systems in parent frames.he resulting association of energy with images of lattice point locations, as hybrid systems states, is discussed. Representations and images of other physical systems in the different frames are also described.« less
NASA Astrophysics Data System (ADS)
Yankovich, Andrew B.; Zhang, Chenyu; Oh, Albert; Slater, Thomas J. A.; Azough, Feridoon; Freer, Robert; Haigh, Sarah J.; Willett, Rebecca; Voyles, Paul M.
2016-09-01
Image registration and non-local Poisson principal component analysis (PCA) denoising improve the quality of characteristic x-ray (EDS) spectrum imaging of Ca-stabilized Nd2/3TiO3 acquired at atomic resolution in a scanning transmission electron microscope. Image registration based on the simultaneously acquired high angle annular dark field image significantly outperforms acquisition with a long pixel dwell time or drift correction using a reference image. Non-local Poisson PCA denoising reduces noise more strongly than conventional weighted PCA while preserving atomic structure more faithfully. The reliability of and optimal internal parameters for non-local Poisson PCA denoising of EDS spectrum images is assessed using tests on phantom data.
NASA Astrophysics Data System (ADS)
Assadi, Leila; Jafarpour, Mojtaba
2016-07-01
We use concurrence to study bipartite entanglement, Meyer-Wallach measure and its generalizations to study multi-partite entanglement and MABK and SASA inequalities to study the non-local properties of the 4-qubit entangled graph states, quantitatively. Then, we present 3 classifications, each one in accordance with one of the aforementioned properties. We also observe that the classification according to multipartite entanglement does exactly coincide with that according to nonlocal properties, but does not match with that according to bipartite entanglement. This observation signifies the fact that non-locality and multipartite entanglement enjoy the same basic underlying principles, while bipartite entanglement may not reveal the non-locality issue in its entirety.
NASA Astrophysics Data System (ADS)
Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu
2016-05-01
This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.
NASA Astrophysics Data System (ADS)
Mahmood, Muhammad Tariq; Chu, Yeon-Ho; Choi, Young-Kyu
2016-06-01
This paper proposes a Rician noise reduction method for magnetic resonance (MR) images. The proposed method is based on adaptive non-local mean and guided image filtering techniques. In the first phase, a guidance image is obtained from the noisy image through an adaptive non-local mean filter. Sobel operators are applied to compute the strength of edges which is further used to control the spread of the kernel in non-local mean filtering. In the second phase, the noisy and the guidance images are provided to the guided image filter as input to restore the noise-free image. The improved performance of the proposed method is investigated using the simulated and real data sets of MR images. Its performance is also compared with the previously proposed state-of-the art methods. Comparative analysis demonstrates the superiority of the proposed scheme over the existing approaches.
The morphing method as a flexible tool for adaptive local/non-local simulation of static fracture
NASA Astrophysics Data System (ADS)
Azdoud, Yan; Han, Fei; Lubineau, Gilles
2014-09-01
We introduce a framework that adapts local and non-local continuum models to simulate static fracture problems. Non-local models based on the peridynamic theory are promising for the simulation of fracture, as they allow discontinuities in the displacement field. However, they remain computationally expensive. As an alternative, we develop an adaptive coupling technique based on the morphing method to restrict the non-local model adaptively during the evolution of the fracture. The rest of the structure is described by local continuum mechanics. We conduct all simulations in three dimensions, using the relevant discretization scheme in each domain, i.e., the discontinuous Galerkin finite element method in the peridynamic domain and the continuous finite element method in the local continuum mechanics domain.
Hernández-Rojas, Javier; Calvo, Florent; Noya, Eva Gonzalez
2015-03-10
The semiclassical method of quantum thermal baths by colored noise thermostats has been used to simulate various atomic systems in the molecular and bulk limits, at finite temperature and in moderately to strongly anharmonic regimes. In all cases, the method performs relatively well against alternative approaches in predicting correct energetic properties, including in the presence of phase changes, provided that vibrational delocalization is not too strong-neon appearing already as an upper limiting case. In contrast, the dynamical behavior inferred from global indicators such as the root-mean-square bond length fluctuation index or the vibrational spectrum reveals more marked differences caused by zero-point energy leakage, except in the case of isolated molecules with well separated vibrational modes. To correct for such deficiencies and reduce the undesired transfer among modes, empirical modifications of the noise power spectral density were attempted to better describe thermal equilibrium but still failed when used as semiclassical preparation for microcanonical trajectories. PMID:26579740
Quantum-dot-based quantitative identification of pathogens in complex mixture
NASA Astrophysics Data System (ADS)
Lim, Sun Hee; Bestwater, Felix; Buchy, Philippe; Mardy, Sek; Yu, Alexey Dan Chin
2010-02-01
In the present study we describe sandwich design hybridization probes consisting of magnetic particles (MP) and quantum dots (QD) with target DNA, and their application in the detection of avian influenza virus (H5N1) sequences. Hybridization of 25-, 40-, and 100-mer target DNA with both probes was analyzed and quantified by flow cytometry and fluorescence microscopy on the scale of single particles. The following steps were used in the assay: (i) target selection by MP probes and (ii) target detection by QD probes. Hybridization efficiency between MP conjugated probes and target DNA hybrids was controlled by a fluorescent dye specific for nucleic acids. Fluorescence was detected by flow cytometry to distinguish differences in oligo sequences as short as 25-mer capturing in target DNA and by gel-electrophoresis in the case of QD probes. This report shows that effective manipulation and control of micro- and nanoparticles in hybridization assays is possible.
Nguyen, Tuan-Anh; Nakib, Amir; Nguyen, Huy-Nam
2016-06-01
The Non-local means denoising filter has been established as gold standard for image denoising problem in general and particularly in medical imaging due to its efficiency. However, its computation time limited its applications in real world application, especially in medical imaging. In this paper, a distributed version on parallel hybrid architecture is proposed to solve the computation time problem and a new method to compute the filters' coefficients is also proposed, where we focused on the implementation and the enhancement of filters' parameters via taking the neighborhood of the current voxel more accurately into account. In terms of implementation, our key contribution consists in reducing the number of shared memory accesses. The different tests of the proposed method were performed on the brain-web database for different levels of noise. Performances and the sensitivity were quantified in terms of speedup, peak signal to noise ratio, execution time, the number of floating point operations. The obtained results demonstrate the efficiency of the proposed method. Moreover, the implementation is compared to that of other techniques, recently published in the literature. PMID:27084318
A non-local, ordinary-state-based viscoelasticity model for peridynamics.
Mitchell, John Anthony
2011-10-01
A non-local, ordinary-state-based, peridynamics viscoelasticity model is developed. In this model, viscous effects are added to deviatoric deformations and the bulk response remains elastic. The model uses internal state variables and is conceptually similar to linearized isotropic viscolelasticity in the local theory. The modulus state, which is used to form the Jacobian matrix in Newton-Raphson algorithms, is presented. The model is shown to satisfy the 2nd law of thermodynamics and is applicable to problems in solid continuum mechanics where fracture and rate effects are important; it inherits all the advantages for modeling fracture associated with peridynamics. By combining this work with the previously published ordinary-state-based plasticity model, the model may be amenable to viscoplasticity problems where plasticity and rate effects are simultaneously important. Also, the model may be extended to include viscous effects for spherical deformations as well. The later two extensions are not presented and may be the subject of further work.
Locally optimized non-local means denoising for low-dose X-ray backscatter imagery.
Tracey, Brian H; Miller, Eric L; Wu, Yue; Alvino, Christopher; Schiefele, Markus; Al-Kofahi, Omar
2014-01-01
While recent years have seen considerable progress in image denoising, the leading techniques have been developed for digital photographs or other images that can have very different characteristics than those encountered in X-ray applications. In particular here we examine X-ray backscatter (XBS) images collected by airport security systems, where images are piecewise smooth and edge information is typically more correlated with objects while texture is dominated by statistical noise in the detected signal. In this paper, we show how multiple estimates for a denoised XBS image can be combined using a variational approach, giving a solution that enhances edge contrast by trading off gradient penalties against data fidelity terms. We demonstrate the approach by combining several estimates made using the non-local means (NLM) algorithm, a widely used patch-based denoising method. The resulting improvements hold the potential for improving automated analysis of low-SNR X-ray imagery and can be applied in other applications where edge information is of interest. PMID:25265919
Non-local models for the formation of hepatocyte-stellate cell aggregates.
Green, J E F; Waters, S L; Whiteley, J P; Edelstein-Keshet, L; Shakesheff, K M; Byrne, H M
2010-11-01
Liver cell aggregates may be grown in vitro by co-culturing hepatocytes with stellate cells. This method results in more rapid aggregation than hepatocyte-only culture, and appears to enhance cell viability and the expression of markers of liver-specific functions. We consider the early stages of aggregate formation, and develop a new mathematical model to investigate two alternative hypotheses (based on evidence in the experimental literature) for the role of stellate cells in promoting aggregate formation. Under Hypothesis 1, each population produces a chemical signal which affects the other, and enhanced aggregation is due to chemotaxis. Hypothesis 2 asserts that the interaction between the two cell types is by direct physical contact: the stellates extend long cellular processes which pull the hepatocytes into the aggregates. Under both hypotheses, hepatocytes are attracted to a chemical they themselves produce, and the cells can experience repulsive forces due to overcrowding. We formulate non-local (integro-partial differential) equations to describe the densities of cells, which are coupled to reaction-diffusion equations for the chemical concentrations. The behaviour of the model under each hypothesis is studied using a combination of linear stability analysis and numerical simulations. Our results show how the initial rate of aggregation depends upon the cell seeding ratio, and how the distribution of cells within aggregates depends on the relative strengths of attraction and repulsion between the cell types. Guided by our results, we suggest experiments which could be performed to distinguish between the two hypotheses. PMID:20709085
Role of non-local exchange in the electronic structure of correlated oxides
NASA Astrophysics Data System (ADS)
Iori, Federico; Gatti, Matteo; Rubio Secades, Angel
Transition-metal oxides (TMO) with partially filled d or f shells are a prototype of correlated materials. They exhibit very interesting properties, like metal-insulator phase transitions (MIT). In this work we consider several TMO insulators in which Kohn-Sham LDA band structures are metallic: VO2, V2O3, Ti2O3, LaTiO3 and YTiO3. In the past, this failure of LDA has been explained in terms of its inadequacy to capture the strong interactions taking place between correlated electrons. In the spirit of the Hubbard model, possible corrections to improve onsite correlation are the LDA +U and LDA +DMFT approaches. Here we make use of the HSE06 hybrid functional. We show that, without invoking strong-correlation effects, the contribution of the non-local Fock exchange is essential to correct the LDA results, by curing its delocalization error. In fact, HSE06 provides insulating band structures and correctly describes the MIT in all the considered compounds. We further discuss the advantages and the limitations of the HSE06 hybrid functional in correlated TMO
NASA Astrophysics Data System (ADS)
Thompson, S. E.; Katul, G. G.; Terborgh, J.; Alvarez-Loayza, P.
2009-12-01
Pattern formation in the biogeosciences is not limited to consideration of granular and fluid phenomena, but also occurs due to interactions within ecological systems. Here we present a novel mechanism of non-local activation and local inhibition that arises in the dynamics of competition and predation associated with parent trees and their seedlings. These dynamics, known as the Janzen-Connell (JC) effect, arise when recruitment and growth of seedlings is positively correlated to the distance from the parent tree. Such effects generate highly organized vegetation biomass spatial patterns when coupled to a revised Fisher-Kolmogorov (FK) equation. Over a single generation, the revised FK model calculations predict a "hen and chicks" dynamic pattern with mature trees surrounded by new seedlings growing at characteristic spatial distances in agreement with field data. Over longer timescales, the importance of stochastic dynamics, such as those associated with randomly occurring light gaps, increase thereby causing a substantial deviation between predictions from the deterministic FK model and its stochastic counterpart derived to account for such random disturbances. At still longer timescales, however, statistical measures of the spatial organization, specifically the spatial density of mature trees and their minimum spacing, converge between the two model representations.
Non-local thermal spin injection to study spin diffusion in yttrium iron garnet
NASA Astrophysics Data System (ADS)
Giles, Brandon; Yang, Zihao; Jamison, John; Myers, Roberto
Understanding the generation, detection, and manipulation of spin current is critical for the development of devices that depend on spin transport for information processing and storage. Recent studies have shown that spin transport over long distances is possible in the magnetic insulator yttrium iron garnet (YIG) through the diffusion of non-equilibrium magnons. Electrically excited magnons have been shown to diffuse up to 40um at room temperature, while thermally injected magnons were detected at ranges greater than 125um at 23K. However, much work is still required to fully understand the processes responsible for magnon diffusion. Here, we present an in-depth study of the diffusion of magnons in YIG. By using the non-local thermal spin detection method, we analyze spin transport as a function of temperature. Spin diffusion maps, which can be used to experimentally determine the spin diffusion length in YIG as a function of temperature, are presented Work supported by the Army Research Office MURI W911NF-14-1-0016.
Non-local transport in a tokamak plasma divertor with recycling
Abou-Assaleh, Z.; Petravic, M.; Vesey, R.; Matte, J.P.; Johnston, T.W.
1993-10-01
The plasma transport, particle and energy fluxes, near the diverter plate with high recycling has been modeled by using an electron kinetic code (Fokker-Planck International) in conjunction with a two-fluid ambipolar code. We include the effects of ionization and excitation of the hydrogen atoms. The electron energy distribution calculated from the kinetic code shows a large deviation from Maxwellian especially near the plate. This deviation from Maxwellian is due to the non-local transport of the suprathermal electrons from the SOL, and due also to the absorption of the fast electrons by the target plate. The heat flux near the plate is shown to be nonlocal, in that it is not determined uniquely by the local plasma parameters. Therefore the classical transport coefficients in the fluid model must be modified by including a nonlocal effect to produce the kinetic results. The kinetic calculation is compared with those of the fluid code with different values of the electron heat flux limiter factor (f). To reduce the computer load, the initial condition we used corresponds to the equilibrium solution already found with the fluid code with f=0.2. The fluid and Fokker-Planck codes are relaxed until all transients associated with electron dynamics have disappeared. In section 2, we present the kinetic code. The fluid code is presented in section 3. The boundary conditions used in these simulations are given in section 4. Finally the results and conclusion of these simulations are presented in section 5.
Rapid computation of spectrally integrated non-local thermodynamic equilibrium limb emission
NASA Technical Reports Server (NTRS)
Mlynczak, Martin G.; Olander, Daphne S.; Lopez-Puertas, Manuel
1994-01-01
The interpretation of infrared radiance measurements made by satellite-borne limb-scanning broadband radiometers requires accurate and computationally fast techniques with which to evaluate the equation of radiative transfer. This requirement is made even more stringent when analyzing measurements of non-local thermodynamic equilibrium (non-LTE) emission from the terrestrial mesosphere and lower thermosphere. In principle, line-by-line calculations which explicitly account for the departure from thermodynamic equilibrium in both the source functions and the transmittances are necessary. In this paper we extend the emissivity growth approximation (EGA) technique developed for local thermodynamic equilibrium (LTE) limb radiance for the molecular oxygen dayglow (1.27 micrometers and 762 nm), ozone and carbon dioxide in the 9- to 11-micrometer spectral interval, carbon monoxide (4.6 micrometers), nitric oxide (5.3 micrometers), and the carbon dioxide bands (15 micrometers) are presented. Using the non-LTE form of the EGA, the spectrally integrated limb emission is calculated for 35 tangent heights in the mesosphere and lower thermosphere (a total of 1200 atmospheric layers) with line-by-line accuracy in approximately 0.35 s of CPU time on readily available desktop computer hardware, while the corresponding line-by-line calculations may require several minutes. The non-LTE EGA technique will allow kinetic temperature and minor constituend retrieval algorithms to readily include non-LTE efects limited only by the a priori knowledge of the departure from LTE in the observed bands.
A unifying retinex model based on non-local differential operators
NASA Astrophysics Data System (ADS)
Zosso, Dominique; Tran, Giang; Osher, Stanley
2013-02-01
In this paper, we present a unifying framework for retinex that is able to reproduce many of the existing retinex implementations within a single model. The fundamental assumption, as shared with many retinex models, is that the observed image is a multiplication between the illumination and the true underlying reflectance of the object. Starting from Morel's 2010 PDE model for retinex, where illumination is supposed to vary smoothly and where the reflectance is thus recovered from a hard-thresholded Laplacian of the observed image in a Poisson equation, we define our retinex model in similar but more general two steps. First, look for a filtered gradient that is the solution of an optimization problem consisting of two terms: The first term is a sparsity prior of the reflectance, such as the TV or H1 norm, while the second term is a quadratic fidelity prior of the reflectance gradient with respect to the observed image gradients. In a second step, since this filtered gradient almost certainly is not a consistent image gradient, we then look for a reflectance whose actual gradient comes close. Beyond unifying existing models, we are able to derive entirely novel retinex formulations by using more interesting non-local versions for the sparsity and fidelity prior. Hence we define within a single framework new retinex instances particularly suited for texture-preserving shadow removal, cartoon-texture decomposition, color and hyperspectral image enhancement.
Majorana Fermion Induced Non-local Current Correlations in Spin-orbit Coupled Superconducting Wires
NASA Astrophysics Data System (ADS)
Liu, Jie; Zhang, Fu-Chun; Law, K. T.
2014-03-01
The observation of zero bias conductance peaks in semiconductor wire-superconductor heterostructures has generated great interest, and there is a hot debate on whether the observation is associated with Majorana Fermions (MFs) or other effects which enhance local Andreev reflections. In this work, we study the transport of a normal lead/semiconductor wire-superconductor heterostructure /normal lead junction. We show that when MF end states from the two ends of the wire are strongly coupled, the MF end states can suppress local Andreev reflections and strongly enhance crossed Andreev reflections (CARs), in which an electron from one lead is reflected as a hole in a different lead. In the CAR dominated regime, the current-current correlations between the two leads are strongly enhanced. Moreover, the Fano factor of a normal lead, which is the ratio of the shot noise to the average current, is reduced from 2e to e. Since the CAR associated effects are non-local effects and they cannot be induced by processes which enhance local Andreev reflections, therefore, the measurement of Fano factors and current-current correlations of the normal leads can be used to identify MFs.
A multi-scale non-local means algorithm for image de-noising
NASA Astrophysics Data System (ADS)
Nercessian, Shahan; Panetta, Karen A.; Agaian, Sos S.
2012-06-01
A highly studied problem in image processing and the field of electrical engineering in general is the recovery of a true signal from its noisy version. Images can be corrupted by noise during their acquisition or transmission stages. As noisy images are visually very poor in quality, and complicate further processing stages of computer vision systems, it is imperative to develop algorithms which effectively remove noise in images. In practice, it is a difficult task to effectively remove the noise while simultaneously retaining the edge structures within the image. Accordingly, many de-noising algorithms have been considered attempt to intelligent smooth the image while still preserving its details. Recently, a non-local means (NLM) de-noising algorithm was introduced, which exploited the redundant nature of images to achieve image de-noising. The algorithm was shown to outperform current de-noising standards, including Gaussian filtering, anisotropic diffusion, total variation minimization, and multi-scale transform coefficient thresholding. However, the NLM algorithm was developed in the spatial domain, and therefore, does not leverage the benefit that multi-scale transforms provide a framework in which signals can be better distinguished by noise. Accordingly, in this paper, a multi-scale NLM (MS-NLM) algorithm is proposed, which combines the advantage of the NLM algorithm and multi-scale image processing techniques. Experimental results via computer simulations illustrate that the MS-NLM algorithm outperforms the NLM, both visually and quantitatively.
A non-local evolution equation model of cell–cell adhesion in higher dimensional space
Dyson, Janet; Gourley, Stephen A.; Webb, Glenn F.
2013-01-01
A model for cell–cell adhesion, based on an equation originally proposed by Armstrong et al. [A continuum approach to modelling cell–cell adhesion, J. Theor. Biol. 243 (2006), pp. 98–113], is considered. The model consists of a nonlinear partial differential equation for the cell density in an N-dimensional infinite domain. It has a non-local flux term which models the component of cell motion attributable to cells having formed bonds with other nearby cells. Using the theory of fractional powers of analytic semigroup generators and working in spaces with bounded uniformly continuous derivatives, the local existence of classical solutions is proved. Positivity and boundedness of solutions is then established, leading to global existence of solutions. Finally, the asymptotic behaviour of solutions about the spatially uniform state is considered. The model is illustrated by simulations that can be applied to in vitro wound closure experiments. AMS Classifications: 35A01; 35B09; 35B40; 35K57; 92C17 PMID:23289870
Long-term, non-local coastline responses to local shoreline stabilization
NASA Astrophysics Data System (ADS)
Ells, Kenneth; Murray, A. Brad
2012-10-01
The future of large-scale coastline evolution will be strongly coupled to human manipulations designed to prevent erosion. We explore the consequences of this coupling using a numerical model for large-scale coastline evolution to compare the long-term, non-local effects of two generalized classes of shoreline stabilization: 1) beach nourishment (the addition of dredged sand to an eroding beach), and 2) hard-structures (e.g., seawalls, groynes, etc.) which fix the position of the shoreline without adding sand. In centurial model experiments where localized stabilization is maintained in the context of changing climate forcing, both forms of stabilization are found to significantly alter patterns of erosion and accretion at distances up to tens of kilometers. On a cuspate-cape coastline similar to the North and South Carolina coast, USA, with stabilization applied to the eroding updrift flank of a single cape, perturbations to coastline evolution are qualitatively similar within ˜20 km for each stabilization scenario, though they differ in magnitude both updrift and downdrift of the stabilized shoreline. The “human” signal in coastline change can extend as far as a neighboring cape (approximately 100 km away), but these long-range effects differ for each scenario. Nourishment resulted in seaward growth of the stabilized cape, increasing the extent that it blocked sediment flux in downdrift regions of the coast through wave shadowing. When stabilized with a hard structure the cape's initial position remain fixed, decreasing wave shadowing.
Non-local Impact of South and East Asian Aerosols on Monsoon Onset and Withdrawal
NASA Astrophysics Data System (ADS)
Bollasina, M. A.; Bartlett, R. E.; Booth, B.; Dunstone, N. J.; Marenco, F.
2015-12-01
The powerful Asian monsoon is of vital importance to the billions of people who are reliant on its rainfall, especially considering that society within its domain is largely agrarian. This monsoon system comprises smaller regional components, including the Indian monsoon and East Asian monsoon. These components are linked to one another through large scale circulation. The impacts of rapidly increasing anthropogenic aerosols over Asia on the monsoon have been widely studied. However, most studies consider only regional impacts, and not the subsequent effects on other geographical components of the system. We use observational and modelling methods to investigate the links between the regional components of the Asian monsoon and how they are affected by aerosols. Satellite observations of aerosol optical depth are used in conjunction with precipitation and atmospheric reanalysis data to investigate the problem at interannual timescales. Modelling experiments using HadGEM2-ES and GFDL CM3 are used to look at longer timescales and the potential influence of long term feedbacks. The HadGEM2 experiments use three time-evolving future anthropogenic aerosol emissions scenarios with the same time-evolving greenhouse gases. The GFDL CM3 experiments are forced by historical regional anthropogenic aerosol emissions. Using these methods, we look at the separate impact that South and East Asian aerosols have on monsoon onset and withdrawal. We focus on impacts in regions non-local to the aerosol source. We will also present proposed mechanisms for the apparent effects based on analysis of large scale circulation and atmospheric heating.
Adaptive non-local means filtering based on local noise level for CT denoising
NASA Astrophysics Data System (ADS)
Li, Zhoubo; Yu, Lifeng; Trzasko, Joshua D.; Fletcher, Joel G.; McCollough, Cynthia H.; Manduca, Armando
2012-03-01
Radiation dose from CT scans is an increasing health concern in the practice of radiology. Higher dose scans can produce clearer images with high diagnostic quality, but may increase the potential risk of radiation-induced cancer or other side effects. Lowering radiation dose alone generally produces a noisier image and may degrade diagnostic performance. Recently, CT dose reduction based on non-local means (NLM) filtering for noise reduction has yielded promising results. However, traditional NLM denoising operates under the assumption that image noise is spatially uniform noise, while in CT images the noise level varies significantly within and across slices. Therefore, applying NLM filtering to CT data using a global filtering strength cannot achieve optimal denoising performance. In this work, we have developed a technique for efficiently estimating the local noise level for CT images, and have modified the NLM algorithm to adapt to local variations in noise level. The local noise level estimation technique matches the true noise distribution determined from multiple repetitive scans of a phantom object very well. The modified NLM algorithm provides more effective denoising of CT data throughout a volume, and may allow significant lowering of radiation dose. Both the noise map calculation and the adaptive NLM filtering can be performed in times that allow integration with the clinical workflow.
Adaptive non-local means method for speckle reduction in ultrasound images
NASA Astrophysics Data System (ADS)
Ai, Ling; Ding, Mingyue; Zhang, Xuming
2016-03-01
Noise removal is a crucial step to enhance the quality of ultrasound images. However, some existing despeckling methods cannot ensure satisfactory restoration performance. In this paper, an adaptive non-local means (ANLM) filter is proposed for speckle noise reduction in ultrasound images. The distinctive property of the proposed method lies in that the decay parameter will not take the fixed value for the whole image but adapt itself to the variation of the local features in the ultrasound images. In the proposed method, the pre-filtered image will be obtained using the traditional NLM method. Based on the pre-filtered result, the local gradient will be computed and it will be utilized to determine the decay parameter adaptively for each image pixel. The final restored image will be produced by the ANLM method using the obtained decay parameters. Simulations on the synthetic image show that the proposed method can deliver sufficient speckle reduction while preserving image details very well and it outperforms the state-of-the-art despeckling filters in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Experiments on the clinical ultrasound image further demonstrate the practicality and advantage of the proposed method over the compared filtering methods.
Quantum-chemical studies of dimethylformamide 1 : 1 complexes with phosphoric acid
NASA Astrophysics Data System (ADS)
Krest'yaninov, M. A.; Kiselev, M. G.; Safonova, L. P.
2012-12-01
The structures of two phosphoric acid conformations, dimethylformamide (DMFA), four protonated DMFA forms, and nine DMFA-H3PO4 complexes in which the proton acceptor is a oxygen or nitrogen atom of the DMFA molecule are optimized by DFT/B3LYP using the 6-31++G( d, p) basis set. The structural changes in DMFA that occur upon its protonation are discussed. The stabilization energy and transferred charge values upon the formation of a hydrogen bond are calculated for all of the studied complexes by means of NBO analysis. The potential energy surface is scanned to study the possibility of proton transfer.
NASA Astrophysics Data System (ADS)
Collini, E.
2012-06-01
In this work we exploit two-dimensional photon echo experiments (2DPE) to observe quantum coherence dynamics in energy transfer in light-harvesting proteins isolated from marine cryptophyte algae. Previous data, recorded on two complexes (PC645 and PE545) at room temperature, revealed exceptionally long lasting oscillations with distinct correlations and anti-correlations even at ambient temperature. These observations provided compelling evidence for quantum-coherent sharing of electronic excitation across the 5-nm-wide proteins under biologically relevant conditions, suggesting that distant molecules within the photosynthetic proteins are 'wired' together by quantum coherence for more efficient light-harvesting. In this work measurements performed on a different evolutionary related complex (PE555) at two excitation wavelengths are presented. The new results highlight different lifetimes for electronic coherences. Although preliminary, these evidences can be tentatively interpreted considering the difference in the protein structures.
Circular dichroism spectroscopy of complexes of semiconductor quantum dots with chlorin e6
NASA Astrophysics Data System (ADS)
Kundelev, Evgeny V.; Orlova, Anna O.; Maslov, Vladimir G.; Baranov, Alexsander V.; Fedorov, Anatoly V.
2016-04-01
Experimental investigation of circular dichroism (CD) spectra of complexes based on ZnS:Mn/ZnS and CdSe/ZnS QDs and chlorin e6 (Ce6) molecules in aqua solutions at different pH level, in methanol and in DMSO were carried out. The changes in CD spectra of Ce6 upon its bonding in complex with semiconductor QDs were analyzed. Application of CD spectroscopy allowed to obtain the CD spectrum of luminescent Ce6 dimer for the first time, and to discover a nonluminescent Ce6 aggregate, preliminary identified as a "tetramer", dissymmetry factor of which is 40 times larger than that for its monomer. The analysis of obtained data showed that in complexes with QDs Ce6 can be either in the monomeric form or in the form of non-luminescent tetramer. The interaction of relatively unstable luminescent Ce6 dimerwith QDs leads to its partial monomerization and formation complexes with chlorin e6 in monomeric form.
Hausmann, David; Kuzmanoski, Ana; Feldmann, Claus
2016-04-21
The reaction of manganese(ii) bromide and the crown ether 18-crown-6 in the ionic liquid [(n-Bu)3MeN][N(Tf)2] under mild conditions (80-130 °C) resulted in the formation of three different coordination compounds: MnBr2(18-crown-6) (), Mn3Br6(18-crown-6)2 () and Mn3Br6(18-crown-6) (). In general, the local coordination and the crystal structure of all compounds are driven by the mismatch between the small radius of the Mn(2+) cation (83 pm) and the ring opening of 18-crown-6 as a chelating ligand (about 300 pm). This improper situation leads to different types of coordination and bonding. MnBr2(18-crown-6) represents a molecular compound with Mn(2+) coordinated by two bromine atoms and only five oxygen atoms of 18-crown-6. Mn3Br6(18-crown-6)2 falls into a [MnBr(18-crown-6)](+) cation - with Mn(2+) coordinated by six oxygen atoms and Br - and a [MnBr(18-crown-6)MnBr4](-) anion. In this anion, Mn(2+) is coordinated by five oxygen atoms of the crown ether as well as by two bromine atoms, one of them bridging to an isolated (MnBr4) tetrahedron. Mn3Br6(18-crown-6), finally, forms an infinite, non-charged [Mn2(18-crown-6)(MnBr6)] chain. Herein, 18-crown-6 is exocyclically coordinated by two Mn(2+) cations. All compounds show intense luminescence in the yellow to red spectral range and exhibit remarkable quantum yields of 70% (Mn3Br6(18-crown-6)) and 98% (Mn3Br6(18-crown-6)2). The excellent quantum yield of Mn3Br6(18-crown-6)2 and its differentiation from MnBr2(18-crown-6) and Mn3Br6(18-crown-6) can be directly correlated to the local coordination. PMID:26956783
Why Quantum Coherence Is Not Important in the Fenna-Matthews-Olsen Complex.
Wilkins, David M; Dattani, Nikesh S
2015-07-14
We develop and present an improvement to the conventional technique for solving the Hierarchical Equations of Motion (HEOM), which can reduce the memory cost by up to 75% while retaining the same (or even better) convergence rate and accuracy. This allows for a full calculation of the population dynamics of the 24-site FMO trimer for long time scales with very little effort, and we present the first fully converged, exact results for the 7-site subsystem of the monomer, and for the full 24-site trimer. We then show where our exact 7-site results deviate from the approximation of Ishizaki and Fleming [A. Ishizaki and G. R. Fleming, Proc. Natl. Acad. Sci. U.S.A., 2009, 106, 17255]. Our exact results are then compared to calculations using the incoherent Förster theory, and it is found that the time scale of energy transfer is roughly the same, regardless of whether or not coherence is considered. This means that coherence is not likely to improve the efficiency of the transfer. In fact, the incoherent theory often tends to overpredict the rates of energy transfer, suggesting that, in some cases, quantum coherence may actually slow the photosynthetic process. PMID:26575775
Complex responses to Si quantum dots accumulation in carp liver tissue: Beyond oxidative stress.
Serban, Andreea Iren; Stanca, Loredana; Sima, Cornelia; Staicu, Andrea Cristina; Zarnescu, Otilia; Dinischiotu, Anca
2015-09-01
The use of quantum dots (QDs) in biomedical applications is limited due to their inherent toxicity caused by the heavy metal core of the particles. Consequently, silicon-based QDs are expected to display diminished toxicity. We investigated the in vivo effects induced by Si/SiO2 QDs intraperitoneally injected in crucian carp liver. The QDs contained a crystalline Si core encased in a SiO2 shell, with a size between 2.75 and 11.25nm and possess intrinsic fluorescence (Ex 325nm/Em ∼690nm). Tissue fluorescence microscopy analysis revealed the presence of QDs in the liver for at least 2weeks after injection. Although protein and lipid oxidative stress markers showed the onset of oxidative stress, the hepatic tissue exhibited significant antioxidant adaptations (increase of antioxidant enzymes, recovery of glutathione levels), sustained by the activation of Hsp30 and Hsp70 chaperoning proteins. The increased activity of cyclooxigenase-2 (COX-2) and matrix metalloproteinases (MMPs) support the idea that Si/SiO2 QDs have a potential to induce inflammatory response, a scenario also indicated by the profile of Hsp60 and Hsp90 heat shock proteins. MMPs profile and the recovery of oxidative stress markers suggested a tissue remodelation phase after 3weeks from QDs administration. PMID:26079203
NASA Astrophysics Data System (ADS)
Korkusinski, Marek; Reimer, Michael E.; Williams, Robin L.; Hawrylak, Pawel
2009-01-01
We demonstrate theoretically that by applying an in-plane electric field it is possible to engineer and tune photon cascades originating from recombination of multiexciton complexes confined in self-assembled quantum dots. We find the multiexciton energies and states as functions of the field using the effective-mass configuration-interaction approach with the effects of electron-hole exchange treated perturbatively, and use Fermi’s golden rule to compute the emission spectra. We show that the field-induced Stark shift of the energies of photons emitted by the biexciton and two linearly polarized excitons is strongly renormalized by the electron-hole interactions, which are governed by the separation of electrons and holes induced by the field. As a result, the effective Stark shifts of exciton and biexciton emission lines have opposite signs, leading to a removal of the biexciton binding energy at a finite field. This enables the cascade of a pair of polarization entangled photons in the presence of a finite exciton anisotropic exchange splitting. We compare these emission spectra to those of the charged exciton, the triplet biexciton, and the three-exciton complex. We find that the electric field and Coulomb interactions differentiate the biexciton-exciton cascade from other cascades, facilitating identification of its spectra and practical implementation.
Non-Local Means Inpainting of MS Lesions in Longitudinal Image Processing
Guizard, Nicolas; Nakamura, Kunio; Coupé, Pierrick; Fonov, Vladimir S.; Arnold, Douglas L.; Collins, D. Louis
2015-01-01
In medical imaging, multiple sclerosis (MS) lesions can lead to confounding effects in automatic morphometric processing tools such as registration, segmentation and cortical extraction, and subsequently alter individual longitudinal measurements. Multiple magnetic resonance imaging (MRI) inpainting techniques have been proposed to decrease the impact of MS lesions in medical image processing, however, most of these methods make the assumption that lesions only affect white matter. Here, we propose a method to fill lesion regions using the patch-based non-local mean (NLM) strategy. The method consists of a hierarchical concentric filling strategy after identification of the lesion region. The lesion is filled iteratively, based on the surrounding tissue intensity, using an onion peel strategy. This concentric technique presents the advantage of preserving the local information and therefore the continuity of the anatomy and does not require identification of any a priori normal brain tissues. The method is first evaluated on 20 healthy subjects with simulated artificial MS lesions where we assessed our technique by measuring the peak signal-to-noise ratio (PSNR) of the images with inpainted lesion and the original healthy images. Second, in order to assess the impact of lesion filling on longitudinal image analyses, we performed a power analysis with sample size estimation to evaluate brain atrophy and ventricular growth in patients with MS. The method was compared to two different publicly available methods (FSL lesion fill and Lesion LEAP) and a more classic method, which fills the region with intensities similar to that of the surrounding healthy white matter tissue or mask the lesions. The proposed method was shown to exceed the other methods in reproducing the fidelity of healthy subject images where the lesions were inpainted. The method also improved the power to detect brain atrophy or ventricular growth by decreasing the sample size by 25% in the presence
Noise suppression for energy-resolved CT using similarity-based non-local filtration
NASA Astrophysics Data System (ADS)
Harms, Joe; Wang, Tonghe; Petrongolo, Michael; Zhu, Lei
2016-03-01
In energy-resolved CT, images are reconstructed independently at different energy levels, resulting in images with different qualities but the same structures. We propose a similarity-based non-local filtration method to extract structural information from these images for noise suppression. For each pixel, we calculate its similarity to other pixels based on CT number. The calculation is repeated on each image at different energy levels and similarity values are averaged to generate a similarity matrix. Noise suppression is achieved by multiplying the image vector by the similarity matrix. Multiple scans on a tabletop CT system are used to simulate 6-channel energy-resolved CT, with energies ranging from 75 to 125 kVp. Phantom studies show that the proposed method improves average contrast-to-noise ratio (CNR) of seven materials on the 75 kVp image by a factor of 22. Compared with averaging CT images for noise suppression, our method achieves a higher CNR and reduces the CT number error of iodine solutions from 16.5% to 3.5% and the overall image root of mean-square error (RMSE) from 3.58% to 0.93%. On the phantom with line-pair structures, our algorithm reduces noise standard deviation (STD) by a factor of 23 while maintaining 7 lp/cm spatial resolution. Additionally, anthropomorphic head phantom studies show noise STD reduction by a factor or 26 with no loss of spatial resolution. The noise suppression achieved by the similarity-based method is clinically attractive, especially for CNRs of iodine in contrast-enhanced CT.
Non-Local Means Inpainting of MS Lesions in Longitudinal Image Processing.
Guizard, Nicolas; Nakamura, Kunio; Coupé, Pierrick; Fonov, Vladimir S; Arnold, Douglas L; Collins, D Louis
2015-01-01
In medical imaging, multiple sclerosis (MS) lesions can lead to confounding effects in automatic morphometric processing tools such as registration, segmentation and cortical extraction, and subsequently alter individual longitudinal measurements. Multiple magnetic resonance imaging (MRI) inpainting techniques have been proposed to decrease the impact of MS lesions in medical image processing, however, most of these methods make the assumption that lesions only affect white matter. Here, we propose a method to fill lesion regions using the patch-based non-local mean (NLM) strategy. The method consists of a hierarchical concentric filling strategy after identification of the lesion region. The lesion is filled iteratively, based on the surrounding tissue intensity, using an onion peel strategy. This concentric technique presents the advantage of preserving the local information and therefore the continuity of the anatomy and does not require identification of any a priori normal brain tissues. The method is first evaluated on 20 healthy subjects with simulated artificial MS lesions where we assessed our technique by measuring the peak signal-to-noise ratio (PSNR) of the images with inpainted lesion and the original healthy images. Second, in order to assess the impact of lesion filling on longitudinal image analyses, we performed a power analysis with sample size estimation to evaluate brain atrophy and ventricular growth in patients with MS. The method was compared to two different publicly available methods (FSL lesion fill and Lesion LEAP) and a more classic method, which fills the region with intensities similar to that of the surrounding healthy white matter tissue or mask the lesions. The proposed method was shown to exceed the other methods in reproducing the fidelity of healthy subject images where the lesions were inpainted. The method also improved the power to detect brain atrophy or ventricular growth by decreasing the sample size by 25% in the presence
Non-local thermodynamic equilibrium 1.5D modeling of red giant stars
Young, Mitchell E.; Short, C. Ian
2014-05-20
Spectra for two-dimensional (2D) stars in the 1.5D approximation are created from synthetic spectra of one-dimensional (1D) non-local thermodynamic equilibrium (NLTE) spherical model atmospheres produced by the PHOENIX code. The 1.5D stars have the spatially averaged Rayleigh-Jeans flux of a K3-4 III star while varying the temperature difference between the two 1D component models (ΔT {sub 1.5D}) and the relative surface area covered. Synthetic observable quantities from the 1.5D stars are fitted with quantities from NLTE and local thermodynamic equilibrium (LTE) 1D models to assess the errors in inferred T {sub eff} values from assuming horizontal homogeneity and LTE. Five different quantities are fit to determine the T {sub eff} of the 1.5D stars: UBVRI photometric colors, absolute surface flux spectral energy distributions (SEDs), relative SEDs, continuum normalized spectra, and TiO band profiles. In all cases except the TiO band profiles, the inferred T {sub eff} value increases with increasing ΔT {sub 1.5D}. In all cases, the inferred T {sub eff} value from fitting 1D LTE quantities is higher than from fitting 1D NLTE quantities and is approximately constant as a function of ΔT {sub 1.5D} within each case. The difference between LTE and NLTE for the TiO bands is caused indirectly by the NLTE temperature structure of the upper atmosphere, as the bands are computed in LTE. We conclude that the difference between T {sub eff} values derived from NLTE and LTE modeling is relatively insensitive to the degree of the horizontal inhomogeneity of the star being modeled and largely depends on the observable quantity being fit.
Non-local means-based nonuniformity correction for infrared focal-plane array detectors
NASA Astrophysics Data System (ADS)
Yu, Hui; Zhang, Zhi-jie; Chen, Fu-sheng; Wang, Chen-sheng
2014-11-01
The infrared imaging systems are normally based on the infrared focal-plane array (IRFPA) which can be considered as an array of independent detectors aligned at the focal plane of the imaging system. Unfortunately, every detector on the IRFPA may have a different response to the same input infrared signal which is known as the nonuniformity problem. Then we can observe the fixed pattern noise (FPN) from the resulting images. Standard nonuniformity correction (NUC) methods need to be recalibrated after a short period of time due the temporal drift of the FPN. Scene-based nonuniformity correction (NUC) techniques eliminate the need for calibration by correction coefficients based on the scene being viewed. However, in the scene-based NUC method the problem of ghosting artifacts widely seriously decreases the image quality, which can degrade the performance of many applications such as target detection and track. This paper proposed an improved scene-based method based on the retina-like neural network approach. The method incorporates the use of non-local means (NLM) method into the estimation of the gain and the offset of each detector. This method can not only estimates the accurate correction coefficient but also restrict the ghosting artifacts efficiently. The proposed method relies on the use of NLM method which is a very successful image denoising method. And then the NLM used here can preserve the image edges efficiently and obtain a reliable spatial estimation. We tested the proposed NUC method by applying it to an IR sequence of frames. The performance of the proposed method was compared the other well-established adaptive NUC techniques.
A complex guided spectral transform Lanczos method for studying quantum resonance states
Yu, Hua-Gen
2014-12-28
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the originalmore » Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO₂, and compared to previous calculations.« less
A complex guided spectral transform Lanczos method for studying quantum resonance states
Yu, Hua-Gen
2014-12-28
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO₂, and compared to previous calculations.
A complex guided spectral transform Lanczos method for studying quantum resonance states
Yu, Hua-Gen
2014-12-28
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths, and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spectral range of interest. Therefore, the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO{sub 2}, and compared to previous calculations.
ERIC Educational Resources Information Center
de Groot, Carola; Daalhuizen, Femke B. C.; van Dam, Frank; Mulder, Clara H.
2012-01-01
One of the most pressing questions in the rural gentrification literature is whether rural residents face difficulties in finding a home within their locality due to the influx of more wealthy newcomers. In this paper, we investigate the extent to which intended local movers and intended non-local movers have realised their rural residential…
Berger, Andrew J. Page, Michael R.; Bhallamudi, Vidya P.; Chris Hammel, P.; Wen, Hua; Kawakami, Roland K.; McCreary, Kathleen M.
2015-10-05
Using simultaneous magnetic force microscopy and transport measurements of a graphene spin valve, we correlate the non-local spin signal with the magnetization of the device electrodes. The imaged magnetization states corroborate the influence of each electrode within a one-dimensional spin transport model and provide evidence linking domain wall pinning to additional features in the transport signal.
Direct Evidence of Memory Retrieval as a Source of Difficulty in Non-Local Dependencies in Language
ERIC Educational Resources Information Center
Fedorenko, Evelina; Woodbury, Rebecca; Gibson, Edward
2013-01-01
Linguistic dependencies between non-adjacent words have been shown to cause comprehension difficulty, compared with local dependencies. According to one class of sentence comprehension accounts, non-local dependencies are difficult because they require the retrieval of the first dependent from memory when the second dependent is encountered.…
Ceotto, Michele; Tantardini, Gian Franco; Aspuru-Guzik, Alán
2011-12-01
Semiclassical methods face numerical challenges as the dimensionality of the system increases. In the general context of the theory of differential equations, this is known as the "curse of dimensionality." In the present manuscript, we apply the recently-introduced multi-coherent states semiclassical initial value representation (MC-SC-IVR) approach to extend the applicability of first-principles semiclassical calculations. The proposed strategy involves the use of non-local coherent states with the goal of increasing accuracy in the Fourier transforms, and on the other hand, allows for the selection of peaks of different frequencies. The ability to filter desired peaks is important for analyzing the power spectra of complex systems. The MC-SC-IVR approach allows us to solve a 19-dimensional test system and to resolve on-the-fly the power spectra of the formaldehyde molecule with very few classical trajectories. PMID:22149780
Fermionic computation is non-local tomographic and violates monogamy of entanglement
NASA Astrophysics Data System (ADS)
D'Ariano, G. M.; Manessi, F.; Perinotti, P.; Tosini, A.
2014-07-01
We show that the computational model based on local fermionic modes in place of qubits does not satisfy local tomography and monogamy of entanglement, and has mixed states with maximal entanglement of formation. These features directly follow from the parity superselection rule. We generalize quantum superselection rules to general probabilistic theories as sets of linear constraints on the convex set of states. We then provide a link between the cardinality of the superselection rule and the degree of holism of the resulting theory.
The synthesis of quantum size lead sulfide particles in surfactant-based complex fluid media
Ward, A.J.I.; O'Sullivan, E.C.; Rang, Jing Chen; Nedeljkovic, J.; Patel, R.C. . Dept. of Chemistry)
1993-12-01
The relative roles of the ion interactions, molecular complex formation, and the local structure of the medium on the formation of nano-sized particles of lead sulfide (PbS) in a nonionic surfactant/water/oil microemulsion have been investigated. Comparison of the reaction carried out under conditions of minimal hydrolysis of the cation (low pH) in two different counterion/acid systems (nitric or perchlorate) indicates that hydrolysis does not play a significant role in the production of PbS in fine particle form. Furthermore, the nature of tile counterion, NO[sub 3][sup [minus
Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport
Xie, Hang Kwok, Yanho; Chen, GuanHua; Jiang, Feng; Zheng, Xiao
2014-10-28
Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.
Non-Markovian behavior of small and large complex quantum systems.
Žnidarič, Marko; Pineda, Carlos; García-Mata, Ignacio
2011-08-19
The channel induced by a complex system interacting strongly with a qubit is calculated exactly under the assumption of randomness of its eigenvectors. The resulting channel is represented as an isotropic time-dependent oscillation of the Bloch ball, leading to non-Markovian behavior, even in the limit of infinite environments. Two contributions are identified: one due to the density of states and the other due to correlations in the spectrum. Prototype examples, one for chaotic and the other for regular dynamics are explored. PMID:21929150
Sparkle model for the quantum chemical AM1 calculation of europium complexes
NASA Astrophysics Data System (ADS)
de Andrade, Antônio V. M.; da Costa, Nivan B., Jr.; Simas, Alfredo M.; de Sá, Gilberto F.
1994-09-01
Considering that the bonds between a lanthanide and its ligands essentially possess an electrostatic character, we propose the representation of rare-earth elements within AM1 as sparkles. To parametrize the sparkle model we have used the known geometry of the complex tris (acetylacetonate) (1,10-phenantroline) of europium (III). Interatomic distances for the coordination polyhedron, averaging 2.81 Å, could be predicted with an average deviation of 0.13 Å. In short, this is a simple lanthanide-ligand electrostatic model which simultaneously treats the organic ligands and their interactions with the powerful AM1 method, yielding results of useful accuracy.
Efficient quantum walk on a quantum processor.
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L; Wang, Jingbo B; Matthews, Jonathan C F
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Efficient quantum walk on a quantum processor
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-01-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor. PMID:27146471
Efficient quantum walk on a quantum processor
NASA Astrophysics Data System (ADS)
Qiang, Xiaogang; Loke, Thomas; Montanaro, Ashley; Aungskunsiri, Kanin; Zhou, Xiaoqi; O'Brien, Jeremy L.; Wang, Jingbo B.; Matthews, Jonathan C. F.
2016-05-01
The random walk formalism is used across a wide range of applications, from modelling share prices to predicting population genetics. Likewise, quantum walks have shown much potential as a framework for developing new quantum algorithms. Here we present explicit efficient quantum circuits for implementing continuous-time quantum walks on the circulant class of graphs. These circuits allow us to sample from the output probability distributions of quantum walks on circulant graphs efficiently. We also show that solving the same sampling problem for arbitrary circulant quantum circuits is intractable for a classical computer, assuming conjectures from computational complexity theory. This is a new link between continuous-time quantum walks and computational complexity theory and it indicates a family of tasks that could ultimately demonstrate quantum supremacy over classical computers. As a proof of principle, we experimentally implement the proposed quantum circuit on an example circulant graph using a two-qubit photonics quantum processor.
Westermann, Till; Manthe, Uwe
2012-12-14
Decoherence effects induced by conical intersecting potential energy surfaces are studied employing the correlation-based von Neumann (CvN) entropy which provides a measure of the complexity of the underlying wavefunction. As a prototypical example, the S(0) → S(2) excitation in pyrazine is investigated. The 24-dimensional wavepacket dynamics calculations presented utilize the multi-layer extension of the multi-configurational time-dependent Hartree (MCTDH) approach. An efficient numerical scheme is introduced which facilitates CvN entropy constrained wavepacket propagation within the multi-layer MCTDH approach. In unconstrained multi-layer MCTDH calculations, the CvN-entropy is found to provide a valuable analytical tool for studying the decoherence phenomena present. Investigating the CvN entropy after the S(0) → S(2) excitation as a function of time, a clear separation of time scales is obtained. It can be related to the different dynamical phenomena present: the initial transfer from the upper (S(2)) to the lower (S(1)) adiabatic electronic states rapidly generates vast amounts of CvN-entropy, while the subsequent motion on the anharmonic lower adiabatic potential energy surface only yields a slow increase of the CvN-entropy. Employing CvN-entropy constrained calculations, the sensitivity of the autocorrelation function, the absorption spectrum, and the diabatic electronic population dynamics to complexity constraints is analyzed in detail. PMID:23249046
Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission
NASA Astrophysics Data System (ADS)
Jacquet, L.; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G.
2015-12-01
The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and the
St-Jean, Samuel; Coupé, Pierrick; Descoteaux, Maxime
2016-08-01
Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the diffusion parameters. Additionally, the usage of in-plane acceleration techniques during the acquisition leads to a spatially varying noise distribution, which depends on the parallel acceleration method implemented on the scanner. This paper proposes a novel diffusion MRI denoising technique that can be used on all existing data, without adding to the scanning time. We first apply a statistical framework to convert both stationary and non stationary Rician and non central Chi distributed noise to Gaussian distributed noise, effectively removing the bias. We then introduce a spatially and angular adaptive denoising technique, the Non Local Spatial and Angular Matching (NLSAM) algorithm. Each volume is first decomposed in small 4D overlapping patches, thus capturing the spatial and angular structure of the diffusion data, and a dictionary of atoms is learned on those patches. A local sparse decomposition is then found by bounding the reconstruction error with the local noise variance. We compare against three other state-of-the-art denoising methods and show quantitative local and connectivity results on a synthetic phantom and on an in-vivo high resolution dataset. Overall, our method restores perceptual information, removes the noise bias in common diffusion metrics, restores the extracted peaks coherence and improves reproducibility of tractography on the synthetic dataset. On the 1.2 mm high resolution in-vivo dataset, our denoising improves the visual quality of the data and reduces the number of spurious tracts when compared to the noisy acquisition. Our
NASA Astrophysics Data System (ADS)
Stiller, O.
2014-05-01
particularly important when processing strongly non-local observations as they are typically obtained from passive remote sensing measurements. These have the potential to smear out signals from localized sources over large regions in model space. Generally, observation errors have to be smaller the more the respective observation operators overlap.
Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission
Jacquet, L. Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G.
2015-12-15
The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and
Non-localization and localization ROC analyses using clinically based scoring
NASA Astrophysics Data System (ADS)
Paquerault, Sophie; Samuelson, Frank W.; Myers, Kyle J.; Smith, Robert C.
2009-02-01
. The results on the variance analysis differed from those observed in the other study setting. This investigation furthers our understanding of the relationships between non-localization-specific and localization-specific ROC assessment methodologies and their relevance to clinical practice.
Communication: Overcoming the root search problem in complex quantum trajectory calculations
Zamstein, Noa; Tannor, David J.
2014-01-28
Three new developments are presented regarding the semiclassical coherent state propagator. First, we present a conceptually different derivation of Huber and Heller's method for identifying complex root trajectories and their equations of motion [D. Huber and E. J. Heller, J. Chem. Phys. 87, 5302 (1987)]. Our method proceeds directly from the time-dependent Schrödinger equation and therefore allows various generalizations of the formalism. Second, we obtain an analytic expression for the semiclassical coherent state propagator. We show that the prefactor can be expressed in a form that requires solving significantly fewer equations of motion than in alternative expressions. Third, the semiclassical coherent state propagator is used to formulate a final value representation of the time-dependent wavefunction that avoids the root search, eliminates problems with caustics and automatically includes interference. We present numerical results for the 1D Morse oscillator showing that the method may become an attractive alternative to existing semiclassical approaches.
Iodine-polyphenylacetylene charge-transfer complex: an ab initio quantum-chemical assessment
NASA Astrophysics Data System (ADS)
Andreocci, M. V.; Bossa, M.; Furlani, A.; Polzonetti, G.; Russo, M. V.
1991-07-01
The ab initio MO-LCAO-HF method has been used to calculate the electronic structure of the iodine-polyphenylacetylene charge-transfer complex (PPAI 2). Two models have been considered for the PPA molecule: a simple one containing two phenyl groups and a more realistic one containing six phenyl groups. The calculations give automatically the charge separation between I 5 and the polymer, and show that the total charge separation can be less than 1 e at short distances. The computed charges at the energy minimum have been succesfully introduced into the curve fitting of the I-3d 5/2 core level spectrum of PPAI 2 films, giving good agreement between experimental and theoretical results.
Zhu, J.; Kais, S.; Rebentrost, P.; Aspuru-Guzik, Alan
2011-02-17
We present a detailed theoretical study of the transfer of electronic excitation energy through the Fenna-Matthews-Olson (FMO) pigment-protein complex, using the newly developed modified scaled hierarchical approach (Shi, Q.; et al. J. Chem. Phys.2009, 130, 084105). We show that this approach is computationally more efficient than the original hierarchical approach. The modified approach reduces the truncation levels of the auxiliary density operators and the correlation function. We provide a systematic study of how the number of auxiliary density operators and the higher-order correlation functions affect the exciton dynamics. The time scales of the coherent beating are consistent with experimental observations. Furthermore, our theoretical results exhibit population beating at physiological temperature. Additionally, the method does not require a low-temperature correction to obtain the correct thermal equilibrium at long times.
Encountering Complexity:. in Need for a Self-Reflecting (pre)epistemology
NASA Astrophysics Data System (ADS)
Basios, Vasileios
2005-10-01
We have recently started to understand that fundamental aspects of complex systems such as emergence, the measurement problem, inherent uncertainty, complex causality in connection with unpredictable determinism, time-irreversibility and non-locality all highlight the observer's participatory role in determining their workings. In addition, the principle of `limited universality' in complex systems, which prompts us to `search for the appropriate level of description in which unification and universality can be expected', looks like a version of Bohr's `complementarity principle'. It is more or less certain that the different levels of description possible of a complex whole -- actually partial objectifications -- are projected on to and even redefine its constituent parts. Thus it is interesting that these fundamental complexity issues don't just bear a formal resemblance to, but reveal a profound connection with, quantum mechanics. Indeed, they point to a common origin on a deeper level of description.
Contextuality supplies the `magic' for quantum computation
NASA Astrophysics Data System (ADS)
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-01
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via `magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple `hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.
Contextuality supplies the 'magic' for quantum computation.
Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph
2014-06-19
Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms. PMID:24919152
NASA Astrophysics Data System (ADS)
Tiainen, Mika; Soininen, Pasi; Laatikainen, Reino
2014-05-01
The quantitative interpretation of 1H NMR spectra of mixtures like the biofluids is a demanding task due to spectral complexity and overlap. Complications may arise also from water suppression, T2-editing, protein interactions, relaxation differences of the species, experimental artifacts and, furthermore, the spectra may contain unknown components and macromolecular background which cannot be easily separated from baseline. In this work, tools and strategies for quantitative Quantum Mechanical Spectral Analysis (qQMSA) of 1H NMR spectra from complex mixtures were developed and systematically assessed. In the present approach, the signals of well-defined, stoichiometric components are described by a QM model, while the background is described by a multiterm baseline function and the unknown signals using optimizable and adjustable lines, regular multiplets or any spectral structures which can be composed from spectral lines. Any prior knowledge available from the spectrum can also be added to the model. Fitting strategies for weak and strongly overlapping spectral systems were developed and assessed using two basic model systems, the metabolite mixtures without and with macromolecular (serum) background. The analyses show that if the spectra are measured in high-throughput manner, the consistent absolute quantification demands some calibration to compensate the different response factors of the protons and compounds. On the other hand, the results show that also the T2-edited spectra can be measured so that they obey well the QM rules. In general, qQMSA exploits and interprets the spectral information in maximal way taking full advantage from the QM properties of the spectra and, at the same time, offers chemical confidence which means that individual components can be identified with high confidence on the basis of their accurate spectral parameters.
Ultrafast Two-Electron Transfer in a CdS Quantum Dot-Extended-Viologen Cyclophane Complex.
Young, Ryan M; Jensen, Stephen C; Edme, Kedy; Wu, Yilei; Krzyaniak, Matthew D; Vermeulen, Nicolaas A; Dale, Edward J; Stoddart, J Fraser; Weiss, Emily A; Wasielewski, Michael R; Co, Dick T
2016-05-18
Time-resolved optical spectroscopies reveal multielectron transfer from the biexcitonic state of a CdS quantum dot to an adsorbed tetracationic compound cyclobis(4,4'-(1,4-phenylene) bipyridin-1-ium-1,4-phenylene-bis(methylene)) (ExBox(4+)) to form both the ExBox(3+•) and the doubly reduced ExBox(2(+•)) states from a single laser pulse. Electron transfer in the single-exciton regime occurs in 1 ps. At higher excitation powers the second electron transfer takes ∼5 ps, which leads to a mixture of redox states of the acceptor ligand. The doubly reduced ExBox(2(+•)) state has a lifetime of ∼10 ns, while CdS(+•):ExBox(3+•) recombines with multiple time constants, the longest of which is ∼300 μs. The long-lived charge separation and ability to accumulate multiple charges on ExBox(4+) demonstrate the potential of the CdS:ExBox(4+) complex to serve as a platform for two-electron photocatalysis. PMID:27111529
Excitonic complexes in single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy
Sergent, S.; Kako, S.; Bürger, M.; Schupp, T.; As, D. J.; Arakawa, Y.
2014-10-06
We study by microphotoluminescence the optical properties of single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy. We show evidences of both excitonic and multiexcitonic recombinations in individual quantum dots with radiative lifetimes shorter than 287 ± 8 ps. Owing to large band offsets and a large exciton binding energy, the excitonic recombinations of single zinc-blende GaN/AlN quantum dots can be observed up to 300 K.
Chun, Se Young; Fessler, Jeffrey A.; Dewaraja, Yuni K.
2013-01-01
Quantitative SPECT techniques are important for many applications including internal emitter therapy dosimetry where accurate estimation of total target activity and activity distribution within targets are both potentially important for dose-response evaluations. We investigated non-local means (NLM) post-reconstruction filtering for accurate I-131 SPECT estimation of both total target activity and the 3D activity distribution. We first investigated activity estimation versus number of ordered-subsets expectation-maximization (OSEM) iterations. We performed simulations using the XCAT phantom with tumors containing a uniform and a non-uniform activity distribution, and measured the recovery coefficient (RC) and the root mean squared error (RMSE) to quantify total target activity and activity distribution, respectively. We observed that using more OSEM iterations is essential for accurate estimation of RC, but may or may not improve RMSE. We then investigated various post-reconstruction filtering methods to suppress noise at high iteration while preserving image details so that both RC and RMSE can be improved. Recently, NLM filtering methods have shown promising results for noise reduction. Moreover, NLM methods using high-quality side information can improve image quality further. We investigated several NLM methods with and without CT side information for I-131 SPECT imaging and compared them to conventional Gaussian filtering and to unfiltered methods. We studied four different ways of incorporating CT information in the NLM methods: two known (NLM CT-B and NLM CT-M) and two newly considered (NLM CT-S and NLM CT-H). We also evaluated the robustness of NLM filtering using CT information to erroneous CT. NLM CT-S and NLM CT-H yielded comparable RC values to unfiltered images while substantially reducing RMSE. NLM CT-S achieved −2.7 to 2.6% increase of RC compared to no filtering and NLM CT-H yielded up to 6% decrease in RC while other methods yielded lower RCs
NASA Astrophysics Data System (ADS)
Chun, Se Young; Fessler, Jeffrey A.; Dewaraja, Yuni K.
2013-09-01
Quantitative SPECT techniques are important for many applications including internal emitter therapy dosimetry where accurate estimation of total target activity and activity distribution within targets are both potentially important for dose-response evaluations. We investigated non-local means (NLM) post-reconstruction filtering for accurate I-131 SPECT estimation of both total target activity and the 3D activity distribution. We first investigated activity estimation versus number of ordered-subsets expectation-maximization (OSEM) iterations. We performed simulations using the XCAT phantom with tumors containing a uniform and a non-uniform activity distribution, and measured the recovery coefficient (RC) and the root mean squared error (RMSE) to quantify total target activity and activity distribution, respectively. We observed that using more OSEM iterations is essential for accurate estimation of RC, but may or may not improve RMSE. We then investigated various post-reconstruction filtering methods to suppress noise at high iteration while preserving image details so that both RC and RMSE can be improved. Recently, NLM filtering methods have shown promising results for noise reduction. Moreover, NLM methods using high-quality side information can improve image quality further. We investigated several NLM methods with and without CT side information for I-131 SPECT imaging and compared them to conventional Gaussian filtering and to unfiltered methods. We studied four different ways of incorporating CT information in the NLM methods: two known (NLM CT-B and NLM CT-M) and two newly considered (NLM CT-S and NLM CT-H). We also evaluated the robustness of NLM filtering using CT information to erroneous CT. NLM CT-S and NLM CT-H yielded comparable RC values to unfiltered images while substantially reducing RMSE. NLM CT-S achieved -2.7 to 2.6% increase of RC compared to no filtering and NLM CT-H yielded up to 6% decrease in RC while other methods yielded lower RCs
NASA Astrophysics Data System (ADS)
Wei, Huazhou; Fu, Shiwei
We report our work on the spin transport properties in the F/N/F(ferromagnets/normal metal/ferromagnets) spintronic structure from a new theoretical perspective. A significant problem in the field is to explain the inferior measured order of magnitude for spin lifetime. Based on the known non-local resistance formula and the mechanism analysis of spin-flipping within the interfaces between F and N, we analytically derive a broadly applicable new non-local resistance expression and a generalized Hanle curve formula. After employing them in the F/N/F structure under different limits, especially in the case of graphene channel, we find that the fitting from experimental data would yield a longer spin lifetime, which approaches its theoretical predicted value in graphene. The authors acknowledge the financial support by China University of Petroleum-Beijing and the Key Laboratory of Optical Detection Technology for Oil and Gas in this institution.
NASA Astrophysics Data System (ADS)
Dirian, Yves; Foffa, Stefano; Kunz, Martin; Maggiore, Michele; Pettorino, Valeria
2016-05-01
We present a comprehensive and updated comparison with cosmological observations of two non-local modifications of gravity previously introduced by our group, the so called RR and RT models. We implement the background evolution and the cosmological perturbations of the models in a modified Boltzmann code, using CLASS. We then test the non-local models against the Planck 2015 TT, TE, EE and Cosmic Microwave Background (CMB) lensing data, isotropic and anisotropic Baryonic Acoustic Oscillations (BAO) data, JLA supernovae, H0 measurements and growth rate data, and we perform Bayesian parameter estimation. We then compare the RR, RT and ΛCDM models, using the Savage-Dickey method. We find that the RT model and ΛCDM perform equally well, while the performance of the RR model with respect to ΛCDM depends on whether or not we include a prior on H0 based on local measurements.
Osses de Eicker, Margarita; Hischier, Roland; Hurni, Hans; Zah, Rainer
2010-04-15
Nine non-local databases were evaluated with respect to their suitability for the environmental assessment of industrial activities in Latin America. Three assessment methods were considered, namely Life Cycle Assessment (LCA), Environmental Impact Assessment (EIA) and air emission inventories. The analysis focused on data availability in the databases and the applicability of their international data to Latin American industry. The study showed that the European EMEP/EEA Guidebook and the U.S. EPA AP-42 database are the most suitable ones for air emission inventories, whereas the LCI database Ecoinvent is the most suitable one for LCA and EIA. Due to the data coverage in the databases, air emission inventories are easier to develop than LCA or EIA, which require more comprehensive information. One strategy to overcome the limitations of non-local databases for Latin American industry is the combination of validated data from international databases with newly developed local datasets.
A pseudo-spectral method for a non-local KdV-Burgers equation posed on R
NASA Astrophysics Data System (ADS)
de la Hoz, Francisco; Cuesta, Carlota M.
2016-04-01
In this paper, we present a new pseudo-spectral method to solve the initial value problem associated to a non-local KdV-Burgers equation involving a Caputo-type fractional derivative. The basic idea is, using an algebraic map, to transform the whole real line into a bounded interval where we can apply a Fourier expansion. Special attention is given to the correct computation of the fractional derivative in this setting.
NASA Astrophysics Data System (ADS)
Alexeev, B. V.
2013-10-01
The main principles of the non-local physics are delivered. The unified theory of transport processes is applicable to the physical systems in tremendous diapason of scales - from atom structures to the Universe evolution. The origin of difficulties connected with the hypothetical dark matter and dark energy consists in the total Oversimplification following from the principles of local physics and reflects the general shortcomings of the local kinetic transport theory.
NASA Astrophysics Data System (ADS)
Liu, Bin; Sang, Xinzhu; Xing, Shujun; Wang, Bo
2014-11-01
Combining non-local means (NLM) filter with appropriate fuzzy cluster criterion, objective and subjective manners with synthetic brain Magnetic Resonance Imaging(MRI) are evaluated. Experimental results show that noise is effectively suppressed while image details are well kept, compared with the traditional NLM method. Meanwhile, quantitative and qualitative results indicate that artifacts are greatly reduced in our proposed method and brain MR images are typically enhanced.
Plane wave scattering from a plasmonic nanowire-film system with the inclusion of non-local effects.
Trivedi, Rahul; Sharma, Yashna; Dhawan, Anuj
2015-10-01
In this paper we present a theoretical analysis of the electromagnetic response of a plasmonic nanowire-film system. The analytical solution accounts for both the dispersive as well as non-local nature of the plasmonic media. The physical structure comprises of a plasmonic nanowire made of a plasmonic metal such as gold or silver placed over a plasmonic film of the same material. Such a nanostructure exhibits a spectrum that is extremely sensitive to various geometric parameters such as spacer thickness and nanowire radius, which makes it favorable for various sensing applications. The non-locality of the plasmonic medium, which can be captured using the hydrodynamic model, significantly affects the resonant wavelength of this system for structures of small dimensions (~ less than 5 nm gap between the nanowire and the film). We present an analytical method that can be used to predict the effect of non-locality on the resonances of the system. To validate the analytical method, we also report a comparison of our analytical solution with a numerical Finite Difference Time Domain analysis (FDTD) of the same structure with the plasmonic medium being treated as local in nature. PMID:26480121
Non-Local Means Filter for Polarimetric SAR Speckle Reduction-Experiments Using Terrasar-X Data
NASA Astrophysics Data System (ADS)
Hu, J.; Guo, R.; Zhu, X.; Baier, G.; Wang, Y.
2015-03-01
The speckle is omnipresent in synthetic aperture radar (SAR) images as an intrinsic characteristic. However, it is unwanted in certain applications. Therefore, intelligent filters for speckle reduction are of great importance. It has been demonstrated in several literatures that the non-local means filter can reduce noise while preserving details. This paper discusses non-local means filter for polarimetric SAR (PolSAR) speckle reduction. The impact of different similarity approaches, weight kernels, and parameters in the filter were analysed. A data-driven adaptive weight kernel was proposed. Combined with different similarity measures, it is compared with existing algorithms, using fully polarimetric TerraSAR-X data acquired during the commissioning phase. The proposed approach has overall the best performance in terms of speckle reduction, detail preservation, and polarimetric information preservation. This study suggests the high potential of using the developed non- local means filer for speckle reduction of PolSAR data acquired by the next generation SAR missions, e.g. TanDEM-L and TerraSAR-X NG.
Jang, Seogjoo; Rivera, Eva; Montemayor, Daniel
2015-03-19
The light harvesting 2 (LH2) antenna complex from purple photosynthetic bacteria is an efficient natural excitation energy carrier with well-known symmetric structure, but the molecular level design principle governing its structure-function relationship is unknown. Our all-atomistic simulations of nonnatural analogues of LH2 as well as those of a natural LH2 suggest that nonnatural sizes of LH2-like complexes could be built. However, stable and consistent hydrogen bonding (HB) between bacteriochlorophyll and the protein is shown to be possible only near naturally occurring sizes, leading to significantly smaller disorder than for nonnatural ones. Extensive quantum calculations of intercomplex exciton transfer dynamics, sampled for a large set of disorder, reveal that taming the negative effect of disorder through a reliable HB as well as quantum delocalization of the exciton is a critical mechanism that makes LH2 highly functional, which also explains why the natural sizes of LH2 are indeed optimal. PMID:26262847
Quantum Mechanics and the Principle of Maximal Variety
NASA Astrophysics Data System (ADS)
Smolin, Lee
2016-03-01
Quantum mechanics is derived from the principle that the universe contain as much variety as possible, in the sense of maximizing the distinctiveness of each subsystem. The quantum state of a microscopic system is defined to correspond to an ensemble of subsystems of the universe with identical constituents and similar preparations and environments. A new kind of interaction is posited amongst such similar subsystems which acts to increase their distinctiveness, by extremizing the variety. In the limit of large numbers of similar subsystems this interaction is shown to give rise to Bohm's quantum potential. As a result the probability distribution for the ensemble is governed by the Schroedinger equation. The measurement problem is naturally and simply solved. Microscopic systems appear statistical because they are members of large ensembles of similar systems which interact non-locally. Macroscopic systems are unique, and are not members of any ensembles of similar systems. Consequently their collective coordinates may evolve deterministically. This proposal could be tested by constructing quantum devices from entangled states of a modest number of quits which, by its combinatorial complexity, can be expected to have no natural copies.
Quantum Mechanics and the Principle of Maximal Variety
NASA Astrophysics Data System (ADS)
Smolin, Lee
2016-06-01
Quantum mechanics is derived from the principle that the universe contain as much variety as possible, in the sense of maximizing the distinctiveness of each subsystem. The quantum state of a microscopic system is defined to correspond to an ensemble of subsystems of the universe with identical constituents and similar preparations and environments. A new kind of interaction is posited amongst such similar subsystems which acts to increase their distinctiveness, by extremizing the variety. In the limit of large numbers of similar subsystems this interaction is shown to give rise to Bohm's quantum potential. As a result the probability distribution for the ensemble is governed by the Schroedinger equation. The measurement problem is naturally and simply solved. Microscopic systems appear statistical because they are members of large ensembles of similar systems which interact non-locally. Macroscopic systems are unique, and are not members of any ensembles of similar systems. Consequently their collective coordinates may evolve deterministically. This proposal could be tested by constructing quantum devices from entangled states of a modest number of quits which, by its combinatorial complexity, can be expected to have no natural copies.
Rubinstein, Alexander I; Sabirianov, Renat F; Namavar, Fereydoon
2016-10-14
The rapid development of nanoscience and nanotechnology has raised many fundamental questions that significantly impede progress in these fields. In particular, understanding the physicochemical processes at the interface in aqueous solvents requires the development and application of efficient and accurate methods. In the present work we evaluate the electrostatic contribution to the energy of model protein-ceramic complex formation in an aqueous solvent. We apply a non-local (NL) electrostatic approach that accounts for the effects of the short-range structure of the solvent on the electrostatic interactions of the interfacial systems. In this approach the aqueous solvent is considered as a non-ionic liquid, with the rigid and strongly correlated dipoles of the water molecules. We have found that an ordered interfacial aqueous solvent layer at the protein- and ceramic-solvent interfaces reduces the charging energy of both the ceramic and the protein in the solvent, and significantly increases the electrostatic contribution to their association into a complex. This contribution in the presented NL approach was found to be significantly shifted with respect to the classical model at any dielectric constant value of the ceramics. This implies a significant increase of the adsorption energy in the protein-ceramic complex formation for any ceramic material. We show that for several biocompatible ceramics (for example HfO2, ZrO2, and Ta2O5) the above effect predicts electrostatically induced protein-ceramic complex formation. However, in the framework of the classical continuum electrostatic model (the aqueous solvent as a uniform dielectric medium with a high dielectric constant ∼80) the above ceramics cannot be considered as suitable for electrostatically induced complex formation. Our results also show that the protein-ceramic electrostatic interactions can be strong enough to compensate for the unfavorable desolvation effect in the process of protein
Deterministic quantum teleportation with feed-forward in a solid state system.
Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A
2013-08-15
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes. PMID:23955231
NASA Astrophysics Data System (ADS)
Yepez, J.; Vahala, G.; Vahala, L.
2009-04-01
Presented is a type-II quantum algorithm for superfluid dynamics, used to numerically predict solutions of the GP equation for a complex scalar field (spinless bosons) in φ4 theory. The GP equation is a long wavelength effective field theory of a microscopic quantum lattice gas with nonlinear state reduction. The quantum lattice gas algorithm for modeling the dynamics of the one-body BEC state in 3+1 dimensions is presented. To demonstrate the method's strength as a computational physics tool, a difficult situation of filamentary singularities is simulated, the dynamics of solitary vortex-antivortex pairs, which are a basic building block of morphologies of quantum turbulence.
A Non-local Model for Transient Moisture Flow in Unsaturated Soils Based on the Peridynamic Theory
NASA Astrophysics Data System (ADS)
Jabakhanji, R.; Mohtar, R. H.
2012-12-01
A non-local, gradient free, formulation of the porous media flow problem in unsaturated soils was derived. It parallels the peridynamic theory, a non-local reformulation of solid mechanics presented by Silling. In the proposed model, the evolution of the state of a material point is driven by pairwise interactions with other points across finite distances. Flow and changes in moisture are the result of these interactions. Instead of featuring local gradients, the proposed model expresses the flow as a functional integral of the hydraulic potential field. The absence of spatial gradients, undefined at or on discontinuities, makes the model a good candidate for flow simulations in fractured soils. It also lends itself to coupling with peridynamic mechanical models for simulating crack formation triggered by shrinkage and swelling, and assessing their potential impact on a wide range of processes, such as infiltration, contaminant transport, slope stability and integrity of clay barriers. A description of the concept and an outline of the derivation and numerical implementation are presented. Simulation results of infiltration and drainage for 1D, single and two-layers soil columns, for three different soil types are also presented. The same simulations are repeated using HYDRUS-1D, a computer model using the classic local flow equation. We show that the proposed non-local formulation successfully reproduces the results from HYDRUS-1D. S.A. Silling, "Reformulation of Elasticity Theory for Discontinuities and Long-range Forces," Journal of the Mechanics and Physics of Solids 48, no. 1 (January 2000): 175-209. J. Simunek, M. Sejna, and M.T. Van Genuchten, "The HYDRUS-1D Software Package for Simulating the One-dimensional Movement of Water, Heat, and Multiple Solutes in Variably-saturated Media," University of California, Riverside, Research Reports 240 (2005).
NASA Astrophysics Data System (ADS)
Ahmedova, Anife; Marinova, Petja; Marinov, Marin; Stoyanov, Neyko
2016-03-01
The reactivities of (9‧-fluorene)-spiro-5-hydantoin and its thio-analogue with Cu(II) were studied in different reaction conditions and the formed products were characterized by spectroscopic methods (IR, NMR and/or EPR). It was found that unlike the 2,4-dithio- analogue, both the (9‧-fluorene)-spiro-5-hydantoin and its 2-thio derivative form Cu(II) complexes only in presence of a strong base. We identified the coordination mode of the ligands and the structure of the complexes through geometry optimization of different models and calculations of the corresponding spectroscopic parameters using ab initio quantum chemical methods. The comparison between the experimental and the theoretical data suggested monodentate coordination of the fluorene-hydantoin ligands after deprotonation of one amido group. Additional confirmations of this proposition were obtained from the experimental and DFT-calculated EPR parameters (g-factor and A-tensor), which allowed for determination of the most probable geometry of the complexes. We further employed the quantum chemical methods to explain the observed differences in the complexation abilities of variously spiro-5-substituted thio- and dithio-hydantoins, accounting for the structural effects on the electron density and acidity of the hydantoin ring.
Gleeson, Michael R; Guo, Jinxin; Sheridan, John T
2011-11-01
An understanding of the photochemical and photo-physical processes, which occur during photopolymerization is of extreme importance when attempting to improve a photopolymer material's performance for a given application. Recent work carried out on the modelling of the mechanisms which occur in photopolymers during- and post-exposure, has led to the development of a tool, which can be used to predict the behaviour of these materials under a wide range of conditions. In this paper, we explore this Non-local Photo-polymerisation Driven Diffusion model, illustrating some of the useful trends, which the model predicts and we analyse their implications on the improvement of photopolymer material performance. PMID:22109119
Louis, H; Tlidi, M; Louvergneaux, E
2016-07-11
We perform a statistical analysis of the optical solitary wave propagation in an ultra-slow stochastic non-local focusing Kerr medium such as liquid crystals. Our experimental results show that the localized beam trajectory presents a dynamical random walk whose beam position versus the propagation distance z depicts two different kind of evolutions A power law is found for the beam position standard deviation during the first stage of propagation. It obeys approximately z^{3}/^{2} up to ten times the power threshold for solitary wave generation. PMID:27410886
Louis, H; Tlidi, M; Louvergneaux, E
2016-07-11
We perform a statistical analysis of the optical solitary wave propagation in an ultra-slow stochastic non-local focusing Kerr medium such as liquid crystals. Our experimental results show that the localized beam trajectory presents a dynamical random walk whose beam position versus the propagation distance z depicts two different kind of evolutions A power law is found for the beam position standard deviation during the first stage of propagation. It obeys approximately z^{3}/^{2} up to ten times the power threshold for solitary wave generation. PMID:27410887
NASA Astrophysics Data System (ADS)
Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.
2016-09-01
We construct a model atom for Ti I-II using more than 3600 measured and predicted energy levels of Ti I and 1800 energy levels of Ti II, and quantum mechanical photoionization cross-sections. Non-local thermodynamical equilibrium (NLTE) line formation for Ti I and Ti II is treated through a wide range of spectral types from A to K, including metal-poor stars with [Fe/H] down to -2.6 dex. NLTE leads to weakened Ti I lines and positive abundance corrections. The magnitude of NLTE corrections is smaller compared to the literature data for FGK atmospheres. NLTE leads to strengthened Ti II lines and negative NLTE abundance corrections. For the first time, we have performed NLTE calculations for Ti I-II in the 6500 ≤ Teff ≤ 13 000 K range. For four A-type stars, we derived in LTE an abundance discrepancy of up to 0.22 dex between Ti I and Ti II, which vanishes in NLTE. For four other A-B stars, with only Ti II lines observed, NLTE leads to a decrease of line-to-line scatter. An efficiency of inelastic Ti I + H I collisions was estimated from an analysis of Ti I and Ti II lines in 17 cool stars with -2.6 ≤ [Fe/H] ≤ 0.0. Consistent NLTE abundances from Ti I and Ti II were obtained by applying classical Drawinian rates for the stars with log g ≥ 4.1, and neglecting inelastic collisions with H I for the very metal-poor (VMP) giant HD 122563. For the VMP turn-off stars ([Fe/H] ≤ -2 and log g ≤ 4.1), we obtained the positive abundance difference Ti I-II already in LTE, which increases in NLTE. Accurate collisional data for Ti I and Ti II are necessary to help solve this problem.
Bennett, D. L.; Nielsen, H. B.
1997-06-15
We present our theoretical predictions for the three gauge coupling constants of the Standard Model (SM). For the famous finestructure constant our prediction is {alpha}{sup -1}=137{+-}9. These predictions are based on our Anti-Grand-Unified Theory (Anti-GUT) gauge group and the Multiple Point Criticality Principle (MPCP). Both Anti-GUT and MPCP are proposed as principles or laws underlying the SM. Both were originally suggested by our observation that the experimentally determined Standard Model Group (SMG) gauge couplings have non-generic patterns of values that could be explained by these two new principles. The observation that the gauge couplings assume values corresponding to a maximally degenerate vacuum lead to the MPCP. As the transitions between the different vacuua are first order, the MPCP provides a way of finetuning constants of Nature - without finetuned imput - in a manner reminescent of how temperature is 'finetuned' to 0 deg. C. In an equilibrated mixture of ice and water. In a 4-dimensional field theory, this mechanism for finetuning suggests a form of non-locality that, however, is phenomenologically tolerable because the only effect is the modification of the values of coupling constants. We argue that the time-machine type of paradoxes that plague non-local theories are avoided precisely when Nature obeys the MPCP.
NASA Astrophysics Data System (ADS)
Joglekar, Archis; Thomas, Alec; Ridgers, Chris; Kingham, Rob
2015-11-01
In this study, we present full-scale 2D kinetic modeling of externally imposed magnetic fields on hohlraums with laser heating. We observe magnetic field cavitation and compression due to thermal energy transport. Self-consistent modeling of the electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's Law. A complete Ohm's Law contains magnetic field advection through the Nernst mechanism that arises due to the heat flow. Magnetic field amplification by a factor of 3 occurs due to magnetic flux pile-up from Nernst convection. The magnetic field cavitates towards the hohlraum axis over a 0.5 ns time scale due to Nernst convection. This results in significantly different magnetic field profiles and slower cavitation than can be expected due to the plasma bulk flow. Non-local electrons contribute to the heat flow down the density gradient resulting in an augmented Nernst convection mechanism that is included self-consistently through kinetic modeling. In addition to showing the prevalence of non-local heat flows, we show effects such as anomalous heat flow up the density gradient induced by inverse bremsstrahlung heating. This research was supported by the DOE through Grant No. DE SC0010621 and in part through computational resources and services provided by Advanced Research Computing at the University of Michigan, Ann Arbor.
Tressoldi, Patrizio E.
2011-01-01
Starting from the famous phrase “extraordinary claims require extraordinary evidence,” we will present the evidence supporting the concept that human visual perception may have non-local properties, in other words, that it may operate beyond the space and time constraints of sensory organs, in order to discuss which criteria can be used to define evidence as extraordinary. This evidence has been obtained from seven databases which are related to six different protocols used to test the reality and the functioning of non-local perception, analyzed using both a frequentist and a new Bayesian meta-analysis statistical procedure. According to a frequentist meta-analysis, the null hypothesis can be rejected for all six protocols even if the effect sizes range from 0.007 to 0.28. According to Bayesian meta-analysis, the Bayes factors provides strong evidence to support the alternative hypothesis (H1) over the null hypothesis (H0), but only for three out of the six protocols. We will discuss whether quantitative psychology can contribute to defining the criteria for the acceptance of new scientific ideas in order to avoid the inconclusive controversies between supporters and opponents. PMID:21713069
NASA Astrophysics Data System (ADS)
Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.
2013-08-01
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0…tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution time/parallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing
Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.
2013-08-21
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f , (e.g. Verlet algorithm) is available to propagate the system from time ti (trajectory positions and velocities xi = (ri; vi)) to time ti+1 (xi+1) by xi+1 = fi(xi), the dynamics problem spanning an interval from t0 : : : tM can be transformed into a root finding problem, F(X) = [xi - f (x(i-1)]i=1;M = 0, for the trajectory variables. The root finding problem is solved using a variety of optimization techniques, including quasi-Newton and preconditioned quasi-Newton optimization schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed and the effectiveness of various approaches to solving the root finding problem are tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl+4H2O AIMD simulation at the MP2 level. The maximum speedup obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a distributed computing environment using very slow TCP/IP networks. Scripts
Bylaska, Eric J; Weare, Jonathan Q; Weare, John H
2013-08-21
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time ti (trajectory positions and velocities xi = (ri, vi)) to time ti + 1 (xi + 1) by xi + 1 = fi(xi), the dynamics problem spanning an interval from t0[ellipsis (horizontal)]tM can be transformed into a root finding problem, F(X) = [xi - f(x(i - 1)]i = 1, M = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H2O AIMD simulation at the MP2 level. The maximum speedup (serial execution/timeparallel execution time) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up to 14.3. The parallel in time algorithms can be implemented in a
Bylaska, Eric J.; Weare, Jonathan Q.; Weare, John H.
2013-08-21
Parallel in time simulation algorithms are presented and applied to conventional molecular dynamics (MD) and ab initio molecular dynamics (AIMD) models of realistic complexity. Assuming that a forward time integrator, f (e.g., Verlet algorithm), is available to propagate the system from time t{sub i} (trajectory positions and velocities x{sub i} = (r{sub i}, v{sub i})) to time t{sub i+1} (x{sub i+1}) by x{sub i+1} = f{sub i}(x{sub i}), the dynamics problem spanning an interval from t{sub 0}…t{sub M} can be transformed into a root finding problem, F(X) = [x{sub i} − f(x{sub (i−1})]{sub i} {sub =1,M} = 0, for the trajectory variables. The root finding problem is solved using a variety of root finding techniques, including quasi-Newton and preconditioned quasi-Newton schemes that are all unconditionally convergent. The algorithms are parallelized by assigning a processor to each time-step entry in the columns of F(X). The relation of this approach to other recently proposed parallel in time methods is discussed, and the effectiveness of various approaches to solving the root finding problem is tested. We demonstrate that more efficient dynamical models based on simplified interactions or coarsening time-steps provide preconditioners for the root finding problem. However, for MD and AIMD simulations, such preconditioners are not required to obtain reasonable convergence and their cost must be considered in the performance of the algorithm. The parallel in time algorithms developed are tested by applying them to MD and AIMD simulations of size and complexity similar to those encountered in present day applications. These include a 1000 Si atom MD simulation using Stillinger-Weber potentials, and a HCl + 4H{sub 2}O AIMD simulation at the MP2 level. The maximum speedup ((serial execution time)/(parallel execution time) ) obtained by parallelizing the Stillinger-Weber MD simulation was nearly 3.0. For the AIMD MP2 simulations, the algorithms achieved speedups of up
Non-local Atlas-guided Multi-channel Forest Learning for Human Brain Labeling
Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang
2015-01-01
Labeling MR brain images into anatomically meaningful regions is important in many quantitative brain researches. In many existing label fusion methods, appearance information is widely used. Meanwhile, recent progress in computer vision suggests that the context feature is very useful in identifying an object from a complex scene. In light of this, we propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). In particular, we employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and the target labels (i.e., corresponding to certain anatomical structures). Moreover, to accommodate the high inter-subject variations, we further extend our learning-based label fusion to a multi-atlas scenario, i.e., we train a random forest for each atlas and then obtain the final labeling result according to the consensus of all atlases. We have comprehensively evaluated our method on both LONI-LBPA40 and IXI datasets, and achieved the highest labeling accuracy, compared to the state-of-the-art methods in the literature. PMID:26942235
Quantum Indeterminacy of Cosmic Systems
Hogan, Craig J.
2013-12-30
It is shown that quantum uncertainty of motion in systems controlled mainly by gravity generally grows with orbital timescale $H^{-1}$, and dominates classical motion for trajectories separated by distances less than $\\approx H^{-3/5}$ in Planck units. For example, the cosmological metric today becomes indeterminate at macroscopic separations, $H_0^{-3/5}\\approx 60$ meters. Estimates suggest that entangled non-localized quantum states of geometry and matter may significantly affect fluctuations during inflation, and connect the scale of dark energy to that of strong interactions.
Labud, P A; Ludwig, A; Wieck, A D; Bester, G; Reuter, D
2014-01-31
We present capacitance-voltage spectra for the conduction band states of InAs quantum dots obtained under continuous illumination. The illumination leads to the appearance of additional charging peaks that we attribute to the charging of electrons into quantum dots containing a variable number of illumination-induced holes. By this we demonstrate an electrical measurement of excitonic states in quantum dots. Magnetocapacitance-voltage spectroscopy reveals that the electron always tunnels into the lowest electronic state. This allows us to directly extract, from the highly correlated many-body states, the correlation energy. The results are compared quantitatively to state of the art atomistic configuration interaction calculations, showing very good agreement for a lower level of excitations and also limitations of the approach for an increasing number of particles. Our experiments offer a rare benchmark to many-body theoretical calculations. PMID:24580478
Mine, Makoto Okumura, Masahiko Sunaga, Tomoka Yamanaka, Yoshiya
2007-10-15
The Bogoliubov-de Gennes equations are used for a number of theoretical works on the trapped Bose-Einstein condensates. These equations are known to give the energies of the quasi-particles when all the eigenvalues are real. We consider the case in which these equations have complex eigenvalues. We give the complete set including those modes whose eigenvalues are complex. The quantum fields which represent neutral atoms are expanded in terms of the complete set. It is shown that the state space is an indefinite metric one and that the free Hamiltonian is not diagonalizable in the conventional bosonic representation. We introduce a criterion to select quantum states describing the metastablity of the condensate, called the physical state conditions. In order to study the instability, we formulate the linear response of the density against the time-dependent external perturbation within the regime of Kubo's linear response theory. Some states, satisfying all the physical state conditions, give the blow-up and damping behavior of the density distributions corresponding to the complex eigenmodes. It is qualitatively consistent with the result of the recent analyses using the time-dependent Gross-Pitaevskii equation.
Schmatz, Stefan
2005-06-15
The vibrational resonance states of the complexes formed in the nucleophilic bimolecular substitution (S{sub N}2) reaction Cl{sup -}+CH{sub 3}Br{yields}ClCH{sub 3}+Br{sup -} were calculated by means of the filter diagonalization method employing a coupled-cluster potential-energy surface and a Hamiltonian that incorporates an optical potential and is formulated in Radau coordinates for the carbon-halogen stretching modes. The four-dimensional model also includes the totally symmetric vibrations of the methyl group (C-H stretch and umbrella bend). The vast majority of bound states and many resonance states up to the first overtone of the symmetric stretching vibration in the exit channel complex have been calculated, analyzed, and assigned four quantum numbers. The resonances are classified into entrance channel, exit channel, and delocalized states. The resonance widths fluctuate over six orders of magnitude. In addition to a majority of Feshbach-type resonances there are also exceedingly long-lived shape resonances, which are associated with the entrance channel and can only decay by tunneling. The state-selective decay of the resonances was studied in detail. The linewidths of the resonances, and thus the coupling to the energetic continuum, increase with excitation in any mode. Due to the strong mixing of the many progressions in the intermolecular stretching modes of the intermediate complexes, this increase as a function of the corresponding quantum numbers is not monotonic, but exhibits pronounced fluctuations.
Hidden observables in neutron quantum interferometry
NASA Astrophysics Data System (ADS)
Rauch, Helmut; Baron, Matthias; Filipp, Stefan; Hasegawa, Yuji; Lemmel, Hartmut; Loidl, Rudolf
2006-11-01
Neutron interferometry using monolithic perfect single crystals has become an important tool for fundamental, nuclear, and solid-state physics research. New features of quantum mechanics become measurable by means of neutron interferometry. Such features are quantum phases, which provide a more direct access to properties of wave functions and permit wave function reconstruction, and wave function engineering. Most recently, new experiments concerning off-diagonal and non-cyclic geometrical phases, confinement induced phases, and contextuality related experiments have been performed. These experiments show an intrinsic entanglement of different degrees of freedom of a single particle. Proper post-selection experiments yield to more quantum complete experiments and may help to make quantum mechanics less mystic. Unavoidable quantum losses may play an important role to explain the transition from the quantum to the classical world. All these investigations concern the heart of quantum mechanics and demonstrate the non-local feature of this theory.
Megow, Jörg
2015-10-01
The computation of dispersive site energy shifts due to van der Waals interaction (London dispersion forces) was combined with mixed quantum-classical methodology to calculate the linear optical absorption spectra of large pheophorbide a (Pheo) dendrimers. The computed spectra agreed very well with the measurements considering three characteristic optical features occurring with increasing aggregate size: a strong line broadening, a redshift, and a low-energy shoulder. The improved mixed quantum-classical methodology is considered a powerful tool in investigating molecular aggregates. PMID:26275373
NASA Astrophysics Data System (ADS)
Boda, Aalu; Chatterjee, Ashok
2016-09-01
The problem of a neutral hydrogenic donor (D0) centre located at the centre of a GaAs quantum dot with Gaussian confinement is studied in the presence of an external magnetic field. The ground and the first excited state energies and the corresponding binding energies are obtained as functions of the potential strength, quantum dot radius and the magnetic field using a variational method. It is suggested that the first excited state of the D0 centre is bound for sufficiently strong confinement potential. The 1 s - 2p- transition energy and the magnetic susceptibilities for the ground and the first excited states are also determined.
Moreno, Diego V; González, Sergio A; Reyes, Andrés
2011-01-14
Nuclear quantum effects (NQE) on the geometry, energy, and electronic structure of the [CN·L·NC](-) complex (L = H, D, T) are investigated with the recently developed APMO/MP2 code. This code implements the nuclear molecular orbital approach (NMO) at the Hartree-Fock (HF) and MP2 levels of theory for electrons and quantum nuclei. In a first study, we examined the H/D/T isotope effects on the geometry and electronic structure of the CNH molecule at NMO/HF and NMO/MP2 levels of theory. We found that when increasing the hydrogen nuclear mass there is a reduction of the R(N-H) bond distance and an increase of the electronic population on the hydrogen atom. Our calculated bond distances are in good agreement with experimental and other theoretical results. In a second investigation, we explored the hydrogen NQE on the geometry of [CNHNC](-) complex at the NMO/HF and NMO/MP2 levels of theory. We discovered that while a NMO/HF calculation presented an asymmetric hydrogen bond, the NMO/MP2 calculation revealed a symmetric H-bond. We also examined the H/D/T isotope effects on the geometry and stabilization energy of the [CNHNC](-) complex. We noted that gradual increases in hydrogen mass led to reductions of the R(NN) distance and destabilization of the hydrogen bond (H-bond). A discussion of these results is given in terms of the hydrogen nuclear delocalization effects on the electronic structure and energy components. To the best of our knowledge, this is the first ab initio NMO study that reveals the importance of including nuclear quantum effects in conventional electronic structure calculations for an enhanced description of strong-low-barrier H-bonded systems. PMID:21241088
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; Gordley, Larry L.; Russell, James M., III
2002-01-01
The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment was launched onboard the TIMED satellite in December, 2001. SABER is designed to provide measurements of the key radiative and chemical sources and sinks of energy in the mesosphere and lower thermosphere (MLT). SABER measures Earth limb emission in 10 broadband radiometer channels ranging from 1.27 micrometers to 17 micrometers. Measurements are made both day and night over the latitude range from 54 deg. S to 87 deg. N with alternating hemisphere coverage every 60 days. In this paper we concentrate on retrieved profiles of kinetic temperature (T(sub k)) and CO2 volume mixing ratio (vmr), inferred from SABER-observed 15 micrometer and 4.3 micrometer limb emissions, respectively. SABER-measured limb radiances are in non-local thermodynamic equilibrium (non-LTE) in the MLT region. The complexity of non-LTE radiation transfer combined with the large volume of data measured by SABER requires new retrieval approaches and radiative transfer techniques to accurately and efficiently retrieve the data products. In this paper we present the salient features of the coupled non-LTE T(sub k)/CO2 retrieval algorithm, along with preliminary results.
NASA Astrophysics Data System (ADS)
Mohamed, A.-B. A.; Joshi, A.; Hassan, S. S.
2016-03-01
Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell's inequality is occurring when the quantum correlations of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell's inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.
NASA Astrophysics Data System (ADS)
Schiele, Steffen; Möller, Markus; Blaar, Holger; Thürkow, Detlef; Müller-Hannemann, Matthias
2012-07-01
Hand in hand with the increasing availability of high resolution digital elevation models (DEMs), an efficient computation of land-surface parameters (LSPs) for large-scale digital elevation models becomes more and more important, in particular for web-based applications. Parallel processing using multi-threads on multi-core processors is a standard approach to decrease computing time for the calculation of local LSPs based on moving window operations (e.g. slope, curvature). LSPs which require non-localities for their calculation (e.g. hydrological connectivities of grid cells) make parallelization quite challenging due to data dependencies. On the example of the calculation of the LSP "flow accumulation", we test the two parallelization strategies "spatial decomposition" and "two phase approach" for their suitability to manage non-localities. Three datasets of digital elevation models with high spatial resolutions are used in our evaluation. These models are representative types of landscape of Central Europe with highly diverse geomorphic characteristics: a high mountains area, a low mountain range, and a floodplain area in the lowlands. Both parallelization strategies are evaluated with regard to their usability on these diversely structured areas. Besides the correctness analysis of calculated relief parameters (i.e. catchment areas), priority is given to the analysis of speed-ups achieved through the deployed strategies. As presumed, local surface parameters allow an almost ideal speed-up. The situation is different for the calculation of non-local parameters which requires specific strategies depending on the type of landscape. Nevertheless, still a significant decrease of computation time has been achieved. While the speed-ups of the computation of the high mountain dataset are higher by running the "spatial decomposition approach" (3.2 by using four processors and 4.2 by using eight processors), the speed-ups of the "two phase approach" have proved to be
Cavity quantum electrodynamics with carbon nanotube quantum dots
NASA Astrophysics Data System (ADS)
Kontos, Takis
Cavity quantum electrodynamics techniques have turned out to be instrumental to probe or manipulate the electronic states of nanoscale circuits. Recently, cavity QED architectures have been extended to quantum dot circuits. These circuits are appealing since other degrees of freedom than the traditional ones (e.g. those of superconducting circuits) can be investigated. I will show how one can use carbon nanotube based quantum dots in that context. In particular, I will focus on the coherent coupling of a single spin or non-local Cooper pairs to cavity photons. Quantum dots also exhibit a wide variety of many body phenomena. The cQED architecture could also be instrumental for understanding them. One of the most paradigmatic phenomenon is the Kondo effect which is at the heart of many electron correlation effects. I will show that a cQED architecture has allowed us to observe the decoupling of spin and charge excitations in a Kondo system.
Quantum theory of extended particle dynamics in the presence of EM radiation-reaction
NASA Astrophysics Data System (ADS)
Cremaschini, Claudio; Tessarotto, Massimo
2015-08-01
In this paper a trajectory-based relativistic quantum wave equation is established for extended charged spinless particles subject to the action of the electromagnetic (EM) radiation-reaction (RR) interaction. The quantization pertains the particle dynamics, in which both the external and self EM fields are treated classically. The new equation proposed here is referred to as the RR quantum wave equation. This is shown to be an evolution equation for a complex scalar quantum wave function and to be realized by a first-order PDE with respect to a quantum proper time s . The latter is uniquely prescribed by representing the RR quantum wave equation in terms of the corresponding quantum hydrodynamic equations and introducing a parametrization in terms of Lagrangian paths associated with the quantum fluid velocity. Besides the explicit proper time dependence, the theory developed here exhibits a number of additional notable features. First, the wave equation is variational and is consistent with the principle of manifest covariance. Second, it permits the definition of a strictly positive 4-scalar quantum probability density on the Minkowski space-time, in terms of which a flow-invariant probability measure is established. Third, the wave equation is non-local, due to the characteristic EM RR retarded interaction. Fourth, the RR wave equation recovers the Schrödinger equation in the non-relativistic limit and the customary Klein-Gordon wave equation when the EM RR is negligible or null. Finally, the consistency with the classical RR Hamilton-Jacobi equation is established in the semi-classical limit.
NASA Astrophysics Data System (ADS)
Katzav, Eytan
2002-06-01
In this paper I discuss a generalization of the well-known Kardar-Parisi-Zhang (KPZ) equation that includes long-range interactions. This Non-local Kardar-Parisi-Zhang (NKPZ) equation has been suggested in the past to describe physical phenomena such as burning paper or deposition of colloids. I show that the steady state strong coupling solution for a subfamily of the NKPZ models can be solved exactly in one dimension, using the Fokker-Planck form of the equation, and yields a Gaussian distribution. This exact result does not agree with a previous result obtained by dynamic renormalization group (DRG) analysis. The reasons for this disagreement are not yet clear.
NASA Astrophysics Data System (ADS)
Li, Lijun; Lee, Inyeal; Lim, Dongsuk; Rathi, Servin; Kang, Moonshik; Uemura, Tetsuya; Kim, Gil-Ho
2016-08-01
We fabricated a non-local spin valve with a thin layer of graphite with Co transparent electrodes. The spin-valve effect and spin precession were observed at room temperature. The magnitude of the mangetoresistance increases when temperature decreases. The spin-relaxation time, {τ }s, obtained from the fitting of the Hanle curves increases with decreasing temperature with a weak dependence ∼ {T}-0.065 while the spin-diffusion constant D decreases. At room temperature, {τ }s exceeds 100 ps and the spin-diffusion length, {λ }s, is ∼2 μm. The temperature dependence of {λ }s is not monotonic, and it has the largest value at room temperature. Our results show that multilayer graphene is a suitable material for spintronic devices.
Li, Lijun; Lee, Inyeal; Lim, Dongsuk; Rathi, Servin; Kang, Moonshik; Uemura, Tetsuya; Kim, Gil-Ho
2016-08-19
We fabricated a non-local spin valve with a thin layer of graphite with Co transparent electrodes. The spin-valve effect and spin precession were observed at room temperature. The magnitude of the mangetoresistance increases when temperature decreases. The spin-relaxation time, [Formula: see text], obtained from the fitting of the Hanle curves increases with decreasing temperature with a weak dependence [Formula: see text] while the spin-diffusion constant D decreases. At room temperature, [Formula: see text] exceeds 100 ps and the spin-diffusion length, [Formula: see text], is ∼2 μm. The temperature dependence of [Formula: see text] is not monotonic, and it has the largest value at room temperature. Our results show that multilayer graphene is a suitable material for spintronic devices. PMID:27378597
Stability of Planar Fronts for a Non-Local Phase Kinetics Equation with a Conservation Law in D ≤ 3
NASA Astrophysics Data System (ADS)
Carlen, Eric A.; Orlandi, Enza
2012-05-01
We consider, in a D-dimensional cylinder, a non-local evolution equation that describes the evolution of the local magnetization in a continuum limit of an Ising spin system with Kawasaki dynamics and Kac potentials. We consider sub-critical temperatures, for which there are two local spatially homogeneous equilibria, and show a local nonlinear stability result for the minimum free energy profiles for the magnetization at the interface between regions of these two different local equilibrium; i.e. the planar fronts: We show that an initial perturbation of a front that is sufficiently small in L2 norm, and sufficiently localized yields a solution that relaxes to another front, selected by a conservation law, in the L1 norm at an algebraic rate that we explicitly estimate. We also obtain rates for the relaxation in the L2 norm and the rate of decrease of the excess free energy.
Schaaf, Christian; Gekle, Stephan
2016-08-28
We use molecular dynamics simulations to compute the spatially resolved static dielectric constant of water in cylindrical and spherical nanopores as occurring, e.g., in protein water pockets or carbon nanotubes. For this, we derive a linear-response formalism which correctly takes into account the dielectric boundary conditions in the considered geometries. We find that in cylindrical confinement, the axial component behaves similar as the local density akin to what is known near planar interfaces. The radial dielectric constant shows some oscillatory features when approaching the surface if their radius is larger than about 2 nm. Most importantly, however, the radial component exhibits pronounced oscillations at the center of the cavity. These surprising features are traced back quantitatively to the non-local dielectric nature of bulk water. PMID:27586940
Goudon, Thierry; Parisot, Martin
2012-10-15
In the so-called Spitzer-Haerm regime, equations of plasma physics reduce to a nonlinear parabolic equation for the electronic temperature. Coming back to the derivation of this limiting equation through hydrodynamic regime arguments, one is led to construct a hierarchy of models where the heat fluxes are defined through a non-local relation which can be reinterpreted as well by introducing coupled diffusion equations. We address the question of designing numerical methods to simulate these equations. The basic requirement for the scheme is to be asymptotically consistent with the Spitzer-Haerm regime. Furthermore, the constraints of physically realistic simulations make the use of unstructured meshes unavoidable. We develop a Finite Volume scheme, based on Vertex-Based discretization, which reaches these objectives. We discuss on numerical grounds the efficiency of the method, and the ability of the generalized models in capturing relevant phenomena missed by the asymptotic problem.
Koposov, Alexey Y.; Szymanski, Paul; Cardolaccia, Thomas; Meyer, Thomas J.; Klimov, Victor I.; Sykora, Milan
2011-06-20
Chemical and electronic interactions between CdSe nanocrystal quantum dots (NQDs) and Ru-polypyridine complexes are studied in solution. It is shown that photoluminescence (PL) can be used to effectively monitor the formation of NQD-complex assemblies in real time. It is also shown that with the aid of Langmuir isotherm modeling, the PL studies can be used to quantitatively characterize the composition of the assemblies and the strength of electronic interactions between their components. The approach demonstrated here is general and can be applied to other systems that combine semiconductor NQDs and appropriately functionalized organometallic or organic molecules interacting with NQDs via energy transfer, charge transfer, or other mechanisms leading to quenching of NQD emission.
Shiraki, Tomohiro; Haraguchi, Shuichi; Tsuchiya, Youichi; Shinkai, Seiji
2009-09-01
Assemblies of organic and inorganic compounds in the nanoscale region have contributed to the development of novel functional materials toward future applications, including sensors and opto-electronics. We succeed in fabricating hybrid nanowires composed of a conjugated polymer and semiconductor quantum dots (QDs) by a supramolecular assembly technique. The 1-D fashion of the nanowire structure is obtained by the polymer wrapping of cationic poly(phenylene ethynylene) (PPE) with helix-forming polysaccharide schizophyllan (SPG). The electrostatic interaction between cationic PPE and anionic QDs affords the nanowires decorated with QDs. Upon addition of an acceptor molecule, tetranitrofluorenone (TNF), the charge-transfer (CT) complex between PPE and TNF is formed, resulting in energy transfer from the QDs to PPE arising from the induced spectral overlap. Furthermore, the employment of the conjugated polymer allows highly sensitive quenching of the QD's emission by raising the transmission efficiency to the CT complexed electron deficient sites along the polymer backbone. PMID:19629958
NASA Astrophysics Data System (ADS)
Vojta, Danijela; Višnjevac, Aleksandar; Leka, Zorica; Kosović, Milica; Vazdar, Mario
2016-01-01
We describe temperature-induced water release from the complexes of triammonium N,N-diacetatedithiocarbamate (dadtc) with Co(III) (1), Mo(VI) (2) and Pt(II) (3), by the combination of temperature-dependent IR spectroscopy and quantum chemical calculations. Transmission IR spectra show that in the compounds 1 and 2, where water molecules are hydrogen-bonded with complex moieties, water release occurs at about 80 °C. In the compound 3 water most probably exist as non-hydrogen-bonded and remains within the sample above 100 °C. The influence of an inert salt in maintaining the water and consequently bringing up the artefacts in spectra is eliminated by recording the spectra in the internal reflection regime (ATR). Possible interplay of water release from the samples 1 and 2 and samples phase transition is presumed and indicated by the baseline analysis of temperature-dependent transmission IR spectra.
Palik, D. J.; Snow, A. A.; Stottlemyer, A. L.; Miriti, M. N.; Heaton, E. A.
2016-01-01
The possibility of increased invasiveness in cultivated varieties of native perennial species is a question of interest in biofuel risk assessment. Competitive success is a key factor in the fitness and invasive potential of perennial plants, and thus the large-scale release of high-yielding biomass cultivars warrants empirical comparisons with local conspecifics in the presence of competitors. We evaluated the performance of non-local cultivars and local wild biotypes of the tallgrass species Panicum virgatum L. (switchgrass) in competition experiments during two growing seasons in Ohio and Iowa. At each location, we measured growth and reproductive traits (plant height, tiller number, flowering time, aboveground biomass, and seed production) of four non-locally sourced cultivars and two locally collected wild biotypes. Plants were grown in common garden experiments under three types of competition, referred to as none, moderate (with Schizachyrium scoparium), and high (with Bromus inermis). In both states, the two “lowland” cultivars grew taller, flowered later, and produced between 2x and 7.5x more biomass and between 3x and 34x more seeds per plant than local wild biotypes, while the other two cultivars were comparable to wild biotypes in these traits. Competition did not affect relative differences among biotypes, with the exception of shoot number, which was more similar among biotypes under high competition. Insights into functional differences between cultivars and wild biotypes are crucial for developing biomass crops while mitigating the potential for invasiveness. Here, two of the four cultivars generally performed better than wild biotypes, indicating that these biotypes may pose more of a risk in terms of their ability to establish vigorous feral populations in new regions outside of their area of origin. Our results support an ongoing assessment of switchgrass cultivars developed for large-scale planting for biofuels. PMID:27120201
Kjellander, Roland
2016-07-28
Screened electrostatic surface forces, also called double layer forces, between surfaces in ionic liquids can, depending on the circumstances, decay in an exponentially damped, oscillatory manner or in a plain exponential way (the latter as in dilute electrolyte solutions where ion-ion correlations are very weak). The occurrence of both of these behaviors in dense ionic liquids, where ion-ion correlations are very strong, is analyzed in the current work using exact statistical mechanics formulated in a manner that is physically transparent. A vital ingredient in understanding the decay behaviors is the fact that electrostatics in dense electrolytes have a non-local nature caused by the strong correlations. It is shown that the effects of non-locality can be elucidated by a remarkably simple, general expression for the decay parameter κ that replaces the classical expression for the inverse Debye length κDH of the Debye-Hückel (DH) and non-linear Poisson-Boltzmann approximations. This exact expression is valid for both the plain exponential and the oscillatory cases. It shows how strong correlations can give rise to plain exponential decay with a long decay length. Such a decay can arise from anion-cation associations of various kinds, for instance transient ion pairing or association caused by many-body correlations; ion pairing is a possibility but not a necessity for this to occur. Theoretical analysis is done for systems consisting of ions with an arbitrary shape and internal charge density and immersed planar walls with arbitrary internal charge distribution and any short-range ion-surface interaction. The screened electrostatic surface force between two walls is at large separations proportional to the product of effective surface charge densities of each wall. For the oscillatory case, each wall contributes with a phase shift to the oscillations of the interaction. PMID:27356099
Dimitriadis, Alexandros I.; Kantartzis, Nikolaos V.; Tsiboukis, Theodoros D.; Hafner, Christian
2015-01-15
Highlights: •Formulas for E/M fields radiated by continuous surface polarization distributions. •Non-local effective surface susceptibility model for periodic metafilms. •Generalized reflection and transmission coefficients for an arbitrary metafilm. •Successful treatment of non-planar scatterer arrays and spatial dispersion effects. -- Abstract: A non-local surface susceptibility model for the consistent description of periodic metafilms formed by arbitrarily-shaped, electrically-small, bianisotropic scatterers is developed in this paper. The rigorous scheme is based on the point-dipole approximation technique and is valid for any polarization and propagation direction of an electromagnetic wave impinging upon the metafilm, unlike existing approaches whose applicability is practically confined to very specific cases of incidence. Next, the universal form of the resulting surface susceptibility matrix is employed for the derivation of the generalized Fresnel coefficients for such surfaces, which enable the comprehensive interpretation of several significant, yet relatively unexamined, physical interactions. Essentially, these coefficients include eight distinct terms, corresponding to the co-polarized and cross-polarized reflection and transmission coefficients for the two orthogonal eigenpolarizations of a linearly-polarized incident plane wave. The above formulas are, then, utilized for the prediction of the scattering properties of metafilms with different planar and non-planar resonators, which are characterized via the featured model and two previously reported local ones. Their comparison with numerical simulation outcomes substantiates the merits of the proposed method, reveals important aspects of the underlying physics, and highlights the differences between the various modeling procedures.
2014-01-01
Background Optical coherence tomography (OCT) is a minimally invasive imaging technique, which utilizes the spatial and temporal coherence properties of optical waves backscattered from biological material. Recent advances in tunable lasers and infrared camera technologies have enabled an increase in the OCT imaging speed by a factor of more than 100, which is important for retinal imaging where we wish to study fast physiological processes in the biological tissue. However, the high scanning rate causes proportional decrease of the detector exposure time, resulting in a reduction of the system signal-to-noise ratio (SNR). One approach to improving the image quality of OCT tomograms acquired at high speed is to compensate for the noise component in the images without compromising the sharpness of the image details. Methods In this study, we propose a novel reconstruction method for rapid OCT image acquisitions, based on a noise-compensated homotopic modified James-Stein non-local regularized optimization strategy. The performance of the algorithm was tested on a series of high resolution OCT images of the human retina acquired at different imaging rates. Results Quantitative analysis was used to evaluate the performance of the algorithm using two state-of-art denoising strategies. Results demonstrate significant SNR improvements when using our proposed approach when compared to other approaches. Conclusions A new reconstruction method based on a noise-compensated homotopic modified James-Stein non-local regularized optimization strategy was developed for the purpose of improving the quality of rapid OCT image acquisitions. Preliminary results show the proposed method shows considerable promise as a tool to improve the visualization and analysis of biological material using OCT. PMID:25319186
Tan, Rui Shan; Zhai, Huan Chen; Gao, Feng; Tong, Dianmin; Lin, Shi Ying
2016-06-21
We carried out accurate quantum wave packet as well as quasi-classical trajectory (QCT) calculations for H + CaCl (νi = 0, ji = 0) reaction occurring on an adiabatic ground state using the recent ab initio potential energy surface to obtain the quantum and QCT reaction probabilities for several partial waves (J = 0, 10, and 20) as well as state resolved QCT integral and differential cross sections. The complete list of vibrational energy levels supported by the intermediate HCaCl complex is also obtained using the Lanczos algorithm. The QCT reaction probabilities show excellent agreement with the quantum ones except for the failure in reproducing the highly oscillatory resonance structure. Despite the fact that the reaction is exothermic and the existence of a barrier that is energetically lower than the bottom of the reactant valley, the reaction probability for J = 0 shows threshold-like behavior and the reactivity all through the energies is very low (<0.1). The dynamical features at two different energy regions (<0.35 eV and >0.35 eV) are found to be different drastically from each other. The analyses of these results suggest that the reaction is governed by one of the two different types of reaction mechanism, one is the direct mechanism at the high energy region and the other is the indirect mechanism at the low energy region by which the reaction proceeds through the long-lived intermediate complex followed by a statistical dissociation into asymptotic channels. PMID:27224034
Quantum Computing since Democritus
NASA Astrophysics Data System (ADS)
Aaronson, Scott
2013-03-01
1. Atoms and the void; 2. Sets; 3. Gödel, Turing, and friends; 4. Minds and machines; 5. Paleocomplexity; 6. P, NP, and friends; 7. Randomness; 8. Crypto; 9. Quantum; 10. Quantum computing; 11. Penrose; 12. Decoherence and hidden variables; 13. Proofs; 14. How big are quantum states?; 15. Skepticism of quantum computing; 16. Learning; 17. Interactive proofs and more; 18. Fun with the Anthropic Principle; 19. Free will; 20. Time travel; 21. Cosmology and complexity; 22. Ask me anything.
EPR & Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization
NASA Astrophysics Data System (ADS)
Payandeh, Farrin
2015-07-01
Negative energy states are applied in Krein space quantization approach to achieve a naturally renormalized theory. For example, this theory by taking the full set of Dirac solutions, could be able to remove the propagator Green function's divergences and automatically without any normal ordering, to vanish the expected value for vacuum state energy. However, since it is a purely mathematical theory, the results are under debate and some efforts are devoted to include more physics in the concept. Whereas Krein quantization is a pure mathematical approach, complex quantum Hamiltonian dynamics is based on strong foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics. Based on complex quantum Hamilton-Jacobi theory, complex spacetime is a natural consequence of including quantum effects in the relativistic mechanics, and is a bridge connecting the causality in special relativity and the non-locality in quantum mechanics, i.e. extending special relativity to the complex domain leads to relativistic quantum mechanics. So that, considering both relativistic and quantum effects, the Klein-Gordon equation could be derived as a special form of the Hamilton-Jacobi equation. Characterizing the complex time involved in an entangled energy state and writing the general form of energy considering quantum potential, two sets of positive and negative energies will be realized. The new states enable us to study the spacetime in a relativistic entangled “space-time” state leading to 12 extra wave functions than the four solutions of Dirac equation for a free particle. Arguing the entanglement of particle and antiparticle leads to a contradiction with experiments. So, in order to correct the results, along with a previous investigation [1], we realize particles and antiparticles as physical entities with positive energy instead of considering antiparticles with negative energy. As an application of modified descriptions for entangled (space
NASA Astrophysics Data System (ADS)
Degen, Joachim; Reinecke, Klaus; Schmidtke, Hans-Herbert
1992-05-01
The thermal lens effect or thermal blooming of a laser beam passing through an absorbing medium is used to determine the fraction of absorbed laser power which is converted into heat. By this photocaloric method absolute luminescence quantum yields Φ can be evaluated covering the full range of possible Φ values. A check with organic standards for which quantum yields of 1, 0.52 and 0 are reported, supplies values of 0.99, 0.52 and 0.04, respectively. The sample of compounds [Ru(bipy) 3]X 2, X Cl, ClO 4, and bipy bipyridine, were studied using different concentrations in water and methanol solution at room temperature. The results strongly depend on the counter ion: for the Cl -- and (ClO 4) --salts quantum yields of Φ = 0.31 and 0.79, respectively, are obtained, which may be explained by different polarization conditions. The yields are, on the other hand, independent from the solvent and from the concentration, which was considered ranging from 10 -4 to 2.5 × 10 -5 M. Thermal blooming was also observed from [Ru(bipy) 3]Cl 2 contained in KBr pellets, measuring at various temperatures.
NASA Astrophysics Data System (ADS)
El-Gogary, Tarek M.; Alaghaz, Abdel-Nasser M. A.; Ammar, Reda A. A.
2012-03-01
A novel 2-aminobenzoic acid-cyclodiphosph(V)azane ligand H4L and its homo-binuclear Cu(II) complex of the type [Cu2L(H2O)2].2.5 H2O in which L is 1,3-di(-o-pyridyl)-2,4-(dioxo)-2',4'-bis-(2-iminobenzoic acid) cyclodiphosph(V)azane, were synthesized and characterized by different physical techniques. Infrared spectra of the complex indicate deprotonation and coordination of the imine NH and carboxyl COOH groups. It also confirms that nitrogen atom of the pyridine ring contribute to the complexation. Electronic spectra and magnetic susceptibility measurements reveal square-planar geometry for the Cu(II) complex. The elemental analyses and thermogravimetric results have justified the [Cu2L(H2O)2]·2.5H2O composition of the complex. Quantum chemical calculations were utilized to explore the electronic structure and stability of the H4L as well as the binuclear Cu(II) complex. Computational studies have been carried out at the DFT-B3LYP/6-31G(d) level of theory on the structural and spectroscopic properties of H4L and its binuclear Cu(II) complex. Different tautomers and geometrical isomers of the ligand were optimized at the ab initio DFT level. Simulated IR frequencies were scaled and compared with that experimentally measured. TD-DFT method was used to compute the UV-VIS spectra which show good agreement with measured electronic spectra.
Huang, Hailiang; Shi, Shuo; Gao, Xing; Gao, Ruru; Zhu, Ying; Wu, Xuewen; Zang, Ruimin; Yao, Tianming
2016-05-15
Based on specific aptamer binding properties, a strategy for adenosine, dopamine and 17β-estradiol detection was realised by employing Ru complex and quantum dots (QDs) as fluorescence probes. Ru complex, which could quench the fluorescence of QDs, preferred to bind with aptamer DNA and resulted in the fluorescence rise of QDs. When the aptamer DNA was incubated with the target first, it could not bind with Ru complex and the fluorescence of QDs was quenched. Under the optimal condition, the fluorescence intensity was linearly proportional to the concentration of adenosine, dopamine and 17β-estradiol with a limit of detection (LOD) of 101 nM, 19 nM and 37 nM, respectively. The experiments in fetal bovine serum were also carried out with good results. This universal method was rapid, label-free, low-cost, easy-operating and highly repeatable for the detection of adenosine, dopamine and 17β-estradiol. Qualitative detection by naked eyes was also available without complex instruments. It could also be extended to detect various analytes, such as metal ions, proteins and small molecules by using appropriate aptamers. PMID:26708240
Atomic physics: A milestone in quantum computing
NASA Astrophysics Data System (ADS)
Bartlett, Stephen D.
2016-08-01
Quantum computers require many quantum bits to perform complex calculations, but devices with more than a few bits are difficult to program. A device based on five atomic quantum bits shows a way forward. See Letter p.63
NASA Astrophysics Data System (ADS)
Kozma, Robert; Hu, Sanqing
2015-12-01
For millennia, causality served as a powerful guiding principle to our understanding of natural processes, including the functioning of our body, mind, and brain. The target paper presents an impressive vista of the field of causality in brain networks, starting from philosophical issues, expanding on neuroscience effects, and addressing broad engineering and societal aspects as well. The authors conclude that the concept of stochastic causality is more suited to characterize the experimentally observed complex dynamical processes in large-scale brain networks, rather than the more traditional view of deterministic causality. We strongly support this conclusion and provide two additional examples that may enhance and complement this review: (i) a generalization of the Wiener-Granger Causality (WGC) to fit better the complexity of brain networks; (ii) employment of criticality as a key concept highly relevant to interpreting causality and non-locality in large-scale brain networks.
Quantum Computation and Quantum Information
NASA Astrophysics Data System (ADS)
Nielsen, Michael A.; Chuang, Isaac L.
2010-12-01
Part I. Fundamental Concepts: 1. Introduction and overview; 2. Introduction to quantum mechanics; 3. Introduction to computer science; Part II. Quantum Computation: 4. Quantum circuits; 5. The quantum Fourier transform and its application; 6. Quantum search algorithms; 7. Quantum computers: physical realization; Part III. Quantum Information: 8. Quantum noise and quantum operations; 9. Distance measures for quantum information; 10. Quantum error-correction; 11. Entropy and information; 12. Quantum information theory; Appendices; References; Index.
Vermehren-Schmaedick, Anke; Krueger, Wesley; Jacob, Thomas; Ramunno-Johnson, Damien; Balkowiec, Agnieszka; Lidke, Keith A; Vu, Tania Q
2014-01-01
Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide
Vermehren-Schmaedick, Anke; Krueger, Wesley; Jacob, Thomas; Ramunno-Johnson, Damien; Balkowiec, Agnieszka; Lidke, Keith A.; Vu, Tania Q.
2014-01-01
Accumulating evidence underscores the importance of ligand-receptor dynamics in shaping cellular signaling. In the nervous system, growth factor-activated Trk receptor trafficking serves to convey biochemical signaling that underlies fundamental neural functions. Focus has been placed on axonal trafficking but little is known about growth factor-activated Trk dynamics in the neuronal soma, particularly at the molecular scale, due in large part to technical hurdles in observing individual growth factor-Trk complexes for long periods of time inside live cells. Quantum dots (QDs) are intensely fluorescent nanoparticles that have been used to study the dynamics of ligand-receptor complexes at the plasma membrane but the value of QDs for investigating ligand-receptor intracellular dynamics has not been well exploited. The current study establishes that QD conjugated brain-derived neurotrophic factor (QD-BDNF) binds to TrkB receptors with high specificity, activates TrkB downstream signaling, and allows single QD tracking capability for long recording durations deep within the soma of live neurons. QD-BDNF complexes undergo internalization, recycling, and intracellular trafficking in the neuronal soma. These trafficking events exhibit little time-synchrony and diverse heterogeneity in underlying dynamics that include phases of sustained rapid motor transport without pause as well as immobility of surprisingly long-lasting duration (several minutes). Moreover, the trajectories formed by dynamic individual BDNF complexes show no apparent end destination; BDNF complexes can be found meandering over long distances of several microns throughout the expanse of the neuronal soma in a circuitous fashion. The complex, heterogeneous nature of neuronal soma trafficking dynamics contrasts the reported linear nature of axonal transport data and calls for models that surpass our generally limited notions of nuclear-directed transport in the soma. QD-ligand probes are poised to provide
NASA Astrophysics Data System (ADS)
Quigley, Mark Francis
Effective temperatures, gravities, and surface abundances are determined for five central stars of planetary nebulae (CSPN): NGC 6826, NGC 2392, IC 2149, IC 4593, and IC 418. These stellar parameters are obtained by reproducing high resolution International Ultraviolet Explorer (IUE) spectra (1200-1680A), using atmospheric models which assume conditions of non-local thermodynamic equilibrium. In a preliminary study, absorption features are identified for the standard white subdwarf stars BD+28 ^circ4211 and BD+75 ^circ325, and B0 main sequence standard star Tau Sco, which exhibit effective temperatures (T _{rm eff}) of 80,000K, 55,000K, and 30,000K, respectively. Using the atomic data tables of Kurucz, and those of Ekberg and Johansson, over 98% of the absorption features in high resolution IUE spectra (1150-1990A) are identified. Analysis of the identifications shows that the UV spectra of these stars, similar in temperature to CSPN, are dominated by iron and nickel. The results of a comparative study of the high resolution UV spectra (1150-1980A) spectra of fifteen CSPN (36,000K <= T_{ rm eff} <= 130,000K) are also presented. Measurement of the terminal velocities of the stellar wind P Cygni profiles exhibited by the resonance lines of N V (1240A), Si IV (1390, 1400A), and C IV (1550A) yields estimates of stellar mass and radius. A grid of plane parallel model atmospheres in hydrostatic and statistical equilibrium is calculated, using complete linearization/accelerated lambda iteration hybrid algorithms. The major constituents of the atmospheres, hydrogen, helium, carbon, nitrogen, and oxygen, are treated non-local thermal equilibrium. Using these models, the spectra of the five coolest CSPN are reproduced over the wavelength region 1200-1680A, thus yielding estimates of the effective temperature, gravity, and surface abundances. For each atomic species, the total opacity is calculated, using atmospheres of identical composition and constant luminosity. Analysis
Geometrical aspects of quantum spaces
Ho, P.M.
1996-05-11
Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S{sub 1}{sup 2} and the quantum complex projective space CP{sub q}(N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S{sub q}{sup 2} and CP{sub q}(N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP{sub q}(N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given.
Weiss, Emily A.
2015-11-06
Within the research program funded through the Early Career Research Award we designed complexes of colloidal semiconductor quantum dots (QDs) and organic molecules in which the interfacial chemistry controls the electronic structure and dynamics of the excitonic state of the QD. The program included two main projects; (1) investigation of the mechanisms by which organic surfactants control the quantum confinement of excitonic charge carriers; and (2) development of models for electron transfer between QDs and adsorbed molecules as a function of interfacial chemistry. This project was extremely successful in that our achievements in those two areas addressed the great majority of questions we outlined in the original proposal and answered questions I did not think to ask in that original proposal. Our work led to the discovery of “exciton delocalizing ligands”, which change the electronic structure of colloidal semiconductor nanocrystals by altering, with small synthetic modifications to their surfaces, their most defining characteristic – the quantum confinement of their excited states. It also led to detailed, quantitative descriptions of how the surface chemistry of a QD dictates, thermodynamically and kinetically, the probability of exchange of electrons between the QD and a small molecule. We used two of the three major techniques in the proposal (transient photoluminescence and transient absorption). Electrogenerated chemiluminescence was also proposed, but was too technically difficult with these systems to be useful. Instead, NMR spectroscopy emerged as a major analytical tool in our studies. With the fundamental advancements we made with this project, we believe that we can design QDs to be the next great class of visible-light photocatalysts.
Quantum error correction assisted by two-way noisy communication
Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C. H.
2014-01-01
Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1
Quantum error correction assisted by two-way noisy communication
NASA Astrophysics Data System (ADS)
Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C. H.
2014-11-01
Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1
Quantum error correction assisted by two-way noisy communication.
Wang, Zhuo; Yu, Sixia; Fan, Heng; Oh, C H
2014-01-01
Pre-shared non-local entanglement dramatically simplifies and improves the performance of quantum error correction via entanglement-assisted quantum error-correcting codes (EAQECCs). However, even considering the noise in quantum communication only, the non-local sharing of a perfectly entangled pair is technically impossible unless additional resources are consumed, such as entanglement distillation, which actually compromises the efficiency of the codes. Here we propose an error-correcting protocol assisted by two-way noisy communication that is more easily realisable: all quantum communication is subjected to general noise and all entanglement is created locally without additional resources consumed. In our protocol the pre-shared noisy entangled pairs are purified simultaneously by the decoding process. For demonstration, we first present an easier implementation of the well-known EAQECC [[4, 1, 3; 1
NASA Astrophysics Data System (ADS)
Buchleitner, Andreas; Burghardt, Irene; Cheng, Yuan-Chung; Scholes, Gregory D.; Schwarz, Ulrich T.; Weber-Bargioni, Alexander; Wellens, Thomas
2014-10-01
Technologies which convert light into energy, and vice versa, rely on complex, microscopic transport processes in the condensed phase, which obey the laws of quantum mechanics, but hitherto lack systematic analysis and modeling. Given our much improved understanding of multicomponent, disordered, highly structured, open quantum systems, this ‘focus on’ collection collects cutting-edge research on theoretical and experimental aspects of quantum transport in truly complex systems as defined, e.g., by the macromolecular functional complexes at the heart of photosynthesis, by organic quantum wires, or even photovoltaic devices. To what extent microscopic quantum coherence effects can (be made to) impact on macroscopic transport behavior is an equally challenging and controversial question, and this ‘focus on’ collection provides a setting for the present state of affairs, as well as for the ‘quantum opportunities’ on the horizon.
Mano, T.; Noetzel, R.; Zhou, D.; Hamhuis, G.J.; Eijkemans, T.J.; Wolter, J.H.
2005-01-01
One-dimensional (In,Ga)As quantum dot (QD) arrays are created on planar singular, vicinal, and shallow mesa-patterned GaAs (100) substrates by self-organized anisotropic strain engineering of an (In,Ga)As/GaAs quantum wire (QWR) superlattice template in molecular beam epitaxy. On planar singular substrates, highly uniform single QD arrays along [0-11] are formed. On shallow [0-11] and [011] stripe-patterned substrates, the generated type-A and -B steps distinctly affect the surface migration processes which are crucial for QWR template development, i.e., strain-gradient-driven In adatom migration along [011] and surface-reconstruction-induced Ga/In adatom migration along [0-11]. In the presence of both type-A and -B steps on vicinal substrates misoriented towards [101], the direction of adatom migration is altered to rotate the QD arrays. This establishes the relationship between self-organized anisotropic strain and step engineering, which is exploited on shallow zigzag-patterned substrates for the realization of complex QD arrays and networks with well-positioned bends and branches, exhibiting high structural and optical quality.
Nikooienejad, Amir; Wang, Wenyi; Johnson, Valen E.
2016-01-01
Motivation: The advent of new genomic technologies has resulted in the production of massive data sets. Analyses of these data require new statistical and computational methods. In this article, we propose one such method that is useful in selecting explanatory variables for prediction of a binary response. Although this problem has recently been addressed using penalized likelihood methods, we adopt a Bayesian approach that utilizes a mixture of non-local prior densities and point masses on the binary regression coefficient vectors. Results: The resulting method, which we call iMOMLogit, provides improved performance in identifying true models and reducing estimation and prediction error in a number of simulation studies. More importantly, its application to several genomic datasets produces predictions that have high accuracy using far fewer explanatory variables than competing methods. We also describe a novel approach for setting prior hyperparameters by examining the total variation distance between the prior distributions on the regression parameters and the distribution of the maximum likelihood estimator under the null distribution. Finally, we describe a computational algorithm that can be used to implement iMOMLogit in ultrahigh-dimensional settings (p>>n) and provide diagnostics to assess the probability that this algorithm has identified the highest posterior probability model. Availability and implementation: Software to implement this method can be downloaded at: http://www.stat.tamu.edu/∼amir/code.html. Contact: wwang7@mdanderson.org or vjohnson@stat.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26740524
Zhou, Min-Xiong; Yan, Xu; Xie, Hai-Bin; Zheng, Hui; Xu, Dongrong; Yang, Guang
2015-01-01
Image denoising has a profound impact on the precision of estimated parameters in diffusion kurtosis imaging (DKI). This work first proposes an approach to constructing a DKI phantom that can be used to evaluate the performance of denoising algorithms in regard to their abilities of improving the reliability of DKI parameter estimation. The phantom was constructed from a real DKI dataset of a human brain, and the pipeline used to construct the phantom consists of diffusion-weighted (DW) image filtering, diffusion and kurtosis tensor regularization, and DW image reconstruction. The phantom preserves the image structure while minimizing image noise, and thus can be used as ground truth in the evaluation. Second, we used the phantom to evaluate three representative algorithms of non-local means (NLM). Results showed that one scheme of vector-based NLM, which uses DWI data with redundant information acquired at different b-values, produced the most reliable estimation of DKI parameters in terms of Mean Square Error (MSE), Bias and standard deviation (Std). The result of the comparison based on the phantom was consistent with those based on real datasets. PMID:25643162
Lapenna, E.; Mucciarelli, A.; Lanzoni, B.; Ferraro, F. R.; Dalessandro, E.; Massari, D.
2014-12-20
We present the iron abundance of 24 asymptotic giant branch (AGB) stars, members of the globular cluster 47 Tucanae, obtained with high-resolution spectra collected with the FEROS spectrograph at the MPG/ESO 2.2 m Telescope. We find that the iron abundances derived from neutral lines (with a mean value [Fe I/H] =–0.94 ± 0.01, σ = 0.08 dex) are systematically lower than those derived from single ionized lines ([Fe II/H] =–0.83 ± 0.01, σ = 0.05 dex). Only the latter are in agreement with those obtained for a sample of red giant branch (RGB) cluster stars, for which the Fe I and Fe II lines provide the same iron abundance. This finding suggests that non-local thermodynamical equilibrium (NLTE) effects driven by overionization mechanisms are present in the atmosphere of AGB stars and significantly affect the Fe I lines while leaving Fe II features unaltered. On the other hand, the very good ionization equilibrium found for RGB stars indicates that these NLTE effects may depend on the evolutionary stage. We discuss the impact of this finding on both the chemical analysis of AGB stars and on the search for evolved blue stragglers.
De la Luz, Victor; Lara, Alejandro; Raulin, Jean-Pierre
2011-08-10
We use a numerical code called PAKALMPI to compute synthetic spectra of the solar emission in quiet conditions at millimeter, sub-millimeter, and infrared wavelengths. PAKALMPI solves the radiative transfer equation, with non-local thermodynamic equilibrium (NLTE), in a three-dimensional geometry using a multiprocessor environment. The code is able to use three opacity functions: classical bremsstrahlung, H{sup -}, and inverse bremsstrahlung. In this work, we have computed and compared two synthetic spectra, one in the common way: using bremsstrahlung opacity function and considering a fully ionized atmosphere; and a new one considering bremsstrahlung, inverse bremsstrahlung, and H{sup -} opacity functions in NLTE. We analyzed in detail the local behavior of the low atmospheric emission at 17, 212, and 405 GHz (frequencies used by the Nobeyama Radio Heliograph and the Solar Submillimeter Telescope). We found that the H{sup -} is the major emission mechanism at low altitudes (below 500 km) and that at higher altitudes the classical bremsstrahlung becomes the major mechanism of emission. However, the brightness temperature remains unalterable. Finally, we found that the inverse bremsstrahlung process is not important for radio emission at these heights.
Lu, Deyu
2016-08-05
A systematic route to go beyond the exact exchange plus random phase approximation (RPA) is to include a physical exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation theorem. Previously, [D. Lu, J. Chem. Phys. 140, 18A520 (2014)], we found that non-local kernels with a screening length depending on the local Wigner-Seitz radius, rs(r), suffer an error associated with a spurious long-range repulsion in van der Waals bounded systems, which deteriorates the binding energy curve as compared to RPA. Here, we analyze the source of the error and propose to replace rs(r) by a global, average rs in the kernel. Exemplary studies withmore » the Corradini, del Sole, Onida, and Palummo kernel show that while this change does not affect the already outstanding performance in crystalline solids, using an average rs significantly reduces the spurious long-range tail in the exchange-correlation kernel in van der Waals bounded systems. Finally, when this method is combined with further corrections using local dielectric response theory, the binding energy of the Kr dimer is improved three times as compared to RPA.« less
NASA Astrophysics Data System (ADS)
Bates, Jefferson; Laricchia, Savio; Ruzsinszky, Adrienn
The Random Phase Approximation (RPA) is quickly becoming a standard method beyond semi-local Density Functional Theory that naturally incorporates weak interactions and eliminates self-interaction error. RPA is not perfect, however, and suffers from self-correlation error as well as an incorrect description of short-ranged correlation typically leading to underbinding. To improve upon RPA we introduce a short-ranged, exchange-like kernel that is one-electron self-correlation free for one and two electron systems in the high-density limit. By tuning the one free parameter in our model to recover an exact limit of the homogeneous electron gas correlation energy we obtain a non-local, energy-optimized kernel that reduces the errors of RPA for both homogeneous and inhomogeneous solids. To reduce the computational cost of the standard kernel-corrected RPA, we also implement RPA renormalized perturbation theory for extended systems, and demonstrate its capability to describe the dominant correlation effects with a low-order expansion in both metallic and non-metallic systems. Furthermore we stress that for norm-conserving implementations the accuracy of RPA and beyond RPA structural properties compared to experiment is inherently limited by the choice of pseudopotential. Current affiliation: King's College London.
NASA Astrophysics Data System (ADS)
Zhu, Xun
2003-07-01
The classic two-level or equivalent two-level model that includes only the statistical equilibrium of radiative and thermal processes of excitation and quenching between two vibrational energy levels is extended by adding chemical production to the rate equations. The modifications to the non-local thermodynamic equilibrium source function and cooling rate are parameterized by ϕc, which characterizes the ratio of chemical production to collisional quenching. For applications of broadband emission of O3 at 9.6 μm, the non-LTE effect of chemical production on the cooling rate and limb emission is proportional to the ratio of O to O3. For a typical [O]/[O3], the maximum enhancements of limb radiance and cooling rate are about 15% 30% and 0.03 0.05 K day-1, respectively, both occurring near the mesopause regions. This suggests that the broadband limb radiance above ˜80 km is sensitive to O3 density but not sensitive to the direct cooling rate along the line-of-sight, which makes O3 retrieval feasible but the direct cooling rate retrieval difficult by using the O3 9.6 μm band limb emission.
NASA Astrophysics Data System (ADS)
Lu, Deyu
2016-08-01
A systematic route to go beyond the exact exchange plus random phase approximation (RPA) is to include a physical exchange-correlation kernel in the adiabatic-connection fluctuation-dissipation theorem. In the previous study [D. Lu, J. Chem. Phys. 140, 18A520 (2014)], we found that non-local kernels with a screening length depending on the local Wigner-Seitz radius, rs(r), suffer an error associated with a spurious long-range repulsion in van der Waals bounded systems, which deteriorates the binding energy curve as compared to RPA. We analyze the source of the error and propose to replace rs(r) by a global, average rs in the kernel. Exemplary studies with the Corradini, del Sole, Onida, and Palummo kernel show that while this change does not affect the already outstanding performance in crystalline solids, using an average rs significantly reduces the spurious long-range tail in the exchange-correlation kernel in van der Waals bounded systems. When this method is combined with further corrections using local dielectric response theory, the binding energy of the Kr dimer is improved three times as compared to RPA.
Lorenzi, Marco; Simpson, Ivor J.; Mendelson, Alex F.; Vos, Sjoerd B.; Cardoso, M. Jorge; Modat, Marc; Schott, Jonathan M.; Ourselin, Sebastien
2016-01-01
The joint analysis of brain atrophy measured with magnetic resonance imaging (MRI) and hypometabolism measured with positron emission tomography with fluorodeoxyglucose (FDG-PET) is of primary importance in developing models of pathological changes in Alzheimer’s disease (AD). Most of the current multimodal analyses in AD assume a local (spatially overlapping) relationship between MR and FDG-PET intensities. However, it is well known that atrophy and hypometabolism are prominent in different anatomical areas. The aim of this work is to describe the relationship between atrophy and hypometabolism by means of a data-driven statistical model of non-overlapping intensity correlations. For this purpose, FDG-PET and MRI signals are jointly analyzed through a computationally tractable formulation of partial least squares regression (PLSR). The PLSR model is estimated and validated on a large clinical cohort of 1049 individuals from the ADNI dataset. Results show that the proposed non-local analysis outperforms classical local approaches in terms of predictive accuracy while providing a plausible description of disease dynamics: early AD is characterised by non-overlapping temporal atrophy and temporo-parietal hypometabolism, while the later disease stages show overlapping brain atrophy and hypometabolism spread in temporal, parietal and cortical areas. PMID:27064442