Sample records for quantum oblivious transfer

  1. Nonequivalence of two flavors of oblivious transfer at the quantum level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Guangping; Wang, Z. D.; Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road, Hong Kong

    2006-04-15

    Though all-or-nothing oblivious transfer and one-out-of-two oblivious transfer are equivalent in classical cryptography, we here show that a protocol built upon secure quantum all-or-nothing oblivious transfer cannot satisfy the rigorous definition of quantum one-out-of-two oblivious transfer due to the nature of quantum cryptography. Thus the securities of the two oblivious transfer protocols are not equivalent at the quantum level.

  2. Continuous-variable protocol for oblivious transfer in the noisy-storage model.

    PubMed

    Furrer, Fabian; Gehring, Tobias; Schaffner, Christian; Pacher, Christoph; Schnabel, Roman; Wehner, Stephanie

    2018-04-13

    Cryptographic protocols are the backbone of our information society. This includes two-party protocols which offer protection against distrustful players. Such protocols can be built from a basic primitive called oblivious transfer. We present and experimentally demonstrate here a quantum protocol for oblivious transfer for optical continuous-variable systems, and prove its security in the noisy-storage model. This model allows us to establish security by sending more quantum signals than an attacker can reliably store during the protocol. The security proof is based on uncertainty relations which we derive for continuous-variable systems, that differ from the ones used in quantum key distribution. We experimentally demonstrate in a proof-of-principle experiment the proposed oblivious transfer protocol for various channel losses by using entangled two-mode squeezed states measured with balanced homodyne detection. Our work enables the implementation of arbitrary two-party quantum cryptographic protocols with continuous-variable communication systems.

  3. Comment on "Bit-string oblivious transfer based on quantum state computational distinguishability"

    NASA Astrophysics Data System (ADS)

    He, Guang Ping

    2015-10-01

    We show that in the protocol proposed in Phys. Rev. A 91, 042306 (2015), 10.1103/PhysRevA.91.042306, a dishonest sender can always ensure with certainty that the receiver fails to get the secret message. Thus the security requirement of oblivious transfer is not met. This security problem also makes the protocol unsuitable for serving as a building block for 1-out-of-2 oblivious transfer.

  4. Simple protocols for oblivious transfer and secure identification in the noisy-quantum-storage model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaffner, Christian

    2010-09-15

    We present simple protocols for oblivious transfer and password-based identification which are secure against general attacks in the noisy-quantum-storage model as defined in R. Koenig, S. Wehner, and J. Wullschleger [e-print arXiv:0906.1030]. We argue that a technical tool from Koenig et al. suffices to prove security of the known protocols. Whereas the more involved protocol for oblivious transfer from Koenig et al. requires less noise in storage to achieve security, our ''canonical'' protocols have the advantage of being simpler to implement and the security error is easier control. Therefore, our protocols yield higher OT rates for many realistic noise parameters.more » Furthermore, a proof of security of a direct protocol for password-based identification against general noisy-quantum-storage attacks is given.« less

  5. Cryptography in the Bounded-Quantum-Storage Model

    NASA Astrophysics Data System (ADS)

    Schaffner, Christian

    2007-09-01

    This thesis initiates the study of cryptographic protocols in the bounded-quantum-storage model. On the practical side, simple protocols for Rabin Oblivious Transfer, 1-2 Oblivious Transfer and Bit Commitment are presented. No quantum memory is required for honest players, whereas the protocols can only be broken by an adversary controlling a large amount of quantum memory. The protocols are efficient, non-interactive and can be implemented with today's technology. On the theoretical side, new entropic uncertainty relations involving min-entropy are established and used to prove the security of protocols according to new strong security definitions. For instance, in the realistic setting of Quantum Key Distribution (QKD) against quantum-memory-bounded eavesdroppers, the uncertainty relation allows to prove the security of QKD protocols while tolerating considerably higher error rates compared to the standard model with unbounded adversaries.

  6. Proposal for founding mistrustful quantum cryptography on coin tossing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian; Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ,

    2003-07-01

    A significant branch of classical cryptography deals with the problems which arise when mistrustful parties need to generate, process, or exchange information. As Kilian showed a while ago, mistrustful classical cryptography can be founded on a single protocol, oblivious transfer, from which general secure multiparty computations can be built. The scope of mistrustful quantum cryptography is limited by no-go theorems, which rule out, inter alia, unconditionally secure quantum protocols for oblivious transfer or general secure two-party computations. These theorems apply even to protocols which take relativistic signaling constraints into account. The best that can be hoped for, in general, aremore » quantum protocols which are computationally secure against quantum attack. Here a method is described for building a classically certified bit commitment, and hence every other mistrustful cryptographic task, from a secure coin-tossing protocol. No security proof is attempted, but reasons are sketched why these protocols might resist quantum computational attack.« less

  7. Towards communication-efficient quantum oblivious key distribution

    NASA Astrophysics Data System (ADS)

    Panduranga Rao, M. V.; Jakobi, M.

    2013-01-01

    Symmetrically private information retrieval, a fundamental problem in the field of secure multiparty computation, is defined as follows: A database D of N bits held by Bob is queried by a user Alice who is interested in the bit Db in such a way that (1) Alice learns Db and only Db and (2) Bob does not learn anything about Alice's choice b. While solutions to this problem in the classical domain rely largely on unproven computational complexity theoretic assumptions, it is also known that perfect solutions that guarantee both database and user privacy are impossible in the quantum domain. Jakobi [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.83.022301 83, 022301 (2011)] proposed a protocol for oblivious transfer using well-known quantum key device (QKD) techniques to establish an oblivious key to solve this problem. Their solution provided a good degree of database and user privacy (using physical principles like the impossibility of perfectly distinguishing nonorthogonal quantum states and the impossibility of superluminal communication) while being loss-resistant and implementable with commercial QKD devices (due to the use of the Scarani-Acin-Ribordy-Gisin 2004 protocol). However, their quantum oblivious key distribution (QOKD) protocol requires a communication complexity of O(NlogN). Since modern databases can be extremely large, it is important to reduce this communication as much as possible. In this paper, we first suggest a modification of their protocol wherein the number of qubits that need to be exchanged is reduced to O(N). A subsequent generalization reduces the quantum communication complexity even further in such a way that only a few hundred qubits are needed to be transferred even for very large databases.

  8. Coherent attack on oblivious transfer based on single-qubit rotations

    NASA Astrophysics Data System (ADS)

    He, Guang Ping

    2018-04-01

    Recently a bit-string quantum oblivious transfer (OT) protocol based on single-qubit rotations was proposed (Rodrigues et al 2017 J. Phys. A: Math. Theor. 50 205301) and proven secure against few-qubit measurements. However, it was left as an open question whether the protocol remains secure against general attacks. Here, we close the gap by showing that if the receiver Bob can perform collective measurements on all qubits, then he can learn Alice’s secret message with a probability close to one. Thus the protocol fails to meet the security criterion of OT.

  9. Two Quantum Protocols for Oblivious Set-member Decision Problem

    NASA Astrophysics Data System (ADS)

    Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2015-10-01

    In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology.

  10. Two Quantum Protocols for Oblivious Set-member Decision Problem

    PubMed Central

    Shi, Run-hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2015-01-01

    In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology. PMID:26514668

  11. Two Quantum Protocols for Oblivious Set-member Decision Problem.

    PubMed

    Shi, Run-Hua; Mu, Yi; Zhong, Hong; Cui, Jie; Zhang, Shun

    2015-10-30

    In this paper, we defined a new secure multi-party computation problem, called Oblivious Set-member Decision problem, which allows one party to decide whether a secret of another party belongs to his private set in an oblivious manner. There are lots of important applications of Oblivious Set-member Decision problem in fields of the multi-party collaborative computation of protecting the privacy of the users, such as private set intersection and union, anonymous authentication, electronic voting and electronic auction. Furthermore, we presented two quantum protocols to solve the Oblivious Set-member Decision problem. Protocol I takes advantage of powerful quantum oracle operations so that it needs lower costs in both communication and computation complexity; while Protocol II takes photons as quantum resources and only performs simple single-particle projective measurements, thus it is more feasible with the present technology.

  12. Location-oblivious data transfer with flying entangled qudits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Adrian

    2011-07-15

    We present a simple and practical quantum protocol involving two mistrustful agencies in Minkowski space, which allows Alice to transfer data to Bob at a space-time location that neither can predict in advance. The location depends on both Alice's and Bob's actions. The protocol guarantees unconditionally to Alice that Bob learns the data at a randomly determined location; it guarantees to Bob that Alice will not learn the transfer location even after the protocol is complete. The task implemented, transferring data at a space-time location that remains hidden from the transferrer, has no precise analog in nonrelativistic quantum cryptography. Itmore » illustrates further the scope for novel cryptographic applications of relativistic quantum theory.« less

  13. Performing private database queries in a real-world environment using a quantum protocol.

    PubMed

    Chan, Philip; Lucio-Martinez, Itzel; Mo, Xiaofan; Simon, Christoph; Tittel, Wolfgang

    2014-06-10

    In the well-studied cryptographic primitive 1-out-of-N oblivious transfer, a user retrieves a single element from a database of size N without the database learning which element was retrieved. While it has previously been shown that a secure implementation of 1-out-of-N oblivious transfer is impossible against arbitrarily powerful adversaries, recent research has revealed an interesting class of private query protocols based on quantum mechanics in a cheat sensitive model. Specifically, a practical protocol does not need to guarantee that the database provider cannot learn what element was retrieved if doing so carries the risk of detection. The latter is sufficient motivation to keep a database provider honest. However, none of the previously proposed protocols could cope with noisy channels. Here we present a fault-tolerant private query protocol, in which the novel error correction procedure is integral to the security of the protocol. Furthermore, we present a proof-of-concept demonstration of the protocol over a deployed fibre.

  14. Performing private database queries in a real-world environment using a quantum protocol

    PubMed Central

    Chan, Philip; Lucio-Martinez, Itzel; Mo, Xiaofan; Simon, Christoph; Tittel, Wolfgang

    2014-01-01

    In the well-studied cryptographic primitive 1-out-of-N oblivious transfer, a user retrieves a single element from a database of size N without the database learning which element was retrieved. While it has previously been shown that a secure implementation of 1-out-of-N oblivious transfer is impossible against arbitrarily powerful adversaries, recent research has revealed an interesting class of private query protocols based on quantum mechanics in a cheat sensitive model. Specifically, a practical protocol does not need to guarantee that the database provider cannot learn what element was retrieved if doing so carries the risk of detection. The latter is sufficient motivation to keep a database provider honest. However, none of the previously proposed protocols could cope with noisy channels. Here we present a fault-tolerant private query protocol, in which the novel error correction procedure is integral to the security of the protocol. Furthermore, we present a proof-of-concept demonstration of the protocol over a deployed fibre. PMID:24913129

  15. Cryptography from noisy storage.

    PubMed

    Wehner, Stephanie; Schaffner, Christian; Terhal, Barbara M

    2008-06-06

    We show how to implement cryptographic primitives based on the realistic assumption that quantum storage of qubits is noisy. We thereby consider individual-storage attacks; i.e., the dishonest party attempts to store each incoming qubit separately. Our model is similar to the model of bounded-quantum storage; however, we consider an explicit noise model inspired by present-day technology. To illustrate the power of this new model, we show that a protocol for oblivious transfer is secure for any amount of quantum-storage noise, as long as honest players can perform perfect quantum operations. Our model also allows us to show the security of protocols that cope with noise in the operations of the honest players and achieve more advanced tasks such as secure identification.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    In quantum teleportation, neither Alice nor Bob acquires any classical knowledge on teleported states. The teleportation protocol is said to be oblivious to both parties. In remote state preparation (RSP), it is assumed that Alice is given complete classical knowledge on the state that is to be prepared by Bob. Recently, Leung and Shor [e-print quant-ph/0201008] showed that the same amount of classical information as that in teleportation needs to be transmitted in any exact and deterministic RSP protocol that is oblivious to Bob. Assuming that the dimension of subsystems in the prior-entangled state is the same as the dimensionmore » of the input space, we study similar RSP protocols, but not necessarily oblivious to Bob. We show that in this case Bob's quantum operation can be safely assumed to be a unitary transformation. We then derive an equation that is a necessary and sufficient condition for such a protocol to exist. By studying this equation, we show that one-qubit RSP requires two classical bits of communication, which is the same amount as in teleportation, even if the protocol is not assumed oblivious to Bob. For higher dimensions, it is still an open question whether the amount of classical communication can be reduced by abandoning oblivious conditions.« less

  17. Nearest private query based on quantum oblivious key distribution

    NASA Astrophysics Data System (ADS)

    Xu, Min; Shi, Run-hua; Luo, Zhen-yu; Peng, Zhen-wan

    2017-12-01

    Nearest private query is a special private query which involves two parties, a user and a data owner, where the user has a private input (e.g., an integer) and the data owner has a private data set, and the user wants to query which element in the owner's private data set is the nearest to his input without revealing their respective private information. In this paper, we first present a quantum protocol for nearest private query, which is based on quantum oblivious key distribution (QOKD). Compared to the classical related protocols, our protocol has the advantages of the higher security and the better feasibility, so it has a better prospect of applications.

  18. A Novel Quantum Solution to Privacy-Preserving Nearest Neighbor Query in Location-Based Services

    NASA Astrophysics Data System (ADS)

    Luo, Zhen-yu; Shi, Run-hua; Xu, Min; Zhang, Shun

    2018-04-01

    We present a cheating-sensitive quantum protocol for Privacy-Preserving Nearest Neighbor Query based on Oblivious Quantum Key Distribution and Quantum Encryption. Compared with the classical related protocols, our proposed protocol has higher security, because the security of our protocol is based on basic physical principles of quantum mechanics, instead of difficulty assumptions. Especially, our protocol takes single photons as quantum resources and only needs to perform single-photon projective measurement. Therefore, it is feasible to implement this protocol with the present technologies.

  19. Extending quantum mechanics entails extending special relativity

    NASA Astrophysics Data System (ADS)

    Aravinda, S.; Srikanth, R.

    2016-05-01

    The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure.

  20. Improved classical and quantum random access codes

    NASA Astrophysics Data System (ADS)

    Liabøtrø, O.

    2017-05-01

    A (quantum) random access code ((Q)RAC) is a scheme that encodes n bits into m (qu)bits such that any of the n bits can be recovered with a worst case probability p >1/2 . We generalize (Q)RACs to a scheme encoding n d -levels into m (quantum) d -levels such that any d -level can be recovered with the probability for every wrong outcome value being less than 1/d . We construct explicit solutions for all n ≤d/2m-1 d -1 . For d =2 , the constructions coincide with those previously known. We show that the (Q)RACs are d -parity oblivious, generalizing ordinary parity obliviousness. We further investigate optimization of the success probabilities. For d =2 , we use the measure operators of the previously best-known solutions, but improve the encoding states to give a higher success probability. We conjecture that for maximal (n =4m-1 ,m ,p ) QRACs, p =1/2 {1 +[(√{3}+1)m-1 ] -1} is possible, and show that it is an upper bound for the measure operators that we use. We then compare (n ,m ,pq) QRACs with classical (n ,2 m ,pc) RACs. We can always find pq≥pc , but the classical code gives information about every input bit simultaneously, while the QRAC only gives information about a subset. For several different (n ,2 ,p ) QRACs, we see the same trade-off, as the best p values are obtained when the number of bits that can be obtained simultaneously is as small as possible. The trade-off is connected to parity obliviousness, since high certainty information about several bits can be used to calculate probabilities for parities of subsets.

  1. Quantum Algorithms and Protocols

    NASA Astrophysics Data System (ADS)

    Divincenzo, David

    2001-06-01

    Quantum Computing is better than classical computing, but not just because it speeds up some computations. Some of the best known quantum algorithms, like Grover's, may well have their most interesting applications in settings that involve the combination of computation and communication. Thus, Grover speeds up the appointment scheduling problem by reducing the amount of communication needed between two parties who want to find a common free slot on their calendars. I will review various other applications of this sort that are being explored. Other distributed computing protocols are required to have other attributes like obliviousness and privacy; I will discuss our recent applications involving quantum data hiding.

  2. Quantum private query with perfect user privacy against a joint-measurement attack

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Liu, Zhi-Chao; Li, Jian; Chen, Xiu-Bo; Zuo, Hui-Juan; Zhou, Yi-Hua; Shi, Wei-Min

    2016-12-01

    The joint-measurement (JM) attack is the most powerful threat to the database security for existing quantum-key-distribution (QKD)-based quantum private query (QPQ) protocols. Wei et al. (2016) [28] proposed a novel QPQ protocol against the JM attack. However, their protocol relies on two-way quantum communication thereby affecting its real implementation and communication efficiency. Moreover, it cannot ensure perfect user privacy. In this paper, we present a new one-way QPQ protocol in which the special way of classical post-processing of oblivious key ensures the security against the JM attack. Furthermore, it realizes perfect user privacy and lower complexity of communication.

  3. Unconditional security from noisy quantum storage

    NASA Astrophysics Data System (ADS)

    Wehner, Stephanie

    2010-03-01

    We consider the implementation of two-party cryptographic primitives based on the sole physical assumption that no large-scale reliable quantum storage is available to the cheating party. An important example of such a task is secure identification. Here, Alice wants to identify herself to Bob (possibly an ATM machine) without revealing her password. More generally, Alice and Bob wish to solve problems where Alice holds an input x (e.g. her password), and Bob holds an input y (e.g. the password an honest Alice should possess), and they want to obtain the value of some function f(x,y) (e.g. the equality function). Security means that the legitimate users should not learn anything beyond this specification. That is, Alice should not learn anything about y and Bob should not learn anything about x, other than what they may be able to infer from the value of f(x,y). We show that any such problem can be solved securely in the noisy-storage model by constructing protocols for bit commitment and oblivious transfer, where we prove security against the most general attack. Our protocols can be implemented with present-day hardware used for quantum key distribution. In particular, no quantum storage is required for the honest parties. Our work raises a large number of immediate theoretical as well as experimental questions related to many aspects of quantum information science, such as for example understanding the information carrying properties of quantum channels and memories, randomness extraction, min-entropy sampling, as well as constructing small handheld devices which are suitable for the task of secure identification. [4pt] Full version available at arXiv:0906.1030 (theoretical) and arXiv:0911.2302 (practically oriented).

  4. Binary mesh partitioning for cache-efficient visualization.

    PubMed

    Tchiboukdjian, Marc; Danjean, Vincent; Raffin, Bruno

    2010-01-01

    One important bottleneck when visualizing large data sets is the data transfer between processor and memory. Cache-aware (CA) and cache-oblivious (CO) algorithms take into consideration the memory hierarchy to design cache efficient algorithms. CO approaches have the advantage to adapt to unknown and varying memory hierarchies. Recent CA and CO algorithms developed for 3D mesh layouts significantly improve performance of previous approaches, but they lack of theoretical performance guarantees. We present in this paper a {\\schmi O}(N\\log N) algorithm to compute a CO layout for unstructured but well shaped meshes. We prove that a coherent traversal of a N-size mesh in dimension d induces less than N/B+{\\schmi O}(N/M;{1/d}) cache-misses where B and M are the block size and the cache size, respectively. Experiments show that our layout computation is faster and significantly less memory consuming than the best known CO algorithm. Performance is comparable to this algorithm for classical visualization algorithm access patterns, or better when the BSP tree produced while computing the layout is used as an acceleration data structure adjusted to the layout. We also show that cache oblivious approaches lead to significant performance increases on recent GPU architectures.

  5. Pose-oblivious shape signature.

    PubMed

    Gal, Ran; Shamir, Ariel; Cohen-Or, Daniel

    2007-01-01

    A 3D shape signature is a compact representation for some essence of a shape. Shape signatures are commonly utilized as a fast indexing mechanism for shape retrieval. Effective shape signatures capture some global geometric properties which are scale, translation, and rotation invariant. In this paper, we introduce an effective shape signature which is also pose-oblivious. This means that the signature is also insensitive to transformations which change the pose of a 3D shape such as skeletal articulations. Although some topology-based matching methods can be considered pose-oblivious as well, our new signature retains the simplicity and speed of signature indexing. Moreover, contrary to topology-based methods, the new signature is also insensitive to the topology change of the shape, allowing us to match similar shapes with different genus. Our shape signature is a 2D histogram which is a combination of the distribution of two scalar functions defined on the boundary surface of the 3D shape. The first is a definition of a novel function called the local-diameter function. This function measures the diameter of the 3D shape in the neighborhood of each vertex. The histogram of this function is an informative measure of the shape which is insensitive to pose changes. The second is the centricity function that measures the average geodesic distance from one vertex to all other vertices on the mesh. We evaluate and compare a number of methods for measuring the similarity between two signatures, and demonstrate the effectiveness of our pose-oblivious shape signature within a 3D search engine application for different databases containing hundreds of models.

  6. Aspect-Oriented Programming is Quantification and Obliviousness

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.; Friedman, Daniel P.; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper proposes that the distinguishing characteristic of Aspect-Oriented Programming (AOP) systems is that they allow programming by making quantified programmatic assertions over programs written by programmers oblivious to such assertions. Thus, AOP systems can be analyzed with respect to three critical dimensions: the kinds of quantifications allowed, the nature of the actions that can be asserted, and the mechanism for combining base-level actions with asserted actions. Consequences of this perspective are the recognition that certain systems are not AOP and that some mechanisms are expressive enough to allow programming an AOP system within them. A corollary is that while AOP can be applied to Object-Oriented Programming, it is an independent concept applicable to other programming styles.

  7. Faithful conditional quantum state transfer between weakly coupled qubits

    NASA Astrophysics Data System (ADS)

    Miková, M.; Straka, I.; Mičuda, M.; Krčmarský, V.; Dušek, M.; Ježek, M.; Fiurášek, J.; Filip, R.

    2016-08-01

    One of the strengths of quantum information theory is that it can treat quantum states without referring to their particular physical representation. In principle, quantum states can be therefore fully swapped between various quantum systems by their mutual interaction and this quantum state transfer is crucial for many quantum communication and information processing tasks. In practice, however, the achievable interaction time and strength are often limited by decoherence. Here we propose and experimentally demonstrate a procedure for faithful quantum state transfer between two weakly interacting qubits. Our scheme enables a probabilistic yet perfect unidirectional transfer of an arbitrary unknown state of a source qubit onto a target qubit prepared initially in a known state. The transfer is achieved by a combination of a suitable measurement of the source qubit and quantum filtering on the target qubit depending on the outcome of measurement on the source qubit. We experimentally verify feasibility and robustness of the transfer using a linear optical setup with qubits encoded into polarization states of single photons.

  8. Origins of low energy-transfer efficiency between patterned GaN quantum well and CdSe quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xingsheng, E-mail: xsxu@semi.ac.cn

    For hybrid light emitting devices (LEDs) consisting of GaN quantum wells and colloidal quantum dots, it is necessary to explore the physical mechanisms causing decreases in the quantum efficiencies and the energy transfer efficiency between a GaN quantum well and CdSe quantum dots. This study investigated the electro-luminescence for a hybrid LED consisting of colloidal quantum dots and a GaN quantum well patterned with photonic crystals. It was found that both the quantum efficiency of colloidal quantum dots on a GaN quantum well and the energy transfer efficiency between the patterned GaN quantum well and the colloidal quantum dots decreasedmore » with increases in the driving voltage or the driving time. Under high driving voltages, the decreases in the quantum efficiency of the colloidal quantum dots and the energy transfer efficiency can be attributed to Auger recombination, while those decreases under long driving time are due to photo-bleaching and Auger recombination.« less

  9. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunnelingmore » resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed.« less

  10. Optimal and robust control of quantum state transfer by shaping the spectral phase of ultrafast laser pulses.

    PubMed

    Guo, Yu; Dong, Daoyi; Shu, Chuan-Cun

    2018-04-04

    Achieving fast and efficient quantum state transfer is a fundamental task in physics, chemistry and quantum information science. However, the successful implementation of the perfect quantum state transfer also requires robustness under practically inevitable perturbative defects. Here, we demonstrate how an optimal and robust quantum state transfer can be achieved by shaping the spectral phase of an ultrafast laser pulse in the framework of frequency domain quantum optimal control theory. Our numerical simulations of the single dibenzoterrylene molecule as well as in atomic rubidium show that optimal and robust quantum state transfer via spectral phase modulated laser pulses can be achieved by incorporating a filtering function of the frequency into the optimization algorithm, which in turn has potential applications for ultrafast robust control of photochemical reactions.

  11. Efficient quantum state transfer in an engineered chain of quantum bits

    NASA Astrophysics Data System (ADS)

    Sandberg, Martin; Knill, Emanuel; Kapit, Eliot; Vissers, Michael R.; Pappas, David P.

    2016-03-01

    We present a method of performing quantum state transfer in a chain of superconducting quantum bits. Our protocol is based on engineering the energy levels of the qubits in the chain and tuning them all simultaneously with an external flux bias. The system is designed to allow sequential adiabatic state transfers, resulting in on-demand quantum state transfer from one end of the chain to the other. Numerical simulations of the master equation using realistic parameters for capacitive nearest-neighbor coupling, energy relaxation, and dephasing show that fast, high-fidelity state transfer should be feasible using this method.

  12. An impurity-induced gap system as a quantum data bus for quantum state transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bing, E-mail: chenbingphys@gmail.com; Li, Yong; Song, Z.

    2014-09-15

    We introduce a tight-binding chain with a single impurity to act as a quantum data bus for perfect quantum state transfer. Our proposal is based on the weak coupling limit of the two outermost quantum dots to the data bus, which is a gapped system induced by the impurity. By connecting two quantum dots to two sites of the data bus, the system can accomplish a high-fidelity and long-distance quantum state transfer. Numerical simulations for finite system show that the numerical and analytical results of the effective coupling strength agree well with each other. Moreover, we study the robustness ofmore » this quantum communication protocol in the presence of disorder in the couplings between the nearest-neighbor quantum dots. We find that the gap of the system plays an important role in robust quantum state transfer.« less

  13. Transferring arbitrary d-dimensional quantum states of a superconducting transmon qudit in circuit QED.

    PubMed

    Liu, Tong; Su, Qi-Ping; Yang, Jin-Hu; Zhang, Yu; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping

    2017-08-01

    A qudit (d-level quantum system) has a large Hilbert space and thus can be used to achieve many quantum information and communication tasks. Here, we propose a method to transfer arbitrary d-dimensional quantum states (known or unknown) between two superconducting transmon qudits coupled to a single cavity. The state transfer can be performed by employing resonant interactions only. In addition, quantum states can be deterministically transferred without measurement. Numerical simulations show that high-fidelity transfer of quantum states between two superconducting transmon qudits (d ≤ 5) is feasible with current circuit QED technology. This proposal is quite general and can be applied to accomplish the same task with natural or artificial atoms of a ladder-type level structure coupled to a cavity or resonator.

  14. Hot-electron transfer in quantum-dot heterojunction films.

    PubMed

    Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J

    2018-06-13

    Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.

  15. Imaging and Manipulating Energy Transfer Among Quantum Dots at Individual Dot Resolution.

    PubMed

    Nguyen, Duc; Nguyen, Huy A; Lyding, Joseph W; Gruebele, Martin

    2017-06-27

    Many processes of interest in quantum dots involve charge or energy transfer from one dot to another. Energy transfer in films of quantum dots as well as between linked quantum dots has been demonstrated by luminescence shift, and the ultrafast time-dependence of energy transfer processes has been resolved. Bandgap variation among dots (energy disorder) and dot separation are known to play an important role in how energy diffuses. Thus, it would be very useful if energy transfer could be visualized directly on a dot-by-dot basis among small clusters or within films of quantum dots. To that effect, we report single molecule optical absorption detected by scanning tunneling microscopy (SMA-STM) to image energy pooling from donor into acceptor dots on a dot-by-dot basis. We show that we can manipulate groups of quantum dots by pruning away the dominant acceptor dot, and switching the energy transfer path to a different acceptor dot. Our experimental data agrees well with a simple Monte Carlo lattice model of energy transfer, similar to models in the literature, in which excitation energy is transferred preferentially from dots with a larger bandgap to dots with a smaller bandgap.

  16. Resonant electronic excitation energy transfer by Dexter mechanism in the quantum dot system

    NASA Astrophysics Data System (ADS)

    Samosvat, D. M.; Chikalova-Luzina, O. P.; Vyatkin, V. M.; Zegrya, G. G.

    2016-11-01

    In present work the energy transfer between quantum dots by the exchange (Dexter) mechanism is analysed. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same compound A3B5 and embedded in the matrix of other material creating potential barriers for electron and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found using the Kane model that provides the most adequate description spectra of semiconductors A3B5. Numerical calculations show that the rate of the energy transfer by Dexter mechanism is comparable to the rate of the energy transfer by electrostatic mechanism at the distances approaching to the contact ones.

  17. Spin-the-bottle Sort and Annealing Sort: Oblivious Sorting via Round-robin Random Comparisons

    PubMed Central

    Goodrich, Michael T.

    2013-01-01

    We study sorting algorithms based on randomized round-robin comparisons. Specifically, we study Spin-the-bottle sort, where comparisons are unrestricted, and Annealing sort, where comparisons are restricted to a distance bounded by a temperature parameter. Both algorithms are simple, randomized, data-oblivious sorting algorithms, which are useful in privacy-preserving computations, but, as we show, Annealing sort is much more efficient. We show that there is an input permutation that causes Spin-the-bottle sort to require Ω(n2 log n) expected time in order to succeed, and that in O(n2 log n) time this algorithm succeeds with high probability for any input. We also show there is a specification of Annealing sort that runs in O(n log n) time and succeeds with very high probability. PMID:24550575

  18. Deformed quantum double realization of the toric code and beyond

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Pramod; Ibieta-Jimenez, Juan Pablo; Bernabe Ferreira, Miguel Jorge; Teotonio-Sobrinho, Paulo

    2016-09-01

    Quantum double models, such as the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups and parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase and destroying the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. These are illustrated with the groups Zn and S3. The quantum phases are determined by studying the excitations of these systems namely their fusion rules and the statistics. We then go further to construct a transfer matrix which contains the other Z2 phase namely the double semion phase. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.

  19. Boundary transfer matrices and boundary quantum KZ equations

    NASA Astrophysics Data System (ADS)

    Vlaar, Bart

    2015-07-01

    A simple relation between inhomogeneous transfer matrices and boundary quantum Knizhnik-Zamolodchikov (KZ) equations is exhibited for quantum integrable systems with reflecting boundary conditions, analogous to an observation by Gaudin for periodic systems. Thus, the boundary quantum KZ equations receive a new motivation. We also derive the commutativity of Sklyanin's boundary transfer matrices by merely imposing appropriate reflection equations, in particular without using the conditions of crossing symmetry and unitarity of the R-matrix.

  20. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.

    PubMed

    Hatef, Ali; Sadeghi, Seyed M; Fortin-Deschênes, Simon; Boulais, Etienne; Meunier, Michel

    2013-03-11

    It is well-known that optical properties of semiconductor quantum dots can be controlled using optical cavities or near fields of localized surface plasmon resonances (LSPRs) of metallic nanoparticles. In this paper we study the optics, energy transfer pathways, and exciton states of quantum dots when they are influenced by the near fields associated with plasmonic meta-resonances. Such resonances are formed via coherent coupling of excitons and LSPRs when the quantum dots are close to metallic nanorods and driven by a laser beam. Our results suggest an unprecedented sensitivity to the refractive index of the environment, causing significant spectral changes in the Förster resonance energy transfer from the quantum dots to the nanorods and in exciton transition energies. We demonstrate that when a quantum dot-metallic nanorod system is close to its plasmonic meta-resonance, we can adjust the refractive index to: (i) control the frequency range where the energy transfer from the quantum dot to the metallic nanorod is inhibited, (ii) manipulate the exciton transition energy shift of the quantum dot, and (iii) disengage the quantum dot from the metallic nanoparticle and laser field. Our results show that near meta-resonances the spectral forms of energy transfer and exciton energy shifts are strongly correlated to each other.

  1. Tera-OP Reliable Intelligently Adaptive Processing System (TRIPS) Implementation

    DTIC Science & Technology

    2008-09-01

    38 6.8 Instruction Scheduling ...39 6.8.1 Spatial Path Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.8.2...oblivious scheduling for rapid application prototyping and deployment, environmental adaptivity for resilience in hostile environments, and dynamic

  2. Quantum state transfer through time reversal of an optical channel

    NASA Astrophysics Data System (ADS)

    Hush, M. R.; Bentley, C. D. B.; Ahlefeldt, R. L.; James, M. R.; Sellars, M. J.; Ugrinovskii, V.

    2016-12-01

    Rare-earth ions have exceptionally long coherence times, making them an excellent candidate for quantum information processing. A key part of this processing is quantum state transfer. We show that perfect state transfer can be achieved by time reversing the intermediate quantum channel, and suggest using a gradient echo memory (GEM) to perform this time reversal. We propose an experiment with rare-earth ions to verify these predictions, where an emitter and receiver crystal are connected with an optical channel passed through a GEM. We investigate the effect experimental imperfections and collective dynamics have on the state transfer process. We demonstrate that super-radiant effects can enhance coupling into the optical channel and improve the transfer fidelity. We lastly discuss how our results apply to state transfer of entangled states.

  3. Molecular controlled of quantum nano systems

    NASA Astrophysics Data System (ADS)

    Paltiel, Yossi

    2014-03-01

    A century ago quantum mechanics created a conceptual revolution whose fruits are now seen in almost any aspect of our day-to-day life. Lasers, transistors and other solid state and optical devices represent the core technology of current computers, memory devices and communication systems. However, all these examples do not exploit fully the quantum revolution as they do not take advantage of the coherent wave-like properties of the quantum wave function. Controlled coherent system and devices at ambient temperatures are challenging to realize. We are developing a novel nano tool box with control coupling between the quantum states and the environment. This tool box that combines nano particles with organic molecules enables the integration of quantum properties with classical existing devices at ambient temperatures. The nano particles generate the quantum states while the organic molecules control the coupling and therefore the energy, charge, spin, or quasi particle transfer between the layers. Coherent effects at ambient temperatures can be measured in the strong coupling regime. In the talk I will present our nano tool box and show studies of charge transfer, spin transfer and energy transfer in the hybrid layers as well as collective transfer phenomena. These enable the realization of room temperature operating quantum electro optical devices. For example I will present in details, our recent development of a new type of chiral molecules based magnetless universal memory exploiting selective spin transfer.

  4. Deterministic transfer of an unknown qutrit state assisted by the low-Q microwave resonators

    NASA Astrophysics Data System (ADS)

    Liu, Tong; Zhang, Yang; Yu, Chang-Shui; Zhang, Wei-Ning

    2017-05-01

    Qutrits (i.e., three-level quantum systems) can be used to achieve many quantum information and communication tasks due to their large Hilbert spaces. In this work, we propose a scheme to transfer an unknown quantum state between two flux qutrits coupled to two superconducting coplanar waveguide resonators. The quantum state transfer can be deterministically achieved without measurements. Because resonator photons are virtually excited during the operation time, the decoherences caused by the resonator decay and the unwanted inter-resonator crosstalk are greatly suppressed. Moreover, our approach can be adapted to other solid-state qutrits coupled to circuit resonators. Numerical simulations show that the high-fidelity transfer of quantum state between the two qutrits is feasible with current circuit QED technology.

  5. Efficient transfer of an arbitrary qutrit state in circuit quantum electrodynamics.

    PubMed

    Liu, Tong; Xiong, Shao-Jie; Cao, Xiao-Zhi; Su, Qi-Ping; Yang, Chui-Ping

    2015-12-01

    Compared with a qubit, a qutrit (i.e., three-level quantum system) has a larger Hilbert space and thus can be used to encode more information in quantum information processing and communication. Here, we propose a method to transfer an arbitrary quantum state between two flux qutrits coupled to two resonators. This scheme is simple because it only requires two basic operations. The state-transfer operation can be performed fast because only resonant interactions are used. Numerical simulations show that the high-fidelity transfer of quantum states between the two qutrits is feasible with current circuit-QED technology. This scheme is quite general and can be applied to accomplish the same task for other solid-state qutrits coupled to resonators.

  6. Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems.

    PubMed

    Yan, Yun-An

    2016-01-14

    The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a new short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today's nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.

  7. Simulation of a broadband nano-biosensor based on an onion-like quantum dot-quantum well structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Absalan, H; SalmanOgli, A; Rostami, R

    The fluorescence resonance energy transfer is studied between modified quantum-dots and quantum-wells used as a donor and an acceptor. Because of the unique properties of quantum dots, including diverse surface modification flexibility, bio-compatibility, high quantum yields and wide absorption, their use as nano-biosensors and bio-markers used in diagnosis of cancer is suggested. The fluorescence resonance energy transfer is simulated in a quantum dot-quantum well system, where the energy can flow from donor to acceptor. If the energy transfer can be either turned on or off by a specific interaction, such as interaction with any dyes, a molecular binding event ormore » a cleavage reaction, a sensor can be designed (under assumption that the healthy cells have a known effect or unyielding effect on output parameters while cancerous cells, due to their pandemic optical properties, can impact the fluorescence resonance energy transfer parameters). The developed nano-biosensor can operate in a wide range of wavelengths (310 - 760 nm). (laser applications in biology and medicine)« less

  8. Quantum state transfer in double-quantum-well devices

    NASA Technical Reports Server (NTRS)

    Jakumeit, Jurgen; Tutt, Marcel; Pavlidis, Dimitris

    1994-01-01

    A Monte Carlo simulation of double-quantum-well (DQW) devices is presented in view of analyzing the quantum state transfer (QST) effect. Different structures, based on the AlGaAs/GaAs system, were simulated at 77 and 300 K and optimized in terms of electron transfer and device speed. The analysis revealed the dominant role of the impurity scattering for the QST. Different approaches were used for the optimization of QST devices and basic physical limitations were found in the electron transfer between the QWs. The maximum transfer of electrons from a high to a low mobility well was at best 20%. Negative differential resistance is hampered by the almost linear rather than threshold dependent relation of electron transfer on electric field. By optimizing the doping profile the operation frequency limit could be extended to 260 GHz.

  9. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles

    PubMed Central

    Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.

    2011-01-01

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685

  10. Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles.

    PubMed

    Tvrdy, Kevin; Frantsuzov, Pavel A; Kamat, Prashant V

    2011-01-04

    Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO(2), TiO(2), and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO(2)) were not the same as those which showed the highest photocurrent (TiO(2)). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.

  11. Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot.

    PubMed

    Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac

    2017-04-28

    Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

  12. Photosynthetic Energy Transfer at the Quantum/Classical Border.

    PubMed

    Keren, Nir; Paltiel, Yossi

    2018-06-01

    Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K.

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots.more » This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.« less

  14. Quantum State Transfer via Noisy Photonic and Phononic Waveguides

    NASA Astrophysics Data System (ADS)

    Vermersch, B.; Guimond, P.-O.; Pichler, H.; Zoller, P.

    2017-03-01

    We describe a quantum state transfer protocol, where a quantum state of photons stored in a first cavity can be faithfully transferred to a second distant cavity via an infinite 1D waveguide, while being immune to arbitrary noise (e.g., thermal noise) injected into the waveguide. We extend the model and protocol to a cavity QED setup, where atomic ensembles, or single atoms representing quantum memory, are coupled to a cavity mode. We present a detailed study of sensitivity to imperfections, and apply a quantum error correction protocol to account for random losses (or additions) of photons in the waveguide. Our numerical analysis is enabled by matrix product state techniques to simulate the complete quantum circuit, which we generalize to include thermal input fields. Our discussion applies both to photonic and phononic quantum networks.

  15. Controlled exciton transfer between quantum dots with acoustic phonons taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovinski, P. A., E-mail: golovinski@bk.ru

    2015-09-15

    A system of excitons in two quantum dots coupled by the dipole–dipole interaction is investigated. The excitation transfer process controlled by the optical Stark effect at nonresonant frequencies is considered and the effect of the interaction between excitons and acoustic phonons in a medium on this process is taken into account. The system evolution is described using quantum Heisenberg equations. A truncated set of equations is obtained and the transfer dynamics is numerically simulated. High-efficiency picosecond switching of the excitation transfer by a laser pulse with a rectangular envelope is demonstrated. The dependence of picosecond switching on the quantum-dot parametersmore » and optical-pulse length is presented.« less

  16. Efficient energy transfer in light-harvesting systems: Quantum-classical comparison, flux network, and robustness analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Jianlan; Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts 02139; Liu Fan

    2012-11-07

    Following the calculation of optimal energy transfer in thermal environment in our first paper [J. L. Wu, F. Liu, Y. Shen, J. S. Cao, and R. J. Silbey, New J. Phys. 12, 105012 (2010)], full quantum dynamics and leading-order 'classical' hopping kinetics are compared in the seven-site Fenna-Matthews-Olson (FMO) protein complex. The difference between these two dynamic descriptions is due to higher-order quantum corrections. Two thermal bath models, classical white noise (the Haken-Strobl-Reineker (HSR) model) and quantum Debye model, are considered. In the seven-site FMO model, we observe that higher-order corrections lead to negligible changes in the trapping time ormore » in energy transfer efficiency around the optimal and physiological conditions (2% in the HSR model and 0.1% in the quantum Debye model for the initial site at BChl 1). However, using the concept of integrated flux, we can identify significant differences in branching probabilities of the energy transfer network between hopping kinetics and quantum dynamics (26% in the HSR model and 32% in the quantum Debye model for the initial site at BChl 1). This observation indicates that the quantum coherence can significantly change the distribution of energy transfer pathways in the flux network with the efficiency nearly the same. The quantum-classical comparison of the average trapping time with the removal of the bottleneck site, BChl 4, demonstrates the robustness of the efficient energy transfer by the mechanism of multi-site quantum coherence. To reconcile with the latest eight-site FMO model which is also investigated in the third paper [J. Moix, J. L. Wu, P. F. Huo, D. F. Coker, and J. S. Cao, J. Phys. Chem. Lett. 2, 3045 (2011)], the quantum-classical comparison with the flux network analysis is summarized in Appendix C. The eight-site FMO model yields similar trapping time and network structure as the seven-site FMO model but leads to a more disperse distribution of energy transfer pathways.« less

  17. Deterministic quantum state transfer and remote entanglement using microwave photons.

    PubMed

    Kurpiers, P; Magnard, P; Walter, T; Royer, B; Pechal, M; Heinsoo, J; Salathé, Y; Akin, A; Storz, S; Besse, J-C; Gasparinetti, S; Blais, A; Wallraff, A

    2018-06-01

    Sharing information coherently between nodes of a quantum network is fundamental to distributed quantum information processing. In this scheme, the computation is divided into subroutines and performed on several smaller quantum registers that are connected by classical and quantum channels 1 . A direct quantum channel, which connects nodes deterministically rather than probabilistically, achieves larger entanglement rates between nodes and is advantageous for distributed fault-tolerant quantum computation 2 . Here we implement deterministic state-transfer and entanglement protocols between two superconducting qubits fabricated on separate chips. Superconducting circuits 3 constitute a universal quantum node 4 that is capable of sending, receiving, storing and processing quantum information 5-8 . Our implementation is based on an all-microwave cavity-assisted Raman process 9 , which entangles or transfers the qubit state of a transmon-type artificial atom 10 with a time-symmetric itinerant single photon. We transfer qubit states by absorbing these itinerant photons at the receiving node, with a probability of 98.1 ± 0.1 per cent, achieving a transfer-process fidelity of 80.02 ± 0.07 per cent for a protocol duration of only 180 nanoseconds. We also prepare remote entanglement on demand with a fidelity as high as 78.9 ± 0.1 per cent at a rate of 50 kilohertz. Our results are in excellent agreement with numerical simulations based on a master-equation description of the system. This deterministic protocol has the potential to be used for quantum computing distributed across different nodes of a cryogenic network.

  18. Minimal Model of Quantum Kinetic Clusters for the Energy-Transfer Network of a Light-Harvesting Protein Complex.

    PubMed

    Wu, Jianlan; Tang, Zhoufei; Gong, Zhihao; Cao, Jianshu; Mukamel, Shaul

    2015-04-02

    The energy absorbed in a light-harvesting protein complex is often transferred collectively through aggregated chromophore clusters. For population evolution of chromophores, the time-integrated effective rate matrix allows us to construct quantum kinetic clusters quantitatively and determine the reduced cluster-cluster transfer rates systematically, thus defining a minimal model of energy-transfer kinetics. For Fenna-Matthews-Olson (FMO) and light-havrvesting complex II (LCHII) monomers, quantum Markovian kinetics of clusters can accurately reproduce the overall energy-transfer process in the long-time scale. The dominant energy-transfer pathways are identified in the picture of aggregated clusters. The chromophores distributed extensively in various clusters can assist a fast and long-range energy transfer.

  19. Exciton interference revealed by energy dependent exciton transfer rate for ring-structured molecular systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yun-An, E-mail: yunan@gznc.edu.cn

    2016-01-14

    The quantum interference is an intrinsic phenomenon in quantum physics for photon and massive quantum particles. In principle, the quantum interference may also occur with quasi-particles, such as the exciton. In this study, we show how the exciton quantum interference can be significant in aggregates through theoretical simulations with hierarchical equations of motion. The systems under investigation are generalized donor-bridge-acceptor model aggregates with the donor consisting of six homogeneous sites assuming the nearest neighbor coupling. For the models with single-path bridge, the exciton transfer time only shows a weak excitation energy dependence. But models with double-path bridge have a newmore » short transfer time scale and the excitation energy dependence of the exciton transfer time assumes clear peak structure which is detectable with today’s nonlinear spectroscopy. This abnormality is attributed to the exciton quantum interference and the condition for a clear observation in experiment is also explored.« less

  20. A photonic quantum information interface.

    PubMed

    Tanzilli, S; Tittel, W; Halder, M; Alibart, O; Baldi, P; Gisin, N; Zbinden, H

    2005-09-01

    Quantum communication requires the transfer of quantum states, or quantum bits of information (qubits), from one place to another. From a fundamental perspective, this allows the distribution of entanglement and the demonstration of quantum non-locality over significant distances. Within the context of applications, quantum cryptography offers a provably secure way to establish a confidential key between distant partners. Photons represent the natural flying qubit carriers for quantum communication, and the presence of telecommunications optical fibres makes the wavelengths of 1,310 nm and 1,550 nm particularly suitable for distribution over long distances. However, qubits encoded into alkaline atoms that absorb and emit at wavelengths around 800 nm have been considered for the storage and processing of quantum information. Hence, future quantum information networks made of telecommunications channels and alkaline memories will require interfaces that enable qubit transfers between these useful wavelengths, while preserving quantum coherence and entanglement. Here we report a demonstration of qubit transfer between photons of wavelength 1,310 nm and 710 nm. The mechanism is a nonlinear up-conversion process, with a success probability of greater than 5 per cent. In the event of a successful qubit transfer, we observe strong two-photon interference between the 710 nm photon and a third photon at 1,550 nm, initially entangled with the 1,310 nm photon, although they never directly interacted. The corresponding fidelity is higher than 98 per cent.

  1. Photon-phonon-photon transfer in optomechanics

    PubMed Central

    Rakhubovsky, Andrey A.; Filip, Radim

    2017-01-01

    We consider transfer of a highly nonclassical quantum state through an optomechanical system. That is we investigate a protocol consisting of sequential upload, storage and reading out of the quantum state from a mechanical mode of an optomechanical system. We show that provided the input state is in a test-bed single-photon Fock state, the Wigner function of the recovered state can have negative values at the origin, which is a manifest of nonclassicality of the quantum state of the macroscopic mechanical mode and the overall transfer protocol itself. Moreover, we prove that the recovered state is quantum non-Gaussian for wide range of setup parameters. We verify that current electromechanical and optomechanical experiments can test this complete transfer of single photon. PMID:28436461

  2. Energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding.

    PubMed

    Shu, G W; Lin, C C; Lin, H T; Lin, T N; Shen, J L; Chiu, C H; Li, Z Y; Kuo, H C; Lin, C C; Wang, S C; Lin, C A J; Chang, W H

    2011-03-14

    We present the first observation of resonance energy transfer from InGaN quantum wells to Au nanoclusters via optical waveguiding. Steady-state and time-resolved photoluminescence measurements provide conclusive evidence of resonance energy transfer and obtain an optimum transfer efficiency of ~72%. A set of rate equations is successfully used to model the kinetics of resonance energy transfer.

  3. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-01

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  4. Experimental protocol for high-fidelity heralded photon-to-atom quantum state transfer.

    PubMed

    Kurz, Christoph; Schug, Michael; Eich, Pascal; Huwer, Jan; Müller, Philipp; Eschner, Jürgen

    2014-11-21

    A quantum network combines the benefits of quantum systems regarding secure information transmission and calculational speed-up by employing quantum coherence and entanglement to store, transmit and process information. A promising platform for implementing such a network are atom-based quantum memories and processors, interconnected by photonic quantum channels. A crucial building block in this scenario is the conversion of quantum states between single photons and single atoms through controlled emission and absorption. Here we present an experimental protocol for photon-to-atom quantum state conversion, whereby the polarization state of an absorbed photon is mapped onto the spin state of a single absorbing atom with >95% fidelity, while successful conversion is heralded by a single emitted photon. Heralded high-fidelity conversion without affecting the converted state is a main experimental challenge, in order to make the transferred information reliably available for further operations. We record >80 s(-1) successful state transfer events out of 18,000 s(-1) repetitions.

  5. Theoretical study of dynamic electron-spin-polarization via the doublet-quartet quantum-mixed state and time-resolved ESR spectra of the quartet high-spin state.

    PubMed

    Teki, Yoshio; Matsumoto, Takafumi

    2011-04-07

    The mechanism of the unique dynamic electron polarization of the quartet (S = 3/2) high-spin state via a doublet-quartet quantum-mixed state and detail theoretical calculations of the population transfer are reported. By the photo-induced electron transfer, the quantum-mixed charge-separate state is generated in acceptor-donor-radical triad (A-D-R). This mechanism explains well the unique dynamic electron polarization of the quartet state of A-D-R. The generation of the selectively populated quantum-mixed state and its transfer to the strongly coupled pure quartet and doublet states have been treated both by a perturbation approach and by exact numerical calculations. The analytical solutions show that generation of the quantum-mixed states with the selective populations after de-coherence and/or accompanying the (complete) dephasing during the charge-recombination are essential for the unique dynamic electron polarization. Thus, the elimination of the quantum coherence (loss of the quantum information) is the key process for the population transfer from the quantum-mixed state to the quartet state. The generation of high-field polarization on the strongly coupled quartet state by the charge-recombination process can be explained by a polarization transfer from the quantum-mixed charge-separate state. Typical time-resolved ESR patterns of the quantum-mixed state and of the strongly coupled quartet state are simulated based on the generation mechanism of the dynamic electron polarization. The dependence of the spectral pattern of the quartet high-spin state has been clarified for the fine-structure tensor and the exchange interaction of the quantum-mixed state. The spectral pattern of the quartet state is not sensitive towards the fine-structure tensor of the quantum-mixed state, because this tensor contributes only as a perturbation in the population transfer to the spin-sublevels of the quartet state. Based on the stochastic Liouville equation, it is also discussed why the selective population in the quantum-mixed state is generated for the "finite field" spin-sublevels. The numerical calculations of the elimination of the quantum coherence (de-coherence and/or dephasing) are demonstrated. A new possibility of the enhanced intersystem crossing pathway in solution is also proposed.

  6. Constructing Theory for Leadership in Intercultural Contexts

    ERIC Educational Resources Information Center

    Collard, John

    2007-01-01

    Purpose: Established educational leadership discourse has been dominated by Anglo-American perspectives oblivious to the cultural diversity that characterizes the contemporary world. It has frequently privileged mono-cultural, mainstream values which have meant indigenous and ethnic groups have suffered alienation, exclusion and disadvantage.…

  7. Direct counterfactual transmission of a quantum state

    NASA Astrophysics Data System (ADS)

    Li, Zheng-Hong; Al-Amri, M.; Zubairy, M. Suhail

    2015-11-01

    We show that an unknown quantum state can be transferred with neither quantum nor classical particle traveling in the transmission channel. Our protocol does not require prearranged entangled photon pairs and Bell measurements. By utilizing quantum Zeno effect and counterfactuality, we can entangle and disentangle a photon and an atom by nonlocal interaction. It is shown that quantum information is completely transferred from an atom to photon due to controllable disentanglement processes. There is no need to cross-check the result via classical channels.

  8. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    PubMed Central

    Oka, Hisaki

    2016-01-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature. PMID:27173144

  9. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation

    NASA Astrophysics Data System (ADS)

    Oka, Hisaki

    2016-05-01

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  10. Quantifying electron transfer reactions in biological systems: what interactions play the major role?

    NASA Astrophysics Data System (ADS)

    Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.

    2015-12-01

    Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.

  11. Role of an elliptical structure in photosynthetic energy transfer: Collaboration between quantum entanglement and thermal fluctuation.

    PubMed

    Oka, Hisaki

    2016-05-13

    Recent experiments have revealed that the light-harvesting complex 1 (LH1) in purple photosynthetic bacteria has an elliptical structure. Generally, symmetry lowering in a structure leads to a decrease in quantum effects (quantum coherence and entanglement), which have recently been considered to play a role in photosynthetic energy transfer, and hence, elliptical structure seems to work against efficient photosynthetic energy transfer. Here we analyse the effect of an elliptical structure on energy transfer in a purple photosynthetic bacterium and reveal that the elliptical distortion rather enhances energy transfer from peripheral LH2 to LH1 at room temperature. Numerical results show that quantum entanglement between LH1 and LH2 is formed over a wider range of high energy levels than would have been the case with circular LH1. Light energy absorbed by LH2 is thermally pumped via thermal fluctuation and is effectively transferred to LH1 through the entangled states at room temperature rather than at low temperature. This result indicates the possibility that photosynthetic systems adopt an elliptical structure to effectively utilise both quantum entanglement and thermal fluctuation at physiological temperature.

  12. Feasibility study of electron transfer quantum well infrared photodetectors for spectral tuning in the long-wave infrared band

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jolley, Greg; Dehdashti Akhavan, Nima; Umana-Membreno, Gilberto

    An electron transfer quantum well infrared photodetector (QWIP) consisting of repeating units of two coupled quantum wells (QWs) is capable of exhibiting a two color voltage dependent spectral response. However, significant electron transfer between the coupled QWs is required for spectral tuning, which may require the application of relatively high electric fields. Also, the band structure of coupled quantum wells is more complicated in comparison to a regular quantum well and, therefore, it is not always obvious if an electron transfer QWIP can be designed such that it meets specific performance characteristics. This paper presents a feasibility study of themore » electron transfer QWIP and its suitability for spectral tuning. Self consistent calculations have been performed of the bandstructure and the electric field that results from electron population within the quantum wells, from which the optical characteristics have been obtained. The band structure, spectral response, and the resonant final state energy locations have been compared with standard QWIPs. It is shown that spectral tuning in the long-wave infrared band can be achieved over a wide wavelength range of several microns while maintaining a relatively narrow spectral response FWHM. However, the total absorption strength is more limited in comparison to a standard QWIP, since the higher QW doping densities require much higher electric fields for electron transfer.« less

  13. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated.

    PubMed

    Ivanov, Sergei D; Grant, Ian M; Marx, Dominik

    2015-09-28

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently and thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.

  14. Plastic scintillator enhancement through Quantum Dot

    NASA Astrophysics Data System (ADS)

    Tam, Alan; Boyraz, Ozdal; Nilsson, Mikael

    2017-08-01

    Plastic scintillators such as Polyvinyl Toluene (PVT) are used for radiation detection but due to their poor performance they are not widely implemented. In order to circumnavigate this, dopants are added to enhance scintillation by energy transfer otherwise lost through non-radiative processes. In this work, we exploit the effects of energy transfer through the use of short wavelength emission Cadmium Sulfide Quantum Dots (QD) as the transfer stimulant. Scintillation enhancement was observed as Cadmium Sulfide QD with scintillating dyes are embedded in PVT polymer matrix for beta and gamma radiation. Energy transfer was observed between Quantum Dots, scintillating dye, and the host polymer. Different concentrations of QD and 2,5-diphenyloxazole (PPO) dye are investigated to characterize the energy transfer.

  15. State transfer in highly connected networks and a quantum Babinet principle

    NASA Astrophysics Data System (ADS)

    Tsomokos, D. I.; Plenio, M. B.; de Vega, I.; Huelga, S. F.

    2008-12-01

    The transfer of a quantum state between distant nodes in two-dimensional networks is considered. The fidelity of state transfer is calculated as a function of the number of interactions in networks that are described by regular graphs. It is shown that perfect state transfer is achieved in a network of size N , whose structure is that of an (N/2) -cross polytope graph, if N is a multiple of 4 . The result is reminiscent of the Babinet principle of classical optics. A quantum Babinet principle is derived, which allows for the identification of complementary graphs leading to the same fidelity of state transfer, in analogy with complementary screens providing identical diffraction patterns.

  16. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.

    PubMed

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-25

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.

  17. The Age of At Variance.

    ERIC Educational Resources Information Center

    DeMott, Benjamin

    1990-01-01

    A faculty member at Amherst discusses the challenges that have shaken his "self-edifice." He says there was strain "in the scrambling, adjusting, re-doing, remodeling of the mind, and in the constant collisions with past fatuity and obliviousness." Mina Shaughnessy's "Errors and Expectations" is recommended. (MLW)

  18. Robust state transfer in the quantum spin channel via weak measurement and quantum measurement reversal

    NASA Astrophysics Data System (ADS)

    He, Zhi; Yao, Chunmei; Zou, Jian

    2013-10-01

    Using the weak measurement (WM) and quantum measurement reversal (QMR) approach, robust state transfer and entanglement distribution can be realized in the spin-(1)/(2) Heisenberg chain. We find that the ultrahigh fidelity and long distance of quantum state transfer with certain success probability can be obtained using proper WM and QMR, i.e., the average fidelity of a general pure state from 80% to almost 100%, which is almost size independent. We also find that the distance and quality of entanglement distribution for the Bell state and the general Werner mixed state can be obviously improved by the WM and QMR approach.

  19. Quantum Effects in Biology

    NASA Astrophysics Data System (ADS)

    Mohseni, Masoud; Omar, Yasser; Engel, Gregory S.; Plenio, Martin B.

    2014-08-01

    List of contributors; Preface; Part I. Introduction: 1. Quantum biology: introduction Graham R. Fleming and Gregory D. Scholes; 2. Open quantum system approaches to biological systems Alireza Shabani, Masoud Mohseni, Seogjoo Jang, Akihito Ishizaki, Martin Plenio, Patrick Rebentrost, Alàn Aspuru-Guzik, Jianshu Cao, Seth Lloyd and Robert Silbey; 3. Generalized Förster resonance energy transfer Seogjoo Jang, Hoda Hossein-Nejad and Gregory D. Scholes; 4. Multidimensional electronic spectroscopy Tomáš Mančal; Part II. Quantum Effects in Bacterial Photosynthetic Energy Transfer: 5. Structure, function, and quantum dynamics of pigment protein complexes Ioan Kosztin and Klaus Schulten; 6. Direct observation of quantum coherence Gregory S. Engel; 7. Environment-assisted quantum transport Masoud Mohseni, Alàn Aspuru-Guzik, Patrick Rebentrost, Alireza Shabani, Seth Lloyd, Susana F. Huelga and Martin B. Plenio; Part III. Quantum Effects in Higher Organisms and Applications: 8. Excitation energy transfer in higher plants Elisabet Romero, Vladimir I. Novoderezhkin and Rienk van Grondelle; 9. Electron transfer in proteins Spiros S. Skourtis; 10. A chemical compass for bird navigation Ilia A. Solov'yov, Thorsten Ritz, Klaus Schulten and Peter J. Hore; 11. Quantum biology of retinal Klaus Schulten and Shigehiko Hayashi; 12. Quantum vibrational effects on sense of smell A. M. Stoneham, L. Turin, J. C. Brookes and A. P. Horsfield; 13. A perspective on possible manifestations of entanglement in biological systems Hans J. Briegel and Sandu Popescu; 14. Design and applications of bio-inspired quantum materials Mohan Sarovar, Dörthe M. Eisele and K. Birgitta Whaley; 15. Coherent excitons in carbon nanotubes Leonas Valkunas and Darius Abramavicius; Glossary; References; Index.

  20. Transfer and retrieval of optical coherence to strain-compensated quantum dots using a heterodyne photon-echo technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Kazumasa; Ishi-Hayase, Junko; Akahane, Kouichi

    2013-12-04

    We performed the proof-of-principle demonstration of photon-echo quantum memory using strain-compensated InAs quantum dot ensemble in the telecommunication wavelength range. We succeeded in transfer and retrieval of relative phase of a time-bin pulse with a high fidelity. Our demonstration suggests the possibility of realizing ultrabroadband, high time-bandwidth products, multi-mode quantum memory which is operable at telecommunication wavelength.

  1. A Biomimetic-Computational Approach to Optimizing the Quantum Efficiency of Photovoltaics

    NASA Astrophysics Data System (ADS)

    Perez, Lisa M.; Holzenburg, Andreas

    The most advanced low-cost organic photovoltaic cells have a quantum efficiency of 10%. This is in stark contrast to plant/bacterial light-harvesting systems which offer quantum efficiencies close to unity. Of particular interest is the highly effective quantum coherence-enabled energy transfer (Fig. 1). Noting that quantum coherence is promoted by charged residues and local dielectrics, classical atomistic simulations and time-dependent density functional theory (DFT) are used to identify charge/dielectric patterns and electronic coupling at exactly defined energy transfer interfaces. The calculations make use of structural information obtained on photosynthetic protein-pigment complexes while still in the native membrane making it possible to establish a link between supramolecular organization and quantum coherence in terms of what length scales enable fast energy transport and prevent quenching. Calculating energy transfer efficiencies between components based on different proximities will permit the search for patterns that enable defining material properties suitable for advanced photovoltaics.

  2. Temporal shaping of quantum states released from a superconducting cavity memory

    NASA Astrophysics Data System (ADS)

    Burkhart, L.; Axline, C.; Pfaff, W.; Zou, C.; Zhang, M.; Narla, A.; Frunzio, L.; Devoret, M. H.; Jiang, L.; Schoelkopf, R. J.

    State transfer and entanglement distribution are essential primitives in network-based quantum information processing. We have previously demonstrated an interface between a quantum memory and propagating light fields in the microwave domain: by parametric conversion in a single Josephson junction, we have coherently released quantum states from a superconducting cavity resonator into a transmission line. Protocols for state transfer mediated by propagating fields typically rely on temporal mode-matching of couplings at both sender and receiver. However, parametric driving on a single junction results in dynamic frequency shifts, raising the question of whether the pumps alone provide enough control for achieving this mode-matching. We show, in theory and experiment, that phase and amplitude shaping of the parametric drives allows arbitrary control over the propagating field, limited only by the drives bandwidth and amplitude constraints. This temporal mode shaping technique allows for release and capture of quantum states, providing a credible route towards state transfer and entanglement generation in quantum networks in which quantum states are stored and processed in cavities.

  3. Compact and highly stable quantum dots through optimized aqueous phase transfer

    NASA Astrophysics Data System (ADS)

    Tamang, Sudarsan; Beaune, Grégory; Poillot, Cathy; De Waard, Michel; Texier-Nogues, Isabelle; Reiss, Peter

    2011-03-01

    A large number of different approaches for the aqueous phase transfer of quantum dots have been proposed. Surface ligand exchange with small hydrophilic thiols, such as L-cysteine, yields the lowest particle hydrodynamic diameter. However, cysteine is prone to dimer formation, which limits colloidal stability. We demonstrate that precise pH control during aqueous phase transfer dramatically increases the colloidal stability of InP/ZnS quantum dots. Various bifunctional thiols have been applied. The formation of disulfides, strongly diminishing the fluorescence QY has been prevented through addition of appropriate reducing agents. Bright InP/ZnS quantum dots with a hydrodynamic diameter <10 nm and long-term stability have been obtained. Finally we present in vitro studies of the quantum dots functionalized with the cell-penetrating peptide maurocalcine.

  4. Quantum approach of mesoscopic magnet dynamics with spin transfer torque

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Sham, L. J.

    2013-05-01

    We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.

  5. Photonic quantum state transfer between a cold atomic gas and a crystal.

    PubMed

    Maring, Nicolas; Farrera, Pau; Kutluer, Kutlu; Mazzera, Margherita; Heinze, Georg; de Riedmatten, Hugues

    2017-11-22

    Interfacing fundamentally different quantum systems is key to building future hybrid quantum networks. Such heterogeneous networks offer capabilities superior to those of their homogeneous counterparts, as they merge the individual advantages of disparate quantum nodes in a single network architecture. However, few investigations of optical hybrid interconnections have been carried out, owing to fundamental and technological challenges such as wavelength and bandwidth matching of the interfacing photons. Here we report optical quantum interconnection of two disparate matter quantum systems with photon storage capabilities. We show that a quantum state can be transferred faithfully between a cold atomic ensemble and a rare-earth-doped crystal by means of a single photon at 1,552  nanometre telecommunication wavelength, using cascaded quantum frequency conversion. We demonstrate that quantum correlations between a photon and a single collective spin excitation in the cold atomic ensemble can be transferred to the solid-state system. We also show that single-photon time-bin qubits generated in the cold atomic ensemble can be converted, stored and retrieved from the crystal with a conditional qubit fidelity of more than 85 per cent. Our results open up the prospect of optically connecting quantum nodes with different capabilities and represent an important step towards the realization of large-scale hybrid quantum networks.

  6. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    ERIC Educational Resources Information Center

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  7. Automatic spin-chain learning to explore the quantum speed limit

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Ming; Cui, Zi-Wei; Wang, Xin; Yung, Man-Hong

    2018-05-01

    One of the ambitious goals of artificial intelligence is to build a machine that outperforms human intelligence, even if limited knowledge and data are provided. Reinforcement learning (RL) provides one such possibility to reach this goal. In this work, we consider a specific task from quantum physics, i.e., quantum state transfer in a one-dimensional spin chain. The mission for the machine is to find transfer schemes with the fastest speeds while maintaining high transfer fidelities. The first scenario we consider is when the Hamiltonian is time independent. We update the coupling strength by minimizing a loss function dependent on both the fidelity and the speed. Compared with a scheme proven to be at the quantum speed limit for the perfect state transfer, the scheme provided by RL is faster while maintaining the infidelity below 5 ×10-4 . In the second scenario where a time-dependent external field is introduced, we convert the state transfer process into a Markov decision process that can be understood by the machine. We solve it with the deep Q-learning algorithm. After training, the machine successfully finds transfer schemes with high fidelities and speeds, which are faster than previously known ones. These results show that reinforcement learning can be a powerful tool for quantum control problems.

  8. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED

    PubMed Central

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-01

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326

  9. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles.

    PubMed

    Yan, Zhihui; Wu, Liang; Jia, Xiaojun; Liu, Yanhong; Deng, Ruijie; Li, Shujing; Wang, Hai; Xie, Changde; Peng, Kunchi

    2017-09-28

    It is crucial for the physical realization of quantum information networks to first establish entanglement among multiple space-separated quantum memories and then, at a user-controlled moment, to transfer the stored entanglement to quantum channels for distribution and conveyance of information. Here we present an experimental demonstration on generation, storage, and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. The off-line prepared multipartite entanglement of optical modes is mapped into three distant atomic ensembles to establish entanglement of atomic spin waves via electromagnetically induced transparency light-matter interaction. Then the stored atomic entanglement is transferred into a tripartite quadrature entangled state of light, which is space-separated and can be dynamically allocated to three quantum channels for conveying quantum information. The existence of entanglement among three released optical modes verifies that the system has the capacity to preserve multipartite entanglement. The presented protocol can be directly extended to larger quantum networks with more nodes.Continuous-variable encoding is a promising approach for quantum information and communication networks. Here, the authors show how to map entanglement from three spatial optical modes to three separated atomic samples via electromagnetically induced transparency, releasing it later on demand.

  10. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2).

    PubMed

    Harel, Elad; Engel, Gregory S

    2012-01-17

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2.

  11. Quantum coherence spectroscopy reveals complex dynamics in bacterial light-harvesting complex 2 (LH2)

    PubMed Central

    Harel, Elad; Engel, Gregory S.

    2012-01-01

    Light-harvesting antenna complexes transfer energy from sunlight to photosynthetic reaction centers where charge separation drives cellular metabolism. The process through which pigments transfer excitation energy involves a complex choreography of coherent and incoherent processes mediated by the surrounding protein and solvent environment. The recent discovery of coherent dynamics in photosynthetic light-harvesting antennae has motivated many theoretical models exploring effects of interference in energy transfer phenomena. In this work, we provide experimental evidence of long-lived quantum coherence between the spectrally separated B800 and B850 rings of the light-harvesting complex 2 (LH2) of purple bacteria. Spectrally resolved maps of the detuning, dephasing, and the amplitude of electronic coupling between excitons reveal that different relaxation pathways act in concert for optimal transfer efficiency. Furthermore, maps of the phase of the signal suggest that quantum mechanical interference between different energy transfer pathways may be important even at ambient temperature. Such interference at a product state has already been shown to enhance the quantum efficiency of transfer in theoretical models of closed loop systems such as LH2. PMID:22215585

  12. Universal scheme for finite-probability perfect transfer of arbitrary multispin states through spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Zhong-Xiao, E-mail: zxman@mail.qfnu.edu.cn; An, Nguyen Ba, E-mail: nban@iop.vast.ac.vn; Xia, Yun-Jie, E-mail: yjxia@mail.qfnu.edu.cn

    In combination with the theories of open system and quantum recovering measurement, we propose a quantum state transfer scheme using spin chains by performing two sequential operations: a projective measurement on the spins of ‘environment’ followed by suitably designed quantum recovering measurements on the spins of interest. The scheme allows perfect transfer of arbitrary multispin states through multiple parallel spin chains with finite probability. Our scheme is universal in the sense that it is state-independent and applicable to any model possessing spin–spin interactions. We also present possible methods to implement the required measurements taking into account the current experimental technologies.more » As applications, we consider two typical models for which the probabilities of perfect state transfer are found to be reasonably high at optimally chosen moments during the time evolution. - Highlights: • Scheme that can achieve perfect quantum state transfer is devised. • The scheme is state-independent and applicable to any spin-interaction models. • The scheme allows perfect transfer of arbitrary multispin states. • Applications to two typical models are considered in detail.« less

  13. Determining the exact number of dye molecules attached to colloidal CdSe/ZnS quantum dots in Förster resonant energy transfer assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaiser, Uwe; Jimenez de Aberasturi, Dorleta; Vázquez-González, Margarita

    2015-01-14

    Semiconductor quantum dots functionalized with organic dye molecules are important tools for biological sensor applications. Energy transfer between the quantum dot and the attached dyes can be utilized for sensing. Though important, the determination of the real number of dye molecules attached per quantum dot is rather difficult. In this work, a method will be presented to determine the number of ATTO-590 dye molecules attached to CdSe/ZnS quantum dots based on time resolved spectral analysis. The energy transfer from the excited quantum dot to the attached ATTO-590 dye leads to a reduced lifetime of the quantum dot's excitons. The highermore » the concentration of dye molecules, the shorter the excitonic lifetime becomes. However, the number of dye molecules attached per quantum dot will vary. Therefore, for correctly explaining the decay of the luminescence upon photoexcitation of the quantum dot, it is necessary to take into account the distribution of the number of dyes attached per quantum dot. A Poisson distribution of the ATTO-590 dye molecules not only leads to excellent agreement between experimental and theoretical decay curves but also additionally yields the average number of dye molecules attached per quantum dot. In this way, the number of dyes per quantum dot can be conveniently determined.« less

  14. Energy transfer mechanisms in layered 2D perovskites.

    PubMed

    Williams, Olivia F; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M

    2018-04-07

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA) 2 (MA) n-1 [Pb n I 3n+1 ] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  15. Energy transfer mechanisms in layered 2D perovskites

    NASA Astrophysics Data System (ADS)

    Williams, Olivia F.; Guo, Zhenkun; Hu, Jun; Yan, Liang; You, Wei; Moran, Andrew M.

    2018-04-01

    Two-dimensional (2D) perovskite quantum wells are generating broad scientific interest because of their potential for use in optoelectronic devices. Recently, it has been shown that layers of 2D perovskites can be grown in which the average thicknesses of the quantum wells increase from the back to the front of the film. This geometry carries implications for light harvesting applications because the bandgap of a quantum well decreases as its thickness increases. The general structural formula for the 2D perovskite systems under investigation in this work is (PEA)2(MA)n-1[PbnI3n+1] (PEA = phenethyl ammonium, MA = methyl ammonium). Here, we examine two layered 2D perovskites with different distributions of quantum well thicknesses. Spectroscopic measurements and model calculations suggest that both systems funnel electronic excitations from the back to the front of the film through energy transfer mechanisms on the time scales of 100's of ps (i.e., energy transfer from thinner to thicker quantum wells). In addition, the model calculations demonstrate that the transient absorption spectra are composed of a progression of single exciton and biexciton resonances associated with the individual quantum wells. We find that exciton dissociation and/or charge transport dynamics make only minor contributions to the transient absorption spectra within the first 1 ns after photo-excitation. An analysis of the energy transfer kinetics indicates that the transitions occur primarily between quantum wells with values of n that differ by 1 because of the spectral overlap factor that governs the energy transfer rate. Two-dimensional transient absorption spectra reveal a pattern of resonances consistent with the dominance of sequential energy transfer dynamics.

  16. Resonant electronic excitation energy transfer by exchange mechanism in the quantum dot system

    NASA Astrophysics Data System (ADS)

    Chikalova-Luzina, O. P.; Samosvat, D. M.; Vyatkin, V. M.; Zegrya, G. G.

    2017-11-01

    A microscopic theory of nonradiative resonance energy transfer between spherical A3B5 semiconductor quantum dots by the exchange mechanism is suggested. The interdot Coulomb interaction is taken into consideration. It is assumed that the quantum dot-donor and the quantum dot-acceptor are made from the same A3B5 compound and are embedded in the matrix of another material that produces potential barriers for electrons and holes. The dependences of the energy transfer rate on the quantum-dot system parameters are found in the frame of the Kane model that provides the most adequate description of the real spectra of A3B5 semiconductors. The analytical treatment is carried out with using the density matrix method, which enabled us to perform an energy transfer analysis both in the weak-interaction approximation and in the strong-interaction approximation. The numerical calculations showed the saturation of the energy transfer rate at the distances between the donor and the acceptor approaching the contact one. The contributions of the exchange and direct Coulomb intractions can be of the same order at the small distances and can have the same value in the saturation range.

  17. Coherent spin transfer between molecularly bridged quantum dots.

    PubMed

    Ouyang, Min; Awschalom, David D

    2003-08-22

    Femtosecond time-resolved Faraday rotation spectroscopy reveals the instantaneous transfer of spin coherence through conjugated molecular bridges spanning quantum dots of different size over a broad range of temperature. The room-temperature spin-transfer efficiency is approximately 20%, showing that conjugated molecules can be used not only as interconnections for the hierarchical assembly of functional networks but also as efficient spin channels. The results suggest that this class of structures may be useful as two-spin quantum devices operating at ambient temperatures and may offer promising opportunities for future versatile molecule-based spintronic technologies.

  18. Transfer of Learning in Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Singh, Chandralekha

    2005-09-01

    We investigate the difficulties that undergraduate students in quantum mechanics courses have in transferring learning from previous courses or within the same course from one context to another by administering written tests and conducting individual interviews. Quantum mechanics is abstract and its paradigm is very different from the classical one. A good grasp of the principles of quantum mechanics requires creating and organizing a knowledge structure consistent with the quantum postulates. Previously learned concepts such as the principle of superposition and probability can be useful in quantum mechanics if students are given opportunity to build associations between new and prior knowledge. We also discuss the need for better alignment between quantum mechanics and modern physics courses taken previously because semi-classical models can impede internalization of the quantum paradigm in more advanced courses.

  19. Protecting the Oblivious

    ERIC Educational Resources Information Center

    Ramaswami, Rama

    2008-01-01

    When it comes to dealing with cyber attacks, there's no silver bullet. Ironically, however, college educators are already accustomed to wielding what may be the best weapon of all--education. Assaulted by the myriad species of spam, worms, Trojan horses, spyware, viruses, and other diseases that so easily infect and sometimes devastate campus…

  20. Young Children Proactively Remedy Unnoticed Accidents

    ERIC Educational Resources Information Center

    Warneken, Felix

    2013-01-01

    Human adults will sometimes help without being asked to help, including in situations in which the helpee is oblivious to the problem and thus provides no communicative or behavioral cues that intervention is necessary. Some theoretical models argue that these acts of "proactive helping" are an important and possibly human-specific form of…

  1. Digital Video: Get with It!

    ERIC Educational Resources Information Center

    Van Horn, Royal

    2001-01-01

    Several years after the first audiovisual Macintosh computer appeared, most educators are still oblivious of this technology. Almost every other economic sector (including the porn industry) makes abundant use of digital and streaming video. Desktop movie production is so easy that primary grade students can do it. Tips are provided. (MLH)

  2. Storage and retrieval of quantum information with a hybrid optomechanics-spin system

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Bo; Zhang, Jian-Qi; Yang, Wan-Li; Feng, Mang

    2016-08-01

    We explore an efficient scheme for transferring the quantum state between an optomechanical cavity and an electron spin of diamond nitrogen-vacancy center. Assisted by a mechanical resonator, quantum information can be controllably stored (retrieved) into (from) the electron spin by adjusting the external field-induced detuning or coupling. Our scheme connects effectively the cavity photon and the electron spin and transfers quantum states between two regimes with large frequency difference. The experimental feasibility of our protocol is justified with accessible laboratory parameters.

  3. Topological Quantum Buses: Coherent Quantum Information Transfer between Topological and Conventional Qubits

    NASA Astrophysics Data System (ADS)

    Bonderson, Parsa; Lutchyn, Roman M.

    2011-04-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems.

  4. Novel multistep BRET-FRET energy transfer using nanoconjugates of firefly proteins, quantum dots, and red fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Alam, Rabeka; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.

    2013-05-01

    Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated.Sequential bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET) from firefly luciferase to red fluorescent proteins using quantum dot or rod acceptor/donor linkers is described. The effect of morphology and tuned optical properties on the efficiency of this unique BRET-FRET system was evaluated. Electronic supplementary information (ESI) available: Experimental details, Fig. S1 and Table S1-S4. See DOI: 10.1039/c3nr01842c

  5. Quantum transfer energy in the framework of time-dependent dipole-dipole interaction

    NASA Astrophysics Data System (ADS)

    El-Shishtawy, Reda M.; Haddon, Robert C.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.; Berrada, K.; Abdel-Khalek, S.; Al-Hadeethi, Yas F.

    2018-03-01

    In this work, we examine the process of the quantum transfer of energy considering time-dependent dipole-dipole interaction in a dimer system characterized by two-level atom systems. By taking into account the effect of the acceleration and speed of the atoms in the dimer coupling, we demonstrate that the improvement of the probability for a single-excitation transfer energy extremely benefits from the incorporation of atomic motion effectiveness and the energy detuning. We explore the relevance between the population and entanglement during the time-evolution and show that this kind of nonlocal correlation may be generated during the process of the transfer of energy. Our work may provide optimal conditions to implement realistic experimental scenario in the transfer of the quantum energy.

  6. Deterministic quantum state transfer between remote qubits in cavities

    NASA Astrophysics Data System (ADS)

    Vogell, B.; Vermersch, B.; Northup, T. E.; Lanyon, B. P.; Muschik, C. A.

    2017-12-01

    Performing a faithful transfer of an unknown quantum state is a key challenge for enabling quantum networks. The realization of networks with a small number of quantum links is now actively pursued, which calls for an assessment of different state transfer methods to guide future design decisions. Here, we theoretically investigate quantum state transfer between two distant qubits, each in a cavity, connected by a waveguide, e.g., an optical fiber. We evaluate the achievable success probabilities of state transfer for two different protocols: standard wave packet shaping and adiabatic passage. The main loss sources are transmission losses in the waveguide and absorption losses in the cavities. While special cases studied in the literature indicate that adiabatic passages may be beneficial in this context, it remained an open question under which conditions this is the case and whether their use will be advantageous in practice. We answer these questions by providing a full analysis, showing that state transfer by adiabatic passage—in contrast to wave packet shaping—can mitigate the effects of undesired cavity losses, far beyond the regime of coupling to a single waveguide mode and the regime of lossless waveguides, as was proposed so far. Furthermore, we show that the photon arrival probability is in fact bounded in a trade-off between losses due to non-adiabaticity and due to coupling to off-resonant waveguide modes. We clarify that neither protocol can avoid transmission losses and discuss how the cavity parameters should be chosen to achieve an optimal state transfer.

  7. Controlled release of cavity states into propagating modes induced via a single qubit

    NASA Astrophysics Data System (ADS)

    Pfaff, Wolfgang; Constantin, Marius; Reagor, Matthew; Axline, Christopher; Blumoff, Jacob; Chou, Kevin; Leghtas, Zaki; Touzard, Steven; Heeres, Reinier; Reinhold, Philip; Ofek, Nissim; Sliwa, Katrina; Frunzio, Luigi; Mirrahimi, Mazyar; Lehnert, Konrad; Jiang, Liang; Devoret, Michel; Schoelkopf, Robert

    Photonic states stored in long-lived cavities are a promising platform for scalable quantum computing and for the realization of quantum networks. An important aspect in such a cavity-based architecture will be the controlled conversion of stored photonic states into propagating ones. This will allow, for instance, quantum state transfer between remote cavities. We demonstrate the controlled release of quantum states from a microwave resonator with millisecond lifetime in a 3D circuit QED system. Dispersive coupling of the cavity to a transmon qubit allows us to enable a four-wave mixing process that transfers the stored state into a second resonator from which it can leave the system through a transmission line. This permits us to evacuate the cavity on time scales that are orders of magnitude faster than the intrinsic lifetime. This Q-switching process can in principle be fully coherent, making our system highly promising for quantum state transfer between nodes in a quantum network of high-Q cavities.

  8. The feasibility of coherent energy transfer in microtubules.

    PubMed

    Craddock, Travis John Adrian; Friesen, Douglas; Mane, Jonathan; Hameroff, Stuart; Tuszynski, Jack A

    2014-11-06

    It was once purported that biological systems were far too 'warm and wet' to support quantum phenomena mainly owing to thermal effects disrupting quantum coherence. However, recent experimental results and theoretical analyses have shown that thermal energy may assist, rather than disrupt, quantum coherent transport, especially in the 'dry' hydrophobic interiors of biomolecules. Specifically, evidence has been accumulating for the necessary involvement of quantum coherent energy transfer between uniquely arranged chromophores in light harvesting photosynthetic complexes. The 'tubulin' subunit proteins, which comprise microtubules, also possess a distinct architecture of chromophores, namely aromatic amino acids, including tryptophan. The geometry and dipolar properties of these aromatics are similar to those found in photosynthetic units indicating that tubulin may support coherent energy transfer. Tubulin aggregated into microtubule geometric lattices may support such energy transfer, which could be important for biological signalling and communication essential to living processes. Here, we perform a computational investigation of energy transfer between chromophoric amino acids in tubulin via dipole excitations coupled to the surrounding thermal environment. We present the spatial structure and energetic properties of the tryptophan residues in the microtubule constituent protein tubulin. Plausibility arguments for the conditions favouring a quantum mechanism of signal propagation along a microtubule are provided. Overall, we find that coherent energy transfer in tubulin and microtubules is biologically feasible. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  9. Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications.

    PubMed

    Zhao, Chuanzhen; Bai, Zelong; Liu, Xiangyou; Zhang, Yijia; Zou, Bingsuo; Zhong, Haizheng

    2015-08-19

    An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface. Importantly, these GSH-capped CuInS2/ZnS quantum dots have small size (hydrodynamic diameter <10 nm), moderate fluorescent properties (up to 34%) as well as high stability in aqueous solutions (stable for more than three months in 4 °C without any significant fluorescence quenching). Moreover, this ligand exchange strategy is also versatile for the aqueous phase transfer of other hydrophobic quantum dots, for instance, CuInSe2 and CdSe/ZnS quantum dots. We further demonstrated that GSH-capped quantum dots could be suitable fluorescence markers to penetrate cell membrane and image the cells. In addition, the GSH-capped CuInS2 quantum dots also have potential use in other fields such as photocatalysis and quantum dots sensitized solar cells.

  10. Momentum Distribution as a Fingerprint of Quantum Delocalization in Enzymatic Reactions: Open-Chain Path-Integral Simulations of Model Systems and the Hydride Transfer in Dihydrofolate Reductase.

    PubMed

    Engel, Hamutal; Doron, Dvir; Kohen, Amnon; Major, Dan Thomas

    2012-04-10

    The inclusion of nuclear quantum effects such as zero-point energy and tunneling is of great importance in studying condensed phase chemical reactions involving the transfer of protons, hydrogen atoms, and hydride ions. In the current work, we derive an efficient quantum simulation approach for the computation of the momentum distribution in condensed phase chemical reactions. The method is based on a quantum-classical approach wherein quantum and classical simulations are performed separately. The classical simulations use standard sampling techniques, whereas the quantum simulations employ an open polymer chain path integral formulation which is computed using an efficient Monte Carlo staging algorithm. The approach is validated by applying it to a one-dimensional harmonic oscillator and symmetric double-well potential. Subsequently, the method is applied to the dihydrofolate reductase (DHFR) catalyzed reduction of 7,8-dihydrofolate by nicotinamide adenine dinucleotide phosphate hydride (NADPH) to yield S-5,6,7,8-tetrahydrofolate and NADP(+). The key chemical step in the catalytic cycle of DHFR involves a stereospecific hydride transfer. In order to estimate the amount of quantum delocalization, we compute the position and momentum distributions for the transferring hydride ion in the reactant state (RS) and transition state (TS) using a recently developed hybrid semiempirical quantum mechanics-molecular mechanics potential energy surface. Additionally, we examine the effect of compression of the donor-acceptor distance (DAD) in the TS on the momentum distribution. The present results suggest differential quantum delocalization in the RS and TS, as well as reduced tunneling upon DAD compression.

  11. Effects of Initial Correlation and Quantum Coherence on the Energy Transfer, Purity and Entanglement

    NASA Astrophysics Data System (ADS)

    Meng, Xiangjia; Chen, Longxi

    2018-04-01

    We investigate the influences of the initial correlation and quantum coherence on a bipartite dissipative system which is modeled by two two-level quantum emitters driven by an external laser field. It is shown that the initial correlation can enhance or suppress the dynamical evolution of the energy transfer quantified by the excited-state population and the information flow between the two emitters characterized by the purity. We also present the degree of the influence of the initial correlation that is determined by the quantum coherence induced by a relative phase. By introducing Bloch sphere, we illustrate the relation between the energy transfer and the purity. In addition, a scheme for generating maximally entangled steady state is proposed.

  12. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solutions based upon mixed quantum-classical approximation. I. Proton transfer reaction in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Atsushi; Kojima, Hidekazu; Okazaki, Susumu, E-mail: okazaki@apchem.nagoya-u.ac.jp

    2014-08-28

    In order to investigate proton transfer reaction in solution, mixed quantum-classical molecular dynamics calculations have been carried out based on our previously proposed quantum equation of motion for the reacting system [A. Yamada and S. Okazaki, J. Chem. Phys. 128, 044507 (2008)]. Surface hopping method was applied to describe forces acting on the solvent classical degrees of freedom. In a series of our studies, quantum and solvent effects on the reaction dynamics in solutions have been analysed in detail. Here, we report our mixed quantum-classical molecular dynamics calculations for intramolecular proton transfer of malonaldehyde in water. Thermally activated proton transfermore » process, i.e., vibrational excitation in the reactant state followed by transition to the product state and vibrational relaxation in the product state, as well as tunneling reaction can be described by solving the equation of motion. Zero point energy is, of course, included, too. The quantum simulation in water has been compared with the fully classical one and the wave packet calculation in vacuum. The calculated quantum reaction rate in water was 0.70 ps{sup −1}, which is about 2.5 times faster than that in vacuum, 0.27 ps{sup −1}. This indicates that the solvent water accelerates the reaction. Further, the quantum calculation resulted in the reaction rate about 2 times faster than the fully classical calculation, which indicates that quantum effect enhances the reaction rate, too. Contribution from three reaction mechanisms, i.e., tunneling, thermal activation, and barrier vanishing reactions, is 33:46:21 in the mixed quantum-classical calculations. This clearly shows that the tunneling effect is important in the reaction.« less

  13. Quantum state transfer and controlled-phase gate on one-dimensional superconducting resonators assisted by a quantum bus.

    PubMed

    Hua, Ming; Tao, Ming-Jie; Deng, Fu-Guo

    2016-02-24

    We propose a quantum processor for the scalable quantum computation on microwave photons in distant one-dimensional superconducting resonators. It is composed of a common resonator R acting as a quantum bus and some distant resonators rj coupled to the bus in different positions assisted by superconducting quantum interferometer devices (SQUID), different from previous processors. R is coupled to one transmon qutrit, and the coupling strengths between rj and R can be fully tuned by the external flux through the SQUID. To show the processor can be used to achieve universal quantum computation effectively, we present a scheme to complete the high-fidelity quantum state transfer between two distant microwave-photon resonators and another one for the high-fidelity controlled-phase gate on them. By using the technique for catching and releasing the microwave photons from resonators, our processor may play an important role in quantum communication as well.

  14. Direct photonic coupling of a semiconductor quantum dot and a trapped ion.

    PubMed

    Meyer, H M; Stockill, R; Steiner, M; Le Gall, C; Matthiesen, C; Clarke, E; Ludwig, A; Reichel, J; Atatüre, M; Köhl, M

    2015-03-27

    Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb^{+} ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the σ_{z} projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network.

  15. Topological quantum buses: coherent quantum information transfer between topological and conventional qubits.

    PubMed

    Bonderson, Parsa; Lutchyn, Roman M

    2011-04-01

    We propose computing bus devices that enable quantum information to be coherently transferred between topological and conventional qubits. We describe a concrete realization of such a topological quantum bus acting between a topological qubit in a Majorana wire network and a conventional semiconductor double quantum dot qubit. Specifically, this device measures the joint (fermion) parity of these two different qubits by using the Aharonov-Casher effect in conjunction with an ancilliary superconducting flux qubit that facilitates the measurement. Such a parity measurement, together with the ability to apply Hadamard gates to the two qubits, allows one to produce states in which the topological and conventional qubits are maximally entangled and to teleport quantum states between the topological and conventional quantum systems. © 2011 American Physical Society

  16. Three-State Quantum Dot Gate FETs Using ZnS-ZnMgS Lattice-Matched Gate Insulator on Silicon

    NASA Astrophysics Data System (ADS)

    Karmakar, Supriya; Suarez, Ernesto; Jain, Faquir C.

    2011-08-01

    This paper presents the three-state behavior of quantum dot gate field-effect transistors (FETs). GeO x -cladded Ge quantum dots (QDs) are site-specifically self-assembled over lattice-matched ZnS-ZnMgS high- κ gate insulator layers grown by metalorganic chemical vapor deposition (MOCVD) on silicon substrates. A model of three-state behavior manifested in the transfer characteristics due to the quantum dot gate is also presented. The model is based on the transfer of carriers from the inversion channel to two layers of cladded GeO x -Ge quantum dots.

  17. Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Wang, Chen; Zhao, Yang; Cao, Jianshu

    2016-02-01

    We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).

  18. Memory Loss and Retrieval

    ERIC Educational Resources Information Center

    Reid, Ian

    2016-01-01

    Underlying the generally oblivious attitude of teachers and learners towards the past is insufficient respect for the role of memory in giving meaning to experience and access to knowledge. We shape our identity by making sense of our past and its relationship to present and future selves, a process that should be intensively cultivated when we…

  19. Lemuria: Description and Travel

    ERIC Educational Resources Information Center

    Lonergan, David

    2009-01-01

    Librarians face a dilemma, one to which most of them appear to be oblivious. Everybody knows about lots of modern problems that confront libraries and librarians these days. The problem under discussion here is of another order altogether: that librarians are taken too seriously by some of the populace they serve; that they sometimes do not take…

  20. Quantum teleportation between remote atomic-ensemble quantum memories.

    PubMed

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-12-11

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel," quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895-1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼10(8) rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing.

  1. Wavelet versus DCT-based spread spectrum watermarking of image databases

    NASA Astrophysics Data System (ADS)

    Mitrea, Mihai P.; Zaharia, Titus B.; Preteux, Francoise J.; Vlad, Adriana

    2004-05-01

    This paper addresses the issue of oblivious robust watermarking, within the framework of colour still image database protection. We present an original method which complies with all the requirements nowadays imposed to watermarking applications: robustness (e.g. low-pass filtering, print & scan, StirMark), transparency (both quality and fidelity), low probability of false alarm, obliviousness and multiple bit recovering. The mark is generated from a 64 bit message (be it a logo, a serial number, etc.) by means of a Spread Spectrum technique and is embedded into DWT (Discrete Wavelet Transform) domain, into certain low frequency coefficients, selected according to the hierarchy of their absolute values. The best results were provided by the (9,7) bi-orthogonal transform. The experiments were carried out on 1200 image sequences, each of them of 32 images. Note that these sequences represented several types of images: natural, synthetic, medical, etc. and each time we obtained the same good results. These results are compared with those we already obtained for the DCT domain, the differences being pointed out and discussed.

  2. Signatures of Förster and Dexter transfer processes in coupled nanostructures for linear and two-dimensional coherent optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Richter, Marten

    2015-03-01

    In this manuscript, we study the impact of the two Coulomb induced resonance energy transfer processes, Förster and Dexter coupling, on the spectral signatures obtained by double quantum coherence spectroscopy. We show that the specific coupling characteristics allow us to identify the underlying excitation transfer mechanism by means of specific signatures in coherent spectroscopy. Therefore, we control the microscopic calculated coupling strength of spin preserving and spin flipping Förster transfer processes by varying the mutual orientation of the two quantum emitters. The calculated spectra reveal the optical selection rules altered by Förster and Dexter coupling between two semiconductor quantum dots. We show that Dexter coupling between bright and dark two-exciton states occurs.

  3. Negative inductance SQUID qubit operating in a quantum regime

    NASA Astrophysics Data System (ADS)

    Liu, W. Y.; Su, F. F.; Xu, H. K.; Li, Z. Y.; Tian, Ye; Zhu, X. B.; Lu, Li; Han, Siyuan; Zhao, S. P.

    2018-04-01

    Two-junction SQUIDs with negative mutual inductance between their two arms, called nSQUIDs, have been proposed for significantly improving quantum information transfer but their quantum nature has not been experimentally demonstrated. We have designed, fabricated, and characterized superconducting nSQUID qubits. Our results provide clear evidence of the quantum coherence of the device, whose properties are well described by theoretical calculations using parameters determined from spectroscopic measurement. In addition to their future application for fast quantum information transfer, the nSQUID qubits exhibit rich characteristics in their tunable two-dimensional (2D) potentials, energy levels, wave function symmetries, and dipole matrix elements, which are essential to the study of a wide variety of macroscopic quantum phenomena such as tunneling in 2D potential landscapes.

  4. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories

    NASA Astrophysics Data System (ADS)

    Jin, Jeongwan; Slater, Joshua A.; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-08-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  5. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories.

    PubMed

    Jin, Jeongwan; Slater, Joshua A; Saglamyurek, Erhan; Sinclair, Neil; George, Mathew; Ricken, Raimund; Oblak, Daniel; Sohler, Wolfgang; Tittel, Wolfgang

    2013-01-01

    Quantum memories allowing reversible transfer of quantum states between light and matter are central to quantum repeaters, quantum networks and linear optics quantum computing. Significant progress regarding the faithful transfer of quantum information has been reported in recent years. However, none of these demonstrations confirm that the re-emitted photons remain suitable for two-photon interference measurements, such as C-NOT gates and Bell-state measurements, which constitute another key ingredient for all aforementioned applications. Here, using pairs of laser pulses at the single-photon level, we demonstrate two-photon interference and Bell-state measurements after either none, one or both pulses have been reversibly mapped to separate thulium-doped lithium niobate waveguides. As the interference is always near the theoretical maximum, we conclude that our solid-state quantum memories, in addition to faithfully mapping quantum information, also preserve the entire photonic wavefunction. Hence, our memories are generally suitable for future applications of quantum information processing that require two-photon interference.

  6. Sensing of molecules using quantum dynamics

    PubMed Central

    Migliore, Agostino; Naaman, Ron; Beratan, David N.

    2015-01-01

    We design sensors where information is transferred between the sensing event and the actuator via quantum relaxation processes, through distances of a few nanometers. We thus explore the possibility of sensing using intrinsically quantum mechanical phenomena that are also at play in photobiology, bioenergetics, and information processing. Specifically, we analyze schemes for sensing based on charge transfer and polarization (electronic relaxation) processes. These devices can have surprising properties. Their sensitivity can increase with increasing separation between the sites of sensing (the receptor) and the actuator (often a solid-state substrate). This counterintuitive response and other quantum features give these devices favorable characteristics, such as enhanced sensitivity and selectivity. Using coherent phenomena at the core of molecular sensing presents technical challenges but also suggests appealing schemes for molecular sensing and information transfer in supramolecular structures. PMID:25911636

  7. Quantum-state transfer through long-range correlated disordered channels

    NASA Astrophysics Data System (ADS)

    Almeida, Guilherme M. A.; de Moura, Francisco A. B. F.; Lyra, Marcelo L.

    2018-05-01

    We study quantum-state transfer in XX spin-1/2 chains where both communicating spins are weakly coupled to a channel featuring disordered on-site magnetic fields. Fluctuations are modeled by long-range correlated sequences with self-similar profile obeying a power-law spectrum. We show that the channel is able to perform almost perfect quantum-state transmissions even in the presence of significant amounts of disorder provided the degree of those correlations is strong enough, with the cost of having long transfer times and unavoidable timing errors. Still, we show that the lack of mirror symmetry in the channel does not affect much the likelihood of having high-quality outcomes. Our results suggest that coexistence between localized and delocalized states can diminish effects of static perturbations in solid-state devices for quantum communication.

  8. Quantum recurrence and fractional dynamic localization in ac-driven perfect state transfer Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Longhi, Stefano, E-mail: stefano.longhi@fisi.polimi.it

    Quantum recurrence and dynamic localization are investigated in a class of ac-driven tight-binding Hamiltonians, the Krawtchouk quantum chain, which in the undriven case provides a paradigmatic Hamiltonian model that realizes perfect quantum state transfer and mirror inversion. The equivalence between the ac-driven single-particle Krawtchouk Hamiltonian H{sup -hat} (t) and the non-interacting ac-driven bosonic junction Hamiltonian enables to determine in a closed form the quasi energy spectrum of H{sup -hat} (t) and the conditions for exact wave packet reconstruction (dynamic localization). In particular, we show that quantum recurrence, which is predicted by the general quantum recurrence theorem, is exact for themore » Krawtchouk quantum chain in a dense range of the driving amplitude. Exact quantum recurrence provides perfect wave packet reconstruction at a frequency which is fractional than the driving frequency, a phenomenon that can be referred to as fractional dynamic localization.« less

  9. Efficient and Adaptive Methods for Computing Accurate Potential Surfaces for Quantum Nuclear Effects: Applications to Hydrogen-Transfer Reactions.

    PubMed

    DeGregorio, Nicole; Iyengar, Srinivasan S

    2018-01-09

    We present two sampling measures to gauge critical regions of potential energy surfaces. These sampling measures employ (a) the instantaneous quantum wavepacket density, an approximation to the (b) potential surface, its (c) gradients, and (d) a Shannon information theory based expression that estimates the local entropy associated with the quantum wavepacket. These four criteria together enable a directed sampling of potential surfaces that appears to correctly describe the local oscillation frequencies, or the local Nyquist frequency, of a potential surface. The sampling functions are then utilized to derive a tessellation scheme that discretizes the multidimensional space to enable efficient sampling of potential surfaces. The sampled potential surface is then combined with four different interpolation procedures, namely, (a) local Hermite curve interpolation, (b) low-pass filtered Lagrange interpolation, (c) the monomial symmetrization approximation (MSA) developed by Bowman and co-workers, and (d) a modified Shepard algorithm. The sampling procedure and the fitting schemes are used to compute (a) potential surfaces in highly anharmonic hydrogen-bonded systems and (b) study hydrogen-transfer reactions in biogenic volatile organic compounds (isoprene) where the transferring hydrogen atom is found to demonstrate critical quantum nuclear effects. In the case of isoprene, the algorithm discussed here is used to derive multidimensional potential surfaces along a hydrogen-transfer reaction path to gauge the effect of quantum-nuclear degrees of freedom on the hydrogen-transfer process. Based on the decreased computational effort, facilitated by the optimal sampling of the potential surfaces through the use of sampling functions discussed here, and the accuracy of the associated potential surfaces, we believe the method will find great utility in the study of quantum nuclear dynamics problems, of which application to hydrogen-transfer reactions and hydrogen-bonded systems is demonstrated here.

  10. Quantum origin of quantum jumps: Breaking of unitary symmetry induced by information transfer in the transition from quantum to classical

    NASA Astrophysics Data System (ADS)

    Zurek, Wojciech Hubert

    2007-11-01

    Measurements transfer information about a system to the apparatus and then, further on, to observers and (often inadvertently) to the environment. I show that even imperfect copying essential in such situations restricts possible unperturbed outcomes to an orthogonal subset of all possible states of the system, thus breaking the unitary symmetry of its Hilbert space implied by the quantum superposition principle. Preferred outcome states emerge as a result. They provide a framework for “wave-packet collapse,” designating terminal points of quantum jumps and defining the measured observable by specifying its eigenstates. In quantum Darwinism, they are the progenitors of multiple copies spread throughout the environment—the fittest quantum states that not only survive decoherence, but subvert the environment into carrying information about them—into becoming a witness.

  11. Benchmarking Quantum Mechanics/Molecular Mechanics (QM/MM) Methods on the Thymidylate Synthase-Catalyzed Hydride Transfer.

    PubMed

    Świderek, Katarzyna; Arafet, Kemel; Kohen, Amnon; Moliner, Vicent

    2017-03-14

    Given the ubiquity of hydride-transfer reactions in enzyme-catalyzed processes, identifying the appropriate computational method for evaluating such biological reactions is crucial to perform theoretical studies of these processes. In this paper, the hydride-transfer step catalyzed by thymidylate synthase (TSase) is studied by examining hybrid quantum mechanics/molecular mechanics (QM/MM) potentials via multiple semiempirical methods and the M06-2X hybrid density functional. Calculations of protium and tritium transfer in these reactions across a range of temperatures allowed calculation of the temperature dependence of kinetic isotope effects (KIE). Dynamics and quantum-tunneling effects are revealed to have little effect on the reaction rate, but are significant in determining the KIEs and their temperature dependence. A good agreement with experiments is found, especially when computed for RM1/MM simulations. The small temperature dependence of quantum tunneling corrections and the quasiclassical contribution term cancel each other, while the recrossing transmission coefficient seems to be temperature-independent over the interval of 5-40 °C.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, Sergei D., E-mail: sergei.ivanov@unirostock.de; Grant, Ian M.; Marx, Dominik

    With the goal of computing quantum free energy landscapes of reactive (bio)chemical systems in multi-dimensional space, we combine the metadynamics technique for sampling potential energy surfaces with the ab initio path integral approach to treating nuclear quantum motion. This unified method is applied to the double proton transfer process in the formic acid dimer (FAD), in order to study the nuclear quantum effects at finite temperatures without imposing a one-dimensional reaction coordinate or reducing the dimensionality. Importantly, the ab initio path integral metadynamics technique allows one to treat the hydrogen bonds and concomitant proton transfers in FAD strictly independently andmore » thus provides direct access to the much discussed issue of whether the double proton transfer proceeds via a stepwise or concerted mechanism. The quantum free energy landscape we compute for this H-bonded molecular complex reveals that the two protons move in a concerted fashion from initial to product state, yet world-line analysis of the quantum correlations demonstrates that the protons are as quantum-uncorrelated at the transition state as they are when close to the equilibrium structure.« less

  13. Entanglement of spin waves among four quantum memories.

    PubMed

    Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J

    2010-11-18

    Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.

  14. In-capillary probing of quantum dots and fluorescent protein self-assembly and displacement using Förster resonance energy transfer.

    PubMed

    Wang, Jianhao; Fan, Jie; Li, Jinchen; Liu, Li; Wang, Jianpeng; Jiang, Pengju; Liu, Xiaoqian; Qiu, Lin

    2017-02-01

    Herein, a Förster resonance energy transfer system was designed, which consisted of CdSe/ZnS quantum dots donor and mCherry fluorescent protein acceptor. The quantum dots and the mCherry proteins were conjugated to permit Förster resonance energy transfer. Capillary electrophoresis with fluorescence detection was used for the analyses for the described system. The quantum dots and mCherry were sequentially injected into the capillary, while the real-time fluorescence signal of donor and acceptor was simultaneously monitored by two channels with fixed wavelength detectors. An effective separation of complexes from free donor and acceptor was achieved. Results showed quantum dots and hexahistidine tagged mCherry had high affinity and the assembly was affected by His 6 -mCherry/quantum dot molar ratio. The kinetics of the self-assembly was calculated using the Hill equation. The microscopic dissociation constant values for out of- and in-capillary assays were 10.49 and 23.39 μM, respectively. The capillary electrophoresis with fluorescence detection that monitored ligands competition assay further delineated the different binding capacities of histidine containing peptide ligands for binding sites on quantum dots. This work demonstrated a novel approach for the improvement of Förster resonance energy transfer for higher efficiency, increased sensitivity, intuitionistic observation, and low sample requirements of the in-capillary probing system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spectroscopic investigation of alloyed quantum dot-based FRET to cresyl violet dye.

    PubMed

    Kotresh, M G; Adarsh, K S; Shivkumar, M A; Mulimani, B G; Savadatti, M I; Inamdar, S R

    2016-05-01

    Quantum dots (QDs), bright luminescent semiconductor nanoparticles, have found numerous applications ranging from optoelectronics to bioimaging. Here, we present a systematic investigation of fluorescence resonance energy transfer (FRET) from hydrophilic ternary alloyed quantum dots (CdSeS/ZnS) to cresyl violet dye with a view to explore the effect of composition of QD donors on FRET efficiency. Fluorescence emission of QD is controlled by varying the composition of QD without altering the particle size. The results show that quantum yield of the QDs increases with increase in the emission wavelength. The FRET parameters such as spectral overlap J(λ), Förster distance R0, intermolecular distance (r), rate of energy transfer k(T)(r), and transfer efficiency (E) are determined by employing both steady-state and time-resolved fluorescence spectroscopy. Additionally, dynamic quenching is noticed to occur in the present FRET system. Stern-Volmer (K(D)) and bimolecular quenching constants (k(q)) are determined from the Stern-Volmer plot. It is observed that the transfer efficiency follows a linear dependence on the spectral overlap and the quantum yield of the donor as predicted by the Förster theory upon changing the composition of the QD. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Environment-assisted Quantum Critical Effect for Excitation Energy Transfer in a LH2-type Trimer

    NASA Astrophysics Data System (ADS)

    Xu, Lan; Xu, Bo

    2015-10-01

    In this article, we are investigating excitation energy transfer (EET) in a basic unit cell of light-harvesting complex II (LH2), named a LH2-type trimer. Calculation of energy transfer efficiency (ETE) in the framework of non-Markovian environment is also implemented. With these achievements, we theoretically predict the environment-assisted quantum critical effect, where ETE exhibits a sudden change at the critical point of quantum phase transition (QPT) for the LH2-type trimer. It is found that highly efficient EET with nearly unit efficiency may occur in the vicinity of the critical point of QPT.

  17. Fluorescence quenching near small metal nanoparticles.

    PubMed

    Pustovit, V N; Shahbazyan, T V

    2012-05-28

    We develop a microscopic model for fluorescence of a molecule (or semiconductor quantum dot) near a small metal nanoparticle. When a molecule is situated close to metal surface, its fluorescence is quenched due to energy transfer to the metal. We perform quantum-mechanical calculations of energy transfer rates for nanometer-sized Au nanoparticles and find that nonlocal and quantum-size effects significantly enhance dissipation in metal as compared to those predicted by semiclassical electromagnetic models. However, the dependence of transfer rates on molecule's distance to metal nanoparticle surface, d, is significantly weaker than the d(-4) behavior for flat metal surface with a sharp boundary predicted by previous calculations within random phase approximation.

  18. Molecular control of pentacene/ZnO photoinduced charge transfer

    NASA Astrophysics Data System (ADS)

    Spalenka, Josef W.; Paoprasert, Peerasak; Franking, Ryan; Hamers, Robert J.; Gopalan, Padma; Evans, Paul G.

    2011-03-01

    Photoinduced charge transfer modifies the device properties of illuminated pentacene field effect transistors (FETs) incorporating ZnO quantum dots at the gate insulator/pentacene interface. The transferred charge is trapped on electronic states associated with the ZnO quantum dots, with a steady state population approximately proportional to the rate of organic-inorganic charge transfer. Trapped charge shifts the threshold voltage of the FETs, providing the means to evaluate the rate of organic/inorganic charge transfer and the effects of interface modification. Monolayers of the wide-gap alkane stearic acid and the conjugated oligomer terthiophene attached to the ZnO suppress or permit charge transfer, respectively.

  19. Ab Initio Path Integral Molecular Dynamics Study of the Nuclear Quantum Effect on Out-of-Plane Ring Deformation of Hydrogen Maleate Anion.

    PubMed

    Kawashima, Yukio; Tachikawa, Masanori

    2014-01-14

    Ab initio path integral molecular dynamics (PIMD) simulation was performed to understand the nuclear quantum effect on the out-of-plane ring deformation of hydrogen maleate anion and investigate the existence of a stable structure with ring deformation, which was suggested in experimental observation (Fillaux et al., Chem. Phys. 1999, 120, 387-403). The isotope effect and the temperature effect are studied as well. We first investigated the nuclear quantum effect on the proton transfer. In static calculation and classical ab initio molecular dynamics simulations, the proton in the hydrogen bond is localized to either oxygen atom. On the other hand, the proton is located at the center of two oxygen atoms in quantum ab initio PIMD simulations. The nuclear quantum effect washes out the barrier of proton transfer. We next examined the nuclear quantum effect on the motion of hydrogen maleate anion. Principal component analysis revealed that the out-of-plane ring bending modes have dominant contribution to the entire molecular motion. In quantum ab initio PIMD simulations, structures with ring deformation were the global minimum for the deuterated isotope at 300 K. We analyzed the out-of-plane ring bending mode further and found that there are three minima along a ring distortion mode. We successfully found a stable structure with ring deformation of hydrogen maleate for the first time, to our knowledge, using theoretical calculation. The structures with ring deformation found in quantum simulation of the deuterated isotope allowed the proton transfer to occur more frequently than the planar structure. Static ab initio electronic structure calculation found that the structures with ring deformation have very small proton transfer barrier compared to the planar structure. We suggest that the "proton transfer driven" mechanism is the origin of stabilization for the structure with out-of-plane ring deformation.

  20. Nearly Perfect Triplet-Triplet Energy Transfer from Wannier Excitons to Naphthalene in Organic-Inorganic Hybrid Quantum-Well Materials

    NASA Astrophysics Data System (ADS)

    Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.

    2008-06-01

    We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.

  1. Photodynamic therapy potential of thiol-stabilized CdTe quantum dot-group 3A phthalocyanine conjugates (QD-Pc).

    PubMed

    Tekdaş, Duygu Aydın; Durmuş, Mahmut; Yanık, Hülya; Ahsen, Vefa

    2012-07-01

    Thiol stabilized CdTe quantum dot (QD) nanoparticles were synthesized in aqueous phase and were used as energy donors to tetra-triethyleneoxythia substituted aluminum, gallium and indium phthalocyanines through fluorescence resonance energy transfer (FRET). Energy transfer occurred from the QDs to phthalocyanines upon photoexcitation of the QDs. An enhancement in efficiency of energy transfer with the nature of the carboxylic thiol stabilizer on the QDs was observed. As a result of the nanoparticle and the phthalocyanine mixing, the photoluminescence efficiency of the phthalocyanine moieties in the mixtures does not strictly follow the quantum yields of the bare phthalocyanines. The photochemistry study of phthalocyanines in the presence of the QDs revealed high singlet oxygen quantum yield, hence the possibility of using QDs in combination with phthalocyanines as photosensitizers in photodynamic therapy of cancer. The fluorescence of the CdTe quantum dots-phthalocyanine conjugates (QDs-Pc) were effectively quenched by addition of 1,4-benzoquinone. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Nonadiabatic effect on the quantum heat flux control.

    PubMed

    Uchiyama, Chikako

    2014-05-01

    We provide a general formula of quantum transfer that includes the nonadiabatic effect under periodic environmental modulation by using full counting statistics in Hilbert-Schmidt space. Applying the formula to an anharmonic junction model that interacts with two bosonic environments within the Markovian approximation, we find that the quantum transfer is divided into the adiabatic (dynamical and geometrical phases) and nonadiabatic contributions. This extension shows the dependence of quantum transfer on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequency of spectral density. We show that the nonadiabatic contribution represents the reminiscent effect of past modulation including the transition from the initial condition of the anharmonic junction to a steady state determined by the very beginning of the modulation. This enables us to tune the frequency range of modulation, whereby we can obtain the quantum flux corresponding to the geometrical phase by setting the initial condition of the anharmonic junction.

  3. Characterizing Plasmonic Excitations of Quasi-2D Chains

    NASA Astrophysics Data System (ADS)

    Townsend, Emily; Bryant, Garnett

    A quantum description of the optical response of nanostructures and other atomic-scale systems is desirable for modeling systems that use plasmons for quantum information transfer, or coherent transport and interference of quantum states, as well as systems small enough for electron tunneling or quantum confinement to affect the electronic states of the system. Such a quantum description is complicated by the fact that collective and single-particle excitations can have similar energies and thus will mix. We seek to better understand the excitations of nanosystems to identify which characteristics of the excitations are most relevant to modeling their behavior. In this work we use a quasi 2-dimensional linear atomic chain as a model system, and exact diagonalization of the many-body Hamiltonian to obtain its excitations. We compare this to previous work in 1-d chains which used a combination of criteria involving a many-body state's transfer dipole moment, balance, transfer charge, dynamical response, and induced-charge distribution to identify which excitations are plasmonic in character.

  4. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer.

    PubMed

    Duan, Hong-Guang; Prokhorenko, Valentyn I; Cogdell, Richard J; Ashraf, Khuram; Stevens, Amy L; Thorwart, Michael; Miller, R J Dwayne

    2017-08-08

    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales [Formula: see text]100 fs. Today's understanding of the energy transfer includes the fact that the excitons are delocalized over a few neighboring sites, but the role of quantum coherence is considered as irrelevant for the transfer dynamics because it typically decays within a few tens of femtoseconds. This orthodox picture of incoherent energy transfer between clusters of a few pigments sharing delocalized excitons has been challenged by ultrafast optical spectroscopy experiments with the Fenna-Matthews-Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.

  5. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer

    NASA Astrophysics Data System (ADS)

    Duan, Hong-Guang; Prokhorenko, Valentyn I.; Cogdell, Richard J.; Ashraf, Khuram; Stevens, Amy L.; Thorwart, Michael; Miller, R. J. Dwayne

    2017-08-01

    During the first steps of photosynthesis, the energy of impinging solar photons is transformed into electronic excitation energy of the light-harvesting biomolecular complexes. The subsequent energy transfer to the reaction center is commonly rationalized in terms of excitons moving on a grid of biomolecular chromophores on typical timescales <<100 fs. Today’s understanding of the energy transfer includes the fact that the excitons are delocalized over a few neighboring sites, but the role of quantum coherence is considered as irrelevant for the transfer dynamics because it typically decays within a few tens of femtoseconds. This orthodox picture of incoherent energy transfer between clusters of a few pigments sharing delocalized excitons has been challenged by ultrafast optical spectroscopy experiments with the Fenna-Matthews-Olson protein, in which interference oscillatory signals up to 1.5 ps were reported and interpreted as direct evidence of exceptionally long-lived electronic quantum coherence. Here, we show that the optical 2D photon echo spectra of this complex at ambient temperature in aqueous solution do not provide evidence of any long-lived electronic quantum coherence, but confirm the orthodox view of rapidly decaying electronic quantum coherence on a timescale of 60 fs. Our results can be considered as generic and give no hint that electronic quantum coherence plays any biofunctional role in real photoactive biomolecular complexes. Because in this structurally well-defined protein the distances between bacteriochlorophylls are comparable to those of other light-harvesting complexes, we anticipate that this finding is general and directly applies to even larger photoactive biomolecular complexes.

  6. Sensing of molecules using quantum dynamics

    DOE PAGES

    Migliore, Agostino; Naaman, Ron; Beratan, David N.

    2015-04-24

    In this study, we design sensors where information is transferred between the sensing event and the actuator via quantum relaxation processes, through distances of a few nanometers. We thus explore the possibility of sensing using intrinsically quantum mechanical phenomena that are also at play in photobiology, bioenergetics, and information processing. Specifically, we analyze schemes for sensing based on charge transfer and polarization (electronic relaxation) processes. These devices can have surprising properties. Their sensitivity can increase with increasing separation between the sites of sensing (the receptor) and the actuator (often a solid-state substrate). This counterintuitive response and other quantum features givemore » these devices favorable characteristics, such as enhanced sensitivity and selectivity. Finally, using coherent phenomena at the core of molecular sensing presents technical challenges but also suggests appealing schemes for molecular sensing and information transfer in supramolecular structures.« less

  7. Quantum teleportation between remote atomic-ensemble quantum memories

    PubMed Central

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-01-01

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a “quantum channel,” quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895–1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼108 rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing. PMID:23144222

  8. Quantum non-demolition phonon counter with a hybrid optomechnical system

    NASA Astrophysics Data System (ADS)

    Song, Qiao; Zhang, KeYe; Dong, Ying; Zhang, WeiPing

    2018-05-01

    A phonon counting scheme based on the control of polaritons in an optomechanical system is proposed. This approach permits us to measure the number of phonons in a quantum non-demolition (QND) manner for arbitrary modes not limited by the frequency matching condition as in usual photon-phonon scattering detections. The performance on phonon number transfer and quantum state transfer of the counter are analyzed and simulated numerically by taking into account all relevant sources of noise.

  9. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables.

    PubMed

    Takei, Nobuyuki; Yonezawa, Hidehiro; Aoki, Takao; Furusawa, Akira

    2005-06-10

    We experimentally demonstrate continuous-variable quantum teleportation beyond the no-cloning limit. We teleport a coherent state and achieve the fidelity of 0.70 +/- 0.02 that surpasses the no-cloning limit of 2/3. Surpassing the limit is necessary to transfer the nonclassicality of an input quantum state. By using our high-fidelity teleporter, we demonstrate entanglement swapping, namely, teleportation of quantum entanglement, as an example of transfer of nonclassicality.

  10. STS-73 Liftoff - Across water with Blue Heron

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A Great Blue Heron seems oblivious to the trememdous spectacle of light and sound generated by a Shuttle liftoff, as the Space Shuttle Columbia soars skyward from Launch Pad 39B. Columbia lifted off at 9:53:00 a.m. EDT, October 20. On board are a crew of seven and the U.S. Microgravity Laboratory-2

  11. Optimistic Expectations about Communication Explain Children's Diffculties in Hiding, Lying, and Mistrusting Liars

    ERIC Educational Resources Information Center

    Mascaro, Olivier; Morin, Olivier; Sperber, Dan

    2017-01-01

    We suggest that preschoolers' frequent obliviousness to the risks and opportunities of deception comes from a trusting stance supporting verbal communication. Three studies (N = 125) confirm this hypothesis. Three-year-olds can hide information from others (Study 1) and they can lie (Study 2) in simple settings. Yet when one introduces the…

  12. BaBar Experiment Public Web Site

    Science.gov Websites

    spotlights BaBar time-reversal measurement. December 14, 2012 PhysicsWorld.com has selected the BaBar time . BaBar Makes First Direct Observation of Time-Reversal Violation August 30, 2012 Fundamental interactions among particles are oblivious to the direction of time (a movie of a rock thrown up and falling back

  13. Happiness in the Classroom: Strategies for Teacher Retention and Development

    ERIC Educational Resources Information Center

    De Stercke, Joachim; Goyette, Nancy; Robertson, Jean E.

    2015-01-01

    This Viewpoint proposes a new perspective on why so many teachers leave the profession after only a very short time. While existing studies have largely focused on employment and working conditions, this essay argues that happiness is key to keeping new teachers in the workplace. Juxtaposing two fields that have heretofore been oblivious of one…

  14. Enhanced photoelectrochemical aptasensing platform based on exciton energy transfer between CdSeTe alloyed quantum dots and SiO2@Au nanocomposites.

    PubMed

    Fan, Gao-Chao; Zhu, Hua; Shen, Qingming; Han, Li; Zhao, Ming; Zhang, Jian-Rong; Zhu, Jun-Jie

    2015-04-25

    High-efficient exciton energy transfer between CdSeTe alloyed quantum dots and SiO2@Au nanocomposites was applied to develop an enhanced photoelectrochemical aptasensing platform with ultrahigh sensitivity, good selectivity, reproducibility and stability.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billings, Jay J.; Bonior, Jason D.; Evans, Philip G.

    Securely transferring timing information in the electrical grid is a critical component of securing the nation's infrastructure from cyber attacks. One solution to this problem is to use quantum information to securely transfer the timing information across sites. This software provides such an infrastructure using a standard Java webserver that pulls the quantum information from associated hardware.

  16. Hole Transfer from Low Band Gap Quantum Dots to Conjugated Polymers in Organic/Inorganic Hybrid Photovoltaics.

    PubMed

    Colbert, Adam E; Janke, Eric M; Hsieh, Stephen T; Subramaniyan, Selvam; Schlenker, Cody W; Jenekhe, Samson A; Ginger, David S

    2013-01-17

    We use photoinduced absorption (PIA) spectroscopy to investigate pathways for photocurrent generation in hybrid organic/inorganic quantum dot bulk heterojunction solar cells. We study blends of the conjugated polymer poly(2,3-bis(2-(hexyldecyl)quinoxaline-5,8-diyl-alt-N-(2-hexyldecyl)dithieno[3,2-b:2',3'-d]pyrrole) (PDTPQx-HD) with PbS quantum dots and find that positively charged polarons are formed on the conjugated polymer following selective photoexcitation of the PbS quantum dots. This result provides a direct spectroscopic fingerprint demonstrating that photoinduced hole transfer occurs from the photoexcited quantum dots to the host polymer. We compute the relative yields of long-lived holes following photoexcitation of both the polymer and quantum dot phases and estimate that more long-lived polarons are produced per photon absorbed by the polymer phase than by the quantum dot phase.

  17. Quantum spin transistor with a Heisenberg spin chain

    PubMed Central

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  18. Quantum spin transistor with a Heisenberg spin chain.

    PubMed

    Marchukov, O V; Volosniev, A G; Valiente, M; Petrosyan, D; Zinner, N T

    2016-10-10

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.

  19. Resonance interatomic energy in a Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Yu, Hongwei

    2017-08-01

    We study, in the Schwarzschild spacetime, the resonance interatomic energy (RIE) of two static identical atoms with an interatomic separation L along the radial direction and correlated by a symmetric/antisymmetric entangled state. The atoms are assumed to be coupled to massless scalar fields in the Boulware, Unruh, and Hartle-Hawking vacua, and approximate analytical results are obtained both at infinity and near the horizon. Our results show that at infinity, the RIE approaches that in a flat spacetime, while, near the horizon, they can deviate dramatically from each other. Besides, different from other atomic radiative properties such as the Lamb shift of a single atom or the interatomic energy between two uncorrelated atoms, which can be obviously affected by the thermal character of quantum fields, the RIE of two atoms in a symmetric/antisymmetric entangled state in the Boulware, Unruh, and Hartle-Hawking vacua are exactly the same as a result of the fact that the RIE of two such atoms depends only on the atomic self-reaction, i.e., it does not feel the vacuum fluctuations. This suggests that the RIE of two static atoms in a symmetric/antisymmetric entangled state outside a black hole is oblivious to the Hawking radiation, in contrast to those uncorrelated atoms.

  20. Comparison of two quantum dots for bioluminescence resonance energy transfer based on nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Zhang, Daohong

    2017-05-01

    The performance of two commercially available quantum dots, quantum dot 605 (Qd605) and quantum dot 625 (Qd625), was tested and compared in the sensing system developed by our group previously. The sandwich format sensing system employed Renilla luciferase (Rluc) and quantum dots (Qds), could report the presence of targets with increasing bioluminescent resonance energy transfer (BRET) signal. The best spacing between the Rluc and Qds probes were 15 nucleotides. Both of Qd605 and Qd625 sensing system could quantify nucleic acid targets through 1-min hybridization from 0.2 picomoles. However, the Qd625 system showed higher BRET signal and better selectivity. Therefore, Qd625 is a better choice in this system compared to Qd605.

  1. Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations.

    PubMed

    Brown, Paul A; Messina, Michael

    2016-03-03

    We present a simple computational algorithm that allows for the inclusion of memory friction in a quantum dynamics simulation of a small, quantum, primary system coupled to many atoms in the surroundings. We show how including a memory friction operator, F̂, in the primary quantum system's Hamiltonian operator builds memory friction into the dynamics of the primary quantum system. We show that, in the harmonic, semi-classical limit, this friction operator causes the classical phase-space centers of a wavepacket to evolve exactly as if it were a classical particle experiencing memory friction. We also show that this friction operator can be used to include memory friction in the quantum dynamics of an anharmonic primary system. We then generalize the algorithm so that it can be used to treat a primary quantum system that is evolving, non-adiabatically on two coupled potential energy surfaces, i.e., a model that can be used to model H atom transfer, for example. We demonstrate this approach's computational ease and flexibility by showing numerical results for both harmonic and anharmonic primary quantum systems in the single surface case. Finally, we present numerical results for a model of non-adiabatic H atom transfer between a reactant and product state that includes memory friction on one or both of the non-adiabatic potential energy surfaces and uncover some interesting dynamical effects of non-memory friction on the H atom transfer process.

  2. Transfer of nonclassical features in quantum teleportation via a mixed quantum channel

    NASA Astrophysics Data System (ADS)

    Lee, Jinhyoung; Kim, M. S.; Jeong, Hyunseok

    2000-09-01

    Quantum teleportation of a continuous-variable state is studied for the quantum channel of a two-mode squeezed vacuum influenced by a thermal environment. Each mode of the squeezed vacuum is assumed to undergo the same thermal influence. It is found that when the mixed two-mode squeezed vacuum for the quantum channel is separable, any nonclassical features, which may be imposed in an original unknown state, cannot be transferred to a receiving station. A two-mode Gaussian state, one of which is a mixed two-mode squeezed vacuum, is separable if and only if a positive well-defined P function can be assigned to it. The fidelity of teleportation is considered in terms of the noise factor given by the imperfect channel. It is found that quantum teleportation may give more noise than direct transmission of a field under the thermal environment, which is due to the fragile nature of quantum entanglement of the quantum channel.

  3. Thermal Quantum Correlations in Photosynthetic Light-Harvesting Complexes

    NASA Astrophysics Data System (ADS)

    Mahdian, M.; Kouhestani, H.

    2015-08-01

    Photosynthesis is one of the ancient biological processes, playing crucial role converting solar energy to cellular usable currency. Environmental factors and external perturbations has forced nature to choose systems with the highest efficiency and performance. Recent theoretical and experimental studies have proved the presence of quantum properties in biological systems. Energy transfer systems like Fenna-Matthews-Olson (FMO) complex shows quantum entanglement between sites of Bacteriophylla molecules in protein environment and presence of decoherence. Complex biological systems implement more truthful mechanisms beside chemical-quantum correlations to assure system's efficiency. In this study we investigate thermal quantum correlations in FMO protein of the photosynthetic apparatus of green sulfur bacteria by quantum discord measure. The results confirmed existence of remarkable quantum correlations of of BChla pigments in room temperature. This results approve involvement of quantum correlation mechanisms for information storage and retention in living organisms that could be useful for further evolutionary studies. Inspired idea of this study is potentially interesting to practice by the same procedure in genetic data transfer mechanisms.

  4. Nanowire–quantum-dot lasers on flexible membranes

    NASA Astrophysics Data System (ADS)

    Tatebayashi, Jun; Ota, Yasutomo; Ishida, Satomi; Nishioka, Masao; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2018-06-01

    We demonstrate lasing in a single nanowire with quantum dots as an active medium embedded on poly(dimethylsiloxane) membranes towards application in nanowire-based flexible nanophotonic devices. Nanowire laser structures with 50 quantum dots are grown on patterned GaAs(111)B substrates and then transferred from the as-grown substrates on poly(dimethylsiloxane) transparent flexible organosilicon membranes, by means of spin-casting and curing processes. We observe lasing oscillation in the transferred single nanowire cavity with quantum dots at 1.425 eV with a threshold pump pulse fluence of ∼876 µJ/cm2, which enables the realization of high-performance multifunctional NW-based flexible photonic devices.

  5. Influence of quantum dot's quantum yield to chemiluminescent resonance energy transfer.

    PubMed

    Wang, Hai-Qiao; Li, Yong-Qiang; Wang, Jian-Hao; Xu, Qiao; Li, Xiu-Qing; Zhao, Yuan-Di

    2008-03-03

    The resonance energy transfer between chemiluminescence donor (luminol-H2O2 system) and quantum dots (QDs, emission at 593 nm) acceptors (CRET) was investigated. The resonance energy transfer efficiencies were compared while the oil soluble QDs, water soluble QDs (modified with thioglycolate) and QD-HRP conjugates were used as acceptor. The fluorescence of QD can be observed in the three cases, indicating that the CRET occurs while QD acceptor in different status was used. The highest CRET efficiency (10.7%) was obtained in the case of oil soluble QDs, and the lowest CRET efficiency (2.7%) was observed in the QD-HRP conjugates case. This result is coincident with the quantum yields of the acceptors (18.3% and 0.4%). The same result was observed in another similar set of experiment, in which the amphiphilic polymer modified QDs (emission at 675 nm) were used. It suggests that the quantum yield of the QD in different status is the crucial factor to the CRET efficiency. Furthermore, the multiplexed CRET between luminol donor and three different sizes QD acceptors was observed simultaneously. This work will offer useful support for improving the CRET studies based on quantum dots.

  6. Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer.

    PubMed

    Lee, Eun Sook; Deepagan, V G; You, Dong Gil; Jeon, Jueun; Yi, Gi-Ra; Lee, Jung Young; Lee, Doo Sung; Suh, Yung Doug; Park, Jae Hyung

    2016-03-18

    Overproduction of hydrogen peroxide is involved in the pathogenesis of inflammatory diseases such as cancer and arthritis. To image hydrogen peroxide via chemiluminescence resonance energy transfer in the near-infrared wavelength range, we prepared quantum dots functionalized with a luminol derivative.

  7. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  8. Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections

    DOE PAGES

    Wang, Lei; Jakowski, Jacek; Garashchuk, Sophya; ...

    2016-08-09

    The experimentally observed effect of selective deuterium substitution on the open circuit voltage for a blend of poly(3-hexylthiophene)(P3HT) and [6,6]-phenyl-C 61- butyric acid methyl ester (PCBM) (Nat. Commun. 5:3180, 2014) is explored using a 221-atom model of a polymer-wrapped PCBM molecule. We describe the protonic and deuteronic wavefunctions for the H/D isotopologues of the hexyl side chains within a Quantum Trajectory/Electronic Structure approach where the dynamics is performed with newly developed nonlinear corrections to the quantum forces, necessary to describe the nuclear wavefunctions; the classical forces are generated with a Density Functional Tight Binding method. We used the resulting protonicmore » and deuteronic time-dependent wavefunctions to assess the effects of isotopic substitution (deuteration) on the energy gaps relevant to the charge transfer for the donor and acceptor electronic states. Furthermore, while the isotope effect on the electronic energy levels is found negligible, the quantum-induced fluctuations of the energy gap between the charge transfer and charge separated states due to nuclear wavefunctions may account for experimental trends by promoting charge transfer in P3HT/PCBM and increasing charge recombination on the donor in the deuterium substituted P3HT/PCBM.« less

  9. Transferring elements of a density matrix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allahverdyan, Armen E.; Hovhannisyan, Karen V.; Yerevan State University, A. Manoogian Street 1, Yerevan

    2010-01-15

    We study restrictions imposed by quantum mechanics on the process of matrix-element transfer. This problem is at the core of quantum measurements and state transfer. Given two systems A and B with initial density matrices lambda and r, respectively, we consider interactions that lead to transferring certain matrix elements of unknown lambda into those of the final state r-tilde of B. We find that this process eliminates the memory on the transferred (or certain other) matrix elements from the final state of A. If one diagonal matrix element is transferred, r(tilde sign){sub aa}=lambda{sub aa}, the memory on each nondiagonal elementmore » lambda{sub an}ot ={sub b} is completely eliminated from the final density operator of A. Consider the following three quantities, Relambda{sub an}ot ={sub b}, Imlambda{sub an}ot ={sub b}, and lambda{sub aa}-lambda{sub bb} (the real and imaginary part of a nondiagonal element and the corresponding difference between diagonal elements). Transferring one of them, e.g., Rer(tilde sign){sub an}ot ={sub b}=Relambda{sub an}ot ={sub b}, erases the memory on two others from the final state of A. Generalization of these setups to a finite-accuracy transfer brings in a trade-off between the accuracy and the amount of preserved memory. This trade-off is expressed via system-independent uncertainty relations that account for local aspects of the accuracy-disturbance trade-off in quantum measurements. Thus, the general aspect of state disturbance in quantum measurements is elimination of memory on non-diagonal elements, rather than diagonalization.« less

  10. Novel single photon sources for new generation of quantum communications

    DTIC Science & Technology

    2017-06-13

    be used as building blocks for quantum cryptography and quantum key distribution There were numerous important achievements for the projects in the...single photon sources that will be used as build- ing blocks for quantum cryptography and quantum key distribution There were numerous im- portant...and enable absolutely secured information transfer between distant nodes – key prerequisite for quantum cryptography . Experiment: the experimental

  11. RAPID COMMUNICATIONS: Long-distance quantum teleportation assisted with free-space entanglement distribution

    NASA Astrophysics Data System (ADS)

    Ren, Ji-Gang; Yang, Bin; Yi, Zhen-Huan; Zhou, Fei; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei

    2009-08-01

    Faithful long-distance quantum teleportation necessitates prior entanglement distribution between two communicated locations. The particle carrying on the unknown quantum information is then combined with one particle of the entangled states for Bell-state measurements, which leads to a transfer of the original quantum information onto the other particle of the entangled states. However in most of the implemented teleportation experiments nowadays, the Bell-state measurements are performed even before successful distribution of entanglement. This leads to an instant collapse of the quantum state for the transmitted particle, which is actually a single-particle transmission thereafter. Thus the true distance for quantum teleportation is, in fact, only in a level of meters. In the present experiment we design a novel scheme which has overcome this limit by utilizing fiber as quantum memory. A complete quantum teleportation is achieved upon successful entanglement distribution over 967 meters in public free space. Active feed-forward control techniques are developed for real-time transfer of quantum information. The overall experimental fidelities for teleported states are better than 89.6%, which signify high-quality teleportation.

  12. Photoluminescence Enhancement of Silole-Capped Silicon Quantum Dots Based on Förster Resonance Energy Transfer.

    PubMed

    Kim, Seongwoong; Kim, Sungsoo; Ko, Young Chun; Sohn, Honglae

    2015-07-01

    Photoluminescent porous silicon were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 650 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon quantum dots in porous silicon. HO-terminated red luminescent PS was obtained by an electrochemical treatment of fresh PS with the current of 150 mA for 60 seconds in water and sodium chloride. As-prepared PS was sonicated, fractured, and centrifuged in toluene solution to obtain photoluminescence silicon quantum dots. Dichlorotetraphenylsilole exhibiting an emission band at 520 nm was reacted with HO-terminated silicon quantum dots to give a silole-capped silicon quantum dots. The optical characterization of silole-derivatized silicon quantum dots was investigated by UV-vis and fluorescence spectrometer. The fluorescence emission efficiency of silole-capped silicon quantum dots was increased by about 2.5 times due to F6rster resonance energy transfer from silole moiety to silicon quantum dots.

  13. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.

    PubMed

    Marocico, Cristian A; Zhang, Xia; Bradley, A Louise

    2016-01-14

    We present in this contribution a comprehensive investigation of the effect of the size of gold nanospheres on the decay and energy transfer rates of quantum systems placed close to these nanospheres. These phenomena have been investigated before, theoretically and experimentally, but no comprehensive study of the influence of the nanoparticle size on important dependences of the decay and energy transfer rates, such as the dependence on the donor-acceptor spectral overlap and the relative positions of the donor, acceptor, and nanoparticle, exists. As such, different accounts of the energy transfer mechanism have been presented in the literature. We perform an investigation of the energy transfer mechanisms between emitters and gold nanospheres and between donor-acceptor pairs in the presence of the gold nanospheres using a Green's tensor formalism, experimentally verified in our lab. We find that the energy transfer rate to small nanospheres is greatly enhanced, leading to a strong quenching of the emission of the emitter. When the nanosphere size is increased, it acts as an antenna, increasing the emission of the emitter. We also investigate the emission wavelength and intrinsic quantum yield dependence of the energy transfer to the nanosphere. As evidenced from the literature, the energy transfer process between the quantum system and the nanosphere can have a complicated distance dependence, with a r(-6) regime, characteristic of the Förster energy transfer mechanism, but also exhibiting other distance dependences. In the case of a donor-acceptor pair of quantum systems in the presence of a gold nanosphere, when the donor couples strongly to the nanosphere, acting as an enhanced dipole; the donor-acceptor energy transfer rate then follows a Förster trend, with an increased Förster radius. The coupling of the acceptor to the nanosphere has a different distance dependence. The angular dependence of the energy transfer efficiency between donor and acceptor exhibits a strong focusing effect and the same enhanced donor-dipole character in different angular arrangements. The spectral overlap of the donor emission and acceptor absorption spectra shows that the energy transfer follows the near-field scattering efficiency, with a red-shift from the localized surface plasmon peak for small sphere sizes.

  14. KSC-02pp0465

    NASA Image and Video Library

    2002-04-08

    KENNEDY SPACE CENTER, FLA. -- Launch! Birds in the foreground seem oblivious to the fire and smoke as Space Shuttle Atlantis roars into the sky on mission STS-110. Liftoff occurred at 4:44:19 p.m. EDT (20:41:19 GMT). Carrying the S0 Integrated Truss Structure and Mobile Transporter, STS-110 is the 13th assembly flight to the International Space Station

  15. Reclaiming Gammaalpharho: The Semantic Significance and Structural Implications of Gammaalpharho as an Intersentential Conjunction in Romans through Hebrews

    ERIC Educational Resources Information Center

    Rudolph, Michael Allen

    2014-01-01

    "Reclaiming Ga?" is a curious title for readers oblivious to the fact that the meaning of "?a?" has been lost. Indeed, "?a?" is but one of several linguistic signals of Koine Greek that allude the grasp of the modern scholar. This has created an environment within NT studies described here as conjunctive…

  16. Oblivious image watermarking combined with JPEG compression

    NASA Astrophysics Data System (ADS)

    Chen, Qing; Maitre, Henri; Pesquet-Popescu, Beatrice

    2003-06-01

    For most data hiding applications, the main source of concern is the effect of lossy compression on hidden information. The objective of watermarking is fundamentally in conflict with lossy compression. The latter attempts to remove all irrelevant and redundant information from a signal, while the former uses the irrelevant information to mask the presence of hidden data. Compression on a watermarked image can significantly affect the retrieval of the watermark. Past investigations of this problem have heavily relied on simulation. It is desirable not only to measure the effect of compression on embedded watermark, but also to control the embedding process to survive lossy compression. In this paper, we focus on oblivious watermarking by assuming that the watermarked image inevitably undergoes JPEG compression prior to watermark extraction. We propose an image-adaptive watermarking scheme where the watermarking algorithm and the JPEG compression standard are jointly considered. Watermark embedding takes into consideration the JPEG compression quality factor and exploits an HVS model to adaptively attain a proper trade-off among transparency, hiding data rate, and robustness to JPEG compression. The scheme estimates the image-dependent payload under JPEG compression to achieve the watermarking bit allocation in a determinate way, while maintaining consistent watermark retrieval performance.

  17. Enhancing user privacy in SARG04-based private database query protocols

    NASA Astrophysics Data System (ADS)

    Yu, Fang; Qiu, Daowen; Situ, Haozhen; Wang, Xiaoming; Long, Shun

    2015-11-01

    The well-known SARG04 protocol can be used in a private query application to generate an oblivious key. By usage of the key, the user can retrieve one out of N items from a database without revealing which one he/she is interested in. However, the existing SARG04-based private query protocols are vulnerable to the attacks of faked data from the database since in its canonical form, the SARG04 protocol lacks means for one party to defend attacks from the other. While such attacks can cause significant loss of user privacy, a variant of the SARG04 protocol is proposed in this paper with new mechanisms designed to help the user protect its privacy in private query applications. In the protocol, it is the user who starts the session with the database, trying to learn from it bits of a raw key in an oblivious way. An honesty test is used to detect a cheating database who had transmitted faked data. The whole private query protocol has O( N) communication complexity for conveying at least N encrypted items. Compared with the existing SARG04-based protocols, it is efficient in communication for per-bit learning.

  18. Kicking atoms with finite duration pulses

    NASA Astrophysics Data System (ADS)

    Fekete, Julia; Chai, Shijie; Daszuta, Boris; Andersen, Mikkel F.

    2016-05-01

    The atom optics delta-kicked particle is a paradigmatic system for experimental studies of quantum chaos and classical-quantum correspondence. It consists of a cloud of laser cooled atoms exposed to a periodically pulsed standing wave of far off-resonant laser light. A purely quantum phenomena in such systems are quantum resonances which transfers the atoms into a coherent superposition of largely separated momentum states. Using such large momentum transfer ``beamsplitters'' in atom interferometers may have applications in high precision metrology. The growth in momentum separation cannot be maintained indefinitely due to finite laser power. The largest momentum transfer is achieved by violating the usual delta-kick assumption. Therefore we explore the behavior of the atom optics kicked particle with finite pulse duration. We have developed a semi-classical model which shows good agreement with the full quantum description as well as our experiments. Furthermore we have found a simple scaling law that helps to identify optimal parameters for an atom interferometer. We verify this by measurements of the ``Talbot time'' (a measurement of h/m) which together with other well-known constants constitute a measurement of the fine structure constant.

  19. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less

  20. Transfer of non-Gaussian quantum states of mechanical oscillator to light

    NASA Astrophysics Data System (ADS)

    Filip, Radim; Rakhubovsky, Andrey A.

    2015-11-01

    Non-Gaussian quantum states are key resources for quantum optics with continuous-variable oscillators. The non-Gaussian states can be deterministically prepared by a continuous evolution of the mechanical oscillator isolated in a nonlinear potential. We propose feasible and deterministic transfer of non-Gaussian quantum states of mechanical oscillators to a traveling light beam, using purely all-optical methods. The method relies on only basic feasible and high-quality elements of quantum optics: squeezed states of light, linear optics, homodyne detection, and electro-optical feedforward control of light. By this method, a wide range of novel non-Gaussian states of light can be produced in the future from the mechanical states of levitating particles in optical tweezers, including states necessary for the implementation of an important cubic phase gate.

  1. Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes

    NASA Astrophysics Data System (ADS)

    Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen

    2016-12-01

    Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.

  2. Number-theoretic nature of communication in quantum spin systems.

    PubMed

    Godsil, Chris; Kirkland, Stephen; Severini, Simone; Smith, Jamie

    2012-08-03

    The last decade has witnessed substantial interest in protocols for transferring information on networks of quantum mechanical objects. A variety of control methods and network topologies have been proposed, on the basis that transfer with perfect fidelity-i.e., deterministic and without information loss-is impossible through unmodulated spin chains with more than a few particles. Solving the original problem formulated by Bose [Phys. Rev. Lett. 91, 207901 (2003)], we determine the exact number of qubits in unmodulated chains (with an XY Hamiltonian) that permit transfer with a fidelity arbitrarily close to 1, a phenomenon called pretty good state transfer. We prove that this happens if and only if the number of nodes is n = p - 1, 2p - 1, where p is a prime, or n = 2(m) - 1. The result highlights the potential of quantum spin system dynamics for reinterpreting questions about the arithmetic structure of integers and, in this case, primality.

  3. Nonleaky Population Transfer in a Transmon Qutrit via Largely-Detuned Drivings

    NASA Astrophysics Data System (ADS)

    Yan, Run-Ying; Feng, Zhi-Bo

    2018-06-01

    We propose an efficient scheme to implement nonleaky population transfer in a transmon qutrit via largely-detuned drivings. Due to weak level anharmonicity of the transmon system, the remarkable quantum leakages need to be considered in quantum coherent operations. Under the conditions of two-photon resonance and large detunings, the robust population transfer within a qutrit can be implemented via the technique of stimulated Raman adiabatic passage. Based on the accessible parameters, the feasible approach can remove the leakage error effectively, and then provides a potential approach for enhancing the transfer fidelity with transmon-regime artificial atoms experimentally.

  4. Theory of atomistic simulation of spin-transfer torque in nanomagnets

    NASA Astrophysics Data System (ADS)

    Tay, Tiamhock; Sham, L. J.

    2013-05-01

    In spin-transfer torque (STT) for technological applications, the miniaturization of the magnet may reach the stage of requiring a fully quantum-mechanical treatment. We present an STT theory which uses the quantum macrospin ground and excited (magnon) states of the nanomagnet. This allows for energy and angular momentum exchanges between the current electron and the nano-magnet. We develop a method of magnetization dynamics simulation which captures the heating effect on the magnet by the spin-polarized current and the temperature dependence in STT. We also discuss the magnetostatics effect on magnon scattering for ferromagnetic relaxation in a thin film. Our work demonstrates a realistic step towards simulation of quantum spin-transfer torque physics in nanoscale magnets.

  5. Quantum probability and cognitive modeling: some cautions and a promising direction in modeling physics learning.

    PubMed

    Franceschetti, Donald R; Gire, Elizabeth

    2013-06-01

    Quantum probability theory offers a viable alternative to classical probability, although there are some ambiguities inherent in transferring the quantum formalism to a less determined realm. A number of physicists are now looking at the applicability of quantum ideas to the assessment of physics learning, an area particularly suited to quantum probability ideas.

  6. Highly sensitive strategy for Hg2+ detection in environmental water samples using long lifetime fluorescence quantum dots and gold nanoparticles.

    PubMed

    Huang, Dawei; Niu, Chenggang; Ruan, Min; Wang, Xiaoyu; Zeng, Guangming; Deng, Canhui

    2013-05-07

    The authors herein described a time-gated fluorescence resonance energy transfer (TGFRET) sensing strategy employing water-soluble long lifetime fluorescence quantum dots and gold nanoparticles to detect trace Hg(2+) ions in aqueous solution. The water-soluble long lifetime fluorescence quantum dots and gold nanoparticles were functionalized by two complementary ssDNA, except for four deliberately designed T-T mismatches. The quantum dot acted as the energy-transfer donor, and the gold nanoparticle acted as the energy-transfer acceptor. When Hg(2+) ions were present in the aqueous solution, DNA hybridization will occur because of the formation of T-Hg(2+)-T complexes. As a result, the quantum dots and gold nanoparticles are brought into close proximity, which made the energy transfer occur from quantum dots to gold nanoparticles, leading to the fluorescence intensity of quantum dots to decrease obviously. The decrement fluorescence intensity is proportional to the concentration of Hg(2+) ions. Under the optimum conditions, the sensing system exhibits the same liner range from 1 × 10(-9) to 1 × 10(-8) M for Hg(2+) ions, with the detection limits of 0.49 nM in buffer and 0.87 nM in tap water samples. This sensor was also used to detect Hg(2+) ions from samples of tap water, river water, and lake water spiked with Hg(2+) ions, and the results showed good agreement with the found values determined by an atomic fluorescence spectrometer. In comparison to some reported colorimetric and fluorescent sensors, the proposed method displays the advantage of higher sensitivity. The TGFRET sensor also exhibits excellent selectivity and can provide promising potential for Hg(2+) ion detection.

  7. Quantum soldering of individual quantum dots.

    PubMed

    Roy, Xavier; Schenck, Christine L; Ahn, Seokhoon; Lalancette, Roger A; Venkataraman, Latha; Nuckolls, Colin; Steigerwald, Michael L

    2012-12-07

    Making contact to a quantum dot: Single quantum-dot electronic circuits are fabricated by wiring atomically precise metal chalcogenide clusters with conjugated molecular connectors. These wired clusters can couple electronically to nanoscale electrodes and be tuned to control the charge-transfer characteristics (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Enhancing non-local correlations in the bipartite partitions of two qubit-system with non-mutual interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, A.-B.A., E-mail: abdelbastm@yahoo.com; Faculty of Science, Assiut University, Assiut; Joshi, A., E-mail: mcbamji@gmail.com

    2016-03-15

    Several quantum-mechanical correlations, notably, quantum entanglement, measurement-induced nonlocality and Bell nonlocality are studied for a two qubit-system having no mutual interaction. Analytical expressions for the measures of these quantum-mechanical correlations of different bipartite partitions of the system are obtained, for initially two entangled qubits and the two photons are in their vacuum states. It is found that the qubits-fields interaction leads to the loss and gain of the initial quantum correlations. The lost initial quantum correlations transfer from the qubits to the cavity fields. It is found that the maximal violation of Bell’s inequality is occurring when the quantum correlationsmore » of both the logarithmic negativity and measurement-induced nonlocality reach particular values. The maximal violation of Bell’s inequality occurs only for certain bipartite partitions of the system. The frequency detuning leads to quick oscillations of the quantum correlations and inhibits their transfer from the qubits to the cavity modes. It is also found that the dynamical behavior of the quantum correlation clearly depends on the qubit distribution angle.« less

  9. Long-range energy transfer in self-assembled quantum dot-DNA cascades

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant

    2015-11-01

    The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04778a

  10. Ab Initio Simulation of Charge Transfer at the Semiconductor Quantum Dot/TiO 2 Interface in Quantum Dot-Sensitized Solar Cells

    DOE PAGES

    Xin, Xukai; Li, Bo; Jung, Jaehan; ...

    2014-07-24

    Quantum dot-sensitized solar cells (QDSSCs) have emerged as a promising solar architecture for next-generation solar cells. The QDSSCs exhibit a remarkably fast electron transfer from the quantum dot (QD) donor to the TiO 2 acceptor with size quantization properties of QDs that allows for the modulation of band energies to control photoresponse and photoconversion efficiency of solar cells. In order to understand the mechanisms that underpin this rapid charge transfer, the electronic properties of CdSe and PbSe QDs with different sizes on the TiO 2 substrate are simulated using a rigorous ab initio density functional method. Our method capitalizes onmore » localized orbital basis set, which is computationally less intensive. Quite intriguingly, a remarkable set of electron bridging states between QDs and TiO 2 occurring via the strong bonding between the conduction bands of QDs and TiO 2 is revealed. Such bridging states account for the fast adiabatic charge transfer from the QD donor to the TiO 2 acceptor, and may be a general feature for strongly coupled donor/acceptor systems. All the QDs/TiO 2 systems exhibit type II band alignments, with conduction band offsets that increase with the decrease in QD size. This facilitates the charge transfer from QDs donors to TiO 2 acceptors and explains the dependence of the increased charge transfer rate with the decreased QD size.« less

  11. High Speed Oblivious Random Access Memory (HS-ORAM)

    DTIC Science & Technology

    2015-09-01

    Bryan Parno, “Non-interactive verifiable computing: Outsourcing computation to untrusted workers”, 30th International Cryptology Conference, pp. 465...holder or any other person or corporation; or convey any rights or permission to manufacture , use, or sell any patented invention that may relate to...secure outsourced data access protocols. HS-ORAM deploys a number of server- side software components running inside tamper-proof secure coprocessors

  12. PHANTOM: Practical Oblivious Computation in a Secure Processor

    DTIC Science & Technology

    2014-05-16

    Utilizing Multiple FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6 Implementation on the HC-2ex 50 6.1 Integration with a RISC -V...development of Phantom, Mohit also contributed to the code base, in particular with regard to the integration between the ORAM controller and the RISC -V...well. v Tremendous thanks is owed to the team that developed the RISC -V processor Phantom is using: among other contributors, this includes

  13. Report of the Defense Science Board Task Force on Understanding Human Dynamics

    DTIC Science & Technology

    2009-03-01

    the willingness to accept casualties, are intrinsic parts of this culture , with women and children ...Department “gets.”4 Soldiers, sailors, airmen, and marines who are oblivious to the influence of culture on human dynamics will not understand what they are ...of socio- cultural information . Human Terrain Teams are trained and deployed for direct support at the brigade, division, and corps level.

  14. Mixed quantum-classical simulation of the hydride transfer reaction catalyzed by dihydrofolate reductase based on a mapped system-harmonic bath model

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Song, Kai; Shi, Qiang

    2018-03-01

    The hydride transfer reaction catalyzed by dihydrofolate reductase is studied using a recently developed mixed quantum-classical method to investigate the nuclear quantum effects on the reaction. Molecular dynamics simulation is first performed based on a two-state empirical valence bond potential to map the atomistic model to an effective double-well potential coupled to a harmonic bath. In the mixed quantum-classical simulation, the hydride degree of freedom is quantized, and the effective harmonic oscillator modes are treated classically. It is shown that the hydride transfer reaction rate using the mapped effective double-well/harmonic-bath model is dominated by the contribution from the ground vibrational state. Further comparison with the adiabatic reaction rate constant based on the Kramers theory confirms that the reaction is primarily vibrationally adiabatic, which agrees well with the high transmission coefficients found in previous theoretical studies. The calculated kinetic isotope effect is also consistent with the experimental and recent theoretical results.

  15. Vibrons in finite size molecular lattices: a route for high-fidelity quantum state transfer at room temperature.

    PubMed

    Pouthier, Vincent

    2012-11-07

    A communication protocol is proposed in which vibron-mediated quantum state transfer takes place in a molecular lattice. We consider two distant molecular groups grafted on each side of the lattice. These groups form two quantum computers where vibrational qubits are implemented and received. The lattice defines the communication channel along which a vibron delocalizes and interacts with a phonon bath. Using quasi-degenerate perturbation theory, vibron-phonon entanglement is taken into account through the effective Hamiltonian concept. A vibron is thus dressed by a virtual phonon cloud whereas a phonon is clothed by virtual vibronic transitions. It is shown that three quasi-degenerate dressed states define the relevant paths followed by a vibron to tunnel between the computers. When the coupling between the computers and the lattice is judiciously chosen, constructive interference takes place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperature range.

  16. Thermally activated delayed photoluminescence from pyrenyl-functionalized CdSe quantum dots

    NASA Astrophysics Data System (ADS)

    Mongin, Cédric; Moroz, Pavel; Zamkov, Mikhail; Castellano, Felix N.

    2018-02-01

    The generation and transfer of triplet excitons across semiconductor nanomaterial-molecular interfaces will play an important role in emerging photonic and optoelectronic technologies, and understanding the rules that govern such phenomena is essential. The ability to cooperatively merge the photophysical properties of semiconductor quantum dots with those of well-understood and inexpensive molecular chromophores is therefore paramount. Here we show that 1-pyrenecarboxylic acid-functionalized CdSe quantum dots undergo thermally activated delayed photoluminescence. This phenomenon results from a near quantitative triplet-triplet energy transfer from the nanocrystals to 1-pyrenecarboxylic acid, producing a molecular triplet-state 'reservoir' that thermally repopulates the photoluminescent state of CdSe through endothermic reverse triplet-triplet energy transfer. The photoluminescence properties are systematically and predictably tuned through variation of the quantum dot-molecule energy gap, temperature and the triplet-excited-state lifetime of the molecular adsorbate. The concepts developed are likely to be applicable to semiconductor nanocrystals interfaced with molecular chromophores, enabling potential applications of their combined excited states.

  17. Experimental Raman adiabatic transfer of optical states in rubidium

    NASA Astrophysics Data System (ADS)

    Appel, Jürgen; Figueroa, Eden; Vewinger, Frank; Marzlin, Karl-Peter; Lvovsky, Alexander

    2007-06-01

    An essential element of a quantum optical communication network is a tool for transferring and/or distributing quantum information between optical modes (possibly of different frequencies) in a loss- and decoherence-free fashion. We present a theory [1] and an experimental demonstration [2] of a protocol for routing and frequency conversion of optical quantum information via electromagnetically-induced transparency in an atomic system with multiple excited levels. Transfer of optical states between different signal modes is implemented by adiabatically changing the control fields. The proof-of-principle experiment is performed using the hyperfine levels of the rubidium D1 line. [1] F. Vewinger, J. Appel, E. Figueroa, A. I. Lvovsky, quant-ph/0611181 [2] J. Appel, K.-P. Marzlin, A. I. Lvovsky, Phys. Rev. A 73, 013804 (2006)

  18. Nonradiative Energy Transfer from Individual CdSe/ZnS Quantum Dots to Single-Layer and Few-Layer Tin Disulfide

    DOE PAGES

    Zang, Huidong; Routh, Prahlad K.; Huang, Yuan; ...

    2016-03-31

    We study the combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS 2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D–2D hybrids with enhanced light absorption properties. These 0D–2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS 2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D–2D hybrids increases with added number of SnS 2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing.

  19. Nonradiative Energy Transfer from Individual CdSe/ZnS Quantum Dots to Single-Layer and Few-Layer Tin Disulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zang, Huidong; Routh, Prahlad K.; Huang, Yuan

    We study the combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS 2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D–2D hybrids with enhanced light absorption properties. These 0D–2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS 2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D–2D hybrids increases with added number of SnS 2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing.

  20. Bidirectional microwave-mechanical-optical transducer in a dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Burns, Peter S.; Higginbotham, Andrew P.; Peterson, Robert W.; Urmey, Maxwell D.; Kampel, Nir S.; Menke, Timothy; Cicak, Katarina; Simmonds, Raymond. W.; Regal, Cindy A.; Lehnert, Konrad W.

    Transferring quantum states between microwave and optical networks would be a powerful resource for quantum communication and computation. Our approach is to simultaneously couple one mode of a micromechanical oscillator to a resonant microwave circuit and a high-finesse optical cavity. Building on previous work demonstrating bidirectional and efficient classical conversion at 4 K, a new microwave-to-optical transducer is operated at 0.1 K and preparations are underway to operate it in the quantum regime. To improve transfer efficiency, we characterize and implement wireless microwave access to the converter chip. Transfer efficiency of the device is measured, and loss in the LC circuit due to laser light is characterized. We acknowledge support from AFOSR MURI Grant FA9550-15-1-0015 and PFC National Science Foundation Grant 1125844.

  1. Electronic energy transfer: Localized operator partitioning of electronic energy in composite quantum systems

    NASA Astrophysics Data System (ADS)

    Khan, Yaser; Brumer, Paul

    2012-11-01

    A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.

  2. Two-dimensional spectroscopy: An approach to distinguish Förster and Dexter transfer processes in coupled nanostructures

    NASA Astrophysics Data System (ADS)

    Specht, Judith F.; Knorr, Andreas; Richter, Marten

    2015-04-01

    The linear and two-dimensional coherent optical spectra of Coulomb-coupled quantum emitters are discussed with respect to the underlying coupling processes. We present a theoretical analysis of the two different resonance energy transfer mechanisms between coupled nanostructures: Förster and Dexter interaction. Our investigation shows that the features visible in optical spectra of coupled quantum dots can be traced back to the nature of the underlying coupling mechanism (Förster or Dexter). Therefore, we discuss how the excitation transfer pathways can be controlled by choosing particular laser polarizations and mutual orientations of the quantum emitters in coherent two-dimensional spectroscopy. In this context, we analyze to what extent the delocalized double-excitonic states are bound to the optical selection rules of the uncoupled system.

  3. Capillary electrophoresis, a method for the determination of nucleic acid ligands covalently attached to quantum dots representing a donor of Förster resonance energy transfer.

    PubMed

    Datinská, Vladimíra; Klepárník, Karel; Belšánová, Barbora; Minárik, Marek; Foret, František

    2018-05-09

    The synthesis and determination of the structure of a Förster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Förster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single-stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a non-complementary strands. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. An analytical derivation of MC-SCF vibrational wave functions for the quantum dynamical simulation of multiple proton transfer reactions: Initial application to protonated water chains

    NASA Astrophysics Data System (ADS)

    Drukker, Karen; Hammes-Schiffer, Sharon

    1997-07-01

    This paper presents an analytical derivation of a multiconfigurational self-consistent-field (MC-SCF) solution of the time-independent Schrödinger equation for nuclear motion (i.e. vibrational modes). This variational MC-SCF method is designed for the mixed quantum/classical molecular dynamics simulation of multiple proton transfer reactions, where the transferring protons are treated quantum mechanically while the remaining degrees of freedom are treated classically. This paper presents a proof that the Hellmann-Feynman forces on the classical degrees of freedom are identical to the exact forces (i.e. the Pulay corrections vanish) when this MC-SCF method is used with an appropriate choice of basis functions. This new MC-SCF method is applied to multiple proton transfer in a protonated chain of three hydrogen-bonded water molecules. The ground state and the first three excited state energies and the ground state forces agree well with full configuration interaction calculations. Sample trajectories are obtained using adiabatic molecular dynamics methods, and nonadiabatic effects are found to be insignificant for these sample trajectories. The accuracy of the excited states will enable this MC-SCF method to be used in conjunction with nonadiabatic molecular dynamics methods. This application differs from previous work in that it is a real-time quantum dynamical nonequilibrium simulation of multiple proton transfer in a chain of water molecules.

  5. Sensitivity enhancements in MQ-MAS NMR of spin-5/2 nuclei using modulated rf mixing pulses

    NASA Astrophysics Data System (ADS)

    Vosegaard, Thomas; Massiot, Dominique; Grandinetti, Philip J.

    2000-08-01

    An X- overlineX pulse train with stepped modulation frequency was employed to enhance the multiple-quantum to single-quantum coherence transfer in the mixing period of the multiple-quantum magic-angle spinning (MQ-MAS) experiment for spin I=5/2 nuclei. Two MQ-MAS pulse sequences employing this mixing scheme for the triple-to-single and quintuple-to-single quantum coherence transfers have been designed and their performance is demonstrated for 27Al on samples of NaSi 3AlO 8 and 9Al 2O 3·2B 2O 3 . Compared to the standard single-pulse mixing sequences, the sensitivity is approximately doubled in the present experiments.

  6. Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system.

    PubMed

    Chwiej, T; Szafran, B

    2013-04-17

    We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.

  7. Electrochemical capacitance modulation in an interacting mesoscopic capacitor induced by internal charge transfer

    NASA Astrophysics Data System (ADS)

    Liu, Wei; He, Jianhong; Guo, Huazhong; Gao, Jie

    2018-04-01

    We report experiments on the dynamic response of an interacting mesoscopic capacitor consisting of a quantum dot with two confined spin-split levels of the lowest Landau level. In high magnetic fields, states inside the dot are regulated by a mixture of Coulomb interaction and Landau-level quantization, and electrons distribute on two spatially separated regions. Quantum point contact voltage and magnetic field are employed to manipulate the number and distribution of electrons inside the quantum dot. We find that the periodicity of the electrochemical capacitance oscillations is dominated by the charging energy, and their amplitudes, due to internal charge transfer and strong internal capacitive coupling, show rich variations of modulations. Magnetocapacitance displays a sawtoothlike manner and may differ in tooth directions for different voltages, which, we demonstrate, result from a sawtoothlike electrochemical potential change induced by internal charge transfer and field-sensitive electrostatic potential. We further build a charge stability diagram, which, together with all other capacitance properties, is consistently interpreted in terms of a double-dot model. The demonstrated technique is of interest as a tool for fast and sensitive charge state readout of a double-quantum-dot qubit in the gigahertz frequency quantum electronics.

  8. Phase transfer of 1- and 2-dimensional Cd-based nanocrystals

    NASA Astrophysics Data System (ADS)

    Kodanek, Torben; Banbela, Hadeel M.; Naskar, Suraj; Adel, Patrick; Bigall, Nadja C.; Dorfs, Dirk

    2015-11-01

    In this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe-CdS core-crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of photoluminescence quantum yield measurements as well as photoluminescence decay measurements have shown that the luminescence properties of the transferred nanostructures are affected by hole traps (induced by the thiol ligands themselves) as well as by spatial insulation and passivation against the environment. The influence of the tips of the nanorods on the luminescence is, however, insignificant. Accordingly, different ligands yield optimum results for different nanoparticle samples, mainly depending on the inorganic passivation of the respective samples. In case of CdSe@CdS nanorods, the highest emission intensities have been obtained by using short-chain ligands for the transfer preserving more than 50% of the pristine quantum yield of the hydrophobic nanorods. As opposed to this, the best possible quantum efficiency for the CdSe@CdS/ZnS nanorods has been achieved via MUA. The gained knowledge could be applied to transfer for the first time 2-dimensional CdSe-CdS core-crown nanoplatelets into water while preserving significant photoluminescence (up to 12% quantum efficiency).In this work, luminescent CdSe@CdS dot-in-rod nanocrystals, CdSe@CdS/ZnS nanorods as well as CdSe-CdS core-crown nanoplatelets were transferred into aqueous phase via ligand exchange reactions. For this purpose, bifunctional thiol-based ligands were employed, namely mercaptoacetic acid (MAA), 3-mercaptopropionic acid (MPA), 11-mercaptoundecanoic acid (MUA) as well as 2-(dimethylamino)ethanthiol (DMAET). Systematic investigations by means of photoluminescence quantum yield measurements as well as photoluminescence decay measurements have shown that the luminescence properties of the transferred nanostructures are affected by hole traps (induced by the thiol ligands themselves) as well as by spatial insulation and passivation against the environment. The influence of the tips of the nanorods on the luminescence is, however, insignificant. Accordingly, different ligands yield optimum results for different nanoparticle samples, mainly depending on the inorganic passivation of the respective samples. In case of CdSe@CdS nanorods, the highest emission intensities have been obtained by using short-chain ligands for the transfer preserving more than 50% of the pristine quantum yield of the hydrophobic nanorods. As opposed to this, the best possible quantum efficiency for the CdSe@CdS/ZnS nanorods has been achieved via MUA. The gained knowledge could be applied to transfer for the first time 2-dimensional CdSe-CdS core-crown nanoplatelets into water while preserving significant photoluminescence (up to 12% quantum efficiency). Electronic supplementary information (ESI) available: Further TEM images, further extinction spectra, particle size distribution and discussion about optical properties of the hydrophobic nanostructures. See DOI: 10.1039/c5nr06221g

  9. The scaling of weak field phase-only control in Markovian dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Am-Shallem, Morag; Kosloff, Ronnie

    We consider population transfer in open quantum systems, which are described by quantum dynamical semigroups (QDS). Using second order perturbation theory of the Lindblad equation, we show that it depends on a weak external field only through the field's autocorrelation function, which is phase independent. Therefore, for leading order in perturbation, QDS cannot support dependence of the population transfer on the phase properties of weak fields. We examine an example of weak-field phase-dependent population transfer, and show that the phase-dependence comes from the next order in the perturbation.

  10. Partial quantum information.

    PubMed

    Horodecki, Michał; Oppenheim, Jonathan; Winter, Andreas

    2005-08-04

    Information--be it classical or quantum--is measured by the amount of communication needed to convey it. In the classical case, if the receiver has some prior information about the messages being conveyed, less communication is needed. Here we explore the concept of prior quantum information: given an unknown quantum state distributed over two systems, we determine how much quantum communication is needed to transfer the full state to one system. This communication measures the partial information one system needs, conditioned on its prior information. We find that it is given by the conditional entropy--a quantity that was known previously, but lacked an operational meaning. In the classical case, partial information must always be positive, but we find that in the quantum world this physical quantity can be negative. If the partial information is positive, its sender needs to communicate this number of quantum bits to the receiver; if it is negative, then sender and receiver instead gain the corresponding potential for future quantum communication. We introduce a protocol that we term 'quantum state merging' which optimally transfers partial information. We show how it enables a systematic understanding of quantum network theory, and discuss several important applications including distributed compression, noiseless coding with side information, multiple access channels and assisted entanglement distillation.

  11. Interface and photoluminescence characteristics of graphene-(GaN/InGaN){sub n} multiple quantum wells hybrid structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liancheng, E-mail: wanglc@semi.ac.cn, E-mail: lzq@semi.ac.cn, E-mail: zh.zhang@hebut.edu.cn; Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083; Mind Star

    The effects of graphene on the optical properties of active system, e.g., the InGaN/GaN multiple quantum wells, are thoroughly investigated and clarified. Here, we have investigated the mechanisms accounting for the photoluminescence reduction for the graphene covered GaN/InGaN multiple quantum wells hybrid structure. Compared to the bare multiple quantum wells, the photoluminescence intensity of graphene covered multiple quantum wells showed a 39% decrease after excluding the graphene absorption losses. The responsible mechanisms have been identified with the following factors: (1) the graphene two dimensional hole gas intensifies the polarization field in multiple quantum wells, thus steepening the quantum well bandmore » profile and causing hole-electron pairs to further separate; (2) a lower affinity of graphene compared to air leading to a weaker capability to confine the excited hot electrons in multiple quantum wells; and (3) exciton transfer through non-radiative energy transfer process. These factors are theoretically analysed based on advanced physical models of semiconductor devices calculations and experimentally verified by varying structural parameters, such as the indium fraction in multiple quantum wells and the thickness of the last GaN quantum barrier spacer layer.« less

  12. Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter.

    PubMed

    Yang, Chui-Ping; Chu, Shih-I; Han, Siyuan

    2004-03-19

    We investigate the experimental feasibility of realizing quantum information transfer (QIT) and entanglement with SQUID qubits in a microwave cavity via dark states. Realistic system parameters are presented. Our results show that QIT and entanglement with two-SQUID qubits can be achieved with a high fidelity. The present scheme is tolerant to device parameter nonuniformity. We also show that the strong coupling limit can be achieved with SQUID qubits in a microwave cavity. Thus, cavity-SQUID systems provide a new way for production of nonclassical microwave source and quantum communication.

  13. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles

    PubMed Central

    Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Faraon, Andrei

    2017-01-01

    Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques generally limit the bandwidth, efficiency and active times of the quantum interface. Here, we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate a significant cavity protection effect at the single-photon level—a technique to suppress ensemble decoherence due to inhomogeneous broadening. The protected Rabi oscillations between the cavity field and the atomic super-radiant state enable ultra-fast transfer of photonic frequency qubits to the ions (∼50 GHz bandwidth) followed by retrieval with 98.7% fidelity. With the prospect of coupling to other long-lived rare-earth spin states, this technique opens the possibilities for broadband, always-ready quantum memories and fast optical-to-microwave transducers. PMID:28090078

  14. Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics.

    PubMed

    Mora-Sero, Ivan; Bertoluzzi, Luca; Gonzalez-Pedro, Victoria; Gimenez, Sixto; Fabregat-Santiago, Francisco; Kemp, Kyle W; Sargent, Edward H; Bisquert, Juan

    2013-01-01

    Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells.

  15. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    NASA Astrophysics Data System (ADS)

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-03-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95+/-5% and have potential to serve as the basis of spin-logic and network implementations.

  16. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    PubMed Central

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-01-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations. PMID:27029961

  17. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer.

    PubMed

    Coles, R J; Price, D M; Dixon, J E; Royall, B; Clarke, E; Kok, P; Skolnick, M S; Fox, A M; Makhonin, M N

    2016-03-31

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations.

  18. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan M.; Rochman, Jake; Faraon, Andrei

    2017-01-01

    Ensembles of solid-state optical emitters enable broadband quantum storage and transduction of photonic qubits, with applications in high-rate quantum networks for secure communications and interconnecting future quantum computers. To transfer quantum states using ensembles, rephasing techniques are used to mitigate fast decoherence resulting from inhomogeneous broadening, but these techniques generally limit the bandwidth, efficiency and active times of the quantum interface. Here, we use a dense ensemble of neodymium rare-earth ions strongly coupled to a nanophotonic resonator to demonstrate a significant cavity protection effect at the single-photon level--a technique to suppress ensemble decoherence due to inhomogeneous broadening. The protected Rabi oscillations between the cavity field and the atomic super-radiant state enable ultra-fast transfer of photonic frequency qubits to the ions (~50 GHz bandwidth) followed by retrieval with 98.7% fidelity. With the prospect of coupling to other long-lived rare-earth spin states, this technique opens the possibilities for broadband, always-ready quantum memories and fast optical-to-microwave transducers.

  19. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes.

    PubMed

    Qian, Zhao Sheng; Shan, Xiao Yue; Chai, Lu Jing; Ma, Juan Juan; Chen, Jian Rong; Feng, Hui

    2014-10-15

    An ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) between biocompatible graphene quantum dots and carbon nanotubes for DNA detection was reported. We take advantage of good biocompatibility and strong fluorescence of graphene quantum dots, base pairing specificity of DNA and unique fluorescence resonance energy transfer between graphene quantum dots and carbon nanotubes to achieve the analysis of low concentrations of DNA. Graphene quantum dots with high quantum yield up to 0.20 were prepared and served as the fluorophore of DNA probe. FRET process between graphene quantum dots-labeled probe and oxidized carbon nanotubes is easily achieved due to their efficient self-assembly through specific π-π interaction. This nanosensor can distinguish complementary and mismatched nucleic acid sequences with high sensitivity and good reproducibility. The detection method based on this nanosensor possesses a broad linear span of up to 133.0 nM and ultralow detection limit of 0.4 nM. The constructed nanosensor is expected to be highly biocompatible because of all its components with excellent biocompatibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    PubMed Central

    Illera, S.; Prades, J. D.; Cirera, A.; Cornet, A.

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide. PMID:25879055

  1. A transfer hamiltonian model for devices based on quantum dot arrays.

    PubMed

    Illera, S; Prades, J D; Cirera, A; Cornet, A

    2015-01-01

    We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  2. Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3 V

    NASA Astrophysics Data System (ADS)

    Seo, Satoshi; Shitagaki, Satoko; Ohsawa, Nobuharu; Inoue, Hideko; Suzuki, Kunihiko; Nowatari, Hiromi; Yamazaki, Shunpei

    2014-04-01

    A novel approach to enhance the power efficiency of an organic light-emitting diode (OLED) by employing energy transfer from an exciplex to a phosphorescent emitter is reported. It was found that excitation energy of an exciplex formed between an electron-transporting material with a π-deficient quinoxaline moiety and a hole-transporting material with aromatic amine structure can be effectively transferred to a phosphorescent iridium complex in an emission layer of a phosphorescent OLED. Moreover, such an exciplex formation increases quantum efficiency and reduces drive voltage. A highly efficient, low-voltage, and long-life OLED based on this energy transfer is also demonstrated. This OLED device exhibited extremely high external quantum efficiency of 31% even without any attempt to enhance light outcoupling and also achieved a low drive voltage of 2.8 V and a long lifetime of approximately 1,000,000 h at a luminance of 1,000 cd/m2.

  3. A contradictory phenomenon of deshelving pulses in a dilute medium used for lengthened photon storage time.

    PubMed

    Ham, Byoung S

    2010-08-16

    Lengthening of photon storage time has been an important issue in quantum memories for long distance quantum communications utilizing quantum repeaters. Atom population transfer into an auxiliary spin state has been adapted to increase photon storage time of photon echoes. In this population transfer process phase shift to the collective atoms is inevitable, where the phase recovery condition must be multiple of 2pi to satisfy rephasing mechanism. Recent adaptation of the population transfer method to atomic frequency comb (AFC) echoes [Afzelius et al., Phys. Rev. Lett. 104, 040503 (2010)], where the population transfer method is originated in a controlled reversible inhomogeneous broadening technique [Moiseev and Kroll, Phys. Rev. Lett. 87, 173601 (2001)], however, shows contradictory phenomenon violating the phase recovery condition. This contradiction in AFC is reviewed as a general case of optical locking applied to a dilute medium for an optical depth-dependent coherence leakage resulting in partial retrieval efficiency.

  4. Stimulated Raman adiabatic passage in a three-level superconducting circuit

    PubMed Central

    Kumar, K. S.; Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.

    2016-01-01

    The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering—enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic–adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level. PMID:26902454

  5. Stimulated Raman adiabatic passage in a three-level superconducting circuit.

    PubMed

    Kumar, K S; Vepsäläinen, A; Danilin, S; Paraoanu, G S

    2016-02-23

    The adiabatic manipulation of quantum states is a powerful technique that opened up new directions in quantum engineering--enabling tests of fundamental concepts such as geometrical phases and topological transitions, and holding the promise of alternative models of quantum computation. Here we benchmark the stimulated Raman adiabatic passage for circuit quantum electrodynamics by employing the first three levels of a transmon qubit. In this ladder configuration, we demonstrate a population transfer efficiency >80% between the ground state and the second excited state using two adiabatic Gaussian-shaped control microwave pulses. By doing quantum tomography at successive moments during the Raman pulses, we investigate the transfer of the population in time domain. Furthermore, we show that this protocol can be reversed by applying a third adiabatic pulse, we study a hybrid nondiabatic-adiabatic sequence, and we present experimental results for a quasi-degenerate intermediate level.

  6. Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective

    PubMed Central

    Bylicka, B.; Chruściński, D.; Maniscalco, S.

    2014-01-01

    Quantum technologies rely on the ability to coherently transfer information encoded in quantum states along quantum channels. Decoherence induced by the environment sets limits on the efficiency of any quantum-enhanced protocol. Generally, the longer a quantum channel is the worse its capacity is. We show that for non-Markovian quantum channels this is not always true: surprisingly the capacity of a longer channel can be greater than of a shorter one. We introduce a general theoretical framework linking non-Markovianity to the capacities of quantum channels and demonstrate how harnessing non-Markovianity may improve the efficiency of quantum information processing and communication. PMID:25043763

  7. Role of electron transfer in Ce{sup 3+} sensitized Yb{sup 3+} luminescence in borate glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sontakke, Atul D., E-mail: sontakke.atul.55a@st.kyoto-u.ac.jp; Katayama, Yumiko; Zhuang, Yixi

    2015-01-07

    In a Ce{sup 3+}-Yb{sup 3+} system, two mechanisms are proposed so far namely, the quantum cutting mechanism and the electron transfer mechanism explaining Yb{sup 3+} infrared luminescence under Ce{sup 3+} excitation. Among them, the quantum cutting mechanism, where one Ce{sup 3+} photon (ultraviolet/blue) gives rise to two Yb{sup 3+} photons (near infrared) is widely sought for because of its huge potential in enhancing the solar cell efficiency. In present study on Ce{sup 3+}-Yb{sup 3+} codoped borate glasses, Ce{sup 3+} sensitized Yb{sup 3+} luminescence at ∼1 μm have been observed on Ce{sup 3+} 5d state excitation. However, the intensity of sensitized Yb{supmore » 3+} luminescence is found to be very weak compared to the strong quenching occurred in Ce{sup 3+} luminescence in Yb{sup 3+} codoped glasses. Moreover, the absolute luminescence quantum yield also showed a decreasing trend with Yb{sup 3+} codoping in the glasses. The overall behavior of the luminescence properties and the quantum yield is strongly contradicting with the quantum cutting phenomenon. The results are attributed to the energetically favorable electron transfer interactions followed by Ce{sup 3+}-Yb{sup 3+} ⇌ Ce{sup 4+}-Yb{sup 2+} inter-valence charge transfer and successfully explained using the absolute electron binding energies of dopant ions in the studied borate glass. Finally, an attempt has been presented to generalize the electron transfer mechanism among opposite oxidation/reduction property dopant ions using the vacuum referred electron binding energy (VRBE) scheme for lanthanide series.« less

  8. Transfer and conversion of images based on EIT in atom vapor.

    PubMed

    Cao, Mingtao; Zhang, Liyun; Yu, Ya; Ye, Fengjuan; Wei, Dong; Guo, Wenge; Zhang, Shougang; Gao, Hong; Li, Fuli

    2014-05-01

    Transfer and conversion of images between different wavelengths or polarization has significant applications in optical communication and quantum information processing. We demonstrated the transfer of images based on electromagnetically induced transparency (EIT) in a rubidium vapor cell. In experiments, a 2D image generated by a spatial light modulator is used as a coupling field, and a plane wave served as a signal field. We found that the image carried by coupling field could be transferred to that carried by signal field, and the spatial patterns of transferred image are much better than that of the initial image. It also could be much smaller than that determined by the diffraction limit of the optical system. We also studied the subdiffraction propagation for the transferred image. Our results may have applications in quantum interference lithography and coherent Raman spectroscopy.

  9. Deterministic quantum teleportation with atoms.

    PubMed

    Riebe, M; Häffner, H; Roos, C F; Hänsel, W; Benhelm, J; Lancaster, G P T; Körber, T W; Becher, C; Schmidt-Kaler, F; James, D F V; Blatt, R

    2004-06-17

    Teleportation of a quantum state encompasses the complete transfer of information from one particle to another. The complete specification of the quantum state of a system generally requires an infinite amount of information, even for simple two-level systems (qubits). Moreover, the principles of quantum mechanics dictate that any measurement on a system immediately alters its state, while yielding at most one bit of information. The transfer of a state from one system to another (by performing measurements on the first and operations on the second) might therefore appear impossible. However, it has been shown that the entangling properties of quantum mechanics, in combination with classical communication, allow quantum-state teleportation to be performed. Teleportation using pairs of entangled photons has been demonstrated, but such techniques are probabilistic, requiring post-selection of measured photons. Here, we report deterministic quantum-state teleportation between a pair of trapped calcium ions. Following closely the original proposal, we create a highly entangled pair of ions and perform a complete Bell-state measurement involving one ion from this pair and a third source ion. State reconstruction conditioned on this measurement is then performed on the other half of the entangled pair. The measured fidelity is 75%, demonstrating unequivocally the quantum nature of the process.

  10. Role of quantum coherence in the thermodynamics of energy transfer

    NASA Astrophysics Data System (ADS)

    Henao, Ivan; Serra, Roberto M.

    2018-06-01

    Recent research on the thermodynamic arrow of time, at the microscopic scale, has questioned the universality of its direction. Theoretical studies showed that quantum correlations can be used to revert the natural heat flow (from the hot body to the cold one), posing an apparent challenge to the second law of thermodynamics. Such an "anomalous" heat current was observed in a recent experiment (K. Micadei et al., arXiv:1711.03323), by employing two spin systems initially quantum correlated. Nevertheless, the precise relationship between this intriguing phenomenon and the initial conditions that allow it is not fully evident. Here, we address energy transfer in a wider perspective, identifying a nonclassical contribution that applies to the reversion of the heat flow as well as to more general forms of energy exchange. We derive three theorems that describe the energy transfer between two microscopic systems, for arbitrary initial bipartite states. Using these theorems, we obtain an analytical bound showing that certain type of quantum coherence can optimize such a process, outperforming incoherent states. This genuine quantum advantage is corroborated through a characterization of the energy transfer between two qubits. For this system, it is shown that a large enough amount of coherence is necessary and sufficient to revert the thermodynamic arrow of time. As a second crucial consequence of the presented theorems, we introduce a class of nonequilibrium states that only allow unidirectional energy flow. In this way, we broaden the set where the standard Clausius statement of the second law applies.

  11. Improvement of Charge Transportation in Si Quantum Dot-Sensitized Solar Cells Using Vanadium Doped TiO2.

    PubMed

    Seo, Hyunwoong; Ichida, Daiki; Hashimoto, Shinji; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu; Nam, Sang-Hun; Boo, Jin-Hyo

    2016-05-01

    The multiple exciton generation characteristics of quantum dots have been expected to enhance the performance of photochemical solar cells. In previous work, we first introduced Si quantum dot for sensitized solar cells. The Si quantum dots were fabricated by multi-hollow discharge plasma chemical vapor deposition, and were characterized optically and morphologically. The Si quantum dot-sensitized solar cells had poor performance due to significant electron loss by charge recombination. Although the large Si particle size resulted in the exposure of a large TiO2 surface area, there was a limit to ho much the particle size could be decreased due to the reduced absorbance of small particles. Therefore, this work focused on decreasing the internal impedance to improve charge transfer. TiO2 was electronically modified by doping with vanadium, which can improve electron transfer in the TiO2 network, and which is stable in the redox electrolyte. Photogenerated electrons can more easily arrive at the conductive electrode due to the decreased internal impedance. The dark photovoltaic properties confirmed the reduction of charge recombination, and the photon-to-current conversion efficiency reflected the improved electron transfer. Impedance analysis confirmed a decrease in internal impedance and an increased electron lifetime. Consequently, these improvements by vanadium doping enhanced the overall performance of Si quantum dot-sensitized solar cells.

  12. Investigation of the weak binding of a tetrahistidine-tagged peptide to quantum dots by using capillary electrophoresis with fluorescence detection.

    PubMed

    Qin, Haifang; Jiang, Xiyuan; Fan, Jie; Wang, Jianpeng; Liu, Li; Qiu, Lin; Wang, Jianhao; Jiang, Pengju

    2017-01-01

    Capillary electrophoresis with fluorescence detection was utilized to probe the self-assembly between cyanine group dye labeled tetrahistidine containing peptide and CdSe/ZnS quantum dots, inside the capillary. Quantum dots and cyanine group dye labeled tetrahistidine containing peptide were injected into the capillary one after the other and allowed to self-assemble. Their self-assembly resulted into a measurable Förster resonance energy transfer signal between quantum dots and cyanine group dye labeled tetrahistidine containing peptide. The Förster resonance energy transfer signal increased upon increasing the cyanine group dye labeled tetrahistidine containing peptide/quantum dot molar ratio and reached a plateau at the 32/1 molar ratio. Additionally, the Förster resonance energy transfer signal was also affected by the increment of the interval time of injection and the sampling time. Online ligand exchange experiments were used to assess, the potential of a monovalent ligand of imidazole and a hexavalent ligand peptide, to displace surface bound cyanine group dye labeled peptide ligands from the quantum dots surface. Under optimal conditions, a linear relationship between the integrated peak areas and hexavalent ligand peptide was obtained at a hexavalent ligand concentration range of 0-0.5 mM. Therefore, the present assay has the potential to be applied in the online ligands detection. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Atom Tunneling in the Hydroxylation Process of Taurine/α-Ketoglutarate Dioxygenase Identified by Quantum Mechanics/Molecular Mechanics Simulations.

    PubMed

    Álvarez-Barcia, Sonia; Kästner, Johannes

    2017-06-01

    Taurine/α-ketoglutarate dioxygenase is one of the most studied α-ketoglutarate-dependent dioxygenases (αKGDs), involved in several biotechnological applications. We investigated the key step in the catalytic cycle of the αKGDs, the hydrogen transfer process, by a quantum mechanics/molecular mechanics approach (B3LYP/CHARMM22). Analysis of the charge and spin densities during the reaction demonstrates that a concerted mechanism takes place, where the H atom transfer happens simultaneously with the electron transfer from taurine to the Fe═O cofactor. We found the quantum tunneling of the hydrogen atom to increase the rate constant by a factor of 40 at 5 °C. As a consequence, a quite high kinetic isotope effect close to 60 is obtained, which is consistent with the experimental value.

  14. Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors

    PubMed Central

    Chou, Kenny F.; Dennis, Allison M.

    2015-01-01

    Förster (or fluorescence) resonance energy transfer amongst semiconductor quantum dots (QDs) is reviewed, with particular interest in biosensing applications. The unique optical properties of QDs provide certain advantages and also specific challenges with regards to sensor design, compared to other FRET systems. The brightness and photostability of QDs make them attractive for highly sensitive sensing and long-term, repetitive imaging applications, respectively, but the overlapping donor and acceptor excitation signals that arise when QDs serve as both the donor and acceptor lead to high background signals from direct excitation of the acceptor. The fundamentals of FRET within a nominally homogeneous QD population as well as energy transfer between two distinct colors of QDs are discussed. Examples of successful sensors are highlighted, as is cascading FRET, which can be used for solar harvesting. PMID:26057041

  15. Nonlocal Quantum Information Transfer Without Superluminal Signalling and Communication

    NASA Astrophysics Data System (ADS)

    Walleczek, Jan; Grössing, Gerhard

    2016-09-01

    It is a frequent assumption that—via superluminal information transfers—superluminal signals capable of enabling communication are necessarily exchanged in any quantum theory that posits hidden superluminal influences. However, does the presence of hidden superluminal influences automatically imply superluminal signalling and communication? The non-signalling theorem mediates the apparent conflict between quantum mechanics and the theory of special relativity. However, as a `no-go' theorem there exist two opposing interpretations of the non-signalling constraint: foundational and operational. Concerning Bell's theorem, we argue that Bell employed both interpretations, and that he finally adopted the operational position which is associated often with ontological quantum theory, e.g., de Broglie-Bohm theory. This position we refer to as "effective non-signalling". By contrast, associated with orthodox quantum mechanics is the foundational position referred to here as "axiomatic non-signalling". In search of a decisive communication-theoretic criterion for differentiating between "axiomatic" and "effective" non-signalling, we employ the operational framework offered by Shannon's mathematical theory of communication, whereby we distinguish between Shannon signals and non-Shannon signals. We find that an effective non-signalling theorem represents two sub-theorems: (1) Non-transfer-control (NTC) theorem, and (2) Non-signification-control (NSC) theorem. Employing NTC and NSC theorems, we report that effective, instead of axiomatic, non-signalling is entirely sufficient for prohibiting nonlocal communication. Effective non-signalling prevents the instantaneous, i.e., superluminal, transfer of message-encoded information through the controlled use—by a sender-receiver pair —of informationally-correlated detection events, e.g., in EPR-type experiments. An effective non-signalling theorem allows for nonlocal quantum information transfer yet—at the same time—effectively denies superluminal signalling and communication.

  16. Wide-Area Traffic Management for Cloud Services

    DTIC Science & Technology

    2012-04-01

    performance prediction tools [11], which are usually load oblivious. Therefore, without information about link loads and capacities, a CDN may direct...powerful tool . DONAR allows its customers to dictate a replica’s (i) split weight, wi, the desired proportion of requests that a particular replica i...Diagnostic Tool (NDT) [100], which is used for the Federal Communication Commission’s Consumer Broadband Test, and NPAD [101]—are more closely integrated with

  17. Cache-Oblivious parallel SIMD Viterbi decoding for sequence search in HMMER.

    PubMed

    Ferreira, Miguel; Roma, Nuno; Russo, Luis M S

    2014-05-30

    HMMER is a commonly used bioinformatics tool based on Hidden Markov Models (HMMs) to analyze and process biological sequences. One of its main homology engines is based on the Viterbi decoding algorithm, which was already highly parallelized and optimized using Farrar's striped processing pattern with Intel SSE2 instruction set extension. A new SIMD vectorization of the Viterbi decoding algorithm is proposed, based on an SSE2 inter-task parallelization approach similar to the DNA alignment algorithm proposed by Rognes. Besides this alternative vectorization scheme, the proposed implementation also introduces a new partitioning of the Markov model that allows a significantly more efficient exploitation of the cache locality. Such optimization, together with an improved loading of the emission scores, allows the achievement of a constant processing throughput, regardless of the innermost-cache size and of the dimension of the considered model. The proposed optimized vectorization of the Viterbi decoding algorithm was extensively evaluated and compared with the HMMER3 decoder to process DNA and protein datasets, proving to be a rather competitive alternative implementation. Being always faster than the already highly optimized ViterbiFilter implementation of HMMER3, the proposed Cache-Oblivious Parallel SIMD Viterbi (COPS) implementation provides a constant throughput and offers a processing speedup as high as two times faster, depending on the model's size.

  18. Privacy-Aware Relevant Data Access with Semantically Enriched Search Queries for Untrusted Cloud Storage Services.

    PubMed

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Lee, Sungyoung; Chung, Tae Choong

    2016-01-01

    Privacy-aware search of outsourced data ensures relevant data access in the untrusted domain of a public cloud service provider. Subscriber of a public cloud storage service can determine the presence or absence of a particular keyword by submitting search query in the form of a trapdoor. However, these trapdoor-based search queries are limited in functionality and cannot be used to identify secure outsourced data which contains semantically equivalent information. In addition, trapdoor-based methodologies are confined to pre-defined trapdoors and prevent subscribers from searching outsourced data with arbitrarily defined search criteria. To solve the problem of relevant data access, we have proposed an index-based privacy-aware search methodology that ensures semantic retrieval of data from an untrusted domain. This method ensures oblivious execution of a search query and leverages authorized subscribers to model conjunctive search queries without relying on predefined trapdoors. A security analysis of our proposed methodology shows that, in a conspired attack, unauthorized subscribers and untrusted cloud service providers cannot deduce any information that can lead to the potential loss of data privacy. A computational time analysis on commodity hardware demonstrates that our proposed methodology requires moderate computational resources to model a privacy-aware search query and for its oblivious evaluation on a cloud service provider.

  19. Privacy-Aware Relevant Data Access with Semantically Enriched Search Queries for Untrusted Cloud Storage Services

    PubMed Central

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Lee, Sungyoung; Chung, Tae Choong

    2016-01-01

    Privacy-aware search of outsourced data ensures relevant data access in the untrusted domain of a public cloud service provider. Subscriber of a public cloud storage service can determine the presence or absence of a particular keyword by submitting search query in the form of a trapdoor. However, these trapdoor-based search queries are limited in functionality and cannot be used to identify secure outsourced data which contains semantically equivalent information. In addition, trapdoor-based methodologies are confined to pre-defined trapdoors and prevent subscribers from searching outsourced data with arbitrarily defined search criteria. To solve the problem of relevant data access, we have proposed an index-based privacy-aware search methodology that ensures semantic retrieval of data from an untrusted domain. This method ensures oblivious execution of a search query and leverages authorized subscribers to model conjunctive search queries without relying on predefined trapdoors. A security analysis of our proposed methodology shows that, in a conspired attack, unauthorized subscribers and untrusted cloud service providers cannot deduce any information that can lead to the potential loss of data privacy. A computational time analysis on commodity hardware demonstrates that our proposed methodology requires moderate computational resources to model a privacy-aware search query and for its oblivious evaluation on a cloud service provider. PMID:27571421

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marocico, Cristian A.; Zhang, Xia; Bradley, A. Louise, E-mail: bradlel@tcd.ie

    We present in this contribution a comprehensive investigation of the effect of the size of gold nanospheres on the decay and energy transfer rates of quantum systems placed close to these nanospheres. These phenomena have been investigated before, theoretically and experimentally, but no comprehensive study of the influence of the nanoparticle size on important dependences of the decay and energy transfer rates, such as the dependence on the donor-acceptor spectral overlap and the relative positions of the donor, acceptor, and nanoparticle, exists. As such, different accounts of the energy transfer mechanism have been presented in the literature. We perform anmore » investigation of the energy transfer mechanisms between emitters and gold nanospheres and between donor-acceptor pairs in the presence of the gold nanospheres using a Green’s tensor formalism, experimentally verified in our lab. We find that the energy transfer rate to small nanospheres is greatly enhanced, leading to a strong quenching of the emission of the emitter. When the nanosphere size is increased, it acts as an antenna, increasing the emission of the emitter. We also investigate the emission wavelength and intrinsic quantum yield dependence of the energy transfer to the nanosphere. As evidenced from the literature, the energy transfer process between the quantum system and the nanosphere can have a complicated distance dependence, with a r{sup −6} regime, characteristic of the Förster energy transfer mechanism, but also exhibiting other distance dependences. In the case of a donor-acceptor pair of quantum systems in the presence of a gold nanosphere, when the donor couples strongly to the nanosphere, acting as an enhanced dipole; the donor-acceptor energy transfer rate then follows a Förster trend, with an increased Förster radius. The coupling of the acceptor to the nanosphere has a different distance dependence. The angular dependence of the energy transfer efficiency between donor and acceptor exhibits a strong focusing effect and the same enhanced donor-dipole character in different angular arrangements. The spectral overlap of the donor emission and acceptor absorption spectra shows that the energy transfer follows the near-field scattering efficiency, with a red-shift from the localized surface plasmon peak for small sphere sizes.« less

  1. Speeding up adiabatic population transfer in a Josephson qutrit via counter-diabatic driving

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Bo; Lu, Xiao-Jing; Li, M.; Yan, Run-Ying; Zhou, Yun-Qing

    2017-12-01

    We propose a theoretical scheme to speed up adiabatic population transfer in a Josephson artificial qutrit by transitionless quantum driving. At a magic working point, an effective three-level subsystem can be chosen to constitute our qutrit. With Stokes and pump driving, adiabatic population transfer can be achieved in the qutrit by means of stimulated Raman adiabatic passage. Assisted by a counter-diabatic driving, the adiabatic population transfer can be sped up drastically with accessible parameters. Moreover, the accelerated operation is flexibly reversible and highly robust against decoherence effects. Thanks to these distinctive advantages, the present protocol could offer a promising avenue for optimal coherent operations in Josephson quantum circuits.

  2. Thermal induced carrier's transfer in bimodal size distribution InAs/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Ilahi, B.; Alshehri, K.; Madhar, N. A.; Sfaxi, L.; Maaref, H.

    2018-06-01

    This work reports on the investigation of the thermal induced carriers' transfer mechanism in vertically stacked bimodal size distribution InAs/GaAs quantum dots (QD). A model treating the QD as a localized states ensemble (LSE) has been employed to fit the atypical temperature dependence of the photoluminescence (PL) emission energies and linewidth. The results suggest that thermally activated carriers transfer within the large size QD family occurs through the neighboring smaller size QD as an intermediate channel before direct carriers redistribution. The obtained activation energy suggests also the possible contribution of the wetting layer (WL) continuum states as a second mediator channel for carriers transfer.

  3. Realization of reliable solid-state quantum memory for photonic polarization qubit.

    PubMed

    Zhou, Zong-Quan; Lin, Wei-Bin; Yang, Ming; Li, Chuan-Feng; Guo, Guang-Can

    2012-05-11

    Faithfully storing an unknown quantum light state is essential to advanced quantum communication and distributed quantum computation applications. The required quantum memory must have high fidelity to improve the performance of a quantum network. Here we report the reversible transfer of photonic polarization states into collective atomic excitation in a compact solid-state device. The quantum memory is based on an atomic frequency comb (AFC) in rare-earth ion-doped crystals. We obtain up to 0.999 process fidelity for the storage and retrieval process of single-photon-level coherent pulse. This reliable quantum memory is a crucial step toward quantum networks based on solid-state devices.

  4. Quantum communication beyond the localization length in disordered spin chains.

    PubMed

    Allcock, Jonathan; Linden, Noah

    2009-03-20

    We study the effects of localization on quantum state transfer in spin chains. We show how to use quantum error correction and multiple parallel spin chains to send a qubit with high fidelity over arbitrary distances, in particular, distances much greater than the localization length of the chain.

  5. The role of quantum effects in proton transfer reactions in enzymes: quantum tunneling in a noisy environment?

    NASA Astrophysics Data System (ADS)

    Bothma, Jacques P.; Gilmore, Joel B.; McKenzie, Ross H.

    2010-05-01

    We consider the role of quantum effects in the transfer of hydrogen-like species in enzyme-catalyzed reactions. This review is stimulated by claims that the observed magnitude and temperature dependence of kinetic isotope effects (KIEs) implies that quantum tunneling below the energy barrier associated with the transition state significantly enhances the reaction rate in many enzymes. We review the path integral approach and the Caldeira-Leggett model, which provides a general framework to describe and understand tunneling in a quantum system that interacts with a noisy environment at nonzero temperature. Here the quantum system is the active site of the enzyme, and the environment is the surrounding protein and water. Tunneling well below the barrier only occurs for temperatures less than a temperature T0, which is determined by the curvature of the potential energy surface near the top of the barrier. We argue that for most enzymes this temperature is less than room temperature. We review typical values for the parameters in the Caldeira-Leggett Hamiltonian, including the frequency-dependent friction and noise due to the environment. For physically reasonable parameters, we show that quantum transition state theory gives a quantitative description of the temperature dependence and magnitude of KIEs for two classes of enzymes that have been claimed to exhibit signatures of quantum tunneling. The only quantum effects are those associated with the transition state, both reflection at the barrier top and tunneling just below the barrier. We establish that the friction and noise due to the environment are weak and only slightly modify the reaction rate. Furthermore, at room temperature and for typical energy barriers environmental fluctuations with frequencies much less than 1000 cm-1 do not have a significant effect on quantum corrections to the reaction rate. This is essentially because the time scales associated with the dynamics of proton transfer are faster than much of the low-frequency noise associated with the protein and solvent.

  6. Deterministic quantum teleportation of photonic quantum bits by a hybrid technique.

    PubMed

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; van Loock, Peter; Furusawa, Akira

    2013-08-15

    Quantum teleportation allows for the transfer of arbitrary unknown quantum states from a sender to a spatially distant receiver, provided that the two parties share an entangled state and can communicate classically. It is the essence of many sophisticated protocols for quantum communication and computation. Photons are an optimal choice for carrying information in the form of 'flying qubits', but the teleportation of photonic quantum bits (qubits) has been limited by experimental inefficiencies and restrictions. Main disadvantages include the fundamentally probabilistic nature of linear-optics Bell measurements, as well as the need either to destroy the teleported qubit or attenuate the input qubit when the detectors do not resolve photon numbers. Here we experimentally realize fully deterministic quantum teleportation of photonic qubits without post-selection. The key step is to make use of a hybrid technique involving continuous-variable teleportation of a discrete-variable, photonic qubit. When the receiver's feedforward gain is optimally tuned, the continuous-variable teleporter acts as a pure loss channel, and the input dual-rail-encoded qubit, based on a single photon, represents a quantum error detection code against photon loss and hence remains completely intact for most teleportation events. This allows for a faithful qubit transfer even with imperfect continuous-variable entangled states: for four qubits the overall transfer fidelities range from 0.79 to 0.82 and all of them exceed the classical limit of teleportation. Furthermore, even for a relatively low level of the entanglement, qubits are teleported much more efficiently than in previous experiments, albeit post-selectively (taking into account only the qubit subspaces), and with a fidelity comparable to the previously reported values.

  7. Toward simulating complex systems with quantum effects

    NASA Astrophysics Data System (ADS)

    Kenion-Hanrath, Rachel Lynn

    Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation parameters, and demonstrate the ability of this approach to optimize MQC-IVR simulations.

  8. Quantum dynamics in strong fluctuating fields

    NASA Astrophysics Data System (ADS)

    Goychuk, Igor; Hänggi, Peter

    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete state fluctuations531 2.3. Averaging the quantum propagator533  2.3.1. Kubo oscillator535  2.3.2. Averaged dynamics of two-level quantum systems exposed to two-state stochastic fields537 2.4. Projection operator method: a primer5403. Two-state quantum dynamics in periodic fields542 3.1. Coherent destruction of tunnelling542 3.2. Driving-induced tunnelling oscillations (DITO)5434. Dissipative quantum dynamics in strong time-dependent fields544 4.1. General formalism544  4.1.1. Weak-coupling approximation545  4.1.2. Markovian approximation: Generalised Redfield Equations5475. Application I: Quantum relaxation in driven, dissipative two-level systems548 5.1. Decoupling approximation for fast fluctuating energy levels550  5.1.1. Control of quantum rates551  5.1.2. Stochastic cooling and inversion of level populations552  5.1.3. Emergence of an effective energy bias553 5.2. Quantum relaxation in strong periodic fields554 5.3. Approximation of time-dependent rates554 5.4. Exact averaging for dichotomous Markovian fluctuations5556. Application II: Driven electron transfer within a spin-boson description557 6.1. Curve-crossing problems with dissipation558 6.2. Weak system-bath coupling559 6.3. Beyond weak-coupling theory: Strong system-bath coupling563  6.3.1. Fast fluctuating energy levels565  6.3.2. Exact averaging over dichotomous fluctuations of the energy levels566  6.3.3. Electron transfer in fast oscillating periodic fields567  6.3.4. Dichotomously fluctuating tunnelling barrier5687. Quantum transport in dissipative tight-binding models subjected tostrong external fields569 7.1. Noise-induced absolute negative mobility571 7.2. Dissipative quantum rectifiers573 7.3. Limit of vanishing dissipation575 7.4. Case of harmonic mixing drive5758. Summary576Acknowledgements578References579

  9. Real-Time Quantum Dynamics of Long-Range Electronic Excitation Transfer in Plasmonic Nanoantennas.

    PubMed

    Ilawe, Niranjan V; Oviedo, M Belén; Wong, Bryan M

    2017-08-08

    Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET; in particular, we show that the commonly used "nearest-neighbor" FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems.

  10. Handshake electron transfer from hydrogen Rydberg atoms incident at a series of metallic thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbard, J. A.; Softley, T. P.

    2016-06-21

    Thin metallic films have a 1D quantum well along the surface normal direction, which yields particle-in-a-box style electronic quantum states. However the quantum well is not infinitely deep and the wavefunctions of these states penetrate outside the surface where the electron is bound by its own image-charge attraction. Therefore a series of discrete, vacant states reach out from the thin film into the vacuum increasing the probability of electron transfer from an external atom or molecule to the thin film, especially for the resonant case where the quantum well energy matches that of the atom. We show that “handshake” electronmore » transfer from a highly excited Rydberg atom to these thin-film states is experimentally measurable. Thicker films have a wider 1D box, changing the energetic distribution and image-state contribution to the thin film wavefunctions, resulting in more resonances. Calculations successfully predict the number of resonances and the nature of the thin-film wavefunctions for a given film thickness.« less

  11. The Effect of Isotopic Substitution on Quantum Proton Transfer Across Short Water Bridges in Biological Systems

    NASA Astrophysics Data System (ADS)

    Blazejewski, Jacob; Schultz, Chase; Mazzuca, James

    2015-03-01

    Many biological systems utilize water chains to transfer charge over long distances by means of an excess proton. This study examines how quantum effects impact these reactions in a small model system. The model consists of a water molecule situated between an imidazole donor and acceptor group, which simulate a fixed amino acid backbone. A one dimensional energy profile is evaluated using density functional theory at the 6-31G*/B3LYP level, which generates a barrier with a width of 0.6 Å and a height of 20.7 kcal/mol. Quantum transmission probability is evaluated by solving the time dependent Schrödinger equation on a grid. Isotopic effects are examined by performing calculations with both hydrogen and deuterium. The ratio of hydrogen over the deuterium shows a 130-fold increase in transmission probability at low temperatures. This indicates a substantial quantum tunneling effect. The study of higher dimensional systems as well as increasing the number of water molecules in the chain will be necessary to fully describe the proton transfer process. Alma College Provost's Office.

  12. Single-nitrogen-vacancy-center quantum memory for a superconducting flux qubit mediated by a ferromagnet

    NASA Astrophysics Data System (ADS)

    Lai, Yen-Yu; Lin, Guin-Dar; Twamley, Jason; Goan, Hsi-Sheng

    2018-05-01

    We propose a quantum memory scheme to transfer and store the quantum state of a superconducting flux qubit (FQ) into the electron spin of a single nitrogen-vacancy (NV) center in diamond via yttrium iron garnet (YIG), a ferromagnet. Unlike an ensemble of NV centers, the YIG moderator can enhance the effective FQ-NV-center coupling strength without introducing additional appreciable decoherence. We derive the effective interaction between the FQ and the NV center by tracing out the degrees of freedom of the collective mode of the YIG spins. We demonstrate the transfer, storage, and retrieval procedures, taking into account the effects of spontaneous decay and pure dephasing. Using realistic experimental parameters for the FQ, NV center and YIG, we find that a combined transfer, storage, and retrieval fidelity higher than 0.9, with a long storage time of 10 ms, can be achieved. This hybrid system not only acts as a promising quantum memory, but also provides an example of enhanced coupling between various systems through collective degrees of freedom.

  13. Population transfer and rapid passage effects in a low pressure gas using a continuous wave quantum cascade laser.

    PubMed

    McCormack, E A; Lowth, H S; Bell, M T; Weidmann, D; Ritchie, G A D

    2012-07-21

    A continuous wave quantum cascade laser (cw-QCL) operating at 10 μm has been used to record absorption spectra of low pressure samples of OCS in an astigmatic Herriott cell. As a result of the frequency chirp of the laser, the spectra show clearly the effects of rapid passage on the absorption line shape. At the low chirp rates that can be obtained with the cw-QCL, population transfer between rovibrational quantum states is predicted to be much more efficient than in typical pulsed QCL experiments. This optical pumping is investigated by solving the Maxwell Bloch equations to simulate the propagation of the laser radiation through an inhomogeneously broadened two-level system. The calculated absorption profiles show good quantitative agreement with those measured experimentally over a range of chirp rates and optical thicknesses. It is predicted that at a low chirp rate of 0.13 MHz ns(-1), the population transfer between rovibrational quantum states is 12%, considerably more than that obtained at the higher chirp rates utilised in pulsed QCL experiments.

  14. Ultrashort electromagnetic pulse control of intersubband quantum well transitions

    PubMed Central

    2012-01-01

    We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π. PMID:22916956

  15. Ultrashort electromagnetic pulse control of intersubband quantum well transitions.

    PubMed

    Paspalakis, Emmanuel; Boviatsis, John

    2012-08-23

    : We study the creation of high-efficiency controlled population transfer in intersubband transitions of semiconductor quantum wells. We give emphasis to the case of interaction of the semiconductor quantum well with electromagnetic pulses with a duration of few cycles and even a single cycle. We numerically solve the effective nonlinear Bloch equations for a specific double GaAs/AlGaAs quantum well structure, taking into account the ultrashort nature of the applied field, and show that high-efficiency population inversion is possible for specific pulse areas. The dependence of the efficiency of population transfer on the electron sheet density and the carrier envelope phase of the pulse is also explored. For electromagnetic pulses with a duration of several cycles, we find that the change in the electron sheet density leads to a very different response of the population in the two subbands to pulse area. However, for pulses with a duration equal to or shorter than 3 cycles, we show that efficient population transfer between the two subbands is possible, independent of the value of electron sheet density, if the pulse area is Π.

  16. Carrier transfer in vertically stacked quantum ring-quantum dot chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, Yu. I., E-mail: ymazur@uark.edu; Dorogan, V. G.; Benamara, M.

    2015-04-21

    The interplay between structural properties and charge transfer in self-assembled quantum ring (QR) chains grown by molecular beam epitaxy on top of an InGaAs/GaAs quantum dot (QD) superlattice template is analyzed and characterized. The QDs and QRs are vertically stacked and laterally coupled as well as aligned within each layer due to the strain field distributions that governs the ordering. The strong interdot coupling influences the carrier transfer both along as well as between chains in the ring layer and dot template structures. A qualitative contrast between different dynamic models has been developed. By combining temperature and excitation intensity effects,more » the tuning of the photoluminescence gain for either the QR or the QD mode is attained. The information obtained here about relaxation parameters, energy scheme, interlayer and interdot coupling resulting in creation of 1D structures is very important for the usage of such specific QR–QD systems for applied purposes such as lasing, detection, and energy-harvesting technology of future solar panels.« less

  17. Photocatalytic Conversion of Nitrobenzene to Aniline through Sequential Proton-Coupled One-Electron Transfers from a Cadmium Sulfide Quantum Dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Stephen C.; Bettis Homan, Stephanie; Weiss, Emily A.

    2016-01-28

    This paper describes the use of cadmium sulfide quantum dots (CdS QDs) as visible-light photocatalysts for the reduction of nitrobenzene to aniline through six sequential photoinduced, proton-coupled electron transfers. At pH 3.6–4.3, the internal quantum yield of photons-to-reducing electrons is 37.1% over 54 h of illumination, with no apparent decrease in catalyst activity. Monitoring of the QD exciton by transient absorption reveals that, for each step in the catalytic cycle, the sacrificial reductant, 3-mercaptopropionic acid, scavenges the excitonic hole in ~5 ps to form QD•–; electron transfer to nitrobenzene or the intermediates nitrosobenzene and phenylhydroxylamine then occurs on the nanosecondmore » time scale. The rate constants for the single-electron transfer reactions are correlated with the driving forces for the corresponding proton-coupled electron transfers. This result suggests, but does not prove, that electron transfer, not proton transfer, is rate-limiting for these reactions. Nuclear magnetic resonance analysis of the QD–molecule systems shows that the photoproduct aniline, left unprotonated, serves as a poison for the QD catalyst by adsorbing to its surface. Performing the reaction at an acidic pH not only encourages aniline to desorb but also increases the probability of protonated intermediates; the latter effect probably ensures that recruitment of protons is not rate-limiting.« less

  18. Significance of a Recurring Function in Energy Transfer

    NASA Astrophysics Data System (ADS)

    Mishra, Subodha

    2017-05-01

    The appearance of a unique function in the energy transfer from one system to the other in different physical situations such as electrical, mechanical, optical, and quantum mechanical processes is established in this work. Though the laws governing the energy transformation and its transfer from system to system are well known, here we notice a unity in diversity; a unique function appears in various cases of energy transfer whether it is a classical or a quantum mechanical process. We consider four examples, well known in elementary physics, from the fields of electricity, mechanics, optics, and quantum mechanics. We find that this unique function is in fact the transfer function corresponding to all these physical situations, and the interesting and intriguing finding is that the inverse Laplace transform of this transfer function, which is the impulse-response function of the systems when multiplied by a factor of -½, is the solution of a linear differential equation for an "instantly forced critically damped harmonic oscillator." It is important to note that though the physical phenomena considered are quite distinct, the underlying process in the language of impulse-response of the system in the time domain is a unique one. To the best of our knowledge we have not seen anywhere the above analysis of determining the unique function or its description as a transfer function in literature.

  19. Fast and efficient wireless power transfer via transitionless quantum driving.

    PubMed

    Paul, Koushik; Sarma, Amarendra K

    2018-03-07

    Shortcut to adiabaticity (STA) techniques have the potential to drive a system beyond the adiabatic limits. Here, we present a robust and efficient method for wireless power transfer (WPT) between two coils based on the so-called transitionless quantum driving (TQD) algorithm. We show that it is possible to transfer power between the coils significantly fast compared to its adiabatic counterpart. The scheme is fairly robust against the variations in the coupling strength and the coupling distance between the coils. Also, the scheme is found to be reasonably immune to intrinsic losses in the coils.

  20. Evidence of quantum correlations in the H/D-transfer dynamics in the hydrogen bonds in partially deuterated benzoic acid crystals

    NASA Astrophysics Data System (ADS)

    Takeda, Sadamu; Tsuzumitani, Akihiko; Chatzidimitriou-Dreismann, C. A.

    1992-10-01

    A precise investigation of spin—lattice relaxation rates for protons and deuterons of partially deuterated benzoic acid crystals showed a remarkable quenching of the transfer rate of an HD pair in hydrogen-bonded dimeric units of carboxyl groups with increasing concentration of D in the surrounding hydrogen bonds. A similar effect was also observed for partially deuterated crystals of acetylenedicarboxylic acid. This finding supports recent theoretical predictions of thermally activated protonic quantum correlation in condensed matter and proposes a new mechanism for the proton transfer in hydrogen bonds in condensed matter.

  1. Balancing the Electron and Hole Transfer for Efficient Quantum Dot Light-Emitting Diodes by Employing a Versatile Organic Electron-Blocking Layer.

    PubMed

    Jin, Xiao; Chang, Chun; Zhao, Weifeng; Huang, Shujuan; Gu, Xiaobing; Zhang, Qin; Li, Feng; Zhang, Yubao; Li, Qinghua

    2018-05-09

    The electron-blocking layer (EBL) is important to balance the charge carrier transfer and achieve highly efficient quantum dot light-emitting diodes (QLEDs). Here, we report the utilization of a soluble tert-butyldimethylsilyl chloride-modified poly( p-phenylene benzobisoxazole) (TBS-PBO) as an EBL for simultaneous good charge carrier transfer balance while maintaining a high current density. We show that the versatile TBS-PBO blocks excess electron injection into the quantum dots (QDs), thus leading to better charge carrier transfer balance. It also restricts the undesired QD-to-EBL electron-transfer process, which preserves the superior emission capabilities of the emitter. As a consequence, the TBS-PBO device delivers an external quantum efficiency (EQE) maximum of 16.7% along with a remarkable current density as high as 139 mA/cm 2 with a brightness of 5484 cd/m 2 . The current density of our device is higher than those of insulator EBL-based devices because of the higher conductivity of the TBS-PBO versus insulator EBL, thus helping achieve high luminance values ranging from 1414 to 20 000 cd/cm 2 with current densities ranging from 44 to 648 mA/cm 2 and EQE > 14%. We believe that these unconventional features of the present TBS-PBO-based QLEDs will expand the wide use of TBS-PBO as buffer layers in other advanced QLED applications.

  2. Fast adiabatic quantum state transfer and entanglement generation between two atoms via dressed states

    PubMed Central

    Wu, Jin-Lei; Ji, Xin; Zhang, Shou

    2017-01-01

    We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity. PMID:28397793

  3. Utilizing Electrical Characteristics of Individual Nanotube Devices to Study the Charge Transfer between CdSe Quantum Dots and Double-Walled Nanotubes

    DOE PAGES

    Zhu, Yuqi; Zhou, Ruiping; Wang, Lei; ...

    2017-03-02

    To study the charge transfer between cadmium selenide (CdSe) quantum dots (QDs) and double-walled nanotubes (DWNTs), various sizes of CdSe-ligand-DWNT structures are synthesized, and field-effect transistors (FETs) from individual functionalized DWNTs rather than networks of the same are fabricated. From the electrical measurements, two distinct electron transfer mechanisms from the QD system to the nanotube are identified. By the formation of the CdSe-ligand-DWNT heterostructure, an effectively n-doped nanotube is created due to the smaller work function of CdSe as compared with the nanotube. In addition, once the QD-DWNT system is exposed to laser light, further electron transfer from the QDmore » through the ligand, i.e. 4-mercaptophenol (MTH), to the nanotube occurs and a clear QD-size dependent tunneling process is observed. Furthermore, the detailed analysis of a large set of devices and the particular methodology employed here for the first time allowed for extracting a wavelength and quantum dot size dependent charge transfer efficiency – a quantity that is evaluated for the first time through electrical measurement.« less

  4. Utilizing Electrical Characteristics of Individual Nanotube Devices to Study the Charge Transfer between CdSe Quantum Dots and Double-Walled Nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yuqi; Zhou, Ruiping; Wang, Lei

    To study the charge transfer between cadmium selenide (CdSe) quantum dots (QDs) and double-walled nanotubes (DWNTs), various sizes of CdSe-ligand-DWNT structures are synthesized, and field-effect transistors (FETs) from individual functionalized DWNTs rather than networks of the same are fabricated. From the electrical measurements, two distinct electron transfer mechanisms from the QD system to the nanotube are identified. By the formation of the CdSe-ligand-DWNT heterostructure, an effectively n-doped nanotube is created due to the smaller work function of CdSe as compared with the nanotube. In addition, once the QD-DWNT system is exposed to laser light, further electron transfer from the QDmore » through the ligand, i.e. 4-mercaptophenol (MTH), to the nanotube occurs and a clear QD-size dependent tunneling process is observed. Furthermore, the detailed analysis of a large set of devices and the particular methodology employed here for the first time allowed for extracting a wavelength and quantum dot size dependent charge transfer efficiency – a quantity that is evaluated for the first time through electrical measurement.« less

  5. Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Kaiser, Uwe; Sabir, Nadeem; Carrillo-Carrion, Carolina; del Pino, Pablo; Bossi, Mariano; Heimbrodt, Wolfram; Parak, Wolfgang J.

    2016-02-01

    Manganese-doped CdS/ZnS quantum dots have been used as energy donors in a Förster-like resonance energy transfer (FRET) process to enhance the effective lifetime of organic fluorophores. It was possible to tune the effective lifetime of the fluorophores by about six orders of magnitude from the nanosecond (ns) up to the millisecond (ms) region. Undoped and Mn-doped CdS/ZnS quantum dots functionalized with different dye molecules were selected as a model system for investigating the multiple energy transfer process and the specific interaction between Mn ions and the attached dye molecules. While the lifetime of the free dye molecules was about 5 ns, their linking to undoped CdS/ZnS quantum dots led to a long effective lifetime of about 150 ns, following a non-exponential transient. Manganese-doped core-shell quantum dots further enhanced the long-lasting decay time of the dye to several ms. This opens up a pathway to analyse different fluorophores in the time domain with equal spectral emissions. Such lifetime multiplexing would be an interesting alternative to the commonly used spectral multiplexing in fluorescence detection schemes.

  6. Quantum Teleportation and Grover's Algorithm Without the Wavefunction

    NASA Astrophysics Data System (ADS)

    Niestegge, Gerd

    2017-02-01

    In the same way as the quantum no-cloning theorem and quantum key distribution in two preceding papers, entanglement-assisted quantum teleportation and Grover's search algorithm are generalized by transferring them to an abstract setting, including usual quantum mechanics as a special case. This again shows that a much more general and abstract access to these quantum mechanical features is possible than commonly thought. A non-classical extension of conditional probability and, particularly, a very special type of state-independent conditional probability are used instead of Hilbert spaces and wavefunctions.

  7. A tunable few electron triple quantum dot

    NASA Astrophysics Data System (ADS)

    Gaudreau, L.; Kam, A.; Granger, G.; Studenikin, S. A.; Zawadzki, P.; Sachrajda, A. S.

    2009-11-01

    In this paper, we report on a tunable few electron lateral triple quantum dot design. The quantum dot potentials are arranged in series. The device is aimed at studies of triple quantum dot properties where knowing the exact number of electrons is important as well as quantum information applications involving electron spin qubits. We demonstrate tuning strategies for achieving required resonant conditions such as quadruple points where all three quantum dots are on resonance. We find that in such a device resonant conditions at specific configurations are accompanied by complex charge transfer behavior.

  8. Surveying the quantum group symmetries of integrable open spin chains

    NASA Astrophysics Data System (ADS)

    Nepomechie, Rafael I.; Retore, Ana L.

    2018-05-01

    Using anisotropic R-matrices associated with affine Lie algebras g ˆ (specifically, A2n(2), A2n-1 (2) , Bn(1), Cn(1), Dn(1)) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of g ˆ . We show that these transfer matrices also have a duality symmetry (for the cases Cn(1) and Dn(1)) and additional Z2 symmetries that map complex representations to their conjugates (for the cases A2n-1 (2) , Bn(1) and Dn(1)). A key simplification is achieved by working in a certain "unitary" gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.

  9. Partially entangled states bridge in quantum teleportation

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen

    2014-10-01

    The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.

  10. Quantum teleportation between distant matter qubits.

    PubMed

    Olmschenk, S; Matsukevich, D N; Maunz, P; Hayes, D; Duan, L-M; Monroe, C

    2009-01-23

    Quantum teleportation is the faithful transfer of quantum states between systems, relying on the prior establishment of entanglement and using only classical communication during the transmission. We report teleportation of quantum information between atomic quantum memories separated by about 1 meter. A quantum bit stored in a single trapped ytterbium ion (Yb+) is teleported to a second Yb+ atom with an average fidelity of 90% over a replete set of states. The teleportation protocol is based on the heralded entanglement of the atoms through interference and detection of photons emitted from each atom and guided through optical fibers. This scheme may be used for scalable quantum computation and quantum communication.

  11. Effect of the Semiconductor Quantum Dot Shell Structure on Fluorescence Quenching by Acridine Ligand

    NASA Astrophysics Data System (ADS)

    Linkov, P. A.; Vokhmintcev, K. V.; Samokhvalov, P. S.; Laronze-Cochard, M.; Sapi, J.; Nabiev, I. R.

    2018-02-01

    The main line of research in cancer treatment is the development of methods for early diagnosis and targeted drug delivery to cancer cells. Fluorescent semiconductor core/shell nanocrystals of quantum dots (e.g., CdSe/ZnS) conjugated with an anticancer drug, e.g., an acridine derivative, allow real-time tracking and control of the process of the drug delivery to tumors. However, linking of acridine derivatives to a quantum dot can be accompanied by quantum dot fluorescence quenching caused by electron transfer from the quantum dot to the organic molecule. In this work, it has been shown that the structure of the shell of the quantum dot plays the decisive role in the process of photoinduced charge transfer from the quantum dot to the acridine ligand, which is responsible for fluorescence quenching. It has been shown that multicomponent ZnS/CdS/ZnS shells of CdSe cores of quantum dots, which have a relatively small thickness, make it possible to significantly suppress a decrease in the quantum yield of fluorescence of quantum dots as compared to both the classical ZnS thin shell and superthick shells of the same composition. Thus, core/multicomponent shell CdSe/ZnS/CdS/ZnS quantum dots can be used as optimal fluorescent probes for the development of systems for diagnosis and treatment of cancer with the use of anticancer compounds based on acridine derivatives.

  12. On the origin of stretched exponential (Kohlrausch) relaxation kinetics in the room temperature luminescence decay of colloidal quantum dots.

    PubMed

    Bodunov, E N; Antonov, Yu A; Simões Gamboa, A L

    2017-03-21

    The non-exponential room temperature luminescence decay of colloidal quantum dots is often well described by a stretched exponential function. However, the physical meaning of the parameters of the function is not clear in the majority of cases reported in the literature. In this work, the room temperature stretched exponential luminescence decay of colloidal quantum dots is investigated theoretically in an attempt to identify the underlying physical mechanisms associated with the parameters of the function. Three classes of non-radiative transition processes between the excited and ground states of colloidal quantum dots are discussed: long-range resonance energy transfer, multiphonon relaxation, and contact quenching without diffusion. It is shown that multiphonon relaxation cannot explain a stretched exponential functional form of the luminescence decay while such dynamics of relaxation can be understood in terms of long-range resonance energy transfer to acceptors (molecules, quantum dots, or anharmonic molecular vibrations) in the environment of the quantum dots acting as energy-donors or by contact quenching by acceptors (surface traps or molecules) distributed statistically on the surface of the quantum dots. These non-radiative transition processes are assigned to different ranges of the stretching parameter β.

  13. Optimizing inhomogeneous spin ensembles for quantum memory

    NASA Astrophysics Data System (ADS)

    Bensky, Guy; Petrosyan, David; Majer, Johannes; Schmiedmayer, Jörg; Kurizki, Gershon

    2012-07-01

    We propose a method to maximize the fidelity of quantum memory implemented by a spectrally inhomogeneous spin ensemble. The method is based on preselecting the optimal spectral portion of the ensemble by judiciously designed pulses. This leads to significant improvement of the transfer and storage of quantum information encoded in the microwave or optical field.

  14. Computing Wigner distributions and time correlation functions using the quantum thermal bath method: application to proton transfer spectroscopy.

    PubMed

    Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe

    2013-08-14

    Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.

  15. Carbinolamine Formation and Dehydration in a DNA Repair Enzyme Active Site

    PubMed Central

    Dodson, M. L.; Walker, Ross C.; Lloyd, R. Stephen

    2012-01-01

    In order to suggest detailed mechanistic hypotheses for the formation and dehydration of a key carbinolamine intermediate in the T4 pyrimidine dimer glycosylase (T4PDG) reaction, we have investigated these reactions using steered molecular dynamics with a coupled quantum mechanics–molecular mechanics potential (QM/MM). We carried out simulations of DNA abasic site carbinolamine formation with and without a water molecule restrained to remain within the active site quantum region. We recovered potentials of mean force (PMF) from thirty replicate reaction trajectories using Jarzynski averaging. We demonstrated feasible pathways involving water, as well as those independent of water participation. The water–independent enzyme–catalyzed reaction had a bias–corrected Jarzynski–average barrier height of approximately for the carbinolamine formation reaction and ) for the reverse reaction at this level of representation. When the proton transfer was facilitated with an intrinsic quantum water, the barrier height was approximately in the forward (formation) reaction and for the reverse. In addition, two modes of unsteered (free dynamics) carbinolamine dehydration were observed: in one, the quantum water participated as an intermediate proton transfer species, and in the other, the active site protonated glutamate hydrogen was directly transferred to the carbinolamine oxygen. Water–independent unforced proton transfer from the protonated active site glutamate carboxyl to the unprotonated N–terminal amine was also observed. In summary, complex proton transfer events, some involving water intermediates, were studied in QM/MM simulations of T4PDG bound to a DNA abasic site. Imine carbinolamine formation was characterized using steered QM/MM molecular dynamics. Dehydration of the carbinolamine intermediate to form the final imine product was observed in free, unsteered, QM/MM dynamics simulations, as was unforced acid-base transfer between the active site carboxylate and the N–terminal amine. PMID:22384015

  16. Secure Oblivious Hiding, Authentication, Tamper Proofing, and Verification Techniques

    DTIC Science & Technology

    2002-08-01

    compressing the bit- planes. The algorithm always starts with inspecting the 5th LSB plane. For color images , all three color-channels are compressed...use classical encryption engines, such as IDEA or DES . These algorithms have a fixed encryption block size, and, depending on the image dimensions, we...information can be stored either in a separate file, in the image header, or embedded in the image itself utilizing the modern concepts of steganography

  17. What is Aspect-Oriented Programming, Revisited

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.; Norvig, Peter (Technical Monitor)

    2001-01-01

    For the Advanced Separation of Concerns workshop at OOPSLA 2000 in Minneapolis, Dan Friedman and I wrote a paper that argued that the distinguishing characteristic of Aspect-Oriented Programming systems (qua programming systems) is that they provide quantification and obliviousness. In this paper, I expand on the themes of our Minneapolis workshop paper, respond to some of the comments we've received on that paper, and provide a computational formalization of the notion of quantification.

  18. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-07-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices.

  19. Implementing two optimal economical quantum cloning with superconducting quantum interference devices in a cavity

    NASA Astrophysics Data System (ADS)

    Ye, Liu; Hu, GuiYu; Li, AiXia

    2011-01-01

    We propose a unified scheme to implement the optimal 1 → 3 economical phase-covariant quantum cloning and optimal 1 → 3 economical real state cloning with superconducting quantum interference devices (SQUIDs) in a cavity. During this process, no transfer of quantum information between the SQUIDs and cavity is required. The cavity field is only virtually excited. The scheme is insensitive to cavity decay. Therefore, the scheme can be experimentally realized in the range of current cavity QED techniques.

  20. Quantum Hamiltonian daemons: Unitary analogs of combustion engines

    NASA Astrophysics Data System (ADS)

    Thesing, Eike P.; Gilz, Lukas; Anglin, James R.

    2017-07-01

    Hamiltonian daemons have recently been defined classically as small, closed Hamiltonian systems which can exhibit secular energy transfer from high-frequency to low-frequency degrees of freedom (steady downconversion), analogous to the steady transfer of energy in a combustion engine from the high terahertz frequencies of molecular excitations to the low kilohertz frequencies of piston motion [L. Gilz, E. P. Thesing, and J. R. Anglin, Phys. Rev. E 94, 042127 (2016), 10.1103/PhysRevE.94.042127]. Classical daemons achieve downconversion within a small, closed system by exploiting nonlinear resonances; the adiabatic theorem permits their operation but imposes nontrivial limitations on their efficiency. Here we investigate a simple example of a quantum mechanical daemon. In the correspondence regime it obeys similar efficiency limits to its classical counterparts, but in the strongly quantum mechanical regime the daemon operates in an entirely different manner. It maintains an engine-like behavior in a distinctly quantum mechanical form: a weight is lifted at a steady average speed through a long sequence of quantum jumps in momentum, at each of which a quantum of fuel is consumed. The quantum daemon can cease downconversion at any time through nonadiabatic Landau-Zener transitions, and continuing operation of the quantum daemon is associated with steadily growing entanglement between fast and slow degrees of freedom.

  1. The relationship between inadvertent ingestion and dermal exposure pathways: a new integrated conceptual model and a database of dermal and oral transfer efficiencies.

    PubMed

    Gorman Ng, Melanie; Semple, Sean; Cherrie, John W; Christopher, Yvette; Northage, Christine; Tielemans, Erik; Veroughstraete, Violaine; Van Tongeren, Martie

    2012-11-01

    Occupational inadvertent ingestion exposure is ingestion exposure due to contact between the mouth and contaminated hands or objects. Although individuals are typically oblivious to their exposure by this route, it is a potentially significant source of occupational exposure for some substances. Due to the continual flux of saliva through the oral cavity and the non-specificity of biological monitoring to routes of exposure, direct measurement of exposure by the inadvertent ingestion route is challenging; predictive models may be required to assess exposure. The work described in this manuscript has been carried out as part of a project to develop a predictive model for estimating inadvertent ingestion exposure in the workplace. As inadvertent ingestion exposure mainly arises from hand-to-mouth contact, it is closely linked to dermal exposure. We present a new integrated conceptual model for dermal and inadvertent ingestion exposure that should help to increase our understanding of ingestion exposure and our ability to simultaneously estimate exposure by the dermal and ingestion routes. The conceptual model consists of eight compartments (source, air, surface contaminant layer, outer clothing contaminant layer, inner clothing contaminant layer, hands and arms layer, perioral layer, and oral cavity) and nine mass transport processes (emission, deposition, resuspension or evaporation, transfer, removal, redistribution, decontamination, penetration and/or permeation, and swallowing) that describe event-based movement of substances between compartments (e.g. emission, deposition, etc.). This conceptual model is intended to guide the development of predictive exposure models that estimate exposure from both the dermal and the inadvertent ingestion pathways. For exposure by these pathways the efficiency of transfer of materials between compartments (for example from surfaces to hands, or from hands to the mouth) are important determinants of exposure. A database of transfer efficiency data relevant for dermal and inadvertent ingestion exposure was developed, containing 534 empirically measured transfer efficiencies measured between 1980 and 2010 and reported in the peer-reviewed and grey literature. The majority of the reported transfer efficiencies (84%) relate to transfer between surfaces and hands, but the database also includes efficiencies for other transfer scenarios, including surface-to-glove, hand-to-mouth, and skin-to-skin. While the conceptual model can provide a framework for a predictive exposure assessment model, the database provides detailed information on transfer efficiencies between the various compartments. Together, the conceptual model and the database provide a basis for the development of a quantitative tool to estimate inadvertent ingestion exposure in the workplace.

  2. Energy and charge transfer in nanoscale hybrid materials.

    PubMed

    Basché, Thomas; Bottin, Anne; Li, Chen; Müllen, Klaus; Kim, Jeong-Hee; Sohn, Byeong-Hyeok; Prabhakaran, Prem; Lee, Kwang-Sup

    2015-06-01

    Hybrid materials composed of colloidal semiconductor quantum dots and π-conjugated organic molecules and polymers have attracted continuous interest in recent years, because they may find applications in bio-sensing, photodetection, and photovoltaics. Fundamental processes occurring in these nanohybrids are light absorption and emission as well as energy and/or charge transfer between the components. For future applications it is mandatory to understand, control, and optimize the wide parameter space with respect to chemical assembly and the desired photophysical properties. Accordingly, different approaches to tackle this issue are described here. Simple organic dye molecules (Dye)/quantum dot (QD) conjugates are studied with stationary and time-resolved spectroscopy to address the dynamics of energy and ultra-fast charge transfer. Micellar as well as lamellar nanostructures derived from diblock copolymers are employed to fine-tune the energy transfer efficiency of QD donor/dye acceptor couples. Finally, the transport of charges through organic components coupled to the quantum dot surface is discussed with an emphasis on functional devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Influences of Quantum Mechanically Mixed Electronic and Vibrational Pigment States in 2D Electronic Spectra of Photosynthetic Systems: Strong Electronic Coupling Cases

    DOE PAGES

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-09-07

    In 2D electronic spectroscopy studies, long-lived quantum beats have recently been observed in photosynthetic systems, and several theoretical studies have suggested that the beats are produced by quantum mechanically mixed electronic and vibrational states. Concerning the electronic-vibrational quantum mixtures, the impact of protein-induced fluctuations was examined by calculating the 2D electronic spectra of a weakly coupled dimer with the Franck-Condon active vibrational modes in the resonant condition. This analysis demonstrated that quantum mixtures of the vibronic resonance are rather robust under the influence of the fluctuations at cryogenic temperatures, whereas the mixtures are eradicated by the fluctuations at physiological temperatures.more » However, this conclusion cannot be generalized because the magnitude of the coupling inducing the quantum mixtures is proportional to the inter-pigment electronic coupling. In this paper, we explore the impact of the fluctuations on electronic-vibrational quantum mixtures in a strongly coupled dimer with an off-resonant vibrational mode. Toward this end, we calculate energy transfer dynamics and 2D electronic spectra of a model dimer that corresponds to the most strongly coupled bacteriochlorophyll molecules in the Fenna-Matthews-Olson complex in a numerically accurate manner. The quantum mixtures are found to be robust under the exposure of protein-induced fluctuations at cryogenic temperatures, irrespective of the resonance. At 300 K, however, the quantum mixing is disturbed more strongly by the fluctuations, and therefore, the beats in the 2D spectra become obscure even in a strongly coupled dimer with a resonant vibrational mode. Further, the overall behaviors of the energy transfer dynamics are demonstrated to be dominated by the environment and coupling between the 0 0 vibronic transitions as long as the Huang-Rhys factor of the vibrational mode is small. Finally, the electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics despite contributing to the enhancement of long-lived quantum beating in the 2D spectra.« less

  4. Enhancing the absorption and energy transfer process via quantum entanglement

    NASA Astrophysics Data System (ADS)

    Zong, Xiao-Lan; Song, Wei; Zhou, Jian; Yang, Ming; Yu, Long-Bao; Cao, Zhuo-Liang

    2018-07-01

    The quantum network model is widely used to describe the dynamics of excitation energy transfer in photosynthesis complexes. Different from the previous schemes, we explore a specific network model, which includes both light-harvesting and energy transfer process. Here, we define a rescaled measure to manifest the energy transfer efficiency from external driving to the sink, and the external driving fields are used to simulate the energy absorption process. To study the role of initial state in the light-harvesting and energy transfer process, we assume the initial state of the donors to be two-qubit and three-qubit entangled states, respectively. In the two-qubit initial state case, we find that the initial entanglement between the donors can help to improve the absorption and energy transfer process for both the near-resonant and large-detuning cases. For the case of three-qubit initial state, we can see that the transfer efficiency will reach a larger value faster in the tripartite entanglement case compared to the bipartite entanglement case.

  5. Controlled ultrafast transfer and stability degree of generalized coherent states of a kicked two-level ion

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Kong, Chao; Hai, Wenhua

    2018-06-01

    We investigate quantum dynamics of a two-level ion trapped in the Lamb-Dicke regime of a δ -kicked optical lattice, based on the exact generalized coherent states rotated by a π / 2 pulse of Ramsey type experiment. The spatiotemporal evolutions of the spin-motion entangled states in different parameter regions are illustrated, and the parameter regions of different degrees of quantum stability described by the quantum fidelity are found. Time evolutions of the probability for the ion being in different pseudospin states reveal that the ultrafast entanglement generation and population transfers of the system can be analytically controlled by managing the laser pulses. The probability in an initially disentangled state shows periodic collapses (entanglement) and revivals (de-entanglement). Reduction of the stability degree results in enlarging the period of de-entanglement, while the instability and potential chaos will cause the sustained entanglement. The results could be justified experimentally in the existing setups and may be useful in engineering quantum dynamics for quantum information processing.

  6. Quantum nonlinear optics without photons

    NASA Astrophysics Data System (ADS)

    Stassi, Roberto; Macrı, Vincenzo; Kockum, Anton Frisk; Di Stefano, Omar; Miranowicz, Adam; Savasta, Salvatore; Nori, Franco

    2017-08-01

    Spontaneous parametric down-conversion is a well-known process in quantum nonlinear optics in which a photon incident on a nonlinear crystal spontaneously splits into two photons. Here we propose an analogous physical process where one excited atom directly transfers its excitation to a pair of spatially separated atoms with probability approaching 1. The interaction is mediated by the exchange of virtual rather than real photons. This nonlinear atomic process is coherent and reversible, so the pair of excited atoms can transfer the excitation back to the first one: the atomic analog of sum-frequency generation of light. The parameters used to investigate this process correspond to experimentally demonstrated values in ultrastrong circuit quantum electrodynamics. This approach can be extended to realize other nonlinear interatomic processes, such as four-atom mixing, and is an attractive architecture for the realization of quantum devices on a chip. We show that four-qubit mixing can efficiently implement quantum repetition codes and, thus, can be used for error-correction codes.

  7. Spin-state transfer in laterally coupled quantum-dot chains with disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Song; Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026; Bayat, Abolfazl

    2010-08-15

    Quantum dot arrays are a promising medium for transferring quantum information between two distant points without resorting to mobile qubits. Here we study the two most common disorders, namely hyperfine interaction and exchange coupling fluctuations, in quantum dot arrays and their effects on quantum communication through these chains. Our results show that the hyperfine interaction is more destructive than the exchange coupling fluctuations. The average optimal time for communication is not affected by any disorder in the system and our simulations show that antiferromagnetic chains are much more resistive than the ferromagnetic ones against both kind of disorders. Even whenmore » time modulation of a coupling and optimal control is employed to improve the transmission, the antiferromagnetic chain performs much better. We have assumed the quasistatic approximation for hyperfine interaction and time-dependent fluctuations in the exchange couplings. Particularly for studying exchange coupling fluctuations we have considered the static disorder, white noise, and 1/f noise.« less

  8. Quantum teleportation between light and matter.

    PubMed

    Sherson, Jacob F; Krauter, Hanna; Olsson, Rasmus K; Julsgaard, Brian; Hammerer, Klemens; Cirac, Ignacio; Polzik, Eugene S

    2006-10-05

    Quantum teleportation is an important ingredient in distributed quantum networks, and can also serve as an elementary operation in quantum computers. Teleportation was first demonstrated as a transfer of a quantum state of light onto another light beam; later developments used optical relays and demonstrated entanglement swapping for continuous variables. The teleportation of a quantum state between two single material particles (trapped ions) has now also been achieved. Here we demonstrate teleportation between objects of a different nature--light and matter, which respectively represent 'flying' and 'stationary' media. A quantum state encoded in a light pulse is teleported onto a macroscopic object (an atomic ensemble containing 10 caesium atoms). Deterministic teleportation is achieved for sets of coherent states with mean photon number (n) up to a few hundred. The fidelities are 0.58 +/- 0.02 for n = 20 and 0.60 +/- 0.02 for n = 5--higher than any classical state transfer can possibly achieve. Besides being of fundamental interest, teleportation using a macroscopic atomic ensemble is relevant for the practical implementation of a quantum repeater. An important factor for the implementation of quantum networks is the teleportation distance between transmitter and receiver; this is 0.5 metres in the present experiment. As our experiment uses propagating light to achieve the entanglement of light and atoms required for teleportation, the present approach should be scalable to longer distances.

  9. Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song

    2011-11-01

    We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.

  10. Broadband down-conversion based near infrared quantum cutting in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} for crystalline silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tai, Yuping, E-mail: yupingtai@126.com; Zheng, Guojun, E-mail: zhengguojun88@126.com; Wang, Hui, E-mail: huiwang@nwu.edu.cn

    2015-03-15

    Near infrared (NIR) quantum cutting involving the down conversion of an absorbed visible photon to emission of two NIR photons was achieved in SrAl{sub 2}O{sub 4}:0.01Eu{sup 2+}, xYb{sup 3+} (x=0, 1, 2, 5, 10, 20, 30 mol%) samples. The photoluminescence properties of samples in visible and NIR regions were measured to verify the energy transfer (ET) from Eu{sup 2+} to Yb{sup 3+}. The results demonstrated that Eu{sup 2+} was an efficient sensitizer for Yb{sup 3+} in the SrAl{sub 2}O{sub 4} host lattice. According to Gaussian fitting analysis and temperature-dependent luminescence experiments, the conclusion was drawn that the cooperative energy transfermore » (CET) process dominated the ET process and the influence of charge transfer state (CTS) of Yb{sup 3+} could be negligible. As a result, the high energy transfer efficiency (ETE) and quantum yield (QY) have been acquired, the maximum value approached 73.68% and 147.36%, respectively. Therefore, this down-conversion material has potential application in crystalline silicon solar cells to improve conversion efficiency. - Graphical abstract: Near infrared quantum cutting was achieved in Eu{sup 2+}–Yb{sup 3+} co-doped SrAl{sub 2}O{sub 4} samples. The cooperative energy transfer process dominated energy transfer process and high energy transfer efficiency was acquired. - Highlights: • The absorption spectrum of Eu{sup 2+} ion is strong in intensity and broad in bandwidth. • The spectra of Eu{sup 2+} in SrAl{sub 2}O{sub 4} lies in the strongest region of solar spectrum. • The cooperative energy transfer (CET) dominated the energy transfer process. • The domination of CET is confirmed by experimental analysis. • SrAl{sub 2}O{sub 4}:Eu{sup 2+},Yb{sup 3+} show high energy transfer efficiency and long lifetime.« less

  11. Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer.

    PubMed

    Tanabe, Katsuaki; Guimard, Denis; Bordel, Damien; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2010-05-10

    An electrically pumped InAs/GaAs quantum dot laser on a Si substrate has been demonstrated. The double-hetero laser structure was grown on a GaAs substrate by metal-organic chemical vapor deposition and layer-transferred onto a Si substrate by GaAs/Si wafer bonding mediated by a 380-nm-thick Au-Ge-Ni alloy layer. This broad-area Fabry-Perot laser exhibits InAs quantum dot ground state lasing at 1.31 microm at room temperature with a threshold current density of 600 A/cm(2). (c) 2010 Optical Society of America.

  12. Generation and transfer of single photons on a photonic crystal chip.

    PubMed

    Englund, Dirk; Faraon, Andrei; Zhang, Bingyang; Yamamoto, Yoshihisa; Vucković, Jelena

    2007-04-30

    We present a basic building block of a quantum network consisting of a quantum dot coupled to a source cavity, which in turn is coupled to a target cavity via a waveguide. The single photon emission from the high-Q/V source cavity is characterized by twelve-fold spontaneous emission (SE) rate enhancement, SE coupling efficiency beta ~ 0.98 into the source cavity mode, and mean wavepacket indistinguishability of ~67%. Single photons are efficiently transferred into the target cavity via the waveguide, with a target/source field intensity ratio of 0.12 +/- 0.01. This system shows great promise as a building block of future on-chip quantum information processing systems.

  13. Quantum dynamical simulation of photoinduced electron transfer processes in dye-semiconductor systems: theory and application to coumarin 343 at TiO₂.

    PubMed

    Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael

    2015-04-10

    A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.

  14. Length-Two Representations of Quantum Affine Superalgebras and Baxter Operators

    NASA Astrophysics Data System (ADS)

    Zhang, Huafeng

    2018-03-01

    Associated to quantum affine general linear Lie superalgebras are two families of short exact sequences of representations whose first and third terms are irreducible: the Baxter TQ relations involving infinite-dimensional representations; the extended T-systems of Kirillov-Reshetikhin modules. We make use of these representations over the full quantum affine superalgebra to define Baxter operators as transfer matrices for the quantum integrable model and to deduce Bethe Ansatz Equations, under genericity conditions.

  15. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.

    PubMed

    Verhagen, E; Deléglise, S; Weis, S; Schliesser, A; Kippenberg, T J

    2012-02-01

    Optical laser fields have been widely used to achieve quantum control over the motional and internal degrees of freedom of atoms and ions, molecules and atomic gases. A route to controlling the quantum states of macroscopic mechanical oscillators in a similar fashion is to exploit the parametric coupling between optical and mechanical degrees of freedom through radiation pressure in suitably engineered optical cavities. If the optomechanical coupling is 'quantum coherent'--that is, if the coherent coupling rate exceeds both the optical and the mechanical decoherence rate--quantum states are transferred from the optical field to the mechanical oscillator and vice versa. This transfer allows control of the mechanical oscillator state using the wide range of available quantum optical techniques. So far, however, quantum-coherent coupling of micromechanical oscillators has only been achieved using microwave fields at millikelvin temperatures. Optical experiments have not attained this regime owing to the large mechanical decoherence rates and the difficulty of overcoming optical dissipation. Here we achieve quantum-coherent coupling between optical photons and a micromechanical oscillator. Simultaneously, coupling to the cold photon bath cools the mechanical oscillator to an average occupancy of 1.7 ± 0.1 motional quanta. Excitation with weak classical light pulses reveals the exchange of energy between the optical light field and the micromechanical oscillator in the time domain at the level of less than one quantum on average. This optomechanical system establishes an efficient quantum interface between mechanical oscillators and optical photons, which can provide decoherence-free transport of quantum states through optical fibres. Our results offer a route towards the use of mechanical oscillators as quantum transducers or in microwave-to-optical quantum links.

  16. Characterizing quantum phase transition by teleportation

    NASA Astrophysics Data System (ADS)

    Wu, Meng-He; Ling, Yi; Shu, Fu-Wen; Gan, Wen-Cong

    2018-04-01

    In this paper we provide a novel way to explore the relation between quantum teleportation and quantum phase transition. We construct a quantum channel with a mixed state which is made from one dimensional quantum Ising chain with infinite length, and then consider the teleportation with the use of entangled Werner states as input qubits. The fidelity as a figure of merit to measure how well the quantum state is transferred is studied numerically. Remarkably we find the first-order derivative of the fidelity with respect to the parameter in quantum Ising chain exhibits a logarithmic divergence at the quantum critical point. The implications of this phenomenon and possible applications are also briefly discussed.

  17. Optical hybrid quantum teleportation and its applications

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Okada, Masanori; Furusawa, Akira

    2017-08-01

    Quantum teleportation, a transfer protocol of quantum states, is the essence of many sophisticated quantum information protocols. There have been two complementary approaches to optical quantum teleportation: discrete variables (DVs) and continuous variables (CVs). However, both approaches have pros and cons. Here we take a "hybrid" approach to overcome the current limitations: CV quantum teleportation of DVs. This approach enabled the first realization of deterministic quantum teleportation of photonic qubits without post-selection. We also applied the hybrid scheme to several experiments, including entanglement swapping between DVs and CVs, conditional CV teleportation of single photons, and CV teleportation of qutrits. We are now aiming at universal, scalable, and fault-tolerant quantum computing based on these hybrid technologies.

  18. Quantum Walk Schemes for Universal Quantum Computation

    NASA Astrophysics Data System (ADS)

    Underwood, Michael S.

    Random walks are a powerful tool for the efficient implementation of algorithms in classical computation. Their quantum-mechanical analogues, called quantum walks, hold similar promise. Quantum walks provide a model of quantum computation that has recently been shown to be equivalent in power to the standard circuit model. As in the classical case, quantum walks take place on graphs and can undergo discrete or continuous evolution, though quantum evolution is unitary and therefore deterministic until a measurement is made. This thesis considers the usefulness of continuous-time quantum walks to quantum computation from the perspectives of both their fundamental power under various formulations, and their applicability in practical experiments. In one extant scheme, logical gates are effected by scattering processes. The results of an exhaustive search for single-qubit operations in this model are presented. It is shown that the number of distinct operations increases exponentially with the number of vertices in the scattering graph. A catalogue of all graphs on up to nine vertices that implement single-qubit unitaries at a specific set of momenta is included in an appendix. I develop a novel scheme for universal quantum computation called the discontinuous quantum walk, in which a continuous-time quantum walker takes discrete steps of evolution via perfect quantum state transfer through small 'widget' graphs. The discontinuous quantum-walk scheme requires an exponentially sized graph, as do prior discrete and continuous schemes. To eliminate the inefficient vertex resource requirement, a computation scheme based on multiple discontinuous walkers is presented. In this model, n interacting walkers inhabiting a graph with 2n vertices can implement an arbitrary quantum computation on an input of length n, an exponential savings over previous universal quantum walk schemes. This is the first quantum walk scheme that allows for the application of quantum error correction. The many-particle quantum walk can be viewed as a single quantum walk undergoing perfect state transfer on a larger weighted graph, obtained via equitable partitioning. I extend this formalism to non-simple graphs. Examples of the application of equitable partitioning to the analysis of quantum walks and many-particle quantum systems are discussed.

  19. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.

    PubMed

    Yin, Juan; Ren, Ji-Gang; Lu, He; Cao, Yuan; Yong, Hai-Lin; Wu, Yu-Ping; Liu, Chang; Liao, Sheng-Kai; Zhou, Fei; Jiang, Yan; Cai, Xin-Dong; Xu, Ping; Pan, Ge-Sheng; Jia, Jian-Jun; Huang, Yong-Mei; Yin, Hao; Wang, Jian-Yu; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2012-08-09

    Transferring an unknown quantum state over arbitrary distances is essential for large-scale quantum communication and distributed quantum networks. It can be achieved with the help of long-distance quantum teleportation and entanglement distribution. The latter is also important for fundamental tests of the laws of quantum mechanics. Although quantum teleportation and entanglement distribution over moderate distances have been realized using optical fibre links, the huge photon loss and decoherence in fibres necessitate the use of quantum repeaters for larger distances. However, the practical realization of quantum repeaters remains experimentally challenging. Free-space channels, first used for quantum key distribution, offer a more promising approach because photon loss and decoherence are almost negligible in the atmosphere. Furthermore, by using satellites, ultra-long-distance quantum communication and tests of quantum foundations could be achieved on a global scale. Previous experiments have achieved free-space distribution of entangled photon pairs over distances of 600 metres (ref. 14) and 13 kilometres (ref. 15), and transfer of triggered single photons over a 144-kilometre one-link free-space channel. Most recently, following a modified scheme, free-space quantum teleportation over 16 kilometres was demonstrated with a single pair of entangled photons. Here we report quantum teleportation of independent qubits over a 97-kilometre one-link free-space channel with multi-photon entanglement. An average fidelity of 80.4 ± 0.9 per cent is achieved for six distinct states. Furthermore, we demonstrate entanglement distribution over a two-link channel, in which the entangled photons are separated by 101.8 kilometres. Violation of the Clauser-Horne-Shimony-Holt inequality is observed without the locality loophole. Besides being of fundamental interest, our results represent an important step towards a global quantum network. Moreover, the high-frequency and high-accuracy acquiring, pointing and tracking technique developed in our experiment can be directly used for future satellite-based quantum communication and large-scale tests of quantum foundations.

  20. Quantum Transduction with Adaptive Control

    NASA Astrophysics Data System (ADS)

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-01

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  1. Quantum Transduction with Adaptive Control.

    PubMed

    Zhang, Mengzhen; Zou, Chang-Ling; Jiang, Liang

    2018-01-12

    Quantum transducers play a crucial role in hybrid quantum networks. A good quantum transducer can faithfully convert quantum signals from one mode to another with minimum decoherence. Most investigations of quantum transduction are based on the protocol of direct mode conversion. However, the direct protocol requires the matching condition, which in practice is not always feasible. Here we propose an adaptive protocol for quantum transducers, which can convert quantum signals without requiring the matching condition. The adaptive protocol only consists of Gaussian operations, feasible in various physical platforms. Moreover, we show that the adaptive protocol can be robust against imperfections associated with finite squeezing, thermal noise, and homodyne detection, and it can be implemented to realize quantum state transfer between microwave and optical modes.

  2. When hydroquinone meets methoxy radical: Hydrogen abstraction reaction from the viewpoint of interacting quantum atoms.

    PubMed

    Petković, Milena; Nakarada, Đura; Etinski, Mihajlo

    2018-05-25

    Interacting Quantum Atoms methodology is used for a detailed analysis of hydrogen abstraction reaction from hydroquinone by methoxy radical. Two pathways are analyzed, which differ in the orientation of the reactants at the corresponding transition states. Although the discrepancy between the two barriers amounts to only 2 kJ/mol, which implies that the two pathways are of comparable probability, the extent of intra-atomic and inter-atomic energy changes differs considerably. We thus demonstrated that Interacting Quantum Atoms procedure can be applied to unravel distinct energy transfer routes in seemingly similar mechanisms. Identification of energy components with the greatest contribution to the variation of the overall energy (intra-atomic and inter-atomic terms that involve hydroquinone's oxygen and the carbon atom covalently bound to it, the transferring hydrogen and methoxy radical's oxygen), is performed using the Relative energy gradient method. Additionally, the Interacting Quantum Fragments approach shed light on the nature of dominant interactions among selected fragments: both Coulomb and exchange-correlation contributions are of comparable importance when considering interactions of the transferring hydrogen atom with all other atoms, whereas the exchange-correlation term dominates interaction between methoxy radical's methyl group and hydroquinone's aromatic ring. This study represents one of the first applications of Interacting Quantum Fragments approach on first order saddle points. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. Photophysical properties gallium octacarboxy phthalocyanines conjugated to CdSe@ZnS quantum dots.

    PubMed

    Tshangana, Charmaine; Nyokong, Tebello

    2015-01-01

    L-Glutathione (GSH) capped core CdSe (2.3 nm) and core shell CdSe@ZnS quantum dots (QDs) (3.0 nm and 3.5 nm) were coordinated to gallium octacarboxy phthalocyanine (ClGaPc(COOH)8) to form ClGaPc(COOH)8-QDs conjugates. An efficient transfer of energy from the QDs to the Pcs was demonstrated through Förster resonance energy transfer (FRET), the FRET efficiencies in all cases was above 50%. The photophysical parameters (triplet state and fluorescence quantum yields and lifetimes) were also determined for the conjugates. There was a decrease in the fluorescence lifetimes of ClGaPc(COOH)8 in the presence of all the QDs, due to the heavy atom effect. The triplet quantum yields increased in the conjugates. The lifetimes also became longer for the conjugates compared to Pc alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Quantum communication through an unmodulated spin chain.

    PubMed

    Bose, Sougato

    2003-11-14

    We propose a scheme for using an unmodulated and unmeasured spin chain as a channel for short distance quantum communications. The state to be transmitted is placed on one spin of the chain and received later on a distant spin with some fidelity. We first obtain simple expressions for the fidelity of quantum state transfer and the amount of entanglement sharable between any two sites of an arbitrary Heisenberg ferromagnet using our scheme. We then apply this to the realizable case of an open ended chain with nearest neighbor interactions. The fidelity of quantum state transfer is obtained as an inverse discrete cosine transform and as a Bessel function series. We find that in a reasonable time, a qubit can be directly transmitted with better than classical fidelity across the full length of chains of up to 80 spins. Moreover, our channel allows distillable entanglement to be shared over arbitrary distances.

  5. A new and trustworthy formalism to compute entropy in quantum systems

    NASA Astrophysics Data System (ADS)

    Ansari, Mohammad

    Entropy is nonlinear in density matrix and as such its evaluation in open quantum system has not been fully understood. Recently a quantum formalism was proposed by Ansari and Nazarov that evaluates entropy using parallel time evolutions of multiple worlds. We can use this formalism to evaluate entropy flow in a photovoltaic cells coupled to thermal reservoirs and cavity modes. Recently we studied the full counting statistics of energy transfers in such systems. This rigorously proves a nontrivial correspondence between energy exchanges and entropy changes in quantum systems, which only in systems without entanglement can be simplified to the textbook second law of thermodynamics. We evaluate the flow of entropy using this formalism. In the presence of entanglement, however, interestingly much less information is exchanged than what we expected. This increases the upper limit capacity for information transfer and its conversion to energy for next generation devices in mesoscopic physics.

  6. Shortcuts to adiabaticity for accelerated quantum state transfer

    NASA Astrophysics Data System (ADS)

    Baksic, Alexandre; Ribeiro, Hugo; Clerk, Aashish A.

    Adiabatic transfer protocols are among the most powerful and interesting approaches to move quantum states between two different systems. While having many advantages, those schemes are necessarily slow, and hence can suffer from dissipation and noise in the target and/or source system. In this talk, we present an approach that allows to operate a state transfer much faster, without suffering from non-adiabatic errors. The key idea is to work with a basis of dressed states whose very definition incorporates the matrix elements which give rise to non-adiabatic transitions. By introducing additional control fields, we can ensure that the system ``rides'' these new dressed states during the protocol, thus allowing for a fast high fidelity state transfer. We discuss a recent experimental implementation of these ideas in an NV-center Λ-system, as well as extensions to state transfer problems involving propagating states.

  7. Nonequilibrium Energy Transfer at Nanoscale: A Unified Theory from Weak to Strong Coupling

    PubMed Central

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2015-01-01

    Unraveling the microscopic mechanism of quantum energy transfer across two-level systems provides crucial insights to the optimal design and potential applications of low-dimensional nanodevices. Here, we study the non-equilibrium spin-boson model as a minimal prototype and develop a fluctuation-decoupled quantum master equation approach that is valid ranging from the weak to the strong system-bath coupling regime. The exact expression of energy flux is analytically established, which dissects the energy transfer as multiple boson processes with even and odd parity. Our analysis provides a unified interpretation of several observations, including coherence-enhanced heat flux and negative differential thermal conductance. The results will have broad implications for the fine control of energy transfer in nano-structural devices. PMID:26152705

  8. Work on a quantum dipole by a single-photon pulse.

    PubMed

    Valente, D; Brito, F; Ferreira, R; Werlang, T

    2018-06-01

    Energy transfer from a quantized field to a quantized dipole is investigated. We find that a single photon can transfer energy to a two-level dipole by inducing a dynamic Stark shift, going beyond the well-known absorption and emission processes. A quantum thermodynamical perspective allows us to unravel these two energy transfer mechanisms and to identify the former as a generalized work and the latter as a generalized heat. We show two necessary conditions for the generalized work transfer by a single photon to occur, namely, off-resonance and finite linewidth of the pulse. We also show that the generalized work performed by a single-photon pulse equals the reactive (dispersive) contribution of the work performed by a semiclassical pulse in the low-excitation regime.

  9. Space Shuttle Project

    NASA Image and Video Library

    1995-10-20

    A Great Blue Heron seems oblivious to the tremendous spectacle of light and sound generated by a Shuttle liftoff, as the Space Shuttle Columbia (STS-73) soars skyward from Launch Pad 39B. Columbia's seven member crew's mission included continuing experimentation in the Marshall managed payloads including the United States Microgravity Laboratory 2 (USML-2) and the keel-mounted accelerometer that characterizes the very low frequency acceleration environment of the orbiter payload bay during space flight, known as the Orbital Acceleration Research Experiment (OARE).

  10. Matrix Multiplication Algorithm Selection with Support Vector Machines

    DTIC Science & Technology

    2015-05-01

    libraries that could intelligently choose the optimal algorithm for a particular set of inputs. Users would be oblivious to the underlying algorithmic...SAT.” J. Artif . Intell. Res.(JAIR), vol. 32, pp. 565–606, 2008. [9] M. G. Lagoudakis and M. L. Littman, “Algorithm selection using reinforcement...Artificial Intelligence , vol. 21, no. 05, pp. 961–976, 2007. [15] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM

  11. Wrappers for Performance Enhancement and Oblivious Decision Graphs

    DTIC Science & Technology

    1995-09-01

    always select all relevant features. We test di erent search engines to search the space of feature subsets and introduce compound operators to speed...distinct instances from the original dataset appearing in the test set is thus 0:632m. The 0i accuracy estimate is derived by using bootstrap sample...i for training and the rest of the instances for testing . Given a number b, the number of bootstrap samples, let 0i be the accuracy estimate for

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z. D.; Wang, J.; Department of Chemistry, SUNY Stony Brook, New York 11794

    We established a theoretical framework in terms of the curl flux, population landscape, and coherence for non-equilibrium quantum systems at steady state, through exploring the energy and charge transport in molecular processes. The curl quantum flux plays the key role in determining transport properties and the system reaches equilibrium when flux vanishes. The novel curl quantum flux reflects the degree of non-equilibriumness and the time-irreversibility. We found an analytical expression for the quantum flux and its relationship to the environmental pumping (non-equilibriumness quantified by the voltage away from the equilibrium) and the quantum tunneling. Furthermore, we investigated another quantum signature,more » the coherence, quantitatively measured by the non-zero off diagonal element of the density matrix. Populations of states give the probabilities of individual states and therefore quantify the population landscape. Both curl flux and coherence depend on steady state population landscape. Besides the environment-assistance which can give dramatic enhancement of coherence and quantum flux with high voltage at a fixed tunneling strength, the quantum flux is promoted by the coherence in the regime of small tunneling while reduced by the coherence in the regime of large tunneling, due to the non-monotonic relationship between the coherence and tunneling. This is in contrast to the previously found linear relationship. For the systems coupled to bosonic (photonic and phononic) reservoirs the flux is significantly promoted at large voltage while for fermionic (electronic) reservoirs the flux reaches a saturation after a significant enhancement at large voltage due to the Pauli exclusion principle. In view of the system as a quantum heat engine, we studied the non-equilibrium thermodynamics and established the analytical connections of curl quantum flux to the transport quantities such as energy (charge) transfer efficiency, chemical reaction efficiency, energy dissipation, heat and electric currents observed in the experiments. We observed a perfect transfer efficiency in chemical reactions at high voltage (chemical potential difference). Our theoretical predicted behavior of the electric current with respect to the voltage is in good agreements with the recent experiments on electron transfer in single molecules.« less

  13. FOX: A Fault-Oblivious Extreme-Scale Execution Environment Boston University Final Report Project Number: DE-SC0005365

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appavoo, Jonathan

    Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. The FOX project explored systems software and runtime support for a new approach to the data and work distribution for fault oblivious application execution. Our major OS work at Boston University focusedmore » on developing a new light-weight operating systems model that provides an appropriate context for both multi-core and multi-node application development. This work is discussed in section 1. Early on in the FOX project BU developed infrastructure for prototyping dynamic HPC environments in which the sets of nodes that an application is run on can be dynamically grown or shrunk. This work was an extension of the Kittyhawk project and is discussed in section 2. Section 3 documents the publications and software repositories that we have produced. To put our work in context of the complete FOX project contribution we include in section 4 an extended version of a paper that documents the complete work of the FOX team.« less

  14. Cache-Oblivious parallel SIMD Viterbi decoding for sequence search in HMMER

    PubMed Central

    2014-01-01

    Background HMMER is a commonly used bioinformatics tool based on Hidden Markov Models (HMMs) to analyze and process biological sequences. One of its main homology engines is based on the Viterbi decoding algorithm, which was already highly parallelized and optimized using Farrar’s striped processing pattern with Intel SSE2 instruction set extension. Results A new SIMD vectorization of the Viterbi decoding algorithm is proposed, based on an SSE2 inter-task parallelization approach similar to the DNA alignment algorithm proposed by Rognes. Besides this alternative vectorization scheme, the proposed implementation also introduces a new partitioning of the Markov model that allows a significantly more efficient exploitation of the cache locality. Such optimization, together with an improved loading of the emission scores, allows the achievement of a constant processing throughput, regardless of the innermost-cache size and of the dimension of the considered model. Conclusions The proposed optimized vectorization of the Viterbi decoding algorithm was extensively evaluated and compared with the HMMER3 decoder to process DNA and protein datasets, proving to be a rather competitive alternative implementation. Being always faster than the already highly optimized ViterbiFilter implementation of HMMER3, the proposed Cache-Oblivious Parallel SIMD Viterbi (COPS) implementation provides a constant throughput and offers a processing speedup as high as two times faster, depending on the model’s size. PMID:24884826

  15. Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.

    PubMed

    Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R

    2014-08-01

    Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. Copyright © 2014, American Association for the Advancement of Science.

  16. Effects of energy transfer on quantum efficiency of YAG:Nd

    NASA Astrophysics Data System (ADS)

    Lupei, V.; Lupei, A.; Georgescu, S.; Yen, W. M.

    1989-10-01

    Using the energy transfer parameters deduced from the study on nonexponential luminescence decay of the 4F3/2 level of Nd(3+) in YAG at room temperature, it is shown that up to 1.5 at. pct Nd, the relative quantum efficiency is reduced by an amount of 18.2C, C being the relative Nd concentration. It is pointed out that about 20 percent of this reduction is due to a very effective quenching mechanism inside the nearest-neighbor Nd-ion pairs.

  17. Across-horizon scattering and information transfer

    NASA Astrophysics Data System (ADS)

    Emelyanov, V. A.; Klinkhamer, F. R.

    2018-06-01

    We address the question whether or not two electrically charged elementary particles can Coulomb scatter if one of these particles is inside the Schwarzschild black-hole horizon and the other outside. It can be shown that the quantum process is consistent with the local energy–momentum conservation law. This result implies that across-horizon scattering is a physical effect, relevant to astrophysical black holes. We propose a Gedankenexperiment which uses the quantum scattering process to transfer information from inside the black-hole horizon to outside.

  18. Forster Resonance Energy Transfer Between Core/Shell Quantum Dots and Bacteriorhodopsin

    DTIC Science & Technology

    2012-01-01

    through 1 -ethyl- 3 -( 3 - dimethylaminopropyl ) carbodiimide hydrochloride (EDC) linker techniques. An amide linkage between the carboxyl- QD and bR amino...Förster Resonance Energy Transfer between Core/Shell QuantumDots and Bacteriorhodopsin Mark H. Griep, 1 , 2, 3 Eric M.Winder,2, 4 Donald R. Lueking,2, 4...failing to comply with a collection of information if it does not display a currently valid OMB control number. 1 . REPORT DATE 2012 2. REPORT TYPE 3

  19. “Counterfactual” quantum protocols

    NASA Astrophysics Data System (ADS)

    Vaidman, L.

    2016-05-01

    The counterfactuality of recently proposed protocols is analyzed. A definition of “counterfactuality” is offered and it is argued that an interaction-free measurement (IFM) of the presence of an opaque object can be named “counterfactual”, while proposed “counterfactual” measurements of the absence of such objects are not counterfactual. The quantum key distribution protocols which rely only on measurements of the presence of the object are counterfactual, but quantum direct communication protocols are not. Therefore, the name “counterfactual” is not appropriate for recent “counterfactual” protocols which transfer quantum states by quantum direct communication.

  20. Non-local classical optical correlation and implementing analogy of quantum teleportation

    PubMed Central

    Sun, Yifan; Song, Xinbing; Qin, Hongwei; Zhang, Xiong; Yang, Zhenwei; Zhang, Xiangdong

    2015-01-01

    This study reports an experimental realization of non-local classical optical correlation from the Bell's measurement used in tests of quantum non-locality. Based on such a classical Einstein–Podolsky–Rosen optical correlation, a classical analogy has been implemented to the true meaning of quantum teleportation. In the experimental teleportation protocol, the initial teleported information can be unknown to anyone and the information transfer can happen over arbitrary distances. The obtained results give novel insight into quantum physics and may open a new field of applications in quantum information. PMID:25779977

  1. Anesthetics act in quantum channels in brain microtubules to prevent consciousness.

    PubMed

    Craddock, Travis J A; Hameroff, Stuart R; Ayoub, Ahmed T; Klobukowski, Mariusz; Tuszynski, Jack A

    2015-01-01

    The mechanism by which anesthetic gases selectively prevent consciousness and memory (sparing non-conscious brain functions) remains unknown. At the turn of the 20(th) century Meyer and Overton showed that potency of structurally dissimilar anesthetic gas molecules correlated precisely over many orders of magnitude with one factor, solubility in a non-polar, 'hydrophobic' medium akin to olive oil. In the 1980s Franks and Lieb showed anesthetics acted in such a medium within proteins, suggesting post-synaptic membrane receptors. But anesthetic studies on such proteins yielded only confusing results. In recent years Eckenhoff and colleagues have found anesthetic action in microtubules, cytoskeletal polymers of the protein tubulin inside brain neurons. 'Quantum mobility' in microtubules has been proposed to mediate consciousness. Through molecular modeling we have previously shown: (1) olive oil-like non-polar, hydrophobic quantum mobility pathways ('quantum channels') of tryptophan rings in tubulin, (2) binding of anesthetic gas molecules in these channels, and (3) capabilities for π-electron resonant energy transfer, or exciton hopping, among tryptophan aromatic rings in quantum channels, similar to photosynthesis protein quantum coherence. Here, we show anesthetic molecules can impair π-resonance energy transfer and exciton hopping in tubulin quantum channels, and thus account for selective action of anesthetics on consciousness and memory.

  2. QUANTUM CRYPTOGRAPHY: Single Photons.

    PubMed

    Benjamin, S

    2000-12-22

    Quantum cryptography offers the potential of totally secure transfer of information, but as Benjamin discusses in this Perspective, its practical implementation hinges on being able to generate single photons (rather than two or more) at a time. Michler et al. show how this condition can be met in a quantum dot microdisk structure. Single molecules were also recently shown to allow controlled single-photon emission.

  3. Recent developments in Förster resonance energy transfer (FRET) diagnostics using quantum dots.

    PubMed

    Geißler, Daniel; Hildebrandt, Niko

    2016-07-01

    The exceptional photophysical properties and the nanometric dimensions of colloidal semiconductor quantum dots (QD) have strongly attracted the bioanalytical community over the last approximately 20 y. In particular, the integration of QDs in the analysis of biological components and interactions, and the related diagnostics using Förster resonance energy transfer (FRET), have allowed researchers to significantly improve and diversify fluorescence-based biosensing. In this TRENDS article, we review some recent developments in QD-FRET biosensing that have implemented this technology in electronic consumer products, multiplexed analysis, and detection without light excitation for diagnostic applications. In selected examples of smartphone-based imaging, single- and multistep FRET, steady-state and time-resolved spectroscopy, and bio/chemiluminescence detection of QDs used as both FRET donors and acceptors, we highlight the advantages of QD-based FRET biosensing for multiplexed and sensitive diagnostics. Graphical Abstract Quantum dots (QDs) can be applied as donors and/or acceptors for Förster resonance energy transfer- (FRET-) based biosensing for multiplexed and sensitive diagnostics in various assay formats.

  4. Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2017-02-01

    To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field. This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias. With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.

  5. Homeotropic alignment and Förster resonance energy transfer: The way to a brighter luminescent solar concentrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tummeltshammer, Clemens; Taylor, Alaric; Kenyon, Anthony J.

    2014-11-07

    We investigate homeotropically aligned fluorophores and Förster resonance energy transfer (FRET) for luminescent solar concentrators using Monte-Carlo ray tracing. The homeotropic alignment strongly improves the trapping efficiency, while FRET circumvents the low absorption at homeotropic alignment by separating the absorption and emission processes. We predict that this design doped with two organic dye molecules can yield a 82.9% optical efficiency improvement compared to a single, arbitrarily oriented dye molecule. We also show that quantum dots are prime candidates for absorption/donor fluorophores due to their wide absorption band. The potentially strong re-absorption and low quantum yield of quantum dots is notmore » a hindrance for this design.« less

  6. Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect

    NASA Astrophysics Data System (ADS)

    Li, Chang-Hao; Li, Peng-Bo

    2018-05-01

    We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.

  7. Measuring complete quantum states with a single observable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Xinhua; Suter, Dieter; Du Jiangfeng

    2007-10-15

    Experimental determination of an unknown quantum state usually requires several incompatible measurements. However, it is also possible to determine the full quantum state from a single, repeated measurement. For this purpose, the quantum system whose state is to be determined is first coupled to a second quantum system (the 'assistant') in such a way that part of the information in the quantum state is transferred to the assistant. The actual measurement is then performed on the enlarged system including the original system and the assistant. We discuss in detail the requirements of this procedure and experimentally implement it on amore » simple quantum system consisting of nuclear spins.« less

  8. Practical quantum digital signature

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  9. All-photonic quantum repeaters

    PubMed Central

    Azuma, Koji; Tamaki, Kiyoshi; Lo, Hoi-Kwong

    2015-01-01

    Quantum communication holds promise for unconditionally secure transmission of secret messages and faithful transfer of unknown quantum states. Photons appear to be the medium of choice for quantum communication. Owing to photon losses, robust quantum communication over long lossy channels requires quantum repeaters. It is widely believed that a necessary and highly demanding requirement for quantum repeaters is the existence of matter quantum memories. Here we show that such a requirement is, in fact, unnecessary by introducing the concept of all-photonic quantum repeaters based on flying qubits. In particular, we present a protocol based on photonic cluster-state machine guns and a loss-tolerant measurement equipped with local high-speed active feedforwards. We show that, with such all-photonic quantum repeaters, the communication efficiency scales polynomially with the channel distance. Our result paves a new route towards quantum repeaters with efficient single-photon sources rather than matter quantum memories. PMID:25873153

  10. Dynamics of photogenerated carriers near magnetic field driven quantum phase transition in aperiodic multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Tito, M. A.; Pusep, Yu A.

    2018-01-01

    Time-resolved magneto-photoluminescence was employed to study the magnetic field induced quantum phase transition separating two phases with different distributions of electrons over quantum wells in an aperiodic multiple quantum well, embedded in a wide AlGaAs parabolic quantum well. Intensities, broadenings and recombination times attributed to the photoluminescence lines emitted from individual quantum wells of the multiple quantum well structure were measured as a function of the magnetic field near the transition. The presented data manifest themselves to the magnetic field driven migration of the free electrons between the quantum wells of the studied multiple quantum well structure. The observed charge transfer was found to influence the screening of the multiple quantum well and disorder potentials. Evidence of the localization of the electrons in the peripheral quantum wells in strong magnetic field is presented.

  11. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

    NASA Astrophysics Data System (ADS)

    Caspani, Lucia; Reimer, Christian; Kues, Michael; Roztocki, Piotr; Clerici, Matteo; Wetzel, Benjamin; Jestin, Yoann; Ferrera, Marcello; Peccianti, Marco; Pasquazi, Alessia; Razzari, Luca; Little, Brent E.; Chu, Sai T.; Moss, David J.; Morandotti, Roberto

    2016-06-01

    Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks) and quantum memories (necessary to extend the communication distance), as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state) is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.

  12. On the transferability of electron density in binary vanadium borides VB, V3B4 and VB2.

    PubMed

    Terlan, Bürgehan; Akselrud, Lev; Baranov, Alexey I; Borrmann, Horst; Grin, Yuri

    2015-12-01

    Binary vanadium borides are suitable model systems for a systematic analysis of the transferability concept in intermetallic compounds due to chemical intergrowth in their crystal structures. In order to underline this structural relationship, topological properties of the electron density in VB, V3B4 and VB2 reconstructed from high-resolution single-crystal X-ray diffraction data as well as derived from quantum chemical calculations, are analysed in terms of Bader's Quantum Theory of Atoms in Molecules [Bader (1990). Atoms in Molecules: A Quantum Theory, 1st ed. Oxford: Clarendon Press]. The compounds VB, V3B4 and VB2 are characterized by a charge transfer from the metal to boron together with two predominant atomic interactions, the shared covalent B-B interactions and the polar covalent B-M interactions. The resembling features of the crystal structures are well reflected by the respective B-B interatomic distances as well as by ρ(r) values at the B-B bond critical points. The latter decrease with an increase in the corresponding interatomic distances. The B-B bonds show transferable electron density properties at bond critical points depending on the respective bond distances.

  13. Code Modernization of VPIC

    NASA Astrophysics Data System (ADS)

    Bird, Robert; Nystrom, David; Albright, Brian

    2017-10-01

    The ability of scientific simulations to effectively deliver performant computation is increasingly being challenged by successive generations of high-performance computing architectures. Code development to support efficient computation on these modern architectures is both expensive, and highly complex; if it is approached without due care, it may also not be directly transferable between subsequent hardware generations. Previous works have discussed techniques to support the process of adapting a legacy code for modern hardware generations, but despite the breakthroughs in the areas of mini-app development, portable-performance, and cache oblivious algorithms the problem still remains largely unsolved. In this work we demonstrate how a focus on platform agnostic modern code-development can be applied to Particle-in-Cell (PIC) simulations to facilitate effective scientific delivery. This work builds directly on our previous work optimizing VPIC, in which we replaced intrinsic based vectorisation with compile generated auto-vectorization to improve the performance and portability of VPIC. In this work we present the use of a specialized SIMD queue for processing some particle operations, and also preview a GPU capable OpenMP variant of VPIC. Finally we include a lessons learnt. Work performed under the auspices of the U.S. Dept. of Energy by the Los Alamos National Security, LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396 and supported by the LANL LDRD program.

  14. Toward quantum plasmonic networks

    DOE PAGES

    Holtfrerich, M. W.; Dowran, M.; Davidson, R.; ...

    2016-08-30

    Here, we demonstrate the transduction of macroscopic quantum entanglement by independent, distant plasmonic structures embedded in separate thin silver films. In particular, we show that the plasmon-mediated transmission through each film conserves spatially dependent, entangled quantum images, opening the door for the implementation of parallel quantum protocols, super-resolution imaging, and quantum plasmonic sensing geometries at the nanoscale level. The conservation of quantum information by the transduction process shows that continuous variable multi-mode entanglement is momentarily transferred from entangled beams of light to the space-like separated, completely independent plasmonic structures, thus providing a first important step toward establishing a multichannel quantummore » network across separate solid-state substrates.« less

  15. Control aspects of quantum computing using pure and mixed states.

    PubMed

    Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J

    2012-10-13

    Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems.

  16. Control aspects of quantum computing using pure and mixed states

    PubMed Central

    Schulte-Herbrüggen, Thomas; Marx, Raimund; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Khaneja, Navin; Glaser, Steffen J.

    2012-01-01

    Steering quantum dynamics such that the target states solve classically hard problems is paramount to quantum simulation and computation. And beyond, quantum control is also essential to pave the way to quantum technologies. Here, important control techniques are reviewed and presented in a unified frame covering quantum computational gate synthesis and spectroscopic state transfer alike. We emphasize that it does not matter whether the quantum states of interest are pure or not. While pure states underly the design of quantum circuits, ensemble mixtures of quantum states can be exploited in a more recent class of algorithms: it is illustrated by characterizing the Jones polynomial in order to distinguish between different (classes of) knots. Further applications include Josephson elements, cavity grids, ion traps and nitrogen vacancy centres in scenarios of closed as well as open quantum systems. PMID:22946034

  17. Channel analysis for single photon underwater free space quantum key distribution.

    PubMed

    Shi, Peng; Zhao, Shi-Cheng; Gu, Yong-Jian; Li, Wen-Dong

    2015-03-01

    We investigate the optical absorption and scattering properties of underwater media pertinent to our underwater free space quantum key distribution (QKD) channel model. With the vector radiative transfer theory and Monte Carlo method, we obtain the attenuation of photons, the fidelity of the scattered photons, the quantum bit error rate, and the sifted key generation rate of underwater quantum communication. It can be observed from our simulations that the most secure single photon underwater free space QKD is feasible in the clearest ocean water.

  18. Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing

    NASA Astrophysics Data System (ADS)

    Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias

    2017-10-01

    Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.

  19. Influence of intra-pigment vibrations on dynamics of photosynthetic exciton.

    PubMed

    Sato, Yoshihiro; Doolittle, Brian

    2014-11-14

    We have numerically investigated the effect of an underdamped intra-pigment vibrational mode on an exciton's quantum coherence and energy transfer efficiency. Our model describes a bacteriochlorophyll a pigment-protein dimer under the conditions at which photosynthetic energy transfer occurs. The dimer is modeled using a theoretical treatment of a vibronic exciton, and its dynamics are numerically analyzed using a non-Markovian and non-perturbative method. We examined the system's response to various values of the Huang-Rhys factor, site energy difference, reorganization energy, and reorganization energy difference. We found that the inclusion of the intra-pigment vibronic mode allows for long-lived oscillatory quantum coherences to occur. This excitonic coherence is robust against static site-energy disorder. The vibrational mode also promotes exciton transfer along the site-energy landscape thus improving the overall energy transfer efficiency.

  20. Transfer matrix spectrum for cyclic representations of the 6-vertex reflection algebra by quantum separation of variables

    NASA Astrophysics Data System (ADS)

    Pezelier, Baptiste

    2018-02-01

    In this proceeding, we recall the notion of quantum integrable systems on a lattice and then introduce the Sklyanin’s Separation of Variables method. We sum up the main results for the transfer matrix spectral problem for the cyclic representations of the trigonometric 6-vertex reflection algebra associated to the Bazanov-Stroganov Lax operator. These results apply as well to the spectral analysis of the lattice sine-Gordon model with open boundary conditions. The transfer matrix spectrum (both eigenvalues and eigenstates) is completely characterized in terms of the set of solutions to a discrete system of polynomial equations. We state an equivalent characterization as the set of solutions to a Baxter’s like T-Q functional equation, allowing us to rewrite the transfer matrix eigenstates in an algebraic Bethe ansatz form.

  1. Laser plaltopharyngoplasty (LPPP)

    NASA Astrophysics Data System (ADS)

    Ru, Yi-zhong; Hu, Zai-Wen

    1998-11-01

    The snoring disease is apt to give rise to the obstructive seep apnea syndrome. Its clinical feature is noisy stertorous breathing during sleeping, accompanied with frequency stoppages of breathing. As the sufferer is subjected to a state of chronic anoxemia during the night, he is liable to spiritlessness, obliviousness, and disordered sensibility in the day. Arrhythmia, hypertension, etc. may follow in severer case. We have obtained satisfactory therapeutic effects by laser palatopharyngoplasty on 20 cases of snoring disease for the period February 1992 - January 1996.

  2. Experimental realization of counterfactual quantum cryptography Experimental realization of counterfactual quantum cryptography

    NASA Astrophysics Data System (ADS)

    Brida, G.; Cavanna, A.; Degiovanni, I. P.; Genovese, M.; Traina, P.

    2012-03-01

    In counterfactual quantum key distribution (CQKD) information is transferred, in a secure way, between Alice and Bob even when no particle carrying the information is in fact transmitted between them. In this letter we fully implement the scheme for CQKD proposed in [1], demonstrating for the first time that information can be transmitted between two parties without the transmission of a carrier.

  3. Two-Color Photodetector Using an Asymmetric Quantum Well Structure

    DTIC Science & Technology

    2002-06-01

    Infrared Photodetectors ( QWIPs ). QWIPs have an advantage over other infrared detectors such as Mercury Cadmium Telluride (MCT) because they have...an asymmetric quantum well structure in which all energy transitions are possible. The QWIP structure in this thesis was designed to detect a laser...systems. 15. NUMBER OF PAGES 89 14. SUBJECT TERMS Quantum well, QWIP , Two-color detection, Infrared imager, Laser Spot Tracker, Transfer

  4. Quantum Secure Direct Communication with Quantum Memory

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can

    2017-06-01

    Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.

  5. Quantum Secure Direct Communication with Quantum Memory.

    PubMed

    Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can

    2017-06-02

    Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.

  6. Teleportation is necessary for faithful quantum state transfer through noisy channels of maximal rank

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romano, Raffaele; Loock, Peter van

    2010-07-15

    Quantum teleportation enables deterministic and faithful transmission of quantum states, provided a maximally entangled state is preshared between sender and receiver, and a one-way classical channel is available. Here, we prove that these resources are not only sufficient, but also necessary, for deterministically and faithfully sending quantum states through any fixed noisy channel of maximal rank, when a single use of the cannel is admitted. In other words, for this family of channels, there are no other protocols, based on different (and possibly cheaper) sets of resources, capable of replacing quantum teleportation.

  7. Adiabatic Quantum Computation: Coherent Control Back Action.

    PubMed

    Goswami, Debabrata

    2006-11-22

    Though attractive from scalability aspects, optical approaches to quantum computing are highly prone to decoherence and rapid population loss due to nonradiative processes such as vibrational redistribution. We show that such effects can be reduced by adiabatic coherent control, in which quantum interference between multiple excitation pathways is used to cancel coupling to the unwanted, non-radiative channels. We focus on experimentally demonstrated adiabatic controlled population transfer experiments wherein the details on the coherence aspects are yet to be explored theoretically but are important for quantum computation. Such quantum computing schemes also form a back-action connection to coherent control developments.

  8. Electrochemical control over photoinduced electron transfer and trapping in CdSe-CdTe quantum-dot solids.

    PubMed

    Boehme, Simon C; Walvis, T Ardaan; Infante, Ivan; Grozema, Ferdinand C; Vanmaekelbergh, Daniël; Siebbeles, Laurens D A; Houtepen, Arjan J

    2014-07-22

    Understanding and controlling charge transfer between different kinds of colloidal quantum dots (QDs) is important for devices such as light-emitting diodes and solar cells and for thermoelectric applications. Here we study photoinduced electron transfer between CdTe and CdSe QDs in a QD film. We find that very efficient electron trapping in CdTe QDs obstructs electron transfer to CdSe QDs under most conditions. Only the use of thiol ligands results in somewhat slower electron trapping; in this case the competition between trapping and electron transfer results in a small fraction of electrons being transferred to CdSe. However, we demonstrate that electron trapping can be controlled and even avoided altogether by using the unique combination of electrochemistry and transient absorption spectroscopy. When the Fermi level is raised electrochemically, traps are filled with electrons and electron transfer from CdTe to CdSe QDs occurs with unity efficiency. These results show the great importance of knowing and controlling the Fermi level in QD films and open up the possibility of studying the density of trap states in QD films as well as the systematic investigation of the intrinsic electron transfer rates in donor-acceptor films.

  9. Ultrasmooth Quantum Dot Micropatterns by a Facile Controllable Liquid-Transfer Approach: Low-Cost Fabrication of High-Performance QLED.

    PubMed

    Zhang, Min; Hu, Binbin; Meng, Lili; Bian, Ruixin; Wang, Siyuan; Wang, Yunjun; Liu, Huan; Jiang, Lei

    2018-06-26

    Fabrication of a high quality quantum dot (QD) film is essentially important for a high-performance QD light emitting diode display (QLED) device. It is normally a high-cost and multiple-step solution-transfer process where large amounts of QDs were needed but with only limited usefulness. Thus, developing a simple, efficient, and low-cost approach to fabricate high-quality micropatterned QD film is urgently needed. Here, we proposed that the Chinese brush enables the controllable transfer of a QD solution directly onto a homogeneous and ultrasmooth micropatterned film in one step. It is proposed that the dynamic balance of QDs was enabled during the entire solution transfer process under the cooperative effect of Marangoni flow aroused by the asymmetric solvent evaporation and the Laplace pressure different by conical fibers. By this approach, QD nanoparticles were homogeneously transferred onto the desired area on the substrate. The as-prepared QLED devices show rather high performances with the current efficiencies of 72.38, 26.03, and 4.26 cd/A and external quantum efficiencies of 17.40, 18.96, and 6.20% for the green, red, and blue QLED devices, respectively. We envision that the result offers a low-cost, facile, and practically applicable solution-processing approach that works even in air for fabricating high-performance QLED devices.

  10. From the quantum transfer matrix to the quench action: the Loschmidt echo in XXZ Heisenberg spin chains

    NASA Astrophysics Data System (ADS)

    Piroli, Lorenzo; Pozsgay, Balázs; Vernier, Eric

    2017-02-01

    We consider the computation of the Loschmidt echo after quantum quenches in the interacting XXZ Heisenberg spin chain both for real and imaginary times. We study two-site product initial states, focusing in particular on the Néel and tilted Néel states. We apply the quantum transfer matrix (QTM) approach to derive generalized TBA equations, which follow from the fusion hierarchy of the appropriate QTM’s. Our formulas are valid for arbitrary imaginary time and for real times at least up to a time t 0, after which the integral equations have to be modified. In some regimes, t 0 is seen to be either very large or infinite, allowing to explore in detail the post-quench dynamics of the system. As an important part of our work, we show that for the Néel state our imaginary time results can be recovered by means of the quench action approach, unveiling a direct connection with the quantum transfer matrix formalism. In particular, we show that in the zero-time limit, the study of our TBA equations allows for a simple alternative derivation of the recently obtained Bethe ansatz distribution functions for the Néel, tilted Néel and tilted ferromagnet states.

  11. Machine learning for quantum dynamics: deep learning of excitation energy transfer properties

    DOE PAGES

    Häse, Florian; Kreisbeck, Christoph; Aspuru-Guzik, Alán

    2017-01-01

    Understanding the relationship between the structure of light-harvesting systems and their excitation energy transfer properties is of fundamental importance in many applications including the development of next generation photovoltaics.

  12. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    DOE PAGES

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-03-11

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. Here in this work, we address a dimer which produces little beating of electronic origin in the absencemore » of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.« less

  13. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujihashi, Yuta; Ishizaki, Akihito, E-mail: ishizaki@ims.ac.jp; Fleming, Graham R.

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence ofmore » vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.« less

  14. Charge reconfiguration in arrays of quantum dots

    NASA Astrophysics Data System (ADS)

    Bayer, Johannes C.; Wagner, Timo; Rugeramigabo, Eddy P.; Haug, Rolf J.

    2017-12-01

    Semiconductor quantum dots are potential building blocks for scalable qubit architectures. Efficient control over the exchange interaction and the possibility of coherently manipulating electron states are essential ingredients towards this goal. We studied experimentally the shuttling of electrons trapped in serial quantum dot arrays isolated from the reservoirs. The isolation hereby enables a high degree of control over the tunnel couplings between the quantum dots, while electrons can be transferred through the array by gate voltage variations. Model calculations are compared with our experimental results for double, triple, and quadruple quantum dot arrays. We are able to identify all transitions observed in our experiments, including cotunneling transitions between distant quantum dots. The shuttling of individual electrons between quantum dots along chosen paths is demonstrated.

  15. Quantum stopwatch: how to store time in a quantum memory.

    PubMed

    Yang, Yuxiang; Chiribella, Giulio; Hayashi, Masahito

    2018-05-01

    Quantum mechanics imposes a fundamental trade-off between the accuracy of time measurements and the size of the systems used as clocks. When the measurements of different time intervals are combined, the errors due to the finite clock size accumulate, resulting in an overall inaccuracy that grows with the complexity of the set-up. Here, we introduce a method that, in principle, eludes the accumulation of errors by coherently transferring information from a quantum clock to a quantum memory of the smallest possible size. Our method could be used to measure the total duration of a sequence of events with enhanced accuracy, and to reduce the amount of quantum communication needed to stabilize clocks in a quantum network.

  16. Model of a programmable quantum processing unit based on a quantum transistor effect

    NASA Astrophysics Data System (ADS)

    Ablayev, Farid; Andrianov, Sergey; Fetisov, Danila; Moiseev, Sergey; Terentyev, Alexandr; Urmanchev, Andrey; Vasiliev, Alexander

    2018-02-01

    In this paper we propose a model of a programmable quantum processing device realizable with existing nano-photonic technologies. It can be viewed as a basis for new high performance hardware architectures. Protocols for physical implementation of device on the controlled photon transfer and atomic transitions are presented. These protocols are designed for executing basic single-qubit and multi-qubit gates forming a universal set. We analyze the possible operation of this quantum computer scheme. Then we formalize the physical architecture by a mathematical model of a Quantum Processing Unit (QPU), which we use as a basis for the Quantum Programming Framework. This framework makes it possible to perform universal quantum computations in a multitasking environment.

  17. Quantum effects in energy and charge transfer in an artificial photosynthetic complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Pulak Kumar; Smirnov, Anatoly Yu.; Nori, Franco

    2011-06-28

    We investigate the quantum dynamics of energy and charge transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. This complex consists of six light-harvesting chromophores and an electron-acceptor fullerene. To describe quantum effects on a femtosecond time scale, we derive the set of exact non-Markovian equations for the Heisenberg operators of this photosynthetic complex in contact with a Gaussian heat bath. With these equations we can analyze the regime of strong system-bath interactions, where reorganization energies are of the order of the intersite exciton couplings. We show that the energy of the initially excited antenna chromophores is efficiently funneled tomore » the porphyrin-fullerene reaction center, where a charge-separated state is set up in a few picoseconds, with a quantum yield of the order of 95%. In the single-exciton regime, with one antenna chromophore being initially excited, we observe quantum beatings of energy between two resonant antenna chromophores with a decoherence time of {approx}100 fs. We also analyze the double-exciton regime, when two porphyrin molecules involved in the reaction center are initially excited. In this regime we obtain pronounced quantum oscillations of the charge on the fullerene molecule with a decoherence time of about 20 fs (at liquid nitrogen temperatures). These results show a way to directly detect quantum effects in artificial photosynthetic systems.« less

  18. Micro-RNA detection based on fluorescence resonance energy transfer of DNA-carbon quantum dots probes.

    PubMed

    Khakbaz, Faeze; Mahani, Mohamad

    2017-04-15

    Carbon quantum dots have been proposed as an effective platform for miRNA detection. Carbon dots were synthesized by citric acid. The synthesized dots were characterized by dynamic light scattering, UV-Vis spectrophotometry, spectrofluorimetry, transmission electron microscopy and FT-IR spectrophotometry. The fluorescence quantum yield of the synthesized dots was determined using quinine sulfate as the standard. The FAM-labeled single stranded DNA, as sensing element, was adsorbed on dots by π-π interaction. The quenching of the dots fluorescence due to fluorescence resonance energy transfer (FRET) was used for mir 9-1 detection. In the presence of the complementary miRNA, the FRET did not take place and the fluorescence was recovered. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Experimental demonstration of graph-state quantum secret sharing.

    PubMed

    Bell, B A; Markham, D; Herrera-Martí, D A; Marin, A; Wadsworth, W J; Rarity, J G; Tame, M S

    2014-11-21

    Quantum communication and computing offer many new opportunities for information processing in a connected world. Networks using quantum resources with tailor-made entanglement structures have been proposed for a variety of tasks, including distributing, sharing and processing information. Recently, a class of states known as graph states has emerged, providing versatile quantum resources for such networking tasks. Here we report an experimental demonstration of graph state-based quantum secret sharing--an important primitive for a quantum network with applications ranging from secure money transfer to multiparty quantum computation. We use an all-optical setup, encoding quantum information into photons representing a five-qubit graph state. We find that one can reliably encode, distribute and share quantum information amongst four parties, with various access structures based on the complex connectivity of the graph. Our results show that graph states are a promising approach for realising sophisticated multi-layered communication protocols in quantum networks.

  20. Analysis of resonant population transfer in time-dependent elliptical quantum billiards

    NASA Astrophysics Data System (ADS)

    Liss, Jakob; Liebchen, Benno; Schmelcher, Peter

    2013-01-01

    A Fermi golden rule for population transfer between instantaneous eigenstates of elliptical quantum billiards with oscillating boundaries is derived. Thereby the occurrence of both the recently observed resonant population transfer between instantaneous eigenstates and the empirical criterion stating that these transitions occur when the driving frequency matches the mean difference of the latter [Lenz , New J. Phys.NJOPFM1367-263010.1088/1367-2630/13/10/103019 13, 103019 (2011)] is explained. As a second main result a criterion judging which resonances are resolvable in a corresponding experiment of certain duration is provided. Our analysis is complemented by numerical simulations for three different driving laws. The corresponding resonance spectra are in agreement with the predictions of both criteria.

  1. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    PubMed

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-02

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  2. Exciton Energy Transfer from Halide Terminated Nanocrystals to Graphene in Solar Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso; Abramson, Justin; Anderson, Nicholas; Owen, Jonathan; Zhao, Yue; Kim, Phillip; Gesuele, Felice; Wong, Chee Wei

    2011-03-01

    Graphene, a zero-gap semiconductor, has been identified as an ideal electrode for nanocrystal solar cell photovoltaic applications due to its high carrier mobility. Further advances in efficient current extraction are required towards this end. We investigate the resonant energy transfer dynamics between photoexcited nanocrystals and graphene, where the energy transfer rate is characterized by the fluorescent quenching of the quantum dots in the presence of graphene. Energy transfer has been shown to have a d -4 dependence on the nanocrystal distance from the graphene surface, with a correction due to blinking statistics. We investigate this relationship with single and few layer graphene. We study halide-terminated CdSe quantum dots; where the absence of the insulating outershell improves the electronic coupling of the donor-acceptor system leads to improved electron transfer. We observe quenching of the halide terminated nanocrystals on graphene, with the quenching factor ρ defined as IQ /IG (the relative intensities on quartz and graphene).

  3. Studies on the interaction between 7-(dimethyl amino)-4-(trifluoromethyl)-2H-1-benzopyran-2-one and cadmium sulfide quantum dots

    NASA Astrophysics Data System (ADS)

    Kuriakose, Alina C.; Pradeep, C.; Nampoori, V. P. N.; Thomas, Sheenu

    2018-04-01

    Quantum dots (QDs) are well known for their optical properties which differ from those of bulk semiconductors. Herein, we have created an energy transfer platform that combines CdS QDs with a coumarin based dye C485 [7-(dimethyl amino)-4-(trifluoromethyl)-2H-1-benzopyran-2-one]. Spectroscopic studies of energy transfer between the dye donor and CdS QDs as acceptors reveal the occurrence of dynamic quenching. Analysis of the steady-state and time resolved fluorescence measurements of C485 in the presence of CdS QDs infers fluorescence resonance (Förster type) energy transfer (FRET) as responsible for the quenching phenomena. The energy transfer efficiency as well as energy transfer distance for the donor-acceptor pair is calculated using steady-state fluorescence method. Luminescence enhancement of CdS QDs play a critical role in device performance for solar applications and also in the field of biological applications.

  4. Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor/semiconductor optical sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehl, Michael; Gibson, Ricky; Zandbergen, Sander

    Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less

  5. Kinetics and dynamics of near-resonant vibrational energy transfer in gas ensembles of atmospheric interest

    NASA Astrophysics Data System (ADS)

    McCaffery, Anthony J.

    2018-03-01

    This study of near-resonant, vibration-vibration (V-V) gas-phase energy transfer in diatomic molecules uses the theoretical/computational method, of Marsh & McCaffery (Marsh & McCaffery 2002 J. Chem. Phys. 117, 503 (doi:10.1063/1.1489998)) The method uses the angular momentum (AM) theoretical formalism to compute quantum-state populations within the component molecules of large, non-equilibrium, gas mixtures as the component species proceed to equilibration. Computed quantum-state populations are displayed in a number of formats that reveal the detailed mechanism of the near-resonant V-V process. Further, the evolution of quantum-state populations, for each species present, may be followed as the number of collision cycles increases, displaying the kinetics of evolution for each quantum state of the ensemble's molecules. These features are illustrated for ensembles containing vibrationally excited N2 in H2, O2 and N2 initially in their ground states. This article is part of the theme issue `Modern theoretical chemistry'.

  6. Manipulating Nonlinear Emission and Cooperative Effect of CdSe/ZnS Quantum Dots by Coupling to a Silver Nanorod Complex Cavity

    PubMed Central

    Nan, Fan; Cheng, Zi-Qiang; Wang, Ya-Lan; Zhang, Qing; Zhou, Li; Yang, Zhong-Jian; Zhong, Yu-Ting; Liang, Shan; Xiong, Qihua; Wang, Qu-Quan

    2014-01-01

    Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ensemble CdSe/ZnS quantum dots coupled with silver nanorod complex cavities at room temperature. Power-dependent spectral shifting, narrowing, modulation, and amplification are demonstrated by adjusting longitudinal surface plasmon resonance of silver nanorods, reflectivity and phase shift of silver nanostructured film, and mode spacing of the complex cavity. The underlying physical mechanism of the nonlinear excitation energy transfer and nonlinear emissions are further investigated and discussed by using time-resolved photoluminescence and finite-difference time-domain numerical simulations. Our results suggest effective strategies to design active plasmonic complex cavities for cooperative emission nanodevices based on semiconductor quantum dots. PMID:24787617

  7. Coherent quantum phase slip.

    PubMed

    Astafiev, O V; Ioffe, L B; Kafanov, S; Pashkin, Yu A; Arutyunov, K Yu; Shahar, D; Cohen, O; Tsai, J S

    2012-04-18

    A hundred years after the discovery of superconductivity, one fundamental prediction of the theory, coherent quantum phase slip (CQPS), has not been observed. CQPS is a phenomenon exactly dual to the Josephson effect; whereas the latter is a coherent transfer of charges between superconducting leads, the former is a coherent transfer of vortices or fluxes across a superconducting wire. In contrast to previously reported observations of incoherent phase slip, CQPS has been only a subject of theoretical study. Its experimental demonstration is made difficult by quasiparticle dissipation due to gapless excitations in nanowires or in vortex cores. This difficulty might be overcome by using certain strongly disordered superconductors near the superconductor-insulator transition. Here we report direct observation of CQPS in a narrow segment of a superconducting loop made of strongly disordered indium oxide; the effect is made manifest through the superposition of quantum states with different numbers of flux quanta. As with the Josephson effect, our observation should lead to new applications in superconducting electronics and quantum metrology.

  8. Superconductivity in epitaxially grown self-assembled indium islands: progress towards hybrid superconductor/semiconductor optical sources

    DOE PAGES

    Gehl, Michael; Gibson, Ricky; Zandbergen, Sander; ...

    2016-02-01

    Currently, superconducting qubits lead the way in potential candidates for quantum computing. This is a result of the robust nature of superconductivity and the non-linear Josephson effect which make possible many types of qubits. At the same time, transferring quantum information over long distances typically relies on the use of photons as the elementary qubit. Converting between stationary electronic qubits in superconducting systems and traveling photonic qubits is a challenging yet necessary goal for the interface of quantum computing and communication. The most promising path to achieving this goal appears to be the integration of superconductivity with optically active semiconductors,more » with quantum information being transferred between the two by means of the superconducting proximity effect. Obtaining good interfaces between superconductor and semiconductor is the next obvious step for improving these hybrid systems. As a result, we report on our observation of superconductivity in self-assembled indium structures grown epitaxially on the surface of semiconductor material.« less

  9. Quantum Machine Learning over Infinite Dimensions

    DOE PAGES

    Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George; ...

    2017-02-21

    Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less

  10. Quantum limit of heat flow across a single electronic channel.

    PubMed

    Jezouin, S; Parmentier, F D; Anthore, A; Gennser, U; Cavanna, A; Jin, Y; Pierre, F

    2013-11-01

    Quantum physics predicts that there is a fundamental maximum heat conductance across a single transport channel and that this thermal conductance quantum, G(Q), is universal, independent of the type of particles carrying the heat. Such universality, combined with the relationship between heat and information, signals a general limit on information transfer. We report on the quantitative measurement of the quantum-limited heat flow for Fermi particles across a single electronic channel, using noise thermometry. The demonstrated agreement with the predicted G(Q) establishes experimentally this basic building block of quantum thermal transport. The achieved accuracy of below 10% opens access to many experiments involving the quantum manipulation of heat.

  11. Quantum Machine Learning over Infinite Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Hoi-Kwan; Pooser, Raphael; Siopsis, George

    Machine learning is a fascinating and exciting eld within computer science. Recently, this ex- citement has been transferred to the quantum information realm. Currently, all proposals for the quantum version of machine learning utilize the nite-dimensional substrate of discrete variables. Here we generalize quantum machine learning to the more complex, but still remarkably practi- cal, in nite-dimensional systems. We present the critical subroutines of quantum machine learning algorithms for an all-photonic continuous-variable quantum computer that achieve an exponential speedup compared to their equivalent classical counterparts. Finally, we also map out an experi- mental implementation which can be used as amore » blueprint for future photonic demonstrations.« less

  12. Watt-Level Continuous-Wave Emission from a Bi-Functional Quantum Cascade Laser/Detector

    DTIC Science & Technology

    2017-04-18

    facet continuous wave emission at 15◦C. Apart from the general performance benets, this enables sensing techiques which rely on continuous wave...record achieved with strained material at this wavelength. Keywords quantum cascade laser, quantum cascade detector, lab- on -a-chip, monolithic integrated...materials, which makes their integration on Si particularly dicult. Heterogeneous integration using transfer techniques allows both single device and wafer

  13. Electrical control of a solid-state flying qubit.

    PubMed

    Yamamoto, Michihisa; Takada, Shintaro; Bäuerle, Christopher; Watanabe, Kenta; Wieck, Andreas D; Tarucha, Seigo

    2012-03-18

    Solid-state approaches to quantum information technology are attractive because they are scalable. The coherent transport of quantum information over large distances is a requirement for any practical quantum computer and has been demonstrated by coupling super-conducting qubits to photons. Single electrons have also been transferred between distant quantum dots in times shorter than their spin coherence time. However, until now, there have been no demonstrations of scalable 'flying qubit' architectures-systems in which it is possible to perform quantum operations on qubits while they are being coherently transferred-in solid-state systems. These architectures allow for control over qubit separation and for non-local entanglement, which makes them more amenable to integration and scaling than static qubit approaches. Here, we report the transport and manipulation of qubits over distances of 6 µm within 40 ps, in an Aharonov-Bohm ring connected to two-channel wires that have a tunable tunnel coupling between channels. The flying qubit state is defined by the presence of a travelling electron in either channel of the wire, and can be controlled without a magnetic field. Our device has shorter quantum gates (<1 µm), longer coherence lengths (∼86 µm at 70 mK) and higher operating frequencies (∼100 GHz) than other solid-state implementations of flying qubits.

  14. Generalization of the Förster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling

    NASA Astrophysics Data System (ADS)

    Jang, Seogjoo

    2007-11-01

    The Förster resonance energy transfer theory is generalized for inelastic situations with quantum mechanical modulation of the donor-acceptor coupling. Under the assumption that the modulations are independent of the electronic excitation of the donor and the acceptor, a general rate expression is derived, which involves two dimensional frequency-domain convolution of the donor emission line shape, the acceptor absorption line shape, and the spectral density of the modulation of the donor-acceptor coupling. For two models of modulation, detailed rate expressions are derived. The first model is the fluctuation of the donor-acceptor distance, approximated as a quantum harmonic oscillator coupled to a bath of other quantum harmonic oscillators. The distance fluctuation results in additional terms in the rate, which in the small fluctuation limit depend on the inverse eighth power of the donor-acceptor distance. The second model is the fluctuation of the torsional angle between the two transition dipoles, which is modeled as a quantum harmonic oscillator coupled to a bath of quantum harmonic oscillators and causes sinusoidal modulation of the donor-acceptor coupling. The rate expression has new elastic and inelastic terms, depending sensitively on the value of the minimum energy torsional angle. Experimental implications of the present theory and some of the open theoretical issues are discussed.

  15. A general transfer-function approach to noise filtering in open-loop quantum control

    NASA Astrophysics Data System (ADS)

    Viola, Lorenza

    2015-03-01

    Hamiltonian engineering via unitary open-loop quantum control provides a versatile and experimentally validated framework for manipulating a broad class of non-Markovian open quantum systems of interest, with applications ranging from dynamical decoupling and dynamically corrected quantum gates, to noise spectroscopy and quantum simulation. In this context, transfer-function techniques directly motivated by control engineering have proved invaluable for obtaining a transparent picture of the controlled dynamics in the frequency domain and for quantitatively analyzing performance. In this talk, I will show how to identify a computationally tractable set of ``fundamental filter functions,'' out of which arbitrary filter functions may be assembled up to arbitrary high order in principle. Besides avoiding the infinite recursive hierarchy of filter functions that arises in general control scenarios, this fundamental set suffices to characterize the error suppression capabilities of the control protocol in both the time and frequency domain. I will show, in particular, how the resulting notion of ``filtering order'' reveals conceptually distinct, albeit complementary, features of the controlled dynamics as compared to the ``cancellation order,'' traditionally defined in the Magnus sense. Implications for current quantum control experiments will be discussed. Work supported by the U.S. Army Research Office under Contract No. W911NF-14-1-0682.

  16. Significance of a Recurring Function in Energy Transfer

    ERIC Educational Resources Information Center

    Mishra, Subodha

    2017-01-01

    The appearance of a unique function in the energy transfer from one system to the other in different physical situations such as electrical, mechanical, optical, and quantum mechanical processes is established in this work. Though the laws governing the energy transformation and its transfer from system to system are well known, here we notice a…

  17. Near infrared bioluminescence resonance energy transfer from firefly luciferase—quantum dot bionanoconjugates

    NASA Astrophysics Data System (ADS)

    Alam, Rabeka; Karam, Liliana M.; Doane, Tennyson L.; Zylstra, Joshua; Fontaine, Danielle M.; Branchini, Bruce R.; Maye, Mathew M.

    2014-12-01

    The bioluminescence resonance energy transfer (BRET) between firefly luciferase enzymes and semiconductive quantum dots (QDs) with near infrared emission is described. The QD were phase transferred to aqueous buffers using a histidine mediated phase transfer route, and incubated with a hexahistidine tagged, green emitting variant of firefly luciferase from Photinus pyralis (PPyGRTS). The PPyGRTS were bound to the QD interface via the hexahistidine tag, which effectively displaces the histidine layer and binds directly to the QD interfaces, allowing for short donor-acceptor distances (˜5.5 nm). Due to this, high BRET efficiency ratios of ˜5 were obtained. These PPyGRTS-QD bio-nano conjugates were characterized by transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy and BRET emission studies. The final optimized conjugate was easily observable by night vision imaging, demonstrating the potential of these materials in imaging and signaling/sensing applications.

  18. Long-range doublon transfer in a dimer chain induced by topology and ac fields

    NASA Astrophysics Data System (ADS)

    Bello, M.; Creffield, C. E.; Platero, G.

    2016-03-01

    The controlled transfer of particles from one site of a spatial lattice to another is essential for many tasks in quantum information processing and quantum communication. In this work we study how to induce long-range transfer between the two ends of a dimer chain, by coupling states that are localized just on the chain’s end-points. This has the appealing feature that the transfer occurs only between the end-points - the particle does not pass through the intermediate sites-making the transfer less susceptible to decoherence. We first show how a repulsively bound-pair of fermions, known as a doublon, can be transferred from one end of the chain to the other via topological edge states. We then show how non-topological surface states of the familiar Shockley or Tamm type can be used to produce a similar form of transfer under the action of a periodic driving potential. Finally we show that combining these effects can produce transfer by means of more exotic topological effects, in which the driving field can be used to switch the topological character of the edge states, as measured by the Zak phase. Our results demonstrate how to induce long range transfer of strongly correlated particles by tuning both topology and driving.

  19. Hydride transfer catalysed by Escherichia coli and Bacillus subtilis dihydrofolate reductase: coupled motions and distal mutations.

    PubMed

    Hammes-Schiffer, Sharon; Watney, James B

    2006-08-29

    This paper reviews the results from hybrid quantum/classical molecular dynamics simulations of the hydride transfer reaction catalysed by wild-type (WT) and mutant Escherichia coli and WT Bacillus subtilis dihydrofolate reductase (DHFR). Nuclear quantum effects such as zero point energy and hydrogen tunnelling are significant in these reactions and substantially decrease the free energy barrier. The donor-acceptor distance decreases to ca 2.7 A at transition-state configurations to enable the hydride transfer. A network of coupled motions representing conformational changes along the collective reaction coordinate facilitates the hydride transfer reaction by decreasing the donor-acceptor distance and providing a favourable geometric and electrostatic environment. Recent single-molecule experiments confirm that at least some of these thermally averaged equilibrium conformational changes occur on the millisecond time-scale of the hydride transfer. Distal mutations can lead to non-local structural changes and significantly impact the probability of sampling configurations conducive to the hydride transfer, thereby altering the free-energy barrier and the rate of hydride transfer. E. coli and B. subtilis DHFR enzymes, which have similar tertiary structures and hydride transfer rates with 44% sequence identity, exhibit both similarities and differences in the equilibrium motions and conformational changes correlated to hydride transfer, suggesting a balance of conservation and flexibility across species.

  20. Chemical and quantum simulation of electron transfer through a polypeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ungar, L.W.; Voth, G.A.; Newton, M.D.

    1999-08-26

    Quantum rate theory, molecular dynamics simulations, and semiempirical electronic structure calculations are used to fully investigate electron transfer mediated by a solvated polypeptide for the first time. Using a stationary-phase approximation, the nonadiabatic electron-transfer rate constant is calculated from the nuclear free energies and the electronic coupling between the initial and final states. The former are obtained from quantum path integral and classical molecular dynamics simulations; the latter are calculated using semiempirical electronic structure calculations and the generalized Mulliken-Hush method. Importantly, no parameters are fit to kinetic data. The simulated system consists of a solvated four-proline polypeptide with a tris(bipyridine)rutheniummore » donor group and an oxypentamminecobalt acceptor group. From the simulation data entropy and energy contributions to the free energies are distinguished. Quantum suppression of the barrier, including important solvent contributions, is demonstrated. Although free energy profiles along the reaction coordinate are nearly parabolic, pronounced departures from harmonic behavior are found for the separate energy and entropy functions. Harmonic models of the system are compared to simulation results in order to quantify anharmonic effects. Electronic structure calculations show that electronic coupling elements vary considerably with system conformation, even when the effective donor-acceptor separation remains roughly constant. The calculations indicate that electron transfer in a significant range of conformations linking the polypeptide to the acceptor may contribute to the overall rate constant. After correction for limitations of the solvent model, the simulations and calculations agree well with the experimental activation energy and Arrhenius prefactor.« less

  1. Ag colloids and arrays for plasmonic non-radiative energy transfer from quantum dots to a quantum well

    NASA Astrophysics Data System (ADS)

    Murphy, Graham P.; Gough, John J.; Higgins, Luke J.; Karanikolas, Vasilios D.; Wilson, Keith M.; Garcia Coindreau, Jorge A.; Zubialevich, Vitaly Z.; Parbrook, Peter J.; Bradley, A. Louise

    2017-03-01

    Non-radiative energy transfer (NRET) can be an efficient process of benefit to many applications including photovoltaics, sensors, light emitting diodes and photodetectors. Combining the remarkable optical properties of quantum dots (QDs) with the electrical properties of quantum wells (QWs) allows for the formation of hybrid devices which can utilize NRET as a means of transferring absorbed optical energy from the QDs to the QW. Here we report on plasmon-enhanced NRET from semiconductor nanocrystal QDs to a QW. Ag nanoparticles in the form of colloids and ordered arrays are used to demonstrate plasmon-mediated NRET from QDs to QWs with varying top barrier thicknesses. Plasmon-mediated energy transfer (ET) efficiencies of up to ˜25% are observed with the Ag colloids. The distance dependence of the plasmon-mediated ET is found to follow the same d -4 dependence as the direct QD to QW ET. There is also evidence for an increase in the characteristic distance of the interaction, thus indicating that it follows a Förster-like model with the Ag nanoparticle-QD acting as an enhanced donor dipole. Ordered Ag nanoparticle arrays display plasmon-mediated ET efficiencies up to ˜21%. To explore the tunability of the array system, two arrays with different geometries are presented. It is demonstrated that changing the geometry of the array allows a transition from overall quenching of the acceptor QW emission to enhancement, as well as control of the competition between the QD donor quenching and ET rates.

  2. The use of dendrimers as high-performance shells for round-trip energy transfer: efficient trans-cis photoisomerization from an excited triplet state produced within a dendrimer shell.

    PubMed

    Miura, Yousuke; Momotake, Atsuya; Takeuchi, Keiichirou; Arai, Tatsuo

    2011-01-01

    A series of stilbene-cored poly(benzyl ether) dendrimers with benzophenone peripheries were synthesized and their photophysical and photochemical properties were studied. Fluorescence studies revealed that singlet-singlet energy transfer (SSET) from the stilbene core to the benzophenone units took place efficiently in dendrimers of all generations. Similarly, phosphorescence and time-resolved spectroscopic measurements indicated efficient triplet-triplet energy transfer (TTET) from the benzophenone periphery to the stilbene core. Upon excitation at 310 nm, the stilbene core isomerizes via an energy round trip within the dendrimer shell. The quantum yields for the energy round trip (Φ(ERT)), defined as the product of the quantum yields of SSET, intersystem crossing, and TTET (Φ(ERT) = Φ(SS)Φ(isc)Φ(TT)), were extremely high for all generations--99%, 95% and 94% for G1, G2, and G3, respectively--which means that the excitation energy of the dendrimer core was transferred to the dendrimer periphery and back to the core almost quantitatively. The quantum yield for photoisomerization of G1-G3 via an energy round trip was higher than for other stilbene-cored dendrimers, which mainly isomerize from the excited singlet state. Photostability in the dendrimers was also demonstrated and discussed.

  3. Probing Bioluminescence Resonance Energy Transfer in Quantum Rod-Luciferase Nanoconjugates.

    PubMed

    Alam, Rabeka; Karam, Liliana M; Doane, Tennyson L; Coopersmith, Kaitlin; Fontaine, Danielle M; Branchini, Bruce R; Maye, Mathew M

    2016-02-23

    We describe the necessary design criteria to create highly efficient energy transfer conjugates containing luciferase enzymes derived from Photinus pyralis (Ppy) and semiconductor quantum rods (QRs) with rod-in-rod (r/r) microstructure. By fine-tuning the synthetic conditions, CdSe/CdS r/r-QRs were prepared with two different emission colors and three different aspect ratios (l/w) each. These were hybridized with blue, green, and red emitting Ppy, leading to a number of new BRET nanoconjugates. Measurements of the emission BRET ratio (BR) indicate that the resulting energy transfer is highly dependent on QR energy accepting properties, which include absorption, quantum yield, and optical anisotropy, as well as its morphological and topological properties, such as aspect ratio and defect concentration. The highest BR was found using r/r-QRs with lower l/w that were conjugated with red Ppy, which may be activating one of the anisotropic CdSe core energy levels. The role QR surface defects play on Ppy binding, and energy transfer was studied by growth of gold nanoparticles at the defects, which indicated that each QR set has different sites. The Ppy binding at those sites is suggested by the observed BRET red-shift as a function of Ppy-to-QR loading (L), where the lowest L results in highest efficiency and furthest shift.

  4. A hybrid approach to simulation of electron transfer in complex molecular systems

    PubMed Central

    Kubař, Tomáš; Elstner, Marcus

    2013-01-01

    Electron transfer (ET) reactions in biomolecular systems represent an important class of processes at the interface of physics, chemistry and biology. The theoretical description of these reactions constitutes a huge challenge because extensive systems require a quantum-mechanical treatment and a broad range of time scales are involved. Thus, only small model systems may be investigated with the modern density functional theory techniques combined with non-adiabatic dynamics algorithms. On the other hand, model calculations based on Marcus's seminal theory describe the ET involving several assumptions that may not always be met. We review a multi-scale method that combines a non-adiabatic propagation scheme and a linear scaling quantum-chemical method with a molecular mechanics force field in such a way that an unbiased description of the dynamics of excess electron is achieved and the number of degrees of freedom is reduced effectively at the same time. ET reactions taking nanoseconds in systems with hundreds of quantum atoms can be simulated, bridging the gap between non-adiabatic ab initio simulations and model approaches such as the Marcus theory. A major recent application is hole transfer in DNA, which represents an archetypal ET reaction in a polarizable medium. Ongoing work focuses on hole transfer in proteins, peptides and organic semi-conductors. PMID:23883952

  5. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator

    PubMed Central

    Zhao, Yixin; Swierk, John R.; Megiatto, Jackson D.; Sherman, Benjamin; Youngblood, W. Justin; Qin, Dongdong; Lentz, Deanna M.; Moore, Ana L.; Moore, Thomas A.; Gust, Devens; Mallouk, Thomas E.

    2012-01-01

    Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light. PMID:22547794

  6. Nonadiabatic dynamics of photo-induced proton-coupled electron transfer reactions via ring-polymer surface hopping

    NASA Astrophysics Data System (ADS)

    Shakib, Farnaz; Huo, Pengfei

    Photo-induced proton-coupled electron transfer reactions (PCET) are at the heart of energy conversion reactions in photocatalysis. Here, we apply the recently developed ring-polymer surface-hopping (RPSH) approach to simulate the nonadiabatic dynamics of photo-induced PCET. The RPSH method incorporates ring-polymer (RP) quantization of the proton into the fewest-switches surface-hopping (FSSH) approach. Using two diabatic electronic states, corresponding to the electron donor and acceptor states, we model photo-induced PCET with the proton described by a classical isomorphism RP. From the RPSH method, we obtain numerical results that are comparable to those obtained when the proton is treated quantum mechanically. This accuracy stems from incorporating exact quantum statistics, such as proton tunnelling, into approximate quantum dynamics. Additionally, RPSH offers the numerical accuracy along with the computational efficiency. Namely, compared to the FSSH approach in vibronic representation, there is no need to calculate a massive number of vibronic states explicitly. This approach opens up the possibility to accurately and efficiently simulate photo-induced PCET with multiple transferring protons or electrons.

  7. Fully Transparent Quantum Dot Light-Emitting Diode with a Laminated Top Graphene Anode.

    PubMed

    Yao, Li; Fang, Xin; Gu, Wei; Zhai, Wenhao; Wan, Yi; Xie, Xixi; Xu, Wanjin; Pi, Xiaodong; Ran, Guangzhao; Qin, Guogang

    2017-07-19

    A new method to employ graphene as top electrode was introduced, and based on that, fully transparent quantum dot light-emitting diodes (T-QLEDs) were successfully fabricated through a lamination process. We adopted the widely used wet transfer method to transfer bilayer graphene (BG) on polydimethylsiloxane/polyethylene terephthalate (PDMS/PET) substrate. The sheet resistance of graphene reduced to ∼540 Ω/□ through transferring BG for 3 times on the PDMS/PET. The T-QLED has an inverted device structure of glass/indium tin oxide (ITO)/ZnO nanoparticles/(CdSSe/ZnS quantum dots (QDs))/1,1-bis[(di-4-tolylamino)phenyl] cyclohexane (TAPC)/MoO 3 /graphene/PDMS/PET. The graphene anode on PDMS/PET substrate can be directly laminated on the MoO 3 /TAPC/(CdSSe/ZnS QDs)/ZnO nanoparticles/ITO/glass, which relied on the van der Waals interaction between the graphene/PDMS and the MoO 3 . The transmittance of the T-QLED is 79.4% at its main electroluminescence peak wavelength of 622 nm.

  8. Efficiency and its bounds for a quantum Einstein engine at maximum power.

    PubMed

    Yan, H; Guo, Hao

    2012-11-01

    We study a quantum thermal engine model for which the heat transfer law is determined by Einstein's theory of radiation. The working substance of the quantum engine is assumed to be a two-level quantum system of which the constituent particles obey Maxwell-Boltzmann (MB), Fermi-Dirac (FD), or Bose-Einstein (BE) distributions, respectively, at equilibrium. The thermal efficiency and its bounds at maximum power of these models are derived and discussed in the long and short thermal contact time limits. The similarity and difference between these models are discussed. We also compare the efficiency bounds of this quantum thermal engine to those of its classical counterpart.

  9. Unconditional room-temperature quantum memory

    NASA Astrophysics Data System (ADS)

    Hosseini, M.; Campbell, G.; Sparkes, B. M.; Lam, P. K.; Buchler, B. C.

    2011-10-01

    Just as classical information systems require buffers and memory, the same is true for quantum information systems. The potential that optical quantum information processing holds for revolutionizing computation and communication is therefore driving significant research into developing optical quantum memory. A practical optical quantum memory must be able to store and recall quantum states on demand with high efficiency and low noise. Ideally, the platform for the memory would also be simple and inexpensive. Here, we present a complete tomographic reconstruction of quantum states that have been stored in the ground states of rubidium in a vapour cell operating at around 80°C. Without conditional measurements, we show recall fidelity up to 98% for coherent pulses containing around one photon. To unambiguously verify that our memory beats the quantum no-cloning limit we employ state-independent verification using conditional variance and signal-transfer coefficients.

  10. Quantum logic between remote quantum registers

    NASA Astrophysics Data System (ADS)

    Yao, N. Y.; Gong, Z.-X.; Laumann, C. R.; Bennett, S. D.; Duan, L.-M.; Lukin, M. D.; Jiang, L.; Gorshkov, A. V.

    2013-02-01

    We consider two approaches to dark-spin-mediated quantum computing in hybrid solid-state spin architectures. First, we review the notion of eigenmode-mediated unpolarized spin-chain state transfer and extend the analysis to various experimentally relevant imperfections: quenched disorder, dynamical decoherence, and uncompensated long-range coupling. In finite-length chains, the interplay between disorder-induced localization and decoherence yields a natural optimal channel fidelity, which we calculate. Long-range dipolar couplings induce a finite intrinsic lifetime for the mediating eigenmode; extensive numerical simulations of dipolar chains of lengths up to L=12 show remarkably high fidelity despite these decay processes. We further briefly consider the extension of the protocol to bosonic systems of coupled oscillators. Second, we introduce a quantum mirror based architecture for universal quantum computing that exploits all of the dark spins in the system as potential qubits. While this dramatically increases the number of qubits available, the composite operations required to manipulate dark-spin qubits significantly raise the error threshold for robust operation. Finally, we demonstrate that eigenmode-mediated state transfer can enable robust long-range logic between spatially separated nitrogen-vacancy registers in diamond; disorder-averaged numerics confirm that high-fidelity gates are achievable even in the presence of moderate disorder.

  11. Direct Quantum Dynamics Using Grid-Based Wave Function Propagation and Machine-Learned Potential Energy Surfaces.

    PubMed

    Richings, Gareth W; Habershon, Scott

    2017-09-12

    We describe a method for performing nuclear quantum dynamics calculations using standard, grid-based algorithms, including the multiconfiguration time-dependent Hartree (MCTDH) method, where the potential energy surface (PES) is calculated "on-the-fly". The method of Gaussian process regression (GPR) is used to construct a global representation of the PES using values of the energy at points distributed in molecular configuration space during the course of the wavepacket propagation. We demonstrate this direct dynamics approach for both an analytical PES function describing 3-dimensional proton transfer dynamics in malonaldehyde and for 2- and 6-dimensional quantum dynamics simulations of proton transfer in salicylaldimine. In the case of salicylaldimine we also perform calculations in which the PES is constructed using Hartree-Fock calculations through an interface to an ab initio electronic structure code. In all cases, the results of the quantum dynamics simulations are in excellent agreement with previous simulations of both systems yet do not require prior fitting of a PES at any stage. Our approach (implemented in a development version of the Quantics package) opens a route to performing accurate quantum dynamics simulations via wave function propagation of many-dimensional molecular systems in a direct and efficient manner.

  12. Accelerated quantum control using superadiabatic dynamics in a solid-state lambda system

    DOE PAGES

    Zhou, Brian B.; Baksic, Alexandre; Ribeiro, Hugo; ...

    2016-11-28

    Adiabatic evolutions find widespread utility in applications to quantum state engineering1 , geometric quantum computation2 , and quantum simulation3 . Although offering desirable robustness to experimental imperfections, adiabatic techniques are susceptible to decoherence during their long operation time. A recent strategy termed ‘shortcuts to adiabaticity’ 4–10 (STA) aims to circumvent this trade-off by designing fast dynamics to reproduce the results of infinitely slow, adiabatic processes. Here, as a realization of this strategy, we implement ‘superadiabatic’ transitionless driving11 (SATD) to speed up stimulated Raman adiabatic passage1,12–15 (STIRAP) in a solid-state lambda (Λ) system. Utilizing optical transitions to a dissipative excited statemore » in the nitrogen vacancy (NV) center in diamond, we demonstrate the accelerated performance of different shortcut trajectories for population transfer and for the transfer and initialization of coherent superpositions. We reveal that SATD protocols exhibit robustness to dissipation and experimental uncertainty, and can be optimized when these effects are present. These results motivate STA as a promising tool for controlling open quantum systems comprising individual or hybrid nanomechanical, superconducting, and photonic elements in the solid state12–17.« less

  13. Systematic Dimensionality Reduction for Quantum Walks: Optimal Spatial Search and Transport on Non-Regular Graphs

    PubMed Central

    Novo, Leonardo; Chakraborty, Shantanav; Mohseni, Masoud; Neven, Hartmut; Omar, Yasser

    2015-01-01

    Continuous time quantum walks provide an important framework for designing new algorithms and modelling quantum transport and state transfer problems. Often, the graph representing the structure of a problem contains certain symmetries that confine the dynamics to a smaller subspace of the full Hilbert space. In this work, we use invariant subspace methods, that can be computed systematically using the Lanczos algorithm, to obtain the reduced set of states that encompass the dynamics of the problem at hand without the specific knowledge of underlying symmetries. First, we apply this method to obtain new instances of graphs where the spatial quantum search algorithm is optimal: complete graphs with broken links and complete bipartite graphs, in particular, the star graph. These examples show that regularity and high-connectivity are not needed to achieve optimal spatial search. We also show that this method considerably simplifies the calculation of quantum transport efficiencies. Furthermore, we observe improved efficiencies by removing a few links from highly symmetric graphs. Finally, we show that this reduction method also allows us to obtain an upper bound for the fidelity of a single qubit transfer on an XY spin network. PMID:26330082

  14. New insights into the nonadiabatic state population dynamics of model proton-coupled electron transfer reactions from the mixed quantum-classical Liouville approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakib, Farnaz A.; Hanna, Gabriel, E-mail: gabriel.hanna@ualberta.ca

    In a previous study [F. A. Shakib and G. Hanna, J. Chem. Phys. 141, 044122 (2014)], we investigated a model proton-coupled electron transfer (PCET) reaction via the mixed quantum-classical Liouville (MQCL) approach and found that the trajectories spend the majority of their time on the mean of two coherently coupled adiabatic potential energy surfaces. This suggested a need for mean surface evolution to accurately simulate observables related to ultrafast PCET processes. In this study, we simulate the time-dependent populations of the three lowest adiabatic states in the ET-PT (i.e., electron transfer preceding proton transfer) version of the same PCET modelmore » via the MQCL approach and compare them to the exact quantum results and those obtained via the fewest switches surface hopping (FSSH) approach. We find that the MQCL population profiles are in good agreement with the exact quantum results and show a significant improvement over the FSSH results. All of the mean surfaces are shown to play a direct role in the dynamics of the state populations. Interestingly, our results indicate that the population transfer to the second-excited state can be mediated by dynamics on the mean of the ground and second-excited state surfaces, as part of a sequence of nonadiabatic transitions that bypasses the first-excited state surface altogether. This is made possible through nonadiabatic transitions between different mean surfaces, which is the manifestation of coherence transfer in MQCL dynamics. We also investigate the effect of the strength of the coupling between the proton/electron and the solvent coordinate on the state population dynamics. Drastic changes in the population dynamics are observed, which can be understood in terms of the changes in the potential energy surfaces and the nonadiabatic couplings. Finally, we investigate the state population dynamics in the PT-ET (i.e., proton transfer preceding electron transfer) and concerted versions of the model. The PT-ET results confirm the participation of all of the mean surfaces, albeit in different proportions compared to the ET-PT case, while the concerted results indicate that the mean of the ground- and first-excited state surfaces only plays a role, due to the large energy gaps between the ground- and second-excited state surfaces.« less

  15. Photosensitized electron transfer processes in SiO2 colloids and sodium lauryl sulfate micellar systems: Correlation of quantum yields with interfacial surface potentials

    PubMed Central

    Laane, Colja; Willner, Itamar; Otvos, John W.; Calvin, Melvin

    1981-01-01

    The effectiveness of negatively charged colloidal SiO2 particles in controlling photosensitized electron transfer reactions has been studied and compared with that of the negatively charged sodium lauryl sulfate (NaLauSO4) micellar system. In particular, the photosensitized reduction of the zwitterionic electron acceptor propylviologen sulfonate (PVS0) with tris(2,2′-bipyridinium)ruthenium(II) [Ru(bipy)32+] as the sensitizer and triethanolamine as the electron donor is found to have a quantum yield of 0.033 for formation of the radical anion (PVS[unk]) in the SiO2 colloid compared with 0.005 in the homogeneous system and 0.0086 in a NaLauSO4 micellar solution. The higher quantum yields obtained with the SiO2 colloidal system are attributed to substantial stabilization against back reaction of the intermediate photoproducts—i.e., Ru(bipy)33+ and PVS[unk]—by electrostatic repulsion of the reduced electron acceptor from the negatively charged particle surface. The binding properties of the SiO2 particles and NaLauSO4 micelles were investigated by flow dialysis. The results show that the sensitizer binds to both interfaces and that the SiO2 interface is characterized by a much higher surface potential than the micellar interface (≈-170 mV vs. -85 mV). The effect of ionic strength on the surface potential was estimated from the Gouy-Chapman theory, and the measured quantum yields of photosensitized electron transfer were correlated with surface potential at different ionic strengths. This correlation shows that the quantum yield is not affected by surface potentials smaller than ≈-40 mV. At larger potentials, the quantum yield increases rapidly. The quantum yield obtained in the micellar system at different strengths fits nicely on the correlation curve for the colloid SiO2 system. These results indicate that the surface potential is the dominant factor in the quantum yield improvement for PVS0 reduction. PMID:16593095

  16. Quantum Algorithmic Readout in Multi-Ion Clocks.

    PubMed

    Schulte, M; Lörch, N; Leroux, I D; Schmidt, P O; Hammerer, K

    2016-01-08

    Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. The scheme allows a quantum nondemolition readout of the number of excited clock ions using a single multispecies gate operation which can also be used in other areas of ion trap technology such as quantum information processing, quantum simulations, metrology, and precision spectroscopy.

  17. Two dimensional exciton polaritons in microcavities with embedded quantum wires

    NASA Astrophysics Data System (ADS)

    Kavokin, A. V.; Ivchenko, E. L.; Vladimirova, M. R.; Kaliteevski, M. A.; Goupalov, S. V.

    1998-02-01

    Optical anisotropy of the periodical array of quantum wires embedded in a semiconductor microcavity is shown to result in polarization-dependent vacuum-field Rabi-splitting and a triple-anticrossing shape of the exciton-polariton dispersion curves. Both effects originate from the resonant diffraction of light at the grating of quantum wires. The calculation has been done within the nonlocal dielectric response theory and using the 4 × 4 transfer matrix technique.

  18. Development of Vector Parabolic Equation Technique for Propagation in Urban and Tunnel Environments

    DTIC Science & Technology

    2010-09-01

    relativistic quantum mechanics J. Phys. A: Math. Gen. 16 1869–84 [8] Nottale L 1995 Scale relativity, fractal space- time and quantum mechanics Quantum...proportional to the “ time ” elapsed. By performing various approximations to the transfer function, several approximate absorbing boundary condi- tions...The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing

  19. Hybrid quantum teleportation: A theoretical model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria

    2014-12-04

    Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.

  20. Optical rectenna operation: where Maxwell meets Einstein

    NASA Astrophysics Data System (ADS)

    Joshi, Saumil; Moddel, Garret

    2016-07-01

    Optical rectennas are antenna-coupled diode rectifiers that receive and convert optical-frequency electromagnetic radiation into DC output. The analysis of rectennas is carried out either classically using Maxwell’s wave-like approach, or quantum-mechanically using Einstein’s particle-like approach for electromagnetic radiation. One of the characteristics of classical operation is that multiple photons transfer their energy to individual electrons, whereas in quantum operation each photon transfers its energy to each electron. We analyze the correspondence between the two approaches by comparing rectenna response first to monochromatic illumination obtained using photon-assisted tunnelling theory and classical theory. Applied to broadband rectenna operation, this correspondence provides clues to designing a rectenna solar cell that has the potential to exceed the 44% quantum-limited conversion efficiency. The comparison of operating regimes shows how optical rectenna operation differs from microwave rectenna operation.

  1. Charge Transfer in Collisions of S^4+ with H.

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.; Turner, A. R.; Cooper, D. L.; Schultz, D. R.; Rakovic, M. J.; Fritsch, W.; Zygelman, B.

    2001-05-01

    Charge transfer processes due to collisions of ground state S^4+ ions with atomic hydrogen were investigated for energies between 1 meV/u and 10 MeV/u using the quantum-mechanical molecular-orbital close-coupling (MOCC), atomic-orbital close-coupling, classical trajectory Monte Carlo (CTMC), and continuum distorted wave methods. The MOCC calculations utilized ab initio adiabatic potentials and nonadiabatic radial coupling matrix elements obtained with the spin-coupled valence-bond approach. A number of variants of the CTMC approach were explored, including different momentum and radial distributions for the initial state, as well as effective charge and quantum-defect models to determine the corresponding quantum state after capture into final partially-stripped S^3+ excited classical states. Hydrogen target isotope effects were explored and rate coefficients for temperatures between 100 and 10^6 K will be presented

  2. Improving quantum state transfer efficiency and entanglement distribution in binary tree spin network through incomplete collapsing measurements

    NASA Astrophysics Data System (ADS)

    Behzadi, Naghi; Ahansaz, Bahram

    2018-04-01

    We propose a mechanism for quantum state transfer (QST) over a binary tree spin network on the basis of incomplete collapsing measurements. To this aim, we perform initially a weak measurement (WM) on the central qubit of the binary tree network where the state of our concern has been prepared on that qubit. After the time evolution of the whole system, a quantum measurement reversal (QMR) is performed on a chosen target qubit. By taking optimal value for the strength of QMR, it is shown that the QST quality from the sending qubit to any typical target qubit on the binary tree is considerably improved in terms of the WM strength. Also, we show that how high-quality entanglement distribution over the binary tree network is achievable by using this approach.

  3. Vibrational Heat Transport in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Segal, Dvira; Agarwalla, Bijay Kumar

    2016-05-01

    We review studies of vibrational energy transfer in a molecular junction geometry, consisting of a molecule bridging two heat reservoirs, solids or large chemical compounds. This setup is of interest for applications in molecular electronics, thermoelectrics, and nanophononics, and for addressing basic questions in the theory of classical and quantum transport. Calculations show that system size, disorder, structure, dimensionality, internal anharmonicities, contact interaction, and quantum coherent effects are factors that combine to determine the predominant mechanism (ballistic/diffusive), effectiveness (poor/good), and functionality (linear/nonlinear) of thermal conduction at the nanoscale. We review recent experiments and relevant calculations of quantum heat transfer in molecular junctions. We recount the Landauer approach, appropriate for the study of elastic (harmonic) phononic transport, and outline techniques that incorporate molecular anharmonicities. Theoretical methods are described along with examples illustrating the challenge of reaching control over vibrational heat conduction in molecules.

  4. Quantum Mechanics/Molecular Mechanics Study of the Sialyltransferase Reaction Mechanism.

    PubMed

    Hamada, Yojiro; Kanematsu, Yusuke; Tachikawa, Masanori

    2016-10-11

    The sialyltransferase is an enzyme that transfers the sialic acid moiety from cytidine 5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal position of glycans. To elucidate the catalytic mechanism of sialyltransferase, we explored the potential energy surface along the sialic acid transfer reaction coordinates by the hybrid quantum mechanics/molecular mechanics method on the basis of the crystal structure of sialyltransferase CstII. Our calculation demonstrated that CstII employed an S N 1-like reaction mechanism via the formation of a short-lived oxocarbenium ion intermediate. The computational barrier height was 19.5 kcal/mol, which reasonably corresponded with the experimental reaction rate. We also found that two tyrosine residues (Tyr156 and Tyr162) played a vital role in stabilizing the intermediate and the transition states by quantum mechanical interaction with CMP.

  5. Four-electron model for singlet and triplet excitation energy transfers with inclusion of coherence memory, inelastic tunneling and nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Suzuki, Yosuke; Ebina, Kuniyoshi; Tanaka, Shigenori

    2016-08-01

    A computational scheme to describe the coherent dynamics of excitation energy transfer (EET) in molecular systems is proposed on the basis of generalized master equations with memory kernels. This formalism takes into account those physical effects in electron-bath coupling system such as the spin symmetry of excitons, the inelastic electron tunneling and the quantum features of nuclear motions, thus providing a theoretical framework to perform an ab initio description of EET through molecular simulations for evaluating the spectral density and the temporal correlation function of electronic coupling. Some test calculations have then been carried out to investigate the dependence of exciton population dynamics on coherence memory, inelastic tunneling correlation time, magnitude of electronic coupling, quantum correction to temporal correlation function, reorganization energy and energy gap.

  6. Feedback quantum control of molecular electronic population transfer

    NASA Astrophysics Data System (ADS)

    Bardeen, Christopher J.; Yakovlev, Vladislav V.; Wilson, Kent R.; Carpenter, Scott D.; Weber, Peter M.; Warren, Warren S.

    1997-11-01

    Feedback quantum control, where the sample `teaches' a computer-controlled arbitrary lightform generator to find the optimal light field, is experimentally demonstrated for a molecular system. Femtosecond pulses tailored by a computer-controlled acousto-optic pulse shaper excite fluorescence from laser dye molecules in solution. Fluorescence and laser power are monitored, and the computer uses the experimental data and a genetic algorithm to optimize population transfer from ground to first excited state. Both efficiency (the ratio of excited state population to laser energy) and effectiveness (total excited state population) are optimized. Potential use as an `automated theory tester' is discussed.

  7. Counterfactual quantum-information transfer without transmitting any physical particles

    NASA Astrophysics Data System (ADS)

    Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou

    2015-02-01

    We demonstrate quantum information can be transferred between two distant participants without any physical particles traveling between them. The key procedure of the counterfactual scheme is to entangle two nonlocal qubits with each other without interaction, so the scheme can also be used to generate nonlocal entanglement counterfactually. We here illustrate the scheme by using flying photon qubits and Rydberg atom qubits assisted by a mesoscopic atomic ensemble. Unlike the typical teleportation, the present scheme can transport an unknown qubit in a nondeterministic manner without prior entanglement sharing or classical communication between the two distant participants.

  8. Counterfactual quantum-information transfer without transmitting any physical particles.

    PubMed

    Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou

    2015-02-12

    We demonstrate quantum information can be transferred between two distant participants without any physical particles traveling between them. The key procedure of the counterfactual scheme is to entangle two nonlocal qubits with each other without interaction, so the scheme can also be used to generate nonlocal entanglement counterfactually. We here illustrate the scheme by using flying photon qubits and Rydberg atom qubits assisted by a mesoscopic atomic ensemble. Unlike the typical teleportation, the present scheme can transport an unknown qubit in a nondeterministic manner without prior entanglement sharing or classical communication between the two distant participants.

  9. Probing photocurrent generation mechanisms in hybrid IR-senstive quantum dot/conjugated polymer solar cells

    NASA Astrophysics Data System (ADS)

    Strein, Elisabeth

    The work in this dissertation aims to improve the ability of hybrid polymer/quantum dot solar cells to harvest and utilize sunlight by contributing mechanistic insights into photocurrent generation. The mechanisms of charge transfer and energy transfer are explored spectroscopically in chapter three and both are found to contribute to photocurrent. Chapter four looks at excitation energy in excess of the bandgap and finds a rise in polaron yield which correlates with excess photon energy. Chapter two discusses details of the experimental techniques used to access the data discussed in the chapters that follow.

  10. Förster resonance energy transfer in hybrid associates of colloidal Ag2S quantum dots with thionine molecules

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Oleg V.; Smirnov, Mikhail S.; Kondratenko, Tamara S.; Ambrosevich, Sergey A.; Metlin, Mikhail T.; Grevtseva, Irina G.; Perepelitsa, Aleksey S.

    2017-12-01

    Nonradiative resonance energy transfer in hydrophilic hybrid associates of thionine molecules (TH+) with colloidal Ag2S quantum dots (QDs) with average diameter of 3.5 nm was studied. Photoluminescence spectra and its decay shown that for these systems the supplemental photosensitization of recombination luminescence of Ag2S QDs (1200 nm) from the region of TH+ fluorescence (618 nm) is possible. It was found that the average lifetime of TH+ molecules luminescence is shortened during their association with Ag2S QDs. Approximation of luminescence decay by stretched exponent with value of parameter β = 0.5 indicates on the inductive-resonance dipole-dipole (Förster) mechanism of nonradiative energy transfer (FRET). The efficiency of FRET was 0.29-0.41.

  11. Optical and electrical measurement of energy transfer between nanocrystalline quantum dots and photosystem I.

    PubMed

    Jung, Hyeson; Gulis, Galina; Gupta, Subhadra; Redding, Kevin; Gosztola, David J; Wiederrecht, Gary P; Stroscio, Michael A; Dutta, Mitra

    2010-11-18

    In the natural photosynthesis process, light harvesting complexes (LHCs) absorb light and pass excitation energy to photosystem I (PSI) and photosystem II (PSII). In this study, we have used nanocrystalline quantum dots (NQDs) as an artificial LHC by integrating them with PSI to extend their spectral range. We have performed photoluminescence (PL) and ultrafast time-resolved absorption measurements to investigate this process. Our PL experiments showed that emission from the NQDs is quenched, and the fluorescence from PSI is enhanced. Transient absorption and bleaching results can be explained by fluorescence resonance energy transfer (FRET) from the NQDs to the PSI. This nonradiative energy transfer occurs in ∼6 ps. Current-voltage (I-V) measurements on the composite NQD-PSI samples demonstrate a clear photoresponse.

  12. Engineering coherence among excited states in synthetic heterodimer systems.

    PubMed

    Hayes, Dugan; Griffin, Graham B; Engel, Gregory S

    2013-06-21

    The design principles that support persistent electronic coherence in biological light-harvesting systems are obscured by the complexity of such systems. Some electronic coherences in these systems survive for hundreds of femtoseconds at physiological temperatures, suggesting that coherent dynamics may play a role in photosynthetic energy transfer. Coherent effects may increase energy transfer efficiency relative to strictly incoherent transfer mechanisms. Simple, tractable, manipulable model systems are required in order to probe the fundamental physics underlying these persistent electronic coherences, but to date, these quantum effects have not been observed in small molecules. We have engineered a series of rigid synthetic heterodimers that can serve as such a model system and observed quantum beating signals in their two-dimensional electronic spectra consistent with the presence of persistent electronic coherences.

  13. Ab Initio Analysis of Auger-Assisted Electron Transfer.

    PubMed

    Hyeon-Deuk, Kim; Kim, Joonghan; Prezhdo, Oleg V

    2015-01-15

    Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.

  14. Storage and retrieval of time-entangled soliton trains in a three-level atom system coupled to an optical cavity

    NASA Astrophysics Data System (ADS)

    Welakuh, Davis D. M.; Dikandé, Alain M.

    2017-11-01

    The storage and subsequent retrieval of coherent pulse trains in the quantum memory (i.e. cavity-dark state) of three-level Λ atoms, are considered for an optical medium in which adiabatic photon transfer occurs under the condition of quantum impedance matching. The underlying mechanism is based on intracavity Electromagnetically-Induced Transparency, by which properties of a cavity filled with three-level Λ-type atoms are manipulated by an external control field. Under the impedance matching condition, we derive analytic expressions that suggest a complete transfer of an input field into the cavity-dark state by varying the mixing angle in a specific way, and its subsequent retrieval at a desired time. We illustrate the scheme by demonstrating the complete transfer and retrieval of a Gaussian, a single hyperbolic-secant and a periodic train of time-entangled hyperbolic-secant input photon pulses in the atom-cavity system. For the time-entangled hyperbolic-secant input field, a total controllability of the periodic evolution of the dark state population is made possible by changing the Rabi frequency of the classical driving field, thus allowing to alternately store and retrieve high-intensity photons from the optically dense Electromagnetically-Induced transparent medium. Such multiplexed photon states, which are expected to allow sharing quantum information among many users, are currently of very high demand for applications in long-distance and multiplexed quantum communication.

  15. Stimulated Raman adiabatic passage in physics, chemistry, and beyond

    NASA Astrophysics Data System (ADS)

    Vitanov, Nikolay V.; Rangelov, Andon A.; Shore, Bruce W.; Bergmann, Klaas

    2017-01-01

    The technique of stimulated Raman adiabatic passage (STIRAP), which allows efficient and selective population transfer between quantum states without suffering loss due to spontaneous emission, was introduced in 1990 by Gaubatz et al.. Since then STIRAP has emerged as an enabling methodology with widespread successful applications in many fields of physics, chemistry, and beyond. This article reviews the many applications of STIRAP emphasizing the developments since 2001, the time when the last major review on the topic was written (Vitanov, Fleischhauer et al.). A brief introduction into the theory of STIRAP and the early applications for population transfer within three-level systems is followed by the discussion of several extensions to multilevel systems, including multistate chains and tripod systems. The main emphasis is on the wide range of applications in atomic and molecular physics (including atom optics, cavity quantum electrodynamics, formation of ultracold molecules, etc.), quantum information (including single- and two-qubit gates, entangled-state preparation, etc.), solid-state physics (including processes in doped crystals, nitrogen-vacancy centers, superconducting circuits, semiconductor quantum dots and wells), and even some applications in classical physics (including waveguide optics, polarization optics, frequency conversion, etc.). Promising new prospects for STIRAP are also presented (including processes in optomechanics, precision experiments, detection of parity violation in molecules, spectroscopy of core-nonpenetrating Rydberg states, population transfer with x-ray pulses, etc.).

  16. Semiconductor Quantum Dots with Photoresponsive Ligands.

    PubMed

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  17. The transactional interpretation of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Cramer, John G.

    2001-06-01

    The transactional interpretation of quantum mechanics [1] was originally published in 1986 and is now about 14 years old. It is an explicitly nonlocal and Lorentz invariant alternative to the Copenhagen interpretation. It interprets the formalism for a quantum interaction as describing a "handshake" between retarded waves (ψ) and advanced waves (ψ*) for each quantum event or "transaction" in which energy, momentum, angular momentum, and other conserved quantities are transferred. The transactional interpretation offers the advantages that (1) it is actually "visible" in the formalism of quantum mechanics, (2) it is economical, involving fewer independent assumptions than its rivals, (3) it is paradox-free, resolving all of the paradoxes of standard quantum theory including nonlocality and wave function collapse, (4) it does not give a privileged role to observers or measurements, and (5) it permits the visualization of quantum events. We will review the transactional interpretation and some of its applications to "quantum paradoxes."

  18. Robust bidirectional links for photonic quantum networks

    PubMed Central

    Xu, Jin-Shi; Yung, Man-Hong; Xu, Xiao-Ye; Tang, Jian-Shun; Li, Chuan-Feng; Guo, Guang-Can

    2016-01-01

    Optical fibers are widely used as one of the main tools for transmitting not only classical but also quantum information. We propose and report an experimental realization of a promising method for creating robust bidirectional quantum communication links through paired optical polarization-maintaining fibers. Many limitations of existing protocols can be avoided with the proposed method. In particular, the path and polarization degrees of freedom are combined to deterministically create a photonic decoherence-free subspace without the need for any ancillary photon. This method is input state–independent, robust against dephasing noise, postselection-free, and applicable bidirectionally. To rigorously quantify the amount of quantum information transferred, the optical fibers are analyzed with the tools developed in quantum communication theory. These results not only suggest a practical means for protecting quantum information sent through optical quantum networks but also potentially provide a new physical platform for enriching the structure of the quantum communication theory. PMID:26824069

  19. Nonlocal memory effects allow perfect teleportation with mixed states

    PubMed Central

    Laine, Elsi-Mari; Breuer, Heinz-Peter; Piilo, Jyrki

    2014-01-01

    One of the most striking consequences of quantum physics is quantum teleportation – the possibility to transfer quantum states over arbitrary distances. Since its theoretical introduction, teleportation has been demonstrated experimentally up to the distance of 143 km. In the original proposal two parties share a maximally entangled quantum state acting as a resource for the teleportation task. If, however, the state is influenced by decoherence, perfect teleportation can no longer be accomplished. Therefore, one of the current major challenges in accomplishing teleportation over long distances is to overcome the limitations imposed by decoherence and the subsequent mixedness of the resource state. Here we show that, in the presence of nonlocal memory effects, perfect quantum teleportation can be achieved even with mixed photon polarisation states. Our results imply that memory effects can be exploited in harnessing noisy quantum systems for quantum communication and that non-Markovianity is a resource for quantum information tasks. PMID:24714695

  20. Non-Markovian Investigation of an Autonomous Quantum Heat Engine

    NASA Astrophysics Data System (ADS)

    Goyal, Ketan

    A systematic study of a quantum heat engine is presented in this thesis. In particular, we study heat conduction through a two-two level composite system, which is then connected to a photon cavity to extract work, forming an autonomous quantum heat engine. The question as to what extent quantum effects such as quantum coherence and correlations impact thermodynamic properties of such a system is addressed. The investigated heat engine has been previously studied using the popular Born-Markovian quantum master equation under weak internal coupling approximation. However, we show that the used approach is quite limited in addressing such problems as it is incapable of correctly accounting for the quantum effects. By using a non-Markovian approach involving hierarchical equations of motion, we show that quantum coherence and correlations between system and environments play a significant role in energy transfer processes of heat conduction and work.

  1. Towards quantum communications in free-space seawater.

    PubMed

    Ji, Ling; Gao, Jun; Yang, Ai-Lin; Feng, Zhen; Lin, Xiao-Feng; Li, Zhong-Gen; Jin, Xian-Min

    2017-08-21

    Long-distance quantum channels capable of transferring quantum states faithfully for unconditionally secure quantum communication have been so far confirmed to be feasible in both fiber and free-space air. However, it remains unclear whether seawater, which covers more than 70% of the earth, can also be utilized, leaving global quantum communication incomplete. Here we experimentally demonstrate that polarization quantum states including general qubits of single photon and entangled states can survive well after travelling through seawater. We perform experiments with seawater collected over a range of 36 kilometers in the Yellow Sea. For single photons at 405 nm in a blue-green window, we obtain an average process fidelity above 98%. For entangled photons at 810nm, albeit very high loss, we observe the violation of Bell inequality with 33 standard deviations. Our results confirm the feasibility of a seawater quantum channel, representing the first step towards underwater quantum communication.

  2. Deterministic quantum teleportation of atomic qubits.

    PubMed

    Barrett, M D; Chiaverini, J; Schaetz, T; Britton, J; Itano, W M; Jost, J D; Knill, E; Langer, C; Leibfried, D; Ozeri, R; Wineland, D J

    2004-06-17

    Quantum teleportation provides a means to transport quantum information efficiently from one location to another, without the physical transfer of the associated quantum-information carrier. This is achieved by using the non-local correlations of previously distributed, entangled quantum bits (qubits). Teleportation is expected to play an integral role in quantum communication and quantum computation. Previous experimental demonstrations have been implemented with optical systems that used both discrete and continuous variables, and with liquid-state nuclear magnetic resonance. Here we report unconditional teleportation of massive particle qubits using atomic (9Be+) ions confined in a segmented ion trap, which aids individual qubit addressing. We achieve an average fidelity of 78 per cent, which exceeds the fidelity of any protocol that does not use entanglement. This demonstration is also important because it incorporates most of the techniques necessary for scalable quantum information processing in an ion-trap system.

  3. Quantum demultiplexer of quantum parameter-estimation information in quantum networks

    NASA Astrophysics Data System (ADS)

    Xie, Yanqing; Huang, Yumeng; Wu, Yinzhong; Hao, Xiang

    2018-05-01

    The quantum demultiplexer is constructed by a series of unitary operators and multipartite entangled states. It is used to realize information broadcasting from an input node to multiple output nodes in quantum networks. The scheme of quantum network communication with respect to phase estimation is put forward through the demultiplexer subjected to amplitude damping noises. The generalized partial measurements can be applied to protect the transferring efficiency from environmental noises in the protocol. It is found out that there are some optimal coherent states which can be prepared to enhance the transmission of phase estimation. The dynamics of state fidelity and quantum Fisher information are investigated to evaluate the feasibility of the network communication. While the state fidelity deteriorates rapidly, the quantum Fisher information can be enhanced to a maximum value and then decreases slowly. The memory effect of the environment induces the oscillations of fidelity and quantum Fisher information. The adjustment of the strength of partial measurements is helpful to increase quantum Fisher information.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.

    Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. In this paper, we report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. Finally, we demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ± 0.018, and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.

  5. Quantum walled Brauer algebra: commuting families, Baxterization, and representations

    NASA Astrophysics Data System (ADS)

    Semikhatov, A. M.; Tipunin, I. Yu

    2017-02-01

    For the quantum walled Brauer algebra, we construct its Specht modules and (for generic parameters of the algebra) seminormal modules. The latter construction yields the spectrum of a commuting family of Jucys-Murphy elements. We also propose a Baxterization prescription; it involves representing the quantum walled Brauer algebra in terms of morphisms in a braided monoidal category and introducing parameters into these morphisms, which allows constructing a ‘universal transfer matrix’ that generates commuting elements of the algebra.

  6. Quantum nonunital dynamics of spin-bath-assisted Fisher information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao, Xiang, E-mail: haoxiang-edu198126@163.com; Wu, Yinzhong

    2016-04-15

    The nonunital non-Markovian dynamics of qubits immersed in a spin bath is studied without any Markovian approximation. The environmental effects on the precisions of quantum parameter estimation are taken into account. The time-dependent transfer matrix and inhomogeneity vector are obtained for the description of the open dynamical process. The dynamical behaviour of one qubit coupled to a spin bath is geometrically described by the Bloch vector. It is found out that the nonunital non-Markovian effects can engender the improvement of the precision of quantum parameter estimation. This result contributes to the environment-assisted quantum information theory.

  7. Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.

    PubMed

    Ki, Dae-Han; Jung, Young-Dae

    2013-04-21

    The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.

  8. Scalable quantum information processing with atomic ensembles and flying photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei Feng; Yu Yafei; Feng Mang

    2009-10-15

    We present a scheme for scalable quantum information processing with atomic ensembles and flying photons. Using the Rydberg blockade, we encode the qubits in the collective atomic states, which could be manipulated fast and easily due to the enhanced interaction in comparison to the single-atom case. We demonstrate that our proposed gating could be applied to generation of two-dimensional cluster states for measurement-based quantum computation. Moreover, the atomic ensembles also function as quantum repeaters useful for long-distance quantum state transfer. We show the possibility of our scheme to work in bad cavity or in weak coupling regime, which could muchmore » relax the experimental requirement. The efficient coherent operations on the ensemble qubits enable our scheme to be switchable between quantum computation and quantum communication using atomic ensembles.« less

  9. Atomic charge transfer-counter polarization effects determine infrared CH intensities of hydrocarbons: a quantum theory of atoms in molecules model.

    PubMed

    Silva, Arnaldo F; Richter, Wagner E; Meneses, Helen G C; Bruns, Roy E

    2014-11-14

    Atomic charge transfer-counter polarization effects determine most of the infrared fundamental CH intensities of simple hydrocarbons, methane, ethylene, ethane, propyne, cyclopropane and allene. The quantum theory of atoms in molecules/charge-charge flux-dipole flux model predicted the values of 30 CH intensities ranging from 0 to 123 km mol(-1) with a root mean square (rms) error of only 4.2 km mol(-1) without including a specific equilibrium atomic charge term. Sums of the contributions from terms involving charge flux and/or dipole flux averaged 20.3 km mol(-1), about ten times larger than the average charge contribution of 2.0 km mol(-1). The only notable exceptions are the CH stretching and bending intensities of acetylene and two of the propyne vibrations for hydrogens bound to sp hybridized carbon atoms. Calculations were carried out at four quantum levels, MP2/6-311++G(3d,3p), MP2/cc-pVTZ, QCISD/6-311++G(3d,3p) and QCISD/cc-pVTZ. The results calculated at the QCISD level are the most accurate among the four with root mean square errors of 4.7 and 5.0 km mol(-1) for the 6-311++G(3d,3p) and cc-pVTZ basis sets. These values are close to the estimated aggregate experimental error of the hydrocarbon intensities, 4.0 km mol(-1). The atomic charge transfer-counter polarization effect is much larger than the charge effect for the results of all four quantum levels. Charge transfer-counter polarization effects are expected to also be important in vibrations of more polar molecules for which equilibrium charge contributions can be large.

  10. Long-distance quantum communication with atomic ensembles and linear optics.

    PubMed

    Duan, L M; Lukin, M D; Cirac, J I; Zoller, P

    2001-11-22

    Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.

  11. Comparative photoluminescence study of close-packed and colloidal InP/ZnS quantum dots

    NASA Astrophysics Data System (ADS)

    Thuy, Ung Thi Dieu; Thuy, Pham Thi; Liem, Nguyen Quang; Li, Liang; Reiss, Peter

    2010-02-01

    This letter reports on the comparative photoluminescence study of InP/ZnS quantum dots in the close-packed solid state and in colloidal solution. The steady-state photoluminescence spectrum of the close-packed InP/ZnS quantum dots peaks at a longer wavelength than that of the colloidal ones. Time-resolved photoluminescence shows that the close-packed quantum dots possess a shorter luminescence decay time and strongly increased spectral shift with the time delayed from the excitation moment in comparison with the colloidal ones. The observed behavior is discussed on the basis of energy transfer enabled by the short interparticle distance between the close-packed quantum dots.

  12. Controlling resonance energy transfer in nanostructure emitters by positioning near a mirror

    NASA Astrophysics Data System (ADS)

    Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.

    2017-08-01

    The ability to control light-matter interactions in quantum objects opens up many avenues for new applications. We look at this issue within a fully quantized framework using a fundamental theory to describe mirror-assisted resonance energy transfer (RET) in nanostructures. The process of RET communicates electronic excitation between suitably disposed donor and acceptor particles in close proximity, activated by the initial excitation of the donor. Here, we demonstrate that the energy transfer rate can be significantly controlled by careful positioning of the RET emitters near a mirror. The results deliver equations that elicit new insights into the associated modification of virtual photon behavior, based on the quantum nature of light. In particular, our results indicate that energy transfer efficiency in nanostructures can be explicitly expedited or suppressed by a suitably positioned neighboring mirror, depending on the relative spacing and the dimensionality of the nanostructure. Interestingly, the resonance energy transfer between emitters is observed to "switch off" abruptly under suitable conditions of the RET system. This allows one to quantitatively control RET systems in a new way.

  13. Quasi-four-body treatment of charge transfer in the collision of protons with atomic helium: I. Thomas related mechanisms

    NASA Astrophysics Data System (ADS)

    Safarzade, Zohre; Fathi, Reza; Shojaei Akbarabadi, Farideh; Bolorizadeh, Mohammad A.

    2018-04-01

    The scattering of a completely bare ion by atoms larger than hydrogen is at least a four-body interaction, and the charge transfer channel involves a two-step process. Amongst the two-step interactions of the high-velocity single charge transfer in an anion-atom collision, there is one whose amplitude demonstrates a peak in the angular distribution of the cross sections. This peak, the so-called Thomas peak, was predicted by Thomas in a two-step interaction, classically, which could also be described through three-body quantum mechanical models. This work discusses a four-body quantum treatment of the charge transfer in ion-atom collisions, where two-step interactions illustrating a Thomas peak are emphasized. In addition, the Pauli exclusion principle is taken into account for the initial and final states as well as the operators. It will be demonstrated that there is a momentum condition for each two-step interaction to occur in a single charge transfer channel, where new classical interactions lead to the Thomas mechanism.

  14. Hotspot-mediated non-dissipative and ultrafast plasmon passage

    NASA Astrophysics Data System (ADS)

    Roller, Eva-Maria; Besteiro, Lucas V.; Pupp, Claudia; Khorashad, Larousse Khosravi; Govorov, Alexander O.; Liedl, Tim

    2017-08-01

    Plasmonic nanoparticles hold great promise as photon handling elements and as channels for coherent transfer of energy and information in future all-optical computing devices. Coherent energy oscillations between two spatially separated plasmonic entities via a virtual middle state exemplify electron-based population transfer, but their realization requires precise nanoscale positioning of heterogeneous particles. Here, we show the assembly and optical analysis of a triple-particle system consisting of two gold nanoparticles with an inter-spaced silver island. We observe strong plasmonic coupling between the spatially separated gold particles, mediated by the connecting silver particle, with almost no dissipation of energy. As the excitation energy of the silver island exceeds that of the gold particles, only quasi-occupation of the silver transfer channel is possible. We describe this effect both with exact classical electrodynamic modelling and qualitative quantum-mechanical calculations. We identify the formation of strong hotspots between all particles as the main mechanism for the lossless coupling and thus coherent ultrafast energy transfer between the remote partners. Our findings could prove useful for quantum gate operations, as well as for classical charge and information transfer processes.

  15. Investigations on the charge transfer mechanism at donor/acceptor interfaces in the quest for descriptors of organic solar cell performance.

    PubMed

    Muraoka, Azusa; Fujii, Mikiya; Mishima, Kenji; Matsunaga, Hiroki; Benten, Hiroaki; Ohkita, Hideo; Ito, Shinzaburo; Yamashita, Koichi

    2018-05-07

    Herein, we theoretically and experimentally investigated the mechanisms of charge separation processes of organic thin-film solar cells. PTB7, PTB1, and PTBF2 have been chosen as donors and PC 71 BM has been chosen as an acceptor considering that effective charge generation depends on the difference between the material combinations. Experimental results of transient absorption spectroscopy show that the hot process is a key step for determining external quantum efficiency (EQE) in these systems. From the quantum chemistry calculations, it has been found that EQE tends to increase as the transferred charge, charge transfer distance, and variation of dipole moments between the ground and excited states of the donor/acceptor complexes increase; this indicates that these physical quantities are a good descriptor to assess the donor-acceptor charge transfer quality contributing to the solar cell performance. We propose that designing donor/acceptor interfaces with large values of charge transfer distance and variation of dipole moments of the donor/acceptor complexes is a prerequisite for developing high-efficiency polymer/PCBM solar cells.

  16. Arbitrary unitary transformations on optical states using a quantum memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Geoff T.; Pinel, Olivier; Hosseini, Mahdi

    2014-12-04

    We show that optical memories arranged along an optical path can perform arbitrary unitary transformations on frequency domain optical states. The protocol offers favourable scaling and can be used with any quantum memory that uses an off-resonant Raman transition to reversibly transfer optical information to an atomic spin coherence.

  17. Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system

    PubMed Central

    Bai, Cheng-Hua; Wang, Dong-Yang; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    We propose a scheme for the creation of robust entanglement between a movable mirror and atomic ensemble at the macroscopic level in coupled optomechanical system. We numerically simulate the degree of entanglement of the bipartite macroscopic entanglement and show that it depends on the coupling strength between the cavities and is robust with respect to the certain environment temperature. Inspiringly and surprisingly, according to the reported relation between the mechanical damping rate and the mechanical frequency of the movable mirror, the numerical simulation result shows that such bipartite macroscopic entanglement persists for environment temperature up to 170 K, which breaks the liquid nitrogen cooling and liquid helium cooling and largely lowers down the experiment cost. We also investigate the entanglement transfer based on this coupled system. The scheme can be used for the realization of quantum memories for continuous variable quantum information processing and quantum-limited displacement measurements. PMID:27624534

  18. I-V characterization of a quantum well infrared photodetector with stepped and graded barriers

    NASA Astrophysics Data System (ADS)

    Nutku, F.; Erol, A.; Gunes, M.; Buklu, L. B.; Ergun, Y.; Arikan, M. C.

    2012-09-01

    I-V characterization of an n-type quantum well infrared photodetector which consists of stepped and graded barriers has been done under dark at temperatures between 20-300 K. Different current transport mechanisms and transition between them have been observed at temperature around 47 K. Activation energies of the electrons at various bias voltages have been obtained from the temperature dependent I-V measurements. Activation energy at zero bias has been calculated by extrapolating the bias dependence of the activation energies. Ground state energies and barrier heights of the four different quantum wells have been calculated by using an iterative technique, which depends on experimentally obtained activation energy. Ground state energies also have been calculated with transfer matrix technique and compared with iteration results. Incorporating the effect of high electron density induced electron exchange interaction on ground state energies; more consistent results with theoretical transfer matrix calculations have been obtained.

  19. CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups.

    PubMed

    Farrow, Blake; Kamat, Prashant V

    2009-08-12

    The charge separation between excited CdSe semiconductor quantum dots and stacked-cup carbon nanotubes (SCCNTs) has been successfully tapped to generate photocurrent in a quantum dot sensitized solar cell (QDSC). By employing an electrophoretic deposition technique we have cast SCCNT-CdSe composite films on optically transparent electrodes (OTEs). The quenching of CdSe emission, as well as transient absorption measurements, confirms ultrafast electron transfer to SCCNTs. The rate constant for electron transfer increases from 9.51 x 10(9) s(-1) to 7.04 x 10(10) s(-1) as we decrease the size of CdSe nanoparticles from 4.5 to 3 nm. The ability of SCCNTs to collect and transport electrons from excited CdSe has been established from photocurrent measurements. The morphological and excited state properties of SCCNT-CdSe composites demonstrate their usefulness in energy conversion devices.

  20. Designed Long‐Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surface‐Bound Chromophore

    PubMed Central

    La Rosa, Marcello; Denisov, Sergey A.

    2018-01-01

    Abstract The size‐tunable emission of luminescent quantum dots (QDs) makes them highly interesting for applications that range from bioimaging to optoelectronics. For the same applications, engineering their luminescence lifetime, in particular, making it longer, would be as important; however, no rational approach to reach this goal is available to date. We describe a strategy to prolong the emission lifetime of QDs through electronic energy shuttling to the triplet excited state of a surface‐bound molecular chromophore. To implement this idea, we made CdSe QDs of different sizes and carried out self‐assembly with a pyrene derivative. We observed that the conjugates exhibit delayed luminescence, with emission decays that are prolonged by more than 3 orders of magnitude (lifetimes up to 330 μs) compared to the parent CdSe QDs. The mechanism invokes unprecedented reversible quantum dot to organic chromophore electronic energy transfer. PMID:29383800

  1. Control of single-photon routing in a T-shaped waveguide by another atom

    NASA Astrophysics Data System (ADS)

    Huang, Jin-Song; Wang, Jing-Wen; Wang, Yan; Li, Yan-Ling; Huang, You-Wen

    2018-04-01

    Quantum routers with a high routing rate of much more than 0.5 are of great importance for quantum networks. We provide a scheme to perform bidirectional high routing-rate transfer in a T-shaped coupled-resonator waveguide (CRW), which extends a recent unidirectional scheme proposed by Lu et al. (Opt Express 23:22955, 2015). By locating an extra two-level atom in the infinite CRW channel of the T-shaped CRW with a three-level system, an effective potential is generated. Our numerical results show that high routing capability from the infinite CRW channel to the semi-infinite channel can be achieved, and routing capability from the semi-infinite CRW channel to the infinite channel can also be significantly enhanced, with the help of the effective potential. Therefore, the proposed double-atom configuration could be utilized as a bidirectional quantum routing controller to implement high transfer rate routing of single photons.

  2. The Road to DLCZ Protocol in Rubidium Ensemble

    NASA Astrophysics Data System (ADS)

    Li, Chang; Pu, Yunfei; Jiang, Nan; Chang, Wei; Zhang, Sheng; CenterQuantum Information, InstituteInterdisciplinary Information Sciences, Tsinghua Univ Team

    2017-04-01

    Quantum communication is the powerful approach achieving a fully secure information transferal. The DLCZ protocol ensures that photon linearly decays with transferring distance increasing, which improves the success potential and shortens the time to build up an entangled channel. Apart from that, it provides an advanced idea that building up a quantum internet based on different nodes connected to different sites and themselves. In our laboratory, three sets of laser-cooled Rubidium 87 ensemble have been built. Two of them serve as the single photon emitter, which generate the entanglement between ensemble and photon. What's more, crossed AODs are equipped to multiplex and demultiplex optical circuit so that ensemble is divided into 2 hundred of 2D sub-memory cells. And the third ensemble is used as quantum telecommunication, which converts 780nm photon into telecom-wavelength one. And we have been building double-MOT system, which provides more atoms in ensemble and larger optical density.

  3. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods.

    PubMed

    Tvaroška, Igor

    2015-02-11

    Glycosyltransferases catalyze the formation of glycosidic bonds by assisting the transfer of a sugar residue from donors to specific acceptor molecules. Although structural and kinetic data have provided insight into mechanistic strategies employed by these enzymes, molecular modeling studies are essential for the understanding of glycosyltransferase catalyzed reactions at the atomistic level. For such modeling, combined quantum mechanics/molecular mechanics (QM/MM) methods have emerged as crucial. These methods allow the modeling of enzymatic reactions by using quantum mechanical methods for the calculation of the electronic structure of the active site models and treating the remaining enzyme environment by faster molecular mechanics methods. Herein, the application of QM/MM methods to glycosyltransferase catalyzed reactions is reviewed, and the insight from modeling of glycosyl transfer into the mechanisms and transition states structures of both inverting and retaining glycosyltransferases are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates.

    PubMed

    Ren, Bao-Cang; Long, Gui Lu

    2015-11-10

    We present a two-step hyperentanglement concentration protocol (hyper-ECP) for polarization-spatial hyperentangled Bell states based on the high-capacity character of hyperentanglement resorting to the swap gates, which is used to obtain maximally hyperentangled states from partially hyperentangled pure states in long-distance quantum communication. The swap gate, which is constructed with the giant optical circular birefringence (GOCB) of a diamond nitrogen-vacancy (NV) center embedded in a photonic crystal cavity, can be used to transfer the information in one degree of freedom (DOF) between photon systems. By transferring the useful information between hyperentangled photon pairs, more photon pairs in maximally hyperentangled state can be obtained in our hyper-ECP, and the success probability of the hyper-ECP is greatly improved. Moreover, we show that the high-fidelity quantum gate operations can be achieved by mapping the infidelities to heralded losses even in the weak coupling regime.

  5. Non-classicality of the molecular vibrations assisting exciton energy transfer at room temperature

    PubMed Central

    O’Reilly, Edward J.; Olaya-Castro, Alexandra

    2014-01-01

    Advancing the debate on quantum effects in light-initiated reactions in biology requires clear identification of non-classical features that these processes can exhibit and utilize. Here we show that in prototype dimers present in a variety of photosynthetic antennae, efficient vibration-assisted energy transfer in the sub-picosecond timescale and at room temperature can manifest and benefit from non-classical fluctuations of collective pigment motions. Non-classicality of initially thermalized vibrations is induced via coherent exciton–vibration interactions and is unambiguously indicated by negativities in the phase–space quasi-probability distribution of the effective collective mode coupled to the electronic dynamics. These quantum effects can be prompted upon incoherent input of excitation. Our results therefore suggest that investigation of the non-classical properties of vibrational motions assisting excitation and charge transport, photoreception and chemical sensing processes could be a touchstone for revealing a role for non-trivial quantum phenomena in biology. PMID:24402469

  6. Highly efficient hyperentanglement concentration with two steps assisted by quantum swap gates

    PubMed Central

    Ren, Bao-Cang; Long, Gui Lu

    2015-01-01

    We present a two-step hyperentanglement concentration protocol (hyper-ECP) for polarization-spatial hyperentangled Bell states based on the high-capacity character of hyperentanglement resorting to the swap gates, which is used to obtain maximally hyperentangled states from partially hyperentangled pure states in long-distance quantum communication. The swap gate, which is constructed with the giant optical circular birefringence (GOCB) of a diamond nitrogen-vacancy (NV) center embedded in a photonic crystal cavity, can be used to transfer the information in one degree of freedom (DOF) between photon systems. By transferring the useful information between hyperentangled photon pairs, more photon pairs in maximally hyperentangled state can be obtained in our hyper-ECP, and the success probability of the hyper-ECP is greatly improved. Moreover, we show that the high-fidelity quantum gate operations can be achieved by mapping the infidelities to heralded losses even in the weak coupling regime. PMID:26552898

  7. Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom

    NASA Astrophysics Data System (ADS)

    Plenio, M. B.; Hartley, J.; Eisert, J.

    2004-03-01

    We study the entanglement dynamics of a system consisting of a large number of coupled harmonic oscillators in various configurations and for different types of nearest-neighbour interactions. For a one-dimensional chain, we provide compact analytical solutions and approximations to the dynamical evolution of the entanglement between spatially separated oscillators. Key properties such as the speed of entanglement propagation, the maximum amount of transferred entanglement and the efficiency for the entanglement transfer are computed. For harmonic oscillators coupled by springs, corresponding to a phonon model, we observe a non-monotonic transfer efficiency in the initially prepared amount of entanglement, i.e. an intermediate amount of initial entanglement is transferred with the highest efficiency. In contrast, within the framework of the rotating-wave approximation (as appropriate, e.g. in quantum optical settings) one finds a monotonic behaviour. We also study geometrical configurations that are analogous to quantum optical devices (such as beamsplitters and interferometers) and observe characteristic differences when initially thermal or squeezed states are entering these devices. We show that these devices may be switched on and off by changing the properties of an individual oscillator. They may therefore be used as building blocks of large fixed and pre-fabricated but programmable structures in which quantum information is manipulated through propagation. We discuss briefly possible experimental realizations of systems of interacting harmonic oscillators in which these effects may be confirmed experimentally.

  8. Ligand-dependent exciton dynamics and photovoltaic properties of PbS quantum dot heterojunction solar cells.

    PubMed

    Chang, Jin; Ogomi, Yuhei; Ding, Chao; Zhang, Yao Hong; Toyoda, Taro; Hayase, Shuzi; Katayama, Kenji; Shen, Qing

    2017-03-01

    The surface chemistry of colloidal quantum dots (QDs) plays an important role in determining the photoelectric properties of QD films and the corresponding quantum dot heterojunction solar cells (QDHSCs). To investigate the effects of the ligand structure on the photovoltaic performance and exciton dynamics of QDHSCs, PbS QDHSCs were fabricated by the solid state ligand exchange method with mercaptoalkanoic acid as the cross-linking ligand. Temperature-dependent photoluminescence and ultrafast transient absorption spectra show that the electronic coupling and charge transfer rate within QD ensembles were monotonically enhanced as the ligand length decreased. However, in practical QDHSCs, the second shortest ligand 3-mercaptopropionic acid (MPA) showed higher power conversion efficiency than the shortest ligand thioglycolic acid (TGA). This could be attributed to the difference in their surface trap states, supported by thermally stimulated current measurements. Moreover, compared with the non-conjugated ligand MPA, the conjugated ligand 4-mercaptobenzoic acid (MBA) introduces less trap states and has a similar charge transfer rate in QD ensembles, but has poor photovoltaic properties. This unexpected result could be contributed by the QD-ligand orbital mixing, leading to the charge transfer from QDs to ligands instead of charge transfer between adjacent QDs. This work highlights the significant effects of ligand structures on the photovoltaic properties and exciton dynamics of QDHSCs, which would shed light on the further development of QD-based photoelectric devices.

  9. Para-Krawtchouk polynomials on a bi-lattice and a quantum spin chain with perfect state transfer

    NASA Astrophysics Data System (ADS)

    Vinet, Luc; Zhedanov, Alexei

    2012-07-01

    Analogues of Krawtchouk polynomials defined on a bi-lattice are introduced. They are shown to provide a (novel) spin chain with perfect transfer. Their characterization, as well as their connection to the quadratic Hahn algebra, is given.

  10. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    PubMed Central

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2016-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (NDDO) and self-consistent density-functional tight-binding (SCC-DFTB) semiempirical models are evaluated against high-level quantum mechanical benchmark calculations for seven biologically important data sets. The data sets include: proton affinities, polarizabilities, nucleobase dimer interactions, dimethyl phosphate anion, nucleoside sugar and glycosidic torsion conformations, and RNA phosphoryl transfer model reactions. As an additional baseline, comparisons are made with several commonly used density-functional models, including M062X and B3LYP (in some cases with dispersion corrections). The results show that, among the semiempirical models examined, the AM1/d-PhoT model is the most robust at predicting proton affinities. AM1/d-PhoT and DFTB3-3ob/OPhyd reproduce the MP2 potential energy surfaces of 6 associative RNA phosphoryl transfer model reactions reasonably well. Further, a recently developed linear-scaling “modified divide-and-conquer” model exhibits the most accurate results for binding energies of both hydrogen bonded and stacked nucleobase dimers. The semiempirical models considered here are shown to underestimate the isotropic polarizabilities of neutral molecules by approximately 30%. The semiempirical models also fail to adequately describe torsion profiles within the dimethyl phosphate anion, the nucleoside sugar ring puckers, and the rotations about the nucleoside glycosidic bond. The modeling of pentavalent phosphorus, particularly with thio substitutions often used experimentally as mechanistic probes, was problematic for all of the models considered. Analysis of the strengths and weakness of the models suggest that the creation of robust next-generation models should emphasize the improvement of relative conformational energies and barriers, and nonbond interactions. PMID:25943338

  11. Electronic-structure and quantum dynamical study of the photochromism of the aromatic Schiff base salicylideneaniline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz-Sanchez, Juan Manuel; Gelabert, Ricard; Moreno, Miquel

    2008-12-07

    The ultrafast proton transfer dynamics of salicylideneaniline has been theoretically analyzed in the ground and first singlet excited electronic states using density functional theory (DFT) and time-dependent DFT calculations, which predict a ({pi},{pi}*) barrierless excited state intramolecular proton transfer (ESIPT). In addition to this, the photochemistry of salicylideneaniline is experimentally known to present fast depopulation processes of the photoexcited species before and after the proton transfer reaction. Such processes are explained by means of conical intersections between the ground and first singlet ({pi},{pi}*) excited electronic states. The electronic energies obtained by the time-dependent density functional theory formalism have been fittedmore » to a monodimensional potential energy surface in order to perform quantum dynamics study of the processes. Our results show that the proton transfer and deactivation of the photoexcited species before the ESIPT processes are completed within 49.6 and 37.7 fs, respectively, which is in remarkable good agreement with experiments.« less

  12. Charge transfer in photorechargeable composite films of TiO2 and polyaniline

    NASA Astrophysics Data System (ADS)

    Nomiyama, Teruaki; Sasabe, Kenichi; Sakamoto, Kenta; Horie, Yuji

    2015-07-01

    A photorechargeable battery (PRB) is a photovoltaic device having an energy storage function in a single cell. The photoactive electrode of PRB is a bilayer film consisting of bare porous TiO2 and a TiO2-polyaniline (PANi) mixture that work as a photovoltaic current generator and an electrochemical energy storage by ion dedoping, respectively. To study the charge transfer between TiO2 and PANi, the photorechargeable quantum efficiency QE ([electron count on discharge]/[incident photon count on photocharge]) was measured by varying the thickness LS of the TiO2-PANi mixture. The quantum efficiency QEuv for UV photons had a maximum of ˜7% at LS ˜ 7 µm. The time constant τTP for the charge transfer was about 10-1 s, which was longer ten times or more than the lifetime of excited electrons within TiO2. These facts reveal that the main rate-limiting factor in the photocharging process is the charge transfer between TiO2 and PANi.

  13. Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.

    PubMed

    Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee

    2016-11-09

    The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.

  14. In vitro energy transfer in Renilla bioluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, W.W.; Cormier, M.J.

    1976-09-23

    A quantitative study of in vitro energy transfer in a natural biological system is reported. The in vitro bioluminescent oxidation of Renilla (sea pansy) luciferin by luciferase produces a broad, structureless emission, peaking in the blue at 490 nm. In contrast, the live animal produces a structured emission peaking in the green at 509 nm. This difference in emission characteristics is due to the presence, in Renilla, of a green fluorescent protein (GFP). Addition of GFP in vitro sensitizes the oxyluciferin product excited state, resulting in the narrow, structured green emission characteristic of GFP fluorescence (lambda/sub max/ 509 nm). Undermore » conditions of efficient in vitro energy transfer (2.7 x 10/sup -6/ M GFP) the radiative quantum yield (with respect to luciferin) increases 5.7-fold from 5.3% (blue pathway) to 30% (green pathway). The fluorescence quantum yield of the Renilla GFP has been measured as 30%; thus, within the precision of our measurements (15% coefficient of variation) the in vitro energy transfer efficiency is a surprising 100%.« less

  15. Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    PubMed Central

    Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin

    2015-01-01

    Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s−1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications. PMID:25996307

  16. Sandwiched confinement of quantum dots in graphene matrix for efficient electron transfer and photocurrent production

    NASA Astrophysics Data System (ADS)

    Zhu, Nan; Zheng, Kaibo; Karki, Khadga J.; Abdellah, Mohamed; Zhu, Qiushi; Carlson, Stefan; Haase, Dörthe; Žídek, Karel; Ulstrup, Jens; Canton, Sophie E.; Pullerits, Tõnu; Chi, Qijin

    2015-05-01

    Quantum dots (QDs) and graphene are both promising materials for the development of new-generation optoelectronic devices. Towards this end, synergic assembly of these two building blocks is a key step but remains a challenge. Here, we show a one-step strategy for organizing QDs in a graphene matrix via interfacial self-assembly, leading to the formation of sandwiched hybrid QD-graphene nanofilms. We have explored structural features, electron transfer kinetics and photocurrent generation capacity of such hybrid nanofilms using a wide variety of advanced techniques. Graphene nanosheets interlink QDs and significantly improve electronic coupling, resulting in fast electron transfer from photoexcited QDs to graphene with a rate constant of 1.3 × 109 s-1. Efficient electron transfer dramatically enhances photocurrent generation in a liquid-junction QD-sensitized solar cell where the hybrid nanofilm acts as a photoanode. We thereby demonstrate a cost-effective method to construct large-area QD-graphene hybrid nanofilms with straightforward scale-up potential for optoelectronic applications.

  17. Conditions for Lorentz-invariant superluminal information transfer without signaling

    NASA Astrophysics Data System (ADS)

    Grössing, G.; Fussy, S.; Mesa Pascasio, J.; Schwabl, H.

    2016-03-01

    We understand emergent quantum mechanics in the sense that quantum mechanics describes processes of physical emergence relating an assumed sub-quantum physics to macroscopic boundary conditions. The latter can be shown to entail top-down causation, in addition to usual bottom-up scenarios. With this example it is demonstrated that definitions of “realism” in the literature are simply too restrictive. A prevailing manner to define realism in quantum mechanics is in terms of pre-determination independent of the measurement. With our counter-example, which actually is ubiquitous in emergent, or self-organizing, systems, we argue for realism without pre-determination. We refer to earlier results of our group showing how the guiding equation of the de Broglie-Bohm interpretation can be derived from a theory with classical ingredients only. Essentially, this corresponds to a “quantum mechanics without wave functions” in ordinary 3-space, albeit with nonlocal correlations. This, then, leads to the central question of how to deal with the nonlocality problem in a relativistic setting. We here show that a basic argument discussing the allegedly paradox time ordering of events in EPR-type two-particle experiments falls short of taking into account the contextuality of the experimental setup. Consequently, we then discuss under which circumstances (i.e. physical premises) superluminal information transfer (but not signaling) may be compatible with a Lorentz-invariant theory. Finally, we argue that the impossibility of superluminal signaling - despite the presence of superluminal information transfer - is not the result of some sort of conspiracy (á la “Nature likes to hide”), but the consequence of the impossibility to exactly reproduce in repeated experimental runs a state's preparation, or of the no-cloning theorem, respectively.

  18. Quantum transport in coupled resonators enclosed synthetic magnetic flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, L., E-mail: jinliang@nankai.edu.cn

    Quantum transport properties are instrumental to understanding quantum coherent transport processes. Potential applications of quantum transport are widespread, in areas ranging from quantum information science to quantum engineering, and not restricted to quantum state transfer, control and manipulation. Here, we study light transport in a ring array of coupled resonators enclosed synthetic magnetic flux. The ring configuration, with an arbitrary number of resonators embedded, forms a two-arm Aharonov–Bohm interferometer. The influence of magnetic flux on light transport is investigated. Tuning the magnetic flux can lead to resonant transmission, while half-integer magnetic flux quantum leads to completely destructive interference and transmissionmore » zeros in an interferometer with two equal arms. -- Highlights: •The light transport is investigated through ring array of coupled resonators enclosed synthetic magnetic field. •Aharonov–Bohm ring interferometer of arbitrary configuration is investigated. •The half-integer magnetic flux quantum leads to destructive interference and transmission zeros for two-arm at equal length. •Complete transmission is available via tuning synthetic magnetic flux.« less

  19. Generalized Tavis-Cummings models and quantum networks

    NASA Astrophysics Data System (ADS)

    Gorokhov, A. V.

    2018-04-01

    The properties of quantum networks based on generalized Tavis-Cummings models are theoretically investigated. We have calculated the information transfer success rate from one node to another in a simple model of a quantum network realized with two-level atoms placed in the cavities and interacting with an external laser field and cavity photons. The method of dynamical group of the Hamiltonian and technique of corresponding coherent states were used for investigation of the temporal dynamics of the two nodes model.

  20. Superdense Coding over Optical Fiber Links with Complete Bell-State Measurements

    NASA Astrophysics Data System (ADS)

    Williams, Brian P.; Sadlier, Ronald J.; Humble, Travis S.

    2017-02-01

    Adopting quantum communication to modern networking requires transmitting quantum information through a fiber-based infrastructure. We report the first demonstration of superdense coding over optical fiber links, taking advantage of a complete Bell-state measurement enabled by time-polarization hyperentanglement, linear optics, and common single-photon detectors. We demonstrate the highest single-qubit channel capacity to date utilizing linear optics, 1.665 ±0.018 , and we provide a full experimental implementation of a hybrid, quantum-classical communication protocol for image transfer.

  1. Investigation of Photoluminescence and Photocurrent in InGaAsP/InP Strained Multiple Quantum Well Heterostructures

    NASA Technical Reports Server (NTRS)

    Raisky, O. Y.; Wang, W. B.; Alfano, R. R.; Reynolds, C. L., Jr.; Swaminathan, V.

    1997-01-01

    Multiple quantum well InGaAsP/InP p-i-n laser heterostructures with different barrier thicknesses have been investigated using photoluminescence (PL) and photocurrent (PC) measurements. The observed PL spectrum and peak positions are in good agreement with those obtained from transfer matrix calculations. Comparing the measured quantum well PC with calculated carrier escape rates, the photocurrent changes are found to be governed by the temperature dependence of the electron escape time.

  2. A surprisingly simple correlation between the classical and quantum structural networks in liquid water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, Peter; Fanourgakis, George S.; Xantheas, Sotiris S.

    Nuclear quantum effects in liquid water have profound implications for several of its macroscopic properties related to structure, dynamics, spectroscopy and transport. Although several of water’s macroscopic properties can be reproduced by classical descriptions of the nuclei using potentials effectively parameterized for a narrow range of its phase diagram, a proper account of the nuclear quantum effects is required in order to ensure that the underlying molecular interactions are transferable across a wide temperature range covering different regions of that diagram. When performing an analysis of the hydrogen bonded structural networks in liquid water resulting from the classical (class.) andmore » quantum (q.m.) descriptions of the nuclei with the transferable, flexible, polarizable TTM3-F interaction potential, we found that the two results can be superimposed over the temperature range of T=270-350 K using a surprisingly simple, linear scaling of the two temperatures according to T(q.m.)=aT(class)- T , where a=1.2 and T=51 K. The linear scaling and constant shift of the temperature scale can be considered as a generalization of the previously reported temperature shifts (corresponding to structural changes and the melting T) induced by quantum effects in liquid water.« less

  3. Exact Dynamics via Poisson Process: a unifying Monte Carlo paradigm

    NASA Astrophysics Data System (ADS)

    Gubernatis, James

    2014-03-01

    A common computational task is solving a set of ordinary differential equations (o.d.e.'s). A little known theorem says that the solution of any set of o.d.e.'s is exactly solved by the expectation value over a set of arbitary Poisson processes of a particular function of the elements of the matrix that defines the o.d.e.'s. The theorem thus provides a new starting point to develop real and imaginary-time continous-time solvers for quantum Monte Carlo algorithms, and several simple observations enable various quantum Monte Carlo techniques and variance reduction methods to transfer to a new context. I will state the theorem, note a transformation to a very simple computational scheme, and illustrate the use of some techniques from the directed-loop algorithm in context of the wavefunction Monte Carlo method that is used to solve the Lindblad master equation for the dynamics of open quantum systems. I will end by noting that as the theorem does not depend on the source of the o.d.e.'s coming from quantum mechanics, it also enables the transfer of continuous-time methods from quantum Monte Carlo to the simulation of various classical equations of motion heretofore only solved deterministically.

  4. Nonplasmonic Hot-Electron Photocurrents from Mn-Doped Quantum Dots in Photoelectrochemical Cells.

    PubMed

    Dong, Yitong; Rossi, Daniel; Parobek, David; Son, Dong Hee

    2016-03-03

    We report the measurement of the hot-electron current in a photoelectrochemical cell constructed from a glass/ITO/Al2 O3 (ITO=indium tin oxide) electrode coated with Mn-doped quantum dots, where hot electrons with a large excess kinetic energy were produced through upconversion of the excitons into hot electron hole pairs under photoexcitation at 3 eV. In our recent study (J. Am. Chem. Soc. 2015, 137, 5549), we demonstrated the generation of hot electrons in Mn-doped II-VI semiconductor quantum dots and their usefulness in photocatalytic H2 production reaction, taking advantage of the more efficient charge transfer of hot electrons compared with band-edge electrons. Here, we show that hot electrons produced in Mn-doped CdS/ZnS quantum dots possess sufficient kinetic energy to overcome the energy barrier from a 5.4-7.5 nm thick Al2 O3 layer producing a hot-electron current in photoelectrochemical cell. This work demonstrates the possibility of harvesting hot electrons not only at the interface of the doped quantum dot surface, but also far away from it, thus taking advantage of the capability of hot electrons for long-range electron transfer across a thick energy barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nonviolent unitarization: basic postulates to soft quantum structure of black holes

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.

    2017-12-01

    A first-principles approach to the unitarity problem for black holes is systematically explored, based on the postulates of 1) quantum mechanics 2) the ability to approximately locally divide quantum gravitational systems into subsystems 3) correspondence with quantum field theory predictions for appropriate observers and (optionally) 4) universality of new gravitational effects. Unitarity requires interactions between the internal state of a black hole and its surroundings that have not been identified in the field theory description; correspondence with field theory indicates that these are soft. A conjectured information-theoretic result for information transfer between subsystems, partly motivated by a perturbative argument, then constrains the minimum coupling size of these interactions of the quantum atmosphere of a black hole. While large couplings are potentially astronomically observable, given this conjecture one finds that the new couplings can be exponentially small in the black hole entropy, yet achieve the information transfer rate needed for unitarization, due to the large number of black hole internal states. This provides a new possible alternative to arguments for large effects near the horizon. If universality is assumed, these couplings can be described as small, soft, state-dependent fluctuations of the metric near the black hole. Open questions include that of the more fundamental basis for such an effective picture.

  6. Tunable Holstein model with cold polar molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Felipe; Krems, Roman V.

    2011-11-15

    We show that an ensemble of polar molecules trapped in an optical lattice can be considered as a controllable open quantum system. The coupling between collective rotational excitations and the motion of the molecules in the lattice potential can be controlled by varying the strength and orientation of an external dc electric field as well as the intensity of the trapping laser. The system can be described by a generalized Holstein Hamiltonian with tunable parameters and can be used as a quantum simulator of excitation energy transfer and polaron phenomena. We show that the character of excitation energy transfer canmore » be modified by tuning experimental parameters.« less

  7. Transfer printed silver nanowire transparent conductors for PbS-ZnO heterojunction quantum dot solar cells.

    PubMed

    Hjerrild, Natasha E; Neo, Darren C J; Kasdi, Assia; Assender, Hazel E; Warner, Jamie H; Watt, Andrew A R

    2015-04-01

    Transfer-printed silver nanowire transparent conducting electrodes are demonstrated in lead sulfide-zinc oxide quantum dot solar cells. Advantages of using this transparent conductor technology are increased junction surface energy, solution processing, and the potential cost reduction of low temperature processing. Joule heating, device aging, and film thickness effects are investigated to understand shunt pathways created by nanowires protruding perpendicular to the film. A V(oc) of 0.39 ± 0.07 V, J(sc) of 16.2 ± 0.2 mA/cm(2), and power conversion efficiencies of 2.8 ± 0.4% are presented.

  8. Electron transfer in proton-hydrogen collisions under dense quantum plasma

    NASA Astrophysics Data System (ADS)

    Nayek, Sujay; Bhattacharya, Arka; Kamali, Mohd Zahurin Mohamed; Ghoshal, Arijit; Ratnavelu, Kurunathan

    2017-09-01

    The effects of dense quantum plasma on 1 s → nlm charge transfer, for arbitrary n,l,m, in proton-hydrogen collisions have been studied by employing a distorted wave approximation. The interactions among the charged particles in the plasma have been represented by modified Debye-Huckel potentials. A detailed study has been made to explore the effects of background plasma environment on the differential and total cross sections for electron capture into different angular momentum states for the incident energy in the range 10-1000 keV. For the unscreened case, our results agree well with some of the most accurate results available in the literature.

  9. State-transfer simulation in integrated waveguide circuits

    NASA Astrophysics Data System (ADS)

    Latmiral, L.; Di Franco, C.; Mennea, P. L.; Kim, M. S.

    2015-08-01

    Spin-chain models have been widely studied in terms of quantum information processes, for instance for the faithful transmission of quantum states. Here, we investigate the limitations of mapping this process to an equivalent one through a bosonic chain. In particular, we keep in mind experimental implementations, which the progress in integrated waveguide circuits could make possible in the very near future. We consider the feasibility of exploiting the higher dimensionality of the Hilbert space of the chain elements for the transmission of a larger amount of information, and the effects of unwanted excitations during the process. Finally, we exploit the information-flux method to provide bounds to the transfer fidelity.

  10. Real-time imaging of spin-to-orbital angular momentum hybrid remote state preparation

    NASA Astrophysics Data System (ADS)

    Erhard, Manuel; Qassim, Hammam; Mand, Harjaspreet; Karimi, Ebrahim; Boyd, Robert W.

    2015-08-01

    There exists two prominent methods to transfer information between two spatially separated parties, namely Alice (A) and Bob (B): quantum teleportation and remote state preparation. However, the difference between these methods is, in the teleportation scheme, the state to be transferred is completely unknown, whereas in state preparation it should be known to the sender. In addition, photonic state teleportation is probabilistic due to the impossibility of performing a two-particle complete Bell-state analysis with linear optics, while remote state preparation can be performed deterministically. Here we report the first realization of photonic hybrid remote state preparation from spin to orbital angular momentum degrees of freedom. In our scheme, the polarization state of photon A is transferred to orbital angular momentum of photon B. The prepared states are visualized in real time by means of an intensified CCD camera. The quality of the prepared states is verified by performing quantum state tomography, which confirms an average fidelity higher than 99.4%. We believe that this experiment paves the way towards a novel means of quantum communication in which encryption and decryption are carried out in naturally different Hilbert spaces, and therefore may provide a means for enhancing security.

  11. Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups.

    PubMed

    Jin, Sung Hwan; Kim, Da Hye; Jun, Gwang Hoon; Hong, Soon Hyung; Jeon, Seokwoo

    2013-02-26

    The band gap properties of graphene quantum dots (GQDs) arise from quantum confinement effects and differ from those in semimetallic graphene sheets. Tailoring the size of the band gap and understanding the band gap tuning mechanism are essential for the applications of GQDs in opto-electronics. In this study, we observe that the photoluminescence (PL) of the GQDs shifts due to charge transfers between functional groups and GQDs. GQDs that are functionalized with amine groups and are 1-3 layers thick and less than 5 nm in diameter were successfully fabricated using a two-step cutting process from graphene oxides (GOs). The functionalized GQDs exhibit a redshift of PL emission (ca. 30 nm) compared to the unfunctionalized GQDs. Furthermore, the PL emissions of the GQDs and the amine-functionalized GQDs were also shifted by changes in the pH due to the protonation or deprotonation of the functional groups. The PL shifts resulted from charge transfers between the functional groups and GQDs, which can tune the band gap of the GQDs. Calculations from density functional theory (DFT) are in good agreement with our proposed mechanism for band gap tuning in the GQDs through the use of functionalization.

  12. Path Sampling Methods for Enzymatic Quantum Particle Transfer Reactions

    PubMed Central

    Dzierlenga, M.W.; Varga, M.J.

    2016-01-01

    The mechanisms of enzymatic reactions are studied via a host of computational techniques. While previous methods have been used successfully, many fail to incorporate the full dynamical properties of enzymatic systems. This can lead to misleading results in cases where enzyme motion plays a significant role in the reaction coordinate, which is especially relevant in particle transfer reactions where nuclear tunneling may occur. In this chapter, we outline previous methods, as well as discuss newly developed dynamical methods to interrogate mechanisms of enzymatic particle transfer reactions. These new methods allow for the calculation of free energy barriers and kinetic isotope effects (KIEs) with the incorporation of quantum effects through centroid molecular dynamics (CMD) and the full complement of enzyme dynamics through transition path sampling (TPS). Recent work, summarized in this chapter, applied the method for calculation of free energy barriers to reaction in lactate dehydrogenase (LDH) and yeast alcohol dehydrogenase (YADH). It was found that tunneling plays an insignificant role in YADH but plays a more significant role in LDH, though not dominant over classical transfer. Additionally, we summarize the application of a TPS algorithm for the calculation of reaction rates in tandem with CMD to calculate the primary H/D KIE of YADH from first principles. It was found that the computationally obtained KIE is within the margin of error of experimentally determined KIEs, and corresponds to the KIE of particle transfer in the enzyme. These methods provide new ways to investigate enzyme mechanism with the inclusion of protein and quantum dynamics. PMID:27497161

  13. Double-quantum homonuclear correlations of spin I=5/2 nuclei.

    PubMed

    Iuga, Dinu

    2011-02-01

    The challenges associated with acquiring double-quantum homonuclear Nuclear Magnetic Resonance correlation spectra of half-integer quadrupolar nuclei are described. In these experiments the radio-frequency irradiation amplitude is necessarily weak in order to selectively excite the central transition. In this limit only one out of the 25 double-quantum coherences possible for two coupled spin I=5/2 nuclei is excited. An investigation of all the 25 two spins double quantum transitions reveals interesting effects such as a compensation of the first-order quadrupolar interaction between the two single quantum transitions involved in the double quantum coherence. In this paper a full numerical study of a hypothetical two spin I=5/2 system is used to show what happens when the RF amplitude during recoupling is increased. In principle this is advantageous, since the required double quantum coherence should build up faster, but in practice it also induces adiabatic passage transfer of population and coherence which impedes any build up. Finally an optimized rotary resonance recoupling (oR(3)) sequence is introduced in order to decrease these transfers. This sequence consists of a spin locking irradiation whose amplitude is reduced four times during one rotor period, and allows higher RF powers to be used during recoupling. The sequence is used to measure (27)Al DQ dipolar correlation spectra of Y(3)Al(5)O(12) (YAG) and gamma alumina (γAl(2)O(3)). The results prove that aluminium vacancies in gamma alumina mainly occur in the tetrahedral sites. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Quantum mechanics of excitation transport in photosynthetic complexes: a key issues review.

    PubMed

    Levi, Federico; Mostarda, Stefano; Rao, Francesco; Mintert, Florian

    2015-07-01

    For a long time microscopic physical descriptions of biological processes have been based on quantum mechanical concepts and tools, and routinely employed by chemical physicists and quantum chemists. However, the last ten years have witnessed new developments on these studies from a different perspective, rooted in the framework of quantum information theory. The process that more, than others, has been subject of intense research is the transfer of excitation energy in photosynthetic light-harvesting complexes, a consequence of the unexpected experimental discovery of oscillating signals in such highly noisy systems. The fundamental interdisciplinary nature of this research makes it extremely fascinating, but can also constitute an obstacle to its advance. Here in this review our objective is to provide an essential summary of the progress made in the theoretical description of excitation energy dynamics in photosynthetic systems from a quantum mechanical perspective, with the goal of unifying the language employed by the different communities. This is initially realized through a stepwise presentation of the fundamental building blocks used to model excitation transfer, including protein dynamics and the theory of open quantum system. Afterwards, we shall review how these models have evolved as a consequence of experimental discoveries; this will lead us to present the numerical techniques that have been introduced to quantitatively describe photo-absorbed energy dynamics. Finally, we shall discuss which mechanisms have been proposed to explain the unusual coherent nature of excitation transport and what insights have been gathered so far on the potential functional role of such quantum features.

  15. OS2: Oblivious similarity based searching for encrypted data outsourced to an untrusted domain

    PubMed Central

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Ramzan, Naeem

    2017-01-01

    Public cloud storage services are becoming prevalent and myriad data sharing, archiving and collaborative services have emerged which harness the pay-as-you-go business model of public cloud. To ensure privacy and confidentiality often encrypted data is outsourced to such services, which further complicates the process of accessing relevant data by using search queries. Search over encrypted data schemes solve this problem by exploiting cryptographic primitives and secure indexing to identify outsourced data that satisfy the search criteria. Almost all of these schemes rely on exact matching between the encrypted data and search criteria. A few schemes which extend the notion of exact matching to similarity based search, lack realism as those schemes rely on trusted third parties or due to increase storage and computational complexity. In this paper we propose Oblivious Similarity based Search (OS2) for encrypted data. It enables authorized users to model their own encrypted search queries which are resilient to typographical errors. Unlike conventional methodologies, OS2 ranks the search results by using similarity measure offering a better search experience than exact matching. It utilizes encrypted bloom filter and probabilistic homomorphic encryption to enable authorized users to access relevant data without revealing results of search query evaluation process to the untrusted cloud service provider. Encrypted bloom filter based search enables OS2 to reduce search space to potentially relevant encrypted data avoiding unnecessary computation on public cloud. The efficacy of OS2 is evaluated on Google App Engine for various bloom filter lengths on different cloud configurations. PMID:28692697

  16. [Formula: see text]: Oblivious similarity based searching for encrypted data outsourced to an untrusted domain.

    PubMed

    Pervez, Zeeshan; Ahmad, Mahmood; Khattak, Asad Masood; Ramzan, Naeem; Khan, Wajahat Ali

    2017-01-01

    Public cloud storage services are becoming prevalent and myriad data sharing, archiving and collaborative services have emerged which harness the pay-as-you-go business model of public cloud. To ensure privacy and confidentiality often encrypted data is outsourced to such services, which further complicates the process of accessing relevant data by using search queries. Search over encrypted data schemes solve this problem by exploiting cryptographic primitives and secure indexing to identify outsourced data that satisfy the search criteria. Almost all of these schemes rely on exact matching between the encrypted data and search criteria. A few schemes which extend the notion of exact matching to similarity based search, lack realism as those schemes rely on trusted third parties or due to increase storage and computational complexity. In this paper we propose Oblivious Similarity based Search ([Formula: see text]) for encrypted data. It enables authorized users to model their own encrypted search queries which are resilient to typographical errors. Unlike conventional methodologies, [Formula: see text] ranks the search results by using similarity measure offering a better search experience than exact matching. It utilizes encrypted bloom filter and probabilistic homomorphic encryption to enable authorized users to access relevant data without revealing results of search query evaluation process to the untrusted cloud service provider. Encrypted bloom filter based search enables [Formula: see text] to reduce search space to potentially relevant encrypted data avoiding unnecessary computation on public cloud. The efficacy of [Formula: see text] is evaluated on Google App Engine for various bloom filter lengths on different cloud configurations.

  17. Indel-tolerant read mapping with trinucleotide frequencies using cache-oblivious kd-trees.

    PubMed

    Mahmud, Md Pavel; Wiedenhoeft, John; Schliep, Alexander

    2012-09-15

    Mapping billions of reads from next generation sequencing experiments to reference genomes is a crucial task, which can require hundreds of hours of running time on a single CPU even for the fastest known implementations. Traditional approaches have difficulties dealing with matches of large edit distance, particularly in the presence of frequent or large insertions and deletions (indels). This is a serious obstacle both in determining the spectrum and abundance of genetic variations and in personal genomics. For the first time, we adopt the approximate string matching paradigm of geometric embedding to read mapping, thus rephrasing it to nearest neighbor queries in a q-gram frequency vector space. Using the L(1) distance between frequency vectors has the benefit of providing lower bounds for an edit distance with affine gap costs. Using a cache-oblivious kd-tree, we realize running times, which match the state-of-the-art. Additionally, running time and memory requirements are about constant for read lengths between 100 and 1000 bp. We provide a first proof-of-concept that geometric embedding is a promising paradigm for read mapping and that L(1) distance might serve to detect structural variations. TreQ, our initial implementation of that concept, performs more accurate than many popular read mappers over a wide range of structural variants. TreQ will be released under the GNU Public License (GPL), and precomputed genome indices will be provided for download at http://treq.sf.net. pavelm@cs.rutgers.edu Supplementary data are available at Bioinformatics online.

  18. Indel-tolerant read mapping with trinucleotide frequencies using cache-oblivious kd-trees

    PubMed Central

    Mahmud, Md Pavel; Wiedenhoeft, John; Schliep, Alexander

    2012-01-01

    Motivation: Mapping billions of reads from next generation sequencing experiments to reference genomes is a crucial task, which can require hundreds of hours of running time on a single CPU even for the fastest known implementations. Traditional approaches have difficulties dealing with matches of large edit distance, particularly in the presence of frequent or large insertions and deletions (indels). This is a serious obstacle both in determining the spectrum and abundance of genetic variations and in personal genomics. Results: For the first time, we adopt the approximate string matching paradigm of geometric embedding to read mapping, thus rephrasing it to nearest neighbor queries in a q-gram frequency vector space. Using the L1 distance between frequency vectors has the benefit of providing lower bounds for an edit distance with affine gap costs. Using a cache-oblivious kd-tree, we realize running times, which match the state-of-the-art. Additionally, running time and memory requirements are about constant for read lengths between 100 and 1000 bp. We provide a first proof-of-concept that geometric embedding is a promising paradigm for read mapping and that L1 distance might serve to detect structural variations. TreQ, our initial implementation of that concept, performs more accurate than many popular read mappers over a wide range of structural variants. Availability and implementation: TreQ will be released under the GNU Public License (GPL), and precomputed genome indices will be provided for download at http://treq.sf.net. Contact: pavelm@cs.rutgers.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:22962448

  19. Channel Simulation in Quantum Metrology

    NASA Astrophysics Data System (ADS)

    Laurenza, Riccardo; Lupo, Cosmo; Spedalieri, Gaetana; Braunstein, Samuel L.; Pirandola, Stefano

    2018-04-01

    In this review we discuss how channel simulation can be used to simplify the most general protocols of quantum parameter estimation, where unlimited entanglement and adaptive joint operations may be employed. Whenever the unknown parameter encoded in a quantum channel is completely transferred in an environmental program state simulating the channel, the optimal adaptive estimation cannot beat the standard quantum limit. In this setting, we elucidate the crucial role of quantum teleportation as a primitive operation which allows one to completely reduce adaptive protocols over suitable teleportation-covariant channels and derive matching upper and lower bounds for parameter estimation. For these channels,wemay express the quantum Cramér Rao bound directly in terms of their Choi matrices. Our review considers both discrete- and continuous-variable systems, also presenting some new results for bosonic Gaussian channels using an alternative sub-optimal simulation. It is an open problem to design simulations for quantum channels that achieve the Heisenberg limit.

  20. Quantum teleportation from a propagating photon to a solid-state spin qubit

    NASA Astrophysics Data System (ADS)

    Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.

    2013-11-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  1. Quantum teleportation from a propagating photon to a solid-state spin qubit.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A

    2013-01-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  2. Hybrid quantum systems: Outsourcing superconducting qubits

    NASA Astrophysics Data System (ADS)

    Cleland, Andrew

    Superconducting qubits offer excellent prospects for manipulating quantum information, with good qubit lifetimes, high fidelity single- and two-qubit gates, and straightforward scalability (admittedly with multi-dimensional interconnect challenges). One interesting route for experimental development is the exploration of hybrid systems, i.e. coupling superconducting qubits to other systems. I will report on our group's efforts to develop approaches that will allow interfacing superconducting qubits in a quantum-coherent fashion to spin defects in solids, to optomechanical devices, and to resonant nanomechanical structures. The longer term goals of these efforts include transferring quantum states between different qubit systems; generating and receiving ``flying'' acoustic phonon-based as well as optical photon-based qubits; and ultimately developing systems that can be used for quantum memory, quantum computation and quantum communication, the last in both the microwave and fiber telecommunications bands. Work is supported by Grants from AFOSR, ARO, DOE and NSF.

  3. All Entangled States can Demonstrate Nonclassical Teleportation.

    PubMed

    Cavalcanti, Daniel; Skrzypczyk, Paul; Šupić, Ivan

    2017-09-15

    Quantum teleportation, the process by which Alice can transfer an unknown quantum state to Bob by using preshared entanglement and classical communication, is one of the cornerstones of quantum information. The standard benchmark for certifying quantum teleportation consists in surpassing the maximum average fidelity between the teleported and the target states that can be achieved classically. According to this figure of merit, not all entangled states are useful for teleportation. Here we propose a new benchmark that uses the full information available in a teleportation experiment and prove that all entangled states can implement a quantum channel which cannot be reproduced classically. We introduce the idea of nonclassical teleportation witness to certify if a teleportation experiment is genuinely quantum and discuss how to quantify this phenomenon. Our work provides new techniques for studying teleportation that can be immediately applied to certify the quality of quantum technologies.

  4. A solid state source of photon triplets based on quantum dot molecules

    PubMed Central

    Khoshnegar, Milad; Huber, Tobias; Predojević, Ana; Dalacu, Dan; Prilmüller, Maximilian; Lapointe, Jean; Wu, Xiaohua; Tamarat, Philippe; Lounis, Brahim; Poole, Philip; Weihs, Gregor; Majedi, Hamed

    2017-01-01

    Producing advanced quantum states of light is a priority in quantum information technologies. In this context, experimental realizations of multipartite photon states would enable improved tests of the foundations of quantum mechanics as well as implementations of complex quantum optical networks and protocols. It is favourable to directly generate these states using solid state systems, for simpler handling and the promise of reversible transfer of quantum information between stationary and flying qubits. Here we use the ground states of two optically active coupled quantum dots to directly produce photon triplets. The formation of a triexciton in these ground states leads to a triple cascade recombination and sequential emission of three photons with strong correlations. We record 65.62 photon triplets per minute under continuous-wave pumping, surpassing rates of earlier reported sources. Our structure and data pave the way towards implementing multipartite photon entanglement and multi-qubit readout schemes in solid state devices. PMID:28604705

  5. A molecular dynamics study of intramolecular proton transfer reaction of malonaldehyde in solution based upon a mixed quantum-classical approximation. II. Proton transfer reaction in non-polar solvent

    NASA Astrophysics Data System (ADS)

    Kojima, H.; Yamada, A.; Okazaki, S.

    2015-05-01

    The intramolecular proton transfer reaction of malonaldehyde in neon solvent has been investigated by mixed quantum-classical molecular dynamics (QCMD) calculations and fully classical molecular dynamics (FCMD) calculations. Comparing these calculated results with those for malonaldehyde in water reported in Part I [A. Yamada, H. Kojima, and S. Okazaki, J. Chem. Phys. 141, 084509 (2014)], the solvent dependence of the reaction rate, the reaction mechanism involved, and the quantum effect therein have been investigated. With FCMD, the reaction rate in weakly interacting neon is lower than that in strongly interacting water. However, with QCMD, the order of the reaction rates is reversed. To investigate the mechanisms in detail, the reactions were categorized into three mechanisms: tunneling, thermal activation, and barrier vanishing. Then, the quantum and solvent effects were analyzed from the viewpoint of the reaction mechanism focusing on the shape of potential energy curve and its fluctuations. The higher reaction rate that was found for neon in QCMD compared with that found for water solvent arises from the tunneling reactions because of the nearly symmetric double-well shape of the potential curve in neon. The thermal activation and barrier vanishing reactions were also accelerated by the zero-point energy. The number of reactions based on these two mechanisms in water was greater than that in neon in both QCMD and FCMD because these reactions are dominated by the strength of solute-solvent interactions.

  6. Modification of quantum dots with nucleic acids

    NASA Astrophysics Data System (ADS)

    Kocherginskaya, P. B.; Romanova, A. V.; Prokhorenko, I. A.; Itkis, Daniil M.; Korshun, V. A.; Goodilin, Eugene A.; Tretyakov, Yuri D.

    2011-12-01

    The key principles and modern approaches to targeted modification of semiconductor colloidal nanoparticles, quantum dots, which exhibit unique photophysical properties and are a promising class of luminescent markers, are discussed. Attention is given to the preparation of their bioconjugates with nucleic acids, promising tools for biological microchips and resonance energy transfer sensors. The bibliography includes 80 references.

  7. Quantum entanglement of high angular momenta.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  8. Golden rule kinetics of transfer reactions in condensed phase: The microscopic model of electron transfer reactions in disordered solid matrices

    NASA Astrophysics Data System (ADS)

    Basilevsky, M. V.; Odinokov, A. V.; Titov, S. V.; Mitina, E. A.

    2013-12-01

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/kBT where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 < 1 - 3) and for low (ξ0 ≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T → 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode/medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the present approach to the Marcus ET theory and to the quantum-statistical reaction rate theory [V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR, Ser. Fiz. Khim. 124, 213 (1959); J. Ulstrup, Charge Transfer in Condensed Media (Springer, Berlin, 1979); M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999)] underlying it is discussed and illustrated by the results of computations for practically important target systems.

  9. Golden rule kinetics of transfer reactions in condensed phase: the microscopic model of electron transfer reactions in disordered solid matrices.

    PubMed

    Basilevsky, M V; Odinokov, A V; Titov, S V; Mitina, E A

    2013-12-21

    The algorithm for a theoretical calculation of transfer reaction rates for light quantum particles (i.e., the electron and H-atom transfers) in non-polar solid matrices is formulated and justified. The mechanism postulated involves a local mode (an either intra- or inter-molecular one) serving as a mediator which accomplishes the energy exchange between the reacting high-frequency quantum mode and the phonon modes belonging to the environment. This approach uses as a background the Fermi golden rule beyond the usually applied spin-boson approximation. The dynamical treatment rests on the one-dimensional version of the standard quantum relaxation equation for the reduced density matrix, which describes the frequency fluctuation spectrum for the local mode under consideration. The temperature dependence of a reaction rate is controlled by the dimensionless parameter ξ0 = ℏω0/k(B)T where ω0 is the frequency of the local mode and T is the temperature. The realization of the computational scheme is different for the high/intermediate (ξ0 < 1 - 3) and for low (ξ0 ≫ 1) temperature ranges. For the first (quasi-classical) kinetic regime, the Redfield approximation to the solution of the relaxation equation proved to be sufficient and efficient in practical applications. The study of the essentially quantum-mechanical low-temperature kinetic regime in its asymptotic limit requires the implementation of the exact relaxation equation. The coherent mechanism providing a non-vanishing reaction rate has been revealed when T → 0. An accurate computational methodology for the cross-over kinetic regime needs a further elaboration. The original model of the hopping mechanism for electronic conduction in photosensitive organic materials is considered, based on the above techniques. The electron transfer (ET) in active centers of such systems proceeds via local intra- and intermolecular modes. The active modes, as a rule, operate beyond the kinetic regimes, which are usually postulated in the existing theories of the ET. Our alternative dynamic ET model for local modes immersed in the continuum harmonic medium is formulated for both classical and quantum regimes, and accounts explicitly for the mode∕medium interaction. The kinetics of the energy exchange between the local ET subsystem and the surrounding environment essentially determine the total ET rate. The efficient computer code for rate computations is elaborated on. The computations are available for a wide range of system parameters, such as the temperature, external field, local mode frequency, and characteristics of mode/medium interaction. The relation of the present approach to the Marcus ET theory and to the quantum-statistical reaction rate theory [V. G. Levich and R. R. Dogonadze, Dokl. Akad. Nauk SSSR, Ser. Fiz. Khim. 124, 213 (1959); J. Ulstrup, Charge Transfer in Condensed Media (Springer, Berlin, 1979); M. Bixon and J. Jortner, Adv. Chem. Phys. 106, 35 (1999)] underlying it is discussed and illustrated by the results of computations for practically important target systems.

  10. Non-Gaussianity in a quasiclassical electronic circuit

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi J.; Hayakawa, Hisao

    2017-05-01

    We study the non-Gaussian dynamics of a quasiclassical electronic circuit coupled to a mesoscopic conductor. Non-Gaussian noise accompanying the nonequilibrium transport through the conductor significantly modifies the stationary probability density function (PDF) of the flux in the dissipative circuit. We incorporate weak quantum fluctuation of the dissipative LC circuit with a stochastic method and evaluate the quantum correction of the stationary PDF. Furthermore, an inverse formula to infer the statistical properties of the non-Gaussian noise from the stationary PDF is derived in the classical-quantum crossover regime. The quantum correction is indispensable to correctly estimate the microscopic transfer events in the QPC with the quasiclassical inverse formula.

  11. Integrals of motion from quantum toroidal algebras

    NASA Astrophysics Data System (ADS)

    Feigin, B.; Jimbo, M.; Mukhin, E.

    2017-11-01

    We identify the Taylor coefficients of the transfer matrices corresponding to quantum toroidal algebras with the elliptic local and non-local integrals of motion introduced by Kojima, Shiraishi, Watanabe, and one of the authors. That allows us to prove the Litvinov conjectures on the Intermediate Long Wave model. We also discuss the ({gl_m, {gl_n) duality of XXZ models in quantum toroidal setting and the implications for the quantum KdV model. In particular, we conjecture that the spectrum of non-local integrals of motion of Bazhanov, Lukyanov, and Zamolodchikov is described by Gaudin Bethe ansatz equations associated to affine {sl}2 . Dedicated to the memory of Petr Petrovich Kulish.

  12. Higher-order kinetic expansion of quantum dissipative dynamics: mapping quantum networks to kinetic networks.

    PubMed

    Wu, Jianlan; Cao, Jianshu

    2013-07-28

    We apply a new formalism to derive the higher-order quantum kinetic expansion (QKE) for studying dissipative dynamics in a general quantum network coupled with an arbitrary thermal bath. The dynamics of system population is described by a time-convoluted kinetic equation, where the time-nonlocal rate kernel is systematically expanded of the order of off-diagonal elements of the system Hamiltonian. In the second order, the rate kernel recovers the expression of the noninteracting-blip approximation method. The higher-order corrections in the rate kernel account for the effects of the multi-site quantum coherence and the bath relaxation. In a quantum harmonic bath, the rate kernels of different orders are analytically derived. As demonstrated by four examples, the higher-order QKE can reliably predict quantum dissipative dynamics, comparing well with the hierarchic equation approach. More importantly, the higher-order rate kernels can distinguish and quantify distinct nontrivial quantum coherent effects, such as long-range energy transfer from quantum tunneling and quantum interference arising from the phase accumulation of interactions.

  13. La Saturated Absorption Spectroscopy for Applications in Quantum Information

    NASA Astrophysics Data System (ADS)

    Becker, Patrick; Donoghue, Liz; Dungan, Kristina; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information may revolutionize computation and communication by utilizing quantum systems based on matter quantum bits and entangled light. Ions are excellent candidates for quantum bits as they can be well-isolated from unwanted external influences by trapping and laser cooling. Doubly-ionized lanthanum in particular shows promise for use in quantum information as it has infrared transitions in the telecom band, with low attenuation in standard optical fiber, potentially allowing for long distance information transfer. However, the hyperfine splittings of the lowest energy levels, required for laser cooling, have not been measured. We present progress and recent results towards measuring the hyperfine splittings of these levels in lanthanum by saturated absorption spectroscopy with a hollow cathode lamp. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  14. Free-space quantum cryptography with quantum and telecom communication channels

    NASA Astrophysics Data System (ADS)

    Toyoshima, Morio; Takayama, Yoshihisa; Klaus, Werner; Kunimori, Hiroo; Fujiwara, Mikio; Sasaki, Masahide

    2008-07-01

    Quantum cryptography is a new technique that uses the laws of physics to transmit information securely. In such systems, the vehicle to transfer quantum information is a single photon. However, the transmission distance is limited by the absorption of photons in an optical fiber in which the maximum demonstrated range is about 100 km. Free-space quantum cryptography between a ground station and a satellite is a way of sending the quantum information further distances than that with optical fibers since there is no birefringence effect in the atmosphere. At the National Institute of Information and Communications Technology (NICT), the laser communication demonstration between the NICT optical ground station and a low earth orbit satellite was successfully conducted in 2006. For such space communication links, free-space quantum cryptography is considered to be an important application in the future. We have developed a prototype system for free-space quantum cryptography using a weak coherent light and a telecom communication channel. The preliminary results are presented.

  15. Quantum information to the home

    NASA Astrophysics Data System (ADS)

    Choi, Iris; Young, Robert J.; Townsend, Paul D.

    2011-06-01

    Information encoded on individual quanta will play an important role in our future lives, much as classically encoded digital information does today. Combining quantum information carried by single photons with classical signals encoded on strong laser pulses in modern fibre-to-the-home (FTTH) networks is a significant challenge, the solution to which will facilitate the global distribution of quantum information to the home and with it a quantum internet [1]. In real-world networks, spontaneous Raman scattering in the optical fibre would induce crosstalk between the high-power classical channels and a single-photon quantum channel, such that the latter is unable to operate. Here, we show that the integration of quantum and classical information on an FTTH network is possible by performing quantum key distribution (QKD) on a network while simultaneously transferring realistic levels of classical data. Our novel scheme involves synchronously interleaving a channel of quantum data with the Raman scattered photons from a classical channel, exploiting the periodic minima in the instantaneous crosstalk and thereby enabling secure QKD to be performed.

  16. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    PubMed

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  17. Interpreting angular momentum transfer between electromagnetic multipoles using vector spherical harmonics.

    PubMed

    Grinter, Roger; Jones, Garth A

    2018-02-01

    The transfer of angular momentum between a quadrupole emitter and a dipole acceptor is investigated theoretically. Vector spherical harmonics are used to describe the angular part of the field of the mediating photon. Analytical results are presented for predicting angular momentum transfer between the emitter and absorber within a quantum electrodynamical framework. We interpret the allowability of such a process, which appears to violate conservation of angular momentum, in terms of the breakdown of the isotropy of space at the point of photon absorption (detection). That is, collapse of the wavefunction results in loss of all angular momentum information. This is consistent with Noether's Theorem and demystifies some common misconceptions about the nature of the photon. The results have implications for interpreting the detection of photons from multipole sources and offers insight into limits on information that can be extracted from quantum measurements in photonic systems.

  18. Cadmium-free quantum dot light emitting devices: energy-transfer realizing pure blue emission.

    PubMed

    Ji, Wenyu; Jing, Pengtao; Fan, Yi; Zhao, Jialong; Wang, Yunjun; Kong, Xianggui

    2013-01-01

    In this study, deep blue, pure electroluminescence (EL) at 441.5 nm from a ZnSe/ZnS quantum dot light-emitting device (QD-LED) is obtained by using poly (4-butylphenyl-diphenyl-amine) (poly-TPD) as the hole-transport layer (HTL) to open up the channel for energy transfer from poly-TPD to QDs. The emission originating from HTL is observed in the QD-LED with N,N'-bis (tolyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine functionalized with two styryl groups (2-TPD) as the HTL due to inefficient energy-transfer from 2-TPD to QDs. The poly-TPD based device exhibits color-saturated blue emission with a narrow spectral bandwidth of full width at half maximum (~17.2 nm). These results explore the operating mechanism of the QD EL and signify a remarkable progress in deep blue QD-LEDs based on environmental-friendly QD materials.

  19. Non-radiative relaxation dynamics of pyrrole following excitation in the range 249.5-200 nm

    NASA Astrophysics Data System (ADS)

    Kirkby, Oliver M.; Parkes, Michael A.; Neville, Simon P.; Worth, Graham A.; Fielding, Helen H.

    2017-09-01

    The non-radiative relaxation dynamics of pyrrole have been investigated using time-resolved photoelectron spectroscopy and quantum dynamics simulations. Following excitation of the A2 (11 πσ∗) state, we observe population flow out of the Franck-Condon region on a ≲ 50 fs timescale. Following excitation of the B2 (21 ππ∗) state, we observe population being transferred to the A2 (11 πσ∗) state on a <50 fs timescale and subsequently out of the Franck-Condon region, also on a <50 fs timescale. Quantum dynamics calculations suggest that population is transferred from the B2 (21 ππ∗) state through the A2 (1 π 3pz) state to the B1 (21 πσ∗) state before being transferred to the A2 (11 πσ∗) state.

  20. An advanced molecule-surface scattering instrument for study of vibrational energy transfer in gas-solid collisions.

    PubMed

    Ran, Qin; Matsiev, Daniel; Wodtke, Alec M; Auerbach, Daniel J

    2007-10-01

    We describe an advanced and highly sensitive instrument for quantum state-resolved molecule-surface energy transfer studies under ultrahigh vacuum (UHV) conditions. The apparatus includes a beam source chamber, two differential pumping chambers, and a UHV chamber for surface preparation, surface characterization, and molecular beam scattering. Pulsed and collimated supersonic molecular beams are generated by expanding target molecule mixtures through a home-built pulsed nozzle, and excited quantum state-selected molecules were prepared via tunable, narrow-band laser overtone pumping. Detection systems have been designed to measure specific vibrational-rotational state, time-of-flight, angular and velocity distributions of molecular beams coming to and scattered off the surface. Facilities are provided to clean and characterize the surface under UHV conditions. Initial experiments on the scattering of HCl(v = 0) from Au(111) show many advantages of this new instrument for fundamental studies of the energy transfer at the gas-surface interface.

Top