Sample records for quantum number assignment

  1. Communication: Quantum six-dimensional calculations of the coupled translation-rotation eigenstates of H{sub 2}O@C{sub 60}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felker, Peter M., E-mail: felker@chem.ucla.edu; Bačić, Zlatko, E-mail: zlatko.bacic@nyu.edu; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062

    2016-05-28

    We report rigorous quantum calculations of the translation-rotation (TR) eigenstates of para- and ortho-H{sub 2}O@C{sub 60}. They provide a comprehensive description of the dynamical behavior of H{sub 2}O inside the fullerene having icosahedral (I{sub h}) symmetry. The TR eigenstates are assigned in terms of the irreducible representations of the proper symmetry group of H{sub 2}O@C{sub 60}, as well as the appropriate translational and rotational quantum numbers. The coupling between the orbital and the rotational angular momenta of the caged H{sub 2}O gives rise to the total angular momentum λ, which additionally labels each TR level. The calculated TR levels allowmore » tentative assignments of a number of transitions in the recent experimental INS spectra of H{sub 2}O@C{sub 60} that have not been assigned previously.« less

  2. Faster than classical quantum algorithm for dense formulas of exact satisfiability and occupation problems

    NASA Astrophysics Data System (ADS)

    Mandrà, Salvatore; Giacomo Guerreschi, Gian; Aspuru-Guzik, Alán

    2016-07-01

    We present an exact quantum algorithm for solving the Exact Satisfiability problem, which belongs to the important NP-complete complexity class. The algorithm is based on an intuitive approach that can be divided into two parts: the first step consists in the identification and efficient characterization of a restricted subspace that contains all the valid assignments of the Exact Satisfiability; while the second part performs a quantum search in such restricted subspace. The quantum algorithm can be used either to find a valid assignment (or to certify that no solution exists) or to count the total number of valid assignments. The query complexities for the worst-case are respectively bounded by O(\\sqrt{{2}n-{M\\prime }}) and O({2}n-{M\\prime }), where n is the number of variables and {M}\\prime the number of linearly independent clauses. Remarkably, the proposed quantum algorithm results to be faster than any known exact classical algorithm to solve dense formulas of Exact Satisfiability. As a concrete application, we provide the worst-case complexity for the Hamiltonian cycle problem obtained after mapping it to a suitable Occupation problem. Specifically, we show that the time complexity for the proposed quantum algorithm is bounded by O({2}n/4) for 3-regular undirected graphs, where n is the number of nodes. The same worst-case complexity holds for (3,3)-regular bipartite graphs. As a reference, the current best classical algorithm has a (worst-case) running time bounded by O({2}31n/96). Finally, when compared to heuristic techniques for Exact Satisfiability problems, the proposed quantum algorithm is faster than the classical WalkSAT and Adiabatic Quantum Optimization for random instances with a density of constraints close to the satisfiability threshold, the regime in which instances are typically the hardest to solve. The proposed quantum algorithm can be straightforwardly extended to the generalized version of the Exact Satisfiability known as Occupation problem. The general version of the algorithm is presented and analyzed.

  3. Some Properties and Uses of Torsional Overlap Integrals

    NASA Astrophysics Data System (ADS)

    Mekhtiev, Mirza A.; Hougen, Jon T.

    1998-01-01

    The first diagonalization step in a rho-axis-method treatment of methyl-top internal rotation problems involves finding eigenvalues and eigenvectors of a torsional Hamiltonian, which depends on the rotational projection quantum numberKas a parameter. Traditionally the torsional quantum numbervt= 0, 1, 2···is assigned to eigenfunctions of givenKin order of increasing energy. In this paper we propose an alternative labeling scheme, using the torsional quantum numbervT, which is based on properties of theK-dependent torsional overlap integrals . In particular, the quantum numbervTis assigned in such a way that torsional wavefunctions |vT,K> vary as slowly as possible whenKchanges by unity. Roughly speaking,vT=vtfor torsional levels below the barrier, whereasvTis more closely related to the free-rotor quantum number for levels above the barrier. Because of the latter fact, we believevTwill in general be a physically more meaningful torsional quantum number for levels above the barrier. The usefulness of overlap integrals for qualitative prediction of torsion-rotation band intensities and for rationalizing the magnitudes of perturbations involving some excitation of the small-amplitude vibrations in an internal rotor problem is also discussed.

  4. Defect in the Joint Spectrum of Hydrogen due to Monodromy.

    PubMed

    Dullin, Holger R; Waalkens, Holger

    2018-01-12

    In addition to the well-known case of spherical coordinates, the Schrödinger equation of the hydrogen atom separates in three further coordinate systems. Separating in a particular coordinate system defines a system of three commuting operators. We show that the joint spectrum of the Hamilton operator, the z component of the angular momentum, and an operator involving the z component of the quantum Laplace-Runge-Lenz vector obtained from separation in prolate spheroidal coordinates has quantum monodromy for energies sufficiently close to the ionization threshold. The precise value of the energy above which monodromy is observed depends on the distance of the focus points of the spheroidal coordinates. The presence of monodromy means that one cannot globally assign quantum numbers to the joint spectrum. Whereas the principal quantum number n and the magnetic quantum number m correspond to the Bohr-Sommerfeld quantization of globally defined classical actions a third quantum number cannot be globally defined because the third action is globally multivalued.

  5. Quantum probability assignment limited by relativistic causality.

    PubMed

    Han, Yeong Deok; Choi, Taeseung

    2016-03-14

    Quantum theory has nonlocal correlations, which bothered Einstein, but found to satisfy relativistic causality. Correlation for a shared quantum state manifests itself, in the standard quantum framework, by joint probability distributions that can be obtained by applying state reduction and probability assignment that is called Born rule. Quantum correlations, which show nonlocality when the shared state has an entanglement, can be changed if we apply different probability assignment rule. As a result, the amount of nonlocality in quantum correlation will be changed. The issue is whether the change of the rule of quantum probability assignment breaks relativistic causality. We have shown that Born rule on quantum measurement is derived by requiring relativistic causality condition. This shows how the relativistic causality limits the upper bound of quantum nonlocality through quantum probability assignment.

  6. Quantum annealing for combinatorial clustering

    NASA Astrophysics Data System (ADS)

    Kumar, Vaibhaw; Bass, Gideon; Tomlin, Casey; Dulny, Joseph

    2018-02-01

    Clustering is a powerful machine learning technique that groups "similar" data points based on their characteristics. Many clustering algorithms work by approximating the minimization of an objective function, namely the sum of within-the-cluster distances between points. The straightforward approach involves examining all the possible assignments of points to each of the clusters. This approach guarantees the solution will be a global minimum; however, the number of possible assignments scales quickly with the number of data points and becomes computationally intractable even for very small datasets. In order to circumvent this issue, cost function minima are found using popular local search-based heuristic approaches such as k-means and hierarchical clustering. Due to their greedy nature, such techniques do not guarantee that a global minimum will be found and can lead to sub-optimal clustering assignments. Other classes of global search-based techniques, such as simulated annealing, tabu search, and genetic algorithms, may offer better quality results but can be too time-consuming to implement. In this work, we describe how quantum annealing can be used to carry out clustering. We map the clustering objective to a quadratic binary optimization problem and discuss two clustering algorithms which are then implemented on commercially available quantum annealing hardware, as well as on a purely classical solver "qbsolv." The first algorithm assigns N data points to K clusters, and the second one can be used to perform binary clustering in a hierarchical manner. We present our results in the form of benchmarks against well-known k-means clustering and discuss the advantages and disadvantages of the proposed techniques.

  7. Quantum Tunneling of Water in Beryl. A New State of the Water Molecule

    DOE PAGES

    Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani; ...

    2016-04-22

    When using neutron scattering and ab initio simulations, we document the discovery of a new “quantum tunneling state” of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. Additionally, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.

  8. Quantum Tunneling of Water in Beryl. A New State of the Water Molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesnikov, Alexander I.; Reiter, George F.; Choudhury, Narayani

    When using neutron scattering and ab initio simulations, we document the discovery of a new “quantum tunneling state” of the water molecule confined in 5 Å channels in the mineral beryl, characterized by extended proton and electron delocalization. We observed a number of peaks in the inelastic neutron scattering spectra that were uniquely assigned to water quantum tunneling. Additionally, the water proton momentum distribution was measured with deep inelastic neutron scattering, which directly revealed coherent delocalization of the protons in the ground state.

  9. Phase space quantum mechanics - Direct

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasiri, S.; Sobouti, Y.; Taati, F.

    2006-09-15

    Conventional approach to quantum mechanics in phase space (q,p), is to take the operator based quantum mechanics of Schroedinger, or an equivalent, and assign a c-number function in phase space to it. We propose to begin with a higher level of abstraction, in which the independence and the symmetric role of q and p is maintained throughout, and at once arrive at phase space state functions. Upon reduction to the q- or p-space the proposed formalism gives the conventional quantum mechanics, however, with a definite rule for ordering of factors of noncommuting observables. Further conceptual and practical merits of themore » formalism are demonstrated throughout the text.« less

  10. a Zero-Order Picture of the Infrared Spectrum for the Methoxy Radical: Assignment of States

    NASA Astrophysics Data System (ADS)

    Johnson, Britta; Sibert, Edwin

    2016-06-01

    The ground tilde{X}^2E vibrations of the methoxy radical have intrigued both experimentalists and theorists alike due to the presence of a conical intersection at the C3v molecular geometry. This conical intersection causes methoxy's vibrational spectrum to be strongly influenced by Jahn-Teller vibronic coupling which leads to large amplitude vibrations and extensive mixing of the two lowest electronic states. This coupling combined with spin-orbit and Fermi couplings greatly complicates the assignments of states. Using the potential force field and calculated spectra of Nagesh and Sibert1,2, we assign quantum numbers to the infrared spectrum. When the zero-order states are the diabatic normal mode states, there is sufficient mode mixing that the normal mode quantum numbers are poor labels for the final states. We define a series of zero-order Hamiltonians which include additional coupling elements beyond the normal mode picture but still allow for the assignment of Jahn-Teller quantum numbers. In methoxy, the two lowest frequency e} modes, the bend (q_5) and the rock (q_6), are the modes with the strongest Jahn-Teller coupling. In general, a zero-order Hamiltonian which includes first-order Jahn-Teller coupling in q_6 is sufficient for most states of interest. Working in a representation which includes first-order Jahn-Teller coupling in q_6, we identify states in which additional coupling elements must be included; these couplings include first-order Jahn-Teller coupling in q_5, higher order Jahn-Teller coupling in q_5 and q_6, and, in the dueterated case, Jahn-Teller coupling which is modulated by the corresponding a modes. [^1] Nagesh, J.; Sibert, E. L. J. Phys. Chem. A 2012, 116, 3846-3855. Lee, Y.F.; Chou, W.T.; Johnson, B.A.; Tabor, D.P. ; Sibert, E.L.; Lee, Y.P. J. Mol. Spectrosc. 2015, 310, 57-67. Barckholtz, T. A.; Miller, T. A. Int. Revs. in Phys. Chem. 1998, 17, 435-524.

  11. From Feynman rules to conserved quantum numbers, I

    NASA Astrophysics Data System (ADS)

    Nogueira, P.

    2017-05-01

    In the context of Quantum Field Theory (QFT) there is often the need to find sets of graph-like diagrams (the so-called Feynman diagrams) for a given physical model. If negative, the answer to the related problem 'Are there any diagrams with this set of external fields?' may settle certain physical questions at once. Here the latter problem is formulated in terms of a system of linear diophantine equations derived from the Lagrangian density, from which necessary conditions for the existence of the required diagrams may be obtained. Those conditions are equalities that look like either linear diophantine equations or linear modular (i.e. congruence) equations, and may be found by means of fairly simple algorithms that involve integer computations. The diophantine equations so obtained represent (particle) number conservation rules, and are related to the conserved (additive) quantum numbers that may be assigned to the fields of the model.

  12. The coprime quantum chain

    NASA Astrophysics Data System (ADS)

    Mussardo, G.; Giudici, G.; Viti, J.

    2017-03-01

    In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues n i of the occupation number operators at each site of a chain of length M. The n i ’s take value in the interval [2,q] and may be regarded as S z eigenvalues in the spin representation j  =  (q  -  2)/2. The distinctive interaction of the model is based on the coprimality matrix \\boldsymbolΦ : for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers n i and n i+1 of neighbouring sites share a common divisor, while for the anti-ferromagnetic case it assigns a lower energy to configurations where n i and n i+1 are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into different classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit q\\to ∞ .

  13. Hydrocarbon Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  14. Diatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 114 Diatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 121 diatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty, and reference are given for each transition reported.

  15. Triatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 117 Triatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 55 triatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  16. The Λc(2860), Λc(2880), Ξc(3055) and Ξc(3080) as D-wave baryon states in QCD

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Gang

    2018-01-01

    In this article, we tentatively assign the Λc (2860), Λc (2880), Ξc (3055) and Ξc (3080) to be the D-wave baryon states with the spin-parity JP = 3/2+, 5/2 +, 3/2+ and 5/2+, respectively, and study their masses and pole residues with the QCD sum rules in a systematic way by constructing three-types interpolating currents with the quantum numbers (Lρ ,Lλ) = (0 , 2), (2 , 0) and (1 , 1), respectively. The present predictions favor assigning the Λc (2860), Λc (2880), Ξc (3055) and Ξc (3080) to be the D-wave baryon states with the quantum numbers (Lρ ,Lλ) = (0 , 2) and JP = 3/2+, 5/2+, 3/2+ and 5/2+, respectively. While the predictions for the masses of the (Lρ ,Lλ) = (2 , 0) and (1 , 1) D-wave Λc and Ξc states can be confronted to the experimental data in the future.

  17. Multistate and multihypothesis discrimination with open quantum systems

    NASA Astrophysics Data System (ADS)

    Kiilerich, Alexander Holm; Mølmer, Klaus

    2018-05-01

    We show how an upper bound for the ability to discriminate any number N of candidates for the Hamiltonian governing the evolution of an open quantum system may be calculated by numerically efficient means. Our method applies an effective master-equation analysis to evaluate the pairwise overlaps between candidate full states of the system and its environment pertaining to the Hamiltonians. These overlaps are then used to construct an N -dimensional representation of the states. The optimal positive-operator valued measure (POVM) and the corresponding probability of assigning a false hypothesis may subsequently be evaluated by phrasing optimal discrimination of multiple nonorthogonal quantum states as a semidefinite programming problem. We provide three realistic examples of multihypothesis testing with open quantum systems.

  18. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4(+) and Isotopomers on An Accurate Ab Initio Potential Energy Surface.

    PubMed

    Yu, Hua-Gen; Han, Huixian; Guo, Hua

    2016-04-14

    Vibrational energy levels of the ammonium cation (NH4(+)) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4(+) and ND4(+) exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. The low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm(-1).

  19. Full-dimensional quantum calculations of vibrational levels of NH 4 + and isotopomers on an accurate ab initio potential energy surface

    DOE PAGES

    Hua -Gen Yu; Han, Huixian; Guo, Hua

    2016-03-29

    Vibrational energy levels of the ammonium cation (NH 4 +) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH 4 + and ND 4 + exhibit a polyad structure, characterized by a collective quantum number P = 2(v 1 + v 3) + v 2 + v 4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data ismore » better than 1 cm –1.« less

  20. Quantum Optimal Multiple Assignment Scheme for Realizing General Access Structure of Secret Sharing

    NASA Astrophysics Data System (ADS)

    Matsumoto, Ryutaroh

    The multiple assignment scheme is to assign one or more shares to single participant so that any kind of access structure can be realized by classical secret sharing schemes. We propose its quantum version including ramp secret sharing schemes. Then we propose an integer optimization approach to minimize the average share size.

  1. Absorption spectra and optical transitions in InAs/GaAs self-assembled quantum dots

    NASA Astrophysics Data System (ADS)

    Cusack, M. A.; Briddon, P. R.; Jaros, M.

    1997-08-01

    We have applied the multiband effective mass/valence force field method to the calculation of optical transitions and absorption spectra in InAs/GaAs self-organized dots of different sizes. We have found that the apparently conflicting assignments of luminescence features to optical transitions in different experiments are in fact entirely compatible with each other. Whether the optical signature of a dot is constructed from transitions between states of the same quantum numbers, or via additional processes between the ground conduction state and a low-lying valence state depends on the aspect ratio of the quantum dot radius and height. The states involved can be predicted from a simple particle in a rigid rectangular box model.

  2. Quantum and Ecosystem Entropies

    NASA Astrophysics Data System (ADS)

    Kirwan, A. D.

    2008-06-01

    Ecosystems and quantum gases share a number of superficial similarities including enormous numbers of interacting elements and the fundamental role of energy in such interactions. A theory for the synthesis of data and prediction of new phenomena is well established in quantum statistical mechanics. The premise of this paper is that the reason a comparable unifying theory has not emerged in ecology is that a proper role for entropy has yet to be assigned. To this end, a phase space entropy model of ecosystems is developed. Specification of an ecosystem phase space cell size based on microbial mass, length, and time scales gives an ecosystem uncertainty parameter only about three orders of magnitude larger than Planck’s constant. Ecosystem equilibria is specified by conservation of biomass and total metabolic energy, along with the principle of maximum entropy at equilibria. Both Bose - Einstein and Fermi - Dirac equilibrium conditions arise in ecosystems applications. The paper concludes with a discussion of some broader aspects of an ecosystem phase space.

  3. Rotational Analysis of FTIR Spectra from Cigarette Smoke: An Application of Chem Spec II Software in the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ford, Alan R.; Burns, William A.; Reeve, Scott W.

    2004-01-01

    A version of the classic gas phase infrared experiment was developed for students at Arkansas State University based on the shortcomings of the rotationally resolved infrared experiment. Chem Spec II is a noncommercial Windows-based software package developed to aid in the potentially complicated problem of assigning quantum numbers to observed…

  4. Quantum dynamics of the vibrations of helium bound to the nanosurface of a large planar organic molecule: phthalocyanine . He van der Waals complex.

    PubMed

    Gibbons, Brittney R; Xu, Minzhong; Bacić, Zlatko

    2009-04-23

    We report rigorous quantum three-dimensional calculations of highly excited intermolecular vibrational states of the van der Waals (vdW) complex phthalocyanine.He (Pc.He). The Pc molecule was treated as rigid and the intermolecular potential energy surface (IPES) was represented as a sum of atom-atom Lennard-Jones pair potentials. The IPES has four equivalent global minima on the diagonals of the square-shaped Pc, inside its five-membered rings, and four slightly shallower local minima between them, creating a distinctive corrugation pattern of the molecular nanosurface. The vdW vibrational states analyzed in this work extend to about two-thirds of the well depth of the IPES. For the assignment of the in-plane (xy) vdW vibrational excitations it was necessary to resort to two sets of quantum numbers, the Cartesian quantum numbers [nu(x), nu(y)] and the quantum numbers (v, l) of the 2D isotropic oscillator, depending on the nodal structure and the symmetry of the wave functions. The delocalization of the He atom parallel to the molecular surface is large already in the ground vdW state. It increases rapidly with the number of quanta in the in-plane vdW vibrations, with the maximum root-mean-square amplitudes Deltax and Deltay of about 7 au at the excitation energies around 40 cm(-1). The wave functions of the highly excited states tend to be delocalized over the entire nanosurface and often have a square shape, reflecting that of the substrate.

  5. From statistical proofs of the Kochen-Specker theorem to noise-robust noncontextuality inequalities

    NASA Astrophysics Data System (ADS)

    Kunjwal, Ravi; Spekkens, Robert W.

    2018-05-01

    The Kochen-Specker theorem rules out models of quantum theory wherein projective measurements are assigned outcomes deterministically and independently of context. This notion of noncontextuality is not applicable to experimental measurements because these are never free of noise and thus never truly projective. For nonprojective measurements, therefore, one must drop the requirement that an outcome be assigned deterministically in the model and merely require that it be assigned a distribution over outcomes in a manner that is context-independent. By demanding context independence in the representation of preparations as well, one obtains a generalized principle of noncontextuality that also supports a quantum no-go theorem. Several recent works have shown how to derive inequalities on experimental data which, if violated, demonstrate the impossibility of finding a generalized-noncontextual model of this data. That is, these inequalities do not presume quantum theory and, in particular, they make sense without requiring an operational analog of the quantum notion of projectiveness. We here describe a technique for deriving such inequalities starting from arbitrary proofs of the Kochen-Specker theorem. It extends significantly previous techniques that worked only for logical proofs, which are based on sets of projective measurements that fail to admit of any deterministic noncontextual assignment, to the case of statistical proofs, which are based on sets of projective measurements that d o admit of some deterministic noncontextual assignments, but not enough to explain the quantum statistics.

  6. Development of authentication code for multi-access optical code division multiplexing based quantum key distribution

    NASA Astrophysics Data System (ADS)

    Taiwo, Ambali; Alnassar, Ghusoon; Bakar, M. H. Abu; Khir, M. F. Abdul; Mahdi, Mohd Adzir; Mokhtar, M.

    2018-05-01

    One-weight authentication code for multi-user quantum key distribution (QKD) is proposed. The code is developed for Optical Code Division Multiplexing (OCDMA) based QKD network. A unique address assigned to individual user, coupled with degrading probability of predicting the source of the qubit transmitted in the channel offer excellent secure mechanism against any form of channel attack on OCDMA based QKD network. Flexibility in design as well as ease of modifying the number of users are equally exceptional quality presented by the code in contrast to Optical Orthogonal Code (OOC) earlier implemented for the same purpose. The code was successfully applied to eight simultaneous users at effective key rate of 32 bps over 27 km transmission distance.

  7. Precision spectroscopy of high rotational states in H2 investigated by Doppler-free two-photon laser spectroscopy in the EF 1Σg+-X 1Σg+ system

    NASA Astrophysics Data System (ADS)

    Dickenson, G. D.; Salumbides, E. J.; Niu, M.; Jungen, Ch.; Ross, S. C.; Ubachs, W.

    2012-09-01

    Recently a high precision spectroscopic investigation of the EF1Σg+-X1Σg+ system of molecular hydrogen was reported yielding information on QED and relativistic effects in a sequence of rotational quantum states in the X1Σg+ ground state of the H2 molecule [Salumbides , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.043005 107, 043005 (2011)]. The present paper presents a more detailed description of the methods and results. Furthermore, the paper serves as a stepping stone towards a continuation of the previous study by extending the known level structure of the EF1Σg+ state to highly excited rovibrational levels through Doppler-free two-photon spectroscopy. Based on combination differences between vibrational levels in the ground state, and between three rotational branches (O, Q, and S branches) assignments of excited EF1Σg+ levels, involving high vibrational and rotational quantum numbers, can be unambiguously made. For the higher EF1Σg+ levels, where no combination differences are available, calculations were performed using the multichannel quantum defect method, for a broad class of vibrational and rotational levels up to J=19. These predictions were used for assigning high-J EF levels and are found to be accurate within 5 cm-1.

  8. Quantum mechanical approaches to in silico enzyme characterization and drug design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nilmeier, J P; Fattebert, J L; Jacobson, M P

    2012-01-17

    The astonishing, exponentially increasing rates of genome sequencing has led to one of the most significant challenges for the biological and computational sciences in the 21st century: assigning the likely functions of the encoded proteins. Enzymes represent a particular challenge, and a critical one, because the universe of enzymes is likely to contain many novel functions that may be useful for synthetic biology, or as drug targets. Current approaches to protein annotation are largely based on bioinformatics. At the simplest level, this annotation involves transferring the annotations of characterized enzymes to related sequences. In practice, however, there is no simple,more » sequence based criterion for transferring annotations, and bioinformatics alone cannot propose new enzymatic functions. Structure-based computational methods have the potential to address these limitations, by identifying potential substrates of enzymes, as we and others have shown. One successful approach has used in silico 'docking' methods, more commonly applied in structure-based drug design, to identify possible metabolite substrates. A major limitation of this approach is that it only considers substrate binding, and does not directly assess the potential of the enzyme to catalyze a particular reaction using a particular substrate. That is, substrate binding affinity is necessary but not sufficient to assign function. A reaction profile is ultimately what is needed for a more complete quantitative description of function. To address this rather fundamental limitation, they propose to use quantum mechanical methods to explicitly compute transition state barriers that govern the rates of catalysis. Although quantum mechanical, and mixed quantum/classical (QM/MM), methods have been used extensively to investigate enzymatic reactions, the focus has been primarily on elucidating complex reaction mechanisms. Here, the key catalytic steps are known, and they use these methods quantify substrate specificity. That is, we bring the power of quantum mechanics to bear on the problem of annotating enzyme function, which is a novel approach. Although it has been clear to us at the Jacobson group for some time that enzyme specificity may be encoded in transition states, rather than simply substrate recognition, the main limitation has always been computational expense. Using a hierarchy of different methods, they can reduce the list of plausible substrates of an enzyme to a small number in most cases, but even identifying the transition states for a dozen plausible substrates requires significant computational effort, beyond what is practical using standard QM/MM methods. For this project, they have chosen two enzyme superfamilies which they have used as 'model systems' for functional assignment. The enolase superfamily is a large group of {alpha}-{beta} barrel enzymes with highly diverse substrates and chemical transformations. Despite decades of work, over a third of the superfamily remains unassigned, which means that the remaining cases are by definition difficult to assign. They have focused on acid sugar dehydratases, and have considerable expertise on the matter. They are also interested in the isoprenoid synthase superfamily, which is of central interest to the synthetic biology community, because these enzymes are used by nature to create complex rare natural products of medicinal value. the most notable example of this is the artemisinin, an antimalarial compound that is found in trace amounts in the wormwod root. From the standpoint of enzyme function assignment, these enzymes are intriguing because they use a small number of chemically simple substrates to generate, potentially, tens of thousands of different products. Hence, substrate binding specificity is only a small part of the challenge; the key is determining how the enzyme directs the carbocation chemistry to specific products. These more complex modeling approaches clearly require quantum mechanical methods.« less

  9. Global analysis of fermion mixing with exotics

    NASA Technical Reports Server (NTRS)

    Nardi, Enrico; Roulet, Esteban; Tommasini, Daniele

    1991-01-01

    The limits are analyzed on deviation of the lepton and quark weak-couplings from their standard model values in a general class of models where the known fermions are allowed to mix with new heavy particles with exotic SU(2) x U(1) quantum number assignments (left-handed singlets or right-handed doublets). These mixings appear in many extensions of the electroweak theory such as models with mirror fermions, E(sub 6) models, etc. The results update previous analyses and improve considerably the existing bounds.

  10. VizieR Online Data Catalog: ExoMol line lists for phosphine (PH3) (Sousa-Silva+,

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, C.; Al-Refaie, A. F.; Tennyson, J.; Yurchenko, S. N.

    2014-11-01

    The data are in two parts. The first, ph3_0-46.dat contains a list of 9,787,832 rovibrational states. Each state is labelled with: 6 normal mode vibrational quantum numbers, 1 multiplexed L quantum number and the vibrational symmetry; three rotational quantum numbers including the total angular momentum J, the projection of J in the z-axis K,rotational symmetry and the total symmetry quantum number Gamma In addition there are nine local mode vibrational numbers and the largest coefficient used to assign the state in question. Each rovibrational state has a unique number, which is the number of the row in which it appears in the file. This number is the means by which the state is related to the second part of the data system, the transitions files. The total degeneracy is also given to facilitate the intensity calculations. Because of their size, the transitions are listed in 100 separate files, each containing all the transitions in a 100cm-1 frequency range. These and their contents are ordered by increasing frequency. The name of the file includes the lowest frequency in the range; thus the a-00500.dat file contains all the transitions in the frequency range 500-600cm-1. The transition files contain three columns: the reference number in the energy file of the upper state; that of the lower state; and the Einstein A coefficient of the transition. The energy file and the transitions files are zipped, and need to be extracted before use. There is a Fortran 90 programme, s_SAlTY.f90 which may be used to generate synthetic spectra (see s_SAlTY.txt for details). Using this, it is possible to generate absorption or emission spectra in either 'stick' form or else cross-sections convoluted with a gaussian with the half-width at half maximum being specified by the user, or with a the temperature-dependent doppler half-width. Sample input files s*.inp for use with sSAlTY.f90 are supplied. (10 data files).

  11. An Experimental and Quantum Chemical Study of the Electronic Spectrum of the HBCl Free Radical

    NASA Astrophysics Data System (ADS)

    Gharaibeh, Mohammed A.; Nagarajan, Ramya; Clouthier, Dennis J.; Tarroni, Ricardo

    2012-06-01

    The chloroborane (HBCl) free radical has a complex electronic spectrum in the visible that involves a transition from a bent ground state to a linear excited state, both of which are the Renner-Teller components of what would be a ^2π state at linearity. We have used the synchronous-scan LIF and single vibronic level emission techniques to untangle the many overlapping vibronic bands and assign upper state K quantum numbers for jet-cooled HBCl and DBCl. The radicals were produced in a pulsed electric discharge jet using a precursor mixture of boron trichloride (BCl_3) and hydrogen or deuterium in high-pressure argon. As an important aid to understanding the data, the ground and excited state high level ab initio potential energy surfaces (PES) have been calculated and the vibrational levels obtained variationally. The calculated ground state levels are in excellent agreement with the emission data validating the quality of the PES. Aside from an approximately 100 cm-1 shift in the upper state electronic term value, the calculated excited state vibrational energy levels and isotope shifts match the LIF data very well, allowing the observed bands to be assigned with confidence.

  12. New measurements and analysis of the far-infrared spectrum of CH2DOH in the lowest torsional vibrational state (e0)

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Indra

    2016-05-01

    In this work the far infrared (FIR) absorption spectrum has been measured for the asymmetrically mono deuterated Methanol (CH2DOH) species in the wavenumber range of 15-1200 cm-1 better accuracy and signal/noise ratio than known before. Assignments have been made for b-type transitions in the lowest lying torsional vibrational state trans-(e0) for a wide range of rotational angular momentum. The assignments have been rigorously confirmed by the residual loop defect methods. The rR-branch wavenumbers are analyzed by the usual state dependent expansion parameters and the Q-Branch origins. These origins have been used to calculate the torsional and torsional-rotation interaction contributions. These findings are in good agreement with predicted from the Hamiltonian model described in recent publications. A large number of assignments have also been made in the millimeter wave spectrum recorded earlier and thereby evaluated the asymmetry splitting parameters for 4 different axial rotational angular momentum quantum numbers. The analysis and interpretation of the spectra are reported. New assignments for about 260 transitions are included the text and a catalog of about 1500 transitions belonging to the e0 species is prepared (Appendix 1) and is made available through the open server in "Research Gate" and will be freely available to others.

  13. A probability space for quantum models

    NASA Astrophysics Data System (ADS)

    Lemmens, L. F.

    2017-06-01

    A probability space contains a set of outcomes, a collection of events formed by subsets of the set of outcomes and probabilities defined for all events. A reformulation in terms of propositions allows to use the maximum entropy method to assign the probabilities taking some constraints into account. The construction of a probability space for quantum models is determined by the choice of propositions, choosing the constraints and making the probability assignment by the maximum entropy method. This approach shows, how typical quantum distributions such as Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein are partly related with well-known classical distributions. The relation between the conditional probability density, given some averages as constraints and the appropriate ensemble is elucidated.

  14. VMS-ROT: A New Module of the Virtual Multifrequency Spectrometer for Simulation, Interpretation, and Fitting of Rotational Spectra

    PubMed Central

    2017-01-01

    The Virtual Multifrequency Spectrometer (VMS) is a tool that aims at integrating a wide range of computational and experimental spectroscopic techniques with the final goal of disclosing the static and dynamic physical–chemical properties “hidden” in molecular spectra. VMS is composed of two parts, namely, VMS-Comp, which provides access to the latest developments in the field of computational spectroscopy, and VMS-Draw, which provides a powerful graphical user interface (GUI) for an intuitive interpretation of theoretical outcomes and a direct comparison to experiment. In the present work, we introduce VMS-ROT, a new module of VMS that has been specifically designed to deal with rotational spectroscopy. This module offers an integrated environment for the analysis of rotational spectra: from the assignment of spectral transitions to the refinement of spectroscopic parameters and the simulation of the spectrum. While bridging theoretical and experimental rotational spectroscopy, VMS-ROT is strongly integrated with quantum-chemical calculations, and it is composed of four independent, yet interacting units: (1) the computational engine for the calculation of the spectroscopic parameters that are employed as a starting point for guiding experiments and for the spectral interpretation, (2) the fitting-prediction engine for the refinement of the molecular parameters on the basis of the assigned transitions and the prediction of the rotational spectrum of the target molecule, (3) the GUI module that offers a powerful set of tools for a vis-à-vis comparison between experimental and simulated spectra, and (4) the new assignment tool for the assignment of experimental transitions in terms of quantum numbers upon comparison with the simulated ones. The implementation and the main features of VMS-ROT are presented, and the software is validated by means of selected test cases ranging from isolated molecules of different sizes to molecular complexes. VMS-ROT therefore offers an integrated environment for the analysis of the rotational spectra, with the innovative perspective of an intimate connection to quantum-chemical calculations that can be exploited at different levels of refinement, as an invaluable support and complement for experimental studies. PMID:28742339

  15. Vibration-rotation-tunneling dynamics in small water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliano, Nick

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm -1 intermolecular vibration of the water dimer-d 4. Each of the VRT subbands originate from K a''=0 and terminate in either K a'=0 or 1. These data provide a complete characterization of the tunneling dynamics in themore » vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A' rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K a' quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a' symmetry, and the vibration is assigned as the v 12 acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D 2O-DOH isotopomer.« less

  16. Defect states in hexagonal boron nitride: Assignments of observed properties and prediction of properties relevant to quantum computation

    NASA Astrophysics Data System (ADS)

    Sajid, A.; Reimers, Jeffrey R.; Ford, Michael J.

    2018-02-01

    Key properties of nine possible defect sites in hexagonal boron nitride (h-BN), VN,VN -1,CN,VNO2 B,VNNB,VNCB,VBCN,VBCNS iN , and VNCBS iB , are predicted using density-functional theory and are corrected by applying results from high-level ab initio calculations. Observed h-BN electron-paramagnetic resonance signals at 22.4, 20.83, and 352.70 MHz are assigned to VN,CN, and VNO2 B , respectively, while the observed photoemission at 1.95 eV is assigned to VNCB . Detailed consideration of the available excited states, allowed spin-orbit couplings, zero-field splitting, and optical transitions is made for the two related defects VNCB and VBCN . VNCB is proposed for realizing long-lived quantum memory in h-BN. VBCN is predicted to have a triplet ground state, implying that spin initialization by optical means is feasible and suitable optical excitations are identified, making this defect of interest for possible quantum-qubit operations.

  17. VizieR Online Data Catalog: CH4 and hot methane continuum hybrid line list (Yurchenko+, 2017)

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. N.; Amundsen, D. S.; Tennyson, J.; Waldmann, I. P.

    2017-07-01

    The states file ch4_e50.dat contains a list of rovibrational states. Each state is labelled with: nine normal mode vibrational quantum numbers and the vibrational symmetry; three rotational quantum numbers including the total angular momentum J and rotational symmetry; the total symmetry quantum number Gamma and the running number in the same (J,Gamma) block. In addition there are nine local mode vibrational numbers and the largest coefficient used to assign the state in question. Each rovibrational state has a unique number, which is the number of the row in which it appears in the file. This number is the means by which the state is related to the second part of the data system, the transitions files. The total degeneracy is also given to facilitate the intensity calculations. Because of their size, the transitions are listed in 120 separate files, each containing all the transitions in a 100cm-1 frequency range. These transition files t_*.dat contain the strong methane lines lines consisting of three columns: the reference number in the energy file of the upper state, that of the lower state, the Einstein A coefficient of the transition and the transition wavenumber. These entries are ordered by increasing frequency. The name of the file includes the lowest frequency in the range; thus the t-00500.dat file contains all the transitions in the frequency range 500-600cm-1. 19 histograms xYYYYK.dat files contain CH4_ super-lines representing the continuum computed at the temperature T=YYYYK using R=1000000 (7090081 super-lines each) covering the wavenumber range from 10 to 12000cm-1. The energy file, the transitions files and the histograms files are bzipped, and need to be extracted before use. The pressure broadening parameters used in the calculations are listed in broad.dat. A programme ExoCross to generate synthetic spectra from these line lists can be obtained at www.exomol.com. (4 data files).

  18. Fundamental bands of S(32)O2(16)

    NASA Technical Reports Server (NTRS)

    Fox, K.; Tejwani, G. D. T.; Corice, R. J., Jr.

    1972-01-01

    The infrared-active vibration-rotation fundamentals of sulfur dioxide were measured with moderately high spectral resolution. Quantum number assignments were made for spectral lines from J = O to 57, by comparison with theoretically computed spectra which include the effects of centrifugal distortion. The following values for the band centers were determined: nu sub 1 = 1151.65 + or - 0.10/cm, nu sub 2 = 517.75 + or - 0.10/cm, and nu sub 3 = 1362.00 + or - 0.10/cm. Intensities of the observed lines have also been computed. Dipole moment derivatives were obtained.

  19. Masses and Regge trajectories of triply heavy Ω_{ccc} and Ω_{bbb} baryons

    NASA Astrophysics Data System (ADS)

    Shah, Zalak; Rai, Ajay Kumar

    2017-10-01

    The excited state masses of triply charm and triply bottom Ω baryons are exhibited in the present study. The masses are computed for 1 S-5 S, 1 P-5 P, 1 D-4 D and 1 F-2 F states in the Hypercentral Constituent Quark Model (hCQM) with the hyper Coulomb plus linear potential. The triply charm/bottom baryon masses are experimentally unknown so that the Regge trajectories are plotted using computed masses to assign the quantum numbers of these unknown states.

  20. Ames S-32 O-16 O-18 Line List for High-Resolution Experimental IR Analysis

    NASA Technical Reports Server (NTRS)

    Huang, Xinchuan; Schwenke, David W.; Lee, Timothy J.

    2016-01-01

    By comparing to the most recent experimental data and spectra of the SO2 628 ?1/?3 bands (see Ulenikov et al., JQSRT 168 (2016) 29-39), this study illustrates the reliability and accuracy of the Ames-296K SO2 line list, which is accurate enough to facilitate such high-resolution spectroscopic analysis. The SO2 628 IR line list is computed on a recently improved potential energy surface (PES) refinement, denoted Ames-Pre2, and the published purely ab initio CCSD(T)/aug-cc-pVQZ dipole moment surface. Progress has been made in both energy level convergence and rovibrational quantum number assignments agreeing with laboratory analysis models. The accuracy of the computed 628 energy levels and line list is similar to what has been achieved and reported for SO2 626 and 646, i.e. 0.01-0.03 cm(exp -1) for bands up to 5500 cm(exp -1). During the comparison, we found some discrepancies in addition to overall good agreements. The three-IR-list based feature-by-feature analysis in a 0.25 cm(exp -1) spectral window clearly demonstrates the power of the current Ames line lists with new assignments, correction of some errors, and intensity contributions from varied sources including other isotopologues. We are inclined to attribute part of detected discrepancies to an incomplete experimental analysis and missing intensity in the model. With complete line position, intensity, and rovibrational quantum numbers determined at 296 K, spectroscopic analysis is significantly facilitated especially for a spectral range exhibiting such an unusually high density of lines. The computed 628 rovibrational levels and line list are accurate enough to provide alternatives for the missing bands or suspicious assignments, as well as helpful to identify these isotopologues in various celestial environments. The next step will be to revisit the SO2 828 and 646 spectral analyses.

  1. Nonconservative Forces via Quantum Reservoir Engineering

    NASA Astrophysics Data System (ADS)

    Vuglar, Shanon L.; Zhdanov, Dmitry V.; Cabrera, Renan; Seideman, Tamar; Jarzynski, Christopher; Bondar, Denys I.

    2018-06-01

    A systematic approach is given for engineering dissipative environments that steer quantum wave packets along desired trajectories. The methodology is demonstrated with several illustrative examples: environment-assisted tunneling, trapping, effective mass assignment, and pseudorelativistic behavior. Nonconservative stochastic forces do not inevitably lead to decoherence—we show that purity can be well preserved. These findings highlight the flexibility offered by nonequilibrium open quantum dynamics.

  2. Local quantum measurement and no-signaling imply quantum correlations.

    PubMed

    Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S

    2010-04-09

    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, D. J.

    It is shown that a weak measurement of a quantum system produces a new state of the quantum system which depends on the prior state, as well as the (uncontrollable) measured position of the pointer variable of the weak-measurement apparatus. The result imposes a constraint on hidden-variable theories which assign a different state to a quantum system than standard quantum mechanics. The constraint means that a crypto-nonlocal hidden-variable theory can be ruled out in a more direct way than previously done.

  4. Relative Intensity of a Cross-Over Resonance to Lamb Dips Observed in Stark Spectroscopy of Methane

    NASA Astrophysics Data System (ADS)

    Okuda, Shoko; Sasada, Hiroyuki

    2017-06-01

    Last ISMS, we reported on Stark effects of the νb{3} band of methane observed with a sub-Doppler resolution spectrometer. We determined the rotation-induced permanent dipole moment (PEDM) in the vibrational ground state and the vibration-, rotation-, and Coriolis-type-interaction-induced PEDMs in the v_{3}=1 state. Figure illustrates Stark modulation spectrum of the Q(6)E with the external electric field of 31.0 kV/cm and the selection rule of Δ M=±1, where M is the magnetic quantum number. The Δ M=1 and -1 components of the Lamb dips labeled by A and B are resolved, and the central component C is identified with the cross-over resonance. The Lamb dips are assigned to the magnetic quantum numbers of the lower and upper states, (M'',M') according to the Clebsch-Gordan coefficients. We found that the relative intensity of the cross-over resonance to the associated Lamb dips depends on the P, Q, and R branches. We ascribe the dependence to the collisional relaxation processes.

  5. Molecular geometry and vibrational studies of 3,5-diamino-1,2,4-triazole using quantum chemical calculations and FT-IR and FT-Raman spectroscopies

    NASA Astrophysics Data System (ADS)

    Guennoun, L.; El jastimi, J.; Guédira, F.; Marakchi, K.; Kabbaj, O. K.; El Hajji, A.; Zaydoun, S.

    2011-01-01

    The 3,5-diamino-1,2,4-triazole (guanazole) was investigated by vibrational spectroscopy and quantum methods. The solid phase FT-IR and FT-Raman spectra were recorded in the region 4000-400 cm -1 and 3600-50 cm -1 respectively, and the band assignments were supported by deuteration effects. The results of energy calculations have shown that the most stable form is 1H-3,5-diamino-1,2,4-triazole under C 1 symmetry. For this form, the molecular structure, harmonic vibrational wave numbers, infrared intensities and Raman activities were calculated by the ab initio/HF and DFT/B3LYP methods using 6-31G* basis set. The calculated geometrical parameters of the guanazole molecule using B3LYP methodology are in good agreement with the previously reported X-ray data, and the scaled vibrational wave number values are in good agreement with the experimental data. The normal vibrations were characterized in terms of potential energy distribution (PEDs) using VEDA 4 program.

  6. From the Kochen-Specker theorem to noncontextuality inequalities without assuming determinism.

    PubMed

    Kunjwal, Ravi; Spekkens, Robert W

    2015-09-11

    The Kochen-Specker theorem demonstrates that it is not possible to reproduce the predictions of quantum theory in terms of a hidden variable model where the hidden variables assign a value to every projector deterministically and noncontextually. A noncontextual value assignment to a projector is one that does not depend on which other projectors-the context-are measured together with it. Using a generalization of the notion of noncontextuality that applies to both measurements and preparations, we propose a scheme for deriving inequalities that test whether a given set of experimental statistics is consistent with a noncontextual model. Unlike previous inequalities inspired by the Kochen-Specker theorem, we do not assume that the value assignments are deterministic and therefore in the face of a violation of our inequality, the possibility of salvaging noncontextuality by abandoning determinism is no longer an option. Our approach is operational in the sense that it does not presume quantum theory: a violation of our inequality implies the impossibility of a noncontextual model for any operational theory that can account for the experimental observations, including any successor to quantum theory.

  7. State-dependent rotations of spins by weak measurements

    NASA Astrophysics Data System (ADS)

    Miller, D. J.

    2011-03-01

    It is shown that a weak measurement of a quantum system produces a new state of the quantum system which depends on the prior state, as well as the (uncontrollable) measured position of the pointer variable of the weak-measurement apparatus. The result imposes a constraint on hidden-variable theories which assign a different state to a quantum system than standard quantum mechanics. The constraint means that a crypto-nonlocal hidden-variable theory can be ruled out in a more direct way than previously done.

  8. The network impact of hijacking a quantum repeater

    NASA Astrophysics Data System (ADS)

    Satoh, Takahiko; Nagayama, Shota; Oka, Takafumi; Van Meter, Rodney

    2018-07-01

    In quantum networking, repeater hijacking menaces the security and utility of quantum applications. To deal with this problem, it is important to take a measure of the impact of quantum repeater hijacking. First, we quantify the work of each quantum repeater with regards to each quantum communication. Based on this, we show the costs for repeater hijacking detection using distributed quantum state tomography and the amount of work loss and rerouting penalties caused by hijacking. This quantitative evaluation covers both purification-entanglement swapping and quantum error correction repeater networks. Naive implementation of the checks necessary for correct network operation can be subverted by a single hijacker to bring down an entire network. Fortunately, the simple fix of randomly assigned testing can prevent such an attack.

  9. Effective size of certain macroscopic quantum superpositions.

    PubMed

    Dür, Wolfgang; Simon, Christoph; Cirac, J Ignacio

    2002-11-18

    Several experiments and experimental proposals for the production of macroscopic superpositions naturally lead to states of the general form /phi(1)>( multiply sign in circle N)+/phi 2 >( multiply sign in circle N), where the number of subsystems N is very large, but the states of the individual subsystems have large overlap, // 2=1-epsilon 2. We propose two different methods for assigning an effective particle number to such states, using ideal Greenberger-Horne-Zeilinger states of the form /0>( multiply sign in circle n)+/1>( multiply sign in circle n) as a standard of comparison. The two methods are based on decoherence and on a distillation protocol, respectively. Both lead to an effective size n of the order of N epsilon 2.

  10. Fermi resonance in CO2: Mode assignment and quantum nuclear effects from first principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Basire, Marie; Mouhat, Félix; Fraux, Guillaume; Bordage, Amélie; Hazemann, Jean-Louis; Louvel, Marion; Spezia, Riccardo; Bonella, Sara; Vuilleumier, Rodolphe

    2017-04-01

    Vibrational spectroscopy is a fundamental tool to investigate local atomic arrangements and the effect of the environment, provided that the spectral features can be correctly assigned. This can be challenging in experiments and simulations when double peaks are present because they can have different origins. Fermi dyads are a common class of such doublets, stemming from the resonance of the fundamental excitation of a mode with the overtone of another. We present a new, efficient approach to unambiguously characterize Fermi resonances in density functional theory (DFT) based simulations of condensed phase systems. With it, the spectral features can be assigned and the two resonating modes identified. We also show how data from DFT simulations employing classical nuclear dynamics can be post-processed and combined with a perturbative quantum treatment at a finite temperature to include analytically thermal quantum nuclear effects. The inclusion of these effects is crucial to correct some of the qualitative failures of the Newtonian dynamics simulations at a low temperature such as, in particular, the behavior of the frequency splitting of the Fermi dyad. We show, by comparing with experimental data for the paradigmatic case of supercritical CO2, that these thermal quantum effects can be substantial even at ambient conditions and that our scheme provides an accurate and computationally convenient approach to account for them.

  11. Combining multinuclear high-resolution solid-state MAS NMR and computational methods for resonance assignment of glutathione tripeptide.

    PubMed

    Sardo, Mariana; Siegel, Renée; Santos, Sérgio M; Rocha, João; Gomes, José R B; Mafra, Luis

    2012-06-28

    We present a complete set of experimental approaches for the NMR assignment of powdered tripeptide glutathione at natural isotopic abundance, based on J-coupling and dipolar NMR techniques combined with (1)H CRAMPS decoupling. To fully assign the spectra, two-dimensional (2D) high-resolution methods, such as (1)H-(13)C INEPT-HSQC/PRESTO heteronuclear correlations (HETCOR), (1)H-(1)H double-quantum (DQ), and (1)H-(14)N D-HMQC correlation experiments, have been used. To support the interpretation of the experimental data, periodic density functional theory calculations together with the GIPAW approach have been used to calculate the (1)H and (13)C chemical shifts. It is found that the shifts calculated with two popular plane wave codes (CASTEP and Quantum ESPRESSO) are in excellent agreement with the experimental results.

  12. VizieR Online Data Catalog: ExoMol line lists for CH4 (Yurchenko+, 2014)

    NASA Astrophysics Data System (ADS)

    Yurchenko, S. N.; Tennyson, J.

    2014-02-01

    The data are in two parts. The first, ch4_0-39.dat contains a list of 7,819,352 rovibrational states. Each state is labelled with: nine normal mode vibrational quantum numbers and the vibrational symmety; three rotational quantum numbers including the total angular momentum J and rotational symmetry; the total symmetry quantum number Gamma and the running number in the same (J,Gamma,Polyad) combination, where Polyad is a polyad number (see paper). In addition there are nine local mode vibrational numbers and the largest coefficient used to assign the state in question. Each rovibrational state has a unique number, which is the number of the row in which it appears in the file. This number is the means by which the state is related to the second part of the data system, the transitions files. The total degeneracy is also given to facilitate the intensity calculations. Because of their size, the transitions are listed in 120 separate files, each containing all the transitions in a 100cm-1 frequency range. These and their contents are ordered by increasing frequency. The name of the file includes the lowest frequency in the range; thus the a-00500.dat file contains all the transitions in the frequency range 500-600cm-1. The transition files contain three columns: the reference number in the energy file of the upper state; that of the lower state; and the Einstein A coefficient of the transition. The energy file and the transitions files are zipped, and need to be extracted before use. There is a Fortran 90 programme, s_10to10.f90 which may be used to generate synthetic spectra (see s_10to10.txt for details). Using this, it is possible to generate absorption or emission spectra in either 'stick' form or else cross-sections convoluted with a gaussian with the half-width at half maximum being specified by the user, or with a the temperature-dependent doppler half-width. Sample input files s*.inp for use with s10to10.f90 are supplied. (9 data files).

  13. VizieR Online Data Catalog: ExoMol line lists for H216O2 (Al-Refaie+, 2016)

    NASA Astrophysics Data System (ADS)

    Al-Refaie, A. F.; Polyansky, O. L.; Tennyson, J.; Yurchenko, S. N.

    2016-06-01

    The data are in two parts. The first, h2o20-85.dat contains a list of 7,560,352 rovibrational states. Each state is labelled with: six normal mode vibrational quantum numbers the torsional symmetry number (tau) and the vibrational symmetry; three rotational quantum numbers including the total angular momentum J and rotational symmetry; the total symmetry quantum number Gamma and the running number in the same J,Gamma block. In addition there are six local mode vibrational numbers and the largest coefficient used to assign the state in question. Each rovibrational state has a unique number, which is the number of the row in which it appears in the file. This number is the means by which the state is related to the second part of the data system, the transitions files. The total degeneracy is also given to facilitate the intensity calculations. Because of their size, the transitions are listed in 60 separate files, each containing all the transitions in a 100cm-1 frequency range. These and their contents are ordered by increasing frequency. The name of the file includes the lowest frequency in the range; thus the a-0500.dat file contains all the transitions in the frequency range 500-600cm-1. The transition files contain three columns: the reference number in the energy file of the upper state; that of the lower state; and the Einstein A coefficient of the transition. The energy file and the transitions files are zipped, and need to be extracted before use. There is a Fortran 90 programme, s_APTY.f90 which may be used to generate synthetic spectra (see s_APTY.txt for details). Using this, it is possible to generate absorption or emission spectra in either 'stick' form or else cross-sections convoluted with a gaussian with the half-width at half maximum being specified by the user, or with a the temperature-dependent doppler half-width. Sample input files s*.inp for use with sAPTY.f90 are supplied. (10 data files).

  14. Vibration-rotation-tunneling dynamics in small water clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pugliano, N.

    The goal of this work is to characterize the intermolecular vibrations of small water clusters. Using tunable far infrared laser absorption spectroscopy, large amplitude vibration-rotation-tunneling (VRT) dynamics in vibrationally excited states of the water dimer and the water trimer are investigated. This study begins with the measurement of 12 VRT subbands, consisting of approximately 230 transitions, which are assigned to an 82.6 cm[sup [minus]1] intermolecular vibration of the water dimer-d[sub 4]. Each of the VRT subbands originate from K[sub a][double prime]=0 and terminate in either K[sub a][prime]=0 or 1. These data provide a complete characterization of the tunneling dynamics inmore » the vibrationally excited state as well as definitive symmetry labels for all VRT energy levels. Furthermore, an accurate value for the A[prime] rotational constant is found to agree well with its corresponding ground state value. All other excited state rotational constants are fitted, and discussed in terms of the corresponding ground state constants. In this vibration, the quantum tunneling motions are determined to exhibit large dependencies with both the K[sub a][prime] quantum number and the vibrational coordinate, as is evidenced by the measured tunneling splittings. The generalized internal-axis-method treatment which has been developed to model the tunneling dynamics, is considered for the qualitative description of each tunneling pathway, however, the variation of tunneling splittings with vibrational excitation indicate that the high barrier approximation does not appear to be applicable for this vibrational coordinate. The data are consistent with a motion possessing a[prime] symmetry, and the vibration is assigned as the [nu][sub 12] acceptor bending coordinate. This assignment is in agreement with the vibrational symmetry, the resultsof high level ab initio calculations, and preliminary data assigned to the analogous vibration in the D[sub 2]O-DOH isotopomer.« less

  15. Quantum States and Generalized Observables: A Simple Proof of Gleason's Theorem

    NASA Astrophysics Data System (ADS)

    Busch, P.

    2003-09-01

    A quantum state can be understood in a loose sense as a map that assigns a value to every observable. Formalizing this characterization of states in terms of generalized probability distributions on the set of effects, we obtain a simple proof of the result, analogous to Gleason’s theorem, that any quantum state is given by a density operator. As a corollary we obtain a vonNeumann type argument against noncontextual hidden variables. It follows that on an individual interpretation of quantum mechanics the values of effects are appropriately understood as propensities.

  16. A Gleason-Type Theorem for Any Dimension Based on a Gambling Formulation of Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Benavoli, Alessio; Facchini, Alessandro; Zaffalon, Marco

    2017-07-01

    Based on a gambling formulation of quantum mechanics, we derive a Gleason-type theorem that holds for any dimension n of a quantum system, and in particular for n=2. The theorem states that the only logically consistent probability assignments are exactly the ones that are definable as the trace of the product of a projector and a density matrix operator. In addition, we detail the reason why dispersion-free probabilities are actually not valid, or rational, probabilities for quantum mechanics, and hence should be excluded from consideration.

  17. Assignment of absolute stereostructures through quantum mechanics electronic and vibrational circular dichroism calculations.

    PubMed

    Dai, Peng; Jiang, Nan; Tan, Ren-Xiang

    2016-01-01

    Elucidation of absolute configuration of chiral molecules including structurally complex natural products remains a challenging problem in organic chemistry. A reliable method for assigning the absolute stereostructure is to combine the experimental circular dichroism (CD) techniques such as electronic and vibrational CD (ECD and VCD), with quantum mechanics (QM) ECD and VCD calculations. The traditional QM methods as well as their continuing developments make them more applicable with accuracy. Taking some chiral natural products with diverse conformations as examples, this review describes the basic concepts and new developments of QM approaches for ECD and VCD calculations in solution and solid states.

  18. The IINS/quantum chemical studies of 17α- and 21-hydroxy-derivatives of progesterone

    NASA Astrophysics Data System (ADS)

    Szyczewski, A.; Hołderna-Natkaniec, K.; Natkaniec, I.

    2003-05-01

    The inelastic incoherent neutron scattering and quantum chemical studies have been performed on 17 and 21 hydroxy progesterone and the assignment of internal modes have been proposed in the range up to 700 cm -1. The lattice branch of PDS reveals modes which could be attributed to torsions of rings A and D (cyclohexane and cyclopentane) of the pregnane skeleton. An assignment of the torsional vibrations of methyl groups in the range 150-300 cm -1 and the deformation and out-of plane vibrations of CCOH groups has been proposed. An analysis of the effect of hydrogen bonds on PDS spectra has been performed.

  19. Expected number of quantum channels in quantum networks.

    PubMed

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-07-15

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks.

  20. Expected number of quantum channels in quantum networks

    PubMed Central

    Chen, Xi; Wang, He-Ming; Ji, Dan-Tong; Mu, Liang-Zhu; Fan, Heng

    2015-01-01

    Quantum communication between nodes in quantum networks plays an important role in quantum information processing. Here, we proposed the use of the expected number of quantum channels as a measure of the efficiency of quantum communication for quantum networks. This measure quantified the amount of quantum information that can be teleported between nodes in a quantum network, which differs from classical case in that the quantum channels will be consumed if teleportation is performed. We further demonstrated that the expected number of quantum channels represents local correlations depicted by effective circles. Significantly, capacity of quantum communication of quantum networks quantified by ENQC is independent of distance for the communicating nodes, if the effective circles of communication nodes are not overlapped. The expected number of quantum channels can be enhanced through transformations of the lattice configurations of quantum networks via entanglement swapping. Our results can shed lights on the study of quantum communication in quantum networks. PMID:26173556

  1. About approximation of integer factorization problem by the combination fixed-point iteration method and Bayesian rounding for quantum cryptography

    NASA Astrophysics Data System (ADS)

    Ogorodnikov, Yuri; Khachay, Michael; Pljonkin, Anton

    2018-04-01

    We describe the possibility of employing the special case of the 3-SAT problem stemming from the well known integer factorization problem for the quantum cryptography. It is known, that for every instance of our 3-SAT setting the given 3-CNF is satisfiable by a unique truth assignment, and the goal is to find this assignment. Since the complexity status of the factorization problem is still undefined, development of approximation algorithms and heuristics adopts interest of numerous researchers. One of promising approaches to construction of approximation techniques is based on real-valued relaxation of the given 3-CNF followed by minimizing of the appropriate differentiable loss function, and subsequent rounding of the fractional minimizer obtained. Actually, algorithms developed this way differ by the rounding scheme applied on their final stage. We propose a new rounding scheme based on Bayesian learning. The article shows that the proposed method can be used to determine the security in quantum key distribution systems. In the quantum distribution the Shannon rules is applied and the factorization problem is paramount when decrypting secret keys.

  2. Quantum catastrophes: a case study

    NASA Astrophysics Data System (ADS)

    Znojil, Miloslav

    2012-11-01

    The bound-state spectrum of a Hamiltonian H is assumed real in a non-empty domain D of physical values of parameters. This means that for these parameters, H may be called crypto-Hermitian, i.e. made Hermitian via an ad hoc choice of the inner product in the physical Hilbert space of quantum bound states (i.e. via an ad hoc construction of the operator Θ called the metric). The name quantum catastrophe is then assigned to the N-tuple-exceptional-point crossing, i.e. to the scenario in which we leave the domain D along such a path that at the boundary of D, an N-plet of bound-state energies degenerates and, subsequently, complexifies. At any fixed N ⩾ 2, this process is simulated via an N × N benchmark effective matrix Hamiltonian H. It is being assigned such a closed-form metric which is made unique via an N-extrapolation-friendliness requirement. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  3. VizieR Online Data Catalog: ExoMol line lists for formaldehyde H2CO (Al-Refaie+,

    NASA Astrophysics Data System (ADS)

    Al-Refaie, A. F.; Yachmenev, A.; Tennyson, J.; Yurchenko, S. N.

    2015-01-01

    The data are in two parts. The first, h2co_0-70.dat contains a list of 10,296,998 rovibrational states. Each state is labelled with: 6 normal mode vibrational quantum numbers, and the vibrational symmetry; three rotational quantum numbers including the total angular momentum J, the projection of J in the z-axis K,rotational symmetry and the total symmetry quantum number Gamma In addition there are six local mode vibrational numbers and the largest coeffecient used to assign the state in question. Each rovibrational state has a unique number, which is the number of the row in which it appears in the file. This number is the means by which the state is related to the second part of the data system, the transitions files. The total degeneracy is also given to facilitate the intensity calculations. Because of their size, the transitions are listed in 100 separate files, each containing all the transitions in a 100cm-1 frequency range. These and their contents are ordered by increasing frequency. The name of the file includes the lowest frequency in the range; thus the a-00500.dat file contains all the transitions in the frequency range 500-600cm-1. The transition files contain three columns: the reference number in the energy file of the upper state; that of the lower state; and the Einstein A coefficient of the transition. The energy file and the transitions files are zipped, and need to be extracted before use. There is a Fortran 90 programme, s_AYTY.f90 which may be used to generate synthetic spectra (see s_AYTY.txt for details). Using this, it is possible to generate absorption or emission spectra in either 'stick' form or else cross-sections convoluted with a gaussian with the half-width at half maximum being specified by the user, or with a the temperature-dependent doppler half-width. Sample input files s*.inp for use with sSAlTY.f90 are supplied. (9 data files).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogh, R.H.; Mabbutt, B.C.; Kem, W.R.

    Sequence-specific assignments are reported for the 500-MHz H nuclear magnetic resonance (NMR) spectrum of the 48-residue polypeptide neurotoxin I from the sea anemone Stichodactyla helianthus (Sh I). Spin systems were first identified by using two-dimensional relayed or multiple quantum filtered correlation spectroscopy, double quantum spectroscopy, and spin lock experiments. Specific resonance assignments were then obtained from nuclear Overhauser enhancement (NOE) connectivities between protons from residues adjacent in the amino acid sequence. Of a total of 265 potentially observable resonances, 248 (i.e., 94%) were assigned, arising from 39 completely and 9 partially assigned amino acid spin systems. The secondary structure ofmore » Sh I was defined on the basis of the pattern of sequential NOE connectivities. NOEs between protons on separate strands of the polypeptide backbone, and backbone amide exchange rates. Sh I contains a four-stranded antiparallel {beta}-sheet encompassing residues 1-5, 16-24, 30-33, and 40-46, with a {beta}-bulge at residues 17 and 18 and a reverse turn, probably a type II {beta}-turn, involving residues 27-30. No evidence of {alpha}-helical structure was found.« less

  5. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1980-01-01

    A computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between O and 3000 GHz (such as; wavelengths longer than 100 m) is discussed. The catalogue was used as a planning guide and as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances.

  6. Analysis of the quantum numbers J(PC) of the X(3872) particle.

    PubMed

    Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J-F; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Budroni, S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciljak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Cyr, D; Daronco, S; Datta, M; D'Auria, S; Davies, T; D'Onofrio, M; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; DiTuro, P; Dörr, C; Donati, S; Donega, M; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Griffiths, M; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jensen, H; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kovalev, A; Kraan, A C; Kraus, J; Kravchenko, I; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Manca, G; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Nachtman, J; Nagano, A; Naganoma, J; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nigmanov, T; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ranjan, N; Rappoccio, S; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Sabik, S; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Saltzberg, D; Sánchez, C; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Sjolin, J; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuchiya, R; Tsuno, S; Turini, N; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Veramendi, G; Veszpremi, V; Vidal, R; Vila, I; Vilar, R; Vine, T; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waschke, S; Waters, D; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-03-30

    We present an analysis of angular distributions and correlations of the X(3872) particle in the exclusive decay mode X(3872)-->J/psipi+ pi- with J/psi-->mu+ mu-. We use 780 pb-1 of data from pp[over ] collisions at sqrt[s]=1.96 TeV collected with the CDF II detector at the Fermilab Tevatron. We derive constraints on spin, parity, and charge conjugation parity of the X(3872) particle by comparing measured angular distributions of the decay products with predictions for different J(PC) hypotheses. The assignments J(PC)=1++ and 2-+ are the only ones consistent with the data.

  7. Reassigning the Structures of Natural Products Using NMR Chemical Shifts Computed with Quantum Mechanics: A Laboratory Exercise

    ERIC Educational Resources Information Center

    Palazzo, Teresa A.; Truong, Tiana T.; Wong, Shirley M. T.; Mack, Emma T.; Lodewyk, Michael W.; Harrison, Jason G.; Gamage, R. Alan; Siegel, Justin B.; Kurth, Mark J.; Tantillo, Dean J.

    2015-01-01

    An applied computational chemistry laboratory exercise is described in which students use modern quantum chemical calculations of chemical shifts to assign the structure of a recently isolated natural product. A pre/post assessment was used to measure student learning gains and verify that students demonstrated proficiency of key learning…

  8. Precision Spectroscopy in Cold Molecules: The Lowest Rotational Interval of He2 + and Metastable He2

    NASA Astrophysics Data System (ADS)

    Jansen, Paul; Semeria, Luca; Hofer, Laura Esteban; Scheidegger, Simon; Agner, Josef A.; Schmutz, Hansjürg; Merkt, Frédéric

    2015-09-01

    Multistage Zeeman deceleration was used to generate a slow, dense beam of translationally cold He2 molecules in the metastable a 3Σu+ state. Precision measurements of the Rydberg spectrum of these molecules at high values of the principal quantum number n have been carried out. The spin-rotational state selectivity of the Zeeman-deceleration process was exploited to reduce the spectral congestion, minimize residual Doppler shifts, resolve the Rydberg series around n =200 and assign their fine structure. The ionization energy of metastable He2 and the lowest rotational interval of the X+ 2Σu+ (ν+=0 ) ground state of 4He2+ have been determined with unprecedented precision and accuracy by Rydberg-series extrapolation. Comparison with ab initio predictions of the rotational energy level structure of 4He2+ [W.-C. Tung, M. Pavanello, and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012)] enabled us to quantify the magnitude of relativistic and quantum-electrodynamics contributions to the fundamental rotational interval of He2+ .

  9. Solving the scalability issue in quantum-based refinement: Q|R#1.

    PubMed

    Zheng, Min; Moriarty, Nigel W; Xu, Yanting; Reimers, Jeffrey R; Afonine, Pavel V; Waller, Mark P

    2017-12-01

    Accurately refining biomacromolecules using a quantum-chemical method is challenging because the cost of a quantum-chemical calculation scales approximately as n m , where n is the number of atoms and m (≥3) is based on the quantum method of choice. This fundamental problem means that quantum-chemical calculations become intractable when the size of the system requires more computational resources than are available. In the development of the software package called Q|R, this issue is referred to as Q|R#1. A divide-and-conquer approach has been developed that fragments the atomic model into small manageable pieces in order to solve Q|R#1. Firstly, the atomic model of a crystal structure is analyzed to detect noncovalent interactions between residues, and the results of the analysis are represented as an interaction graph. Secondly, a graph-clustering algorithm is used to partition the interaction graph into a set of clusters in such a way as to minimize disruption to the noncovalent interaction network. Thirdly, the environment surrounding each individual cluster is analyzed and any residue that is interacting with a particular cluster is assigned to the buffer region of that particular cluster. A fragment is defined as a cluster plus its buffer region. The gradients for all atoms from each of the fragments are computed, and only the gradients from each cluster are combined to create the total gradients. A quantum-based refinement is carried out using the total gradients as chemical restraints. In order to validate this interaction graph-based fragmentation approach in Q|R, the entire atomic model of an amyloid cross-β spine crystal structure (PDB entry 2oNA) was refined.

  10. Physical realization of topological quantum walks on IBM-Q and beyond

    NASA Astrophysics Data System (ADS)

    Balu, Radhakrishnan; Castillo, Daniel; Siopsis, George

    2018-07-01

    We discuss an efficient physical realization of topological quantum walks on a one-dimensional finite lattice with periodic boundary conditions (circle). The N-point lattice is realized with {log}}2N qubits, and the quantum circuit utilizes a number of quantum gates that are polynomial in the number of qubits. In a certain scaling limit, we show that a large number of steps are implemented with a number of quantum gates which are independent of the number of steps. We ran the quantum algorithm on the IBM-Q five-qubit quantum computer, thus experimentally demonstrating topological features, such as boundary bound states, on a one-dimensional lattice with N = 4 points.

  11. SERS spectrum of gallic acid obtained from a modified silver colloid

    NASA Astrophysics Data System (ADS)

    Garrido, C.; Diaz-Fleming, G.; Campos-Vallette, M. M.

    2016-06-01

    Two different crystals of the gallic acid were microscopically separated from a p.a. commercial product. The Raman spectra analysis allowed distinguishing monomeric and dimeric structures. The vibrational wave numbers were computed using DFT quantum chemical calculations. The data obtained from wave number calculations are used to assign vibrational bands obtained in the Raman spectrum. The dimer, characterized as ellagic acid, involves the carboxyl and hydroxyl moieties. The Raman spectrum in water solution of each species is dominated by the monomeric form. A low negatively charged Ag colloid allowed obtain to the best of our knowledge, the first surface enhanced Raman scattering (SERS) spectrum of the gallic acid. The possible electrophilic attacking sites of the title molecule are identified using MEP surface plot study and the orientation of the analyte on the metal surface is proposed tilted to the surface.

  12. Simulated quantum computation of molecular energies.

    PubMed

    Aspuru-Guzik, Alán; Dutoi, Anthony D; Love, Peter J; Head-Gordon, Martin

    2005-09-09

    The calculation time for the energy of atoms and molecules scales exponentially with system size on a classical computer but polynomially using quantum algorithms. We demonstrate that such algorithms can be applied to problems of chemical interest using modest numbers of quantum bits. Calculations of the water and lithium hydride molecular ground-state energies have been carried out on a quantum computer simulator using a recursive phase-estimation algorithm. The recursive algorithm reduces the number of quantum bits required for the readout register from about 20 to 4. Mappings of the molecular wave function to the quantum bits are described. An adiabatic method for the preparation of a good approximate ground-state wave function is described and demonstrated for a stretched hydrogen molecule. The number of quantum bits required scales linearly with the number of basis functions, and the number of gates required grows polynomially with the number of quantum bits.

  13. Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita

    2015-01-14

    Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The highermore » the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.« less

  14. Multiple emissions of benzil at room temperature and 77 K and their assignments from ab initio quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin

    2011-01-01

    Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and/or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S1) as well as the second excited singlet (S2) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S1 state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S2 state. Ab initio calculations using the density functional theory at B3LYP/6-31G** level corroborate well with the experimental observations.

  15. Multiple emissions of benzil at room temperature and 77 K and their assignments from ab initio quantum chemical calculations.

    PubMed

    Bhattacharya, Bhaswati; Jana, Barnali; Bose, Debosreeta; Chattopadhyay, Nitin

    2011-01-28

    Multiple emissions have been observed from benzil under different conditions in solutions at room temperature as well as in low temperature glass matrices at 77 K. Low temperature emission has been monitored in rigid matrices frozen under different conditions of illumination. Steady state and time-resolved results together with the ab initio quantum chemical calculations provide, for the first time, the assignments of the different fluorescence bands to the different geometries and∕or electronic states of the fluorophore molecule. It is revealed that the skew form of benzil emits from the first (S(1)) as well as the second excited singlet (S(2)) states depending on the excitation wavelength, while the relaxed transplanar conformer fluoresces only from the S(1) state. The yet unexplored emission band peaking at around 360 nm has been assigned to originate from the S(2) state. Ab initio calculations using the density functional theory at B3LYP∕6-31G∗∗ level corroborate well with the experimental observations.

  16. The excited J = 01 Σu+ levels of D2: Measurements and ab initio quantum defect study

    NASA Astrophysics Data System (ADS)

    Glass-Maujean, M.; Jungen, Ch.; Dickenson, G. D.; de Oliveira, N.; Ubachs, W.

    2016-02-01

    The DESIRS beamline of the SOLEIL synchrotron facility, equipped with a vacuum ultraviolet Fourier-transform spectrometer has been used to measure P (N″ = 1) (N -N″ = - 1) absorption transitions of the D2 molecule. Some 44 P-lines were assigned and their transition frequencies determined up to excitation energies of 134,000 cm-1 above the ground state, thereby extending the earlier work by various authors, and considerably improving the spectral accuracy (<0.1 cm-1). The assignments have been aided by first principles multichannel quantum defect theory (MQDT) calculations. These calculations also provide predictions of the autoionization widths of the upper levels which agree well with the observed resonance widths.

  17. Ramsey numbers and adiabatic quantum computing.

    PubMed

    Gaitan, Frank; Clark, Lane

    2012-01-06

    The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers R(m,n) with m, n≥3, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers R(m,n). We show how the computation of R(m,n) can be mapped to a combinatorial optimization problem whose solution can be found using adiabatic quantum evolution. We numerically simulate this adiabatic quantum algorithm and show that it correctly determines the Ramsey numbers R(3,3) and R(2,s) for 5≤s≤7. We then discuss the algorithm's experimental implementation, and close by showing that Ramsey number computation belongs to the quantum complexity class quantum Merlin Arthur.

  18. Beyond Moore's law: towards competitive quantum devices

    NASA Astrophysics Data System (ADS)

    Troyer, Matthias

    2015-05-01

    A century after the invention of quantum theory and fifty years after Bell's inequality we see the first quantum devices emerge as products that aim to be competitive with the best classical computing devices. While a universal quantum computer of non-trivial size is still out of reach there exist a number commercial and experimental devices: quantum random number generators, quantum simulators and quantum annealers. In this colloquium I will present some of these devices and validation tests we performed on them. Quantum random number generators use the inherent randomness in quantum measurements to produce true random numbers, unlike classical pseudorandom number generators which are inherently deterministic. Optical lattice emulators use ultracold atomic gases in optical lattices to mimic typical models of condensed matter physics. In my talk I will focus especially on the devices built by Canadian company D-Wave systems, which are special purpose quantum simulators for solving hard classical optimization problems. I will review the controversy around the quantum nature of these devices and will compare them to state of the art classical algorithms. I will end with an outlook towards universal quantum computing and end with the question: which important problems that are intractable even for post-exa-scale classical computers could we expect to solve once we have a universal quantum computer?

  19. Transfer of nonclassical features in quantum teleportation via a mixed quantum channel

    NASA Astrophysics Data System (ADS)

    Lee, Jinhyoung; Kim, M. S.; Jeong, Hyunseok

    2000-09-01

    Quantum teleportation of a continuous-variable state is studied for the quantum channel of a two-mode squeezed vacuum influenced by a thermal environment. Each mode of the squeezed vacuum is assumed to undergo the same thermal influence. It is found that when the mixed two-mode squeezed vacuum for the quantum channel is separable, any nonclassical features, which may be imposed in an original unknown state, cannot be transferred to a receiving station. A two-mode Gaussian state, one of which is a mixed two-mode squeezed vacuum, is separable if and only if a positive well-defined P function can be assigned to it. The fidelity of teleportation is considered in terms of the noise factor given by the imperfect channel. It is found that quantum teleportation may give more noise than direct transmission of a field under the thermal environment, which is due to the fragile nature of quantum entanglement of the quantum channel.

  20. Improved Fake-State Attack to the Quantum Key Distribution Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Sheng; Wang, Jian; Tang, Chao-jing

    2012-09-01

    It has been showed that most commercial quantum cryptosystems are vulnerable to the fake-state attacks, which employ the loophole that the avalanche photodiodes as single photon detectors still produce detection events in the linear mode. However, previous fake-state attacks may be easily prevented by either installing a watch dog or reconfiguring the dead-time assigning component. In this paper, we present a new technique to counteract the after-pulse effect ever enhanced by the fake-state attacks, in order to lower the quantum bit error rate. Obviously, it is more difficult to detect the presented attack scheme. Indeed, it contributes to promoting of implementing a secure quantum cryptosystem in real life.

  1. Configurational assignments of conformationally restricted bis-monoterpene hydroquinones: Utility in exploration of endangered plants

    Treesearch

    Joonseok Oh; John J. Bowling; Amar G. Chittiboyina; Robert J. Doerksen; Daneel Ferreira; Theodor D. Leininger; Mark T. Hamann

    2013-01-01

    Endangered plant species are an important resource for new chemistry. Lindera melissifolia is native to the Southeastern U.S. and scarcely populates the edges of lakes and ponds. Quantum mechanics (QM) used in combination with NMR/ECD is a powerful tool for the assignment of absolute configuration in lieu of X-ray crystallography. Methods: The EtOAc extract of L....

  2. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  3. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    PubMed Central

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196

  4. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption.

    PubMed

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-29

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  5. Asymptotics of quantum weighted Hurwitz numbers

    NASA Astrophysics Data System (ADS)

    Harnad, J.; Ortmann, Janosch

    2018-06-01

    This work concerns both the semiclassical and zero temperature asymptotics of quantum weighted double Hurwitz numbers. The partition function for quantum weighted double Hurwitz numbers can be interpreted in terms of the energy distribution of a quantum Bose gas with vanishing fugacity. We compute the leading semiclassical term of the partition function for three versions of the quantum weighted Hurwitz numbers, as well as lower order semiclassical corrections. The classical limit is shown to reproduce the simple single and double Hurwitz numbers studied by Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74). The KP-Toda τ-function that serves as generating function for the quantum Hurwitz numbers is shown to have the τ-function of Okounkov and Pandharipande (2000 Math. Res. Lett. 7 447–53, 2000 Lett. Math. Phys. 53 59–74) as its leading term in the classical limit, and, with suitable scaling, the same holds for the partition function, the weights and expectations of Hurwitz numbers. We also compute the zero temperature limit of the partition function and quantum weighted Hurwitz numbers. The KP or Toda τ-function serving as generating function for the quantum Hurwitz numbers are shown to give the one for Belyi curves in the zero temperature limit and, with suitable scaling, the same holds true for the partition function, the weights and the expectations of Hurwitz numbers.

  6. Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon

    DTIC Science & Technology

    2015-01-01

    HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL...SILICON SPIN QUBIT TO A PHOTON 5a. CONTRACT NUMBER FA8750-12-2-0296 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jason R. Petta...architectures. 15. SUBJECT TERMS Quantum Computing, Quantum Hybrid Circuits, Quantum Electrodynamics, Coupling a Single Silicon Spin Qubit to a Photon

  7. Two-way QKD with single-photon-added coherent states

    NASA Astrophysics Data System (ADS)

    Miranda, Mario; Mundarain, Douglas

    2017-12-01

    In this work we present a two-way quantum key distribution (QKD) scheme that uses single-photon-added coherent states and displacement operations. The first party randomly sends coherent states (CS) or single-photon-added coherent states (SPACS) to the second party. The latter sends back the same state it received. Both parties decide which kind of states they are receiving by detecting or not a photon on the received signal after displacement operations. The first party must determine whether its sent and received states are equal; otherwise, the case must be discarded. We are going to show that an eavesdropper provided with a beam splitter gets the same information in any of the non-discarded cases. The key can be obtained by assigning 0 to CS and 1 to SPACS in the non-discarded cases. This protocol guarantees keys' security in the presence of a beam splitter attack even for states with a high number of photons in the sent signal. It also works in a lossy quantum channel, becoming a good bet for improving long-distance QKD.

  8. Quantum Simulation of Tunneling in Small Systems

    PubMed Central

    Sornborger, Andrew T.

    2012-01-01

    A number of quantum algorithms have been performed on small quantum computers; these include Shor's prime factorization algorithm, error correction, Grover's search algorithm and a number of analog and digital quantum simulations. Because of the number of gates and qubits necessary, however, digital quantum particle simulations remain untested. A contributing factor to the system size required is the number of ancillary qubits needed to implement matrix exponentials of the potential operator. Here, we show that a set of tunneling problems may be investigated with no ancillary qubits and a cost of one single-qubit operator per time step for the potential evolution, eliminating at least half of the quantum gates required for the algorithm and more than that in the general case. Such simulations are within reach of current quantum computer architectures. PMID:22916333

  9. Evaporation of (quantum) black holes and energy conservation

    NASA Astrophysics Data System (ADS)

    Torres, R.; Fayos, F.; Lorente-Espín, O.

    2013-03-01

    We consider Hawking radiation as due to a tunneling process in a black hole were quantum corrections, derived from Quantum Einstein Gravity, are taken into account. The consequent derivation, satisfying conservation laws, leads to a deviation from an exact thermal spectrum. This has consequences for the information loss paradox since the non-thermal radiation is shown to carry information out of the black hole. Under the appropriate approximation, a quantum corrected temperature is assigned to the black hole. The evolution of the quantum black hole as it evaporates is then described by taking into account the full implications of energy conservation as well as the backscattered radiation. It is shown that, as a critical mass of the order of Planck's mass is reached, the evaporation process decelerates abruptly while the black hole mass decays towards this critical mass.

  10. Comparative NMR analysis of the decadeoxynucleotide d-(GCATTAATGC)2 and an analogue containing 2-aminoadenine.

    PubMed Central

    Chazin, W J; Rance, M; Chollet, A; Leupin, W

    1991-01-01

    The dodecadeoxynucleotide duplex d-(GCATTAATGC)2 has been prepared with all adenine bases replaced by 2-NH2-adenine. This modified duplex has been characterized by nuclear magnetic resonance (NMR) spectroscopy. Complete sequence-specific 1H resonance assignments have been obtained by using a variety of 2D NMR methods. Multiple quantum-filtered and multiple quantum experiments have been used to completely assign all sugar ring protons, including 5'H and 5'H resonances. The assignments form the basis for a detailed comparative analysis of the 1H NMR parameters of the modified and parent duplex. The structural features of both decamer duplexes in solution are characteristic of the B-DNA family. The spin-spin coupling constants in the sugar rings and the relative spatial proximities of protons in the bases and sugars (as determined from the comparison of corresponding nuclear Overhauser effects) are virtually identical in the parent and modified duplexes. Thus, substitution by this adenine analogue in oligonucleotides appears not to disturb the global or local conformation of the DNA duplex. PMID:1945828

  11. The 700-1500 cm{sup −1} region of the S{sub 1} (A{sup ~1}B{sub 2}) state of toluene studied with resonance-enhanced multiphoton ionization (REMPI), zero-kinetic-energy (ZEKE) spectroscopy, and time-resolved slow-electron velocity-map imaging (tr-SEVI) spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Adrian M.; Green, Alistair M.; Tamé-Reyes, Victor M.

    We report (nanosecond) resonance-enhanced multiphoton ionization (REMPI), (nanosecond) zero-kinetic-energy (ZEKE) and (picosecond) time-resolved slow-electron velocity map imaging (tr-SEVI) spectra of fully hydrogenated toluene (Tol-h{sub 8}) and the deuterated-methyl group isotopologue (α{sub 3}-Tol-d{sub 3}). Vibrational assignments are made making use of the activity observed in the ZEKE and tr-SEVI spectra, together with the results from quantum chemical and previous experimental results. Here, we examine the 700–1500 cm{sup −1} region of the REMPI spectrum, extending our previous work on the region ≤700 cm{sup −1}. We provide assignments for the majority of the S{sub 1} and cation bands observed, and in particular wemore » gain insight regarding a number of regions where vibrations are coupled via Fermi resonance. We also gain insight into intramolecular vibrational redistribution in this molecule.« less

  12. The electronic emission spectrum of methylnitrene

    NASA Astrophysics Data System (ADS)

    Carrick, P. G.; Engelking, P. C.

    1984-08-01

    The à 3E-X˜ 3A2ultraviolet emission spectrum of methylnitrene (CH3N) was obtained in two ways: (1) by reacting methylazide (CH3N3) with metastable N2 in a flowing afterglow; and (2) by discharging a mixture of methylazide (CH3N3) and helium in a corona excited supersonic expansion (CESE). The origin appears at T0=31 811 cm-1. Several vibrational progressions were observed leading to the determination of a number of vibrational frequencies: v″1=2938, v■2=1350, v″3=1039, v■4=3065, and v″6=902 cm-1. Deuterium substitution confirmed the assignments of the vibrational frequencies. The X˜ 3A2 state is a normal, bound local minimum on the triplet electronic potential surface, and the upper à 3E state is able to support at least one quantum of vibration, assigned to v3, predominantly a C-N stretch. A comparison of flowing afterglow hollow cathode discharge sources and corona excited supersonic expansion sources shows the advantage of the CESE method of radical production for spectroscopy.

  13. Radial position-momentum uncertainties for the infinite circular well and Fisher entropy

    NASA Astrophysics Data System (ADS)

    Torres-Arenas, Ariadna J.; Dong, Qian; Sun, Guo-Hua; Dong, Shi-Hai

    2018-07-01

    We show how the product of the radial position and momentum uncertainties can be obtained analytically for the infinite circular well potential. Some interesting features are found. First, the uncertainty Δr increases with the radius R and the quantum number n, the n-th root of the Bessel function. The variation of the Δr is almost independent of the quantum number n for n > 4 and it will arrive to a constant for a large n, say n > 4. Second, we find that the relative dispersion Δr / 〈 r 〉 is independent of the radius R. Moreover, the relative dispersion increases with the quantum number n but decreases with the azimuthal quantum number m. Third, the momentum uncertainty Δp decreases with the radius R and increases with the quantum numbers m > 1 and n. Fourth, the product ΔrΔpr of the position-momentum uncertainty relations is independent of the radius R and increases with the quantum numbers m and n. Finally, we present the analytical expression for the Fisher entropy. Notice that the Fisher entropy decreases with the radius R and it increases with the quantum numbers m > 0 and n. Also, we find that the Cramer-Rao uncertainty relation is satisfied and it increases with the quantum numbers m > 0 and n, too.

  14. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection

    PubMed Central

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-01-01

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn “photon-switches” to “OFF” state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished. PMID:25797442

  15. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection.

    PubMed

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-03-23

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.

  16. The Role of Frame Force in Quantum Detection

    DTIC Science & Technology

    2007-01-01

    42040) 10. C. H. Bennett, Quantum cryptography using any two nonorthogonal states, Phys. Rev. Lett. 68 (1992), no. 21, 3121–3124. MR 1 163 546 11. S ...SUBTITLE The Role of Frame Force in Quantum Detection 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...equivalent to a quantum detection problem from quantum mechanics. To this end we first reformulate Problem 1.2 in terms of orthonormal bases instead of 1

  17. Solid-state NMR spectroscopy and first-principles calculations: a powerful combination of tools for the investigation of polymorphism of indomethacin.

    PubMed

    Ukmar, Tina; Kaučič, Venčeslav; Mali, Gregor

    2011-09-01

    Two polymorphs of indomethacin were investigated by 1H MAS and CRAMPS, and 1H-13C CPMAS and HETCOR NMR techniques. The obtained spectra clearly elucidated the structural differences between the polymorphs, especially the different numbers of indomethacin molecules within the crystallographic asymmetric units and the different schemes of hydrogen bonding among the molecules. Known structure of indomethacin gamma was used in first-principles DFT/GIPAW calculations of 1H and 13C isotropic chemical shifts. Two packages, freely available Quantum Espresso and commercially available CASTEP, were employed. They both provided values that excellently agreed with the measured values, and thus allowed unambiguous assignment of 1H and 13C spectral lines.

  18. Hyperfine Structure in the Pure Rotational Spectrum of 208Pb35Cl

    NASA Astrophysics Data System (ADS)

    Dewberry, Christopher T.; Grubbs, Garry S., II; Etchison, Kerry C.; Cooke, Stephen A.

    2010-06-01

    Initially in our laboratory the pure rotational spectrum of the title molecule was studied using a Balle-Flygare Fourier transform microwave spectrometer. Analysis was troublesome and so the spectrum was remeasured using a chirped pulse Fourier transform microwave (CP-FTMW) spectrometer. The correct intensity aspect of the CP-FTMW experiment allowed successful quantum number assignments for the hyperfine structure for the correct isotopologue. Spectroscopic constants have been obtained from a fit to a data set consisting of our measurements combined with those of a prior study on the X_2^2Π3/2 → X_1^2Π_{1/2 fine structure transitions. K. Ziebarth, K. D. Setzer, O. Shestakov and E. H. Fink J. Mol. Spectrosc., 191 108, 1998.

  19. Towards a Quantum Memory assisted MDI-QKD node

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-04-01

    The creation of large quantum network that permits the communication of quantum states and the secure distribution of cryptographic keys requires multiple operational quantum memories. In this work we present our progress towards building a prototypical quantum network that performs the memory-assisted measurement device independent QKD protocol. Currently our network combines the quantum part of the BB84 protocol with room-temperature quantum memory operation, while still maintaining relevant quantum bit error rates for single-photon level operation. We will also discuss our efforts to use a network of two room temperature quantum memories, receiving, storing and transforming randomly polarized photons in order to realize Bell state measurements. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801, the National Science Foundation, Grant Number PHY-1404398 and the Simons Foundation, Grant Number SBF241180.

  20. Computing quantum hashing in the model of quantum branching programs

    NASA Astrophysics Data System (ADS)

    Ablayev, Farid; Ablayev, Marat; Vasiliev, Alexander

    2018-02-01

    We investigate the branching program complexity of quantum hashing. We consider a quantum hash function that maps elements of a finite field into quantum states. We require that this function is preimage-resistant and collision-resistant. We consider two complexity measures for Quantum Branching Programs (QBP): a number of qubits and a number of compu-tational steps. We show that the quantum hash function can be computed efficiently. Moreover, we prove that such QBP construction is optimal. That is, we prove lower bounds that match the constructed quantum hash function computation.

  1. LETTER TO THE EDITOR: Quantum manifestations of closed orbits in the photoexcitation scaled spectrum of the hydrogen atom in crossed fields

    NASA Astrophysics Data System (ADS)

    Rao, Jianguo; Delande, D.; Taylor, K. T.

    2001-06-01

    The scaled photoexcitation spectrum of the hydrogen atom in crossed electric and magnetic fields has been obtained by means of accurate quantum mechanical calculation using a new algorithm. Closed orbits in the corresponding classical system have also been obtained, using a new, efficient and practical searching procedure. Two new classes of closed orbit have been identified. Fourier transforming each photoexcitation quantum spectrum to yield a plot against scaled action has allowed direct comparison between peaks in such plots and the scaled action values of closed orbits. Excellent agreement has been found with all peaks assigned.

  2. Condensed Matter Physics: Does Quantum Mechanics Matter?

    NASA Astrophysics Data System (ADS)

    Fisher, Michael E.

    Herman Feshbach, the organizer of this Symposium in honor of Niels Bohr, asked me, in his original invitation, for a review of the present state of condensed matter physics, with emphasis on major unsolved problems and comments on any overlap with Bohr's ideas regarding the fundamentals of quantum mechanics. That is surely a difficult assignment and, indeed, goes well beyond what is attempted here; nevertheless, I will take the liberty of raising one issue of a philosophical or metaphysical flavor.

  3. Quantum-Bayesian coherence

    NASA Astrophysics Data System (ADS)

    Fuchs, Christopher A.; Schack, Rüdiger

    2013-10-01

    In the quantum-Bayesian interpretation of quantum theory (or QBism), the Born rule cannot be interpreted as a rule for setting measurement-outcome probabilities from an objective quantum state. But if not, what is the role of the rule? In this paper, the argument is given that it should be seen as an empirical addition to Bayesian reasoning itself. Particularly, it is shown how to view the Born rule as a normative rule in addition to usual Dutch-book coherence. It is a rule that takes into account how one should assign probabilities to the consequences of various intended measurements on a physical system, but explicitly in terms of prior probabilities for and conditional probabilities consequent upon the imagined outcomes of a special counterfactual reference measurement. This interpretation is exemplified by representing quantum states in terms of probabilities for the outcomes of a fixed, fiducial symmetric informationally complete measurement. The extent to which the general form of the new normative rule implies the full state-space structure of quantum mechanics is explored.

  4. 46 CFR 502.991 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PROVISIONS RULES OF PRACTICE AND PROCEDURE Paperwork Reduction Act § 502.991 OMB control numbers assigned pursuant to the Paperwork Reduction Act. This section displays the control numbers assigned to information... comply with the Act, which requires that agencies display a current control number assigned by the...

  5. Understanding Quantum Numbers in General Chemistry Textbooks

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Fernandez, Ramon

    2008-01-01

    Quantum numbers and electron configurations form an important part of the general chemistry curriculum and textbooks. The objectives of this study are: (1) Elaboration of a framework based on the following aspects: (a) Origin of the quantum hypothesis, (b) Alternative interpretations of quantum mechanics, (c) Differentiation between an orbital and…

  6. 47 CFR 52.111 - Toll free number assignment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 3 2013-10-01 2013-10-01 false Toll free number assignment. 52.111 Section 52.111 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) NUMBERING Toll Free Numbers § 52.111 Toll free number assignment. Toll free numbers shall be made available...

  7. Quantum correlation properties in Matrix Product States of finite-number spin rings

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min; He, Qi-Kai

    2018-02-01

    The organization and structure of quantum correlation (QC) of quantum spin-chains are very rich and complex. Hence the depiction and measures about the QC of finite-number spin rings deserved to be investigated intensively by using Matrix Product States(MPSs) in addition to the case with infinite-number. Here the dependencies of the geometric quantum discord(GQD) of two spin blocks on the total spin number, the spacing spin number and the environment parameter are presented in detail. We also compare the GQD with the total correlation(TC) and the classical correlation(CC) and illustrate its characteristics. Predictably, our findings may provide the potential of designing the optimal QC experimental detection proposals and pave the way for the designation of optimal quantum information processing schemes.

  8. 21 CFR 1271.27 - Will FDA assign me a registration number?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Will FDA assign me a registration number? 1271.27..., TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Procedures for Registration and Listing § 1271.27 Will FDA assign me a registration number? (a) FDA will assign each location a permanent registration number. (b...

  9. 21 CFR 1271.27 - Will FDA assign me a registration number?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Will FDA assign me a registration number? 1271.27..., TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Procedures for Registration and Listing § 1271.27 Will FDA assign me a registration number? (a) FDA will assign each location a permanent registration number. (b...

  10. 21 CFR 1271.27 - Will FDA assign me a registration number?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Will FDA assign me a registration number? 1271.27..., TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Procedures for Registration and Listing § 1271.27 Will FDA assign me a registration number? (a) FDA will assign each location a permanent registration number. (b...

  11. 21 CFR 1271.27 - Will FDA assign me a registration number?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Will FDA assign me a registration number? 1271.27..., TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Procedures for Registration and Listing § 1271.27 Will FDA assign me a registration number? (a) FDA will assign each location a permanent registration number. (b...

  12. 21 CFR 1271.27 - Will FDA assign me a registration number?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Will FDA assign me a registration number? 1271.27..., TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Procedures for Registration and Listing § 1271.27 Will FDA assign me a registration number? (a) FDA will assign each location a permanent registration number. (b...

  13. Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction

    DTIC Science & Technology

    2016-02-25

    Approximation of Quantum Stochastic Differential Equations for Input-Output Model Reduction We have completed a short program of theoretical research...on dimensional reduction and approximation of models based on quantum stochastic differential equations. Our primary results lie in the area of...2211 quantum probability, quantum stochastic differential equations REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR

  14. Scaffold: Quantum Programming Language

    DTIC Science & Technology

    2012-07-24

    Europe, 2012. [8] B. Eastin and S . T. Flammia , “Q-circuit tutorial,” arXiv:quant-ph/0406003v2. [9] A. I. Faruque et al., “Scaffold: Quantum Programming...TITLE AND SUBTITLE Scaffold: Quantum Programming Language 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Princeton University,Department of Computer

  15. Searching for new symmetry species of CH5+ - From lines to states without a model

    NASA Astrophysics Data System (ADS)

    Brackertz, Stefan; Schlemmer, Stephan; Asvany, Oskar

    2017-12-01

    CH5+ is a prototype of an extremely flexible molecule for which the quantum states have eluded an analytical description so far. Therefore, the reconstruction of its quantum states relies on methods as e.g. the search for accumulations of combination differences of rovibrational transitions. Using the available high resolution data of the Cologne laboratories [1], this reconstruction has been improved by using the properties of kernel density estimators as well as new combinatorial approaches to evaluate the found accumulations. Two new symmetry sets have been discovered, and the known ones extended, with 1063 of the 2897 measured lines assigned, which is a significant improvement over the 65 assignments of the previous work. This allowed us not only to reconstruct more parts of the ground state levels, but also of the vibrationally excited states of CH5+.

  16. FT-Raman spectroscopy of the Candelaria and Pyxine lichen species: A new molecular structural study

    NASA Astrophysics Data System (ADS)

    Fernandes, Rafaella F.; Ferreira, Gilson R.; Spielmann, Adriano A.; Edwards, Howell G. M.; de Oliveira, Luiz Fernando C.

    2015-12-01

    In this work the chemistry of the lichens Candelaria fibrosa and Pyxine coccifera have been investigated for the first time using FT-Raman spectroscopy with the help of quantum mechanical DFT calculations to support spectral band assignments. The non-destructive spectral vibrational analysis provided evidence for the presence of pulvinic acid derivatives and conjugated polyenes, which probably belong to a carotenoid with characteristic signatures at ca. 1003, 1158 and 1525 cm-1 assigned respectively to δ(C-CH3), ν(C-C) and ν(Cdbnd C) modes. The identification of features arising from chiodectonic acid in the Pyxine species and calycin and pulvinic dilactone pigments in C. fibrosa were assisted by the quantum mechanical DFT calculations. Raman spectroscopy can provide important spectroscopic data for the identification of the biomarker spectral signatures nondestructively for these lichen pigments without the need for chemical extraction processes.

  17. The methane absorption spectrum near 1.73 μm (5695-5850 cm-1): Empirical line lists at 80 K and 296 K and rovibrational assignments

    NASA Astrophysics Data System (ADS)

    Ghysels, M.; Mondelain, D.; Kassi, S.; Nikitin, A. V.; Rey, M.; Campargue, A.

    2018-07-01

    The methane absorption spectrum is studied at 297 K and 80 K in the center of the Tetradecad between 5695 and 5850 cm-1. The spectra are recorded by differential absorption spectroscopy (DAS) with a noise equivalent absorption of about αmin≈ 1.5 × 10-7 cm-1. Two empirical line lists are constructed including about 4000 and 2300 lines at 297 K and 80 K, respectively. Lines due to 13CH4 present in natural abundance were identified by comparison with a spectrum of pure 13CH4 recorded in the same temperature conditions. About 1700 empirical values of the lower state energy level, Eemp, were derived from the ratios of the line intensities at 80 K and 296 K. They provide accurate temperature dependence for most of the absorption in the region (93% and 82% at 80 K and 296 K, respectively). The quality of the derived empirical values is illustrated by the clear propensity of the corresponding lower state rotational quantum number, Jemp, to be close to integer values. Using an effective Hamiltonian model derived from a previously published ab initio potential energy surface, about 2060 lines are rovibrationnally assigned, adding about 1660 new assignments to those provided in the HITRAN database for 12CH4 in the region.

  18. Localized spatially nonlinear matter waves in atomic-molecular Bose-Einstein condensates with space-modulated nonlinearity

    PubMed Central

    Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming

    2016-01-01

    The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634

  19. Effects of hydrostatic pressure on the donor impurity in a cylindrical quantum dot with Morse confining potential

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, David B.; Kotanjyan, Tigran V.; Tevosyan, Hovhannes Kh.; Kazaryan, Eduard M.

    2016-12-01

    The effects of hydrostatic pressure and size quantization on the binding energies of a hydrogen-like donor impurity in cylindrical GaAs quantum dot (QD) with Morse confining potential are studied using the variational method and effective-mass approximation. In the cylindrical QD, the effect of hydrostatic pressure on the binding energy of electron has been investigated and it has been found that the application of the hydrostatic pressure leads to the blue shift. The dependence of the absorption edge on geometrical parameters of cylindrical QD is obtained. Selection rules are revealed for transitions between levels with different quantum numbers. It is shown that for the radial quantum number, transitions are allowed between the levels with the same quantum numbers, and any transitions between different levels are allowed for the principal quantum number.

  20. Quantum Algorithmic Readout in Multi-Ion Clocks.

    PubMed

    Schulte, M; Lörch, N; Leroux, I D; Schmidt, P O; Hammerer, K

    2016-01-08

    Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. The scheme allows a quantum nondemolition readout of the number of excited clock ions using a single multispecies gate operation which can also be used in other areas of ion trap technology such as quantum information processing, quantum simulations, metrology, and precision spectroscopy.

  1. 7 CFR 37.16 - OMB assigned numbers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false OMB assigned numbers. 37.16 Section 37.16 Agriculture... ASSESS ORGANIC CERTIFYING AGENCIES § 37.16 OMB assigned numbers. The information collection and... Control Number 0581-0183. ...

  2. Vibrational spectroscopic study of dehydroacetic acid and its cinnamoyl pyrone derivatives

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Elečková, Lenka; Mikosch, Hans; Andruch, Vasil

    2015-07-01

    The infrared and Raman spectra of dehydroacetic acid and some of its derivatives were measured. The assignments of the vibrational bands were based on quantum chemical calculations and normal coordinate analysis. The optimized structures, atomic net charges and dipole moments of the investigated molecules were also results of our quantum chemical calculations. The analysis of the last properties made possible a deeper insight into the structure and substituent effect on the investigated molecules. One of them is presented in the graphical abstract.

  3. Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system.

    PubMed

    Xu, Nanyang; Zhu, Jing; Lu, Dawei; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng

    2012-03-30

    Quantum algorithms could be much faster than classical ones in solving the factoring problem. Adiabatic quantum computation for this is an alternative approach other than Shor's algorithm. Here we report an improved adiabatic factoring algorithm and its experimental realization to factor the number 143 on a liquid-crystal NMR quantum processor with dipole-dipole couplings. We believe this to be the largest number factored in quantum-computation realizations, which shows the practical importance of adiabatic quantum algorithms.

  4. Silicon Quantum Dots with Counted Antimony Donor Implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Meenakshi; Pacheco, Jose L.; Perry, Daniel Lee

    2015-10-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. A focused ion beam is used to implant close to quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of ions implanted can be counted to a precision of a single ion. Regular coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization, are observed in devices with counted implants.

  5. Real quantum cybernetics

    NASA Astrophysics Data System (ADS)

    Grössing, Gerhard

    1987-05-01

    It is shown on the basis of quantum cybernetics that one can obtain the usual predictions of quantum theory without ever referring to complex numbered “quantum mechanical amplitudes”. Instead, a very simple formula for transition and certain conditional probabilities is developed that involves real numbers only, thus relating intuitively understandable and in principle directly observable physical quantities.

  6. A synchronous game for binary constraint systems

    NASA Astrophysics Data System (ADS)

    Kim, Se-Jin; Paulsen, Vern; Schafhauser, Christopher

    2018-03-01

    Recently, Slofstra proved that the set of quantum correlations is not closed. We prove that the set of synchronous quantum correlations is not closed, which implies his result, by giving an example of a synchronous game that has a perfect quantum approximate strategy but no perfect quantum strategy. We also exhibit a graph for which the quantum independence number and the quantum approximate independence number are different. We prove new characterisations of synchronous quantum approximate correlations and synchronous quantum spatial correlations. We solve the synchronous approximation problem of Dykema and the second author, which yields a new equivalence of Connes' embedding problem in terms of synchronous correlations.

  7. The scalable implementation of quantum walks using classical light

    NASA Astrophysics Data System (ADS)

    Goyal, Sandeep K.; Roux, F. S.; Forbes, Andrew; Konrad, Thomas

    2014-02-01

    A quantum walk is the quantum analog of the classical random walks. Despite their simple structure they form a universal platform to implement any algorithm of quantum computation. However, it is very hard to realize quantum walks with a sufficient number of iterations in quantum systems due to their sensitivity to environmental influences and subsequent loss of coherence. Here we present a scalable implementation scheme for one-dimensional quantum walks for arbitrary number of steps using the orbital angular momentum modes of classical light beams. Furthermore, we show that using the same setup with a minor adjustment we can also realize electric quantum walks.

  8. Exact CNOT gates with a single nonlocal rotation for quantum-dot qubits

    NASA Astrophysics Data System (ADS)

    Pal, Arijeet; Rashba, Emmanuel I.; Halperin, Bertrand I.

    2015-09-01

    We investigate capacitively-coupled exchange-only two-qubit quantum gates based on quantum dots. For exchange-only coded qubits electron spin S and its projection Sz are exact quantum numbers. Capacitive coupling between qubits, as distinct from interqubit exchange, preserves these quantum numbers. We prove, both analytically and numerically, that conservation of the spins of individual qubits has a dramatic effect on the performance of two-qubit gates. By varying the level splittings of individual qubits, Ja and Jb, and the interqubit coupling time, t , we can find an infinite number of triples (Ja,Jb,t ) for which the two-qubit entanglement, in combination with appropriate single-qubit rotations, can produce an exact cnot gate. This statement is true for practically arbitrary magnitude and form of capacitive interqubit coupling. Our findings promise a large decrease in the number of nonlocal (two-qubit) operations in quantum circuits.

  9. Quantum random number generation

    DOE PAGES

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu; ...

    2016-06-28

    Quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a highmore » speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  10. Observation of a new charged charmoniumlike state in B ¯ 0 → J / ψ K - π + decays

    DOE PAGES

    Chilikin, K.; Mizuk, R.; Adachi, I.; ...

    2014-12-16

    We present the results of an amplitude analysis of B ¯0→J/ψK -π + decays. A new charged charmoniumlike state Z c(4200) + decaying to J/ψπ + is observed with a significance of 6.2σ. The mass and width of the Z c(4200) + are 4196 +31 -29 +17 -13 MeV/c 2 and 370 +70 -70 +70 -132 MeV, respectively; the preferred assignment of the quantum numbers is JP=1 +. In addition, we find evidence for Z c(4430) +→J/ψπ +. The analysis is based on a 711 fb -1 data sample collected by the Belle detector at the asymmetric-energy e +e -more » collider KEKB.« less

  11. a Look at a Series of Alkyl and Perfluoroalkyl Bromides and Chlorides

    NASA Astrophysics Data System (ADS)

    Long, Brittany E.; Cooke, Stephen A.; Grubbs, Garry S. Grubbs, II

    2011-06-01

    The pure rotational spectrum for bromoperfluoroethane between 8.0 and 14.0 GHz and chloroperfluoroethane between 8.0 and 16.0 GHz has been measured on a chirped pulse Fourier transform microwave spectrometer for the first time. A total of 839 transitions for the bromoperfluoroethane, which includes the 79Br, 81Br parent isotopologues and the four 13C's, have been assigned quantum numbers. 496 transitions were observed for chloroperfluoroethane, which includes the 35Cl and 37Cl species. Only the trans conformers were observed for which the rotational constants are reported. Nuclear electric quadrapole coupling constants have been determined and reported. Also, two dipole forbidden/quadrapole allowed Δ J = 2 transitions were observed in only the bromoperfluoroethane spectra. No forbidden transitions were observed in the chloroperfluoroethane.

  12. Transition from one revolving cluster to two revolving clusters in the ground-state rotational bands of nuclei in the lanthanon region.

    PubMed

    Pauling, L

    1991-02-01

    Whereas 234(92)U142 and other actinon nuclei have ground-state bands that indicate that each nucleus consists of a sphere and a single revolving cluster with constant composition and with only a steady increase in the moment of inertia with increase in J, the angular-momentum quantum number, many of the lanthanon ground-state bands show discontinuities, usually with an initial slightly or strongly curved segment followed by one or two nearly straight segments. The transition to nearly straight segments is interpreted as a change in structure from one revolving cluster to two revolving clusters. The proton-neutron compositions of the clusters and the central sphere are assigned, leading to values of the radius of revolution. The approximation of the two-cluster sequences to linearity is attributed to the very small values of the quadrupole polarizability of the central sphere. Values of the nucleon numbers of clusters and spheres, of the radius of revolution, and of promotion energy are discussed.

  13. An infrared band system of the ZrCl molecule

    NASA Astrophysics Data System (ADS)

    Phillips, J. G.; Davis, S. P.; Galehouse, D. C.

    1980-07-01

    A series of infrared bands in the 0.97-1.15 micron region which is attributed to ZrCl is analyzed in light of the possibility that the bands may be observable in stellar spectra. Spectra of ZrO and ZrCl were produced by microwave discharge through a mixture of He, O and ZrCl4 and observed by Fourier transform spectrometer, resulting in the observation of 10 bands of the ZrCl system. Rotational quantum number assignments to the lines of the P and R branches observed are obtained and used to derive effective rotational constants for each substate, as well as zero-rotation origins of each subband. Shifts in wave numbers of rotational lines of the isotopes (Zr-92)(Cl-35)(Zr-94)(Cl-35) and (Zr-90)(Cl-37) relative to the more abundant (Zr-90)(Cl-35) are also observed. The observed molecular constants are shown to be in good agreement with those calculated in previous theoretical estimates.

  14. Physics of lateral triple quantum-dot molecules with controlled electron numbers.

    PubMed

    Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel

    2012-11-01

    We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.

  15. Exponential energy growth due to slow parameter oscillations in quantum mechanical systems.

    PubMed

    Turaev, Dmitry

    2016-05-01

    It is shown that a periodic emergence and destruction of an additional quantum number leads to an exponential growth of energy of a quantum mechanical system subjected to a slow periodic variation of parameters. The main example is given by systems (e.g., quantum billiards and quantum graphs) with periodically divided configuration space. In special cases, the process can also lead to a long period of cooling that precedes the acceleration, and to the desertion of the states with a particular value of the quantum number.

  16. Polyad quantum numbers and multiple resonances in anharmonic vibrational studies of polyatomic molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnoshchekov, Sergey V.; Stepanov, Nikolay F.

    2013-11-14

    In the theory of anharmonic vibrations of a polyatomic molecule, mixing the zero-order vibrational states due to cubic, quartic and higher-order terms in the potential energy expansion leads to the appearance of more-or-less isolated blocks of states (also called polyads), connected through multiple resonances. Such polyads of states can be characterized by a common secondary integer quantum number. This polyad quantum number is defined as a linear combination of the zero-order vibrational quantum numbers, attributed to normal modes, multiplied by non-negative integer polyad coefficients, which are subject to definition for any particular molecule. According to Kellman's method [J. Chem. Phys.more » 93, 6630 (1990)], the corresponding formalism can be conveniently described using vector algebra. In the present work, a systematic consideration of polyad quantum numbers is given in the framework of the canonical Van Vleck perturbation theory (CVPT) and its numerical-analytic operator implementation for reducing the Hamiltonian to the quasi-diagonal form, earlier developed by the authors. It is shown that CVPT provides a convenient method for the systematic identification of essential resonances and the definition of a polyad quantum number. The method presented is generally suitable for molecules of significant size and complexity, as illustrated by several examples of molecules up to six atoms. The polyad quantum number technique is very useful for assembling comprehensive basis sets for the matrix representation of the Hamiltonian after removal of all non-resonance terms by CVPT. In addition, the classification of anharmonic energy levels according to their polyad quantum numbers provides an additional means for the interpretation of observed vibrational spectra.« less

  17. Quantum mechanical fragment methods based on partitioning atoms or partitioning coordinates.

    PubMed

    Wang, Bo; Yang, Ke R; Xu, Xuefei; Isegawa, Miho; Leverentz, Hannah R; Truhlar, Donald G

    2014-09-16

    Conspectus The development of more efficient and more accurate ways to represent reactive potential energy surfaces is a requirement for extending the simulation of large systems to more complex systems, longer-time dynamical processes, and more complete statistical mechanical sampling. One way to treat large systems is by direct dynamics fragment methods. Another way is by fitting system-specific analytic potential energy functions with methods adapted to large systems. Here we consider both approaches. First we consider three fragment methods that allow a given monomer to appear in more than one fragment. The first two approaches are the electrostatically embedded many-body (EE-MB) expansion and the electrostatically embedded many-body expansion of the correlation energy (EE-MB-CE), which we have shown to yield quite accurate results even when one restricts the calculations to include only electrostatically embedded dimers. The third fragment method is the electrostatically embedded molecular tailoring approach (EE-MTA), which is more flexible than EE-MB and EE-MB-CE. We show that electrostatic embedding greatly improves the accuracy of these approaches compared with the original unembedded approaches. Quantum mechanical fragment methods share with combined quantum mechanical/molecular mechanical (QM/MM) methods the need to treat a quantum mechanical fragment in the presence of the rest of the system, which is especially challenging for those parts of the rest of the system that are close to the boundary of the quantum mechanical fragment. This is a delicate matter even for fragments that are not covalently bonded to the rest of the system, but it becomes even more difficult when the boundary of the quantum mechanical fragment cuts a bond. We have developed a suite of methods for more realistically treating interactions across such boundaries. These methods include redistributing and balancing the external partial atomic charges and the use of tuned fluorine atoms for capping dangling bonds, and we have shown that they can greatly improve the accuracy. Finally we present a new approach that goes beyond QM/MM by combining the convenience of molecular mechanics with the accuracy of fitting a potential function to electronic structure calculations on a specific system. To make the latter practical for systems with a large number of degrees of freedom, we developed a method to interpolate between local internal-coordinate fits to the potential energy. A key issue for the application to large systems is that rather than assigning the atoms or monomers to fragments, we assign the internal coordinates to reaction, secondary, and tertiary sets. Thus, we make a partition in coordinate space rather than atom space. Fits to the local dependence of the potential energy on tertiary coordinates are arrayed along a preselected reaction coordinate at a sequence of geometries called anchor points; the potential energy function is called an anchor points reactive potential. Electrostatically embedded fragment methods and the anchor points reactive potential, because they are based on treating an entire system by quantum mechanical electronic structure methods but are affordable for large and complex systems, have the potential to open new areas for accurate simulations where combined QM/MM methods are inadequate.

  18. Security of Quantum Repeater Network Operation

    DTIC Science & Technology

    2016-10-03

    AFRL-AFOSR-JP-TR-2016-0079 Security of Quantum Repeater Network Operation Rodney Van Meter KEIO UNIVERSITY Final Report 10/03/2016 DISTRIBUTION A...To)  29 May 2014 to 28 May 2016 4. TITLE AND SUBTITLE Security of Quantum Repeater Network Operation 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386...ABSTRACT Much of the work on quantum networks , both entangled and unentangled, has been about the uses of quantum networks to enhance end- host security

  19. Seaworthy Quantum Key Distribution Design and Validation (SEAKEY)

    DTIC Science & Technology

    2015-05-27

    Address: 10 Moulton Street, Cambridge, MA 02138 Title of the Project: Seaworthy Quantum Key Distribution Design and Validation (SEAKEY...Technologies Kathryn Carson Program Manager Quantum Information Processing Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...2016 4. TITLE AND SUBTITLE Seaworthy Quantum Key Distribution Design and Validation (SEAKEY) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  20. Diluted Magnetic Semiconductors for Magnetic Field Tunable Infrared Detectors

    DTIC Science & Technology

    2005-06-30

    significantly improved performance and technological advances of quantum well infrared photodetectors (QWIPs)14 and quantum cascade lasers (QCLs)15...NUMBER FA8655-04-1-3069 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Magnetic Field Tunable Terahertz Quantum Well Infrared Photodetector 5c...fabrication in II-VI materials, quantum well infrared photodetector device design and magneto-optical characterisation are all well understood

  1. Single-photon test of hyper-complex quantum theories using a metamaterial.

    PubMed

    Procopio, Lorenzo M; Rozema, Lee A; Wong, Zi Jing; Hamel, Deny R; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.

  2. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  3. Single-photon test of hyper-complex quantum theories using a metamaterial

    DOE PAGES

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; ...

    2017-04-21

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial withmore » a negative refractive index, and a positive phase shifter. In order to accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. Here, we show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories.« less

  4. Single-photon test of hyper-complex quantum theories using a metamaterial

    PubMed Central

    Procopio, Lorenzo M.; Rozema, Lee A.; Wong, Zi Jing; Hamel, Deny R.; O'Brien, Kevin; Zhang, Xiang; Dakić, Borivoje; Walther, Philip

    2017-01-01

    In standard quantum mechanics, complex numbers are used to describe the wavefunction. Although this has so far proven sufficient to predict experimental results, there is no theoretical reason to choose them over real numbers or generalizations of complex numbers, that is, hyper-complex numbers. Experiments performed to date have proven that real numbers are insufficient, but the need for hyper-complex numbers remains an open question. Here we experimentally probe hyper-complex quantum theories, studying one of their deviations from complex quantum theory: the non-commutativity of phases. We do so by passing single photons through a Sagnac interferometer containing both a metamaterial with a negative refractive index, and a positive phase shifter. To accomplish this we engineered a fishnet metamaterial to have a negative refractive index at 780 nm. We show that the metamaterial phase commutes with other phases with high precision, allowing us to place limits on a particular prediction of hyper-complex quantum theories. PMID:28429711

  5. The role of high-level calculations in the assignment of the Q-band spectra of chlorophyll

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimers, Jeffrey R.; Cai, Zheng-Li; Kobayashi, Rika

    2014-10-06

    We recently established a novel assignment of the visible absorption spectrum of chlorophyll-a that sees the two components Q{sub x} and Q{sub y} of the low-energy Q band as being intrinsically mixed by non-adiabatic coupling. This ended 50 years debate as to the nature of the Q bands, with prior discussion poised only in the language of the Born-Oppenheimer and Condon approximations. The new assignment presents significant ramifications for exciton transport and quantum coherence effects in photosystems. Results from state of the art electronic structure calculations have always been used to justify assignments, but quantitative inaccuracies and systematic failures havemore » historically limited usefulness. We examine the role of CAM-B3LYP time-dependent density-functional theory (TD-DFT) and Symmetry Adapted Cluster-Configuration Interaction (SAC-CI) calculations in first showing that all previous assignments were untenable, in justifying the new assignment, in making some extraordinary predictions that were vindicated by the new assignment, and in then identifying small but significant anomalies in the extensive experimental data record.« less

  6. Number-unconstrained quantum sensing

    NASA Astrophysics Data System (ADS)

    Mitchell, Morgan W.

    2017-12-01

    Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.

  7. Continuous-variable quantum computing in optical time-frequency modes using quantum memories.

    PubMed

    Humphreys, Peter C; Kolthammer, W Steven; Nunn, Joshua; Barbieri, Marco; Datta, Animesh; Walmsley, Ian A

    2014-09-26

    We develop a scheme for time-frequency encoded continuous-variable cluster-state quantum computing using quantum memories. In particular, we propose a method to produce, manipulate, and measure two-dimensional cluster states in a single spatial mode by exploiting the intrinsic time-frequency selectivity of Raman quantum memories. Time-frequency encoding enables the scheme to be extremely compact, requiring a number of memories that are a linear function of only the number of different frequencies in which the computational state is encoded, independent of its temporal duration. We therefore show that quantum memories can be a powerful component for scalable photonic quantum information processing architectures.

  8. Quantum number theoretic transforms on multipartite finite systems.

    PubMed

    Vourdas, A; Zhang, S

    2009-06-01

    A quantum system composed of p-1 subsystems, each of which is described with a p-dimensional Hilbert space (where p is a prime number), is considered. A quantum number theoretic transform on this system, which has properties similar to those of a Fourier transform, is studied. A representation of the Heisenberg-Weyl group in this context is also discussed.

  9. Optimizing Teleportation Cost in Distributed Quantum Circuits

    NASA Astrophysics Data System (ADS)

    Zomorodi-Moghadam, Mariam; Houshmand, Mahboobeh; Houshmand, Monireh

    2018-03-01

    The presented work provides a procedure for optimizing the communication cost of a distributed quantum circuit (DQC) in terms of the number of qubit teleportations. Because of technology limitations which do not allow large quantum computers to work as a single processing element, distributed quantum computation is an appropriate solution to overcome this difficulty. Previous studies have applied ad-hoc solutions to distribute a quantum system for special cases and applications. In this study, a general approach is proposed to optimize the number of teleportations for a DQC consisting of two spatially separated and long-distance quantum subsystems. To this end, different configurations of locations for executing gates whose qubits are in distinct subsystems are considered and for each of these configurations, the proposed algorithm is run to find the minimum number of required teleportations. Finally, the configuration which leads to the minimum number of teleportations is reported. The proposed method can be used as an automated procedure to find the configuration with the optimal communication cost for the DQC. This cost can be used as a basic measure of the communication cost for future works in the distributed quantum circuits.

  10. Infrared spectra of molecules and materials of astrophysical interest

    NASA Technical Reports Server (NTRS)

    Durig, J. R.

    1978-01-01

    The Raman spectra of gaseous, liquid and solid, and infrared spectra of gaseous and solid isopropylamine-d sub 0 and -d sub 2 was investigated between 4000 and 50 cm superscript -1. Differences between the spectrum of the solid phase and that of the fluid phases were interpreted in terms of an equilibrium between low energy s-trans and high energy gauche conformers, and a complete vibrational assignment was proposed for the s-trans conformer. The far infrared spectra of the gaseous compounds contained bands due to the asymmetric amino and coupled methyl torsions; the assignment of these bands was aided by observation of a number of two quantum transitions for each vibrational mode. The asymmetric potential functions were calculated, which resulted in values for the enthalpy differences between conformers in the gaseous phase of 446 and 523 callmole for the sub 0 -d and -d sub 2 compounds, respectively. The methyl torsional potential function of isopropylamine-d sub 0 was calculated which led to a value for the barrier height to internal rotation of the methyl rotors of 4.23 + or - 0.06 kcal/mole. Values for the ideal gas thermodynamic functions were calculated over a range of temperatures.

  11. Microwave Spectra and AB Initio Studies of the Ne-Acetone Complex

    NASA Astrophysics Data System (ADS)

    Gao, Jiao; Thomas, Javix; Xu, Yunjie; Jäger, Wolfgang

    2015-06-01

    Microwave spectra of the neon-acetone van der Waals complex were measured using a cavity-based molecular beam Fourier-transform microwave spectrometer in the region from 5 to 18 GHz. Both 20Ne and 22Ne containing isotopologues were studied and both c- and weaker a-type rotational transitions were observed. The transitions are split into multiplets due to the internal rotation of two methyl groups in acetone. Electronic structure calculations were done at the MP2 level of theory with the 6-311++g (2d, p) basis set for all atoms and the internal rotation barrier height of the methyl groups was determined to be about 2.8 kJ/mol. The ab initio rotational constants were the basis for our spectroscopic searches, but the multiplet structures and floppiness of the complex made the quantum number assignment very difficult. The assignment was finally achieved with the aid of constructing closed frequency loops and predicting internal rotation splittings using the XIAM code. Analyses of the spectra yielded rotational and centrifugal distortion constants, as well as internal rotation parameters, which were interpreted in terms of structure and internal dynamics of the complex. H. Hartwig and H. Dreizler, Z. Naturforsch. A 51, 923 (1996).

  12. On the origin of stretched exponential (Kohlrausch) relaxation kinetics in the room temperature luminescence decay of colloidal quantum dots.

    PubMed

    Bodunov, E N; Antonov, Yu A; Simões Gamboa, A L

    2017-03-21

    The non-exponential room temperature luminescence decay of colloidal quantum dots is often well described by a stretched exponential function. However, the physical meaning of the parameters of the function is not clear in the majority of cases reported in the literature. In this work, the room temperature stretched exponential luminescence decay of colloidal quantum dots is investigated theoretically in an attempt to identify the underlying physical mechanisms associated with the parameters of the function. Three classes of non-radiative transition processes between the excited and ground states of colloidal quantum dots are discussed: long-range resonance energy transfer, multiphonon relaxation, and contact quenching without diffusion. It is shown that multiphonon relaxation cannot explain a stretched exponential functional form of the luminescence decay while such dynamics of relaxation can be understood in terms of long-range resonance energy transfer to acceptors (molecules, quantum dots, or anharmonic molecular vibrations) in the environment of the quantum dots acting as energy-donors or by contact quenching by acceptors (surface traps or molecules) distributed statistically on the surface of the quantum dots. These non-radiative transition processes are assigned to different ranges of the stretching parameter β.

  13. Protecting Information

    NASA Astrophysics Data System (ADS)

    Loepp, Susan; Wootters, William K.

    2006-09-01

    For many everyday transmissions, it is essential to protect digital information from noise or eavesdropping. This undergraduate introduction to error correction and cryptography is unique in devoting several chapters to quantum cryptography and quantum computing, thus providing a context in which ideas from mathematics and physics meet. By covering such topics as Shor's quantum factoring algorithm, this text informs the reader about current thinking in quantum information theory and encourages an appreciation of the connections between mathematics and science.Of particular interest are the potential impacts of quantum physics:(i) a quantum computer, if built, could crack our currently used public-key cryptosystems; and (ii) quantum cryptography promises to provide an alternative to these cryptosystems, basing its security on the laws of nature rather than on computational complexity. No prior knowledge of quantum mechanics is assumed, but students should have a basic knowledge of complex numbers, vectors, and matrices. Accessible to readers familiar with matrix algebra, vector spaces and complex numbers First undergraduate text to cover cryptography, error-correction, and quantum computation together Features exercises designed to enhance understanding, including a number of computational problems, available from www.cambridge.org/9780521534765

  14. 40 CFR 52.111 - Toll free number assignment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Toll free number assignment. 52.111... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.111 Toll free number assignment. Toll free numbers shall be made available on a first-come, first-served basis unless otherwise directed...

  15. 40 CFR 52.111 - Toll free number assignment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Toll free number assignment. 52.111... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.111 Toll free number assignment. Toll free numbers shall be made available on a first-come, first-served basis unless otherwise directed...

  16. Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min

    2016-09-01

    We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.

  17. Strain-free Ge/GeSiSn Quantum Cascade Lasers Based on L-Valley Intersubband Transitions

    DTIC Science & Technology

    2007-01-01

    found in III-V quantum cascade lasers QCLs. Various groups have obtained electroluminescence from Si-rich Si/SiGe quantum cascade structures,2–4 but...Ge/GeSiSn quantum cascade lasers based on L-valley intersubband transitions 5c. PROGRAM ELEMENT NUMBER 612305 6. AUTHOR(S) 5d. PROJECT NUMBER...ABSTRACT The authors propose a Ge/Ge0.76Si0.19Sn0.05 quantum cascade laser using intersubband transitions at L valleys of the conduction band

  18. Experimental study of a quantum random-number generator based on two independent lasers

    NASA Astrophysics Data System (ADS)

    Sun, Shi-Hai; Xu, Feihu

    2017-12-01

    A quantum random-number generator (QRNG) can produce true randomness by utilizing the inherent probabilistic nature of quantum mechanics. Recently, the spontaneous-emission quantum phase noise of the laser has been widely deployed for quantum random-number generation, due to its high rate, its low cost, and the feasibility of chip-scale integration. Here, we perform a comprehensive experimental study of a phase-noise-based QRNG with two independent lasers, each of which operates in either continuous-wave (CW) or pulsed mode. We implement the QRNG by operating the two lasers in three configurations, namely, CW + CW, CW + pulsed, and pulsed + pulsed, and demonstrate their trade-offs, strengths, and weaknesses.

  19. The Nature of Quantum Truth: Logic, Set Theory, & Mathematics in the Context of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Frey, Kimberly

    The purpose of this dissertation is to construct a radically new type of mathematics whose underlying logic differs from the ordinary classical logic used in standard mathematics, and which we feel may be more natural for applications in quantum mechanics. Specifically, we begin by constructing a first order quantum logic, the development of which closely parallels that of ordinary (classical) first order logic --- the essential differences are in the nature of the logical axioms, which, in our construction, are motivated by quantum theory. After showing that the axiomatic first order logic we develop is sound and complete (with respect to a particular class of models), this logic is then used as a foundation on which to build (axiomatic) mathematical systems --- and we refer to the resulting new mathematics as "quantum mathematics." As noted above, the hope is that this form of mathematics is more natural than classical mathematics for the description of quantum systems, and will enable us to address some foundational aspects of quantum theory which are still troublesome --- e.g. the measurement problem --- as well as possibly even inform our thinking about quantum gravity. After constructing the underlying logic, we investigate properties of several mathematical systems --- e.g. axiom systems for abstract algebras, group theory, linear algebra, etc. --- in the presence of this quantum logic. In the process, we demonstrate that the resulting quantum mathematical systems have some strange, but very interesting features, which indicates a richness in the structure of mathematics that is classically inaccessible. Moreover, some of these features do indeed suggest possible applications to foundational questions in quantum theory. We continue our investigation of quantum mathematics by constructing an axiomatic quantum set theory, which we show satisfies certain desirable criteria. Ultimately, we hope that such a set theory will lead to a foundation for quantum mathematics in a sense which parallels the foundational role of classical set theory in classical mathematics. One immediate application of the quantum set theory we develop is to provide a foundation on which to construct quantum natural numbers, which are the quantum analog of the classical counting numbers. It turns out that in a special class of models, there exists a 1-1 correspondence between the quantum natural numbers and bounded observables in quantum theory whose eigenvalues are (ordinary) natural numbers. This 1-1 correspondence is remarkably satisfying, and not only gives us great confidence in our quantum set theory, but indicates the naturalness of such models for quantum theory itself. We go on to develop a Peano-like arithmetic for these new "numbers," as well as consider some of its consequences. Finally, we conclude by summarizing our results, and discussing directions for future work.

  20. A generator for unique quantum random numbers based on vacuum states

    NASA Astrophysics Data System (ADS)

    Gabriel, Christian; Wittmann, Christoffer; Sych, Denis; Dong, Ruifang; Mauerer, Wolfgang; Andersen, Ulrik L.; Marquardt, Christoph; Leuchs, Gerd

    2010-10-01

    Random numbers are a valuable component in diverse applications that range from simulations over gambling to cryptography. The quest for true randomness in these applications has engendered a large variety of different proposals for producing random numbers based on the foundational unpredictability of quantum mechanics. However, most approaches do not consider that a potential adversary could have knowledge about the generated numbers, so the numbers are not verifiably random and unique. Here we present a simple experimental setup based on homodyne measurements that uses the purity of a continuous-variable quantum vacuum state to generate unique random numbers. We use the intrinsic randomness in measuring the quadratures of a mode in the lowest energy vacuum state, which cannot be correlated to any other state. The simplicity of our source, combined with its verifiably unique randomness, are important attributes for achieving high-reliability, high-speed and low-cost quantum random number generators.

  1. Stress-induced crystal transition of poly(butylene succinate) studied by terahertz and low-frequency Raman spectroscopy and quantum chemical calculation

    NASA Astrophysics Data System (ADS)

    Tatsuoka, Seika; Sato, Harumi

    2018-05-01

    We measured terahertz (THz) and low-frequency Raman spectra of Poly (butylene succinate) (PBS) which shows the crystal transition from α to β by stretching. For the assignment of the absorption peaks in the low-frequency region, we performed quantum chemical calculations with Cartesian-coordinate tensor transfer (CCT) method. Four major peaks appeared in the THz spectra of PBS at around 58, 76, 90, and 100 cm-1, and in the low-frequency Raman spectra a peak was observed at 88 cm-1. The THz peak at 100 cm-1 and the Raman peak at 88 cm-1 show a shift to a lower wavenumber region with increasing temperature. The quantum chemical calculation of β crystal form reveals the new peak appears above 100 cm-1. It was found that two kinds of peaks overlapped at around 100 cm-1 in the THz spectra of PBS. One of them can be assigned to a weak hydrogen bond between the C=O and CH2 groups in the intermolecular chains, which is perpendicular to the molecular chain of the α crystal form. Another one showed a parallel polarization which can be assigned to the intramolecular interaction between O (ether) and H-C groups in the β crystal form. The position of the peak at around 100 cm-1 in the perpendicular polarization changed to a lower wavenumber region with stretching, because of the weakening of the intermolecular hydrogen bonding by increasing the interatomic distances. On the other hand, that of the parallel polarization shifts to a higher wavenumber region because of the shortening of the interatomic distance from α to β crystal form (the strength of the intramolecular hydrogen bonding became stronger) by stretching.

  2. Generating and using truly random quantum states in Mathematica

    NASA Astrophysics Data System (ADS)

    Miszczak, Jarosław Adam

    2012-01-01

    The problem of generating random quantum states is of a great interest from the quantum information theory point of view. In this paper we present a package for Mathematica computing system harnessing a specific piece of hardware, namely Quantis quantum random number generator (QRNG), for investigating statistical properties of quantum states. The described package implements a number of functions for generating random states, which use Quantis QRNG as a source of randomness. It also provides procedures which can be used in simulations not related directly to quantum information processing. Program summaryProgram title: TRQS Catalogue identifier: AEKA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7924 No. of bytes in distributed program, including test data, etc.: 88 651 Distribution format: tar.gz Programming language: Mathematica, C Computer: Requires a Quantis quantum random number generator (QRNG, http://www.idquantique.com/true-random-number-generator/products-overview.html) and supporting a recent version of Mathematica Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit) RAM: Case dependent Classification: 4.15 Nature of problem: Generation of random density matrices. Solution method: Use of a physical quantum random number generator. Running time: Generating 100 random numbers takes about 1 second, generating 1000 random density matrices takes more than a minute.

  3. The speciation of antimony in sulfidic solutions: A theoretical study

    NASA Astrophysics Data System (ADS)

    Tossell, J. A.

    1994-12-01

    To assist in identifying the Sb sulfide species present in alkaline sulfide solutions, we have used ab initio quantum mechanical methods to calculate the structures, stabilities and vibrational spectra of a number of monomeric and oligomeric Sb(III) sulfides. In agreement with the interpretation of WOOD (1989), we assign a prominent feature observed at 369 cm -1 in the Raman spectrum of sulfidic Sb solutions to Sb-S stretching vibrations in a monomeric complex, although our calculations are most consistent with its assignment to the SbS 2(SH) -2 complex, rather than the fully deprotonated complex SbS 3-3. A shoulder observed at 380 cm -1 is best assigned to SbS(SH) 2-. Raman features observed at 314 and 350 cm 3-1 are assigned to Sb-S(H) symmetric stretching vibrations of the dimeric species Sb 2S 2(SH) 2, which is calculated to be thermodynamically stable, with respect to both the monomer Sb(SH) 3 and the trimer Sb 3S 3(SH) 3. The mixed-ligand complex Sb 2S 2(OH) 2 is calculated to become stable compared to Sb 2S 2(SH) 2 at high temperatures, in agreement with experimental solubility data. The Sb sulfide monomers are found to H-bond to water through their -SH or -S groups, but with only small changes in the Sb-S distances and Sb-S stretching frequencies. Accurate gas-phase proton affinities and estimated solution proton affinities are presented for the anionic species in solution and the estimated energetics are consistent with the presence of SbS 2(SH) -2, SbS(SH) 2-1 and Sb 2S 2(SH) 2 suggested by the Raman data.

  4. Origins and optimization of entanglement in plasmonically coupled quantum dots

    DOE PAGES

    Otten, Matthew; Larson, Jeffrey; Min, Misun; ...

    2016-08-11

    In this paper, a system of two or more quantum dots interacting with a dissipative plasmonic nanostructure is investigated in detail by using a cavity quantum electrodynamics approach with a model Hamiltonian. We focus on determining and understanding system configurations that generate multiple bipartite quantum entanglements between the occupation states of the quantum dots. These configurations include allowing for the quantum dots to be asymmetrically coupled to the plasmonic system. Analytical solution of a simplified limit for an arbitrary number of quantum dots and numerical simulations and optimization for the two- and three-dot cases are used to develop guidelines formore » maximizing the bipartite entanglements. For any number of quantum dots, we show that through simple starting states and parameter guidelines, one quantum dot can be made to share a strong amount of bipartite entanglement with all other quantum dots in the system, while entangling all other pairs to a lesser degree.« less

  5. Revealing a quantum feature of dimensionless uncertainty in linear and quadratic potentials by changing potential intervals

    NASA Astrophysics Data System (ADS)

    Kheiri, R.

    2016-09-01

    As an undergraduate exercise, in an article (2012 Am. J. Phys. 80 780-14), quantum and classical uncertainties for dimensionless variables of position and momentum were evaluated in three potentials: infinite well, bouncing ball, and harmonic oscillator. While original quantum uncertainty products depend on {{\\hslash }} and the number of states (n), a dimensionless approach makes the comparison between quantum uncertainty and classical dispersion possible by excluding {{\\hslash }}. But the question is whether the uncertainty still remains dependent on quantum number n. In the above-mentioned article, there lies this contrast; on the one hand, the dimensionless quantum uncertainty of the potential box approaches classical dispersion only in the limit of large quantum numbers (n\\to ∞ )—consistent with the correspondence principle. On the other hand, similar evaluations for bouncing ball and harmonic oscillator potentials are equal to their classical counterparts independent of n. This equality may hide the quantum feature of low energy levels. In the current study, we change the potential intervals in order to make them symmetric for the linear potential and non-symmetric for the quadratic potential. As a result, it is shown in this paper that the dimensionless quantum uncertainty of these potentials in the new potential intervals is expressed in terms of quantum number n. In other words, the uncertainty requires the correspondence principle in order to approach the classical limit. Therefore, it can be concluded that the dimensionless analysis, as a useful pedagogical method, does not take away the quantum feature of the n-dependence of quantum uncertainty in general. Moreover, our numerical calculations include the higher powers of the position for the potentials.

  6. Ultralow Noise Monolithic Quantum Dot Photonic Oscillators

    DTIC Science & Technology

    2013-10-28

    HBCU/MI) ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS LUKE LESTER UNIVERSITY OF NEW MEXICO 10/28/2013 Final Report DISTRIBUTION A...TELEPHONE NUMBER (Include area code) 24-10-2013 Final 01-06-2010 to 31-05-2013 Ultralow Noise Monolithic Quantum Dot Photonic Oscillators FA9550-10-1-0276...277-7647 Reset Grant Title: ULTRALOW NOISE MONOLITHIC QUANTUM DOT PHOTONIC OSCILLATORS Grant/Contract Number: FA9550-10-1-0276 Final Performance

  7. Observation of ν1+νn combination bands of the HOOO and DOOO radicals using infrared action spectroscopy

    NASA Astrophysics Data System (ADS)

    Derro, Erika L.; Sechler, Timothy D.; Murray, Craig; Lester, Marsha I.

    2008-06-01

    Hydrogen trioxy (HOOO) and its deuterated analog (DOOO) have been generated in a supersonic free-jet expansion through association of photolytically generated OH or OD and molecular oxygen. The radicals were detected using infrared action spectroscopy, a highly sensitive double resonance technique. Rotationally resolved spectra of combination bands of HOOO and DOOO comprising one quantum of OH or OD stretch (ν1) and one quantum of a lower frequency mode (ν1+νn where n=3-6), including H/DOO bend (ν3), OOO bend (ν4), central OO stretch (ν5), and H/DOOO torsion (ν6), have been observed and assigned to the trans conformer. All but one of these bands are accompanied by unstructured features which are tentatively assigned to the corresponding vibration of the cis conformer. In total, five additional bands of HOOO and four of DOOO have been recorded and assigned. These data represent the first gas-phase observation of the low-frequency modes of HOOO and DOOO and they are found to differ significantly from previous matrix studies and theoretical predictions. Accurate knowledge of the vibrational frequencies is crucial in assessing thermochemical properties of HOOO and present possible means of detection in the atmosphere.

  8. Quantum-Classical Correspondence Principle for Work Distributions

    NASA Astrophysics Data System (ADS)

    Jarzynski, Christopher; Quan, H. T.; Rahav, Saar

    2015-07-01

    For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to the classical definition of work has not been carefully examined. In this paper, we employ semiclassical methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence between classical and quantal definitions of work in systems with 1 degree of freedom. We find that a semiclassical work distribution, built from classical trajectories that connect the initial and final energies, provides an excellent approximation to the quantum work distribution when the trajectories are assigned suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum work distribution converges to the classical distribution, decorated by a quantum interference pattern. We also derive the form of the quantum work distribution at the boundary between classically allowed and forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the correspondence principle applies in the context of quantum and classical work distributions and contribute to the understanding of work and nonequilibrium work relations in the quantum regime.

  9. Quantum entanglement of high angular momenta.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  10. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    PubMed Central

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-01-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon. PMID:27856742

  11. Quantum entanglement of angular momentum states with quantum numbers up to 10,010

    NASA Astrophysics Data System (ADS)

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-01

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  12. Quantum entanglement of angular momentum states with quantum numbers up to 10,010.

    PubMed

    Fickler, Robert; Campbell, Geoff; Buchler, Ben; Lam, Ping Koy; Zeilinger, Anton

    2016-11-29

    Photons with a twisted phase front carry a quantized amount of orbital angular momentum (OAM) and have become important in various fields of optics, such as quantum and classical information science or optical tweezers. Because no upper limit on the OAM content per photon is known, they are also interesting systems to experimentally challenge quantum mechanical prediction for high quantum numbers. Here, we take advantage of a recently developed technique to imprint unprecedented high values of OAM, namely spiral phase mirrors, to generate photons with more than 10,000 quanta of OAM. Moreover, we demonstrate quantum entanglement between these large OAM quanta of one photon and the polarization of its partner photon. To our knowledge, this corresponds to entanglement with the largest quantum number that has been demonstrated in an experiment. The results may also open novel ways to couple single photons to massive objects, enhance angular resolution, and highlight OAM as a promising way to increase the information capacity of a single photon.

  13. Electrostatically defined silicon quantum dots with counted antimony donor implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, M., E-mail: msingh@sandia.gov; Luhman, D. R.; Lilly, M. P.

    2016-02-08

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  14. Electrostatically defined silicon quantum dots with counted antimony donor implants

    NASA Astrophysics Data System (ADS)

    Singh, M.; Pacheco, J. L.; Perry, D.; Garratt, E.; Ten Eyck, G.; Bishop, N. C.; Wendt, J. R.; Manginell, R. P.; Dominguez, J.; Pluym, T.; Luhman, D. R.; Bielejec, E.; Lilly, M. P.; Carroll, M. S.

    2016-02-01

    Deterministic control over the location and number of donors is crucial to donor spin quantum bits (qubits) in semiconductor based quantum computing. In this work, a focused ion beam is used to implant antimony donors in 100 nm × 150 nm windows straddling quantum dots. Ion detectors are integrated next to the quantum dots to sense the implants. The numbers of donors implanted can be counted to a precision of a single ion. In low-temperature transport measurements, regular Coulomb blockade is observed from the quantum dots. Charge offsets indicative of donor ionization are also observed in devices with counted donor implants.

  15. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    DOE PAGES

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.; ...

    2015-02-01

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less

  16. Nodal gap structure and order parameter symmetry of the unconventional superconductor UPt₃

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gannon, W. J.; Halperin, W. P.; Rastovski, C.

    Spanning a broad range of physical systems, complex symmetry breaking is widely recognized as a hallmark of competing interactions. This is exemplified in superfluid ³He which has multiple thermodynamic phases with spin and orbital quantum numbers S = 1 and L = 1, that emerge on cooling from a nearly ferromagnetic Fermi liquid. The heavy fermion compound UPt₃ exhibits similar behavior clearly manifest in its multiple superconducting phases. However, consensus as to its order parameter symmetry has remained elusive. Our small angle neutron scattering measurements indicate a linear temperature dependence of the London penetration depth characteristic of nodal structure ofmore » the order parameter. Our theoretical analysis is consistent with assignment of its symmetry to an L = 3 odd parity state for which one of the three thermodynamic phases in non-zero magnetic field is chiral.« less

  17. Active measurement-based quantum feedback for preparing and stabilizing superpositions of two cavity photon number states

    NASA Astrophysics Data System (ADS)

    Berube-Lauziere, Yves

    The measurement-based quantum feedback scheme developed and implemented by Haroche and collaborators to actively prepare and stabilize specific photon number states in cavity quantum electrodynamics (CQED) is a milestone achievement in the active protection of quantum states from decoherence. This feat was achieved by injecting, after each weak dispersive measurement of the cavity state via Rydberg atoms serving as cavity sensors, a low average number classical field (coherent state) to steer the cavity towards the targeted number state. This talk will present the generalization of the theory developed for targeting number states in order to prepare and stabilize desired superpositions of two cavity photon number states. Results from realistic simulations taking into account decoherence and imperfections in a CQED set-up will be presented. These demonstrate the validity of the generalized theory and points to the experimental feasibility of preparing and stabilizing such superpositions. This is a further step towards the active protection of more complex quantum states than number states. This work, cast in the context of CQED, is also almost readily applicable to circuit QED. YBL acknowledges financial support from the Institut Quantique through a Canada First Research Excellence Fund.

  18. Entangled states in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ruža, Jānis

    2010-01-01

    In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.

  19. DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX QUANTUM LOGIC CIRCUITS

    DTIC Science & Technology

    2017-10-01

    DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX QUANTUM LOGIC CIRCUITS UNIVERSITY OF SOUTHERN CALIFORNIA OCTOBER 2017 FINAL...SUBTITLE DESIGN METHODOLOGIES AND TOOLS FOR SINGLE-FLUX QUANTUM LOGIC CIRCUITS 5a. CONTRACT NUMBER FA8750-15-C-0203 5b. GRANT NUMBER N/A 5c. PROGRAM...of this project was to investigate the state-of-the-art in design and optimization of single-flux quantum (SFQ) logic circuits, e.g., RSFQ and ERSFQ

  20. Security of Quantum Repeater Network Operation

    DTIC Science & Technology

    2016-10-03

    readily in quantum networks than in classical networks. Our presentation at the SENT workshop attracted the attention of computer and network researchers...AFRL-AFOSR-JP-TR-2016-0079 Security of Quantum Repeater Network Operation Rodney Van Meter KEIO UNIVERSITY Final Report 10/03/2016 DISTRIBUTION A...To)  29 May 2014 to 28 May 2016 4. TITLE AND SUBTITLE Security of Quantum Repeater Network Operation 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386

  1. Transport electron through a quantum wire by side-attached asymmetric quantum-dot rings

    NASA Astrophysics Data System (ADS)

    Rostami, A.; Zabihi, S.; Rasooli S., H.; Seyyedi, S. K.

    2011-12-01

    The electronic conductance at zero temperature through a quantum wire with side-attached asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Anderson tunneling Hamiltonian method. We show that the asymmetric configuration of QD- scatter system strongly impresses the amplitude and spectrum of quantum wire nanostructure transmission characteristics. It is shown that whenever the balanced number of quantum dots in two rings is substituted by unbalanced scheme, the number of forbidden mini-bands in quantum wire conductance increases and QW-nanostructure electronic conductance contains rich spectral properties due to appearance of the new anti-resonance and resonance points in spectrum. Considering the suitable gap between nano-rings can strengthen the amplitude of new resonant peaks in the QW conductance spectrum. The proposed asymmetric quantum ring scatter system idea in this paper opens a new insight on designing quantum wire nano structure for given electronic conductance.

  2. Trapped-Ion Quantum Logic with Global Radiation Fields.

    PubMed

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  3. 19 CFR 24.26 - Automated Clearinghouse credit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; payer identification number (importer number or Social Security number or Customs assigned number); and...; payer identifier (importer number or Social Security number or Customs assigned number or filer code if... or warehouse withdrawal number for a deferred tax payment, or bill number); payment type code...

  4. 75 FR 9897 - Notice of Public Information Collection Being Submitted to the Office of Management and Budget...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    .... SUPPLEMENTARY INFORMATION: OMB Control Number: 3060-0748. Title: Section 64.104, 64.1509, 64.1510, Pay-Per-Call.... Common carriers that assign telephone numbers to pay-per-call services must disclose to all interested parties, upon request, a list of all assigned pay-per-call numbers. For each assigned number, carriers...

  5. 47 CFR 1.9055 - Assignment of file numbers to spectrum leasing notifications and applications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Assignment of file numbers to spectrum leasing... GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Spectrum Leasing General Policies and Procedures § 1.9055 Assignment of file numbers to spectrum leasing notifications and applications. Spectrum...

  6. 47 CFR 1.9055 - Assignment of file numbers to spectrum leasing notifications and applications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Assignment of file numbers to spectrum leasing... GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Spectrum Leasing General Policies and Procedures § 1.9055 Assignment of file numbers to spectrum leasing notifications and applications. Spectrum...

  7. 47 CFR 1.9055 - Assignment of file numbers to spectrum leasing notifications and applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Assignment of file numbers to spectrum leasing... GENERAL PRACTICE AND PROCEDURE Spectrum Leasing General Policies and Procedures § 1.9055 Assignment of file numbers to spectrum leasing notifications and applications. Spectrum leasing notifications or...

  8. 47 CFR 1.9055 - Assignment of file numbers to spectrum leasing notifications and applications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Assignment of file numbers to spectrum leasing... GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Spectrum Leasing General Policies and Procedures § 1.9055 Assignment of file numbers to spectrum leasing notifications and applications. Spectrum...

  9. 47 CFR 1.9055 - Assignment of file numbers to spectrum leasing notifications and applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Assignment of file numbers to spectrum leasing... GENERAL PRACTICE AND PROCEDURE Spectrum Leasing General Policies and Procedures § 1.9055 Assignment of file numbers to spectrum leasing notifications and applications. Spectrum leasing notifications or...

  10. Integer, fractional, and anomalous quantum Hall effects explained with Eyring's rate process theory and free volume concept.

    PubMed

    Hao, Tian

    2017-02-22

    The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.

  11. Exotic quantum order in low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Girvin, S. M.

    1998-08-01

    Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.

  12. Decentralized Routing and Diameter Bounds in Entangled Quantum Networks

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2017-04-01

    Entangled quantum networks are a necessity for any future quantum internet, long-distance quantum key distribution, and quantum repeater networks. The entangled quantum nodes can communicate through several different levels of entanglement, leading to a heterogeneous, multi-level entangled network structure. The level of entanglement between the quantum nodes determines the hop distance, the number of spanned nodes, and the probability of the existence of an entangled link in the network. In this work we define a decentralized routing for entangled quantum networks. We show that the probability distribution of the entangled links can be modeled by a specific distribution in a base-graph. The results allow us to perform efficient routing to find the shortest paths in entangled quantum networks by using only local knowledge of the quantum nodes. We give bounds on the maximum value of the total number of entangled links of a path. The proposed scheme can be directly applied in practical quantum communications and quantum networking scenarios. This work was partially supported by the Hungarian Scientific Research Fund - OTKA K-112125.

  13. Ab initio non-adiabatic study of the 4pσ B'' 1Σ+u state of H2

    NASA Astrophysics Data System (ADS)

    Glass-Maujean, M.; Schmoranzer, H.

    2018-05-01

    Fully ab initio non-adiabatic multichannel quantum defect calculations of the 4pσ B'' 1∑u+ energy levels, line intensities and widths, based on the latest quantum-chemical clamped-nuclei calculations of Wolniewicz and collaborators are presented for H2. The B″ state corresponds to the inner well of the ? state. The B'' v ≥ 1 levels are rapidly predissociated through vibrational coupling with the 3pσ B' 1Σ+u continuum so that coupled-equation calculations become unstable. Multichannel quantum defect theory, on the other hand, is demonstrated to be particularly suited to this situation. Experimental data as level energies, line intensities and dissociation widths were revisited and corrected. Reinvestigating previously published spectra, several new lines were assigned.

  14. Applications of quantum entropy to statistics

    NASA Astrophysics Data System (ADS)

    Silver, R. N.; Martz, H. F.

    This paper develops two generalizations of the maximum entropy (ME) principle. First, Shannon classical entropy is replaced by von Neumann quantum entropy to yield a broader class of information divergences (or penalty functions) for statistics applications. Negative relative quantum entropy enforces convexity, positivity, non-local extensivity and prior correlations such as smoothness. This enables the extension of ME methods from their traditional domain of ill-posed in-verse problems to new applications such as non-parametric density estimation. Second, given a choice of information divergence, a combination of ME and Bayes rule is used to assign both prior and posterior probabilities. Hyperparameters are interpreted as Lagrange multipliers enforcing constraints. Conservation principles are proposed to act statistical regularization and other hyperparameters, such as conservation of information and smoothness. ME provides an alternative to hierarchical Bayes methods.

  15. On the number of entangled qubits in quantum wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Mohapatra, Amit Kumar; Balakrishnan, S.

    2016-08-01

    Wireless sensor networks (WSNs) can take the advantages by utilizing the security schemes based on the concepts of quantum computation and cryptography. However, quantum wireless sensor networks (QWSNs) are shown to have many practical constraints. One of the constraints is the number of entangled qubits which is very high in the quantum security scheme proposed by [Nagy et al., Nat. Comput. 9 (2010) 819]. In this work, we propose a modification of the security scheme introduced by Nagy et al. and hence the reduction in the number of entangled qubits is shown. Further, the modified scheme can overcome some of the constraints in the QWSNs.

  16. Bell's Inequality: Revolution in Quantum Physics or Just AN Inadequate Mathematical Model?

    NASA Astrophysics Data System (ADS)

    Khrennikov, Andrei

    The main aim of this review is to stress the role of mathematical models in physics. The Bell inequality (BI) is often called the "most famous inequality of the 20th century." It is commonly accepted that its violation in corresponding experiments induced a revolution in quantum physics. Unlike "old quantum mechanics" (of Einstein, Schrodinger Bohr, Heisenberg, Pauli, Landau, Fock), "modern quantum mechanics" (of Bell, Aspect, Zeilinger, Shimony, Green-berger, Gisin, Mermin) takes seriously so called quantum non-locality. We will show that the conclusion that one has to give up the realism (i.e., a possibility to assign results of measurements to physical systems) or the locality (i.e., to assume action at a distance) is heavily based on one special mathematical model. This model was invented by A. N. Kolmogorov in 1933. One should pay serious attention to the role of mathematical models in physics. The problems of the realism and locality induced by Bell's argument can be solved by using non-Kolmogorovian probabilistic models. We compare this situation with non-Euclidean geometric models in relativity theory.

  17. Detection of Atmospheric Carbon Dioxide from a Shuttle-Borne Lidar.

    DTIC Science & Technology

    1982-12-01

    d, e_! *Pnl * cooling of the stratosphere. This will occur due to absorp- tion of the earth’s infrared radiation by CO2, and subse- quent emission of...and four vibrational modes. The available energy bands are a function of three vibrational quantum numbers describing the four vibrational modes: 1...insufficient to describe the energy levels based solely on three vibrational quantum numbers, and the rotational quantum number (J). Two additional .".,. 8

  18. The structure and photochemical transformation of cyclopropylacetylene radical cation as revealed by matrix EPR and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Shiryaeva, Ekaterina S.; Tyurin, Daniil A.; Feldman, Vladimir I.

    2012-05-01

    The primary radical cation of cyclopropylacetylene was first characterized by EPR spectroscopy in low-temperature freon matrices. The assignment was confirmed by specific deuteration and quantum-chemical calculations at PBE0 and CCSD(T) levels. Photolysis with visible light led to irreversible transformation of the initial species to a ring-open structure. Detailed computational analysis of energy and magnetic resonance parameters of possible reaction products justified formation of pent-3-en-1-yne radical cation (presumably, a (Z)-isomer). This conclusion was also supported by the effect of specific deuteration.

  19. Counterfactual statements and weak measurements: an experimental proposal

    NASA Astrophysics Data System (ADS)

    Mølmer, Klaus

    2001-12-01

    A recent analysis suggests that weak measurements can be used to give observational meaning to counterfactual reasoning in quantum physics. A weak measurement is predicted to assign a negative unit population to a specific state in an interferometric Gedankenexperiment proposed by Hardy. We propose an experimental implementation with trapped ions of the Gedankenexperiment and of the weak measurement. In our standard quantum mechanical analysis of the proposal no states have negative population, but we identify the registration of a negative population by particles being displaced on average in the direction opposite to a force acting upon them.

  20. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg, E-mail: hans-jorg.himmel@aci.uni-heidelberg.de

    2015-07-14

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.

  1. Exact quantum numbers of collapsed and non-collapsed two-string solutions in the spin-1/2 Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Deguchi, Tetsuo; Ranjan Giri, Pulak

    2016-04-01

    Every solution of the Bethe-ansatz equations (BAEs) is characterized by a set of quantum numbers, by which we can evaluate it numerically. However, no general rule is known how to give quantum numbers for the physical solutions of BAE. For the spin-1/2 XXX chain we rigorously derive all the quantum numbers for the complete set of the Bethe-ansatz eigenvectors in the two down-spin sector with any chain length N. Here we obtain them both for real and complex solutions. We also show that all the solutions associated with them are distinct. Consequently, we prove the completeness of the Bethe ansatz and give an exact expression for the number of real solutions which correspond to collapsed bound-state solutions (i.e., two-string solutions) in the sector: 2[(N-1)/2-(N/π ){{tan}}-1(\\sqrt{N-1})] in terms of Gauss’ symbol. Moreover, we prove in the sector the scheme conjectured by Takahashi for solving BAE systematically. We also suggest that by applying the present method we can derive the quantum numbers for the spin-1/2 XXZ chain.

  2. 46 CFR 147.8 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 147.8 Section 147.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.8 OMB control numbers assigned pursuant...

  3. 46 CFR 147.8 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 147.8 Section 147.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.8 OMB control numbers assigned pursuant...

  4. 46 CFR 150.105 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 150.105 Section 150.105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.105 OMB control numbers assigned pursuant to...

  5. 46 CFR 150.105 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 150.105 Section 150.105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.105 OMB control numbers assigned pursuant to...

  6. 46 CFR 147.8 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 147.8 Section 147.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.8 OMB control numbers assigned pursuant...

  7. 46 CFR 150.105 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 150.105 Section 150.105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.105 OMB control numbers assigned pursuant to...

  8. 46 CFR 147.8 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 147.8 Section 147.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.8 OMB control numbers assigned pursuant...

  9. 46 CFR 150.105 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 150.105 Section 150.105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.105 OMB control numbers assigned pursuant to...

  10. 46 CFR 150.105 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 150.105 Section 150.105 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES § 150.105 OMB control numbers assigned pursuant to...

  11. 46 CFR 147.8 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 147.8 Section 147.8 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DANGEROUS CARGOES HAZARDOUS SHIPS' STORES General Provisions § 147.8 OMB control numbers assigned pursuant...

  12. 46 CFR 565.13 - OMB control number assigned pursuant to the Paperwork Reduction Act

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 9 2010-10-01 2010-10-01 false OMB control number assigned pursuant to the Paperwork Reduction Act 565.13 Section 565.13 Shipping FEDERAL MARITIME COMMISSION REGULATIONS AND ACTIONS TO ADDRESS RESTRICTIVE FOREIGN MARITIME PRACTICES CONTROLLED CARRIERS § 565.13 OMB control number assigned pursuant to...

  13. 46 CFR 107.05 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 107.05 Section 107.05 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION General § 107.05 OMB control numbers assigned...

  14. 46 CFR 107.05 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 107.05 Section 107.05 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION General § 107.05 OMB control numbers assigned...

  15. 46 CFR 107.05 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 107.05 Section 107.05 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION General § 107.05 OMB control numbers assigned...

  16. 46 CFR 107.05 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 107.05 Section 107.05 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION General § 107.05 OMB control numbers assigned...

  17. 46 CFR 107.05 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 107.05 Section 107.05 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS INSPECTION AND CERTIFICATION General § 107.05 OMB control numbers assigned...

  18. 20 CFR 422.104 - Who can be assigned a social security number.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Who can be assigned a social security number. 422.104 Section 422.104 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES General Procedures § 422.104 Who can be assigned a social security number. (a) Persons eligible for SSN...

  19. 20 CFR 422.104 - Who can be assigned a social security number.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Who can be assigned a social security number. 422.104 Section 422.104 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES General Procedures § 422.104 Who can be assigned a social security number. (a) Persons eligible for SSN...

  20. 20 CFR 422.104 - Who can be assigned a social security number.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Who can be assigned a social security number. 422.104 Section 422.104 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES General Procedures § 422.104 Who can be assigned a social security number. (a) Persons eligible for SSN...

  1. 20 CFR 422.104 - Who can be assigned a social security number.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Who can be assigned a social security number. 422.104 Section 422.104 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES General Procedures § 422.104 Who can be assigned a social security number. (a) Persons eligible for SSN...

  2. 20 CFR 422.104 - Who can be assigned a social security number.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Who can be assigned a social security number. 422.104 Section 422.104 Employees' Benefits SOCIAL SECURITY ADMINISTRATION ORGANIZATION AND PROCEDURES General Procedures § 422.104 Who can be assigned a social security number. (a) Persons eligible for SSN...

  3. 21 CFR 801.57 - Discontinuation of legacy FDA identification numbers assigned to devices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Discontinuation of legacy FDA identification... Device Identification § 801.57 Discontinuation of legacy FDA identification numbers assigned to devices... been assigned an FDA labeler code to facilitate use of NHRIC or NDC numbers may continue to use that...

  4. 47 CFR 90.723 - Selection and assignment of frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... shall specify the number of frequencies requested. All frequencies in this band will be assigned by the... assigned only the number of channels justified to meet their requirements. (d) Phase I base or fixed station receivers utilizing 221-222 MHz frequencies assigned from Sub-band A as designated in § 90.715(b...

  5. 47 CFR 90.723 - Selection and assignment of frequencies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... shall specify the number of frequencies requested. All frequencies in this band will be assigned by the... assigned only the number of channels justified to meet their requirements. (d) Phase I base or fixed station receivers utilizing 221-222 MHz frequencies assigned from Sub-band A as designated in § 90.715(b...

  6. 47 CFR 90.723 - Selection and assignment of frequencies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... shall specify the number of frequencies requested. All frequencies in this band will be assigned by the... assigned only the number of channels justified to meet their requirements. (d) Phase I base or fixed station receivers utilizing 221-222 MHz frequencies assigned from Sub-band A as designated in § 90.715(b...

  7. A Quantum-Based Similarity Method in Virtual Screening.

    PubMed

    Al-Dabbagh, Mohammed Mumtaz; Salim, Naomie; Himmat, Mubarak; Ahmed, Ali; Saeed, Faisal

    2015-10-02

    One of the most widely-used techniques for ligand-based virtual screening is similarity searching. This study adopted the concepts of quantum mechanics to present as state-of-the-art similarity method of molecules inspired from quantum theory. The representation of molecular compounds in mathematical quantum space plays a vital role in the development of quantum-based similarity approach. One of the key concepts of quantum theory is the use of complex numbers. Hence, this study proposed three various techniques to embed and to re-represent the molecular compounds to correspond with complex numbers format. The quantum-based similarity method that developed in this study depending on complex pure Hilbert space of molecules called Standard Quantum-Based (SQB). The recall of retrieved active molecules were at top 1% and top 5%, and significant test is used to evaluate our proposed methods. The MDL drug data report (MDDR), maximum unbiased validation (MUV) and Directory of Useful Decoys (DUD) data sets were used for experiments and were represented by 2D fingerprints. Simulated virtual screening experiment show that the effectiveness of SQB method was significantly increased due to the role of representational power of molecular compounds in complex numbers forms compared to Tanimoto benchmark similarity measure.

  8. Quantum Mechanical Earth: Where Orbitals Become Orbits

    ERIC Educational Resources Information Center

    Keeports, David

    2012-01-01

    Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…

  9. Polarization-polarization correlation measurement --- Experimental test of the PPCO methods

    NASA Astrophysics Data System (ADS)

    Droste, Ch.; Starosta, K.; Wierzchucka, A.; Morek, T.; Rohoziński, S. G.; Srebrny, J.; Wesolowski, E.; Bergstrem, M.; Herskind, B.

    1998-04-01

    A significant fraction of modern multidetector arrays used for "in-beam" gamma-ray spectroscopy consist of a detectors which are sensitive to linear polarization of gamma quanta. This yields the opportunity to carry out correlation measurements between the gamma rays registered in polarimeters to get information concerning spins and parities of excited nuclear states. The aim of the present work was to study the ability of the polarization- polarization correlation method (the PPCO method). The correlation between the linear polarization of one gamma quantum and the polarization of the second quantum emitted in a cascade from an oriented nucleus (due to a heavy ion reaction) was studied in detail. The appropriate formulae and methods of analysis are presented. The experimental test of the method was performed using the EUROGAM II array. The CLOVER detectors are the parts of the array used as polarimeters. The ^164Yb nucleus was produced via the ^138Ba(^30Si, 4n) reaction. It was found that the PPCO method together with the standard DCO analysis and the polarization- direction correlation method (PDCO) can be helpful for spin, parity and multipolarity assignments. The results suggest that the PPCO method can be applied to modern spectrometers in which a large number of detectors (e.g. CLOVER) are sensitive to polarization of gamma rays.

  10. Quantum random number generation for loophole-free Bell tests

    NASA Astrophysics Data System (ADS)

    Mitchell, Morgan; Abellan, Carlos; Amaya, Waldimar

    2015-05-01

    We describe the generation of quantum random numbers at multi-Gbps rates, combined with real-time randomness extraction, to give very high purity random numbers based on quantum events at most tens of ns in the past. The system satisfies the stringent requirements of quantum non-locality tests that aim to close the timing loophole. We describe the generation mechanism using spontaneous-emission-driven phase diffusion in a semiconductor laser, digitization, and extraction by parity calculation using multi-GHz logic chips. We pay special attention to experimental proof of the quality of the random numbers and analysis of the randomness extraction. In contrast to widely-used models of randomness generators in the computer science literature, we argue that randomness generation by spontaneous emission can be extracted from a single source.

  11. 75 FR 22727 - Defense Federal Acquisition Regulation Supplement; Government-Assigned Serial Number Marking...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... numbers, such as tail numbers/hull numbers and equipment registration, in human-readable format on major...., aircraft tail numbers or ship hull numbers in military operations, the number of small entities impacted by... contractors apply Government-assigned serial numbers, such as tail numbers/hull numbers and equipment...

  12. Experimental demonstration of counterfactual quantum key distribution

    NASA Astrophysics Data System (ADS)

    Ren, M.; Wu, G.; Wu, E.; Zeng, H.

    2011-04-01

    Counterfactual quantum key distribution provides natural advantage against the eavesdropping on the actual signal particles. It can prevent the photon-number-splitting attack when a weak coherent light source is used for the practical implementation. We experimentally realized the counterfactual quantum key distribution in an unbalanced Mach-Zehnder interferometer of 12.5-km-long quantum channel with a high-fringe visibility of 97.4%. According to the security analysis, the system was robust against the photon-number-splitting attack. The article is published in the original.

  13. FPGA and USB based control board for quantum random number generator

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wan, Xu; Zhang, Hong-Fei; Gao, Yuan; Chen, Teng-Yun; Liang, Hao

    2009-09-01

    The design and implementation of FPGA-and-USB-based control board for quantum experiments are discussed. The usage of quantum true random number generator, control- logic in FPGA and communication with computer through USB protocol are proposed in this paper. Programmable controlled signal input and output ports are implemented. The error-detections of data frame header and frame length are designed. This board has been used in our decoy-state based quantum key distribution (QKD) system successfully.

  14. Quantum Chemistry on Quantum Computers: A Polynomial-Time Quantum Algorithm for Constructing the Wave Functions of Open-Shell Molecules.

    PubMed

    Sugisaki, Kenji; Yamamoto, Satoru; Nakazawa, Shigeaki; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji

    2016-08-18

    Quantum computers are capable to efficiently perform full configuration interaction (FCI) calculations of atoms and molecules by using the quantum phase estimation (QPE) algorithm. Because the success probability of the QPE depends on the overlap between approximate and exact wave functions, efficient methods to prepare accurate initial guess wave functions enough to have sufficiently large overlap with the exact ones are highly desired. Here, we propose a quantum algorithm to construct the wave function consisting of one configuration state function, which is suitable for the initial guess wave function in QPE-based FCI calculations of open-shell molecules, based on the addition theorem of angular momentum. The proposed quantum algorithm enables us to prepare the wave function consisting of an exponential number of Slater determinants only by a polynomial number of quantum operations.

  15. Employing online quantum random number generators for generating truly random quantum states in Mathematica

    NASA Astrophysics Data System (ADS)

    Miszczak, Jarosław Adam

    2013-01-01

    The presented package for the Mathematica computing system allows the harnessing of quantum random number generators (QRNG) for investigating the statistical properties of quantum states. The described package implements a number of functions for generating random states. The new version of the package adds the ability to use the on-line quantum random number generator service and implements new functions for retrieving lists of random numbers. Thanks to the introduced improvements, the new version provides faster access to high-quality sources of random numbers and can be used in simulations requiring large amount of random data. New version program summaryProgram title: TRQS Catalogue identifier: AEKA_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKA_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 18 134 No. of bytes in distributed program, including test data, etc.: 2 520 49 Distribution format: tar.gz Programming language: Mathematica, C. Computer: Any supporting Mathematica in version 7 or higher. Operating system: Any platform supporting Mathematica; tested with GNU/Linux (32 and 64 bit). RAM: Case-dependent Supplementary material: Fig. 1 mentioned below can be downloaded. Classification: 4.15. External routines: Quantis software library (http://www.idquantique.com/support/quantis-trng.html) Catalogue identifier of previous version: AEKA_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183(2012)118 Does the new version supersede the previous version?: Yes Nature of problem: Generation of random density matrices and utilization of high-quality random numbers for the purpose of computer simulation. Solution method: Use of a physical quantum random number generator and an on-line service providing access to the source of true random numbers generated by quantum real number generator. Reasons for new version: Added support for the high-speed on-line quantum random number generator and improved methods for retrieving lists of random numbers. Summary of revisions: The presented version provides two signicant improvements. The first one is the ability to use the on-line Quantum Random Number Generation service developed by PicoQuant GmbH and the Nano-Optics groups at the Department of Physics of Humboldt University. The on-line service supported in the version 2.0 of the TRQS package provides faster access to true randomness sources constructed using the laws of quantum physics. The service is freely available at https://qrng.physik.hu-berlin.de/. The use of this service allows using the presented package with the need of a physical quantum random number generator. The second improvement introduced in this version is the ability to retrieve arrays of random data directly for the used source. This increases the speed of the random number generation, especially in the case of an on-line service, where it reduces the time necessary to establish the connection. Thanks to the speed improvement of the presented version, the package can now be used in simulations requiring larger amounts of random data. Moreover, the functions for generating random numbers provided by the current version of the package more closely follow the pattern of functions for generating pseudo- random numbers provided in Mathematica. Additional comments: Speed comparison: The implementation of the support for the QRNG on-line service provides a noticeable improvement in the speed of random number generation. For the samples of real numbers of size 101; 102,…,107 the times required to generate these samples using Quantis USB device and QRNG service are compared in Fig. 1. The presented results show that the use of the on-line service provides faster access to random numbers. One should note, however, that the speed gain can increase or decrease depending on the connection speed between the computer and the server providing random numbers. Running time: Depends on the used source of randomness and the amount of random data used in the experiment. References: [1] M. Wahl, M. Leifgen, M. Berlin, T. Röhlicke, H.-J. Rahn, O. Benson., An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements, Applied Physics Letters, Vol. 098, 171105 (2011). http://dx.doi.org/10.1063/1.3578456.

  16. Locality for quantum systems on graphs depends on the number field

    NASA Astrophysics Data System (ADS)

    Hall, H. Tracy; Severini, Simone

    2013-07-01

    Adapting a definition of Aaronson and Ambainis (2005 Theory Comput. 1 47-79), we call a quantum dynamics on a digraph saturated Z-local if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.

  17. Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm.

    PubMed

    Yang, Yu; Fritzsching, Keith J; Hong, Mei

    2013-11-01

    A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra ("good connections"), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra ("bad connections"), and minimizing the number of assigned peaks that have no matching peaks in the other spectra ("edges"). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct assignment for a larger number of residues. On the other hand, when there are multiple equally good assignments that are significantly different from each other, the modified NSGA-II is less efficient than MC/SA in finding all the solutions. This problem is solved by a combined NSGA-II/MC algorithm, which appears to have the advantages of both NSGA-II and MC/SA. This combination algorithm is robust for the three most difficult chemical shift datasets examined here and is expected to give the highest-quality de novo assignment of challenging protein NMR spectra.

  18. A scalable quantum computer with ions in an array of microtraps

    PubMed

    Cirac; Zoller

    2000-04-06

    Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout. So far, only a few systems have been identified as potentially viable quantum computer models--accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions or neutral atoms, cavity quantum electrodynamics and nuclear magnetic resonance) and solid state systems (using nuclear spins, quantum dots and Josephson junctions). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits, rising to 100,000 if error correction is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).

  19. Raman spectrum, quantum mechanical calculations and vibrational assignments of (95% alpha-TeO2/5% Sm2O3) glass.

    PubMed

    Shaltout, I; Mohamed, Tarek A

    2007-06-01

    Chozen system of tellurite glasses doped with rare earth oxides (95% alpha-TeO(2)+5% Sm2O3) was prepared by melt quenching. Consequently, the Raman spectrum (150-1250 cm(-1)) of the modified tellurite have been recorded. As a continuation to our normal coordinate analysis, force constants and quantum mechanical (QM) calculations for tbp TeO4(4-) (triagonal bipyramid, C(2v)) and TeO(3+1); Te2O7(6-) (bridged tetrahedral), we have carried out ab initio frequency calculations for tpy TeO3(2-) (triagonal pyramidal, C(3v) and C(s)) and tp TeO3(2-) (triagonal planar, D(3h)) ions. The quantum mechanical calculations at the levels of RHF, B3LYP and MP2 allow confident vibrational assignments and structural identification in the binary oxide glass (95% alpha-TeO2 +5% Sm2O3). The dominant three-dimensional network structures in the modified glass are triagonal pyramidal TeO3 with minor features of short range distorted tbp TeO4 and bridged tetrahedral unit of TeO(3+1), leading to a structure of infinite chain. Therefore, alpha-TeO2/Sm2O3 (95/5%) glass experience structural changes from TeO4 (tbp); Te2O7 (TeO(3+1))-->TeO3 (tpy).

  20. Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics

    DTIC Science & Technology

    2012-02-24

    AND SUBTITLE Detection of Biochemical Pathogens, Laser Stand-off Spectroscopy, Quantum Coherence, and Many Body Quantum Optics 6. AUTHORS Marian O...Maximum 200 words) Results of our earlier research in the realm of quantum optics were extended in order to solve the challenging technical problems of...efficient methods of generating UV light via quantum coherence. 14. SUBJECT TERMS Quantum coherence, quantum optics, lasers 15. NUMBER OF PAGES 15

  1. Parametric number covariance in quantum chaotic spectra.

    PubMed

    Vinayak; Kumar, Sandeep; Pandey, Akhilesh

    2016-03-01

    We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.

  2. Rényi entropies and topological quantum numbers in 2D gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Bolívar, Juan Carlos; Romera, Elvira

    2017-05-01

    New topological quantum numbers are introduced by analyzing complexity measures and relative Rényi entropies in silicene in the presence of perpendicular electric and magnetic fields. These topological quantum numbers characterize the topological insulator and band insulator phases in silicene. In addition, we have found that, these information measures reach extremum values at the charge neutrality points. These results are valid for other 2D gapped Dirac materials analogous to silicene with a buckled honeycomb structure and a significant spin-orbit coupling.

  3. Linear optical quantum metrology with single photons: Experimental errors, resource counting, and quantum Cramér-Rao bounds

    NASA Astrophysics Data System (ADS)

    Olson, Jonathan P.; Motes, Keith R.; Birchall, Patrick M.; Studer, Nick M.; LaBorde, Margarite; Moulder, Todd; Rohde, Peter P.; Dowling, Jonathan P.

    2017-07-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement is thought to have been resource intensive to create in the first place, typically requiring either very strong nonlinearities or nondeterministic preparation schemes with feedforward, which are difficult to implement. Recently [K. R. Motes et al., Phys. Rev. Lett. 114, 170802 (2015), 10.1103/PhysRevLett.114.170802], it was shown that number-path entanglement from a BosonSampling inspired interferometer can be used to beat the shot-noise limit. In this paper we compare and contrast different interferometric schemes, discuss resource counting, calculate exact quantum Cramér-Rao bounds, and study details of experimental errors.

  4. Efficient state initialization by a quantum spectral filtering algorithm

    NASA Astrophysics Data System (ADS)

    Fillion-Gourdeau, François; MacLean, Steve; Laflamme, Raymond

    2017-04-01

    An algorithm that initializes a quantum register to a state with a specified energy range is given, corresponding to a quantum implementation of the celebrated Feit-Fleck method. This is performed by introducing a nondeterministic quantum implementation of a standard spectral filtering procedure combined with an apodization technique, allowing for accurate state initialization. It is shown that the implementation requires only two ancilla qubits. A lower bound for the total probability of success of this algorithm is derived, showing that this scheme can be realized using a finite, relatively low number of trials. Assuming the time evolution can be performed efficiently and using a trial state polynomially close to the desired states, it is demonstrated that the number of operations required scales polynomially with the number of qubits. Tradeoffs between accuracy and performance are demonstrated in a simple example: the harmonic oscillator. This algorithm would be useful for the initialization phase of the simulation of quantum systems on digital quantum computers.

  5. Photon-Number-Resolving Transition-Edge Sensors for the Metrology of Quantum Light Sources

    NASA Astrophysics Data System (ADS)

    Schmidt, M.; von Helversen, M.; López, M.; Gericke, F.; Schlottmann, E.; Heindel, T.; Kück, S.; Reitzenstein, S.; Beyer, J.

    2018-05-01

    Low-temperature photon-number-resolving detectors allow for direct access to the photon number distribution of quantum light sources and can thus be exploited to explore the photon statistics, e.g., solid-state-based non-classical light sources. In this work, we report on the setup and calibration of a detection system based on fiber-coupled tungsten transition-edge sensors (W-TESs). Our stand-alone system comprises two W-TESs, read out by two 2-stage-SQUID current sensors, operated in a compact detector unit that is integrated in an adiabatic demagnetization refrigerator. Fast low-noise analog amplifiers and digitizers are used for signal acquisition. The detection efficiency of the single-mode fiber-coupled detector system in the spectral region of interest (850-950 nm) is determined to be larger than 87 %. The presented detector system opens up new routes in the characterization of quantum light sources for quantum information, quantum-enhanced sensing and quantum metrology.

  6. 46 CFR 110.01-2 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 110.01-2 Section 110.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Applicability § 110.01-2 OMB control numbers assigned pursuant to...

  7. 46 CFR 110.01-2 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 110.01-2 Section 110.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Applicability § 110.01-2 OMB control numbers assigned pursuant to...

  8. 46 CFR 110.01-2 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 110.01-2 Section 110.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Applicability § 110.01-2 OMB control numbers assigned pursuant to...

  9. 46 CFR 188.01-15 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 188.01-15 Section 188.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Authority and Purpose § 188.01-15 OMB control numbers assigned...

  10. 46 CFR 188.01-15 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 188.01-15 Section 188.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Authority and Purpose § 188.01-15 OMB control numbers assigned...

  11. 46 CFR 188.01-15 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 188.01-15 Section 188.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Authority and Purpose § 188.01-15 OMB control numbers assigned...

  12. 46 CFR 188.01-15 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 188.01-15 Section 188.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Authority and Purpose § 188.01-15 OMB control numbers assigned...

  13. 46 CFR 188.01-15 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 188.01-15 Section 188.01-15 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OCEANOGRAPHIC RESEARCH VESSELS GENERAL PROVISIONS Authority and Purpose § 188.01-15 OMB control numbers assigned...

  14. 46 CFR 110.01-2 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 110.01-2 Section 110.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Applicability § 110.01-2 OMB control numbers assigned pursuant to...

  15. 46 CFR 110.01-2 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false OMB control numbers assigned pursuant to the Paperwork Reduction Act. 110.01-2 Section 110.01-2 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING GENERAL PROVISIONS Applicability § 110.01-2 OMB control numbers assigned pursuant to...

  16. Preface of the special issue quantum foundations: information approach

    PubMed Central

    2016-01-01

    This special issue is based on the contributions of a group of top experts in quantum foundations and quantum information and probability. It enlightens a number of interpretational, mathematical and experimental problems of quantum theory. PMID:27091161

  17. Quantum coherence selective 2D Raman–2D electronic spectroscopy

    PubMed Central

    Spencer, Austin P.; Hutson, William O.; Harel, Elad

    2017-01-01

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational–vibrational, electronic–vibrational and electronic–electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment–protein complexes. PMID:28281541

  18. Three-dimensional rearrangement of single atoms using actively controlled optical microtraps.

    PubMed

    Lee, Woojun; Kim, Hyosub; Ahn, Jaewook

    2016-05-02

    We propose and demonstrate three-dimensional rearrangements of single atoms. In experiments performed with single 87Rb atoms in optical microtraps actively controlled by a spatial light modulator, we demonstrate various dynamic rearrangements of up to N = 9 atoms including rotation, 2D vacancy filling, guiding, compactification, and 3D shuffling. With the capability of a phase-only Fourier mask to generate arbitrary shapes of the holographic microtraps, it was possible to place single atoms at arbitrary geometries of a few μm size and even continuously reconfigure them by conveying each atom. For this purpose, we loaded a series of computer-generated phase masks in the full frame rate of 60 Hz of the spatial light modulator, so the animation of phase mask transformed the holographic microtraps in real time, driving each atom along the assigned trajectory. Possible applications of this method of transformation of single atoms include preparation of scalable quantum platforms for quantum computation, quantum simulation, and quantum many-body physics.

  19. Single-spin stochastic optical reconstruction microscopy

    PubMed Central

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub–diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub–diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations. PMID:25267655

  20. Effects of strain and quantum confinement in optically pumped nuclear magnetic resonance in GaAs: Interpretation guided by spin-dependent band structure calculations

    DOE PAGES

    Wood, R. M.; Saha, D.; McCarthy, L. A.; ...

    2014-10-29

    A combined experimental-theoretical study of optically pumped NMR (OPNMR) has been performed in a GaAs/Al 0.1Ga 0.9As quantum well film with thermally induced biaxial strain. The photon energy dependence of the Ga-71 OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from differential absorption to spin-up and spin-down states of the conduction band using a modified Pidgeon Brown model. Reasonable agreement between theory and experiment is obtained, facilitating assignment of features in the OPNMR energy dependence to specific interband transitions. Despitemore » the approximations made in the quantum-mechanical model and the inexact correspondence between the experimental and calculated observables, the results provide insight into how effects of strain and quantum confinement are manifested in OPNMR signals« less

  1. Quantum Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Williams, Colin P.

    1997-01-01

    The capacity of classical neurocomputers is limited by the number of classical degrees of freedom which is roughly proportional to the size of the computer. By Contrast, a Hypothetical quantum neurocomputer can implement an exponentially large number of the degrees of freedom within the same size. In this paper an attempt is made to reconcile linear reversible structure of quantum evolution with nonlinear irreversible dynamics for neural nets.

  2. Tomographic measurement of joint photon statistics of the twin-beam quantum state

    PubMed

    Vasilyev; Choi; Kumar; D'Ariano

    2000-03-13

    We report the first measurement of the joint photon-number probability distribution for a two-mode quantum state created by a nondegenerate optical parametric amplifier. The measured distributions exhibit up to 1.9 dB of quantum correlation between the signal and idler photon numbers, whereas the marginal distributions are thermal as expected for parametric fluorescence.

  3. Symmetry restoration and quantumness reestablishment.

    PubMed

    Zeng, Guo-Mo; Wu, Lian-Ao; Xing, Hai-Jun

    2014-09-18

    A realistic quantum many-body system, characterized by a generic microscopic Hamiltonian, is accessible only through approximation methods. The mean field theories, as the simplest practices of approximation methods, commonly serve as a powerful tool, but unfortunately often violate the symmetry of the Hamiltonian. The conventional BCS theory, as an excellent mean field approach, violates the particle number conservation and completely erases quantumness characterized by concurrence and quantum discord between different modes. We restore the symmetry by using the projected BCS theory and the exact numerical solution and find that the lost quantumness is synchronously reestablished. We show that while entanglement remains unchanged with the particle numbers, quantum discord behaves as an extensive quantity with respect to the system size. Surprisingly, discord is hardly dependent on the interaction strengths. The new feature of discord offers promising applications in modern quantum technologies.

  4. Quantum random number generator based on quantum nature of vacuum fluctuations

    NASA Astrophysics Data System (ADS)

    Ivanova, A. E.; Chivilikhin, S. A.; Gleim, A. V.

    2017-11-01

    Quantum random number generator (QRNG) allows obtaining true random bit sequences. In QRNG based on quantum nature of vacuum, optical beam splitter with two inputs and two outputs is normally used. We compare mathematical descriptions of spatial beam splitter and fiber Y-splitter in the quantum model for QRNG, based on homodyne detection. These descriptions were identical, that allows to use fiber Y-splitters in practical QRNG schemes, simplifying the setup. Also we receive relations between the input radiation and the resulting differential current in homodyne detector. We experimentally demonstrate possibility of true random bits generation by using QRNG based on homodyne detection with Y-splitter.

  5. H6+ in irradiated solid para-hydrogen and its decay dynamics: reinvestigation of quartet electron paramagnetic resonance lines assigned to H2-.

    PubMed

    Kumada, Takayuki; Tachikawa, Hiroto; Takayanagi, Toshiyuki

    2005-03-07

    The quartet electron paramagnetic resonance (EPR) lines observed in gamma- and X-ray irradiated solid para-H2, which have previously been assigned to H2-, are reinvestigated. We have reassigned the quartet lines to H6 rather than H2- mainly due to comparison of experimentally obtained EPR parameters to theoretical results. Based on the new assignment, trapping site, rotation, ortho-para conversion, quantum diffusion and isotope effect of H+ have been reinterpreted by the precise reanalysis as follows. The H6+ ion is composed of the collinearly aligned H2+ core at the center and two H2 rotors at both ends, occupies a single substitutional site, and has a precession motion around a crystalline axis with the angle of approximately 57 degrees. The ortho-para conversion of H2+ core of H6+ is completed within the time-scale of hours, whereas ortho-H2 molecules near H6+ convert much faster. H6+ diffuses quantum mechanically by the repetition of H6+ + H2 --> H2 + H6+ reaction. The diffusion terminates by the reaction, H6(+) + HD --> H5D(+) + H2, with a HD impurity contained in the para-H2 sample at natural abundance. Finally, we will propose a possible reason why H6+ is produced instead of H3+ in the irradiated solid H2.

  6. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    DTIC Science & Technology

    2015-05-01

    QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on

  7. High-Performance Single-Photon Sources via Spatial Multiplexing

    DTIC Science & Technology

    2014-01-01

    ingredient for tasks such as quantum cryptography , quantum repeater, quantum teleportation, quantum computing, and truly-random number generation. Recently...SECURITY CLASSIFICATION OF: Single photons sources are desired for many potential quantum information applications. One common method to produce...photons sources are desired for many potential quantum information applications. One common method to produce single photons is based on a “heralding

  8. Precise ro-vibrational analysis of molecular bands forbidden in absorption: The ν8 +ν10 band of the 12C2H4 molecule

    NASA Astrophysics Data System (ADS)

    Ulenikov, O. N.; Gromova, O. V.; Bekhtereva, E. S.; Kashirina, N. V.; Bauerecker, S.; Horneman, V.-M.

    2015-07-01

    The highly accurate (experimental accuracy in line positions ∼ (1 - 2) ×10-4 cm-1) ro-vibrational spectrum of the ν8 +ν10 band of the 12C2H4 molecule was recorded for the first time with high resolution Fourier transform spectrometry and analyzed in the region of 1650-1950 cm-1 using the Hamiltonian model which takes into account Coriolis resonance interactions between the studied ν8 +ν10 band, which is forbidden in absorption, and the bands ν4 +ν8 and ν7 +ν8 . About 1570 transitions belonging to the ν8 +ν10 band were assigned in the experimental spectra with the maximum values of quantum numbers Jmax. = 35 and Kamax . = 18 . On that basis, a set of 38 vibrational, rotational, centrifugal distortion, and resonance interaction parameters was obtained from the fit. They reproduce values of 598 initial "experimental" ro-vibrational energy levels (positions of about 1570 experimentally recorded and assigned transitions) with the rms error drms = 0.00045 cm-1 (drms = 0.00028 cm-1 when upper ro-vibrational energies obtained from blended and very weak transitions were deleted from the fit).

  9. Electronic emission spectrum of methylnitrene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrick, P.G.; Engelking, P.C.

    The A /sup 3/E--X /sup 3/A/sub 2/ultraviolet emission spectrum of methylnitrene (CH/sub 3/N) was obtained in two ways: (1) by reacting methylazide (CH/sub 3/N/sub 3/) with metastable N/sub 2/ in a flowing afterglow; and (2) by discharging a mixture of methylazide (CH/sub 3/N/sub 3/) and helium in a corona excited supersonic expansion (CESE). The origin appears at T/sub 0/ = 31 811 cm/sup -1/. Several vibrational progressions were observed leading to the determination of a number of vibrational frequencies: v/sup double-prime//sub 1/ = 2938 , v/sup X//sub 2/ = 1350, v/sup double-prime//sub 3/ = 1039, v/sup X//sub 4/ = 3065,more » and v/sup double-prime//sub 6/ = 902 cm/sup -1/. Deuterium substitution confirmed the assignments of the vibrational frequencies. The X /sup 3/A/sub 2/ state is a normal, bound local minimum on the triplet electronic potential surface, and the upper A /sup 3/E state is able to support at least one quantum of vibration, assigned to v/sup //sub 3/, predominantly a C--N stretch. A comparison of flowing afterglow hollow cathode discharge sources and corona excited supersonic expansion sources shows the advantage of the CESE method of radical production for spectroscopy.« less

  10. Anharmonic Resonances among Low-Lying Vibrational Levels of Methyl Iso-Cyanide (H_3CNC)

    NASA Astrophysics Data System (ADS)

    Pracna, P.; Urban, J.; Urban, V. S.; Varga, J.; Horneman, V.-M.

    2010-06-01

    Vibrational levels up to 1000 wn of H_3C-N≡C are currently studied in FTIR spectra together with rotational transitions within these levels. This investigation comprises the low-lying excited vibrational levels of the CNC doubly degenerate bending vibration v8=1^± 1 (267.3 wn), v8=20,± 2 (524.6 wn (A), 545.3 wn (E)), and v8=3^± 1,± 3 (792.5 wn (A1+A2), 833.9 wn (E)), respectively, and the next higher fundamental level of the C-N valence vibration v4=1 (945 wn). All these vibrational levels exhibit cubic and quartic anharmonic resonances localized to moderate values of the rotational quantum number K≤10. Therefore the system of rovibrational levels has to be treated as a global polyad in order to describe all the available data quantitatively. The ground state constants have been improved considerably by extending the assignments to higher J/K rotational states both in the purely rotational spectra recorded in the ground vibrational level and in the ground state combination differences generated from the wavenumbers assigned in the fundamental ν_4 band. Similarities and differences with respect to isoelectronic molecules CH_3CN and CH_3CCH are discussed.

  11. Spectral Assignments and Analysis of the Ground State of Nitromethane in High-Resolution FTIR Synchrotron Spectra

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Sylvestre; Billinghurst, Brant E.; May, Tim E.; Dawadi, Mahesh B.; Perry, David S.

    2014-06-01

    The Fourier Transform infrared spectra of CH3NO2, have been recorded, in the 400-950 wn spectral region, at a resolution of 0.00096 wn, using the Far-Infrared Beamline at Canadian Light Source. The observed spectra contain four fundamental vibrations: the NO2 in-plane rock (475.2 wn), the NO2 out-of-plane rock (604.9 wn), the NO2 symmetric bend (657.1 wn), and the CN-stretch (917.2 wn). For the lowest torsional state of CN-stretch and NO2 in-plane rock, transitions involving quantum numbers, " = 0; " {≤ 50} and {_a}" {≤ 10}, have been assigned with the aid of an automated ground state combination difference program together with a traditional Loomis Wood approach Ground state combination differences derived from more than 2100 infrared transitions have been fit with the six-fold torsion-rotation program developed by Ilyushin et al. Additional sextic and octic centrifugal distortion parameters are derived for the ground vibrational state. C. F. Neese., An Interactive Loomis-Wood Package, V2.0, {56th},OSU Interanational Symposium on Molecular Spectroscopy (2001). V. V. Ilyushin, Z. Kisiel, L. Pszczolkowski, H. Mader, and J. T. Hougen, J. Mol. Spectrosc., 259, 26, (2010).

  12. Fourier transform synchrotron spectroscopy of torsional and CO-stretching bands of CH 3 17 OH

    NASA Astrophysics Data System (ADS)

    Moruzzi, G.; Murphy, R. J.; Vos, J.; Lees, R. M.; Predoi-Cross, A.; Billinghurst, B. E.

    2011-07-01

    The Fourier transform spectrum of the CH 317OH isotopologue of methanol has been recorded in the 65-1200 cm -1 spectral region at a resolution of 0.00096 cm -1 using synchrotron source radiation at the Canadian Light Source. Here we present an extension to higher torsional states of our investigation of the torsion-rotation transitions within the small-amplitude vibrational ground state, now including assignments of more than 16 500 lines involving quantum numbers in the ranges v t ⩽ 3, J ⩽ 30 and | K| ⩽ 12, as well as a study of the strong CO-stretching band centered at 1020 cm -1. Energy term values have been determined for assigned ground and CO-stretching levels by use of the Ritz program, and have been fitted to series expansions in powers of J( J + 1) to determine substate origins and effective B values. Several Fermi anharmonic and Coriolis level-crossing resonances coupling the CO stretch with high torsional ground-state levels have been identified and characterized. The study is motivated by astrophysical applications, with a principal aim being the compilation of an extensive set of energy term values to permit prediction of astronomically observable sub-millimetre transitions to within an uncertainty of a few MHz.

  13. Optically Generated 2-Dimensional Photonic Cluster State from Coupled Quantum Dots

    DTIC Science & Technology

    2010-03-12

    coupled quantum dots 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) Naval Research Laboratory,,Washington,DC,20375 8. PERFORMING ORGANIZATION REPORT NUMBER...9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION

  14. 3D 14N/1H Double Quantum/1H Single Quantum Correlation Solid-State NMR for Probing Parallel and Anti-Parallel Beta-Sheet Arrangement of Oligo-Peptides at Natural Abundance.

    PubMed

    Hong, You-Lee; Asakura, Tetsuo; Nishiyama, Yusuke

    2018-05-08

    β-sheet structure of oligo- and poly-peptides can be formed in anti-parallel (AP)- and parallel (P)-structure, which is the important feature to understand the structures. In principle, P- and AP-β-sheet structures can be identified by the presence (AP) and absence (P) of the interstrand 1HNH/1HNH correlations on a diagonal in 2D 1H double quantum (DQ)/1H single quantum (SQ) spectrum due to the different interstrand 1HNH/1HNH distances between these two arrangements. However, the 1HNH/1HNH peaks overlap to the 1HNH3+/1HNH3+ peaks, which always give cross peaks regardless of the β-sheet arrangement. The 1HNH3+/1HNH3+ peaks disturb the observation of the presence/absence of 1HNH/1HNH correlations and the assignment of 1HNH and 1HNH3+ is not always available. Here, 3D 14N/1H DQ/1H SQ correlation solid-state NMR experiments at fast magic angle spinning (70 kHz) are introduced to distinguish AP and P β-sheet structure. The 14N dimension allows the separate observation of 1HNH/1HNH peaks from 1HNH3+/1HNH3+ peaks with clear assignment of 1HNH and 1HNH3+. In addition, the high natural abundance of 1H and 14N enables 3D 14N/1H DQ/1H SQ experiments of oligo-alanines (Ala3-6) in four hours without any isotope labelling. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Physical implementation of protected qubits

    NASA Astrophysics Data System (ADS)

    Douçot, B.; Ioffe, L. B.

    2012-07-01

    We review the general notion of topological protection of quantum states in spin models and its relation with the ideas of quantum error correction. We show that topological protection can be viewed as a Hamiltonian realization of error correction: for a quantum code for which the minimal number of errors that remain undetected is N, the corresponding Hamiltonian model of the effects of the environment noise appears only in the Nth order of the perturbation theory. We discuss the simplest model Hamiltonians that realize topological protection and their implementation in superconducting arrays. We focus on two dual realizations: in one the protected state is stored in the parity of the Cooper pair number, in the other, in the parity of the flux number. In both cases the superconducting arrays allow a number of fault-tolerant operations that should make the universal quantum computation possible.

  16. Configurations and decay hindrances of high- K states in Hf 180

    DOE PAGES

    Tandel, S. K.; Chowdhury, P.; Kondev, F. G.; ...

    2016-12-02

    Multi-quasiparticle high-K states, several of which are isomeric, were observed in Hf-180 with the Gammasphere array. We determined the lifetimes in the ns-μs range using centroid-shift and decay measurements within a mu s coincidence time window. The configurations of high-K states involve two and four quasiparticles, with states up to K π = (18 -) established. High-K excitations are found to be progressively more favored with increasing excitation energy. The K quantum number is quite robust up to the highest spins observed, as evidenced by the large values of the reduced hindrance for isomeric decays. Furthermore, rotational bands built onmore » three high-K states are identified, and the measured branching ratios in these sequences enable the assignment of underlying configurations. Multi-quasiparticle calculations using the Lipkin-Nogami approach for pairing, with blocking included, reproduce the observed high-K energies quite well.« less

  17. Configurations and decay hindrances of high-K states in 180Hf

    NASA Astrophysics Data System (ADS)

    Tandel, S. K.; Chowdhury, P.; Kondev, F. G.; Janssens, R. V. F.; Khoo, T. L.; Carpenter, M. P.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.; Deacon, A.; Freeman, S. J.; Hammond, N. J.; Jones, G. D.; Moore, E. F.; Smith, J. F.

    2016-12-01

    Multi-quasiparticle high-K states, several of which are isomeric, were observed in 180Hf with the Gammasphere array. Lifetimes in the ns-μ s range were determined using centroid-shift and decay measurements within a μ s coincidence time window. The configurations of high-K states involve two and four quasiparticles, with states up to Kπ=(18-) established. High-K excitations are found to be progressively more favored with increasing excitation energy. The K quantum number is quite robust up to the highest spins observed, as evidenced by the large values of the reduced hindrance for isomeric decays. Rotational bands built on three high-K states are identified, and the measured branching ratios in these sequences enable the assignment of underlying configurations. Multi-quasiparticle calculations using the Lipkin-Nogami approach for pairing, with blocking included, reproduce the observed high-K energies quite well.

  18. Fully conjugated tri(perylene bisimides): an approach to the construction of n-type graphene nanoribbons.

    PubMed

    Qian, Hualei; Negri, Fabrizia; Wang, Chunru; Wang, Zhaohui

    2008-12-31

    We present an experimental study encompassing synthesis and characterization of fully conjugated tri(perylene bisimides) (triPBIs), having 19 six-membered carbon rings in the core and six imide groups at the edges. Two structural isomers of triPBIs resulting from the two probable coupling positions were successfully separated by HPLC. To assist the identification of the two structural isomers, quantum-chemical calculations of electronic structure, NMR, and optical spectra were carried out. Calculations predict stable helical and nonhelical configurations for both triPBIs isomers and allow the assignment of triPBIs 6 unequivocally to the most bathochromically shifted absorption spectrum. Increasing the number of PBI units in oligo-PBIs leads to an expansion of the pi system, in turn associated with a reduction of the transport and optical band gaps, and a remarkable increase in electron affinities, which make oligo-PBIs promising n-type functional components in optoelectronic devices.

  19. Vibrational studies of Thyroxine hormone: Comparative study with quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Borah, Mukunda Madhab; Devi, Th. Gomti

    2017-11-01

    The FTIR and Raman techniques have been used to record spectra of Thyroxine. The stable geometrical parameters and vibrational wave numbers were calculated based on potential energy distribution (PED) using vibrational energy distribution analysis (VEDA) program. The vibrational energies are assigned to monomer, chain dimer and cyclic dimers of this molecule using the basis set B3LYP/LANL2DZ. The computational scaled frequencies are in good agreements with the experimental results. The study is extended to calculate the HOMO-LUMO energy gap, Molecular Electrostatic Potential (MEP) surface, hardness (η), chemical potential (μ), Global electrophilicity index (ω) and different thermo dynamical properties of Thyroxine in different states. The calculated HOMO-LUMO energies show the charge transfer occurs within the molecule. The calculated Natural bond orbital (NBO) analysis confirms the presence of intra-molecular charge transfer as well as the hydrogen bonding interaction.

  20. Configurations and decay hindrances of high- K states in Hf 180

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tandel, S. K.; Chowdhury, P.; Kondev, F. G.

    Multi-quasiparticle high-K states, several of which are isomeric, were observed in Hf-180 with the Gammasphere array. We determined the lifetimes in the ns-μs range using centroid-shift and decay measurements within a mu s coincidence time window. The configurations of high-K states involve two and four quasiparticles, with states up to K π = (18 -) established. High-K excitations are found to be progressively more favored with increasing excitation energy. The K quantum number is quite robust up to the highest spins observed, as evidenced by the large values of the reduced hindrance for isomeric decays. Furthermore, rotational bands built onmore » three high-K states are identified, and the measured branching ratios in these sequences enable the assignment of underlying configurations. Multi-quasiparticle calculations using the Lipkin-Nogami approach for pairing, with blocking included, reproduce the observed high-K energies quite well.« less

  1. Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the (A-tilde)-(X-tilde) emission spectrum

    NASA Technical Reports Server (NTRS)

    Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.

    1993-01-01

    A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.

  2. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1984-01-01

    This report describes a computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10000 GHz (i.e., wavelengths longer than 30 micrometers). The catalogue can be used as a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue has been constructed using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (151 species) as new data appear. The catalogue is available from the authors as a magnetic tape recorded in card images and as a set of microfiche records.

  3. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1981-01-01

    A computer accessible catalogue of submillimeter, millimeter and microwave spectral lines in the frequency range between 0 and 3000 GHZ (i.e., wavelengths longer than 100 mu m) is presented which can be used a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (133 species) as new data appear. The catalogue is available as a magnetic tape recorded in card images and as a set of microfiche records.

  4. 7 CFR 1425.24 - OMB control number assigned pursuant to Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MARKETING ASSOCIATIONS § 1425.24 OMB control number assigned pursuant to Paperwork Reduction Act. The... Office of Management and Budget (OMB) under the provisions of 44 U.S.C. Chapter 35 and have been assigned...

  5. Possible quantum liquid crystal phases of helium monolayers

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Matsui, K.; Matsui, T.; Fukuyama, Hiroshi

    2016-11-01

    The second-layer phase diagrams of 4He and 3He adsorbed on graphite are investigated. Intrinsically rounded specific-heat anomalies are observed at 1.4 and 0.9 K, respectively, over extended density regions in between the liquid and incommensurate solid phases. They are identified to anomalies associated with the Kosterlitz-Thouless-Halperin-Nelson-Young type two-dimensional melting. The prospected low temperature phase (C2 phase) is a commensurate phase or a quantum hexatic phase with quasi-bond-orientational order, both containing zero-point defectons. In either case, this would be the first atomic realization of the quantum liquid crystal, a new state of matter. From the large enhancement of the melting temperature over 3He, we propose to assign the observed anomaly of 4He-C 2 phase at 1.4 K to the hypothetical supersolid or superhexatic transition.

  6. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    DOE PAGES

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul; ...

    2017-05-08

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less

  7. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Blancon, J.-C.; Arenal, R.; Parret, R.; Zahab, A. A.; Ayari, A.; Vallée, F.; Del Fatti, N.; Sauvajol, J.-L.; Paillet, M.

    2017-05-01

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett. 108, 117404 (2012), 10.1103/PhysRevLett.108.117404]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modes permits us to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.

  8. Quantum interference effects on the intensity of the G modes in double-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tran, Huy Nam; Blancon, Jean-Christophe Robert; Arenal, Raul

    The effects of quantum interferences on the excitation dependence of the intensity of G modes have been investigated on single-walled carbon nanotubes [Duque et al., Phys. Rev. Lett.108, 117404 (2012)]. In this work, by combining optical absorption spectroscopy and Raman scattering on individual index identified double-walled carbon nanotubes, we examine the experimental excitation dependence of the intensity of longitudinal optical and transverse optical G modes of the constituent inner and outer single-walled carbon nanotubes. The observed striking dependencies are understood in terms of quantum interference effects. Considering such effects, the excitation dependence of the different components of the G modesmore » permit to unambiguously assign each of them as originating from the longitudinal or transverse G modes of inner and outer tubes.« less

  9. Megahertz-Rate Semi-Device-Independent Quantum Random Number Generators Based on Unambiguous State Discrimination

    NASA Astrophysics Data System (ADS)

    Brask, Jonatan Bohr; Martin, Anthony; Esposito, William; Houlmann, Raphael; Bowles, Joseph; Zbinden, Hugo; Brunner, Nicolas

    2017-05-01

    An approach to quantum random number generation based on unambiguous quantum state discrimination is developed. We consider a prepare-and-measure protocol, where two nonorthogonal quantum states can be prepared, and a measurement device aims at unambiguously discriminating between them. Because the states are nonorthogonal, this necessarily leads to a minimal rate of inconclusive events whose occurrence must be genuinely random and which provide the randomness source that we exploit. Our protocol is semi-device-independent in the sense that the output entropy can be lower bounded based on experimental data and a few general assumptions about the setup alone. It is also practically relevant, which we demonstrate by realizing a simple optical implementation, achieving rates of 16.5 Mbits /s . Combining ease of implementation, a high rate, and a real-time entropy estimation, our protocol represents a promising approach intermediate between fully device-independent protocols and commercial quantum random number generators.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Xiongfeng; Yuan, Xiao; Cao, Zhu

    Quantum physics can be exploited to generate true random numbers, which play important roles in many applications, especially in cryptography. Genuine randomness from the measurement of a quantum system reveals the inherent nature of quantumness -- coherence, an important feature that differentiates quantum mechanics from classical physics. The generation of genuine randomness is generally considered impossible with only classical means. Based on the degree of trustworthiness on devices, quantum random number generators (QRNGs) can be grouped into three categories. The first category, practical QRNG, is built on fully trusted and calibrated devices and typically can generate randomness at a highmore » speed by properly modeling the devices. The second category is self-testing QRNG, where verifiable randomness can be generated without trusting the actual implementation. The third category, semi-self-testing QRNG, is an intermediate category which provides a tradeoff between the trustworthiness on the device and the random number generation speed.« less

  11. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers

    NASA Astrophysics Data System (ADS)

    Raffaelli, Francesco; Ferranti, Giacomo; Mahler, Dylan H.; Sibson, Philip; Kennard, Jake E.; Santamato, Alberto; Sinclair, Gary; Bonneau, Damien; Thompson, Mark G.; Matthews, Jonathan C. F.

    2018-04-01

    Optical homodyne detection has found use as a characterisation tool in a range of quantum technologies. So far implementations have been limited to bulk optics. Here we present the optical integration of a homodyne detector onto a silicon photonics chip. The resulting device operates at high speed, up 150 MHz, it is compact and it operates with low noise, quantified with 11 dB clearance between shot noise and electronic noise. We perform on-chip quantum tomography of coherent states with the detector and show that it meets the requirements for characterising more general quantum states of light. We also show that the detector is able to produce quantum random numbers at a rate of 1.2 Gbps, by measuring the vacuum state of the electromagnetic field and applying off-line post processing. The produced random numbers pass all the statistical tests provided by the NIST test suite.

  12. Fractional Quantum Hall Effect in n = 0 Landau Band of Graphene with Chern Number Matrix

    NASA Astrophysics Data System (ADS)

    Kudo, Koji; Hatsugai, Yasuhiro

    2018-06-01

    Fully taking into account the honeycomb lattice structure, fractional quantum Hall states of graphene are considered by a pseudopotential projected into the n = 0 Landau band. By using chirality as an internal degree of freedom, the Chern number matrices are defined and evaluated numerically. Quantum phase transition induced by changing a range of the interaction is demonstrated that is associated with chirality ferromagnetism. The chirality-unpolarized ground state is consistent with the Halperin 331 state of the bilayer quantum Hall system.

  13. Quantum Computation of Fluid Dynamics

    DTIC Science & Technology

    1998-02-16

    state of the quantum computer’s "memory". With N qubits, the quantum state IT) resides in an exponentially large Hilbert space with 2 N dimensions. A new...size of the Hilbert space in which the entanglement occurs. And to make matters worse, even if a quantum computer was constructed with a large number of...number of qubits "* 2 N is the size of the full Hilbert space "* 2 B is the size of the on-site submanifold, denoted 71 "* B is the size of the

  14. Rovibrational Quantum Dynamics of the Methane-Water Dimer

    NASA Astrophysics Data System (ADS)

    Sarka, János; Császár, Attila; Mátyus, Edit

    2017-06-01

    The challenging quantum dynamical description of the CH_4.H_2O complex has been solved variationally to provide theoretical explanation and assignment to the high-resolution spectroscopic measurements of the methane-water dimer carried out some twenty years ago. The computational results are in excellent agreement with the reported experimental transitions and the experimentally observed reversed rovibrational sequences, i.e., formally negative rotational excitation energies, are also obtained in the computations. In order to better understand the origin of these peculiar features in the energy-level spectrum, we studied all four possible combinations of the light and heavy isotopologues of methane and water and analyzed their rovibrational states using two limiting model systems: the rigidly rotating (RR) molecule and the coupled rotor (CR) system corresponding to the coupling of the two rotating monomers. All rovibrational quantum dynamical computations^{a,c} were carried out with rigid monomers and J = 0,1,2 total angular momentum quantum numbers using the fourth-age quantum chemical code GENIUSH and two different methane-water potential energy surfaces (PES). The numerical and formal analysis of the wave functions give insight into a fascinating complex world worth for further theoretical and experimental inquiries. J. Sarka, A. G. Császár, S. C. Althorpe, D. J. Wales and E. Mátyus, Phys. Chem. Chem. Phys. 18, 22816 (2016). L. Dore, R. C. Cohen, C. A. Schmuttenmaer, K. L. Busarow, M. J. Elrod, J. G. Loeser and R. J. Saykally, J. Chem. Phys. 100, 863 (1994). J. Sarka, A. G. Császár and E. Mátyus, Phys. Chem. Chem. Phys. accepted for publication (2017).} E. Mátyus, G. Czakó and A. G. Császár, J. Chem. Phys. 130, 134112 (2009). C. Fábri, E. Mátyus and A. G. Császár, J. Chem. Phys. 134, 074105 (2011). O. Akin-Ojo and K. Szalewicz, J. Chem. Phys. 123, 134311 (2005). C. Qu, R. Conte, P. L. Houston and J. M. Bowman, Phys. Chem. Chem. Phys. 17, 8172 (2015).

  15. Progesterone and testosterone studies by neutron-scattering methods and quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Holderna-Natkaniec, K.; Szyczewski, A.; Natkaniec, I.; Khavryutchenko, V. D.; Pawlukojc, A.

    Inelastic incoherent neutron scattering (IINS) and neutron diffraction spectra of progesterone and testosterone were measured simultaneously on the NERA spectrometer at the IBR-2 pulsed reactor in Dubna. Both studied samples do not indicate any phase transition in the temperature range from 20 to 290K. The IINS spectra have been transformed to the phonon density of states (PDS) in the one-phonon scattering approximation. The PDS spectra display well-resolved peaks of low-frequency internal vibration modes up to 600cm-1. The assignment of these modes was proposed taking into account the results of calculations of the structure and dynamics of isolated molecules of the investigated substances. The quantum chemistry calculations were performed by the semi-empirical PM3 method and at the restricted Hartree-Fock level with the 6-31* basis set. The lower internal modes assigned to torsional vibration of the androstane skeleton mix with the lattice vibrations. The intense bands in the PDS spectra in the frequency range from 150 to 300cm-1 are related to librations of structurally inequivalent methyl groups.

  16. Entanglement and Weak Values: A Quantum Miracle Cookbook

    NASA Astrophysics Data System (ADS)

    Botero, Alonso

    The concept of the weak value has proved to be a powerful and operationally grounded framework for the assignment of physical properties to a quantum system at any given time. More importantly, this framework has allowed us to identify a whole range of surprising quantum effects, or "miracles", which are readily testable but which lie buried "under the noise" when the results of measurements are not post-selected. In all cases, these miracles have to do with the fact that weak values can take values lying outside the conventional ranges of quantum expectation values. We explore the extent to which such miracles are possible within the weak value framework. As we show, given appropriate initial and final states, it is generally possible to produce any set of weak values that is consistent with the linearity of weak values, provided that the states are entangled states of the system with some external ancillary system. Through a simple constructive proof, we obtain a recipe for arbitrary quantum miracles, and give examples of some interesting applications. In particular, we show how the classical description of an infinitely-localized point in phase-space is contained in the weak-value framework augmented by quantum entanglement. [Editor's note: for a video of the talk given by Prof. Botero at the Aharonov-80 conference in 2012 at Chapman University, see http://quantum.chapman.edu/talk-27.

  17. Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

    DOE PAGES

    Colless, J. I.; Ramasesh, V. V.; Dahlen, D.; ...

    2018-02-12

    Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. Here, we use a superconducting-qubit-based processor to apply the QSE approach to the H 2 molecule, extracting both groundmore » and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.« less

  18. Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

    NASA Astrophysics Data System (ADS)

    Colless, J. I.; Ramasesh, V. V.; Dahlen, D.; Blok, M. S.; Kimchi-Schwartz, M. E.; McClean, J. R.; Carter, J.; de Jong, W. A.; Siddiqi, I.

    2018-02-01

    Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. We use a superconducting-qubit-based processor to apply the QSE approach to the H2 molecule, extracting both ground and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.

  19. Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colless, J. I.; Ramasesh, V. V.; Dahlen, D.

    Harnessing the full power of nascent quantum processors requires the efficient management of a limited number of quantum bits with finite coherent lifetimes. Hybrid algorithms, such as the variational quantum eigensolver (VQE), leverage classical resources to reduce the required number of quantum gates. Experimental demonstrations of VQE have resulted in calculation of Hamiltonian ground states, and a new theoretical approach based on a quantum subspace expansion (QSE) has outlined a procedure for determining excited states that are central to dynamical processes. Here, we use a superconducting-qubit-based processor to apply the QSE approach to the H 2 molecule, extracting both groundmore » and excited states without the need for auxiliary qubits or additional minimization. Further, we show that this extended protocol can mitigate the effects of incoherent errors, potentially enabling larger-scale quantum simulations without the need for complex error-correction techniques.« less

  20. Rotational Spectrum, Conformational Composition, and Quantum Chemical Calculations of Cyanomethyl Formate (HC(O)OCH2C≡N), a Compound of Potential Astrochemical Interest.

    PubMed

    Samdal, Svein; Møllendal, Harald; Carles, Sophie

    2015-08-27

    The rotational spectrum of cyanomethyl formate (HC(O)OCH2C≡N) has been recorded in the 12–123 GHz spectral range. The spectra of two conformers were assigned. The rotamer denoted I has a symmetry plane and two out-of plane hydrogen atoms belonging to the cyanomethyl (CH2CN) moiety. In the conformer called II, the cyanomethyl group is rotated 80.3° out of this plane. Conformer I has an energy that is 1.4(6) kJ/mol lower than the energy of II according to relative intensity measurements. A large number of rotational transitions have been assigned for the ground and vibrationally excited states of the two conformers and accurate spectroscopic constants have been obtained. These constants should predict frequencies of transitions outside the investigated spectral range with a very high degree of precision. It is suggested that cyanomethyl formate is a potential interstellar compound. This suggestion is based on the fact that its congener methyl formate (HC(O)OCH3) exists across a large variety of interstellar environments and the fact that cyanides are very prevalent in the Universe. The experimental work has been augmented by high-level quantum chemical calculations. The CCSD/cc-pVQZ calculations are found to predict structures of the two forms that are very close to the Born–Oppenheimer equilibrium structures. MP2/cc-pVTZ predictions of several vibration–rotation interaction constants were generally found to be rather inaccurate. A gas-phase reaction between methyl formate and the cyanomethyl radical CH2CN to produce a hydrogen atom and cyanomethyl formate was mimicked using MP2/cc-pVTZ calculations. It was found that this reaction is not favored thermodynamically. It is also conjectured that the possible formation of cyanomethyl formate might be catalyzed and take place on interstellar particles.

  1. Topos quantum theory on quantization-induced sheaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Kunji, E-mail: nakayama@law.ryukoku.ac.jp

    2014-10-15

    In this paper, we construct a sheaf-based topos quantum theory. It is well known that a topos quantum theory can be constructed on the topos of presheaves on the category of commutative von Neumann algebras of bounded operators on a Hilbert space. Also, it is already known that quantization naturally induces a Lawvere-Tierney topology on the presheaf topos. We show that a topos quantum theory akin to the presheaf-based one can be constructed on sheaves defined by the quantization-induced Lawvere-Tierney topology. That is, starting from the spectral sheaf as a state space of a given quantum system, we construct sheaf-basedmore » expressions of physical propositions and truth objects, and thereby give a method of truth-value assignment to the propositions. Furthermore, we clarify the relationship to the presheaf-based quantum theory. We give translation rules between the sheaf-based ingredients and the corresponding presheaf-based ones. The translation rules have “coarse-graining” effects on the spaces of the presheaf-based ingredients; a lot of different proposition presheaves, truth presheaves, and presheaf-based truth-values are translated to a proposition sheaf, a truth sheaf, and a sheaf-based truth-value, respectively. We examine the extent of the coarse-graining made by translation.« less

  2. Experimental entanglement of 25 individually accessible atomic quantum interfaces.

    PubMed

    Pu, Yunfei; Wu, Yukai; Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng; Duan, Luming

    2018-04-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing.

  3. Graph-theoretic approach to quantum correlations.

    PubMed

    Cabello, Adán; Severini, Simone; Winter, Andreas

    2014-01-31

    Correlations in Bell and noncontextuality inequalities can be expressed as a positive linear combination of probabilities of events. Exclusive events can be represented as adjacent vertices of a graph, so correlations can be associated to a subgraph. We show that the maximum value of the correlations for classical, quantum, and more general theories is the independence number, the Lovász number, and the fractional packing number of this subgraph, respectively. We also show that, for any graph, there is always a correlation experiment such that the set of quantum probabilities is exactly the Grötschel-Lovász-Schrijver theta body. This identifies these combinatorial notions as fundamental physical objects and provides a method for singling out experiments with quantum correlations on demand.

  4. On the theory of quantum measurement

    NASA Technical Reports Server (NTRS)

    Haus, Hermann A.; Kaertner, Franz X.

    1994-01-01

    Many so called paradoxes of quantum mechanics are clarified when the measurement equipment is treated as a quantized system. Every measurement involves nonlinear processes. Self consistent formulations of nonlinear quantum optics are relatively simple. Hence optical measurements, such as the quantum nondemolition (QND) measurement of photon number, are particularly well suited for such a treatment. It shows that the so called 'collapse of the wave function' is not needed for the interpretation of the measurement process. Coherence of the density matrix of the signal is progressively reduced with increasing accuracy of the photon number determination. If the QND measurement is incorporated into the double slit experiment, the contrast ratio of the fringes is found to decrease with increasing information on the photon number in one of the two paths.

  5. Photoabsorption and photodissociation studies of dimethyl sulphoxide (DMSO) in the 35,000-80,000 cm-1 region using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Mandal, Anuvab; Singh, Param Jeet; Shastri, Aparna; Sunanda, K.; Jagatap, B. N.

    2015-05-01

    Photoabsorption and photodissociation studies of dimethyl sulphoxide and its deuterated isotopologue (DMSO-h6 and DMSO-d6) are performed using synchrotron radiation in the 35,000-80,000 cm-1 region. In the photoabsorption spectrum, Rydberg series converging to the first three ionization potentials of DMSO at 9.1, 10.1 and 12.3 eV corresponding to removal of an electron from the highest three occupied molecular orbitals (14a‧, 7a″ and 13a‧) are observed. Based on a quantum defect analysis, Rydberg series assignments are extended to higher members as compared to earlier works and a few ambiguities in earlier assignments are clarified. Analysis is aided by quantum chemical calculations using the DFT and TDDFT methodologies. Vibronic structures observed in the spectrum of DMSO-h6 in the regions 7.7-8.1 eV and 8.1-8.8 eV are attributed to the transitions 7a″→4p at 7.862 eV and 14a‧→6s/4d at 8.182 eV, respectively. Photoabsorption spectra of DMSO-h6 and -d6 recorded using a broad band incident radiation show prominent peaks, which are identified and assigned to electronic and vibronic transitions of the SO radical. This provides a direct confirmation of the fact that DMSO preferentially dissociates into CH3 and SO upon UV-VUV excitation, as proposed in earlier photodissociation studies. An extended vibronic band system associated with the e1Π-X3Σ- transition of the SO radical is identified and assigned. The complete VUV photoabsorption spectrum of DMSO-d6 is also reported here for the first time.

  6. 46 CFR 114.900 - OMB control numbers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false OMB control numbers. 114.900 Section 114.900 Shipping... control numbers. (a) Purpose. This section lists the control numbers assigned to information collection... current control number assigned by the Director of OMB for each approved agency information collection...

  7. 46 CFR 114.900 - OMB control numbers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false OMB control numbers. 114.900 Section 114.900 Shipping... control numbers. (a) Purpose. This section lists the control numbers assigned to information collection... current control number assigned by the Director of OMB for each approved agency information collection...

  8. Probability Distributions for Random Quantum Operations

    NASA Astrophysics Data System (ADS)

    Schultz, Kevin

    Motivated by uncertainty quantification and inference of quantum information systems, in this work we draw connections between the notions of random quantum states and operations in quantum information with probability distributions commonly encountered in the field of orientation statistics. This approach identifies natural sample spaces and probability distributions upon these spaces that can be used in the analysis, simulation, and inference of quantum information systems. The theory of exponential families on Stiefel manifolds provides the appropriate generalization to the classical case. Furthermore, this viewpoint motivates a number of additional questions into the convex geometry of quantum operations relative to both the differential geometry of Stiefel manifolds as well as the information geometry of exponential families defined upon them. In particular, we draw on results from convex geometry to characterize which quantum operations can be represented as the average of a random quantum operation. This project was supported by the Intelligence Advanced Research Projects Activity via Department of Interior National Business Center Contract Number 2012-12050800010.

  9. 19 CFR 142.3a - Entry numbers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Format. The following format, including hyphens, must be used when showing the entry number: XXX-NNNNNNN-N XXX represents an entry filer code assigned by CBP, NNNNNNN is a unique number which is assigned...

  10. 19 CFR 142.3a - Entry numbers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Format. The following format, including hyphens, must be used when showing the entry number: XXX-NNNNNNN-N XXX represents an entry filer code assigned by CBP, NNNNNNN is a unique number which is assigned...

  11. 19 CFR 142.3a - Entry numbers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Format. The following format, including hyphens, must be used when showing the entry number: XXX-NNNNNNN-N XXX represents an entry filer code assigned by CBP, NNNNNNN is a unique number which is assigned...

  12. 19 CFR 142.3a - Entry numbers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Format. The following format, including hyphens, must be used when showing the entry number: XXX-NNNNNNN-N XXX represents an entry filer code assigned by CBP, NNNNNNN is a unique number which is assigned...

  13. 19 CFR 142.3a - Entry numbers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Format. The following format, including hyphens, must be used when showing the entry number: XXX-NNNNNNN-N XXX represents an entry filer code assigned by CBP, NNNNNNN is a unique number which is assigned...

  14. 48 CFR 814.201 - Preparation of invitations for bids.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... numbered at the time of issue. Numbers assigned locally must consist of the facility or VA National... Year 2007. A series beginning with the number 1 must be started each fiscal year. Numbers assigned from... is numbered locally must be numbered in the series of the year in which it is issued, will be...

  15. 48 CFR 814.201 - Preparation of invitations for bids.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... numbered at the time of issue. Numbers assigned locally must consist of the facility or VA National... Year 2007. A series beginning with the number 1 must be started each fiscal year. Numbers assigned from... is numbered locally must be numbered in the series of the year in which it is issued, will be...

  16. 48 CFR 814.201 - Preparation of invitations for bids.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... numbered at the time of issue. Numbers assigned locally must consist of the facility or VA National... Year 2007. A series beginning with the number 1 must be started each fiscal year. Numbers assigned from... is numbered locally must be numbered in the series of the year in which it is issued, will be...

  17. Partitioned-Interval Quantum Optical Communications Receiver

    NASA Technical Reports Server (NTRS)

    Vilnrotter, Victor A.

    2013-01-01

    The proposed quantum receiver in this innovation partitions each binary signal interval into two unequal segments: a short "pre-measurement" segment in the beginning of the symbol interval used to make an initial guess with better probability than 50/50 guessing, and a much longer segment used to make the high-sensitivity signal detection via field-cancellation and photon-counting detection. It was found that by assigning as little as 10% of the total signal energy to the pre-measurement segment, the initial 50/50 guess can be improved to about 70/30, using the best available measurements such as classical coherent or "optimized Kennedy" detection.

  18. 77 FR 14512 - Combined Notice of Filings #1

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ...: 5 p.m. ET 3/23/12. Docket Numbers: ER12-458-004. Applicants: Quantum Choctaw Power, LLC. Description: Quantum Choctaw Power Compliance Filing to be effective 2/14/2012. Filed Date: 3/2/12. Accession Number...

  19. Extracting random numbers from quantum tunnelling through a single diode.

    PubMed

    Bernardo-Gavito, Ramón; Bagci, Ibrahim Ethem; Roberts, Jonathan; Sexton, James; Astbury, Benjamin; Shokeir, Hamzah; McGrath, Thomas; Noori, Yasir J; Woodhead, Christopher S; Missous, Mohamed; Roedig, Utz; Young, Robert J

    2017-12-19

    Random number generation is crucial in many aspects of everyday life, as online security and privacy depend ultimately on the quality of random numbers. Many current implementations are based on pseudo-random number generators, but information security requires true random numbers for sensitive applications like key generation in banking, defence or even social media. True random number generators are systems whose outputs cannot be determined, even if their internal structure and response history are known. Sources of quantum noise are thus ideal for this application due to their intrinsic uncertainty. In this work, we propose using resonant tunnelling diodes as practical true random number generators based on a quantum mechanical effect. The output of the proposed devices can be directly used as a random stream of bits or can be further distilled using randomness extraction algorithms, depending on the application.

  20. Routing protocol for wireless quantum multi-hop mesh backbone network based on partially entangled GHZ state

    NASA Astrophysics Data System (ADS)

    Xiong, Pei-Ying; Yu, Xu-Tao; Zhang, Zai-Chen; Zhan, Hai-Tao; Hua, Jing-Yu

    2017-08-01

    Quantum multi-hop teleportation is important in the field of quantum communication. In this study, we propose a quantum multi-hop communication model and a quantum routing protocol with multihop teleportation for wireless mesh backbone networks. Based on an analysis of quantum multi-hop protocols, a partially entangled Greenberger-Horne-Zeilinger (GHZ) state is selected as the quantum channel for the proposed protocol. Both quantum and classical wireless channels exist between two neighboring nodes along the route. With the proposed routing protocol, quantum information can be transmitted hop by hop from the source node to the destination node. Based on multi-hop teleportation based on the partially entangled GHZ state, a quantum route established with the minimum number of hops. The difference between our routing protocol and the classical one is that in the former, the processes used to find a quantum route and establish quantum channel entanglement occur simultaneously. The Bell state measurement results of each hop are piggybacked to quantum route finding information. This method reduces the total number of packets and the magnitude of air interface delay. The deduction of the establishment of a quantum channel between source and destination is also presented here. The final success probability of quantum multi-hop teleportation in wireless mesh backbone networks was simulated and analyzed. Our research shows that quantum multi-hop teleportation in wireless mesh backbone networks through a partially entangled GHZ state is feasible.

  1. 27 CFR 53.187 - OMB control numbers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2012-04-01 2011-04-01 true OMB control numbers. 53.187... numbers. (a) Purpose. This section collects and displays the control numbers assigned to collections of... control numbers assigned by OMB to collections of information in the regulations in this part. (b) Display...

  2. Research on Electrically Driven Single Photon Emitter by Diamond for Quantum Cryptography

    DTIC Science & Technology

    2015-03-24

    by diamond for quantum cryptography 5a. CONTRACT NUMBER FA2386-14-1-4037 5b. GRANT NUMBE R Grant 14IOA093_144037 5c. PROGRAM ELEMENT...emerged as a highly competitive platform for applications in quantum cryptography , quantum computing, spintronics, and sensing or metrology...15. SUBJECT TERMS Diamond LED, Nitrogen Vacancy Complex, Quantum Computing, Quantum Cryptography , Single Spin Single Photon 16. SECURITY

  3. Faithful qubit transmission in a quantum communication network with heterogeneous channels

    NASA Astrophysics Data System (ADS)

    Chen, Na; Zhang, Lin Xi; Pei, Chang Xing

    2018-04-01

    Quantum communication networks enable long-distance qubit transmission and distributed quantum computation. In this paper, a quantum communication network with heterogeneous quantum channels is constructed. A faithful qubit transmission scheme is presented. Detailed calculations and performance analyses show that even in a low-quality quantum channel with serious decoherence, only modest number of locally prepared target qubits are required to achieve near-deterministic qubit transmission.

  4. Performance Analysis and Optimization of the Winnow Secret Key Reconciliation Protocol

    DTIC Science & Technology

    2011-06-01

    use in a quantum key system can be defined in two ways :  The number of messages passed between Alice and Bob  The...classical and quantum environment. Post- quantum cryptography , which is generally used to describe classical quantum -resilient protocols, includes...composed of a one- way quantum channel and a two - way classical channel. Owing to the physics of the channel, the quantum channel is subject to

  5. A Quantum Approach to Multi-Agent Systems (MAS), Organizations, and Control

    DTIC Science & Technology

    2003-06-01

    interdependent interactions between individuals represented approximately as vocal harmonic I resonators. Then the growth rate of an organization fits ...A quantum approach to multi-agent systems (MAS), organizations , and control W.F. Lawless Paine College 1235 15th Street Augusta, GA 30901...AND SUBTITLE A quantum approach to multi-agent systems (MAS), organizations , and control 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  6. Novel pseudo-random number generator based on quantum random walks.

    PubMed

    Yang, Yu-Guang; Zhao, Qian-Qian

    2016-02-04

    In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation.

  7. Novel pseudo-random number generator based on quantum random walks

    PubMed Central

    Yang, Yu-Guang; Zhao, Qian-Qian

    2016-01-01

    In this paper, we investigate the potential application of quantum computation for constructing pseudo-random number generators (PRNGs) and further construct a novel PRNG based on quantum random walks (QRWs), a famous quantum computation model. The PRNG merely relies on the equations used in the QRWs, and thus the generation algorithm is simple and the computation speed is fast. The proposed PRNG is subjected to statistical tests such as NIST and successfully passed the test. Compared with the representative PRNG based on quantum chaotic maps (QCM), the present QRWs-based PRNG has some advantages such as better statistical complexity and recurrence. For example, the normalized Shannon entropy and the statistical complexity of the QRWs-based PRNG are 0.999699456771172 and 1.799961178212329e-04 respectively given the number of 8 bits-words, say, 16Mbits. By contrast, the corresponding values of the QCM-based PRNG are 0.999448131481064 and 3.701210794388818e-04 respectively. Thus the statistical complexity and the normalized entropy of the QRWs-based PRNG are closer to 0 and 1 respectively than those of the QCM-based PRNG when the number of words of the analyzed sequence increases. It provides a new clue to construct PRNGs and also extends the applications of quantum computation. PMID:26842402

  8. Linear Optical Quantum Metrology with Single Photons: Exploiting Spontaneously Generated Entanglement to Beat the Shot-Noise Limit

    NASA Astrophysics Data System (ADS)

    Motes, Keith R.; Olson, Jonathan P.; Rabeaux, Evan J.; Dowling, Jonathan P.; Olson, S. Jay; Rohde, Peter P.

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place—typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer—fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection—is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  9. Linear optical quantum metrology with single photons: exploiting spontaneously generated entanglement to beat the shot-noise limit.

    PubMed

    Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P

    2015-05-01

    Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.

  10. Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities

    NASA Astrophysics Data System (ADS)

    Demory, Brandon; Hill, Tyler A.; Teng, Chu-Hsiang; Deng, Hui; Ku, P. C.

    2018-01-01

    A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.

  11. Reducing inhomogeneity in the dynamic properties of quantum dots via self-aligned plasmonic cavities.

    PubMed

    Demory, Brandon; Hill, Tyler A; Teng, Chu-Hsiang; Deng, Hui; Ku, P C

    2018-01-05

    A plasmonic cavity is shown to greatly reduce the inhomogeneity of dynamic optical properties such as quantum efficiency and radiative lifetime of InGaN quantum dots. By using an open-top plasmonic cavity structure, which exhibits a large Purcell factor and antenna quantum efficiency, the resulting quantum efficiency distribution for the quantum dots narrows and is no longer limited by the quantum dot inhomogeneity. The standard deviation of the quantum efficiency can be reduced to 2% while maintaining the overall quantum efficiency at 70%, making InGaN quantum dots a viable candidate for high-speed quantum cryptography and random number generation applications.

  12. On dynamics of a plasma ring rotating in the magnetic field of a central body: Magneto-gyroscopic waves. Problems of stability and quantization

    NASA Astrophysics Data System (ADS)

    Rabinovich, B. I.

    2006-03-01

    Based on a mathematical model described in [1], some new aspects of the dynamics of a thin planar plasma ring rotating in the magnetic field of a central body are considered. The dipole field is considered assuming that the dipole has a small eccentricity, and the dipole axis is inclined at a small angle to the central body’s axis of rotation. Emphasis is placed on the problem of stability of the ring’s stationary rotation. Unlike [1], the disturbed motion is considered which has a character of eddy magneto-gyroscopic waves. The original mathematical model is reduced to a system of finite-difference equations whose asymptotic analytical solution is obtained. It is demonstrated that some “elite” rings characterized by integral quantum numbers are long-living, while “lethal” or unstable rings (antirings) are associated with half-integer quantum numbers. As a result, an evolutionally rife rotating ring of magnetized plasma turns out to be stratified into a large number of narrow elite rings separated by gaps whose positions correspond to antirings. The regions of possible existence of elite rings in near-central body space are considered. Quantum numbers determining elite eigenvalues of the mean sector velocity (normalized in a certain manner) of a ring coincide with the quantum numbers appearing in the solution to the Schrödinger equation for a hydrogen atom. Perturbations of elite orbits corresponding to these quantum numbers satisfy the de Brogli quantum-mechanical condition. This is one more illustration of the isomorphism of quantization in microcosm and macrocosm.

  13. Assignment of EC Numbers to Enzymatic Reactions with Reaction Difference Fingerprints

    PubMed Central

    Hu, Qian-Nan; Zhu, Hui; Li, Xiaobing; Zhang, Manman; Deng, Zhe; Yang, Xiaoyan; Deng, Zixin

    2012-01-01

    The EC numbers represent enzymes and enzyme genes (genomic information), but they are also utilized as identifiers of enzymatic reactions (chemical information). In the present work (ECAssigner), our newly proposed reaction difference fingerprints (RDF) are applied to assign EC numbers to enzymatic reactions. The fingerprints of reactant molecules minus the fingerprints of product molecules will generate reaction difference fingerprints, which are then used to calculate reaction Euclidean distance, a reaction similarity measurement, of two reactions. The EC number of the most similar training reaction will be assigned to an input reaction. For 5120 balanced enzymatic reactions, the RDF with a fingerprint length at 3 obtained at the sub-subclass, subclass, and main class level with cross-validation accuracies of 83.1%, 86.7%, and 92.6% respectively. Compared with three published methods, ECAssigner is the first fully automatic server for EC number assignment. The EC assignment system (ECAssigner) is freely available via: http://cadd.whu.edu.cn/ecassigner/. PMID:23285222

  14. Quantum probability and cognitive modeling: some cautions and a promising direction in modeling physics learning.

    PubMed

    Franceschetti, Donald R; Gire, Elizabeth

    2013-06-01

    Quantum probability theory offers a viable alternative to classical probability, although there are some ambiguities inherent in transferring the quantum formalism to a less determined realm. A number of physicists are now looking at the applicability of quantum ideas to the assessment of physics learning, an area particularly suited to quantum probability ideas.

  15. Unconditional polarization qubit quantum memory at room temperature

    NASA Astrophysics Data System (ADS)

    Namazi, Mehdi; Kupchak, Connor; Jordaan, Bertus; Shahrokhshahi, Reihaneh; Figueroa, Eden

    2016-05-01

    The creation of global quantum key distribution and quantum communication networks requires multiple operational quantum memories. Achieving a considerable reduction in experimental and cost overhead in these implementations is thus a major challenge. Here we present a polarization qubit quantum memory fully-operational at 330K, an unheard frontier in the development of useful qubit quantum technology. This result is achieved through extensive study of how optical response of cold atomic medium is transformed by the motion of atoms at room temperature leading to an optimal characterization of room temperature quantum light-matter interfaces. Our quantum memory shows an average fidelity of 86.6 +/- 0.6% for optical pulses containing on average 1 photon per pulse, thereby defeating any classical strategy exploiting the non-unitary character of the memory efficiency. Our system significantly decreases the technological overhead required to achieve quantum memory operation and will serve as a building block for scalable and technologically simpler many-memory quantum machines. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180. B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  16. Demonstration of a small programmable quantum computer with atomic qubits.

    PubMed

    Debnath, S; Linke, N M; Figgatt, C; Landsman, K A; Wright, K; Monroe, C

    2016-08-04

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  17. Demonstration of a small programmable quantum computer with atomic qubits

    NASA Astrophysics Data System (ADS)

    Debnath, S.; Linke, N. M.; Figgatt, C.; Landsman, K. A.; Wright, K.; Monroe, C.

    2016-08-01

    Quantum computers can solve certain problems more efficiently than any possible conventional computer. Small quantum algorithms have been demonstrated on multiple quantum computing platforms, many specifically tailored in hardware to implement a particular algorithm or execute a limited number of computational paths. Here we demonstrate a five-qubit trapped-ion quantum computer that can be programmed in software to implement arbitrary quantum algorithms by executing any sequence of universal quantum logic gates. We compile algorithms into a fully connected set of gate operations that are native to the hardware and have a mean fidelity of 98 per cent. Reconfiguring these gate sequences provides the flexibility to implement a variety of algorithms without altering the hardware. As examples, we implement the Deutsch-Jozsa and Bernstein-Vazirani algorithms with average success rates of 95 and 90 per cent, respectively. We also perform a coherent quantum Fourier transform on five trapped-ion qubits for phase estimation and period finding with average fidelities of 62 and 84 per cent, respectively. This small quantum computer can be scaled to larger numbers of qubits within a single register, and can be further expanded by connecting several such modules through ion shuttling or photonic quantum channels.

  18. 43 CFR 2806.21 - When and how are counties or other geographical areas assigned to a County Zone Number and Per...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... geographical areas assigned to a County Zone Number and Per Acre Zone Value? 2806.21 Section 2806.21 Public... MANAGEMENT ACT Rents Linear Rights-Of-Way § 2806.21 When and how are counties or other geographical areas assigned to a County Zone Number and Per Acre Zone Value? Counties (or other geographical areas) are...

  19. 43 CFR 2806.21 - When and how are counties or other geographical areas assigned to a County Zone Number and Per...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... geographical areas assigned to a County Zone Number and Per Acre Zone Value? 2806.21 Section 2806.21 Public... MANAGEMENT ACT Rents Linear Rights-Of-Way § 2806.21 When and how are counties or other geographical areas assigned to a County Zone Number and Per Acre Zone Value? Counties (or other geographical areas) are...

  20. 43 CFR 2806.21 - When and how are counties or other geographical areas assigned to a County Zone Number and Per...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... geographical areas assigned to a County Zone Number and Per Acre Zone Value? 2806.21 Section 2806.21 Public... MANAGEMENT ACT Rents Linear Rights-Of-Way § 2806.21 When and how are counties or other geographical areas assigned to a County Zone Number and Per Acre Zone Value? Counties (or other geographical areas) are...

  1. 43 CFR 2806.21 - When and how are counties or other geographical areas assigned to a County Zone Number and Per...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... geographical areas assigned to a County Zone Number and Per Acre Zone Value? 2806.21 Section 2806.21 Public... MANAGEMENT ACT Rents Linear Rights-Of-Way § 2806.21 When and how are counties or other geographical areas assigned to a County Zone Number and Per Acre Zone Value? Counties (or other geographical areas) are...

  2. Electron-Phonon Systems on a Universal Quantum Computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macridin, Alexandru; Spentzouris, Panagiotis; Amundson, James

    We present an algorithm that extends existing quantum algorithms forsimulating fermion systems in quantum chemistry and condensed matter physics toinclude phonons. The phonon degrees of freedom are represented with exponentialaccuracy on a truncated Hilbert space with a size that increases linearly withthe cutoff of the maximum phonon number. The additional number of qubitsrequired by the presence of phonons scales linearly with the size of thesystem. The additional circuit depth is constant for systems with finite-rangeelectron-phonon and phonon-phonon interactions and linear for long-rangeelectron-phonon interactions. Our algorithm for a Holstein polaron problem wasimplemented on an Atos Quantum Learning Machine (QLM) quantum simulatoremployingmore » the Quantum Phase Estimation method. The energy and the phonon numberdistribution of the polaron state agree with exact diagonalization results forweak, intermediate and strong electron-phonon coupling regimes.« less

  3. Scheme for Entering Binary Data Into a Quantum Computer

    NASA Technical Reports Server (NTRS)

    Williams, Colin

    2005-01-01

    A quantum algorithm provides for the encoding of an exponentially large number of classical data bits by use of a smaller (polynomially large) number of quantum bits (qubits). The development of this algorithm was prompted by the need, heretofore not satisfied, for a means of entering real-world binary data into a quantum computer. The data format provided by this algorithm is suitable for subsequent ultrafast quantum processing of the entered data. Potential applications lie in disciplines (e.g., genomics) in which one needs to search for matches between parts of very long sequences of data. For example, the algorithm could be used to encode the N-bit-long human genome in only log2N qubits. The resulting log2N-qubit state could then be used for subsequent quantum data processing - for example, to perform rapid comparisons of sequences.

  4. 32 CFR 21.560 - Must DoD Components assign numbers uniformly to awards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... nonprocurement instrument. (c) The 9th position must be a number: (1) “1” for grants. (2) “2” for cooperative... assigning these numbers and may create multiple series of letters and numbers to meet internal needs for...

  5. Experimental entanglement of 25 individually accessible atomic quantum interfaces

    PubMed Central

    Jiang, Nan; Chang, Wei; Li, Chang; Zhang, Sheng

    2018-01-01

    A quantum interface links the stationary qubits in a quantum memory with flying photonic qubits in optical transmission channels and constitutes a critical element for the future quantum internet. Entanglement of quantum interfaces is an important step for the realization of quantum networks. Through heralded detection of photon interference, we generate multipartite entanglement between 25 (or 9) individually addressable quantum interfaces in a multiplexed atomic quantum memory array and confirm genuine 22-partite (or 9-partite) entanglement. This experimental entanglement of a record-high number of individually addressable quantum interfaces makes an important step toward the realization of quantum networks, long-distance quantum communication, and multipartite quantum information processing. PMID:29725621

  6. Can the oscillator strength of the quantum dot bandgap transition exceed unity?

    NASA Astrophysics Data System (ADS)

    Hens, Z.

    2008-10-01

    We discuss the apparent contradiction between the Thomas-Reiche-Kuhn sum rule for oscillator strengths and recent experimental data on the oscillator strength of the band gap transition of quantum dots. Starting from two simple single electron model systems, we show that the sum rule does not limit this oscillator strength to values below unity, or below the number of electrons in the highest occupied single electron state. The only upper limit the sum rule imposes on the oscillator strength of the quantum dot band gap transition is the total number of electrons in the quantum dot.

  7. 7 CFR 1210.540 - OMB assigned numbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false OMB assigned numbers. 1210.540 Section 1210.540 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING... Management and Budget (OMB) under the provisions of 44 U.S.C. chapter 35 and have been assigned OMB Control...

  8. 47 CFR 90.509 - Frequencies available for assignment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... assignment. Stations engaged in developmental operation may be authorized to use a frequency or frequencies available in the service in which they propose to operate. The number of channels assigned will depend upon the specific requirements of the developmental program and the number of frequencies available in the...

  9. 47 CFR 90.509 - Frequencies available for assignment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... assignment. Stations engaged in developmental operation may be authorized to use a frequency or frequencies available in the service in which they propose to operate. The number of channels assigned will depend upon the specific requirements of the developmental program and the number of frequencies available in the...

  10. 47 CFR 90.509 - Frequencies available for assignment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... assignment. Stations engaged in developmental operation may be authorized to use a frequency or frequencies available in the service in which they propose to operate. The number of channels assigned will depend upon the specific requirements of the developmental program and the number of frequencies available in the...

  11. PLA realizations for VLSI state machines

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, S.; Whitaker, S.; Maki, G.; Liu, K.

    1990-01-01

    A major problem associated with state assignment procedures for VLSI controllers is obtaining an assignment that produces minimal or near minimal logic. The key item in Programmable Logic Array (PLA) area minimization is the number of unique product terms required by the design equations. This paper presents a state assignment algorithm for minimizing the number of product terms required to implement a finite state machine using a PLA. Partition algebra with predecessor state information is used to derive a near optimal state assignment. A maximum bound on the number of product terms required can be obtained by inspecting the predecessor state information. The state assignment algorithm presented is much simpler than existing procedures and leads to the same number of product terms or less. An area-efficient PLA structure implemented in a 1.0 micron CMOS process is presented along with a summary of the performance for a controller implemented using this design procedure.

  12. Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register

    DTIC Science & Technology

    2016-09-13

    computation [1] provides a gen- eral framework for fundamental investigations into sub- jects such as entanglement, quantum measurement, and quantum ...information theory. Since quantum computation relies on entanglement between qubits, any implementa- tion of a quantum computer must offer isolation from the...for realiz- ing a quantum computer , which is scalable to an arbitrary number of qubits. Their scheme is based on a collection of trapped atomic ions

  13. Efficient Manufacturing of Therapeutic Mesenchymal Stromal Cells Using the Quantum Cell Expansion System

    PubMed Central

    Hanley, Patrick J.; Mei, Zhuyong; Durett, April G.; Cabreira-Harrison, Marie da Graca; Klis, Mariola; Li, Wei; Zhao, Yali; Yang, Bing; Parsha, Kaushik; Mir, Osman; Vahidy, Farhaan; Bloom, Debra; Rice, R. Brent; Hematti, Peiman; Savitz, Sean I; Gee, Adrian P.

    2014-01-01

    Background The use of bone marrow-derived mesenchymal stromal cells (MSCs) as a cellular therapy for various diseases, such as graft-versus-host-disease, diabetes, ischemic cardiomyopathy, and Crohn's disease has produced promising results in early-phase clinical trials. However, for widespread application and use in later phase studies, manufacture of these cells needs to be cost effective, safe, and reproducible. Current methods of manufacturing in flasks or cell factories are labor-intensive, involve a large number of open procedures, and require prolonged culture times. Methods We evaluated the Quantum Cell Expansion system for the expansion of large numbers of MSCs from unprocessed bone marrow in a functionally closed system and compared the results to a flask-based method currently in clinical trials. Results After only two passages, we were able to expand a mean of 6.6×108 MSCs from 25 mL of bone marrow reproducibly. The mean expansion time was 21 days, and cells obtained were able to differentiate into all three lineages: chondrocytes, osteoblasts, and adipocytes. The Quantum was able to generate the target cell number of 2.0×108 cells in an average of 9-fewer days and in half the number of passages required during flask-based expansion. We estimated the Quantum would involve 133 open procedures versus 54,400 in flasks when manufacturing for a clinical trial. Quantum-expanded MSCs infused into an ischemic stroke rat model were therapeutically active. Discussion The Quantum is a novel method of generating high numbers of MSCs in less time and at lower passages when compared to flasks. In the Quantum, the risk of contamination is substantially reduced due to the substantial decrease in open procedures. PMID:24726657

  14. Photodissociation dynamics in the first absorption band of pyrrole. I. Molecular Hamiltonian and the Herzberg-Teller absorption spectrum for the A12(π σ* ) ←X˜ 1 A1(π π ) transition

    NASA Astrophysics Data System (ADS)

    Picconi, David; Grebenshchikov, Sergy Yu.

    2018-03-01

    This paper opens a series in which the photochemistry of the two lowest πσ* states of pyrrole and their interaction with each other and with the ground electronic state X ˜ are studied using ab initio quantum mechanics. New 24-dimensional potential energy surfaces for the photodissociation of the N-H bond and the formation of the pyrrolyl radical are calculated using the multiconfigurational perturbation theory (CASPT2) for the electronic states X ˜ (π π ) , 11A2(πσ*), and 11B1(πσ*) and locally diabatized. In this paper, the ab initio calculations are described and the photodissociation in the state 11A2(πσ*) is analyzed. The excitation 11 A2←X ˜ is mediated by the coordinate dependent transition dipole moment functions constructed using the Herzberg-Teller expansion. Nuclear dynamics, including 6, 11, and 15 active degrees of freedom, are studied using the multi-configurational time-dependent Hartree method. The focus is on the frequency resolved absorption spectrum as well as on the dissociation time scales and the resonance lifetimes. Calculations are compared with available experimental data. An approximate convolution method is developed and validated, with which absorption spectra can be calculated and assigned in terms of vibrational quantum numbers. The method represents the total absorption spectrum as a convolution of the diffuse spectrum of the detaching H-atom and the Franck-Condon spectrum of the heteroaromatic ring. Convolution calculation requires a minimal quantum chemical input and is a promising tool for studying the πσ* photodissociation in model biochromophores.

  15. Unintentional indium incorporation into barriers of InGaN/GaN multiple quantum wells studied by photoreflectance and photoluminescence excitation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freytag, Stefan, E-mail: stefan.freytag@ovgu.de; Feneberg, Martin; Berger, Christoph

    2016-07-07

    In{sub x}Ga{sub 1–x}N/GaN single and multi quantum well (MQW) structures with x ≈ 0.13 were investigated optically by photoreflectance, photoluminescence excitation spectroscopy, and luminescence. Clear evidence of unintentional indium incorporation into the nominal GaN barrier layers is found. The unintentional In content is found to be around 3%. Inhomogeneous distribution of In atoms occurs within the distinct quantum well (QW) layers, which is commonly described as statistical alloy fluctuation and leads to the characteristic S-shape temperature shift of emission energy. Furthermore, differences in emission energy between the first and the other QWs of a MQW stack are found experimentally. Thismore » effect is discussed with the help of model calculations and is assigned to differences in the confining potential due to unwanted indium incorporation for the upper QWs.« less

  16. Excitonic Transitions and Off-resonant Optical Limiting in CdS Quantum Dots Stabilized in a Synthetic Glue Matrix

    PubMed Central

    2007-01-01

    Stable films containing CdS quantum dots of mean size 3.4 nm embedded in a solid host matrix are prepared using a room temperature chemical route of synthesis. CdS/synthetic glue nanocomposites are characterized using high resolution transmission electron microscopy, infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis. Significant blue shift from the bulk absorption edge is observed in optical absorption as well as photoacoustic spectra indicating strong quantum confinement. The exciton transitions are better resolved in photoacoustic spectroscopy compared to optical absorption spectroscopy. We assign the first four bands observed in photoacoustic spectroscopy to 1se–1sh, 1pe–1ph, 1de–1dhand 2pe–2phtransitions using a non interacting particle model. Nonlinear absorption studies are done using z-scan technique with nanosecond pulses in the off resonant regime. The origin of optical limiting is predominantly two photon absorption mechanism.

  17. A Rout to Protect Quantum Gates constructed via quantum walks from Noises.

    PubMed

    Du, Yi-Mu; Lu, Li-Hua; Li, You-Quan

    2018-05-08

    The continuous-time quantum walk on a one-dimensional graph of odd number of sites with an on-site potential at the center is studied. We show that such a quantum-walk system can construct an X-gate of a single qubit as well as a control gate for two qubits, when the potential is much larger than the hopping strength. We investigate the decoherence effect and find that the coherence time can be enhanced by either increasing the number of sites on the graph or the ratio of the potential to the hopping strength, which is expected to motivate the design of the quantum gate with long coherence time. We also suggest several experimental proposals to realize such a system.

  18. Quantum liquid droplets in a mixture of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Cabrera, C. R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L.

    2018-01-01

    Quantum droplets are small clusters of atoms self-bound by the balance of attractive and repulsive forces. Here, we report on the observation of droplets solely stabilized by contact interactions in a mixture of two Bose-Einstein condensates. We demonstrate that they are several orders of magnitude more dilute than liquid helium by directly measuring their size and density via in situ imaging. We show that the droplets are stablized against collapse by quantum fluctuations and that they require a minimum atom number to be stable. Below that number, quantum pressure drives a liquid-to-gas transition that we map out as a function of interaction strength. These ultradilute isotropic liquids remain weakly interacting and constitute an ideal platform to benchmark quantum many-body theories.

  19. Housing Electrons: Relating Quantum Numbers, Energy Levels, and Electron Configurations.

    ERIC Educational Resources Information Center

    Garofalo, Anthony

    1997-01-01

    Presents an activity that combines the concepts of quantum numbers and probability locations, energy levels, and electron configurations in a concrete, hands-on way. Uses model houses constructed out of foam board and colored beads to represent electrons. (JRH)

  20. Photon-number correlation for quantum enhanced imaging and sensing

    NASA Astrophysics Data System (ADS)

    Meda, A.; Losero, E.; Samantaray, N.; Scafirimuto, F.; Pradyumna, S.; Avella, A.; Ruo-Berchera, I.; Genovese, M.

    2017-09-01

    In this review we present the potentialities and the achievements of the use of non-classical photon-number correlations in twin-beam states for many applications, ranging from imaging to metrology. Photon-number correlations in the quantum regime are easily produced and are rather robust against unavoidable experimental losses, and noise in some cases, if compared to the entanglement, where losing one photon can completely compromise the state and its exploitable advantages. Here, we will focus on quantum enhanced protocols in which only phase-insensitive intensity measurements (photon-number counting) are performed, which allow probing the transmission/absorption properties of a system, leading, for example, to innovative target detection schemes in a strong background. In this framework, one of the advantages is that the sources experimentally available emit a wide number of pair-wise correlated modes, which can be intercepted and exploited separately, for example by many pixels of a camera, providing a parallelism, essential in several applications, such as wide-field sub-shot-noise imaging and quantum enhanced ghost imaging. Finally, non-classical correlation enables new possibilities in quantum radiometry, e.g. the possibility of absolute calibration of a spatial resolving detector from the on-off single-photon regime to the linear regime in the same setup.

  1. Characterization and Analysis of a Multicolor Quantum Well Infrared Photodetector

    DTIC Science & Technology

    2006-06-01

    and characterization of performance of a newly designed, multicolor quantum well infrared photodetector ( QWIP ). Specifically, it focuses on a detector...quantum well infrared detectors makes them suitable for use in the field. 15. NUMBER OF PAGES 67 14. SUBJECT TERMS Quantum Well, QWIP , Three...characterization of performance of a newly designed, multicolor quantum well infrared photodetector ( QWIP ). Specifically, it focuses on a detector

  2. A Revelation: Quantum-Statistics and Classical-Statistics are Analytic-Geometry Conic-Sections and Numbers/Functions: Euler, Riemann, Bernoulli Generating-Functions: Conics to Numbers/Functions Deep Subtle Connections

    NASA Astrophysics Data System (ADS)

    Descartes, R.; Rota, G.-C.; Euler, L.; Bernoulli, J. D.; Siegel, Edward Carl-Ludwig

    2011-03-01

    Quantum-statistics Dichotomy: Fermi-Dirac(FDQS) Versus Bose-Einstein(BEQS), respectively with contact-repulsion/non-condensation(FDCR) versus attraction/ condensationBEC are manifestly-demonstrated by Taylor-expansion ONLY of their denominator exponential, identified BOTH as Descartes analytic-geometry conic-sections, FDQS as Elllipse (homotopy to rectangle FDQS distribution-function), VIA Maxwell-Boltzmann classical-statistics(MBCS) to Parabola MORPHISM, VS. BEQS to Hyperbola, Archimedes' HYPERBOLICITY INEVITABILITY, and as well generating-functions[Abramowitz-Stegun, Handbook Math.-Functions--p. 804!!!], respectively of Euler-numbers/functions, (via Riemann zeta-function(domination of quantum-statistics: [Pathria, Statistical-Mechanics; Huang, Statistical-Mechanics]) VS. Bernoulli-numbers/ functions. Much can be learned about statistical-physics from Euler-numbers/functions via Riemann zeta-function(s) VS. Bernoulli-numbers/functions [Conway-Guy, Book of Numbers] and about Euler-numbers/functions, via Riemann zeta-function(s) MORPHISM, VS. Bernoulli-numbers/ functions, visa versa!!! Ex.: Riemann-hypothesis PHYSICS proof PARTLY as BEQS BEC/BEA!!!

  3. 47 CFR 1.1405 - File numbers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false File numbers. 1.1405 Section 1.1405... Attachment Complaint Procedures § 1.1405 File numbers. Each complaint which appears to be essentially complete under § 1.1404 will be accepted and assigned a file number. Such assignment is for administrative...

  4. 47 CFR 1.1405 - File numbers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false File numbers. 1.1405 Section 1.1405... Attachment Complaint Procedures § 1.1405 File numbers. Each complaint which appears to be essentially complete under § 1.1404 will be accepted and assigned a file number. Such assignment is for administrative...

  5. 47 CFR 1.1405 - File numbers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false File numbers. 1.1405 Section 1.1405... Procedures § 1.1405 File numbers. Each complaint which appears to be essentially complete under § 1.1404 will be accepted and assigned a file number. Such assignment is for administrative purposes only and does...

  6. 47 CFR 1.1405 - File numbers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false File numbers. 1.1405 Section 1.1405... Attachment Complaint Procedures § 1.1405 File numbers. Each complaint which appears to be essentially complete under § 1.1404 will be accepted and assigned a file number. Such assignment is for administrative...

  7. 47 CFR 1.1405 - File numbers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false File numbers. 1.1405 Section 1.1405... Procedures § 1.1405 File numbers. Each complaint which appears to be essentially complete under § 1.1404 will be accepted and assigned a file number. Such assignment is for administrative purposes only and does...

  8. Two-beam pumped cascaded four-wave-mixing process for producing multiple-beam quantum correlation

    NASA Astrophysics Data System (ADS)

    Liu, Shengshuai; Wang, Hailong; Jing, Jietai

    2018-04-01

    We propose a two-beam pumped cascaded four-wave-mixing (CFWM) scheme with a double-Λ energy-level configuration in 85Rb vapor cell and experimentally observe the emission of up to 10 quantum correlated beams from such CFWM scheme. During this process, the seed beam is amplified; four new signal beams and five idler beams are generated. The 10 beams show strong quantum correlation which is characterized by the intensity-difference squeezing of about -6.7 ±0.3 dB. Then, by altering the angle between the two pump beams, we observe the notable transition of the number of the output beams from 10 to eight, and even to six. We find that both the number of the output quantum correlated beams and their degree of quantum correlation from such two-beam pumped CFWM scheme increase with the decrease of the angle between the two pump beams. Such system may find potential applications in quantum information and quantum metrology.

  9. Experimental generation of an eight-photon Greenberger-Horne-Zeilinger state.

    PubMed

    Huang, Yun-Feng; Liu, Bi-Heng; Peng, Liang; Li, Yu-Hu; Li, Li; Li, Chuan-Feng; Guo, Guang-Can

    2011-11-22

    Multi-partite entangled states are important for developing studies of quantum networking and quantum computation. To date, the largest number of particles that have been successfully manipulated is 14 trapped ions. Yet in quantum information science, photons have particular advantages over other systems. In particular, they are more easily transportable qubits and are more robust against decoherence. Thus far, the largest number of photons to have been successfully manipulated in an experiment is six. Here we demonstrate, for the first time, an eight-photon Greenberger-Horne-Zeilinger state with a measured fidelity of 0.59±0.02, which proved the presence of genuine eight-partite entanglement. This is achieved by improving the photon detection efficiency to 25% with a 300-mW pump laser. With this state, we also demonstrate an eight-party quantum communication complexity scenario. This eight-photon entangled-state source may be useful in one-way quantum computation, quantum networks and other quantum information processing tasks.

  10. Memory assisted free space quantum communication

    NASA Astrophysics Data System (ADS)

    Jordaan, Bertus; Namazi, Mehdi; Goham, Connor; Shahrokhshahi, Reihaneh; Vallone, Giuseppe; Villoresi, Paolo; Figueroa, Eden

    2016-05-01

    A quantum memory assisted node between different quantum channels has the capability to modify and synchronize its output, allowing for easy connectivity, and advanced cryptography protocols. We present the experimental progress towards the storage of single photon level pulses carrying random polarization qubits into a dual rail room temperature quantum memory (RTQM) after ~ 20m of free space propagation. The RTQM coherently stores the input pulses through electromagnetically induced transparency (EIT) of a warm 87 Rb vapor and filters the output by polarization elements and temperature-controlled etalon resonators. This allows the characterization of error rates for each polarization basis and the testing of the synchronization ability of the quantum memory. This work presents a steppingstone towards quantum key distribution and quantum repeater networks. The work was supported by the US-Navy Office of Naval Research, Grant Number N00141410801 and the Simons Foundation, Grant Number SBF241180.B. J. acknowledges financial assistance of the National Research Foundation (NRF) of South Africa.

  11. Highlighting the Mechanism of the Quantum Speedup by Time-Symmetric and Relational Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Castagnoli, Giuseppe

    2016-03-01

    Bob hides a ball in one of four drawers. Alice is to locate it. Classically she has to open up to three drawers, quantally just one. The fundamental reason for this quantum speedup is not known. The usual representation of the quantum algorithm is limited to the process of solving the problem. We extend it to the process of setting the problem. The number of the drawer with the ball becomes a unitary transformation of the random outcome of the preparation measurement. This extended, time-symmetric, representation brings in relational quantum mechanics. It is with respect to Bob and any external observer and cannot be with respect to Alice. It would tell her the number of the drawer with the ball before she opens any drawer. To Alice, the projection of the quantum state due to the preparation measurement should be retarded at the end of her search; in the input state of the search, the drawer number is determined to Bob and undetermined to Alice. We show that, mathematically, one can ascribe any part of the selection of the random outcome of the preparation measurement to the final Alice's measurement. Ascribing half of it explains the speedup of the present algorithm. This leaves the input state to Bob unaltered and projects that to Alice on a state of lower entropy where she knows half of the number of the drawer with the ball in advance. The quantum algorithm turns out to be a sum over histories in each of which Alice knows in advance that the ball is in a pair of drawers and locates it by opening one of the two. In the sample of quantum algorithms examined, the part of the random outcome of the initial measurement selected by the final measurement is one half or slightly above it. Conversely, given an oracle problem, the assumption it is one half always corresponds to an existing quantum algorithm and gives the order of magnitude of the number of oracle queries required by the optimal one.

  12. 18 CFR 389.101 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... assigned pursuant to the Paperwork Reduction Act. 389.101 Section 389.101 Conservation of Power and Water... FOR COMMISSION INFORMATION COLLECTION REQUIREMENTS § 389.101 OMB control numbers assigned pursuant to... citations affecting § 389.101, see the List of CFR Sections Affected, which appears in the Finding Aids...

  13. 18 CFR 389.101 - OMB control numbers assigned pursuant to the Paperwork Reduction Act.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... assigned pursuant to the Paperwork Reduction Act. 389.101 Section 389.101 Conservation of Power and Water... FOR COMMISSION INFORMATION COLLECTION REQUIREMENTS § 389.101 OMB control numbers assigned pursuant to... citations affecting § 389.101, see the List of CFR Sections Affected, which appears in the Finding Aids...

  14. Quantum chemical spectral characterization of CH2NH2+ for remote sensing of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Thackston, Russell; Fortenberry, Ryan C.

    2018-01-01

    Cassini has shown that CH2NH2+ is likely present in relatively high abundance in Titan's upper atmosphere. Relatively little is known about this molecule even though it contains the same number of electrons as ethylene, a molecule of significance to Titan's chemistry. Any studies on CH2NH2+ with application to Titan or its atmospheric chemistry will have to be done remotely at this point with the end of the fruitful Cassini mission. Consequently, trusted quantum chemical techniques are utilized here to produce the rotational, vibrational, and rovibrational spectroscopic constants for CH2NH2+ for the first time. The methodology produces a tightly fit potential energy surface here that is well-behaved indicating a strong credence in the accuracy for the produced values. Most notably, the 884.1 cm-1 NH2 out-of-plane bend is the brightest of the vibrational frequencies reported here for CH2NH2+ , and an observed and unattributed feature in this spectral region has been documented but never assigned to a molecular carrier. Follow-up IR or radio observations making use of the 540 GHz to 660 GHz range with the 0.45 D molecular dipole moment will have to be undertaken in order to confirm this or any attribution, but the data provided in this work will greatly assist in any such studies related to CH2NH2+.

  15. An efficient quantum algorithm for spectral estimation

    NASA Astrophysics Data System (ADS)

    Steffens, Adrian; Rebentrost, Patrick; Marvian, Iman; Eisert, Jens; Lloyd, Seth

    2017-03-01

    We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well—consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: the time-critical steps are implemented in quantum superposition, while an interjacent step, requiring much fewer parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.

  16. Negative exchange interactions in coupled few-electron quantum dots

    NASA Astrophysics Data System (ADS)

    Deng, Kuangyin; Calderon-Vargas, F. A.; Mayhall, Nicholas J.; Barnes, Edwin

    2018-06-01

    It has been experimentally shown that negative exchange interactions can arise in a linear three-dot system when a two-electron double quantum dot is exchange coupled to a larger quantum dot containing on the order of one hundred electrons. The origin of this negative exchange can be traced to the larger quantum dot exhibiting a spin tripletlike rather than singletlike ground state. Here we show using a microscopic model based on the configuration interaction (CI) method that both tripletlike and singletlike ground states are realized depending on the number of electrons. In the case of only four electrons, a full CI calculation reveals that tripletlike ground states occur for sufficiently large dots. These results hold for symmetric and asymmetric quantum dots in both Si and GaAs, showing that negative exchange interactions are robust in few-electron double quantum dots and do not require large numbers of electrons.

  17. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, V. N.; Toussaint, U. V.; Timucin, D. A.

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum excitation gap. g min, = O(n 2(exp -n/2), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to 'the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  18. Dynamics of Quantum Adiabatic Evolution Algorithm for Number Partitioning

    NASA Technical Reports Server (NTRS)

    Smelyanskiy, Vadius; vonToussaint, Udo V.; Timucin, Dogan A.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We have developed a general technique to study the dynamics of the quantum adiabatic evolution algorithm applied to random combinatorial optimization problems in the asymptotic limit of large problem size n. We use as an example the NP-complete Number Partitioning problem and map the algorithm dynamics to that of an auxiliary quantum spin glass system with the slowly varying Hamiltonian. We use a Green function method to obtain the adiabatic eigenstates and the minimum exitation gap, gmin = O(n2(sup -n/2)), corresponding to the exponential complexity of the algorithm for Number Partitioning. The key element of the analysis is the conditional energy distribution computed for the set of all spin configurations generated from a given (ancestor) configuration by simultaneous flipping of a fixed number of spins. For the problem in question this distribution is shown to depend on the ancestor spin configuration only via a certain parameter related to the energy of the configuration. As the result, the algorithm dynamics can be described in terms of one-dimensional quantum diffusion in the energy space. This effect provides a general limitation of a quantum adiabatic computation in random optimization problems. Analytical results are in agreement with the numerical simulation of the algorithm.

  19. Quantum non-demolition phonon counter with a hybrid optomechnical system

    NASA Astrophysics Data System (ADS)

    Song, Qiao; Zhang, KeYe; Dong, Ying; Zhang, WeiPing

    2018-05-01

    A phonon counting scheme based on the control of polaritons in an optomechanical system is proposed. This approach permits us to measure the number of phonons in a quantum non-demolition (QND) manner for arbitrary modes not limited by the frequency matching condition as in usual photon-phonon scattering detections. The performance on phonon number transfer and quantum state transfer of the counter are analyzed and simulated numerically by taking into account all relevant sources of noise.

  20. Quantum break-time of de Sitter

    NASA Astrophysics Data System (ADS)

    Dvali, Gia; Gómez, César; Zell, Sebastian

    2017-06-01

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.

  1. Quantum generalisation of feedforward neural networks

    NASA Astrophysics Data System (ADS)

    Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.

    2017-09-01

    We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.

  2. Quantum algorithms for quantum field theories.

    PubMed

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

  3. Optimized 4-bit Quantum Reversible Arithmetic Logic Unit

    NASA Astrophysics Data System (ADS)

    Ayyoub, Slimani; Achour, Benslama

    2017-08-01

    Reversible logic has received a great attention in the recent years due to its ability to reduce the power dissipation. The main purposes of designing reversible logic are to decrease quantum cost, depth of the circuits and the number of garbage outputs. The arithmetic logic unit (ALU) is an important part of central processing unit (CPU) as the execution unit. This paper presents a complete design of a new reversible arithmetic logic unit (ALU) that can be part of a programmable reversible computing device such as a quantum computer. The proposed ALU based on a reversible low power control unit and small performance parameters full adder named double Peres gates. The presented ALU can produce the largest number (28) of arithmetic and logic functions and have the smallest number of quantum cost and delay compared with existing designs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590

    The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less

  5. Towards a high-speed quantum random number generator

    NASA Astrophysics Data System (ADS)

    Stucki, Damien; Burri, Samuel; Charbon, Edoardo; Chunnilall, Christopher; Meneghetti, Alessio; Regazzoni, Francesco

    2013-10-01

    Randomness is of fundamental importance in various fields, such as cryptography, numerical simulations, or the gaming industry. Quantum physics, which is fundamentally probabilistic, is the best option for a physical random number generator. In this article, we will present the work carried out in various projects in the context of the development of a commercial and certified high speed random number generator.

  6. Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics

    DOE PAGES

    Cimmarusti, A. D.; Yan, Z.; Patterson, B. D.; ...

    2015-06-11

    We measure the quantum speed of the state evolution of the field in a weakly-driven optical cavity QED system. To this end, the mode of the electromagnetic field is considered as a quantum system of interest with a preferential coupling to a tunable environment: the atoms. By controlling the environment, i.e., changing the number of atoms coupled to the optical cavity mode, an environment assisted speed-up is realized: the quantum speed of the state re-population in the optical cavity increases with the coupling strength between the optical cavity mode and this non-Markovian environment (the number of atoms).

  7. Programmable quantum random number generator without postprocessing.

    PubMed

    Nguyen, Lac; Rehain, Patrick; Sua, Yong Meng; Huang, Yu-Ping

    2018-02-15

    We demonstrate a viable source of unbiased quantum random numbers whose statistical properties can be arbitrarily programmed without the need for any postprocessing such as randomness distillation or distribution transformation. It is based on measuring the arrival time of single photons in shaped temporal modes that are tailored with an electro-optical modulator. We show that quantum random numbers can be created directly in customized probability distributions and pass all randomness tests of the NIST and Dieharder test suites without any randomness extraction. The min-entropies of such generated random numbers are measured close to the theoretical limits, indicating their near-ideal statistics and ultrahigh purity. Easy to implement and arbitrarily programmable, this technique can find versatile uses in a multitude of data analysis areas.

  8. Source-Device-Independent Ultrafast Quantum Random Number Generation.

    PubMed

    Marangon, Davide G; Vallone, Giuseppe; Villoresi, Paolo

    2017-02-10

    Secure random numbers are a fundamental element of many applications in science, statistics, cryptography and more in general in security protocols. We present a method that enables the generation of high-speed unpredictable random numbers from the quadratures of an electromagnetic field without any assumption on the input state. The method allows us to eliminate the numbers that can be predicted due to the presence of classical and quantum side information. In particular, we introduce a procedure to estimate a bound on the conditional min-entropy based on the entropic uncertainty principle for position and momentum observables of infinite dimensional quantum systems. By the above method, we experimentally demonstrated the generation of secure true random bits at a rate greater than 1.7 Gbit/s.

  9. A quantum rings based on multiple quantum wells for 1.2-2.8 THz detection

    NASA Astrophysics Data System (ADS)

    Mobini, Alireza; Solaimani, M.

    2018-07-01

    In this paper optical properties of a new QR based on MQWs have been investigated for detection in the THz range. The QR composed of a periodic effective quantum sites that each one considered as QW in theta direction. Using Tight binding method, eigen value problem for a QR with circumstance of 100 nm number with different number of wells i.e. 2, 4, 6 and 8 are solved and the absorption spectrum have been calculated. The results show that absorption has maximum value in range of (1.2-2.88 THz) that can be used for THz detection. Finally, it is realized that by increasing the number of wells, the numbers of absorption line also increase.

  10. Two-Way Communication with a Single Quantum Particle.

    PubMed

    Del Santo, Flavio; Dakić, Borivoje

    2018-02-09

    In this Letter we show that communication when restricted to a single information carrier (i.e., single particle) and finite speed of propagation is fundamentally limited for classical systems. On the other hand, quantum systems can surpass this limitation. We show that communication bounded to the exchange of a single quantum particle (in superposition of different spatial locations) can result in "two-way signaling," which is impossible in classical physics. We quantify the discrepancy between classical and quantum scenarios by the probability of winning a game played by distant players. We generalize our result to an arbitrary number of parties and we show that the probability of success is asymptotically decreasing to zero as the number of parties grows, for all classical strategies. In contrast, quantum strategy allows players to win the game with certainty.

  11. Two-Way Communication with a Single Quantum Particle

    NASA Astrophysics Data System (ADS)

    Del Santo, Flavio; Dakić, Borivoje

    2018-02-01

    In this Letter we show that communication when restricted to a single information carrier (i.e., single particle) and finite speed of propagation is fundamentally limited for classical systems. On the other hand, quantum systems can surpass this limitation. We show that communication bounded to the exchange of a single quantum particle (in superposition of different spatial locations) can result in "two-way signaling," which is impossible in classical physics. We quantify the discrepancy between classical and quantum scenarios by the probability of winning a game played by distant players. We generalize our result to an arbitrary number of parties and we show that the probability of success is asymptotically decreasing to zero as the number of parties grows, for all classical strategies. In contrast, quantum strategy allows players to win the game with certainty.

  12. The Nonlinear Jaynes-Cummings Model for the Multiphoton Transition

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-Jing; Lu, Jing-Bin; Zhang, Si-Qi; Liu, Ji-Ping; Li, Hong; Liang, Yu; Ma, Ji; Weng, Yi-Jiao; Zhang, Qi-Rui; Liu, Han; Zhang, Xiao-Ru; Wu, Xiang-Yao

    2018-01-01

    With the nonlinear Jaynes-Cummings model, we have studied the atom and light field quantum entanglement of multiphoton transition in nonlinear medium, and researched the effect of the transition photon number N and the nonlinear coefficient χ on the quantum entanglement degrees. We have given the quantum entanglement degrees curves with time evolution, we find when the transition photon number N increases, the entanglement degrees oscillation get faster. When the nonlinear coefficient α > 0, the entanglement degrees oscillation get quickly, the nonlinear term is disadvantage of the atom and light field entanglement, and when the nonlinear coefficient α < 0, the entanglement degrees oscillation get slow, the nonlinear term is advantage of the atom and light field entanglement. These results will have been used in the quantum communication and quantum information.

  13. Experimental creation of quantum Zeno subspaces by repeated multi-spin projections in diamond

    NASA Astrophysics Data System (ADS)

    Kalb, N.; Cramer, J.; Twitchen, D. J.; Markham, M.; Hanson, R.; Taminiau, T. H.

    2016-10-01

    Repeated observations inhibit the coherent evolution of quantum states through the quantum Zeno effect. In multi-qubit systems this effect provides opportunities to control complex quantum states. Here, we experimentally demonstrate that repeatedly projecting joint observables of multiple spins creates quantum Zeno subspaces and simultaneously suppresses the dephasing caused by a quasi-static environment. We encode up to two logical qubits in these subspaces and show that the enhancement of the dephasing time with increasing number of projections follows a scaling law that is independent of the number of spins involved. These results provide experimental insight into the interplay between frequent multi-spin measurements and slowly varying noise and pave the way for tailoring the dynamics of multi-qubit systems through repeated projections.

  14. Quantum Optical Implementations of Quantum Computing and Quantum Informatics Protocols

    DTIC Science & Technology

    2007-11-20

    4, 2005. ) 14. M. 0. Scully, "The EPR Paradox Revisted", AMO Physics Seminar, TAMU Jan. 18, 2005. 15. M. S. Zubairy, "Quantum computing: Cavity QED...the EPR dispersion relation and the average photon number. We have shown that atomic coherence is the key to the development of such a laser. In...PRISM-TAMU Symposium on Quantum Material Science, Princeton University, February 21-22, 2005. ) 21. M. 0. Scully, "From EPR to quantum eraser: The Role

  15. Temperature dependent photoluminescence and micromapping of multiple stacks InAs quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ming, E-mail: ming.xu@lgep.supelec.fr; Jaffré, Alexandre, E-mail: ming.xu@lgep.supelec.fr; Alvarez, José, E-mail: ming.xu@lgep.supelec.fr

    2015-02-27

    We utilized temperature dependent photoluminescence (PL) techniques to investigate 1, 3 and 5 stack InGaAs quantum dots (QDs) grown on cross-hatch patterns. PL mapping can well reproduce the QDs distribution as AFM and position dependency of QD growth. It is possible to observe crystallographic dependent PL. The temperature dependent spectra exhibit the QDs energy distribution which reflects the size and shape. The inter-dot carrier coupling effect is observed and translated as a red shift of 120mV on the [1–10] direction peak is observed at 30K on 1 stack with regards to 3 stacks samples, which is assigned to lateral coupling.

  16. MgH Rydberg series: Transition energies from electron propagator theory and oscillator strengths from the molecular quantum defect orbital method

    NASA Astrophysics Data System (ADS)

    Corzo, H. H.; Velasco, A. M.; Lavín, C.; Ortiz, J. V.

    2018-02-01

    Vertical excitation energies belonging to several Rydberg series of MgH have been inferred from 3+ electron-propagator calculations of the electron affinities of MgH+ and are in close agreement with experiment. Many electronically excited states with n > 3 are reported for the first time and new insight is given on the assignment of several Rydberg series. Valence and Rydberg excited states of MgH are distinguished respectively by high and low pole strengths corresponding to Dyson orbitals of electron attachment to the cation. By applying the Molecular Quantum Defect Orbital method, oscillator strengths for electronic transitions involving Rydberg states also have been determined.

  17. On determining absolute entropy without quantum theory or the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  18. Photon-number-resolving detectors and their role in quantifying quantum correlations

    NASA Astrophysics Data System (ADS)

    Tan, Si-Hui; Krivitsky, Leonid A.; Englert, Berthold-Georg

    2016-09-01

    Harnessing entanglement as a resource is the main workhorse of many quantum protocols, and establishing the degree of quantum correlations of quantum states is an important certification process that has to take place prior to any implementations of these quantum protocols. The emergence of photodetectors known as photon-number-resolving detectors (PNRDs) that allow for accounting of photon numbers simultaneously arriving at the detectors has led to the need for modeling accurately and applying them for use in the certification process. Here we study the variance of difference of photocounts (VDP) of two PNRDs, which is one measure of quantum correlations, under the effects of loss and saturation. We found that it would be possible to distinguish between the classical correlation of a two-mode coherent state and the quantum correlation of a twin-beam state within some photo count regime of the detector. We compare the behavior of two such PNRDs. The first for which the photocount statistics follow a binomial distribution accounting for losses, and the second is that of Agarwal, Vogel, and Sperling for which the incident beam is first split and then separately measured by ON/OFF detectors. In our calculations, analytical expressions are derived for the variance of difference where possible. In these cases, Gauss' hypergeometric function appears regularly, giving an insight to the type of quantum statistics the photon counting gives in these PNRDs. The different mechanisms of the two types of PNRDs leads to quantitative differences in their VDP.

  19. 42 CFR 425.110 - Number of ACO professionals and beneficiaries.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... number of assigned beneficiaries. (2) If the ACO's assigned population is not returned to at least 5,000... 42 Public Health 3 2014-10-01 2014-10-01 false Number of ACO professionals and beneficiaries. 425... Program Eligibility Requirements § 425.110 Number of ACO professionals and beneficiaries. (a)(1) The ACO...

  20. 42 CFR 425.110 - Number of ACO professionals and beneficiaries.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... number of assigned beneficiaries. (2) If the ACO's assigned population is not returned to at least 5,000... 42 Public Health 3 2012-10-01 2012-10-01 false Number of ACO professionals and beneficiaries. 425... Program Eligibility Requirements § 425.110 Number of ACO professionals and beneficiaries. (a)(1) The ACO...

  1. 42 CFR 425.110 - Number of ACO professionals and beneficiaries.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... number of assigned beneficiaries. (2) If the ACO's assigned population is not returned to at least 5,000... 42 Public Health 3 2013-10-01 2013-10-01 false Number of ACO professionals and beneficiaries. 425... Program Eligibility Requirements § 425.110 Number of ACO professionals and beneficiaries. (a)(1) The ACO...

  2. 30 CFR 1204.205 - How do I obtain accounting and auditing relief?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., ONRR-assigned payor code, address, phone number, and contact name; and (ii) The specific ONRR lease number and agreement number, if applicable. (2) You may file a single notification for multiple marginal.... (1) Your request must contain: (i) Your company name, ONRR-assigned payor code, address, phone number...

  3. 46 CFR 67.111 - Assignment of official number.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Assignment of official number. 67.111 Section 67.111... official number. (a) The owner of a vessel must submit an Application for Initial Issue, Exchange, or... Vessel Documentation Center, to apply for an official number for the vessel when: (1) Application is made...

  4. 46 CFR 67.111 - Assignment of official number.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Assignment of official number. 67.111 Section 67.111... official number. (a) The owner of a vessel must submit an Application for Initial Issue, Exchange, or... Vessel Documentation Center, to apply for an official number for the vessel when: (1) Application is made...

  5. Assigning unique identification numbers to new user accounts and groups in a computing environment with multiple registries

    DOEpatents

    DeRobertis, Christopher V.; Lu, Yantian T.

    2010-02-23

    A method, system, and program storage device for creating a new user account or user group with a unique identification number in a computing environment having multiple user registries is provided. In response to receiving a command to create a new user account or user group, an operating system of a clustered computing environment automatically checks multiple registries configured for the operating system to determine whether a candidate identification number for the new user account or user group has been assigned already to one or more existing user accounts or groups, respectively. The operating system automatically assigns the candidate identification number to the new user account or user group created in a target user registry if the checking indicates that the candidate identification number has not been assigned already to any of the existing user accounts or user groups, respectively.

  6. Quantum pattern recognition with multi-neuron interactions

    NASA Astrophysics Data System (ADS)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  7. Simulation approach for the evaluation of tracking accuracy in radiotherapy: a preliminary study.

    PubMed

    Tanaka, Rie; Ichikawa, Katsuhiro; Mori, Shinichiro; Sanada, Sigeru

    2013-01-01

    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). It is important to keep the patient dose as low as possible while maintaining tracking accuracy. A simulation approach would be helpful to optimize the imaging conditions. This study was performed to develop a computer simulation platform based on a noise property of the imaging system for the evaluation of tracking accuracy at any noise level. Flat-field images were obtained using a direct-type dynamic FPD, and noise power spectrum (NPS) analysis was performed. The relationship between incident quantum number and pixel value was addressed, and a conversion function was created. The pixel values were converted into a map of quantum number using the conversion function, and the map was then input into the random number generator to simulate image noise. Simulation images were provided at different noise levels by changing the incident quantum numbers. Subsequently, an implanted marker was tracked automatically and the maximum tracking errors were calculated at different noise levels. The results indicated that the maximum tracking error increased with decreasing incident quantum number in flat-field images with an implanted marker. In addition, the range of errors increased with decreasing incident quantum number. The present method could be used to determine the relationship between image noise and tracking accuracy. The results indicated that the simulation approach would aid in determining exposure dose conditions according to the necessary tracking accuracy.

  8. Unusual Internal Rotation Coupling in the Microwave Spectrum of Pinacolone

    NASA Astrophysics Data System (ADS)

    Zhao, YueYue; Nguyen, Ha Vinh Lam; Stahl, Wolfgang; Hougen, Jon T.

    2015-06-01

    The molecular-beam Fourier-transform microwave spectrum of pinacolone (methyl tert-butyl ketone) has been measured in several regions between 2 and 40 GHz. Assignments of a large number of A and E transitions were confirmed by combination differences, but fits of the assigned spectrum using several torsion-rotation computer programs based on different models led to the unexpected conclusion that no existing program correctly captures the internal dynamics of this molecule. A second puzzle arose when it became clear that roughly half of the spectrum remained unassigned even after all predicted transitions were added to the assignment list. Quantum chemical calculations carried out at the MP2/6-311++G(d,p) level indicate that this molecule does not have a plane of symmetry at equilibrium, and that internal rotation of the light methyl group induces a large oscillatory motion of the heavy tert-butyl group from one side of the C_s saddle point to the other. The effect of this non-C_s equilibrium structure was modeled for J = 0 levels by a simple two-top torsional Hamiltonian, where magnitudes of the strong top-top coupling terms were determined directly from the ab initio two-dimensional potential surface. A plot of the resultant torsional levels on the same scale as a one-dimensional potential curve along the zig-zag path connecting the six (unequally spaced) minima bears a striking resemblance to the 1:2:1 splitting pattern of levels in an internal rotation problem with a six-fold barrier. A plot of the six minima closely resembles the potential surface for methylamine. This talk will focus on implications of these resemblances for future work.

  9. A programmable two-qubit quantum processor in silicon

    NASA Astrophysics Data System (ADS)

    Watson, T. F.; Philips, S. G. J.; Kawakami, E.; Ward, D. R.; Scarlino, P.; Veldhorst, M.; Savage, D. E.; Lagally, M. G.; Friesen, Mark; Coppersmith, S. N.; Eriksson, M. A.; Vandersypen, L. M. K.

    2018-03-01

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch–Josza algorithm and the Grover search algorithm—canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85–89 per cent and concurrences of 73–82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  10. A programmable two-qubit quantum processor in silicon.

    PubMed

    Watson, T F; Philips, S G J; Kawakami, E; Ward, D R; Scarlino, P; Veldhorst, M; Savage, D E; Lagally, M G; Friesen, Mark; Coppersmith, S N; Eriksson, M A; Vandersypen, L M K

    2018-03-29

    Now that it is possible to achieve measurement and control fidelities for individual quantum bits (qubits) above the threshold for fault tolerance, attention is moving towards the difficult task of scaling up the number of physical qubits to the large numbers that are needed for fault-tolerant quantum computing. In this context, quantum-dot-based spin qubits could have substantial advantages over other types of qubit owing to their potential for all-electrical operation and ability to be integrated at high density onto an industrial platform. Initialization, readout and single- and two-qubit gates have been demonstrated in various quantum-dot-based qubit representations. However, as seen with small-scale demonstrations of quantum computers using other types of qubit, combining these elements leads to challenges related to qubit crosstalk, state leakage, calibration and control hardware. Here we overcome these challenges by using carefully designed control techniques to demonstrate a programmable two-qubit quantum processor in a silicon device that can perform the Deutsch-Josza algorithm and the Grover search algorithm-canonical examples of quantum algorithms that outperform their classical analogues. We characterize the entanglement in our processor by using quantum-state tomography of Bell states, measuring state fidelities of 85-89 per cent and concurrences of 73-82 per cent. These results pave the way for larger-scale quantum computers that use spins confined to quantum dots.

  11. The Correspondence Principle Revisited.

    ERIC Educational Resources Information Center

    Liboff, Richard L.

    1984-01-01

    Addresses the question of frequency correspondence in the domain of large quantum numbers, with reference to periodic systems. Provides two simple counterexamples (a particle in a cubical box and a rigid rotator) to show that the classical result is not always recovered in the limit of large quantum numbers. (JM)

  12. Random numbers certified by Bell's theorem.

    PubMed

    Pironio, S; Acín, A; Massar, S; de la Giroday, A Boyer; Matsukevich, D N; Maunz, P; Olmschenk, S; Hayes, D; Luo, L; Manning, T A; Monroe, C

    2010-04-15

    Randomness is a fundamental feature of nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Here, inspired by earlier work on non-locality-based and device-independent quantum information processing, we show that the non-local correlations of entangled quantum particles can be used to certify the presence of genuine randomness. It is thereby possible to design a cryptographically secure random number generator that does not require any assumption about the internal working of the device. Such a strong form of randomness generation is impossible classically and possible in quantum systems only if certified by a Bell inequality violation. We carry out a proof-of-concept demonstration of this proposal in a system of two entangled atoms separated by approximately one metre. The observed Bell inequality violation, featuring near perfect detection efficiency, guarantees that 42 new random numbers are generated with 99 per cent confidence. Our results lay the groundwork for future device-independent quantum information experiments and for addressing fundamental issues raised by the intrinsic randomness of quantum theory.

  13. Vibrational and UV spectroscopic studies of 2-coumaranone by experimental and density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Priya, Y. Sushma; Rao, K. Ramachandra; Chalapathi, P. V.; Satyavani, M.; Veeraiah, A.

    2017-09-01

    The vibrational and electronic properties of 2-coumaranone have been reported in the ground state using experimental techniques (FT-IR, FT-Raman, UV spectra and fluorescence microscopic imaging) and density functional theory (DFT) employing B3LYP correlation with the 6-31G(d, p) basis set. The theoretically reported optimized parameters, vibrational frequencies etc., were compared with the experimental values, which yielded good concurrence between the experimental and calculated values. The assignments of the vibrational spectra were done with the help of normal co-ordinate analysis (NCA) following the Scaled Quantum Mechanical Force Field(SQMFF) methodology. The whole assignments of fundamental modes were based on the potential energy distribution (PED) matrix. The electric dipole moment and the first order hyperpolarizability of the 2-coumaranone have been computed using quantum mechanical calculations. NBO and HOMO, LUMO analyses have been carried out. UV spectrum of 2-coumaranone was recorded in the region 100-300 nm and compared with the theoretical UV spectrum using TD-DFT and SAC-CI methods by which a good agreement is observed. Fluorescence microscopic imaging study reflects that the compound fluoresces in the green-yellow region.

  14. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons.

    PubMed

    Kumari, Sudesh; Roudjane, Mourad; Hewage, Dilrukshi; Liu, Yang; Yang, Dong-Sheng

    2013-04-28

    Cerium, praseodymium, and neodymium complexes of 1,3,5,7-cyclooctatetraene (COT) complexes were produced in a laser-vaporization metal cluster source and studied by pulsed-field ionization zero electron kinetic energy spectroscopy and quantum chemical calculations. The computations included the second-order Møller-Plesset perturbation theory, the coupled cluster method with single, double, and perturbative triple excitations, and the state-average complete active space self-consistent field method. The spectrum of each complex exhibits multiple band systems and is assigned to ionization of several low-energy electronic states of the neutral complex. This observation is different from previous studies of M(COT) (M = Sc, Y, La, and Gd), for which a single band system was observed. The presence of the multiple low-energy electronic states is caused by the splitting of the partially filled lanthanide 4f orbitals in the ligand field, and the number of the low-energy states increases rapidly with increasing number of the metal 4f electrons. On the other hand, the 4f electrons have a small effect on the geometries and vibrational frequencies of these lanthanide complexes.

  15. Quantum-classical correspondence in the vicinity of periodic orbits

    NASA Astrophysics Data System (ADS)

    Kumari, Meenu; Ghose, Shohini

    2018-05-01

    Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.

  16. Undergraduate computational physics projects on quantum computing

    NASA Astrophysics Data System (ADS)

    Candela, D.

    2015-08-01

    Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.

  17. Analysis of quantum error-correcting codes: Symplectic lattice codes and toric codes

    NASA Astrophysics Data System (ADS)

    Harrington, James William

    Quantum information theory is concerned with identifying how quantum mechanical resources (such as entangled quantum states) can be utilized for a number of information processing tasks, including data storage, computation, communication, and cryptography. Efficient quantum algorithms and protocols have been developed for performing some tasks (e.g. , factoring large numbers, securely communicating over a public channel, and simulating quantum mechanical systems) that appear to be very difficult with just classical resources. In addition to identifying the separation between classical and quantum computational power, much of the theoretical focus in this field over the last decade has been concerned with finding novel ways of encoding quantum information that are robust against errors, which is an important step toward building practical quantum information processing devices. In this thesis I present some results on the quantum error-correcting properties of oscillator codes (also described as symplectic lattice codes) and toric codes. Any harmonic oscillator system (such as a mode of light) can be encoded with quantum information via symplectic lattice codes that are robust against shifts in the system's continuous quantum variables. I show the existence of lattice codes whose achievable rates match the one-shot coherent information over the Gaussian quantum channel. Also, I construct a family of symplectic self-dual lattices and search for optimal encodings of quantum information distributed between several oscillators. Toric codes provide encodings of quantum information into two-dimensional spin lattices that are robust against local clusters of errors and which require only local quantum operations for error correction. Numerical simulations of this system under various error models provide a calculation of the accuracy threshold for quantum memory using toric codes, which can be related to phase transitions in certain condensed matter models. I also present a local classical processing scheme for correcting errors on toric codes, which demonstrates that quantum information can be maintained in two dimensions by purely local (quantum and classical) resources.

  18. Implementation of a quantum random number generator based on the optimal clustering of photocounts

    NASA Astrophysics Data System (ADS)

    Balygin, K. A.; Zaitsev, V. I.; Klimov, A. N.; Kulik, S. P.; Molotkov, S. N.

    2017-10-01

    To implement quantum random number generators, it is fundamentally important to have a mathematically provable and experimentally testable process of measurements of a system from which an initial random sequence is generated. This makes sure that randomness indeed has a quantum nature. A quantum random number generator has been implemented with the use of the detection of quasi-single-photon radiation by a silicon photomultiplier (SiPM) matrix, which makes it possible to reliably reach the Poisson statistics of photocounts. The choice and use of the optimal clustering of photocounts for the initial sequence of photodetection events and a method of extraction of a random sequence of 0's and 1's, which is polynomial in the length of the sequence, have made it possible to reach a yield rate of 64 Mbit/s of the output certainly random sequence.

  19. Practical photon number detection with electric field-modulated silicon avalanche photodiodes.

    PubMed

    Thomas, O; Yuan, Z L; Shields, A J

    2012-01-24

    Low-noise single-photon detection is a prerequisite for quantum information processing using photonic qubits. In particular, detectors that are able to accurately resolve the number of photons in an incident light pulse will find application in functions such as quantum teleportation and linear optics quantum computing. More generally, such a detector will allow the advantages of quantum light detection to be extended to stronger optical signals, permitting optical measurements limited only by fluctuations in the photon number of the source. Here we demonstrate a practical high-speed device, which allows the signals arising from multiple photon-induced avalanches to be precisely discriminated. We use a type of silicon avalanche photodiode in which the lateral electric field profile is strongly modulated in order to realize a spatially multiplexed detector. Clearly discerned multiphoton signals are obtained by applying sub-nanosecond voltage gates in order to restrict the detector current.

  20. Generalized quantum interference of correlated photon pairs.

    PubMed

    Kim, Heonoh; Lee, Sang Min; Moon, Han Seb

    2015-05-07

    Superposition and indistinguishablility between probability amplitudes have played an essential role in observing quantum interference effects of correlated photons. The Hong-Ou-Mandel interference and interferences of the path-entangled photon number state are of special interest in the field of quantum information technologies. However, a fully generalized two-photon quantum interferometric scheme accounting for the Hong-Ou-Mandel scheme and path-entangled photon number states has not yet been proposed. Here we report the experimental demonstrations of the generalized two-photon interferometry with both the interferometric properties of the Hong-Ou-Mandel effect and the fully unfolded version of the path-entangled photon number state using photon-pair sources, which are independently generated by spontaneous parametric down-conversion. Our experimental scheme explains two-photon interference fringes revealing single- and two-photon coherence properties in a single interferometer setup. Using the proposed interferometric measurement, it is possible to directly estimate the joint spectral intensity of a photon pair source.

  1. VUV Fourier-Transform absorption study of the npπ1 Πu-, v, N ←X1 Σg+, v″ = 0,N″ transitions in D2

    NASA Astrophysics Data System (ADS)

    Glass-Maujean, M.; Jungen, Ch.; Dickenson, G. D.; Ubachs, W.; de Oliveira, N.; Joyeux, D.; Nahon, L.

    2015-09-01

    The DESIRS beamline of the SOLEIL synchrotron facility, equipped with a vacuum ultraviolet Fourier-Transform spectrometer has been used to measure Q (N″) (N -N″ = 0) absorption transitions of the D2 molecule. Some 212 Q-lines were assigned and their transition frequencies determined up to excitation energies of 137 000 cm-1 above the ground state, thereby extending the earlier work by various authors, and considerably improving the spectral accuracy (<0.1 cm-1). The assignments have been aided by first principles multichannel quantum defect theory (MQDT) calculations which also provide predictions of the autoionization widths of the upper levels.

  2. Secure uniform random-number extraction via incoherent strategies

    NASA Astrophysics Data System (ADS)

    Hayashi, Masahito; Zhu, Huangjun

    2018-01-01

    To guarantee the security of uniform random numbers generated by a quantum random-number generator, we study secure extraction of uniform random numbers when the environment of a given quantum state is controlled by the third party, the eavesdropper. Here we restrict our operations to incoherent strategies that are composed of the measurement on the computational basis and incoherent operations (or incoherence-preserving operations). We show that the maximum secure extraction rate is equal to the relative entropy of coherence. By contrast, the coherence of formation gives the extraction rate when a certain constraint is imposed on the eavesdropper's operations. The condition under which the two extraction rates coincide is then determined. Furthermore, we find that the exponential decreasing rate of the leaked information is characterized by Rényi relative entropies of coherence. These results clarify the power of incoherent strategies in random-number generation, and can be applied to guarantee the quality of random numbers generated by a quantum random-number generator.

  3. Monotonically increasing functions of any quantum correlation can make all multiparty states monogamous

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salini, K.; Prabhu, R.; Sen, Aditi

    2014-09-15

    Monogamy of quantum correlation measures puts restrictions on the sharability of quantum correlations in multiparty quantum states. Multiparty quantum states can satisfy or violate monogamy relations with respect to given quantum correlations. We show that all multiparty quantum states can be made monogamous with respect to all measures. More precisely, given any quantum correlation measure that is non-monogamic for a multiparty quantum state, it is always possible to find a monotonically increasing function of the measure that is monogamous for the same state. The statement holds for all quantum states, whether pure or mixed, in all finite dimensions and formore » an arbitrary number of parties. The monotonically increasing function of the quantum correlation measure satisfies all the properties that are expected for quantum correlations to follow. We illustrate the concepts by considering a thermodynamic measure of quantum correlation, called the quantum work deficit.« less

  4. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    NASA Technical Reports Server (NTRS)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  5. Cryogenic on-chip multiplexer for the study of quantum transport in 256 split-gate devices

    NASA Astrophysics Data System (ADS)

    Al-Taie, H.; Smith, L. W.; Xu, B.; See, P.; Griffiths, J. P.; Beere, H. E.; Jones, G. A. C.; Ritchie, D. A.; Kelly, M. J.; Smith, C. G.

    2013-06-01

    We present a multiplexing scheme for the measurement of large numbers of mesoscopic devices in cryogenic systems. The multiplexer is used to contact an array of 256 split gates on a GaAs/AlGaAs heterostructure, in which each split gate can be measured individually. The low-temperature conductance of split-gate devices is governed by quantum mechanics, leading to the appearance of conductance plateaux at intervals of 2e2/h. A fabrication-limited yield of 94% is achieved for the array, and a "quantum yield" is also defined, to account for disorder affecting the quantum behaviour of the devices. The quantum yield rose from 55% to 86% after illuminating the sample, explained by the corresponding increase in carrier density and mobility of the two-dimensional electron gas. The multiplexer is a scalable architecture, and can be extended to other forms of mesoscopic devices. It overcomes previous limits on the number of devices that can be fabricated on a single chip due to the number of electrical contacts available, without the need to alter existing experimental set ups.

  6. Karpman-Washimi magnetization with electron-exchange effects in quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jamil, M.; Rasheed, A.

    2015-07-15

    The influence of quantum electron-exchange on the Karpman-Washimi ponderomotive magnetization is investigated in quantum plasmas. The ponderomotive magnetization and the total radiation power due to the non-stationary Karpman-Washimi interaction related to the time-varying field intensity are obtained as functions of the de Broglie wave length, Debye length, and electron-exchange parameter. The result shows that the electron-exchange effect enhances the cyclotron frequency due to the ponderomotive interactions in quantum plasmas. It is also shown that the electron-exchange effect on the Karpman-Washimi magnetization increases with increasing wave number. In addition, the Karpman-Washimi magnetization and the total radiation power increase with an increasemore » in the ratio of the Debye length to the de Broglie wave length. In streaming quantum plasmas, it is shown that the electron-exchange effect enhances the ponderomotive magnetization below the resonant wave number and, however, suppresses the ponderomotive magnetization above the resonant wave number. The variation of the Karpman-Washimi magnetization and the radiation power due to the variation of the electron-exchange effect and plasma parameters is also discussed.« less

  7. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    NASA Astrophysics Data System (ADS)

    Lamata, Lucas

    2017-03-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits.

  8. Digital-analog quantum simulation of generalized Dicke models with superconducting circuits

    PubMed Central

    Lamata, Lucas

    2017-01-01

    We propose a digital-analog quantum simulation of generalized Dicke models with superconducting circuits, including Fermi- Bose condensates, biased and pulsed Dicke models, for all regimes of light-matter coupling. We encode these classes of problems in a set of superconducting qubits coupled with a bosonic mode implemented by a transmission line resonator. Via digital-analog techniques, an efficient quantum simulation can be performed in state-of-the-art circuit quantum electrodynamics platforms, by suitable decomposition into analog qubit-bosonic blocks and collective single-qubit pulses through digital steps. Moreover, just a single global analog block would be needed during the whole protocol in most of the cases, superimposed with fast periodic pulses to rotate and detune the qubits. Therefore, a large number of digital steps may be attained with this approach, providing a reduced digital error. Additionally, the number of gates per digital step does not grow with the number of qubits, rendering the simulation efficient. This strategy paves the way for the scalable digital-analog quantum simulation of many-body dynamics involving bosonic modes and spin degrees of freedom with superconducting circuits. PMID:28256559

  9. Functional Wigner representation of quantum dynamics of Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Opanchuk, B.; Drummond, P. D.

    2013-04-01

    We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such as quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.

  10. Horizon quantum fuzziness for non-singular black holes

    NASA Astrophysics Data System (ADS)

    Giugno, Andrea; Giusti, Andrea; Helou, Alexis

    2018-03-01

    We study the extent of quantum gravitational effects in the internal region of non-singular, Hayward-like solutions of Einstein's field equations according to the formalism known as horizon quantum mechanics. We grant a microscopic description to the horizon by considering a huge number of soft, off-shell gravitons, which superimpose in the same quantum state, as suggested by Dvali and Gomez. In addition to that, the constituents of such a configuration are understood as loosely confined in a binding harmonic potential. A simple analysis shows that the resolution of a central singularity through quantum physics does not tarnish the classical description, which is bestowed upon this extended self-gravitating system by General Relativity. Finally, we estimate the appearance of an internal horizon as being negligible, because of the suppression of the related probability caused by the large number of virtual gravitons.

  11. Construction of high-dimensional universal quantum logic gates using a Λ system coupled with a whispering-gallery-mode microresonator.

    PubMed

    He, Ling Yan; Wang, Tie-Jun; Wang, Chuan

    2016-07-11

    High-dimensional quantum system provides a higher capacity of quantum channel, which exhibits potential applications in quantum information processing. However, high-dimensional universal quantum logic gates is difficult to achieve directly with only high-dimensional interaction between two quantum systems and requires a large number of two-dimensional gates to build even a small high-dimensional quantum circuits. In this paper, we propose a scheme to implement a general controlled-flip (CF) gate where the high-dimensional single photon serve as the target qudit and stationary qubits work as the control logic qudit, by employing a three-level Λ-type system coupled with a whispering-gallery-mode microresonator. In our scheme, the required number of interaction times between the photon and solid state system reduce greatly compared with the traditional method which decomposes the high-dimensional Hilbert space into 2-dimensional quantum space, and it is on a shorter temporal scale for the experimental realization. Moreover, we discuss the performance and feasibility of our hybrid CF gate, concluding that it can be easily extended to a 2n-dimensional case and it is feasible with current technology.

  12. What can we learn from the dynamics of entanglement and quantum discord in the Tavis-Cummings model?

    NASA Astrophysics Data System (ADS)

    Restrepo, Juliana; Rodriguez, Boris A.

    We revisit the problem of the dynamics of quantum correlations in the exact Tavis-Cummings model. We show that many of the dynamical features of quantum discord attributed to dissipation are already present in the exact framework and are due to the well known non-linearities in the model and to the choice of initial conditions. Through a comprehensive analysis, supported by explicit analytical calculations, we find that the dynamics of entanglement and quantum discord are far from being trivial or intuitive. In this context, we find states that are indistinguishable from the point of view of entanglement and distinguishable from the point of view of quantum discord, states where the two quantifiers give opposite information and states where they give roughly the same information about correlations at a certain time. Depending on the initial conditions, this model exhibits a fascinating range of phenomena that can be used for experimental purposes such as: Robust states against change of manifold or dissipation, tunable entanglement states and states with a counterintuitive sudden birth as the number of photons increase. We furthermore propose an experiment called quantum discord gates where discord is zero or non-zero depending on the number of photons. This work was supported by the Vicerrectoria de Investigacion of the Universidad Antonio Narino, Colombia under Project Number 20141031 and by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion (COLCIENCIAS) of Colombia under Grant Number.

  13. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction. The many-particle quantum walk can be viewed as a single quantum walk undergoing perfect state transfer on a larger weighted graph, obtained via equitable partitioning. I extend this formalism to non-simple graphs. Examples of the application of equitable partitioning to the analysis of quantum walks and many-particle quantum systems are discussed.

  14. Compact Quantum Random Number Generator with Silicon Nanocrystals Light Emitting Device Coupled to a Silicon Photomultiplier

    NASA Astrophysics Data System (ADS)

    Bisadi, Zahra; Acerbi, Fabio; Fontana, Giorgio; Zorzi, Nicola; Piemonte, Claudio; Pucker, Georg; Pavesi, Lorenzo

    2018-02-01

    A small-sized photonic quantum random number generator, easy to be implemented in small electronic devices for secure data encryption and other applications, is highly demanding nowadays. Here, we propose a compact configuration with Silicon nanocrystals large area light emitting device (LED) coupled to a Silicon photomultiplier to generate random numbers. The random number generation methodology is based on the photon arrival time and is robust against the non-idealities of the detector and the source of quantum entropy. The raw data show high quality of randomness and pass all the statistical tests in national institute of standards and technology tests (NIST) suite without a post-processing algorithm. The highest bit rate is 0.5 Mbps with the efficiency of 4 bits per detected photon.

  15. Extreme Quantum Memory Advantage for Rare-Event Sampling

    NASA Astrophysics Data System (ADS)

    Aghamohammadi, Cina; Loomis, Samuel P.; Mahoney, John R.; Crutchfield, James P.

    2018-02-01

    We introduce a quantum algorithm for memory-efficient biased sampling of rare events generated by classical memoryful stochastic processes. Two efficiency metrics are used to compare quantum and classical resources for rare-event sampling. For a fixed stochastic process, the first is the classical-to-quantum ratio of required memory. We show for two example processes that there exists an infinite number of rare-event classes for which the memory ratio for sampling is larger than r , for any large real number r . Then, for a sequence of processes each labeled by an integer size N , we compare how the classical and quantum required memories scale with N . In this setting, since both memories can diverge as N →∞ , the efficiency metric tracks how fast they diverge. An extreme quantum memory advantage exists when the classical memory diverges in the limit N →∞ , but the quantum memory has a finite bound. We then show that finite-state Markov processes and spin chains exhibit memory advantage for sampling of almost all of their rare-event classes.

  16. Automated Search for new Quantum Experiments.

    PubMed

    Krenn, Mario; Malik, Mehul; Fickler, Robert; Lapkiewicz, Radek; Zeilinger, Anton

    2016-03-04

    Quantum mechanics predicts a number of, at first sight, counterintuitive phenomena. It therefore remains a question whether our intuition is the best way to find new experiments. Here, we report the development of the computer algorithm Melvin which is able to find new experimental implementations for the creation and manipulation of complex quantum states. Indeed, the discovered experiments extensively use unfamiliar and asymmetric techniques which are challenging to understand intuitively. The results range from the first implementation of a high-dimensional Greenberger-Horne-Zeilinger state, to a vast variety of experiments for asymmetrically entangled quantum states-a feature that can only exist when both the number of involved parties and dimensions is larger than 2. Additionally, new types of high-dimensional transformations are found that perform cyclic operations. Melvin autonomously learns from solutions for simpler systems, which significantly speeds up the discovery rate of more complex experiments. The ability to automate the design of a quantum experiment can be applied to many quantum systems and allows the physical realization of quantum states previously thought of only on paper.

  17. Quantum Effects on the Capacitance of Graphene-Based Electrodes

    DOE PAGES

    Zhan, Cheng; Neal, Justin; Wu, Jianzhong; ...

    2015-09-08

    We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphenemore » both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.« less

  18. 7 CFR 215.18 - Information collection/recordkeeping-OMB assigned control numbers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.18 Information collection/recordkeeping—OMB assigned control numbers. 7 CFR section where...

  19. 7 CFR 215.18 - Information collection/recordkeeping-OMB assigned control numbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.18 Information collection/recordkeeping—OMB assigned control numbers. 7 CFR section where...

  20. 7 CFR 215.18 - Information collection/recordkeeping-OMB assigned control numbers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.18 Information collection/recordkeeping—OMB assigned control numbers. 7 CFR section where...

  1. 7 CFR 215.18 - Information collection/recordkeeping-OMB assigned control numbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.18 Information collection/recordkeeping—OMB assigned control numbers. 7 CFR section where...

  2. 7 CFR 215.18 - Information collection/recordkeeping-OMB assigned control numbers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) FOOD AND NUTRITION SERVICE, DEPARTMENT OF AGRICULTURE CHILD NUTRITION PROGRAMS SPECIAL MILK PROGRAM FOR CHILDREN § 215.18 Information collection/recordkeeping—OMB assigned control numbers. 7 CFR section where...

  3. Quantum Mechanics for Everybody: An autonomous MOOC on EdX for nonscientists

    NASA Astrophysics Data System (ADS)

    Freericks, James; Cutler, Dylan; Vieira-Barbosa, Lucas

    2017-01-01

    We have launched a MOOC for nonscientists that teaches quantum mechanics using the Feynman methodology as outlined in his QED book and in a similar book by Daniel Styer. Using a combination of videos, voice-over powerpoint animations, computer simulations and interactive tutorials, we teach the fundamentals of quantum mechanics employing a minimum of math (high school algebra, square roots, and a little trigonometry) but going into detail on a number of complex quantum ideas. We begin with the Stern-Gerlach experiment, including delayed choice and Bell's inequality variants. Then we focus on light developing the quantum theory for partial reflection and diffraction. At this point we demonstrate the complexity of quantum physics by showing how watched and unwatched two-slit experiments behave differently and how quantum particles interfere. The four week course ends with advanced topics in light where we cover the idea of an interaction free measurement, the quantum Zeno effect and indistinguishable particles via the Hong-Ou-Mandel experiment. We hope this MOOC will reach thousands of students interesting in learning quantum mechanics without any dumbing down or the need to learn complex math. It can also be used with undergraduates to help with conceptual understanding. Funded by the National Science Foundation under grants numbered PHY-1620555 and PHY-1314295 and by Georgetown University.

  4. Attacks exploiting deviation of mean photon number in quantum key distribution and coin tossing

    NASA Astrophysics Data System (ADS)

    Sajeed, Shihan; Radchenko, Igor; Kaiser, Sarah; Bourgoin, Jean-Philippe; Pappa, Anna; Monat, Laurent; Legré, Matthieu; Makarov, Vadim

    2015-03-01

    The security of quantum communication using a weak coherent source requires an accurate knowledge of the source's mean photon number. Finite calibration precision or an active manipulation by an attacker may cause the actual emitted photon number to deviate from the known value. We model effects of this deviation on the security of three quantum communication protocols: the Bennett-Brassard 1984 (BB84) quantum key distribution (QKD) protocol without decoy states, Scarani-Acín-Ribordy-Gisin 2004 (SARG04) QKD protocol, and a coin-tossing protocol. For QKD we model both a strong attack using technology possible in principle and a realistic attack bounded by today's technology. To maintain the mean photon number in two-way systems, such as plug-and-play and relativistic quantum cryptography schemes, bright pulse energy incoming from the communication channel must be monitored. Implementation of a monitoring detector has largely been ignored so far, except for ID Quantique's commercial QKD system Clavis2. We scrutinize this implementation for security problems and show that designing a hack-proof pulse-energy-measuring detector is far from trivial. Indeed, the first implementation has three serious flaws confirmed experimentally, each of which may be exploited in a cleverly constructed Trojan-horse attack. We discuss requirements for a loophole-free implementation of the monitoring detector.

  5. Source-Independent Quantum Random Number Generation

    NASA Astrophysics Data System (ADS)

    Cao, Zhu; Zhou, Hongyi; Yuan, Xiao; Ma, Xiongfeng

    2016-01-01

    Quantum random number generators can provide genuine randomness by appealing to the fundamental principles of quantum mechanics. In general, a physical generator contains two parts—a randomness source and its readout. The source is essential to the quality of the resulting random numbers; hence, it needs to be carefully calibrated and modeled to achieve information-theoretical provable randomness. However, in practice, the source is a complicated physical system, such as a light source or an atomic ensemble, and any deviations in the real-life implementation from the theoretical model may affect the randomness of the output. To close this gap, we propose a source-independent scheme for quantum random number generation in which output randomness can be certified, even when the source is uncharacterized and untrusted. In our randomness analysis, we make no assumptions about the dimension of the source. For instance, multiphoton emissions are allowed in optical implementations. Our analysis takes into account the finite-key effect with the composable security definition. In the limit of large data size, the length of the input random seed is exponentially small compared to that of the output random bit. In addition, by modifying a quantum key distribution system, we experimentally demonstrate our scheme and achieve a randomness generation rate of over 5 ×103 bit /s .

  6. Quantum cryptography and applications in the optical fiber network

    NASA Astrophysics Data System (ADS)

    Luo, Yuhui

    2005-09-01

    Quantum cryptography, as part of quantum information and communications, can provide absolute security for information transmission because it is established on the fundamental laws of quantum theory, such as the principle of uncertainty, No-cloning theorem and quantum entanglement. In this thesis research, a novel scheme to implement quantum key distribution based on multiphoton entanglement with a new protocol is proposed. Its advantages are: a larger information capacity can be obtained with a longer transmission distance and the detection of multiple photons is easier than that of a single photon. The security and attacks pertaining to such a system are also studied. Next, a quantum key distribution over wavelength division multiplexed (WDM) optical fiber networks is realized. Quantum key distribution in networks is a long-standing problem for practical applications. Here we combine quantum cryptography and WDM to solve this problem because WDM technology is universally deployed in the current and next generation fiber networks. The ultimate target is to deploy quantum key distribution over commercial networks. The problems arising from the networks are also studied in this part. Then quantum key distribution in multi-access networks using wavelength routing technology is investigated in this research. For the first time, quantum cryptography for multiple individually targeted users has been successfully implemented in sharp contrast to that using the indiscriminating broadcasting structure. It overcomes the shortcoming that every user in the network can acquire the quantum key signals intended to be exchanged between only two users. Furthermore, a more efficient scheme of quantum key distribution is adopted, hence resulting in a higher key rate. Lastly, a quantum random number generator based on quantum optics has been experimentally demonstrated. This device is a key component for quantum key distribution as it can create truly random numbers, which is an essential requirement to perform quantum key distribution. This new generator is composed of a single optical fiber coupler with fiber pigtails, which can be easily used in optical fiber communications.

  7. Quantum chaos in nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu

    A definition of classical and quantum chaos on the basis of the Liouville–Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.

  8. Relativity, Symmetry, and the Structure of Quantum Theory, Volume 2; Point form relativistic quantum mechanics

    NASA Astrophysics Data System (ADS)

    Klink, William H.; Schweiger, Wolfgang

    2018-03-01

    This book covers relativistic quantum theory from the point of view of a particle theory, based on the irreducible representations of the Poincaré group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; this book develops what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A chapter is devoted to applications of point form quantum mechanics to nuclear physics.

  9. A tunable few electron triple quantum dot

    NASA Astrophysics Data System (ADS)

    Gaudreau, L.; Kam, A.; Granger, G.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.

    2009-11-01

    In this paper, we report on a tunable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by complex charge transfer behavior.

  10. Benchmarking gate-based quantum computers

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans

    2017-11-01

    With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.

  11. An efficient quantum circuit analyser on qubits and qudits

    NASA Astrophysics Data System (ADS)

    Loke, T.; Wang, J. B.

    2011-10-01

    This paper presents a highly efficient decomposition scheme and its associated Mathematica notebook for the analysis of complicated quantum circuits comprised of single/multiple qubit and qudit quantum gates. In particular, this scheme reduces the evaluation of multiple unitary gate operations with many conditionals to just two matrix additions, regardless of the number of conditionals or gate dimensions. This improves significantly the capability of a quantum circuit analyser implemented in a classical computer. This is also the first efficient quantum circuit analyser to include qudit quantum logic gates.

  12. Quantum Game of Life

    NASA Astrophysics Data System (ADS)

    Glick, Aaron; Carr, Lincoln; Calarco, Tommaso; Montangero, Simone

    2014-03-01

    In order to investigate the emergence of complexity in quantum systems, we present a quantum game of life, inspired by Conway's classic game of life. Through Matrix Product State (MPS) calculations, we simulate the evolution of quantum systems, dictated by a Hamiltonian that defines the rules of our quantum game. We analyze the system through a number of measures which elicit the emergence of complexity in terms of spatial organization, system dynamics, and non-local mutual information within the network. Funded by NSF

  13. On the robustness of bucket brigade quantum RAM

    NASA Astrophysics Data System (ADS)

    Arunachalam, Srinivasan; Gheorghiu, Vlad; Jochym-O'Connor, Tomas; Mosca, Michele; Varshinee Srinivasan, Priyaa

    2015-12-01

    We study the robustness of the bucket brigade quantum random access memory model introduced by Giovannetti et al (2008 Phys. Rev. Lett.100 160501). Due to a result of Regev and Schiff (ICALP ’08 733), we show that for a class of error models the error rate per gate in the bucket brigade quantum memory has to be of order o({2}-n/2) (where N={2}n is the size of the memory) whenever the memory is used as an oracle for the quantum searching problem. We conjecture that this is the case for any realistic error model that will be encountered in practice, and that for algorithms with super-polynomially many oracle queries the error rate must be super-polynomially small, which further motivates the need for quantum error correction. By contrast, for algorithms such as matrix inversion Harrow et al (2009 Phys. Rev. Lett.103 150502) or quantum machine learning Rebentrost et al (2014 Phys. Rev. Lett.113 130503) that only require a polynomial number of queries, the error rate only needs to be polynomially small and quantum error correction may not be required. We introduce a circuit model for the quantum bucket brigade architecture and argue that quantum error correction for the circuit causes the quantum bucket brigade architecture to lose its primary advantage of a small number of ‘active’ gates, since all components have to be actively error corrected.

  14. Unbounded number of channel uses may be required to detect quantum capacity.

    PubMed

    Cubitt, Toby; Elkouss, David; Matthews, William; Ozols, Maris; Pérez-García, David; Strelchuk, Sergii

    2015-03-31

    Transmitting data reliably over noisy communication channels is one of the most important applications of information theory, and is well understood for channels modelled by classical physics. However, when quantum effects are involved, we do not know how to compute channel capacities. This is because the formula for the quantum capacity involves maximizing the coherent information over an unbounded number of channel uses. In fact, entanglement across channel uses can even increase the coherent information from zero to non-zero. Here we study the number of channel uses necessary to detect positive coherent information. In all previous known examples, two channel uses already sufficed. It might be that only a finite number of channel uses is always sufficient. We show that this is not the case: for any number of uses, there are channels for which the coherent information is zero, but which nonetheless have capacity.

  15. Exclusivity structures and graph representatives of local complementation orbits

    NASA Astrophysics Data System (ADS)

    Cabello, Adán; Parker, Matthew G.; Scarpa, Giannicola; Severini, Simone

    2013-07-01

    We describe a construction that maps any connected graph G on three or more vertices into a larger graph, H(G), whose independence number is strictly smaller than its Lovász number which is equal to its fractional packing number. The vertices of H(G) represent all possible events consistent with the stabilizer group of the graph state associated with G, and exclusive events are adjacent. Mathematically, the graph H(G) corresponds to the orbit of G under local complementation. Physically, the construction translates into graph-theoretic terms the connection between a graph state and a Bell inequality maximally violated by quantum mechanics. In the context of zero-error information theory, the construction suggests a protocol achieving the maximum rate of entanglement-assisted capacity, a quantum mechanical analogue of the Shannon capacity, for each H(G). The violation of the Bell inequality is expressed by the one-shot version of this capacity being strictly larger than the independence number. Finally, given the correspondence between graphs and exclusivity structures, we are able to compute the independence number for certain infinite families of graphs with the use of quantum non-locality, therefore highlighting an application of quantum theory in the proof of a purely combinatorial statement.

  16. Boosting quantum annealer performance via sample persistence

    NASA Astrophysics Data System (ADS)

    Karimi, Hamed; Rosenberg, Gili

    2017-07-01

    We propose a novel method for reducing the number of variables in quadratic unconstrained binary optimization problems, using a quantum annealer (or any sampler) to fix the value of a large portion of the variables to values that have a high probability of being optimal. The resulting problems are usually much easier for the quantum annealer to solve, due to their being smaller and consisting of disconnected components. This approach significantly increases the success rate and number of observations of the best known energy value in samples obtained from the quantum annealer, when compared with calling the quantum annealer without using it, even when using fewer annealing cycles. Use of the method results in a considerable improvement in success metrics even for problems with high-precision couplers and biases, which are more challenging for the quantum annealer to solve. The results are further enhanced by applying the method iteratively and combining it with classical pre-processing. We present results for both Chimera graph-structured problems and embedded problems from a real-world application.

  17. Quantum machine learning for quantum anomaly detection

    NASA Astrophysics Data System (ADS)

    Liu, Nana; Rebentrost, Patrick

    2018-04-01

    Anomaly detection is used for identifying data that deviate from "normal" data patterns. Its usage on classical data finds diverse applications in many important areas such as finance, fraud detection, medical diagnoses, data cleaning, and surveillance. With the advent of quantum technologies, anomaly detection of quantum data, in the form of quantum states, may become an important component of quantum applications. Machine-learning algorithms are playing pivotal roles in anomaly detection using classical data. Two widely used algorithms are the kernel principal component analysis and the one-class support vector machine. We find corresponding quantum algorithms to detect anomalies in quantum states. We show that these two quantum algorithms can be performed using resources that are logarithmic in the dimensionality of quantum states. For pure quantum states, these resources can also be logarithmic in the number of quantum states used for training the machine-learning algorithm. This makes these algorithms potentially applicable to big quantum data applications.

  18. The Lifshitz-Kosevich-Shoenberg theory of relativistic electronic gas in neutron stars

    NASA Astrophysics Data System (ADS)

    Wang, Zhaojun; Lü, Guoliang; Zhu, Chunhua

    2014-10-01

    Similar to the de Haas-van Alphen magnetic oscillatory in some normal metals when the Landau quantization is predominant, the magnetic oscillation can also occur in highly degenerate and relativistic electron gas in neutron stars. At large Landau quantum number (Landau quantum number r≥2), we generalize the Lifshitz-Kosevich-Shoenberg theory in non-relativistic electron gas to relativistic gas. At small Landau quantum number ( r<2), we expand the grand potential into Fourier series and get similar harmonic oscillatory formula of magnetization. These results indicate that magnetic phase transition similar as Condon transition observed in metals can appear in neutron stars when the differential susceptibility exceeds 1/4 π.

  19. Negative values of quasidistributions and quantum wave and number statistics

    NASA Astrophysics Data System (ADS)

    Peřina, J.; Křepelka, J.

    2018-04-01

    We consider nonclassical wave and number quantum statistics, and perform a decomposition of quasidistributions for nonlinear optical down-conversion processes using Bessel functions. We show that negative values of the quasidistribution do not directly represent probabilities; however, they directly influence measurable number statistics. Negative terms in the decomposition related to the nonclassical behavior with negative amplitudes of probability can be interpreted as positive amplitudes of probability in the negative orthogonal Bessel basis, whereas positive amplitudes of probability in the positive basis describe classical cases. However, probabilities are positive in all cases, including negative values of quasidistributions. Negative and positive contributions of decompositions to quasidistributions are estimated. The approach can be adapted to quantum coherence functions.

  20. [Effect of quantum dots CdSe/ZnS's concentration on its fluorescence].

    PubMed

    Jin, Min; Huang, Yu-hua; Luo, Ji-xiang

    2015-02-01

    The authors measured the absorption and the fluorescence spectra of the quantum dots CdSe/ZnS with 4 nm in size at different concentration with the use of the UV-Vis absorption spectroscopy and fluorescence spectrometer. The effect of quantum dots CdSe/ZnS's concentration on its fluorescence was especially studied and its physical mechanism was analyzed. It was observed that the optimal concentration of the quantum dots CdSe/ZnS for fluorescence is 2 micromole x L(-1). When the quantum dot's concentration is over 2 micromol x L(-1), the fluorescence is decreased with the increase in the concentration. While the quantum dot's concentration is less than 2 micromol x L(-1), the fluorescence is decreased with the decrease in the concentration. There are two main reasons: (1) fluorescence quenching and 2) the competition between absorption and fluorescence. When the quantum dot's concentration is over 2 micromol x L(-1), the distance between quantum dots is so close that the fluorescence quenching is induced. The closer the distance between quantum dots is, the more serious the fluorescence quenching is induced. Also, in this case, the absorption is so large that some of the quantum dots can not be excited because the incident light can not pass through the whole sample. As a result, the fluorescence is decreased with the increase in the quantum dot's concentration. As the quantum dot's concentration is below 2 micromol x L(-1), the distance between quantum dots is far enough that no more fluorescence quenching is induced. In this case, the fluorescence is determined by the particle number per unit volume. More particle number per unit volume produces more fluorescence. Therefore, the fluorescence is decreased with the decrease in the quantum dot's concentration.

  1. The Molecular Structure of Phenetole Studied by Microwave Spectroscopy and Quantum Chemical Calculations

    NASA Astrophysics Data System (ADS)

    Ferres, Lynn; Stahl, Wolfgang; Nguyen, Ha Vinh Lam

    2016-06-01

    A pulsed molecular beam Fourier transform microwave spectrometer operating in the frequency range 2 - 26.5 GHz was used to measure the spectrum of phenetole (ethyl phenyl ether or ethoxybenzene, C6H5OC2H5). The conformational landscape is completely determined by the orientations of the phenyl ring and the ethyl group. A two-dimensional potential energy surface was calculated at the MP2/6-311++G(d,p) level of theory. Two conformers were found: The trans conformer has a Cs symmetry, and the gauche conformer has the ethyl group tilted out of the phenyl plane by about 70°. Totally 186 rotational transitions were assigned to the more stable planar trans conformer, and fitted using a semi-rigid rotor model to measurement accuracy of 2 kHz. Highly accurate rotational and centrifugal distortion constants were determined. Several method and basis set combinations were applied to check for convergence and to compare with the experimentally deduced molecular parameters. The inertial defect of the observed conformer Δc = (Ic - Ia - Ib) = -6.718 uÅ2 confirms that the heavy atom skeleton is planar with two pairs of hydrogen atoms out of plane. All lines in the spectrum could be assigned to the trans conformer, which confirms that the gauche conformer cannot be observed under our measurement conditions. In agreement with the rather high torsional barrier of the methyl group (V3 = 1168 wn) calculated by quantum chemical methods, all assigned lines appeared sharp and no signs of splittings were observed for the methyl internal rotation.

  2. Entanglement routers via a wireless quantum network based on arbitrary two qubit systems

    NASA Astrophysics Data System (ADS)

    Metwally, N.

    2014-12-01

    A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.

  3. QCE: A Simulator for Quantum Computer Hardware

    NASA Astrophysics Data System (ADS)

    Michielsen, Kristel; de Raedt, Hans

    2003-09-01

    The Quantum Computer Emulator (QCE) described in this paper consists of a simulator of a generic, general purpose quantum computer and a graphical user interface. The latter is used to control the simulator, to define the hardware of the quantum computer and to debug and execute quantum algorithms. QCE runs in a Windows 98/NT/2000/ME/XP environment. It can be used to validate designs of physically realizable quantum processors and as an interactive educational tool to learn about quantum computers and quantum algorithms. A detailed exposition is given of the implementation of the CNOT and the Toffoli gate, the quantum Fourier transform, Grover's database search algorithm, an order finding algorithm, Shor's algorithm, a three-input adder and a number partitioning algorithm. We also review the results of simulations of an NMR-like quantum computer.

  4. Raman spectroscopic and theoretical study of liquid and solid water within the spectral region 1600-2300 cm-1

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, E. N.; Pitsevich, G. A.; Malevich, A. E.; Doroshenko, O. P.; Pogorelov, V. E.; Doroshenko, I. Yu.; Balevicius, V.; Sablinskas, V.; Kamnev, A. A.

    2018-05-01

    Raman spectra of liquid water and ice were measured at different temperatures. The intensity of the band assigned to bending vibrations of water molecules was observed to decrease at the liquid-to-solid transition, while the Raman line near 2200 cm-1 showed an anomalously high intensity in the solid phase. A tetrahedral model was used for computer analysis of the observed spectral changes. Quantum-chemical calculations of the structure, normal vibrations and Raman spectra in the harmonic approximation, as well as frequencies and intensities of some vibrations using 1D and 2D potential energy surfaces, were carried out using B3LYP with the cc-pVTZ basis set. The influence of the number of hydrogen bonds on the frequency and Raman activity of the bending vibrations was analyzed. The possibility of hydrogen bond weakening upon excitation of the combined bending-rocking vibration due to the large amplitude of this vibration is considered.

  5. Rotational spectra in the ν2 vibrationally excited states of MgNC

    NASA Astrophysics Data System (ADS)

    Kagi, E.; Kawaguchi, K.; Takano, S.; Hirano, T.

    1996-01-01

    The pure rotational spectra of MgNC in the ν2 (bending) vibrationally excited states were observed in the 310-380 GHz region to study the linearity of the molecule. The observed 90 spectral lines were assigned to the transitions in the v2=1-5 states and analyzed to determine a set of molecular constants in each state. The bending vibrational frequency was estimated to be 86 cm-1 from the l-type doubling constant of the v2=1 state. The interval of the Φ and Π states in v2=3 was determined to be 29.2280(24) cm-1, giving the anharmonicity constant xll=3.8611(9) cm-1 with one standard deviation in parentheses, which indicates that the molecule has a linear form. However, somewhat peculiar properties were recognized in dependence of the observed l-type resonance and vibration-rotation constants on the v2 vibrational quantum number, suggesting an effect of anharmonicity.

  6. X-Ray Absorption Spectra of Amorphous Ices from GW Quasiparticle Calculation

    NASA Astrophysics Data System (ADS)

    Kong, Lingzhu; Car, Roberto

    2013-03-01

    We use a GW approach[2] to compute the x-ray absorption spectra of model low- and high-density amorphous ice structures(LDA and HDA)[3]. We include the structural effects of quantum zero point motion using colored-noise Langevin molecular dynamics[4]. The calculated spectra differences in the main and post edge region between LDA and HDA agree well with experimental observations. We attribute these differences to the presence of interstitial molecules within the first coordination shell range in HDA. This assignment is further supported by a calculation of the spectrum of ice VIII, a high-pressure structure that maximizes the number of interstitial molecules and, accordingly, shows a much weaker post-edge feature. We further rationalize the spectral similarity between HDA and liquid water, and between LDA and ice Ih in terms of the respective similarities in the H-bond network topology and bond angle distributions. Supported by grants DOE-DE-SC0005180, DOE DE-SC0008626 and NSF-CHE-0956500.

  7. Probing the electronic structure of UO+ with high-resolution photoelectron spectroscopy.

    PubMed

    Goncharov, Vasiliy; Kaledin, Leonid A; Heaven, Michael C

    2006-10-07

    The pulsed field ionization-zero kinetic energy photoelectron technique has been used to observe the low-lying energy levels of UO+. Rotationally resolved spectra were recorded for the ground state and the first nine electronically excited states. Extensive vibrational progressions were characterized. Omega+ assignments were unambiguously determined from the first rotational lines identified in each vibronic band. Term energies, vibrational frequencies, and anharmonicity constants for low-lying energy levels of UO+ are reported. In addition, accurate values for the ionization energies for UO [48,643.8(2) cm(-1)] and U [49,957.6(2) cm(-1)] were determined. The pattern of low-lying electronic states for UO+ indicates that they originate from the U3+(5f3)O2- configuration, where the uranium ion-centered interactions between the 5f electrons are significantly stronger than interactions with the intramolecular electric field. The latter lifts the degeneracy of U3+ ion-core states, but the atomic angular momentum quantum numbers remain reasonably well defined.

  8. Discrete-time quantum walk with nitrogen-vacancy centers in diamond coupled to a superconducting flux qubit

    NASA Astrophysics Data System (ADS)

    Hardal, Ali Ü. C.; Xue, Peng; Shikano, Yutaka; Müstecaplıoğlu, Özgür E.; Sanders, Barry C.

    2013-08-01

    We propose a quantum-electrodynamics scheme for implementing the discrete-time, coined quantum walk with the walker corresponding to the phase degree of freedom for a quasimagnon field realized in an ensemble of nitrogen-vacancy centers in diamond. The coin is realized as a superconducting flux qubit. Our scheme improves on an existing proposal for implementing quantum walks in cavity quantum electrodynamics by removing the cumbersome requirement of varying drive-pulse durations according to mean quasiparticle number. Our improvement is relevant to all indirect-coin-flip cavity quantum-electrodynamics realizations of quantum walks. Our numerical analysis shows that this scheme can realize a discrete quantum walk under realistic conditions.

  9. Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of bromobenzene and its perdeuterated isotopologue: Assignment of the vibrations of the S{sub 0}, S{sub 1}, and D{sub 0}{sup +} states of bromobenzene and the S{sub 0} and D{sub 0}{sup +} states of iodobenzene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrejeva, Anna; Tuttle, William D.; Harris, Joe P.

    2015-12-28

    We report vibrationally resolved spectra of the S{sub 1}←S{sub 0} transition of bromobenzene using resonance-enhanced multiphoton ionization spectroscopy. We study bromobenzene-h{sub 5} as well as its perdeuterated isotopologue, bromobenzene-d{sub 5}. The form of the vibrational modes between the isotopologues and also between the S{sub 0} and S{sub 1} electronic states is discussed for each species, allowing assignment of the bands to be achieved and the activity between states and isotopologues to be established. Vibrational bands are assigned utilizing quantum chemical calculations, previous experimental results, and isotopic shifts. Previous work and assignments of the S{sub 1} spectra are discussed. Additionally, themore » vibrations in the ground state cation, D{sub 0}{sup +}, are considered, since these have also been used by previous workers in assigning the excited neutral state spectra. We also examine the vibrations of iodobenzene in the S{sub 0} and D{sub 0}{sup +} states and comment on the previous assignments of these. In summary, we have been able to assign the corresponding vibrations across the whole monohalobenzene series of molecules, in the S{sub 0}, S{sub 1}, and D{sub 0}{sup +} states, gaining insight into vibrational activity and vibrational couplings.« less

  10. Noncommutative complex structures on quantum homogeneous spaces

    NASA Astrophysics Data System (ADS)

    Ó Buachalla, Réamonn

    2016-01-01

    A new framework for noncommutative complex geometry on quantum homogeneous spaces is introduced. The main ingredients used are covariant differential calculi and Takeuchi's categorical equivalence for quantum homogeneous spaces. A number of basic results are established, producing a simple set of necessary and sufficient conditions for noncommutative complex structures to exist. Throughout, the framework is applied to the quantum projective spaces endowed with the Heckenberger-Kolb calculus.

  11. Core Ion Structures and Solvation Effects in Gas Phase [Sn(CO_{2})_{n}]^{-} Clusters

    NASA Astrophysics Data System (ADS)

    Thompson, Michael C.; Weber, J. Mathias

    2017-06-01

    We report infrared photodissociation spectra of [Sn(CO_{2})_{n}] (n=2-6) clusters. We explore core ion geometries through quantum chemical calculations and assign our experimental spectra through comparison with calculated vibrational frequencies. We discuss our results in the context of heterogeneous catalytic reduction of CO_{2}, and compare our results with previous work on other post-transition metal species.

  12. Locality and simultaneous elements of reality

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Sestito, A.

    2012-12-01

    We show that the extension of quantum correlations stemming from a "strict" interpretation of the criterion of reality raises the failure of Hardy's non-locality theorem. Then, by suggesting an ideal experiment, we prove that such an extension, though strictly smaller than the one derived by Einstein, Podolsky and Rosen and usually adopted, allows for the assignment of simultaneous objective values of two non-commuting observables.

  13. Topological numbering of features on a mesh

    NASA Technical Reports Server (NTRS)

    Atallah, Mikhail J.; Hambrusch, Susanne E.; Tewinkel, Lynn E.

    1988-01-01

    Assume a nxn binary image is given containing horizontally convex features; i.e., for each feature, each of its row's pixels form an interval on that row. The problem of assigning topological numbers to such features is considered; i.e., assign a number to every feature f so that all features to the left of f have a smaller number assigned to them. This problem arises in solutions to the stereo matching problem. A parallel algorithm to solve the topological numbering problem in O(n) time on an nxn mesh of processors is presented. The key idea of the solution is to create a tree from which the topological numbers can be obtained even though the tree does not uniquely represent the to the left of relationship of the features.

  14. True random numbers from amplified quantum vacuum.

    PubMed

    Jofre, M; Curty, M; Steinlechner, F; Anzolin, G; Torres, J P; Mitchell, M W; Pruneri, V

    2011-10-10

    Random numbers are essential for applications ranging from secure communications to numerical simulation and quantitative finance. Algorithms can rapidly produce pseudo-random outcomes, series of numbers that mimic most properties of true random numbers while quantum random number generators (QRNGs) exploit intrinsic quantum randomness to produce true random numbers. Single-photon QRNGs are conceptually simple but produce few random bits per detection. In contrast, vacuum fluctuations are a vast resource for QRNGs: they are broad-band and thus can encode many random bits per second. Direct recording of vacuum fluctuations is possible, but requires shot-noise-limited detectors, at the cost of bandwidth. We demonstrate efficient conversion of vacuum fluctuations to true random bits using optical amplification of vacuum and interferometry. Using commercially-available optical components we demonstrate a QRNG at a bit rate of 1.11 Gbps. The proposed scheme has the potential to be extended to 10 Gbps and even up to 100 Gbps by taking advantage of high speed modulation sources and detectors for optical fiber telecommunication devices.

  15. Effects of temperature on the ground state of a strongly-coupling magnetic polaron and mean phonon number in RbCl quantum pseudodot

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Ding, Zhao-Hua; Xiao, Jing-Lin

    2016-07-01

    On the condition of strong electron-LO phonon coupling in a RbCl quantum pseudodot (QPD), the ground state energy and the mean number of phonons are calculated by using the Pekar variational method and quantum statistical theory. The variations of the ground state energy and the mean number with respect to the temperature and the cyclotron frequency of the magnetic field are studied in detail. We find that the absolute value of the ground state energy increases (decreases) with increasing temperature when the temperature is in the lower (higher) temperature region, and that the mean number increases with increasing temperature. The absolute value of the ground state energy is a decreasing function of the cyclotron frequency of the magnetic field whereas the mean number is an increasing function of it. We find two ways to tune the ground state energy and the mean number: controlling the temperature and controlling the cyclotron frequency of the magnetic field.

  16. Gossip algorithms in quantum networks

    NASA Astrophysics Data System (ADS)

    Siomau, Michael

    2017-01-01

    Gossip algorithms is a common term to describe protocols for unreliable information dissemination in natural networks, which are not optimally designed for efficient communication between network entities. We consider application of gossip algorithms to quantum networks and show that any quantum network can be updated to optimal configuration with local operations and classical communication. This allows to speed-up - in the best case exponentially - the quantum information dissemination. Irrespective of the initial configuration of the quantum network, the update requiters at most polynomial number of local operations and classical communication.

  17. Quantum State Tomography of a Fiber-Based Source of Polarization-Entangled Photon Pairs

    DTIC Science & Technology

    2007-12-20

    Processing 175−179 (IEEE, Bangalore, 1984). 4. A. K. Ekert, “ Quantum cryptography based on Bell’s theorem ,” Phys. Rev. Lett. 67, 661–663 (1991). 5...NUMBERS Quantum State Tomography of a Fiber- Based Source of MURI Center for Photonic Quantum Information Systems: AROIARDA Program Polarization...Computer Society Press, Los Alamitos, 1996). 7. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “ Quantum cryptography ,” Rev. Mod. Phys. 74, 145

  18. Threshold quantum cryptography

    NASA Astrophysics Data System (ADS)

    Tokunaga, Yuuki; Okamoto, Tatsuaki; Imoto, Nobuyuki

    2005-01-01

    We present the concept of threshold collaborative unitary transformation or threshold quantum cryptography, which is a kind of quantum version of threshold cryptography. Threshold quantum cryptography states that classical shared secrets are distributed to several parties and a subset of them, whose number is greater than a threshold, collaborates to compute a quantum cryptographic function, while keeping each share secretly inside each party. The shared secrets are reusable if no cheating is detected. As a concrete example of this concept, we show a distributed protocol (with threshold) of conjugate coding.

  19. Quantum break-time of de Sitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvali, Gia; Gómez, César; Zell, Sebastian, E-mail: georgi.dvali@physik.uni-muenchen.de, E-mail: cesar.gomez@uam.es, E-mail: sebastian.zell@campus.lmu.de

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. Themore » mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S -matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/ N -effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N . We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10{sup 100} years old in its entire classical history.« less

  20. Neutron scattering, solid state NMR and quantum chemistry studies of 11-keto-progesterone

    NASA Astrophysics Data System (ADS)

    Szyczewski, A.; Hołderna-Natkaniec, K.; Natkaniec, I.

    2004-07-01

    The molecule geometry, frequency and intensity of the IINS and IR vibrational bands of 11-ketoprogesterone have been obtained by the HF, PM3 and density functional theory (DFT) with the B3LYP functionals and 6-31G(d,p) basis set. The optimised bond lengths and bond angles of the steroid skeleton are in good agreement with the X-ray data. The IR and IINS spectra of ketoprogesterone, computed at the DFT level, well reproduce the vibrational wavenumbers and intensities to an accuracy allowing reliable vibrational assignments. The molecular dynamic study by 1H NMR has confirmed the sequence of onset of reorientations of subsequent methyl groups indicated by the results of quantum chemistry calculations and INS spectra.

  1. Functional Wigner representation of quantum dynamics of Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Opanchuk, B.; Drummond, P. D.

    2013-04-15

    We develop a method of simulating the full quantum field dynamics of multi-mode multi-component Bose-Einstein condensates in a trap. We use the truncated Wigner representation to obtain a probabilistic theory that can be sampled. This method produces c-number stochastic equations which may be solved using conventional stochastic methods. The technique is valid for large mode occupation numbers. We give a detailed derivation of methods of functional Wigner representation appropriate for quantum fields. Our approach describes spatial evolution of spinor components and properly accounts for nonlinear losses. Such techniques are applicable to calculating the leading quantum corrections, including effects such asmore » quantum squeezing, entanglement, EPR correlations, and interactions with engineered nonlinear reservoirs. By using a consistent expansion in the inverse density, we are able to explain an inconsistency in the nonlinear loss equations found by earlier authors.« less

  2. Quantum annealing for the number-partitioning problem using a tunable spin glass of ions

    PubMed Central

    Graß, Tobias; Raventós, David; Juliá-Díaz, Bruno; Gogolin, Christian; Lewenstein, Maciej

    2016-01-01

    Exploiting quantum properties to outperform classical ways of information processing is an outstanding goal of modern physics. A promising route is quantum simulation, which aims at implementing relevant and computationally hard problems in controllable quantum systems. Here we demonstrate that in a trapped ion setup, with present day technology, it is possible to realize a spin model of the Mattis-type that exhibits spin glass phases. Our method produces the glassy behaviour without the need for any disorder potential, just by controlling the detuning of the spin-phonon coupling. Applying a transverse field, the system can be used to benchmark quantum annealing strategies which aim at reaching the ground state of the spin glass starting from the paramagnetic phase. In the vicinity of a phonon resonance, the problem maps onto number partitioning, and instances which are difficult to address classically can be implemented. PMID:27230802

  3. Devil's staircases, quantum dimer models, and stripe formation in strong coupling models of quantum frustration.

    NASA Astrophysics Data System (ADS)

    Raman, Kumar; Papanikolaou, Stefanos; Fradkin, Eduardo

    2007-03-01

    We construct a two-dimensional microscopic model of interacting quantum dimers that displays an infinite number of periodic striped phases in its T=0 phase diagram. The phases form an incomplete devil's staircase and the period becomes arbitrarily large as the staircase is traversed. The Hamiltonian has purely short-range interactions, does not break any symmetries, and is generic in that it does not involve the fine tuning of a large number of parameters. Our model, a quantum mechanical analog of the Pokrovsky-Talapov model of fluctuating domain walls in two dimensional classical statistical mechanics, provides a mechanism by which striped phases with periods large compared to the lattice spacing can, in principle, form in frustrated quantum magnetic systems with only short-ranged interactions and no explicitly broken symmetries. Please see cond-mat/0611390 for more details.

  4. Quantum Space Charge Waves in a Waveguide Filled with Fermi-Dirac Plasmas Including Relativistic Wake Field and Quantum Statistical Pressure Effects

    NASA Astrophysics Data System (ADS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2018-03-01

    The effects of quantum statistical degeneracy pressure on the propagation of the quantum space charge wave are investigated in a cylindrically bounded plasma waveguide filled with relativistically degenerate quantum Fermi-Dirac plasmas and the relativistic ion wake field. The results show that the domain of the degenerate parameter for the resonant beam instability significantly increases with an increase of the scaled beam velocity. It is found that the instability domain of the wave number increases with an increase of the degenerate parameter. It is also found that the growth rate for the resonant beam instability decreases with an increase of the degenerate parameter. In addition, it is shown that the lowest harmonic mode provides the maximum value of the growth rates. Moreover, it is shown that the instability domain of the wave number decreases with an increase of the beam velocity.

  5. Concrete resource analysis of the quantum linear-system algorithm used to compute the electromagnetic scattering cross section of a 2D target

    NASA Astrophysics Data System (ADS)

    Scherer, Artur; Valiron, Benoît; Mau, Siun-Chuon; Alexander, Scott; van den Berg, Eric; Chapuran, Thomas E.

    2017-03-01

    We provide a detailed estimate for the logical resource requirements of the quantum linear-system algorithm (Harrow et al. in Phys Rev Lett 103:150502, 2009) including the recently described elaborations and application to computing the electromagnetic scattering cross section of a metallic target (Clader et al. in Phys Rev Lett 110:250504, 2013). Our resource estimates are based on the standard quantum-circuit model of quantum computation; they comprise circuit width (related to parallelism), circuit depth (total number of steps), the number of qubits and ancilla qubits employed, and the overall number of elementary quantum gate operations as well as more specific gate counts for each elementary fault-tolerant gate from the standard set { X, Y, Z, H, S, T, { CNOT } }. In order to perform these estimates, we used an approach that combines manual analysis with automated estimates generated via the Quipper quantum programming language and compiler. Our estimates pertain to the explicit example problem size N=332{,}020{,}680 beyond which, according to a crude big-O complexity comparison, the quantum linear-system algorithm is expected to run faster than the best known classical linear-system solving algorithm. For this problem size, a desired calculation accuracy ɛ =0.01 requires an approximate circuit width 340 and circuit depth of order 10^{25} if oracle costs are excluded, and a circuit width and circuit depth of order 10^8 and 10^{29}, respectively, if the resource requirements of oracles are included, indicating that the commonly ignored oracle resources are considerable. In addition to providing detailed logical resource estimates, it is also the purpose of this paper to demonstrate explicitly (using a fine-grained approach rather than relying on coarse big-O asymptotic approximations) how these impressively large numbers arise with an actual circuit implementation of a quantum algorithm. While our estimates may prove to be conservative as more efficient advanced quantum-computation techniques are developed, they nevertheless provide a valid baseline for research targeting a reduction of the algorithmic-level resource requirements, implying that a reduction by many orders of magnitude is necessary for the algorithm to become practical.

  6. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Haiyan; Lu, Tiao; Cai, Wei, E-mail: wcai@uncc.edu

    2014-02-01

    In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device atmore » zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition.« less

  7. Entanglement of quantum clocks through gravity

    NASA Astrophysics Data System (ADS)

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-01

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  8. Entanglement of quantum clocks through gravity.

    PubMed

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-03-21

    In general relativity, the picture of space-time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass-energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks.

  9. Quantum rotation and translation of hydrogen molecules encapsulated inside C₆₀: temperature dependence of inelastic neutron scattering spectra.

    PubMed

    Horsewill, A J; Goh, K; Rols, S; Ollivier, J; Johnson, M R; Levitt, M H; Carravetta, M; Mamone, S; Murata, Y; Chen, J Y-C; Johnson, J A; Lei, X; Turro, N J

    2013-09-13

    The quantum dynamics of a hydrogen molecule encapsulated inside the cage of a C60 fullerene molecule is investigated using inelastic neutron scattering (INS). The emphasis is on the temperature dependence of the INS spectra which were recorded using time-of-flight spectrometers. The hydrogen endofullerene system is highly quantum mechanical, exhibiting both translational and rotational quantization. The profound influence of the Pauli exclusion principle is revealed through nuclear spin isomerism. INS is shown to be exceptionally able to drive transitions between ortho-hydrogen and para-hydrogen which are spin-forbidden to photon spectroscopies. Spectra in the temperature range 1.6≤T≤280 K are presented, and examples are given which demonstrate how the temperature dependence of the INS peak amplitudes can provide an effective tool for assigning the transitions. It is also shown in a preliminary investigation how the temperature dependence may conceivably be used to probe crystal field effects and inter-fullerene interactions.

  10. Entanglement of quantum clocks through gravity

    PubMed Central

    Castro Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2017-01-01

    In general relativity, the picture of space–time assigns an ideal clock to each world line. Being ideal, gravitational effects due to these clocks are ignored and the flow of time according to one clock is not affected by the presence of clocks along nearby world lines. However, if time is defined operationally, as a pointer position of a physical clock that obeys the principles of general relativity and quantum mechanics, such a picture is, at most, a convenient fiction. Specifically, we show that the general relativistic mass–energy equivalence implies gravitational interaction between the clocks, whereas the quantum mechanical superposition of energy eigenstates leads to a nonfixed metric background. Based only on the assumption that both principles hold in this situation, we show that the clocks necessarily get entangled through time dilation effect, which eventually leads to a loss of coherence of a single clock. Hence, the time as measured by a single clock is not well defined. However, the general relativistic notion of time is recovered in the classical limit of clocks. PMID:28270623

  11. Dynamical quantum phase transitions in extended transverse Ising models

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  12. Quantum Metric of Classic Physics

    NASA Astrophysics Data System (ADS)

    Machusky, Eugene

    2017-09-01

    By methods of differential geometry and number theory the following has been established: All fundamental physical constants are the medians of quasi-harmonic functions of relative space and relative time. Basic quantum units are, in fact, the gradients of normal distribution of standing waves between the points of pulsating spherical spiral, which are determined only by functional bonds of transcendental numbers PI and E. Analytically obtained values of rotational speed, translational velocity, vibrational speed, background temperature and molar mass give the possibility to evaluate all basic quantum units with practically unlimited accuracy. Metric of quantum physics really is two-dimensional image of motion of waves in three-dimensional space. Standard physical model is correct, but SI metric system is insufficiently exact at submillimeter distances.

  13. Finite key analysis for symmetric attacks in quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Tim; Kampermann, Hermann; Kleinmann, Matthias

    2006-10-15

    We introduce a constructive method to calculate the achievable secret key rate for a generic class of quantum key distribution protocols, when only a finite number n of signals is given. Our approach is applicable to all scenarios in which the quantum state shared by Alice and Bob is known. In particular, we consider the six state protocol with symmetric eavesdropping attacks, and show that for a small number of signals, i.e., below n{approx}10{sup 4}, the finite key rate differs significantly from the asymptotic value for n{yields}{infinity}. However, for larger n, a good approximation of the asymptotic value is found.more » We also study secret key rates for protocols using higher-dimensional quantum systems.« less

  14. Extraction of conformal data in critical quantum spin chains using the Koo-Saleur formula

    NASA Astrophysics Data System (ADS)

    Milsted, Ashley; Vidal, Guifre

    2017-12-01

    We study the emergence of two-dimensional conformal symmetry in critical quantum spin chains on the finite circle. Our goal is to characterize the conformal field theory (CFT) describing the universality class of the corresponding quantum phase transition. As a means to this end, we propose and demonstrate automated procedures which, using only the lattice Hamiltonian H =∑jhj as an input, systematically identify the low-energy eigenstates corresponding to Virasoro primary and quasiprimary operators, and assign the remaining low-energy eigenstates to conformal towers. The energies and momenta of the primary operator states are needed to determine the primary operator scaling dimensions and conformal spins, an essential part of the conformal data that specifies the CFT. Our techniques use the action, on the low-energy eigenstates of H , of the Fourier modes Hn of the Hamiltonian density hj. The Hn were introduced as lattice representations of the Virasoro generators by Koo and Saleur [Nucl. Phys. B 426, 459 (1994), 10.1016/0550-3213(94)90018-3]. In this paper, we demonstrate that these operators can be used to extract conformal data in a nonintegrable quantum spin chain.

  15. A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.

    PubMed

    Li, Bin-Bin; Wang, Ling

    2007-06-01

    This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.

  16. Engineered Potentials and Dynamics of Ultracold Quantum Gases Under the Microscope

    DTIC Science & Technology

    2014-05-09

    CONTRACT OR GRANT NUMBER: DESCRIPTION OF MATERIAL INSTITUTION: PRINCIPAL INVESTIGATOR: Paola Cappellaro TYPE REPORT: Ph.D. Dissertation PERIOD...CONTRACT NUMBER Engineered potentials and dynamics of ulu·acold quantum gases W911NF-11-1-0400 under the microscope Sb. GRANT NUMBER Sc. PROGRAM...Schnorrberger, M. Moreno- Cardoner , S. Fölling, and I. Bloch, “Counting atoms using interaction blockade in an optical superlat- tice,” Phys. Rev. Lett

  17. In Defense of a Heuristic Interpretation of Quantum Mechanics

    ERIC Educational Resources Information Center

    Healy, Eamonn F.

    2010-01-01

    Although the presentation of quantum mechanics found in traditional textbooks is intellectually well founded, it suffers from a number of deficiencies. Specifically introducing quantum mechanics as a solution to the arcane dilemma, the ultraviolet catastrophe, does little to impress a nonscientific audience of the tremendous paradigmatic shift…

  18. Optimal processor assignment for pipeline computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Simha, Rahul; Choudhury, Alok N.; Narahari, Bhagirath

    1991-01-01

    The availability of large scale multitasked parallel architectures introduces the following processor assignment problem for pipelined computations. Given a set of tasks and their precedence constraints, along with their experimentally determined individual responses times for different processor sizes, find an assignment of processor to tasks. Two objectives are of interest: minimal response given a throughput requirement, and maximal throughput given a response time requirement. These assignment problems differ considerably from the classical mapping problem in which several tasks share a processor; instead, it is assumed that a large number of processors are to be assigned to a relatively small number of tasks. Efficient assignment algorithms were developed for different classes of task structures. For a p processor system and a series parallel precedence graph with n constituent tasks, an O(np2) algorithm is provided that finds the optimal assignment for the response time optimization problem; it was found that the assignment optimizing the constrained throughput in O(np2log p) time. Special cases of linear, independent, and tree graphs are also considered.

  19. Visible-to-telecom quantum frequency conversion of light from a single quantum emitter.

    PubMed

    Zaske, Sebastian; Lenhard, Andreas; Keßler, Christian A; Kettler, Jan; Hepp, Christian; Arend, Carsten; Albrecht, Roland; Schulz, Wolfgang-Michael; Jetter, Michael; Michler, Peter; Becher, Christoph

    2012-10-05

    We demonstrate efficient (>30%) quantum frequency conversion of visible single photons (711 nm) emitted by a quantum dot to a telecom wavelength (1313 nm). Analysis of the first- and second-order coherence before and after wavelength conversion clearly proves that pivotal properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with quantum frequency conversion as a promising technique that may pave the way for a number of new applications in quantum technology.

  20. Private quantum computation: an introduction to blind quantum computing and related protocols

    NASA Astrophysics Data System (ADS)

    Fitzsimons, Joseph F.

    2017-06-01

    Quantum technologies hold the promise of not only faster algorithmic processing of data, via quantum computation, but also of more secure communications, in the form of quantum cryptography. In recent years, a number of protocols have emerged which seek to marry these concepts for the purpose of securing computation rather than communication. These protocols address the task of securely delegating quantum computation to an untrusted device while maintaining the privacy, and in some instances the integrity, of the computation. We present a review of the progress to date in this emerging area.

Top