NASA Astrophysics Data System (ADS)
Kuperman, Maayan; Peskin, Uri
2017-03-01
It has been known for several decades that the electric current through tunneling junctions is affected by irradiation. In particular, photon-assisted currents by asymmetric irradiation of the two leads was demonstrated and studied extensively in tunneling junctions of different compositions and for different radiation wavelengths. In this work, this phenomenon is revisited in the context of single molecule junctions. Restricting the theoretical discussion to adiabatic periodic driving of one lead with respect to the other within a non-interacting electron formulation, the main features of specific molecules are encoded in the discrete electronic energy levels. The detailed level structure of the molecule is shown to yield new effects in the presence of asymmetric driving of the leads. In particular, when the field-free tunneling process is dominated by a single electronic level, the electric current can be suppressed to zero or flow against the direction of an applied static bias. In the presence of a second electronic level, a directional photo-electric effect is predicted, where not only the magnitude but also the direction of the steady state electric current through the tunneling junction can be changed by a monotonous increase of the field intensity. These effects are analyzed and explained by outlying the relevant theory, using analytic expressions in the wide-band limit, as well as numerical simulations beyond this limit.
Scanning rain gauge based on photo electricity
NASA Astrophysics Data System (ADS)
Huang, Fei-long; Li, Yuan-hong
2008-03-01
A non-contact rain gauge with photo electricity technology is introduced in this paper. Dimensional distribution of rain inside a traditional rain gauge does not need to be changed, and the rainwater falls freely to the ground, so this new rain gauge doesn't need to be cleared as a traditional rain gauge does frequently. And then a capacitor is used as a switch that would drive LED light to scan and drive photo electricity inducing element Charge Coupled Device (CCD) to detect when it is induced by the falling drips. Light through a convex lens would scan the drips and project them on CCD across. Electrical signal is produced when CCD detects the shadow after another convex lens. The drips whose diameter is 0.3 millimeter can be distinguished and so as smaller drips of 0.1 millimeter if high-resolution CCD is used. After an amplifier the electrical signal would be transformed into digital signal and would be used to calculate the volume of rain. The Central Processing Unit on main control board gives commands to scanning trigger and controls interrupts from process of data acquisition and calculation. The non-contact photo electricity measurement can detect raindrops of different size. Parallel light projects every raindrop in space on CCD and tells its diameter exactly. So it gives satisfying precision and other useful data such as spectrum of raindrops. Further more, velocity of raindrop would be acquired according to its size. The system needs low cost with universal CCD and Single Chip Micyoco (SCM), and it is worth advocating.
Single electron effects in silicon quantum devices
NASA Astrophysics Data System (ADS)
Prati, Enrico
2013-05-01
The integration of atomic physics with quantum device technology contributed to the exploration of the field of single electron nanoelectronics originally developed in single electron quantum dots. Here the basic concepts of single electron nanoelectronics, including key aspects of architectures, quantum transport in silicon devices, single electron transistors, few atom devices, single charge/spin dynamics, and the role of valleys and bands are reviewed. Future applications in fundamental physics and classical and quantum information technologies are discussed, by highlighting the critical aspects which currently impose limits to the most advanced developments at the 10-nm node.
Improving the performance of photo-electrically controlled lighting systems
Rubinstein, F.; Ward, G.; Verderber, R.
1988-08-01
The ability of a photo-electrically controlled lighting system to maintain a constant total light level on a task surface by responding to changing daylight levels is affected by the control algorithm used to relate the photosensor signal to the supplied electric light level and by the placement and geometry of the photosensor. We describe the major components of a typical control system, discuss the operation of three different control algorithms, and derive expressions for each algorithm that express the total illuminance at the task as a function of the control photosensor signal. Using a specially-designed scale model, we measured the relationship between the signal generated by various ceiling-mounted control photosensors and workplane illuminance for two room geometries under real sky conditions. The measured data were used to determine the performance of systems obeying the three control algorithms under varying daylight conditions. Control systems employing the commonly-used integral reset algorithm supplied less electric light than required, failing to satisfy the control objective regardless of the control photosensor used. Systems employing an alternative, closed-loop proportional control algorithm achieved the control objective under virtually all tested conditions when operated by a ceiling-mounted photosensor shielded from direct window light.
Quantum Optics with Single Atoms and Photons
2007-11-02
Computation 2, 1 (2002). 2. “ Quantum teleportation of light beams,” T. C. Zhang, K. W. Goh, C. W. Chou, P. Lodahl, and H. J. Kimble, Phys. Rev. A67, 033802...code) Final Technical Report ONR Grant Number N00014-02-1-0828 Quantum Optics with Single Atoms and Photons Submitted to Office of Naval Research...exploit recently discovered pos- sibilities in the microscopic realm of quantum mechanics to accomplish tasks that would otherwise be impossible by
Extraction of information from a single quantum
Paraoanu, G. S.
2011-04-15
We investigate the possibility of performing quantum tomography on a single qubit with generalized partial measurements and the technique of measurement reversal. Using concepts from statistical decision theory, we prove that, somewhat surprisingly, no information can be obtained using this scheme. It is shown that, irrespective of the measurement technique used, extraction of information from single quanta is at odds with other general principles of quantum physics.
Single molecule study of silicon quantum dots
NASA Astrophysics Data System (ADS)
So, Woong Young; Li, Qi; Jin, Rongchao; Peteanu, Linda
2016-09-01
Recently, fluorescent Silicon (Si) Quantum Dots (QDs) have attracted much interest due to their high quantum yield, use of non-toxic and environmentally-benign chemicals, and water-solubility. However, more research is necessary to understand the energy level characteristics and single molecule behavior to enable their development for imaging applications. Therefore, single molecule time-resolved fluorescence spectroscopy of fluorescent Si QDs (cyan, green, and yellow) is needed. A rigorous analysis of time-resolved photon correlation spectroscopy and fluorescence lifetime data on single Si QDs at room temperature is presented.
Single-Atom Single-Photon Quantum Interface
NASA Astrophysics Data System (ADS)
Moehring, David; Bochmann, Joerg; Muecke, Martin; Specht, Holger; Weber, Bernhard; Wilk, Tatjana; Rempe, Gerhard
2008-05-01
By combining atom trapping techniques and cavity cooling schemes we are able to trap a single neutral atom inside a high-finesse cavity for several tens of seconds. We show that our coupled atom-cavity system can be used to generate single photons in a controlled way. With our long trapping times and high single-photon production efficiency, the non-classical properties of the emitted light can be shown in the photon correlations of a single atom. In a similar atom-cavity setup, we investigate the interface between atoms and photons by entangling a single atom with a single photon emitted into the cavity and by further mapping the quantum state of the atom onto a second single photon. These schemes are intrinsically deterministic and establish the basic element required to realize a distributed quantum network with individual atoms at rest as quantum memories and single flying photons as quantum messengers. This work was supported by the Deutsche Forschungsgemeinschaft, and the European Union SCALA and CONQUEST programs. D. L. M. acknowledges support from the Alexander von Humboldt Foundation.
Controlling quantum transport through a single molecule.
Cardamone, David M; Stafford, Charles A; Mazumdar, Sumit
2006-11-01
We investigate multiterminal quantum transport through single monocyclic aromatic annulene molecules, and their derivatives, using the nonequilibrium Green function approach within the self-consistent Hartree-Fock approximation. We propose a new device concept, the quantum interference effect transistor, that exploits perfect destructive interference stemming from molecular symmetry and controls current flow by introducing decoherence and/or elastic scattering that break the symmetry. This approach overcomes the fundamental problems of power dissipation and environmental sensitivity that beset nanoscale device proposals.
Quantum Clock Synchronization with a Single Qudit
Tavakoli, Armin; Cabello, Adán; Żukowski, Marek; Bourennane, Mohamed
2015-01-01
Clock synchronization for nonfaulty processes in multiprocess networks is indispensable for a variety of technologies. A reliable system must be able to resynchronize the nonfaulty processes upon some components failing causing the distribution of incorrect or conflicting information in the network. The task of synchronizing such networks is related to Byzantine agreement (BA), which can classically be solved using recursive algorithms if and only if less than one-third of the processes are faulty. Here we introduce a nonrecursive quantum algorithm, based on a quantum solution of the detectable BA, which achieves clock synchronization in the presence of arbitrary many faulty processes by using only a single quantum system. PMID:25613754
Quantum fingerprinting with a single particle
Massar, S.
2005-01-01
We show that the two-slit experiment in which a single quantum particle interferes with itself can be interpreted as a quantum fingerprinting protocol: the interference pattern exhibited by the particle contains information about the environment it encountered in the slits which would require much more communication to learn classically than is required quantum mechanically. An extension to the case where the particle has many internal degrees of freedom is suggested, and its interpretation is discussed. The interpretation of these results is discussed in detail, and a possible experimental realization is proposed.
Coupling single emitters to quantum plasmonic circuits
NASA Astrophysics Data System (ADS)
Huck, Alexander; Andersen, Ulrik L.
2016-09-01
In recent years, the controlled coupling of single-photon emitters to propagating surface plasmons has been intensely studied, which is fueled by the prospect of a giant photonic nonlinearity on a nanoscaled platform. In this article, we will review the recent progress on coupling single emitters to nanowires towards the construction of a new platform for strong light-matter interaction. The control over such a platform might open new doors for quantum information processing and quantum sensing at the nanoscale and for the study of fundamental physics in the ultrastrong coupling regime.
Quantum teleportation with a quantum dot single photon source.
Fattal, D; Diamanti, E; Inoue, K; Yamamoto, Y
2004-01-23
We report the experimental demonstration of a quantum teleportation protocol with a semiconductor single photon source. Two qubits, a target and an ancilla, each defined by a single photon occupying two optical modes (dual-rail qubit), were generated independently by the single photon source. Upon measurement of two modes from different qubits and postselection, the state of the two remaining modes was found to reproduce the state of the target qubit. In particular, the coherence between the target qubit modes was transferred to the output modes to a large extent. The observed fidelity is 80%, in agreement with the residual distinguishability between consecutive photons from the source. An improved version of this teleportation scheme using more ancillas is the building block of the recent Knill, Laflamme, and Milburn proposal for efficient linear optics quantum computation.
Quantum Key Distribution Using Polarized Single Photons
2009-04-01
Cu-O high-temperature superconducting materials, and ferromagnet /superconductor nano-bilayer structures. 15. SUBJECT TERMS Quantum communications...based on high-temperature superconducting materials and ferromagnet /superconductor NiCu/Nb nano-bilayer structures. Time- resolved photoresponse...NOTES none 20090724231 14. ABSTRACT Exhaustive research, development, and testing studies were performed on novel superconducting single-photon
Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.
Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M
2012-12-03
Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.
Quantum propagation in single mode fiber
NASA Technical Reports Server (NTRS)
Joneckis, Lance G.; Shapiro, Jeffrey H.
1994-01-01
This paper presents a theory for quantum light propagation in a single-mode fiber which includes the effects of the Kerr nonlinearity, group-velocity dispersion, and linear loss. The theory reproduces the results of classical self-phase modulation, quantum four-wave mixing, and classical solution physics, within their respective regions of validity. It demonstrates the crucial role played by the Kerr-effect material time constant, in limiting the quantum phase shifts caused by the broadband zero-point fluctuations that accompany any quantized input field. Operator moment equations - approximated, numerically, via a terminated cumulant expansion - are used to obtain results for homodyne-measurement noise spectra when dispersion is negligible. More complicated forms of these equations can be used to incorporate dispersion into the noise calculations.
Nanoscale Imaging with a Single Quantum Dot
2011-12-19
not require the use of macroscopic manipulators. We use this technique to image the surface plasmon polariton (SPP) mode of a silver nanowire with...technique to image the surface plasmon polariton (SPP) mode of a silver nanowire with resolution as fine as 10 nm by monitoring the coupling...a single quantum dot (QD) by utilizing the enhanced electromagnetic interactions between the QD and the surface plasmon polariton (SPP) mode of a
Demonstration of quantum permutation algorithm with a single photon ququart.
Wang, Feiran; Wang, Yunlong; Liu, Ruifeng; Chen, Dongxu; Zhang, Pei; Gao, Hong; Li, Fuli
2015-06-05
We report an experiment to demonstrate a quantum permutation determining algorithm with linear optical system. By employing photon's polarization and spatial mode, we realize the quantum ququart states and all the essential permutation transformations. The quantum permutation determining algorithm displays the speedup of quantum algorithm by determining the parity of the permutation in only one step of evaluation compared with two for classical algorithm. This experiment is accomplished in single photon level and the method exhibits universality in high-dimensional quantum computation.
Nano-optics with single quantum systems.
Hecht, Bert
2004-04-15
This paper reviews the recent progress in using single quantum systems, here mainly single fluorescent molecules, as local probes for nano-optical field distributions. We start by discussing the role of the absorption cross-section for the spatial resolution attainable in such experiments and its behaviour for different environmental conditions. It is shown that the spatial distribution of field components in a high-numerical aperture laser focus can be mapped with high precision using single fluorescent molecules embedded in a thin polymer film on glass. With this proof-of-principle experiment as a starting point, the possibility of mapping strongly confined and enhanced nano-optical fields close to material structures, e.g. sharp metal tips, is discussed. The mapping of the spatial distribution of the enhanced field at an etched gold tip using a single molecule is presented as an example. Energy transfer effects and quenching are identified as possible artefacts in this context. Finally, it is demonstrated that the local quenching at a sharp metal structure nevertheless can be exploited as a novel contrast mechanism for ultrahigh-resolution optical microscopy with single-molecule sensitivity.
Identification of single-input-single-output quantum linear systems
NASA Astrophysics Data System (ADS)
Levitt, Matthew; GuÅ£ǎ, Mǎdǎlin
2017-03-01
The purpose of this paper is to investigate system identification for single-input-single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016), 10.1109/TAC.2015.2448491] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix.
Single-Photon Secure Quantum Dialogue Protocol Without Information Leakage
NASA Astrophysics Data System (ADS)
Zhou, Nan-Run; Hua, Tian-Xiang; Wu, Gui-Tong; He, Chao-Sheng; Zhang, Ye
2014-11-01
Combining the idea of ping-pong protocol with Controlled-NOT operation, we propose a secure quantum dialogue protocol based on single-photonss. Bob obtains the information of the encrypted quantum state by performing Controlled-NOT operation on the auxiliary particle and the encrypted single-photonss. Unlike the previous quantum dialogue protocols based on single-photonss, the proposed protocol not only overcomes information leakage but also possesses an acceptable efficiency.
Universal quantum gates for Single Cooper Pair Box based quantum computing
NASA Technical Reports Server (NTRS)
Echternach, P.; Williams, C. P.; Dultz, S. C.; Braunstein, S.; Dowling, J. P.
2000-01-01
We describe a method for achieving arbitrary 1-qubit gates and controlled-NOT gates within the context of the Single Cooper Pair Box (SCB) approach to quantum computing. Such gates are sufficient to support universal quantum computation.
Hole transfer from single quantum dots.
Song, Nianhui; Zhu, Haiming; Jin, Shengye; Lian, Tianquan
2011-11-22
Photoinduced hole transfer dynamics from single CdSe/CdS(3ML)/CdZnS(2ML)/ZnS(2ML) core/multishell quantum dots (QDs) to phenothiazine (PTZ) molecules were studied by single QD fluorescence spectroscopy to investigate the static and dynamic heterogeneities of the hole transfer process as well as its effect on the blinking dynamics of QDs. Ensemble-averaged transient absorption and fluorescence decay measurements show that excitons in QDs dissociate by transferring the valence band hole to PTZ with a time constant of 50 ns for the 1:1 PTZ-QD complex, and the subsequent charge recombination process (i.e., electron transfer from the conduction band of the reduced QD to oxidized PTZ to regenerate the complex in the ground state) occurs mainly on the 100 to 1000 ns time scale. Single QD-PTZ complexes show pronounced correlated fluctuations of fluorescence intensity and lifetime with time. In addition to the dynamic fluctuation, there are considerable heterogeneities of average hole transfer rate among different QD-PTZ complexes. The hole transfer process has little effect on the statistics of the off-states, which is often believed to be positively charged QDs with a valence band hole. Instead, it increases the probability of weakly emissive or "gray" states.
Quantum transport of the single metallocene molecule
NASA Astrophysics Data System (ADS)
Yu, Jing-Xin; Chang, Jing; Wei, Rong-Kai; Liu, Xiu-Ying; Li, Xiao-Dong
2016-10-01
The Quantum transport of three single metallocene molecule is investigated by performing theoretical calculations using the non-equilibrium Green's function method combined with density functional theory. We find that the three metallocen molecules structure become stretched along the transport direction, the distance between two Cp rings longer than the other theory and experiment results. The lager conductance is found in nickelocene molecule, the main transmission channel is the electron coupling between molecule and the electrodes is through the Ni dxz and dyz orbitals and the s, dxz, dyz of gold. This is also confirmed by the highest occupied molecular orbital resonance at Fermi level. In addition, negative differential resistance effect is found in the ferrocene, cobaltocene molecules, this is also closely related with the evolution of the transmission spectrum under applied bias.
Orfield, Noah J; McBride, James R; Wang, Feng; Buck, Matthew R; Keene, Joseph D; Reid, Kemar R; Htoon, Han; Hollingsworth, Jennifer A; Rosenthal, Sandra J
2016-02-23
Physical variations in colloidal nanostructures give rise to heterogeneity in expressed optical behavior. This correlation between nanoscale structure and function demands interrogation of both atomic structure and photophysics at the level of single nanostructures to be fully understood. Herein, by conducting detailed analyses of fine atomic structure, chemical composition, and time-resolved single-photon photoluminescence data for the same individual nanocrystals, we reveal inhomogeneity in the quantum yields of single nonblinking "giant" CdSe/CdS core/shell quantum dots (g-QDs). We find that each g-QD possesses distinctive single exciton and biexciton quantum yields that result mainly from variations in the degree of charging, rather than from volume or structure inhomogeneity. We further establish that there is a very limited nonemissive "dark" fraction (<2%) among the studied g-QDs and present direct evidence that the g-QD core must lack inorganic passivation for the g-QD to be "dark". Therefore, in contrast to conventional QDs, ensemble photoluminescence quantum yield is principally defined by charging processes rather than the existence of dark g-QDs.
Single-photon quantum router with multiple output ports.
Yan, Wei-Bin; Fan, Heng
2014-04-28
The routing capability is a requisite in quantum network. Although the quantum routing of signals has been investigated in various systems both in theory and experiment, the general form of quantum routing with many output terminals still needs to be explored. Here we propose a scheme to achieve the multi-channel quantum routing of the single photons in a waveguide-emitter system. The channels are composed by the waveguides and are connected by intermediate two-level emitters. By adjusting the intermediate emitters, the output channels of the input single photons can be controlled. This is demonstrated in the cases of one output channel, two output channels and the generic N output channels. The results show that the multi-channel quantum routing of single photons can be well achieved in the proposed system. This offers a scheme for the experimental realization of general quantum routing of single photons.
Quantum and classical operational complementarity for single systems
Luis, Alfredo
2005-07-15
We investigate duality relations between conjugate observables after measurements performed on a single realization of the system. The application of standard inference methods implies the existence of duality relations for single systems when using classical as well as quantum physics.
Single Photon Holographic Qudit Elements for Linear Optical Quantum Computing
2011-05-01
in optical volume holography and designed and simulated practical single-photon, single-optical elements for qudit MUB-state quantum in- formation...Independent of the representation we use, the MUB states will ordinarily be modulated in both amplitude and phase. Recently a practical method has been...quantum computing with qudits (d ≥ 3) has been an efficient and practical quantum state sorter for photons whose complex fields are modulated in both
Quantum interference of independently generated telecom-band single photons
Patel, Monika; Altepeter, Joseph B.; Huang, Yu-Ping; Oza, Neal N.; Kumar, Prem
2014-12-04
We report on high-visibility quantum interference of independently generated telecom O-band (1310 nm) single photons using standard single-mode fibers. The experimental data are shown to agree well with the results of simulations using a comprehensive quantum multimode theory without the need for any fitting parameter.
Conversion from Single Photon to Single Electron Spin Using Electrically Controllable Quantum Dots
NASA Astrophysics Data System (ADS)
Oiwa, Akira; Fujita, Takafumi; Kiyama, Haruki; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo
2017-01-01
Polarization is a fundamental property of light and could provide various solutions to the development of secure optical communications with high capacity and high speed. In particular, the coherent quantum state conversion between single photons and single electron spins is a prerequisite for long-distance quantum communications and distributed quantum computation. Electrically defined quantum dots have already been proven to be suitable for scalable solid state qubits by demonstrations of single-spin coherent manipulations and two-qubit gate operations. Thus, their capacity for quantum information technologies would be considerably extended by the achievement of entanglement between an electron spin in the quantum dots and a photon. In this review paper, we show the basic technologies for trapping single electrons generated by single photons in quantum dots and for detecting their spins using the Pauli effect with sensitive charge sensors.
Single-electron Spin Resonance in a Quadruple Quantum Dot
NASA Astrophysics Data System (ADS)
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo
2016-08-01
Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible.
Single-electron Spin Resonance in a Quadruple Quantum Dot
Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Ito, Takumi; Sugawara, Retsu; Noiri, Akito; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo
2016-01-01
Electron spins in semiconductor quantum dots are good candidates of quantum bits for quantum information processing. Basic operations of the qubit have been realized in recent years: initialization, manipulation of single spins, two qubit entanglement operations, and readout. Now it becomes crucial to demonstrate scalability of this architecture by conducting spin operations on a scaled up system. Here, we demonstrate single-electron spin resonance in a quadruple quantum dot. A few-electron quadruple quantum dot is formed within a magnetic field gradient created by a micro-magnet. We oscillate the wave functions of the electrons in the quantum dots by applying microwave voltages and this induces electron spin resonance. The resonance energies of the four quantum dots are slightly different because of the stray field created by the micro-magnet and therefore frequency-resolved addressable control of each electron spin resonance is possible. PMID:27550534
Ultrafast optical spin echo in a single quantum dot
NASA Astrophysics Data System (ADS)
Press, David; de Greve, Kristiaan; McMahon, Peter L.; Ladd, Thaddeus D.; Friess, Benedikt; Schneider, Christian; Kamp, Martin; Höfling, Sven; Forchel, Alfred; Yamamoto, Yoshihisa
2010-06-01
Many proposed photonic quantum networks rely on matter qubits to serve as memory elements. The spin of a single electron confined in a semiconductor quantum dot forms a promising matter qubit that may be interfaced with a photonic network. Ultrafast optical spin control allows gate operations to be performed on the spin within a picosecond timescale, orders of magnitude faster than microwave or electrical control. One obstacle to storing quantum information in a single quantum dot spin is the apparent nanosecond-timescale dephasing due to slow variations in the background nuclear magnetic field. Here we use an ultrafast, all-optical spin echo technique to increase the decoherence time of a single quantum dot electron spin from nanoseconds to several microseconds. The ratio of decoherence time to gate time exceeds 105, suggesting strong promise for future photonic quantum information processors and repeater networks.
Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter
NASA Astrophysics Data System (ADS)
Trautmann, N.; Alber, G.
2016-05-01
We propose a scheme for triggering a dissipation-dominated highly efficient excitation transfer from a single-photon wave packet to a single quantum emitter. This single-photon-induced optical pumping turns dominant dissipative processes, such as spontaneous photon emission by the emitter or cavity decay, into valuable tools for quantum information processing and quantum communication. It works for an arbitrarily shaped single-photon wave packet with sufficiently small bandwidth provided a matching condition is satisfied which balances the dissipative rates involved. Our scheme does not require additional laser pulses or quantum feedback and does not rely on high finesse optical resonators. In particular, it can be used to enhance significantly the coupling of a single photon to a single quantum emitter implanted in a one-dimensional waveguide or even in a free space scenario. We demonstrate the usefulness of our scheme for building a deterministic quantum memory and a deterministic frequency converter between photonic qubits of different wavelengths.
Nanophotonic quantum phase switch with a single atom.
Tiecke, T G; Thompson, J D; de Leon, N P; Liu, L R; Vuletić, V; Lukin, M D
2014-04-10
By analogy to transistors in classical electronic circuits, quantum optical switches are important elements of quantum circuits and quantum networks. Operated at the fundamental limit where a single quantum of light or matter controls another field or material system, such a switch may enable applications such as long-distance quantum communication, distributed quantum information processing and metrology, and the exploration of novel quantum states of matter. Here, by strongly coupling a photon to a single atom trapped in the near field of a nanoscale photonic crystal cavity, we realize a system in which a single atom switches the phase of a photon and a single photon modifies the atom's phase. We experimentally demonstrate an atom-induced optical phase shift that is nonlinear at the two-photon level, a photon number router that separates individual photons and photon pairs into different output modes, and a single-photon switch in which a single 'gate' photon controls the propagation of a subsequent probe field. These techniques pave the way to integrated quantum nanophotonic networks involving multiple atomic nodes connected by guided light.
Single-particle machine for quantum thermalization
Liao Jieqiao; Dong, H.; Sun, C. P.
2010-05-15
The long time accumulation of the random actions of a single particle 'reservoir' on its coupled system can transfer some temperature information of its initial state to the coupled system. This dynamic process can be referred to as a quantum thermalization in the sense that the coupled system can reach a stable thermal equilibrium with a temperature equal to that of the reservoir. We illustrate this idea based on the usual micromaser model, in which a series of initially prepared two-level atoms randomly pass through an electromagnetic cavity. It is found that, when the randomly injected atoms are initially prepared in a thermal equilibrium state with a given temperature, the cavity field will reach a thermal equilibrium state with the same temperature as that of the injected atoms. As in two limit cases, the cavity field can be cooled and 'coherently heated' as a maser process, respectively, when the injected atoms are initially prepared in ground and excited states. Especially, when the atoms in equilibrium are driven to possess some coherence, the cavity field may reach a higher temperature in comparison with the injected atoms. We also point out a possible experimental test for our theoretical prediction based on a superconducting circuit QED system.
Entanglement of single-atom quantum bits at a distance
NASA Astrophysics Data System (ADS)
Moehring, D. L.; Maunz, P.; Olmschenk, S.; Younge, K. C.; Matsukevich, D. N.; Duan, L.-M.; Monroe, C.
2007-09-01
Quantum information science involves the storage, manipulation and communication of information encoded in quantum systems, where the phenomena of superposition and entanglement can provide enhancements over what is possible classically. Large-scale quantum information processors require stable and addressable quantum memories, usually in the form of fixed quantum bits (qubits), and a means of transferring and entangling the quantum information between memories that may be separated by macroscopic or even geographic distances. Atomic systems are excellent quantum memories, because appropriate internal electronic states can coherently store qubits over very long timescales. Photons, on the other hand, are the natural platform for the distribution of quantum information between remote qubits, given their ability to traverse large distances with little perturbation. Recently, there has been considerable progress in coupling small samples of atomic gases through photonic channels, including the entanglement between light and atoms and the observation of entanglement signatures between remotely located atomic ensembles. In contrast to atomic ensembles, single-atom quantum memories allow the implementation of conditional quantum gates through photonic channels, a key requirement for quantum computing. Along these lines, individual atoms have been coupled to photons in cavities, and trapped atoms have been linked to emitted photons in free space. Here we demonstrate the entanglement of two fixed single-atom quantum memories separated by one metre. Two remotely located trapped atomic ions each emit a single photon, and the interference and detection of these photons signals the entanglement of the atomic qubits. We characterize the entangled pair by directly measuring qubit correlations with near-perfect detection efficiency. Although this entanglement method is probabilistic, it is still in principle useful for subsequent quantum operations and scalable quantum
Single-Molecule Tracking in Living Cells Using Single Quantum Dot Applications
Baba, Koichi; Nishida, Kohji
2012-01-01
Revealing the behavior of single molecules in living cells is very useful for understanding cellular events. Quantum dot probes are particularly promising tools for revealing how biological events occur at the single molecule level both in vitro and in vivo. In this review, we will introduce how single quantum dot applications are used for single molecule tracking. We will discuss how single quantum dot tracking has been used in several examples of complex biological processes, including membrane dynamics, neuronal function, selective transport mechanisms of the nuclear pore complex, and in vivo real-time observation. We also briefly discuss the prospects for single molecule tracking using advanced probes. PMID:22896768
Coherent manipulation of single quantum systems in the solid state
NASA Astrophysics Data System (ADS)
Childress, Lilian Isabel
2007-12-01
The controlled, coherent manipulation of quantum-mechanical systems is an important challenge in modern science and engineering, with significant applications in quantum information science. Solid-state quantum systems such as electronic spins, nuclear spins, and superconducting islands are among the most promising candidates for realization of quantum bits (qubits). However, in contrast to isolated atomic systems, these solid-state qubits couple to a complex environment which often results in rapid loss of coherence, and, in general, is difficult to understand. Additionally, the strong interactions which make solid-state quantum systems attractive can typically only occur between neighboring systems, leading to difficulties in coupling arbitrary pairs of quantum bits. This thesis presents experimental progress in understanding and controlling the complex environment of a solid-state quantum bit, and theoretical techniques for extending the distance over which certain quantum bits can interact coherently. Coherent manipulation of an individual electron spin associated with a nitrogen-vacancy center in diamond is used to gain insight into its mesoscopic environment. Furthermore, techniques for exploiting coherent interactions between the electron spin and a subset of the environment are developed and demonstrated, leading to controlled interactions with single isolated nuclear spins. The quantum register thus formed by a coupled electron and nuclear spin provides the basis for a theoretical proposal for fault-tolerant long-distance quantum communication with minimal physical resource requirements. Finally, we consider a mechanism for long-distance coupling between quantum dots based on chip-scale cavity quantum electrodynamics.
Quantum dots find their stride in single molecule tracking
Bruchez, Marcel P.
2011-01-01
Thirteen years after the demonstration of quantum dots as biological imaging agents, and nine years after the initial commercial introduction of bioconjugated quantum dots, the brightness and photostability of the quantum dots has enabled a range of investigations using single molecule tracking. These materials are being routinely utilized by a number of groups to track the dynamics of single molecules in reconstituted biophysical systems and on living cells, and are especially powerful for investigations of single molecules over long timescales with short exposure times and high pointing accuracy. New approaches are emerging where the quantum dots are used as “hard-sphere” probes for intracellular compartments. Innovations in quantum dot surface modification are poised to substantially expand the utility of these materials. PMID:22055494
Quantum dots with single-atom precision.
Fölsch, Stefan; Martínez-Blanco, Jesús; Yang, Jianshu; Kanisawa, Kiyoshi; Erwin, Steven C
2014-07-01
Quantum dots are often called artificial atoms because, like real atoms, they confine electrons to quantized states with discrete energies. However, although real atoms are identical, most quantum dots comprise hundreds or thousands of atoms, with inevitable variations in size and shape and, consequently, unavoidable variability in their wavefunctions and energies. Electrostatic gates can be used to mitigate these variations by adjusting the electron energy levels, but the more ambitious goal of creating quantum dots with intrinsically digital fidelity by eliminating statistical variations in their size, shape and arrangement remains elusive. We used a scanning tunnelling microscope to create quantum dots with identical, deterministic sizes. By using the lattice of a reconstructed semiconductor surface to fix the position of each atom, we controlled the shape and location of the dots with effectively zero error. This allowed us to construct quantum dot molecules whose coupling has no intrinsic variation but could nonetheless be tuned with arbitrary precision over a wide range. Digital fidelity opens the door to quantum dot architectures free of intrinsic broadening-an important goal for technologies from nanophotonics to quantum information processing as well as for fundamental studies of confined electrons.
A Single-Photon Subtractor for Multimode Quantum States
NASA Astrophysics Data System (ADS)
Ra, Young-Sik; Jacquard, Clément; Averchenko, Valentin; Roslund, Jonathan; Cai, Yin; Dufour, Adrien; Fabre, Claude; Treps, Nicolas
2016-05-01
In the last decade, single-photon subtraction has proved to be key operations in optical quantum information processing and quantum state engineering. Implementation of the photon subtraction has been based on linear optics and single-photon detection on single-mode resources. This technique, however, becomes unsuitable with multimode resources such as spectrally multimode squeezed states or continuous variables cluster states. We implement a single-photon subtractor for such multimode resources based on sum-frequency generation and single-photon detection. An input multimode quantum state interacts with a bright control beam whose spectrum has been engineered through ultrafast pulse-shaping. The multimode quantum state resulting from the single-photon subtractor is analyzed with multimode homodyne detection whose local oscillator spectrum is independently engineered. We characterize the single-photon subtractor via coherent-state quantum process tomography, which provides its mode-selectivity and subtraction modes. The ability to simultaneously control the state engineering and its detection ensures both flexibility and scalability in the production of highly entangled non-Gaussian quantum states.
Optical levitation of a microdroplet containing a single quantum dot.
Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki
2015-03-15
We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This Letter presents the realization of an optically levitated solid-state quantum emitter.
Certifying single-system steering for quantum-information processing
NASA Astrophysics Data System (ADS)
Li, Che-Ming; Chen, Yueh-Nan; Lambert, Neill; Chiu, Ching-Yi; Nori, Franco
2015-12-01
Einstein-Podolsky-Rosen (EPR) steering describes how different ensembles of quantum states can be remotely prepared by measuring one particle of an entangled pair. Here, we investigate quantum steering for single quantum d -dimensional systems (qudits) and devise efficient conditions to certify the steerability therein, which we find are applicable both to single-system steering and EPR steering. In the single-system case our steering conditions enable the unambiguous ruling out of generic classical means of mimicking steering. Ruling out "false-steering" scenarios has implications for securing channels against both cloning-based individual attack and coherent attacks when implementing quantum key distribution using qudits. We also show that these steering conditions also have applications in quantum computation, in that they can serve as an efficient criterion for the evaluation of quantum logic gates of arbitrary size. Finally, we describe how the nonlocal EPR variant of these conditions also function as tools for identifying faithful one-way quantum computation, secure entanglement-based quantum communication, and genuine multipartite EPR steering.
A Low Cost Photo-Electric Detector for an Arched Flux Tube Experiment
NASA Astrophysics Data System (ADS)
Perkins, Rory; Bellan, Paul
2008-11-01
A low cost EUV detector is being developed for use in a laboratory experiment where two plasma-filled flux tubes merge in either a co-helicity or counter-helicity arrangement (J.F. Hansen, S.K.P. Tripathi, and P.M. Bellan, Phys. Plasma 2, 3177(2004)). The detector utilizes the photo-electric effect to measure EUV radiation from 10 to 120 nm (S.J. Zweben, R.J. Taylor, Plasma Physics, Vol. 23, No. 4(1981)). The detector geometry is coaxial. A cylindrical collimator capped in wire mesh was placed around the magnesium disk to collimate the field of view and reduce capacitive pick-up. Magnets placed outside the collimator deflect incoming charged particles. The detector was tested in a vacuum chamber with a flash lamp located 50 cm from the detector. A current-to-voltage amplifier with a 1 microsecond rise-time read the detector's output on the test chamber. The detector output on the main experimental chamber was sent directly into 50 ohms with no amplification and produced signals above 200 mV, well above the observed noise. The rise-time for this configuration is well below 1 microsecond. An array of such detectors is currently being designed to image the flux tubes in this EUV range.
Single-Photon Superradiance from a Quantum Dot
NASA Astrophysics Data System (ADS)
Tighineanu, Petru; Daveau, Raphaël S.; Lehmann, Tau B.; Beere, Harvey E.; Ritchie, David A.; Lodahl, Peter; Stobbe, Søren
2016-04-01
We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The electrostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a fivefold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.
Quantum Logic with Cavity Photons From Single Atoms
NASA Astrophysics Data System (ADS)
Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B. R.; Langfahl-Klabes, Gunnar; Marshall, Graham D.; Sparrow, Chris; O'Brien, Jeremy L.; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C. F.
2016-07-01
We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single 87Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics.
Single-Shot Fault-Tolerant Quantum Error Correction
NASA Astrophysics Data System (ADS)
Bombín, Héctor
2015-07-01
Conventional quantum error correcting codes require multiple rounds of measurements to detect errors with enough confidence in fault-tolerant scenarios. Here, I show that for suitable topological codes, a single round of local measurements is enough. This feature is generic and is related to self-correction and confinement phenomena in the corresponding quantum Hamiltonian model. Three-dimensional gauge color codes exhibit this single-shot feature, which also applies to initialization and gauge fixing. Assuming the time for efficient classical computations to be negligible, this yields a topological fault-tolerant quantum computing scheme where all elementary logical operations can be performed in constant time.
Operating single quantum emitters with a compact Stirling cryocooler
NASA Astrophysics Data System (ADS)
Schlehahn, A.; Krüger, L.; Gschrey, M.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T.; Reitzenstein, S.
2015-01-01
The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g(2)(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g(2)(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.
Operating single quantum emitters with a compact Stirling cryocooler
Schlehahn, A.; Krüger, L.; Gschrey, M.; Schulze, J.-H.; Rodt, S.; Strittmatter, A.; Heindel, T. Reitzenstein, S.
2015-01-15
The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g{sup (2)}(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g{sup (2)}(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.
Operating single quantum emitters with a compact Stirling cryocooler.
Schlehahn, A; Krüger, L; Gschrey, M; Schulze, J-H; Rodt, S; Strittmatter, A; Heindel, T; Reitzenstein, S
2015-01-01
The development of an easy-to-operate light source emitting single photons has become a major driving force in the emerging field of quantum information technology. Here, we report on the application of a compact and user-friendly Stirling cryocooler in the field of nanophotonics. The Stirling cryocooler is used to operate a single quantum emitter constituted of a semiconductor quantum dot (QD) at a base temperature below 30 K. Proper vibration decoupling of the cryocooler and its surrounding enables free-space micro-photoluminescence spectroscopy to identify and analyze different charge-carrier states within a single quantum dot. As an exemplary application in quantum optics, we perform a Hanbury-Brown and Twiss experiment demonstrating a strong suppression of multi-photon emission events with g((2))(0) < 0.04 from this Stirling-cooled single quantum emitter under continuous wave excitation. Comparative experiments performed on the same quantum dot in a liquid helium (LHe)-flow cryostat show almost identical values of g((2))(0) for both configurations at a given temperature. The results of this proof of principle experiment demonstrate that low-vibration Stirling cryocoolers that have so far been considered exotic to the field of nanophotonics are an attractive alternative to expensive closed-cycle cryostats or LHe-flow cryostats, which could pave the way for the development of high-quality table-top non-classical light sources.
Simulation of single-qubit open quantum systems
NASA Astrophysics Data System (ADS)
Sweke, Ryan; Sinayskiy, Ilya; Petruccione, Francesco
2014-08-01
A quantum algorithm is presented for the simulation of arbitrary Markovian dynamics of a qubit, described by a semigroup of single-qubit quantum channels {Tt} specified by a generator L. This algorithm requires only single-qubit and controlled-not gates and approximates the channel Tt=etL up to the chosen accuracy ɛ, with a slightly superlinear cost O((∥L∥(1→1)t)1+1/2k/ɛ1/2k) for any integer k. Inspired by developments in Hamiltonian simulation, a decomposition and recombination technique is utilized which allows for the exploitation of recently developed methods for the approximation of arbitrary single-qubit channels. In particular, as a result of these methods the algorithm requires only a single ancilla qubit, the minimal possible dilation for a nonunitary single-qubit quantum channel.
Linear optical quantum computing in a single spatial mode.
Humphreys, Peter C; Metcalf, Benjamin J; Spring, Justin B; Moore, Merritt; Jin, Xian-Min; Barbieri, Marco; Kolthammer, W Steven; Walmsley, Ian A
2013-10-11
We present a scheme for linear optical quantum computing using time-bin-encoded qubits in a single spatial mode. We show methods for single-qubit operations and heralded controlled-phase (cphase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn [Nature (London) 409, 46 (2001)] scheme. Our protocol is suited to currently available photonic devices and ideally allows arbitrary numbers of qubits to be encoded in the same spatial mode, demonstrating the potential for time-frequency modes to dramatically increase the quantum information capacity of fixed spatial resources. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84±0.07.
Interferometric Quantum-Nondemolition Single-Photon Detectors
NASA Technical Reports Server (NTRS)
Kok, Peter; Lee, Hwang; Dowling, Jonathan
2007-01-01
Two interferometric quantum-nondemolition (QND) devices have been proposed: (1) a polarization-independent device and (2) a polarization-preserving device. The prolarization-independent device works on an input state of up to two photons, whereas the polarization-preserving device works on a superposition of vacuum and single- photon states. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode would also be populated by a single photon. Like other QND devices, the proposed devices are potentially useful for a variety of applications, including such areas of NASA interest as quantum computing, quantum communication, detection of gravity waves, as well as pedagogical demonstrations of the quantum nature of light. Many protocols in quantum computation and quantum communication require the possibility of detecting a photon without destroying it. The only prior single- photon-detecting QND device is based on quantum electrodynamics in a resonant cavity and, as such, it depends on the photon frequency. Moreover, the prior device can distinguish only between one photon and no photon. The proposed interferometric QND devices would not depend on frequency and could distinguish between (a) one photon and (b) zero or two photons. The first proposed device is depicted schematically in Figure 1. The input electromagnetic mode would be a superposition of a zero-, a one-, and a two-photon quantum state. The overall function of the device would be to probabilistically generate a unique detector output only when its input electromagnetic mode was populated by a single photon, in which case its output mode also would be populated by a single photon.
Electrical control of single hole spins in nanowire quantum dots.
Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P
2013-03-01
The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.
Experimental realization of a strongly interacting quantum memory
NASA Astrophysics Data System (ADS)
Li, Lin; Kuzmich, Alex
2016-05-01
A quantum memory is a device which enables the storage and retrieval of quantum states of light. Ground atomic states interact only weakly with the environment and with each other, enabling memories with long storage times. However, for scalable generation and distillation of entanglement within distributed quantum information systems, it is desirable to controllably switch on and off interactions between the individual atoms. We realize a strongly interacting quantum memory by coupling the ground state of an ultra-cold atomic gas to a highly excited Rydberg state. The memory is subsequently retrieved into a propagating light field which is measured using the Hanbury Brown-Twiss photo-electric detection. The results reveal memory transformation from an initially prepared coherent state into the state of single excitation.
Authenticated multi-user quantum key distribution with single particles
NASA Astrophysics Data System (ADS)
Lin, Song; Wang, Hui; Guo, Gong-De; Ye, Guo-Hua; Du, Hong-Zhen; Liu, Xiao-Fen
2016-03-01
Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.
Adiabatic holonomic quantum gates for a single qubit
NASA Astrophysics Data System (ADS)
Malinovsky, Vladimir S.; Rudin, Sergey
2014-04-01
A universal set of single qubit holonomic quantum gates using the geometric phase that the qubit wave function acquires after a cyclic evolution is discussed. The proposed scheme utilizes ultrafast linearly chirped pulses and provides a possibility to substantially suppress transient population of the ancillary state in a generic three-level system. That provides a possibility to reduce the decoherence effect and achieve a higher fidelity of the quantum gates.
Singly and Doubly Occupied Higher Quantum States in Nanocrystals.
Jeong, Juyeon; Yoon, Bitna; Kwon, Young-Wan; Choi, Dongsun; Jeong, Kwang Seob
2017-02-08
Filling the lowest quantum state of the conduction band of colloidal nanocrystals with a single electron, which is analogous to the filling the lowest unoccupied molecular orbital in a molecule with a single electron, has attracted much attention due to the possibility of harnessing the electron spin for potential spin-based applications. The quantized energy levels of the artificial atom, in principle, make it possible for a nanocrystal to be filled with an electron if the Fermi-energy level is optimally tuned during the nanocrystal growth. Here, we report the singly occupied quantum state (SOQS) and doubly occupied quantum state (DOQS) of a colloidal nanocrystal in steady state under ambient conditions. The number of electrons occupying the lowest quantum state can be controlled to be zero, one (unpaired), and two (paired) depending on the nanocrystal growth time via changing the stoichiometry of the nanocrystal. Electron paramagnetic resonance spectroscopy proved the nanocrystals with single electron to show superparamagnetic behavior, which is a direct evidence of the SOQS, whereas the DOQS of the two- or zero-electron occupied nanocrystals in the 1Se exhibit diamagnetic behavior. In combination with the superconducting quantum interference device measurement, it turns out that the SOQS of the HgSe colloidal quantum dots has superparamagnetic property. The appearance and change of the steady-state mid-IR intraband absorption spectrum reflect the sequential occupation of the 1Se state with electrons. The magnetic property of the colloidal quantum dot, initially determined by the chemical synthesis, can be tuned from diamagnetic to superparamagnetic and vice versa by varying the number of electrons through postchemical treatment. The switchable magnetic property will be very useful for further applications such as colloidal nanocrystal based spintronics, nonvolatile memory, infrared optoelectronics, catalyst, imaging, and quantum computing.
Monolithically integrated single quantum dots coupled to bowtie nanoantennas
NASA Astrophysics Data System (ADS)
Lyamkina, A. A.; Schraml, K.; Regler, A.; Schalk, M.; Bakarov, A. K.; Toropov, A. I.; Moshchenko, S. P.; Kaniber, Michael
2016-12-01
Deterministically integrating semiconductor quantum emitters with plasmonic nano-devices paves the way towards chip-scale integrable, true nanoscale quantum photonics technologies. For this purpose, stable and bright semiconductor emitters are needed, which moreover allow for CMOS-compatibility and optical activity in the telecommunication band. Here, we demonstrate strongly enhanced light-matter coupling of single near-surface ($<10\\,nm$) InAs quantum dots monolithically integrated into electromagnetic hot-spots of sub-wavelength sized metal nanoantennas. The antenna strongly enhances the emission intensity of single quantum dots by up to $\\sim16\\times$, an effect accompanied by an up to $3.4\\times$ Purcell-enhanced spontaneous emission rate. Moreover, the emission is strongly polarised along the antenna axis with degrees of linear polarisation up to $\\sim85\\,\\%$. The results unambiguously demonstrate the efficient coupling of individual quantum dots to state-of-the-art nanoantennas. Our work provides new perspectives for the realisation of quantum plasmonic sensors, step-changing photovoltaic devices, bright and ultrafast quantum light sources and efficent nano-lasers.
Biexciton quantum yield of single semiconductor nanocrystals from photon statistics
Nair, Gautham; Zhao, Jing; Bawendi, Moungi G
2012-01-01
Biexciton properties strongly affect the usability of a light emitter in quantum photon sources and lasers but are difficult to measure for single fluorophores at room temperature due to luminescence intermittency and bleaching at the high excitation fluences usually required. Here, we observe the biexciton (BX) to exciton (X) to ground photoluminescence cascade of single colloidal semiconductor nanocrystals (NCs) under weak excitation in a g(2) photon correlation measurement and show that the normalized amplitude of the cascade feature is equal to the ratio of the BX to X fluorescence quantum yields. This imposes a limit on the attainable depth of photon antibunching and provides a robust means to study single emitter biexciton physics. In NC samples, we show that the BX quantum yield is considerably inhomogeneous, consistent with the defect sensitivity expected of the Auger nonradiative recombination mechanism. The method can be extended to study X,BX spectral and polarization correlations. PMID:21288042
Single-photon electroluminescence for on-chip quantum networks
NASA Astrophysics Data System (ADS)
Bentham, C.; Hallett, D.; Prtljaga, N.; Royall, B.; Vaitiekus, D.; Coles, R. J.; Clarke, E.; Fox, A. M.; Skolnick, M. S.; Itskevich, I. E.; Wilson, L. R.
2016-10-01
An electrically driven single-photon source has been monolithically integrated with nano-photonic circuitry. Electroluminescent emission from a single InAs/GaAs quantum dot (QD) is channelled through a suspended nanobeam waveguide. The emission line has a linewidth of below 6 μeV, demonstrating the ability to have a high coherence, electrically driven, waveguide coupled QD source. The single-photon nature of the emission is verified by g ( 2 ) ( τ ) correlation measurements. Moreover, in a cross-correlation experiment, with emission collected from the two ends of the waveguide, the emission and propagation of single photons from the same QD is confirmed. This work provides the basis for the development of electrically driven on-chip single-photon sources, which can be readily coupled to waveguide filters, directional couplers, phase shifters, and other elements of quantum photonic networks.
Scalable Quantum Photonics with Single Color Centers in Silicon Carbide.
Radulaski, Marina; Widmann, Matthias; Niethammer, Matthias; Zhang, Jingyuan Linda; Lee, Sang-Yun; Rendler, Torsten; Lagoudakis, Konstantinos G; Son, Nguyen Tien; Janzén, Erik; Ohshima, Takeshi; Wrachtrup, Jörg; Vučković, Jelena
2017-02-24
Silicon carbide is a promising platform for single photon sources, quantum bits (qubits), and nanoscale sensors based on individual color centers. Toward this goal, we develop a scalable array of nanopillars incorporating single silicon vacancy centers in 4H-SiC, readily available for efficient interfacing with free-space objective and lensed-fibers. A commercially obtained substrate is irradiated with 2 MeV electron beams to create vacancies. Subsequent lithographic process forms 800 nm tall nanopillars with 400-1400 nm diameters. We obtain high collection efficiency of up to 22 kcounts/s optical saturation rates from a single silicon vacancy center while preserving the single photon emission and the optically induced electron-spin polarization properties. Our study demonstrates silicon carbide as a readily available platform for scalable quantum photonics architecture relying on single photon sources and qubits.
Quantum Yield of Single Surface Plasmons Generated by a Quantum Dot Coupled with a Silver Nanowire.
Li, Qiang; Wei, Hong; Xu, Hongxing
2015-12-09
The interactions between surface plasmons (SPs) in metal nanostructures and excitons in quantum emitters (QEs) lead to many interesting phenomena and potential applications that are strongly dependent on the quantum yield of SPs. The difficulty in distinguishing all the possible exciton recombination channels hinders the experimental determination of SP quantum yield. Here, we experimentally measured for the first time the quantum yield of single SPs generated by the exciton-plasmon coupling in a system composed of a single quantum dot and a silver nanowire (NW). By utilizing the SP guiding property of the NW, the decay rates of all the exciton recombination channels, i.e., direct free space radiation channel, SP generation channel, and nonradiative damping channel, are quantitatively obtained. It is determined that the optimum emitter-NW coupling distance for the largest SP quantum yield is about 10 nm, resulting from the different distance-dependent decay rates of the three channels. These results are important for manipulating the coupling between plasmonic nanostructures and QEs and developing on-chip quantum plasmonic devices for potential nanophotonic and quantum information applications.
Quantum Interference Induced Photon Blockade in a Coupled Single Quantum Dot-Cavity System
Tang, Jing; Geng, Weidong; Xu, Xiulai
2015-01-01
We propose an experimental scheme to implement a strong photon blockade with a single quantum dot coupled to a nanocavity. The photon blockade effect can be tremendously enhanced by driving the cavity and the quantum dot simultaneously with two classical laser fields. This enhancement of photon blockade is ascribed to the quantum interference effect to avoid two-photon excitation of the cavity field. Comparing with Jaynes-Cummings model, the second-order correlation function at zero time delay g(2)(0) in our scheme can be reduced by two orders of magnitude and the system sustains a large intracavity photon number. A red (blue) cavity-light detuning asymmetry for photon quantum statistics with bunching or antibunching characteristics is also observed. The photon blockade effect has a controllable flexibility by tuning the relative phase between the two pumping laser fields and the Rabi coupling strength between the quantum dot and the pumping field. Moreover, the photon blockade scheme based on quantum interference mechanism does not require a strong coupling strength between the cavity and the quantum dot, even with the pure dephasing of the system. This simple proposal provides an effective way for potential applications in solid state quantum computation and quantum information processing. PMID:25783560
Single-Atom Gating of Quantum State Superpositions
Moon, Christopher
2010-04-28
The ultimate miniaturization of electronic devices will likely require local and coherent control of single electronic wavefunctions. Wavefunctions exist within both physical real space and an abstract state space with a simple geometric interpretation: this state space - or Hilbert space - is spanned by mutually orthogonal state vectors corresponding to the quantized degrees of freedom of the real-space system. Measurement of superpositions is akin to accessing the direction of a vector in Hilbert space, determining an angle of rotation equivalent to quantum phase. Here we show that an individual atom inside a designed quantum corral1 can control this angle, producing arbitrary coherent superpositions of spatial quantum states. Using scanning tunnelling microscopy and nanostructures assembled atom-by-atom we demonstrate how single spins and quantum mirages can be harnessed to image the superposition of two electronic states. We also present a straightforward method to determine the atom path enacting phase rotations between any desired state vectors. A single atom thus becomes a real-space handle for an abstract Hilbert space, providing a simple technique for coherent quantum state manipulation at the spatial limit of condensed matter.
Superconducting Quantum Interference Single-Electron Transistor
NASA Astrophysics Data System (ADS)
Enrico, Emanuele; Giazotto, Francesco
2016-06-01
We propose the concept of a quantized single-electron source based on the interplay between Coulomb blockade and magnetic flux-controllable superconducting proximity effect. We show that flux dependence of the induced energy gap in the density of states of a nanosized metallic wire can be exploited as an efficient tunable energy barrier which enables charge-pumping configurations with enhanced functionalities. This control parameter strongly affects the charging landscape of a normal metal island with non-negligible Coulombic energy. Under a suitable evolution of a time-dependent magnetic flux the structure behaves like a turnstile for single electrons in a fully electrostatic regime.
Authenticated Quantum Key Distribution with Collective Detection using Single Photons
NASA Astrophysics Data System (ADS)
Huang, Wei; Xu, Bing-Jie; Duan, Ji-Tong; Liu, Bin; Su, Qi; He, Yuan-Hang; Jia, Heng-Yue
2016-10-01
We present two authenticated quantum key distribution (AQKD) protocols by utilizing the idea of collective (eavesdropping) detection. One is a two-party AQKD protocol, the other is a multiparty AQKD protocol with star network topology. In these protocols, the classical channels need not be assumed to be authenticated and the single photons are used as the quantum information carriers. To achieve mutual identity authentication and establish a random key in each of the proposed protocols, only one participant should be capable of preparing and measuring single photons, and the main quantum ability that the rest of the participants should have is just performing certain unitary operations. Security analysis shows that these protocols are free from various kinds of attacks, especially the impersonation attack and the man-in-the-middle (MITM) attack.
Quantum private query based on single-photon interference
NASA Astrophysics Data System (ADS)
Xu, Sheng-Wei; Sun, Ying; Lin, Song
2016-08-01
Quantum private query (QPQ) has become a research hotspot recently. Specially, the quantum key distribution (QKD)-based QPQ attracts lots of attention because of its practicality. Various such kind of QPQ protocols have been proposed based on different technologies of quantum communications. Single-photon interference is one of such technologies, on which the famous QKD protocol GV95 is just based. In this paper, we propose two QPQ protocols based on single-photon interference. The first one is simpler and easier to realize, and the second one is loss tolerant and flexible, and more practical than the first one. Furthermore, we analyze both the user privacy and the database privacy in the proposed protocols.
Coherence length of photons from a single quantum system
Jelezko, F.; Volkmer, A.; Popa, I.; Wrachtrup, J.; Rebane, K.K.
2003-04-01
We present a methodology that allows recording the coherence length of photons emitted by a single quantum system in a solid. The feasibility of this approach is experimentally demonstrated by measuring the self-interference of photons from the zero-phonon line emission of a single nitrogen-vacancy defect in diamond at 1.6 K. The first-order correlation function has been recorded and analyzed in terms of a single exponential decay time. A coherence time of {approx}5 ps has been obtained, which is in good agreement with the corresponding spectral line width and demonstrates the feasibility of the Fourier-transform spectroscopy with single photons.
Single-quantum-dot-based DNA nanosensor
NASA Astrophysics Data System (ADS)
Zhang, Chun-Yang; Yeh, Hsin-Chih; Kuroki, Marcos T.; Wang, Tza-Huei
2005-11-01
Rapid and highly sensitive detection of DNA is critical in diagnosing genetic diseases. Conventional approaches often rely on cumbersome, semi-quantitative amplification of target DNA to improve detection sensitivity. In addition, most DNA detection systems (microarrays, for example), regardless of their need for target amplification, require separation of unhybridized DNA strands from hybridized stands immobilized on a solid substrate, and are thereby complicated by solution-surface binding kinetics. Here, we report an ultrasensitive nanosensor based on fluorescence resonance energy transfer (FRET) capable of detecting low concentrations of DNA in a separation-free format. This system uses quantum dots (QDs) linked to DNA probes to capture DNA targets. The target strand binds to a dye-labelled reporter strand thus forming a FRET donor-acceptor ensemble. The QD also functions as a concentrator that amplifies the target signal by confining several targets in a nanoscale domain. Unbound nanosensors produce near-zero background fluorescence, but on binding to even a small amount of target DNA (~50 copies or less) they generate a very distinct FRET signal. A nanosensor-based oligonucleotide ligation assay has been demonstrated to successfully detect a point mutation typical of some ovarian tumours in clinical samples.
Stamping single wall nanotubes for circuit quantum electrodynamics
Viennot, J. J. Kontos, T.; Palomo, J.
2014-03-17
We report on a dry transfer technique for single wall carbon nanotube devices, which allows to embed them in high finesse microwave cavity. We demonstrate the ground state charge readout and a quality factor of about 3000 down to the single photon regime. This technique allows to make devices such as double quantum dots, which could be instrumental for achieving the strong spin photon coupling. It can easily be extended to generic carbon nanotube based microwave devices.
Single particle density of trapped interacting quantum gases
Bala, Renu; Bosse, J.; Pathak, K. N.
2015-05-15
An expression for single particle density for trapped interacting gases has been obtained in first order of interaction using Green’s function method. Results are easily simplified for homogeneous quantum gases and are found to agree with famous results obtained by Huang-Yang-Luttinger and Lee-Yang.
Single particle sources and quantum heat fluctuations
NASA Astrophysics Data System (ADS)
Battista, F.
2014-10-01
The miniaturisation of electronic devices has been a well-known trend in engineering over almost 50 years. The technological advancement in the field can now provide an astonishing control of charge transport in mesoscopic structures. Single particle pumping, namely the control in time and space of the flow of an arbitrarily small number of electrons or holes, has been realised in various kind of structure with, in some cases, very high accuracies. The first half of the manuscript provides a brief overview of different experimental realisations of single particle sources. Though these devices allow to minimise charge fluctuations in the charge current, because of Heisenberg's uncertainty principle, the emitted particles are characterised by energy fluctuations. The consequences of it are of great relevance and presented in the second part of the paper.
Quantum dynamics of a single dislocation
NASA Astrophysics Data System (ADS)
de Gennes, Pierre-Gilles
We discuss the zero temperature motions of an edge dislocation in a quantum solid (e.g., He4). If the dislocation has one kink (equal in length to its Burgers vector b) the kink has a creation energy U and can move along the line with a certain transfer integral t. When t and U are of comparable magnitude, two opposite kinks can form an extended bound state, with a size l. The overall shape of the dislocation in the ground state is then associated with a random walk of persistence length l (along the line) and hop sizes b. We also discuss the motions of kinks under an applied shear stress σ: the glide velocity is proportional to exp(-σ*/σ), where σ* is a characteristic stress, controlled by tunneling processes. Mouvements quantiques d'une dislocation. On analyse le mouvement à température nulle d'une dislocation coin dans un solide quantique (He4). La dislocation peut avoir un cran (d'énergie U) dans son plan de glissement. Le cran peut avancer ou reculer le long de la dislocation par effet tunnel, avec une certaine intégrale de transfert t. Deux crans de signe opposé peuvent former un état lié. En présence d'une contrainte extérieure σ, la ligne doit avancer avec une vitesse ~exp(-σ*/σ) où σ* est une contrainte seuil, contrôlée par l'effet tunnel.
Simulating and Optimising Quantum Thermometry Using Single Photons
Tham, W. K.; Ferretti, H.; Sadashivan, A. V.; Steinberg, A. M.
2016-01-01
A classical thermometer typically works by exchanging energy with the system being measured until it comes to equilibrium, at which point the readout is related to the final energy state of the thermometer. A recent paper noted that with a quantum thermometer consisting of a single spin/qubit, temperature discrimination is better achieved at finite times rather than once equilibration is essentially complete. Furthermore, preparing a qubit thermometer in a state with quantum coherence instead of an incoherent one improves its sensitivity to temperature differences. Implementing a recent proposal for efficiently emulating an arbitrary quantum channel, we use the quantum polarisation state of individual photons as models of “single-qubit thermometers” which evolve for a certain time in contact with a thermal bath. We investigate the optimal thermometer states for temperature discrimination, and the optimal interaction times, confirming that there is a broad regime where quantum coherence provides a significant improvement. We also discuss the more practical question of thermometers composed of a finite number of spins/qubits (greater than one), and characterize the performance of an adaptive protocol for making optimal use of all the qubits. PMID:27974836
Simulating and Optimising Quantum Thermometry Using Single Photons
NASA Astrophysics Data System (ADS)
Tham, W. K.; Ferretti, H.; Sadashivan, A. V.; Steinberg, A. M.
2016-12-01
A classical thermometer typically works by exchanging energy with the system being measured until it comes to equilibrium, at which point the readout is related to the final energy state of the thermometer. A recent paper noted that with a quantum thermometer consisting of a single spin/qubit, temperature discrimination is better achieved at finite times rather than once equilibration is essentially complete. Furthermore, preparing a qubit thermometer in a state with quantum coherence instead of an incoherent one improves its sensitivity to temperature differences. Implementing a recent proposal for efficiently emulating an arbitrary quantum channel, we use the quantum polarisation state of individual photons as models of “single-qubit thermometers” which evolve for a certain time in contact with a thermal bath. We investigate the optimal thermometer states for temperature discrimination, and the optimal interaction times, confirming that there is a broad regime where quantum coherence provides a significant improvement. We also discuss the more practical question of thermometers composed of a finite number of spins/qubits (greater than one), and characterize the performance of an adaptive protocol for making optimal use of all the qubits.
Quantum phase gate using single atom nonlinearlity
NASA Astrophysics Data System (ADS)
Takeuchi, Shigeki; Oka, Hisaki; Kojima, Kunihiro; Hofmann, Holger F.; Sasaki, Keiji
2005-08-01
The nonlinear optical response obtained from a single two level atom in a one-sided cavity is studied using a model system, where a infinite atomic layer sits in front of a reflecting mirror. When the atomic layer is placed at the antinode of input field, the result given by finite difference time domain method coupled with the optical Bloch equations is consistent with previous analytical result [ H F. Hofmann, K. Kojima, S. Takeuchi, and K. Sasaki, J. Opt. B 5, 218 (2003) ] based on one-dimensional atom model.
Experimental single qubit quantum secret sharing.
Schmid, Christian; Trojek, Pavel; Bourennane, Mohamed; Kurtsiefer, Christian; Zukowski, Marek; Weinfurter, Harald
2005-12-02
We present a simple and practical protocol for the solution of a secure multiparty communication task, the secret sharing, and its proof-of-principle experimental realization. In this protocol, a secret is split among several parties in a way that its reconstruction requires the collaboration of the participating parties. In our scheme the parties solve the problem by sequential transformations on a single qubit. In contrast with recently proposed schemes involving multiparticle Greenberger-Horne-Zeilinger states, the approach demonstrated here is much easier to realize and scalable in practical applications.
Linear Optical Quantum Computing in a Single Spatial Mode
NASA Astrophysics Data System (ADS)
Walmsley, Ian
2014-05-01
We present a scheme for linear optical quantum computing using time-bin encoded qubits in a single spatial mode. This scheme allows arbitrary numbers of qubits to be encoded in the same mode, circumventing the requirement for many spatial modes that challenges the scalability of other schemes, and exploiting the inherent stability and robustness of time-frequency optical modes. This approach leverages the architecture of modern telecommunications systems, and opens a door to very high dimensional Hilbert spaces while maintaining compact device designs. Further, temporal encodings benefit from intrinsic robustness to inhomogeneities in transmission mediums. These advantages have been recognized in works exploring the preparation of time-frequency entangled states both for tests of fundamental quantum phenomena, and for quantum communications technologies including key distribution and teleportation. Here we extend this idea to computation. In particular, we present methods for single-qubit operations and heralded controlled phase (CPhase) gates, providing a sufficient set of operations for universal quantum computing with the Knill-Laflamme-Milburn scheme. As a test of our scheme, we demonstrate the first entirely single spatial mode implementation of a two-qubit quantum gate and show its operation with an average fidelity of 0.84 /pm 0.07. An analysis of the performance of current technologies suggests that our scheme offers a promising route for the construction of quantum circuits beyond the few-qubit level. In addition, we foresee that our investigation may motivate further development of the approaches presented into a regime in which time bins are temporally overlapped and frequency based manipulations become necessary, opening up encodings of even higher densities. This work was supported by the Engineering and Physical Sciences Research Council (EP/H03031X/1), the European Commission project Q-ESSENCE (248095) and the Air Force Office of Scientific Research
High-Sensitivity Charge Detection with a Single-Lead Quantum Dot for Scalable Quantum Computation
NASA Astrophysics Data System (ADS)
House, M. G.; Bartlett, I.; Pakkiam, P.; Koch, M.; Peretz, E.; van der Heijden, J.; Kobayashi, T.; Rogge, S.; Simmons, M. Y.
2016-10-01
We report the development of a high-sensitivity semiconductor charge sensor based on a quantum dot coupled to a single lead designed to minimize the geometric requirements of a charge sensor for scalable quantum-computing architectures. The quantum dot is fabricated in Si:P using atomic precision lithography, and its charge transitions are measured with rf reflectometry. A second quantum dot with two leads placed 42 nm away serves as both a charge for the sensor to measure and as a conventional rf single-electron transistor (rf SET) with which to make a comparison of the charge-detection sensitivity. We demonstrate sensitivity equivalent to an integration time of 550 ns to detect a single charge with a signal-to-noise ratio of 1 compared with an integration time of 55 ns for the rf SET. This level of sensitivity is suitable for fast (<15 μ s ) single-spin readout in quantum-information applications, with a significantly reduced geometric footprint compared to the rf SET.
Complete single-horizon quantum corrected black hole spacetime
Peltola, Ari; Kunstatter, Gabor
2009-03-15
We show that a semiclassical polymerization of the interior of Schwarzschild black holes gives rise to a tantalizing candidate for a nonsingular, single-horizon black hole spacetime. The exterior has nonzero quantum stress energy but closely approximates the classical spacetime for macroscopic black holes. The interior exhibits a bounce at a microscopic scale and then expands indefinitely to a Kantowski-Sachs spacetime. Polymerization therefore removes the singularity and produces a scenario reminiscent of past proposals for universe creation via quantum effects inside a black hole.
Single to quadruple quantum dots with tunable tunnel couplings
Takakura, T.; Noiri, A.; Obata, T.; Yoneda, J.; Yoshida, K.; Otsuka, T.; Tarucha, S.
2014-03-17
We prepare a gate-defined quadruple quantum dot to study the gate-tunability of single to quadruple quantum dots with finite inter-dot tunnel couplings. The measured charging energies of various double dots suggest that the dot size is governed by the gate geometry. For the triple and quadruple dots, we study the gate-tunable inter-dot tunnel couplings. For the triple dot, we find that the effective tunnel coupling between side dots significantly depends on the alignment of the center dot potential. These results imply that the present quadruple dot has a gate performance relevant for implementing spin-based four-qubits with controllable exchange couplings.
Quantum Otto engine using a single ion and a single thermal bath
NASA Astrophysics Data System (ADS)
Biswas, Asoka; Chand, Suman
2016-05-01
Quantum heat engines employ a quantum system as the working fluid, that gives rise to large work efficiency, beyond the limit for classical heat engines. Existing proposals for implementing quantum heat engines require that the system interacts with the hot bath and the cold bath (both modelled as a classical system) in an alternative fashion and therefore assumes ability to switch off the interaction with the bath during a certain stage of the heat-cycle. However, it is not possible to decouple a quantum system from its always-on interaction with the bath without use of complex pulse sequences. It is also hard to identify two different baths at two different temperatures in quantum domain, that sequentially interact with the system. Here, we show how to implement a quantum Otto engine without requiring to decouple the bath in a sequential manner. This is done by considering a single thermal bath, coupled to a single trapped ion. The electronic degree of freedom of the ion is chosen as a two-level working fluid while the vibrational degree of freedom plays the role of the cold bath. Measuring the electronic state mimics the release of heat into the cold bath. Thus, our model is fully quantum and exhibits very large work efficiency, asymptotically close to unity.
Single-Event Correlation Analysis of Quantum Key Distribution with Single-Photon Sources
NASA Astrophysics Data System (ADS)
Shangli Dong,; Xiaobo Wang,; Guofeng Zhang,; Liantuan Xiao,; Suotang Jia,
2010-04-01
Multiple photons exist that allow efficient eavesdropping strategies that threaten the security of quantum key distribution. In this paper, we theoretically discuss the photon correlations between authorized partners in the case of practical single-photon sources including a multiple-photon background. To investigate the feasibility of intercept-resend attacks, the cross correlations and the maximum intercept-resend ratio caused by the background signal are determined using single-event correlation analysis based on single-event detection.
Quantum Zeno switch for single-photon coherent transport
Zhou Lan; Yang, S.; Liu Yuxi; Sun, C. P.; Nori, Franco
2009-12-15
Using a dynamical quantum Zeno effect, we propose a general approach to control the coupling between a two-level system (TLS) and its surroundings, by modulating the energy-level spacing of the TLS with a high-frequency signal. We show that the TLS-surroundings interaction can be turned off when the ratio between the amplitude and the frequency of the modulating field is adjusted to be a zero of a Bessel function. The quantum Zeno effect of the TLS can also be observed by the vanishing of the photon reflection at these zeros. Based on these results, we propose a quantum switch to control the transport of a single photon in a one-dimensional waveguide. Our analytical results agree well with numerical results using Floquet theory.
Secret sharing with a single d -level quantum system
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Herbauts, Isabelle; Żukowski, Marek; Bourennane, Mohamed
2015-09-01
We give an example of a wide class of problems for which quantum-information protocols based on multisystem entanglement can be mapped into much simpler ones involving one system. Secret sharing is a cryptographic primitive which plays a central role in various secure multiparty computation tasks and management of keys in cryptography. In secret sharing protocols, a classical message is divided into shares given to recipient parties in such a way that some number of parties need to collaborate in order to reconstruct the message. Quantum protocols for the task commonly rely on multipartite GHZ entanglement. We present a multiparty secret sharing protocol which requires only sequential communication of a single quantum d -level system (for any prime d ). It has huge advantages in scalability and can be realized with state-of-the-art technology.
Spatially resolved single photon detection with a quantum sensor array
Zagoskin, A. M.; Wilson, R. D.; Everitt, M.; Savel'ev, S.; Gulevich, D. R.; Allen, J.; Dubrovich, V. K.; Il'ichev, E.
2013-01-01
We propose a method of resolving a spatially coherent signal, which contains on average just a single photon, against the background of local noise at the same frequency. The method is based on detecting the signal simultaneously in several points more than a wavelength apart through the entangling interaction of the incoming photon with the quantum metamaterial sensor array. The interaction produces the spatially correlated quantum state of the sensor array, characterised by a collective observable (e.g., total magnetic moment), which is read out using a quantum nondemolition measurement. We show that the effects of local noise (e.g., fluctuations affecting the elements of the array) are suppressed relative to the signal from the spatially coherent field of the incoming photon as , where N is the number of array elements. The realisation of this approach in the microwave range would be especially useful and is within the reach of current experimental techniques. PMID:24322568
Single-shot adaptive measurement for quantum-enhanced metrology
NASA Astrophysics Data System (ADS)
Palittpongarnpim, Pantita; Wittek, Peter; Sanders, Barry C.
2016-09-01
Quantum-enhanced metrology aims to estimate an unknown parameter such that the precision scales better than the shot-noise bound. Single-shot adaptive quantum-enhanced metrology (AQEM) is a promising approach that uses feedback to tweak the quantum process according to previous measurement outcomes. Techniques and formalism for the adaptive case are quite different from the usual non-adaptive quantum metrology approach due to the causal relationship between measurements and outcomes. We construct a formal framework for AQEM by modeling the procedure as a decision-making process, and we derive the imprecision and the Craḿer- Rao lower bound with explicit dependence on the feedback policy. We also explain the reinforcement learning approach for generating quantum control policies, which is adopted due to the optimal policy being non-trivial to devise. Applying a learning algorithm based on differential evolution enables us to attain imprecision for adaptive interferometric phase estimation, which turns out to be SQL when non-entangled particles are used in the scheme.
NASA Astrophysics Data System (ADS)
Lukishova, Svetlana G.; Liapis, Andreas C.; Bissell, Luke J.; Gehring, George M.; Winkler, Justin M.; Boyd, Robert W.
2015-03-01
We present here our results on using liquid crystals in experiments with nonclassical light sources: (1) single-photon sources exhibiting antibunching (separation of all photons in time), which are key components for secure quantum communication systems, and (2) entangled photon source with photons exhibiting quantum interference in a Hong-Ou- Mandel interferometer. In the first part, cholesteric liquid crystal hosts were used to create definite circular polarization of antibunched photons emitted by nanocrystal quantum dots. If the photon has unknown polarization, filtering it through a polarizer to produce the desired polarization for quantum key distribution with bits based on polarization states of photons will reduce by half the efficiency of a quantum cryptography system. In the first part, we also provide our results on observation of a circular polarized microcavity resonance in nanocrystal quantum dot fluorescence in a 1-D chiral photonic bandgap cholesteric liquid crystal microcavity. In the second part of this paper with indistinguishable, time-entangled photons, we demonstrate our experimental results on simulating quantum-mechanical barrier tunnelling phenomena. A Hong-Ou-Mandel dip (quantum interference effect) is shifted when a phase change was introduced on the way of one of entangled photons in pair (one arm of the interferometer) by inserting in this arm an electrically controlled planar-aligned nematic liquid crystal layer between two prisms in the conditions close to a frustrated total internal reflection. By applying different AC-voltages to the planar-aligned nematic layer and changing its refractive index, we can obtain various conditions for incident photon propagation - from total reflection to total transmission. Measuring changes of tunnelling times of photon through this structure with femtosecond resolution permitted us to answer some unresolved questions in quantum-mechanical barrier tunnelling phenomena.
Bidirectional imperfect quantum teleportation with a single Bell state
NASA Astrophysics Data System (ADS)
Kiktenko, E. O.; Popov, A. A.; Fedorov, A. K.
2016-06-01
We present a bidirectional modification of the standard one-qubit teleportation protocol, where both Alice and Bob transfer noisy versions of their qubit states to each other by using single Bell state and auxiliary (trigger) qubits. Three schemes are considered: the first where the actions of parties are governed by two independent quantum random triggers, the second with single random trigger, and the third as a mixture of the first two. We calculate the fidelities of teleportation for all schemes and find a condition on correlation between trigger qubits in the mixed scheme which allows us to overcome the classical fidelity boundary of 2/3. We apply the Choi-Jamiolkowski isomorphism to the quantum channels obtained in order to investigate an interplay between their ability to transfer the information, entanglement-breaking property, and auxiliary classical communication needed to form correlations between trigger qubits. The suggested scheme for bidirectional teleportation can be realized by using current experimental tools.
Single-Photon Generation With InAs Quantum Dots
2007-11-02
improved efficiencies [13] and photon state purities such that the mean wavepacket overlap between consecutive photons is as high as 0.8 [14]. The...shown schematically in figure 1(a). One or more InAs quantum dots, surrounded by a GaAs matrix , are embedded in a micropillar optical cavity. The...diagram of single-photon device, (b) scanning-electron microscope image of actual pillar structures; and (c) optical excitation scheme. density of
Single-cell magnetic imaging using a quantum diamond microscope.
Glenn, David R; Lee, Kyungheon; Park, Hongkun; Weissleder, Ralph; Yacoby, Amir; Lukin, Mikhail D; Lee, Hakho; Walsworth, Ronald L; Connolly, Colin B
2015-08-01
We apply a quantum diamond microscope for detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and a field of view (∼1 mm(2)) two orders of magnitude larger than that of previous NV imaging technologies, enabling practical applications. To illustrate, we quantified cancer biomarkers expressed by rare tumor cells in a large population of healthy cells.
On the general constraints in single qubit quantum process tomography
Bhandari, Ramesh; Peters, Nicholas A.
2016-05-18
In this study, we briefly review single-qubit quantum process tomography for trace-preserving and nontrace-preserving processes, and derive explicit forms of the general constraints for fitting experimental data. These forms provide additional insight into the structure of the process matrix. We illustrate this with several examples, including a discussion of qubit leakage error models and the intuition which can be gained from their process matrices.
Khan, Muhammad Farooq; Nazir, Ghazanfar; lermolenko, Volodymyr M.; Eom, Jonghwa
2016-01-01
Abstract The electrical and photo-electrical properties of exfoliated MoS2 were investigated in the dark and in the presence of deep ultraviolet (DUV) light under various environmental conditions (vacuum, N2 gas, air, and O2 gas). We examined the effects of environmental gases on MoS2 flakes in the dark and after DUV illumination through Raman spectroscopy and found that DUV light induced red and blue shifts of peaks (E1 2 g and A1 g) position in the presence of N2 and O2 gases, respectively. In the dark, the threshold voltage in the transfer characteristics of few-layer (FL) MoS2 field-effect transistors (FETs) remained almost the same in vacuum and N2 gas but shifted toward positive gate voltages in air or O2 gas because of the adsorption of oxygen atoms/molecules on the MoS2 surface. We analyzed light detection parameters such as responsivity, detectivity, external quantum efficiency, linear dynamic range, and relaxation time to characterize the photoresponse behavior of FL-MoS2 FETs under various environmental conditions. All parameters were improved in their performances in N2 gas, but deteriorated in O2 gas environment. The photocurrent decayed with a large time constant in N2 gas, but decayed with a small time constant in O2 gas. We also investigated the characteristics of the devices after passivating by Al2O3 film on the MoS2 surface. The devices became almost hysteresis-free in the transfer characteristics and stable with improved mobility. Given its outstanding performance under DUV light, the passivated device may be potentially used for applications in MoS2-based integrated optoelectronic circuits, light sensing devices, and solar cells. PMID:27877867
Blinking suppression of single quantum dots in agarose gel
Ko, H. C.; Yuan, C. T.; Tang, Jau; Lin, S. H.
2010-01-04
Fluorescence blinking is commonly observed in single molecule/particle spectroscopy, but it is an undesirable feature in many applications. We demonstrated that single CdSe/ZnS quantum dots in agarose gel exhibited suppressed blinking behavior. In addition, the long-time exponential bending tail of the power-law blinking statistics was found to be influenced by agarose gel concentration. We suggest that electron transfer from the light state to the dark state might be blocked due to electrostatic surrounding of gel with inherent negatively charged fibers.
Single-photon transistor in circuit quantum electrodynamics.
Neumeier, Lukas; Leib, Martin; Hartmann, Michael J
2013-08-09
We introduce a circuit quantum electrodynamical setup for a "single-photon" transistor. In our approach photons propagate in two open transmission lines that are coupled via two interacting transmon qubits. The interaction is such that no photons are exchanged between the two transmission lines but a single photon in one line can completely block or enable the propagation of photons in the other line. High on-off ratios can be achieved for feasible experimental parameters. Our approach is inherently scalable as all photon pulses can have the same pulse shape and carrier frequency such that output signals of one transistor can be input signals for a consecutive transistor.
Quantum heat fluctuations of single-particle sources.
Battista, F; Moskalets, M; Albert, M; Samuelsson, P
2013-03-22
Optimal single electron sources emit regular streams of particles, displaying no low-frequency charge current noise. Because of the wave packet nature of the emitted particles, the energy is, however, fluctuating, giving rise to heat current noise. We investigate theoretically this quantum source of heat noise for an emitter coupled to an electronic probe in the hot-electron regime. The distribution of temperature and potential fluctuations induced in the probe is shown to provide direct information on the single-particle wave function properties and display strong nonclassical features.
Lecture demonstrations of interference and quantum erasing with single photons
NASA Astrophysics Data System (ADS)
Dimitrova, T. L.; Weis, A.
2009-07-01
Single-photon interference is a beautiful manifestation of the wave-particle duality of light and the double-slit Gedankenexperiment is a standard lecture example for introducing quantum mechanical reality. Interference arises only if each photon can follow several (classical) paths from the source to the detector, and if one does not have the possibility to determine which specific path the photon has taken. Attaching a specific label to the photon traveling along a specific path destroys the interference. However, in some cases those labels can be erased from the photon between leaving the apparatus and being detected, by which interference can be restored, a phenomenon called quantum erasing. We present lecture demonstration experiments that illustrate the wave-particle duality of light and the phenomenon of quantum erasing. Both experiments are first shown with strong light and, in a second step, on a photon-by-photon basis. The smooth transition from the quantum to the classical case can be shown in real time by varying the incident light intensity.
Quantum coherence in Mn-based single molecule magnets
NASA Astrophysics Data System (ADS)
Abeywardana, C.; Cho, F. H.; Mowson, A.; Christou, G.; Takahashi, S.
2015-03-01
As spin systems in solids, single-molecule magnets (SMMs) form a unique class of materials that have a high-spin, and their spin state and interaction can be easily tuned by changing peripheral organic ligands and solvate molecules. In addition, it has been shown that an individual or a small ensemble of SMMs can be transferred to surface with retention of their magnetic behavior. SMM is therefore a promising system for fundamental quantum science and for applications to dense and efficient quantum memory, computing, and molecular spintronics devices. In spite of diverse interests on quantum properties in SMMs, decoherence properties that ultimately limit such behaviors have not been understood yet. Until now, coherent manipulation of spin states in SMMs has been experimentally demonstrated only in a few SMMs. In this presentation, we investigate quantum coherence in Mn-based SMMs using a high-frequency pulsed EPR technique, which has a significant advantage to quench the spin decoherence due to electron spins.
Electrically driven single photon emission from a CdSe/ZnSSe single quantum dot at 200 K
Quitsch, Wolf; Kümmell, Tilmar; Bacher, Gerd; Gust, Arne; Kruse, Carsten; Hommel, Detlef
2014-09-01
High temperature operation of an electrically driven single photon emitter based on a single epitaxial quantum dot is reported. CdSe/ZnSSe/MgS quantum dots are embedded into a p-i-n diode architecture providing almost background free excitonic and biexcitonic electroluminescence from individual quantum dots through apertures in the top contacts. Clear antibunching with g{sup 2}(τ = 0) = 0.28 ± 0.20 can be tracked up to T = 200 K, representing the highest temperature for electrically triggered single photon emission from a single quantum dot device.
Experimental test of single-system steering and application to quantum communication
NASA Astrophysics Data System (ADS)
Liu, Zhao-Di; Sun, Yong-Nan; Cheng, Ze-Di; Xu, Xiao-Ye; Zhou, Zong-Quan; Chen, Geng; Li, Chuan-Feng; Guo, Guang-Can
2017-02-01
Einstein-Podolsky-Rosen (EPR) steering describes the ability to steer remotely quantum states of an entangled pair by measuring locally one of its particles. Here we report on an experimental demonstration of single-system steering. The application to quantum communication is also investigated. Single-system steering refers to steering of a single d -dimensional quantum system that can be used in a unifying picture to certify the reliability of tasks employed in both quantum communication and quantum computation. In our experiment, high-dimensional quantum states are implemented by encoding polarization and orbital angular momentum of photons with dimensionality of up to 12.
Thermal effects on photon-induced quantum transport in a single quantum dot.
Assunção, M O; de Oliveira, E J R; Villas-Bôas, J M; Souza, F M
2013-04-03
We theoretically investigate laser induced quantum transport in a single quantum dot attached to electrical contacts. Our approach, based on a nonequilibrium Green function technique, allows us to include thermal effects on the photon-induced quantum transport and excitonic dynamics, enabling the study of non-Markovian effects. By solving a set of coupled integrodifferential equations, involving correlation and propagator functions, we obtain the photocurrent and the dot occupation as a function of time. Two distinct sources of decoherence, namely, incoherent tunneling and thermal fluctuations, are observed in the Rabi oscillations. As temperature increases, a thermally activated Pauli blockade results in a suppression of these oscillations. Additionally, the interplay between photon and thermally induced electron populations results in a switch of the current sign as time evolves and its stationary value can be maximized by tuning the laser intensity.
Quantum efficiency of a single microwave photon detector based on a semiconductor double quantum dot
NASA Astrophysics Data System (ADS)
Wong, Clement H.; Vavilov, Maxim G.
2017-01-01
Motivated by recent interest in implementing circuit quantum electrodynamics with semiconducting quantum dots, we consider a double quantum dot (DQD) capacitively coupled to a superconducting resonator that is driven by the microwave field of a superconducting transmission line. We analyze the DQD current response using input-output theory and show that the resonator-coupled DQD is a sensitive microwave single photon detector. Using currently available experimental parameters of DQD-resonator coupling and dissipation, including the effects of 1 /f charge noise and phonon noise, we determine the parameter regime for which incident photons are completely absorbed and near-unit ≳98 % efficiency can be achieved. We show that this regime can be reached by using very high quality resonators with quality factor Q ≃105 .
Wei, Hai-Rui; Deng, Fu-Guo
2014-01-13
We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.
Probing silicon quantum dots by single-dot techniques
NASA Astrophysics Data System (ADS)
Sychugov, Ilya; Valenta, Jan; Linnros, Jan
2017-02-01
Silicon nanocrystals represent an important class of non-toxic, heavy-metal free quantum dots, where the high natural abundance of silicon is an additional advantage. Successful development in mass-fabrication, starting from porous silicon to recent advances in chemical and plasma synthesis, opens up new possibilities for applications in optoelectronics, bio-imaging, photovoltaics, and sensitizing areas. In this review basic physical properties of silicon nanocrystals revealed by photoluminescence spectroscopy, lifetime, intensity trace and electrical measurements on individual nanoparticles are summarized. The fabrication methods developed for accessing single Si nanocrystals are also reviewed. It is concluded that silicon nanocrystals share many of the properties of direct bandgap nanocrystals exhibiting sharp emission lines at low temperatures, on/off blinking, spectral diffusion etc. An analysis of reported results is provided in comparison with theory and with direct bandgap material quantum dots. In addition, the role of passivation and inherent interface/matrix defects is discussed.
Single-ion microwave near-field quantum sensor
NASA Astrophysics Data System (ADS)
Wahnschaffe, M.; Hahn, H.; Zarantonello, G.; Dubielzig, T.; Grondkowski, S.; Bautista-Salvador, A.; Kohnen, M.; Ospelkaus, C.
2017-01-01
We develop an intuitive model of 2D microwave near-fields in the unusual regime of centimeter waves localized to tens of microns. Close to an intensity minimum, a simple effective description emerges with five parameters that characterize the strength and spatial orientation of the zero and first order terms of the near-field, as well as the field polarization. Such a field configuration is realized in a microfabricated planar structure with an integrated microwave conductor operating near 1 GHz. We use a single 9 Be+ ion as a high-resolution quantum sensor to measure the field distribution through energy shifts in its hyperfine structure. We find agreement with simulations at the sub-micron and few-degree level. Our findings give a clear and general picture of the basic properties of oscillatory 2D near-fields with applications in quantum information processing, neutral atom trapping and manipulation, chip-scale atomic clocks, and integrated microwave circuits.
A single-atom quantum memory in silicon
Freer, Solomon; Simmons, Stephanie; Laucht, Arne; ...
2017-03-20
Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a ‘quantum memory’ while idle. The 31P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the 31P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically-enriched 28Si. The fidelity of the memory process ismore » characterised via both state and process tomography. We report an overall process fidelity Fp ! 81%, a memory fidelity Fm ! 92%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following highpower radiofrequency pulses.« less
A single-atom quantum memory in silicon
NASA Astrophysics Data System (ADS)
Freer, Solomon; Simmons, Stephanie; Laucht, Arne; Muhonen, Juha T.; Dehollain, Juan P.; Kalra, Rachpon; Mohiyaddin, Fahd A.; Hudson, Fay E.; Itoh, Kohei M.; McCallum, Jeffrey C.; Jamieson, David N.; Dzurak, Andrew S.; Morello, Andrea
2017-03-01
Long coherence times and fast gate operations are desirable but often conflicting requirements for physical qubits. This conflict can be resolved by resorting to fast qubits for operations, and by storing their state in a ‘quantum memory’ while idle. The 31P donor in silicon comes naturally equipped with a fast qubit (the electron spin) and a long-lived qubit (the 31P nuclear spin), coexisting in a bound state at cryogenic temperatures. Here, we demonstrate storage and retrieval of quantum information from a single donor electron spin to its host phosphorus nucleus in isotopically enriched 28Si. The fidelity of the memory process is characterised via both state and process tomography. We report an overall process fidelity {F}p≈ 81%, and memory storage times up to 80 ms. These values are limited by a transient shift of the electron spin resonance frequency following high-power radiofrequency pulses.
High power and single mode quantum cascade lasers.
Bismuto, Alfredo; Bidaux, Yves; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Rochat, Michel; Muller, Antoine; Bonzon, Christopher; Faist, Jerome
2016-05-16
We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 μm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 μm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.
Quantum Probability Cancellation Due to a Single-Photon State
NASA Technical Reports Server (NTRS)
Ou, Z. Y.
1996-01-01
When an N-photon state enters a lossless symmetric beamsplitter from one input port, the photon distribution for the two output ports has the form of Bernouli Binormial, with highest probability at equal partition (N/2 at one outport and N/2 at the other). However, injection of a single photon state at the other input port can dramatically change the photon distribution at the outputs, resulting in zero probability at equal partition. Such a strong deviation from classical particle theory stems from quantum probability amplitude cancellation. The effect persists even if the N-photon state is replaced by an arbitrary state of light. A special case is the coherent state which corresponds to homodyne detection of a single photon state and can lead to the measurement of the wave function of a single photon state.
Single-quantum dot imaging with a photon counting camera
Michalet, X.; Colyer, R. A.; Antelman, J.; Siegmund, O.H.W.; Tremsin, A.; Vallerga, J.V.; Weiss, S.
2010-01-01
The expanding spectrum of applications of single-molecule fluorescence imaging ranges from fundamental in vitro studies of biomolecular activity to tracking of receptors in live cells. The success of these assays has relied on progresses in organic and non-organic fluorescent probe developments as well as improvements in the sensitivity of light detectors. We describe a new type of detector developed with the specific goal of ultra-sensitive single-molecule imaging. It is a wide-field, photon-counting detector providing high temporal and high spatial resolution information for each incoming photon. It can be used as a standard low-light level camera, but also allows access to a lot more information, such as fluorescence lifetime and spatio-temporal correlations. We illustrate the single-molecule imaging performance of our current prototype using quantum dots and discuss on-going and future developments of this detector. PMID:19689323
Quantum-Sequencing: Fast electronic single DNA molecule sequencing
NASA Astrophysics Data System (ADS)
Casamada Ribot, Josep; Chatterjee, Anushree; Nagpal, Prashant
2014-03-01
A major goal of third-generation sequencing technologies is to develop a fast, reliable, enzyme-free, high-throughput and cost-effective, single-molecule sequencing method. Here, we present the first demonstration of unique ``electronic fingerprint'' of all nucleotides (A, G, T, C), with single-molecule DNA sequencing, using Quantum-tunneling Sequencing (Q-Seq) at room temperature. We show that the electronic state of the nucleobases shift depending on the pH, with most distinct states identified at acidic pH. We also demonstrate identification of single nucleotide modifications (methylation here). Using these unique electronic fingerprints (or tunneling data), we report a partial sequence of beta lactamase (bla) gene, which encodes resistance to beta-lactam antibiotics, with over 95% success rate. These results highlight the potential of Q-Seq as a robust technique for next-generation sequencing.
Tunable single-mode slot waveguide quantum cascade lasers
Meng, Bo; Tao, Jin; Quan Zeng, Yong; Wu, Sheng; Jie Wang, Qi
2014-05-19
We report experimental demonstration of tunable, monolithic, single-mode quantum cascade lasers (QCLs) at ∼10 μm with a two-section etched slot structure. A single-mode tuning range of 77 cm{sup −1} (785 nm), corresponding to ∼7.8% of the relative tuning range, was realized with a ∼20 dB side mode suppression ratio within the whole tuning range. Compared with integrated distributed feedback QCLs, our devices have the advantages of easy fabrication and a broader tuning range. Further theoretical analyses and numerical simulations show that it is possible to achieve a broad continuous tuning range by optimizing the slot structures. The proposed slot-waveguide design could provide an alternative but simple approach to the existing tuning schemes for realizing broadly continuous tunable single-mode QCLs.
Kolchin, Pavel; Oulton, Rupert F.; Zhang Xiang
2011-03-18
We propose a waveguide-QED system where two single photons of distinct frequency or polarization interact strongly. The system consists of a single ladder-type three level atom coupled to a waveguide. When both optical transitions are coupled strongly to the waveguide's mode, we show that a control photon tuned to the upper transition induces a {pi} phase shift and tunneling of a probe photon tuned to the otherwise reflective lower transition. Furthermore, the system exhibits single photon scattering by a classical control beam. Waveguide-QED schemes could be an alternative to high quality cavities or dense atomic ensembles in quantum information processing.
Single-atom edgelike states via quantum interference
NASA Astrophysics Data System (ADS)
Pelegrí, G.; Polo, J.; Turpin, A.; Lewenstein, M.; Mompart, J.; Ahufinger, V.
2017-01-01
We demonstrate how quantum interference may lead to the appearance of robust edgelike states of a single ultracold atom in a two-dimensional optical ribbon. We show that these states can be engineered within the manifold of either local ground states of the sites forming the ribbon or states carrying one unit of angular momentum. In the former case, we show that the implementation of edgelike states can be extended to other geometries, such as tilted square lattices. In the latter case, we suggest using the winding number associated to the angular momentum as a synthetic dimension.
Efficient teleportation between remote single-atom quantum memories.
Nölleke, Christian; Neuzner, Andreas; Reiserer, Andreas; Hahn, Carolin; Rempe, Gerhard; Ritter, Stephan
2013-04-05
We demonstrate teleportation of quantum bits between two single atoms in distant laboratories. Using a time-resolved photonic Bell-state measurement, we achieve a teleportation fidelity of (88.0 ± 1.5)%, largely determined by our entanglement fidelity. The low photon collection efficiency in free space is overcome by trapping each atom in an optical cavity. The resulting success probability of 0.1% is almost 5 orders of magnitude larger than in previous experiments with remote material qubits. It is mainly limited by photon propagation and detection losses and can be enhanced with a cavity-based deterministic Bell-state measurement.
Multi-group dynamic quantum secret sharing with single photons
NASA Astrophysics Data System (ADS)
Liu, Hongwei; Ma, Haiqiang; Wei, Kejin; Yang, Xiuqing; Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu
2016-07-01
In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application.
Optimised quantum hacking of superconducting nanowire single-photon detectors
NASA Astrophysics Data System (ADS)
Tanner, Michael G.; Makarov, Vadim; Hadfield, Robert H.
2014-03-01
We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.
Optimised quantum hacking of superconducting nanowire single-photon detectors.
Tanner, Michael G; Makarov, Vadim; Hadfield, Robert H
2014-03-24
We explore bright-light control of superconducting nanowire single-photon detectors (SNSPDs) in the shunted configuration (a practical measure to avoid latching). In an experiment, we simulate an illumination pattern the SNSPD would receive in a typical quantum key distribution system under hacking attack. We show that it effectively blinds and controls the SNSPD. The transient blinding illumination lasts for a fraction of a microsecond and produces several deterministic fake clicks during this time. This attack does not lead to elevated timing jitter in the spoofed output pulse, and hence does not introduce significant errors. Five different SNSPD chip designs were tested. We consider possible countermeasures to this attack.
Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission
Sapienza, Luca; Davanço, Marcelo; Badolato, Antonio; Srinivasan, Kartik
2015-01-01
Self-assembled, epitaxially grown InAs/GaAs quantum dots (QDs) are promising semiconductor quantum emitters that can be integrated on a chip for a variety of photonic quantum information science applications. However, self-assembled growth results in an essentially random in-plane spatial distribution of QDs, presenting a challenge in creating devices that exploit the strong interaction of single QDs with highly confined optical modes. Here, we present a photoluminescence imaging approach for locating single QDs with respect to alignment features with an average position uncertainty <30 nm (<10 nm when using a solid-immersion lens), which represents an enabling technology for the creation of optimized single QD devices. To that end, we create QD single-photon sources, based on a circular Bragg grating geometry, that simultaneously exhibit high collection efficiency (48%±5% into a 0.4 numerical aperture lens, close to the theoretically predicted value of 50%), low multiphoton probability (g(2)(0) <1%), and a significant Purcell enhancement factor (≈3). PMID:26211442
Photonic Quantum Logic with Narrowband Light from Single Atoms
NASA Astrophysics Data System (ADS)
Rubenok, Allison; Holleczek, Annemarie; Barter, Oliver; Dilley, Jerome; Nisbet-Jones, Peter B. R.; Langfahl-Klabes, Gunnar; Kuhn, Axel; Sparrow, Chris; Marshall, Graham D.; O'Brien, Jeremy L.; Poulios, Konstantinos; Matthews, Jonathan C. F.
Atom-cavity sources of narrowband photons are a promising candidate for the future development of quantum technologies. Likewise, integrated photonic circuits have established themselves as a fore-running contender in quantum computing, security, and communication. Here we report on recent achievements to interface these two technologies: Atom-cavity sources coupled to integrated photonic circuits. Using narrow linewidth photons emitted from a single 87 Rb atom strongly coupled to a high-finesse cavity we demonstrate the successful operation of an integrated control-not gate. Furthermore, we are able to verify the generation of post-selected entanglement upon successful operation of the gate. We are able to see non-classical correlations in detection events that are up to three orders of magnitude farther apart than the time needed for light to travel across the chip. Our hybrid approach will facilitate the future development of technologies that benefit from the advantages of both integrated quantum circuits and atom-cavity photon sources. Now at: National Physics Laboratory.
Quantum control and engineering of single spins in diamond
NASA Astrophysics Data System (ADS)
Toyli, David M.
The past two decades have seen intensive research efforts aimed at creating quantum technologies that leverage phenomena such as coherence and entanglement to achieve device functionalities surpassing those attainable with classical physics. While the range of applications for quantum devices is typically limited by their cryogenic operating temperatures, in recent years point defects in semiconductors have emerged as potential candidates for room temperature quantum technologies. In particular, the nitrogen vacancy (NV) center in diamond has gained prominence for the ability to measure and control its spin under ambient conditions and for its potential applications in magnetic sensing. Here we describe experiments that probe the thermal limits to the measurement and control of single NV centers to identify the origin of the system's unique temperature dependence and that define novel thermal sensing applications for single spins. We demonstrate the optical measurement and coherent control of the spin at temperatures exceeding 600 K and show that its addressability is eventually limited by thermal quenching of the optical spin readout. These measurements provide important information for the electronic structure responsible for the optical spin initialization and readout processes and, moreover, suggest that the coherence of the NV center's spin states could be harnessed for thermometry applications. To that end, we develop novel quantum control techniques that selectively probe thermally induced shifts in the spin resonance frequencies while minimizing the defect's interactions with nearby nuclear spins. We use these techniques to extend the NV center's spin coherence for thermometry by 45-fold to achieve thermal sensitivities approaching 10 mK Hz-1/2 . We show the versatility of these techniques by performing measurements in a range of magnetic environments and at temperatures as high as 500 K. Together with diamond's ideal thermal, mechanical, and chemical
Single Cell Magnetic Measurements with a Superconducting Quantum Interference Device
NASA Astrophysics Data System (ADS)
Palmstrom, Johanna C.; Arps, Jennifer; Dwyer, Bo; Kalisky, Beena; Kirtley, John R.; Moler, Kathryn A.; Qian, Lisa C.; Rosenberg, Aaron J.; Rutt, Brian; Tee, Sui Seng; Theis, Eric; Urbach, Elana; Wang, Yihua
2014-03-01
Magnetic nanoparticles play an important role in numerous biomedical applications such as magnetic resonance imaging and targeted drug delivery. There is a need for tools to characterize individual magnetic nanoparticles and the magnetic properties of individual cells. We use a scanning superconducting quantum interference device (SQUID) to observe the magnetic fields from single mammalian cells loaded with superparamagnetic iron oxide nanoparticles. We show that the SQUID is a useful tool for imaging biological magnetism and is capable of resolving cell to cell variations in magnetic dipole moments. We hope to correlate these magnetic images with real space imaging techniques such as optical and scanning electron microscopy. The visualization of single cell magnetism can be used to optimize biological magnetic imaging techniques, such as MRI, by quantifying the strength of magnetic dipole moments of in vitro magnetic labeling. This work is supported by a National Science Foundation Graduate Research Fellowship and a Gabilan Stanford Graduate Fellowship.
Construction of a single atom trap for quantum information protocols
NASA Astrophysics Data System (ADS)
Shea, Margaret E.; Baker, Paul M.; Gauthier, Daniel J.; Duke Physics Department Team
2016-05-01
The field of quantum information science addresses outstanding problems such as achieving fundamentally secure communication and solving computationally hard problems. Great progress has been made in the field, particularly using photons coupled to ions and super conducting qubits. Neutral atoms are also interesting for these applications and though the technology for control of neutrals lags behind that of trapped ions, they offer some key advantages: primarily coupling to optical frequencies closer to the telecom band than trapped ions or superconducting qubits. Here we report progress on constructing a single atom trap for 87 Rb. This system is a promising platform for studying the technical problems facing neutral atom quantum computing. For example, most protocols destroy the trap when reading out the neutral atom's state; we will investigate an alternative non-destructive state detection scheme. We detail the experimental systems involved and the challenges addressed in trapping a single atom. All of our hardware components are off the shelf and relatively inexpensive. Unlike many other systems, we place a high numerical aperture lens inside our vacuum system to increase photon collection efficiency. We gratefully acknowledge the financial support of the ARO through Grant # W911NF1520047.
Single Nucleobase Identification Using Biophysical Signatures from Nanoelectronic Quantum Tunneling.
Korshoj, Lee E; Afsari, Sepideh; Khan, Sajida; Chatterjee, Anushree; Nagpal, Prashant
2017-03-01
Nanoelectronic DNA sequencing can provide an important alternative to sequencing-by-synthesis by reducing sample preparation time, cost, and complexity as a high-throughput next-generation technique with accurate single-molecule identification. However, sample noise and signature overlap continue to prevent high-resolution and accurate sequencing results. Probing the molecular orbitals of chemically distinct DNA nucleobases offers a path for facile sequence identification, but molecular entropy (from nucleotide conformations) makes such identification difficult when relying only on the energies of lowest-unoccupied and highest-occupied molecular orbitals (LUMO and HOMO). Here, nine biophysical parameters are developed to better characterize molecular orbitals of individual nucleobases, intended for single-molecule DNA sequencing using quantum tunneling of charges. For this analysis, theoretical models for quantum tunneling are combined with transition voltage spectroscopy to obtain measurable parameters unique to the molecule within an electronic junction. Scanning tunneling spectroscopy is then used to measure these nine biophysical parameters for DNA nucleotides, and a modified machine learning algorithm identified nucleobases. The new parameters significantly improve base calling over merely using LUMO and HOMO frontier orbital energies. Furthermore, high accuracies for identifying DNA nucleobases were observed at different pH conditions. These results have significant implications for developing a robust and accurate high-throughput nanoelectronic DNA sequencing technique.
Entanglement-secured single-qubit quantum secret sharing
Scherpelz, P.; Resch, R.; Berryrieser, D.; Lynn, T. W.
2011-09-15
In single-qubit quantum secret sharing, a secret is shared between N parties via manipulation and measurement of one qubit at a time. Each qubit is sent to all N parties in sequence; the secret is encoded in the first participant's preparation of the qubit state and the subsequent participants' choices of state rotation or measurement basis. We present a protocol for single-qubit quantum secret sharing using polarization entanglement of photon pairs produced in type-I spontaneous parametric downconversion. We investigate the protocol's security against eavesdropping attack under common experimental conditions: a lossy channel for photon transmission, and imperfect preparation of the initial qubit state. A protocol which exploits entanglement between photons, rather than simply polarization correlation, is more robustly secure. We implement the entanglement-based secret-sharing protocol with 87% secret-sharing fidelity, limited by the purity of the entangled state produced by our present apparatus. We demonstrate a photon-number splitting eavesdropping attack, which achieves no success against the entanglement-based protocol while showing the predicted rate of success against a correlation-based protocol.
Ambient nanoscale sensing with single spins using quantum decoherence
NASA Astrophysics Data System (ADS)
McGuinness, L. P.; Hall, L. T.; Stacey, A.; Simpson, D. A.; Hill, C. D.; Cole, J. H.; Ganesan, K.; Gibson, B. C.; Prawer, S.; Mulvaney, P.; Jelezko, F.; Wrachtrup, J.; Scholten, R. E.; Hollenberg, L. C. L.
2013-07-01
Magnetic resonance detection is one of the most important tools used in life-sciences today. However, as the technique detects the magnetization of large ensembles of spins it is fundamentally limited in spatial resolution to mesoscopic scales. Here we detect the natural fluctuations of nanoscale spin ensembles at ambient temperatures by measuring the decoherence rate of a single quantum spin in response to introduced extrinsic target spins. In our experiments 45 nm nanodiamonds with single nitrogen-vacancy (NV) spins were immersed in solution containing spin 5/2 Mn2+ ions and the NV decoherence rate measured though optically detected magnetic resonance. The presence of both freely moving and accreted Mn spins in solution were detected via significant changes in measured NV decoherence rates. Analysis of the data using a quantum cluster expansion treatment of the NV-target system found the measurements to be consistent with the detection of 2500 motionally diffusing Mn spins over an effective volume of (16 nm)3 in 4.2 s, representing a reduction in target ensemble size and acquisition time of several orders of magnitude over conventional, magnetic induction approaches to electron spin resonance detection. These measurements provide the basis for the detection of nanovolume spins in solution, such as in the internal compartments of living cells, and are directly applicable to scanning probe architectures.
Single-loop multiple-pulse nonadiabatic holonomic quantum gates
NASA Astrophysics Data System (ADS)
Herterich, Emmi; Sjöqvist, Erik
2016-11-01
Nonadiabatic holonomic quantum computation provides the means to perform fast and robust quantum gates by utilizing the resilience of non-Abelian geometric phases to fluctuations of the path in state space. While the original scheme [E. Sjöqvist et al., New J. Phys. 14, 103035 (2012), 10.1088/1367-2630/14/10/103035] needs two loops in the Grassmann manifold (i.e., the space of computational subspaces of the full state space) to generate an arbitrary holonomic one-qubit gate, we propose single-loop one-qubit gates that constitute an efficient universal set of holonomic gates when combined with an entangling holonomic two-qubit gate. Our one-qubit gate is realized by dividing the loop into path segments, each of which is generated by a Λ -type Hamiltonian. We demonstrate that two path segments are sufficient to realize arbitrary single-loop holonomic one-qubit gates. We describe how our scheme can be implemented experimentally in a generic atomic system exhibiting a three-level Λ -coupling structure by utilizing carefully chosen laser pulses.
Single photon delayed feedback: a way to stabilize intrinsic quantum cavity electrodynamics.
Carmele, Alexander; Kabuss, Julia; Schulze, Franz; Reitzenstein, Stephan; Knorr, Andreas
2013-01-04
We propose a scheme to control cavity quantum electrodynamics in the single photon limit by delayed feedback. In our approach a single emitter-cavity system, operating in the weak coupling limit, can be driven into the strong coupling-type regime by an external mirror: The external loop produces Rabi oscillations directly connected to the electron-photon coupling strength. As an expansion of typical cavity quantum electrodynamics, we treat the quantum correlation of external and internal light modes dynamically and demonstrate a possible way to implement a fully quantum mechanical time-delayed feedback. Our theoretical approach proposes a way to experimentally feedback control quantum correlations in the single photon limit.
Storing single photons emitted by a quantum memory on a highly excited Rydberg state
Distante, Emanuele; Farrera, Pau; Padrón-Brito, Auxiliadora; Paredes-Barato, David; Heinze, Georg; de Riedmatten, Hugues
2017-01-01
Strong interaction between two single photons is a long standing and important goal in quantum photonics. This would enable a new regime of nonlinear optics and unlock several applications in quantum information science, including photonic quantum gates and deterministic Bell-state measurements. In the context of quantum networks, it would be important to achieve interactions between single photons from independent photon pairs storable in quantum memories. So far, most experiments showing nonlinearities at the single-photon level have used weak classical input light. Here we demonstrate the storage and retrieval of a paired single photon emitted by an ensemble quantum memory in a strongly nonlinear medium based on highly excited Rydberg atoms. We show that nonclassical correlations between the two photons persist after retrieval from the Rydberg ensemble. Our result is an important step towards deterministic photon–photon interactions, and may enable deterministic Bell-state measurements with multimode quantum memories. PMID:28102203
Storing single photons emitted by a quantum memory on a highly excited Rydberg state
NASA Astrophysics Data System (ADS)
Distante, Emanuele; Farrera, Pau; Padrón-Brito, Auxiliadora; Paredes-Barato, David; Heinze, Georg; de Riedmatten, Hugues
2017-01-01
Strong interaction between two single photons is a long standing and important goal in quantum photonics. This would enable a new regime of nonlinear optics and unlock several applications in quantum information science, including photonic quantum gates and deterministic Bell-state measurements. In the context of quantum networks, it would be important to achieve interactions between single photons from independent photon pairs storable in quantum memories. So far, most experiments showing nonlinearities at the single-photon level have used weak classical input light. Here we demonstrate the storage and retrieval of a paired single photon emitted by an ensemble quantum memory in a strongly nonlinear medium based on highly excited Rydberg atoms. We show that nonclassical correlations between the two photons persist after retrieval from the Rydberg ensemble. Our result is an important step towards deterministic photon-photon interactions, and may enable deterministic Bell-state measurements with multimode quantum memories.
Single atom detection in ultracold quantum gases: a review of current progress.
Ott, Herwig
2016-05-01
The recent advances in single atom detection and manipulation in experiments with ultracold quantum gases are reviewed. The discussion starts with the basic principles of trapping, cooling and detecting single ions and atoms. The realization of single atom detection in ultracold quantum gases is presented in detail and the employed methods, which are based on light scattering, electron scattering, field ionization and direct neutral particle detection are discussed. The microscopic coherent manipulation of single atoms in a quantum gas is also covered. Various examples are given in order to highlight the power of these approaches to study many-body quantum systems.
Single- and two-mode quantumness at a beam splitter
NASA Astrophysics Data System (ADS)
Brunelli, Matteo; Benedetti, Claudia; Olivares, Stefano; Ferraro, Alessandro; Paris, Matteo G. A.
2015-06-01
In the context of bipartite bosonic systems, two notions of classicality of correlations can be defined: P classicality, based on the properties of the Glauber-Sudarshan P function; and C classicality, based on the entropic quantum discord. It has been shown that these two notions are maximally inequivalent in a static (metric) sense, as they coincide only on a set of states of zero measure. We extend and reinforce quantitatively this inequivalence by addressing the dynamical relation between these types of nonclassicality in a paradigmatic quantum-optical setting: the linear mixing at a beam splitter of a single-mode Gaussian state with a thermal reference state. Specifically, we show that almost all P -classical input states generate outputs that are not C classical. Indeed, for the case of zero thermal reference photons, the more P -classical resources at the input the less C classicality at the output. In addition, we show that the P classicality at the input—as quantified by the nonclassical depth—does instead determine quantitatively the potential of generating output entanglement. This endows the nonclassical depth with a new operational interpretation: it gives the maximum number of thermal reference photons that can be mixed at a beam splitter without destroying the output entanglement.
NASA Astrophysics Data System (ADS)
Cultrera, Alessandro; Amato, Giampiero; Boarino, Luca; Lamberti, Carlo
2014-08-01
We developed an integrated system for photo-electrical characterization of materials for sensing applications in strictly controlled environment conditions. The peculiar aspect of this setup is the capability of a fine-tuned gas dosage and a fast dynamic chamber pressure control, coupled with current and voltage sensing within a modified cryostat. To illustrate the capabilities of our system we have characterised both p+-type mesoporous silicon (meso-PS) membranes and nano-crystalline mesoporous titanium dioxide (nc-TiO2) films. In particular, as a main topic is presented a well-resolved characterization of mesoporous silicon electrical conductivity changes induced by presence of ethanol. At low pore filling level adsorbate-shunted conduction is avoided, while dielectric screening effects on frozen doping centres are observable. Beside we presented observation of mesoporous titanium dioxide photo-conductivity as a function of different gas pressure reporting opposite effects of relatively low- and high-pressure regimes. High reproducibility provided by the system is discussed as a final remark.
Harsij, Zeynab Mirza, Behrouz
2014-12-15
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.
A single flux quantum standard logic cell library
NASA Astrophysics Data System (ADS)
Yorozu, S.; Kameda, Y.; Terai, H.; Fujimaki, A.; Yamada, T.; Tahara, S.
2002-10-01
To expand designable circuit scale, we have developed a new cell-based circuit design for single flux quantum (SFQ) circuit. We call it CONNECT cell library. The CONNECT cell library has over 100 cells at present. Each CONNECT cell consists of a Verilog digital behavior model, circuit information, and a physical layout. All circuit parameter values have been optimized for obtaining the widest margins and minimizing interactions between cells. At the layout level, we have defined a minimum standard cell size and made cell height and width a multiple of the size. Using this cell library, we can easily expand circuit scale without the time-consuming dynamic simulations of whole circuits. For estimation of the reliability of the library, we designed and fabricated test circuits using CONNECT cells. We demonstrated experimentally correct operations, which means the CONNECT cell library is sufficiently reliable.
Probing light emission from quantum wells within a single nanorod
NASA Astrophysics Data System (ADS)
Bruckbauer, Jochen; Edwards, Paul R.; Bai, Jie; Wang, Tao; Martin, Robert W.
2013-09-01
Significant improvements in the efficiency of optoelectronic devices can result from the exploitation of nanostructures. These require optimal nanocharacterization techniques to fully understand and improve their performance. In this study we employ room temperature cathodoluminescence hyperspectral imaging to probe single GaN-based nanorods containing multiple quantum wells (MQWs) with a simultaneous combination of very high spatial and spectral resolution. We have investigated the strain state and carrier transport in the vicinity of the MQWs, demonstrating the high efficiencies resulting from reduced electric fields. Power-dependent photoluminescence spectroscopy of arrays of these nanorods confirms that their fabrication results in partial strain relaxation in the MQWs. Our technique allows us to interrogate the structures on a sufficiently small length scale to be able to extract the important information.
Probing light emission from quantum wells within a single nanorod.
Bruckbauer, Jochen; Edwards, Paul R; Bai, Jie; Wang, Tao; Martin, Robert W
2013-09-13
Significant improvements in the efficiency of optoelectronic devices can result from the exploitation of nanostructures. These require optimal nanocharacterization techniques to fully understand and improve their performance. In this study we employ room temperature cathodoluminescence hyperspectral imaging to probe single GaN-based nanorods containing multiple quantum wells (MQWs) with a simultaneous combination of very high spatial and spectral resolution. We have investigated the strain state and carrier transport in the vicinity of the MQWs, demonstrating the high efficiencies resulting from reduced electric fields. Power-dependent photoluminescence spectroscopy of arrays of these nanorods confirms that their fabrication results in partial strain relaxation in the MQWs. Our technique allows us to interrogate the structures on a sufficiently small length scale to be able to extract the important information.
Quantum dot imaging platform for single-cell molecular profiling
NASA Astrophysics Data System (ADS)
Zrazhevskiy, Pavel; Gao, Xiaohu
2013-03-01
Study of normal cell physiology and disease pathogenesis heavily relies on untangling the complexity of intracellular molecular mechanisms and pathways. To achieve this goal, comprehensive molecular profiling of individual cells within the context of microenvironment is required. Here we report the development of a multicolour multicycle in situ imaging technology capable of creating detailed quantitative molecular profiles for individual cells at the resolution of optical imaging. A library of stoichiometric fluorescent probes is prepared by linking target-specific antibodies to a universal quantum dot-based platform via protein A in a quick and simple procedure. Surprisingly, despite the potential for multivalent binding between protein A and antibody and the intermediate affinity of this non-covalent bond, fully assembled probes do not aggregate or exchange antibodies, facilitating highly multiplexed parallel staining. This single-cell molecular profiling technology is expected to open new opportunities in systems biology, gene expression studies, signalling pathway analysis and molecular diagnostics.
Design infrastructure for Rapid Single Flux Quantum circuits
NASA Astrophysics Data System (ADS)
Toepfer, Hannes; Ortlepp, Thomas
2009-11-01
Cryoelectronic integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology are promising candidates for realizing systems exhibiting very high performance in combination with very low-power consumption. Like other superconductive logic circuits, they are characterized by a high switching speed. Their unique feature consists in the particular representation of binary information by means of short transient voltage pulses. The development of RSFQ circuits and systems requires a comprehensive design approach, supported by appropriate tools. Within the recent years, a dedicated design infrastructure has been developed in Europe in close association with a foundry for digital RSFQ integrated circuits. As a result, RSFQ technology has matured to such a level that engineering efforts enable the development of integrated circuits. In the contribution, the basic features of the RSFQ circuit design are addressed within the context of technical and infrastructural issues of implementation from a European perspective.
Quantum computing over long time scales in a singly charged quantum dot
NASA Astrophysics Data System (ADS)
Sun, Bo
In this thesis, we will study the continuous wave optical spectroscopy of self-assembled quantum dots (SAQDs), focusing on the use of these dots toward quantum computing and information processing applications. Probing the strong field interaction between an intense optical pump beam and a neutral quantum dot will reveal Autler-Townes splitting and Mollow absorption spectrum. The presence of these two phenomenon confirm the isolated nature of the exciton trapped in the quantum dot and the suppression of many-body physics due to exciton confinement. This curbs the decoherence caused by exciton-exciton interactions in higher dimensional heterostructures. After confirming the atom-like nature of the SAQD, we then charge the SAQD with a single electron and use the electron spin as our qubit. By applying a magnetic field perpendicular to the sample growth direction, we turn on the spin flip Raman transitions and create two lambda (Λ) systems that can be used to coherently manipulate the spin. A single laser resonant with one of the transitions can quickly initialize the spin state via optical pumping while two lasers, one on each leg of the lambda, can initialize the spin into an arbitrary superposition state through coherent population trapping. The developed dark state spectroscopy is then used to demonstrate interaction between the optically generated hole spin with the background nuclear spins. This hole assisted dynamic nuclear polarization creates a feedback mechanism which locks the nuclear field to the laser detunings and suppresses nuclear spin fluctuations. We use dark state spectroscopy to measure a two orders of magnitude increase of the electron spin coherence time, a result of the narrowing of the nuclear field distribution. Furthermore, we find that this nuclear spin narrowing can persist in the dark, without laser interaction, for well over 1s even in the presence of a fluctuating electron charge and electron spin polarization. We have opened the door
Ates, Serkan; Agha, Imad; Gulinatti, Angelo; Rech, Ivan; Badolato, Antonio; Srinivasan, Kartik
2013-01-01
Single epitaxially-grown semiconductor quantum dots have great potential as single photon sources for photonic quantum technologies, though in practice devices often exhibit nonideal behavior. Here, we demonstrate that amplitude modulation can improve the performance of quantum-dot-based sources. Starting with a bright source consisting of a single quantum dot in a fiber-coupled microdisk cavity, we use synchronized amplitude modulation to temporally filter the emitted light. We observe that the single photon purity, temporal overlap between successive emission events, and indistinguishability can be greatly improved with this technique. As this method can be applied to any triggered single photon source, independent of geometry and after device fabrication, it is a flexible approach to improve the performance of systems based on single solid-state quantum emitters, which often suffer from excess dephasing and multi-photon background emission. PMID:23466520
Quantum Random Access Codes Using Single d -Level Systems
NASA Astrophysics Data System (ADS)
Tavakoli, Armin; Hameedi, Alley; Marques, Breno; Bourennane, Mohamed
2015-05-01
Random access codes (RACs) are used by a party to, with limited communication, access an arbitrary subset of information held by another party. Quantum resources are known to enable RACs that break classical limitations. Here, we study quantum and classical RACs with high-level communication. We derive average performances of classical RACs and present families of high-level quantum RACs. Our results show that high-level quantum systems can significantly increase the advantage of quantum RACs over their classical counterparts. We demonstrate our findings in an experimental realization of a quantum RAC with four-level communication.
Quantum fluctuations and coherence in high-precision single-electron capture.
Kashcheyevs, Vyacheslavs; Timoshenko, Janis
2012-11-21
The phase of a single quantum state is undefined unless the history of its creation provides a reference point. Thus, quantum interference may seem hardly relevant for the design of deterministic single-electron sources which strive to isolate individual charge carriers quickly and completely. We provide a counterexample by analyzing the nonadiabatic separation of a localized quantum state from a Fermi sea due to a closing tunnel barrier. We identify the relevant energy scales and suggest ways to separate the contributions of quantum nonadiabatic excitation and back tunneling to the rare noncapture events. In the optimal regime of balanced decay and nonadiabaticity, our simple electron trap turns into a single-lead Landau-Zener back tunneling interferometer, revealing the dynamical phase accumulated between the particle capture and leakage. The predicted "quantum beats in back tunneling" may turn the error of a single-electron source into a valuable signal revealing essentially nonadiabatic energy scales of a dynamic quantum dot.
All-optical tailoring of single-photon spectra in a quantum-dot microcavity system
NASA Astrophysics Data System (ADS)
Breddermann, D.; Heinze, D.; Binder, R.; Zrenner, A.; Schumacher, S.
2016-10-01
Semiconductor quantum-dot cavity systems are promising sources for solid-state-based on-demand generation of single photons for quantum communication. Commonly, the spectral characteristics of the emitted single photon are fixed by system properties such as electronic transition energies and spectral properties of the cavity. In the present work we study cavity-enhanced single-photon generation from the quantum-dot biexciton through a partly stimulated nondegenerate two-photon emission. We show that frequency and linewidth of the single photon can be fully controlled by the stimulating laser pulse, ultimately allowing for efficient all-optical spectral shaping of the single photon.
Single quantum dot coupled to a scanning optical antenna: a tunable superemitter.
Farahani, J N; Pohl, D W; Eisler, H-J; Hecht, B
2005-07-01
The interaction of a single quantum dot with a bowtie antenna is demonstrated for visible light. The antenna is generated at the apex of a Si3N4 atomic force microscopy tip by focused ion beam milling. When scanned over the quantum dot, its photoluminescence is enhanced while its excited-state lifetime is decreased. Our observations demonstrate that the relaxation channels of a single quantum emitter can be controlled by coupling to an efficiently radiating metallic nanoantenna.
Data analysis considerations in probing single quantum dot fluorescence intermittency
NASA Astrophysics Data System (ADS)
Krogmeier, Jeffrey R.; Hwang, Jeeseong
2005-04-01
The fluorescence intermittency of single, bare, CdSe/ZnS quantum dots was probed using single molecule confocal microscopy and found to demonstrate power law kinetics. Various threshold values and line fitting parameters are employed in the data analysis and their effects on the extracted power law exponents, moff and mon, are presented. The threshold is found to be critical in determining moff while having no significant effect on mon. The mean plus 2σ threshold, calculated from the background noise in the measurement, results in a more negative moff slope in comparison to the mean plus 3σ or mean plus 4σ thresholds. This is likely due to the mean plus 2σ threshold lying within the background noise outliers which mimic short on events. In contrast, the mean plus 4σ threshold is above 99.99% of the background noise while adequately below the fluorescence signal. Additionally, it is found that fitting only the ten most probable data points rather than all the data points in the log-log probability density graphs results in no significant change in moff and mon.
Quantum dots for quantitative imaging: from single molecules to tissue
Vu, Tania Q.; Lam, Wai Yan; Hatch, Ellen W.; Lidke, Diane S.
2015-01-01
Since their introduction to biological imaging, quantum dots (QDs) have progressed from a little known, but attractive technology to one that has gained broad application in many areas of biology. The versatile properties of these fluorescent nanoparticles have allowed investigators to conduct biological studies with extended spatiotemporal capabilities that were previously not possible. In this review, we focus on QD applications that provide enhanced quantitative information on protein dynamics and localization, including single particle tracking (SPT) and immunohistochemistry (IHC), and finish by examining prospects of upcoming applications, such as correlative light and electron microscopy (CLEM) and super-resolution. Advances in single molecule imaging, including multi-color and 3D QD tracking, have provided new insights into the mechanisms of cell signaling and protein trafficking. New forms of QD tracking in vivo have allowed for observation of biological processes with molecular level resolution in the physiological context of the whole animal. Further methodological development of multiplexed QD-based immunohistochemistry assays are allowing more quantitative analysis of key proteins in tissue samples. These advances highlight the unique quantitative data sets that QDs can provide to further our understanding of biological and disease processes. PMID:25620410
Single Molecule Analysis of Serotonin Transporter Regulation Using Quantum Dots
NASA Astrophysics Data System (ADS)
Chang, Jerry; Tomlinson, Ian; Warnement, Michael; Ustione, Alessandro; Carneiro, Ana; Piston, David; Blakely, Randy; Rosenthal, Sandra
2011-03-01
For the first time, we implement a novel, single molecule approach to define the localization and mobility of the brain's major target of widely prescribed antidepressant medications, the serotonin transporter (SERT). SERT labeled with single quantum dot (Qdot) revealed unsuspected features of transporter mobility with cholesterol-enriched membrane microdomains (often referred to as ``lipid rafts'') and cytoskeleton network linked to transporter activation. We document two pools of surface SERT proteins defined by their lateral mobility, one that exhibits relatively free diffusion in the plasma membrane and a second that displays significantly restricted mobility and localizes to cholesterol-enriched microdomains. Diffusion model prediction and instantaneous velocity analysis indicated that stimuli that act through p38 MAPK-dependent signaling pathways to activate SERT trigger rapid SERT movements within membrane microdomains. Cytoskeleton disruption showed that SERT lateral mobility behaves a membrane raft-constrained, cytoskeleton-associated manner. Our results identify an unsuspected aspect of neurotransmitter transporter regulation that we propose reflects the dissociation of inhibitory, SERT-associated cytoskeletal anchors.
Single mode continous wave GaAs quantum cascade lasers
NASA Astrophysics Data System (ADS)
Strasser, Gottfried
2001-03-01
Quantum cascade lasers (QCLs) are powerful light emitters in the mid infrared. We fabricated GaAs-based first order and second order distributed feedback lasers to achieve single mode emission. The emission wavelength is continuously tunable according to the temperature dependence of the effective refractive index, which shifts the Bragg wavelength. For the continous-wave operation achieved from first order DFB structures the active material consists of 40 periods of an AlAs/GaAs chirped superlattice, grown by solid source molecular beam epitaxy. A double plasmon enhanced waveguide is used for vertical optical confinement, lateral electrical and optical confinement is achieved by deep etched ridges. The Bragg grating is defined by contact lithography and etched into the surface of the top cladding layer, thus avoiding the need of regrowth. Single mode emission at 11.8 microns is observed for pulsed mode operation and for continuous-wave operation. The emission wavelength depends on the laser current, because of the electrical heating in the active material. We derive the effective temperature in the laser cavity from the emission wavelength. We use the measured dependence of the emission wavelength from the heat sink temperature in pulsed-mode operation, where the effective temperature change within a pulse can be neglected and the average heat load is low. Additionally, single mode emission from electrically pumped QCL micro-cavities (circular and deformed cross sections) and monolithic GaAs/AlGaAs QCLs with self-aligned Focused Ion Beam cut coupled cavities are demonstrated. Deep FIB etched Bragg reflectors can be used to increase the reflectivity. This work is supported by the European Project SUPERSMILE.
Low-jitter single flux quantum signal readout from superconducting single photon detector.
Terai, Hirotaka; Yamashita, Taro; Miki, Shigehito; Makise, Kazumasa; Wang, Zhen
2012-08-27
We developed a single-flux-quantum (SFQ) readout technology for superconducting single-photon detectors (SSPDs) to achieve low-jitter signal readout. By optimizing circuit parameters of the SFQ readout circuit, the input current sensitivity was improved below 10 μA, which is smaller than a typical critical current of SSPD. The experiment using a pulse-pattern generator as an input pulse source revealed that the measured jitter of the SFQ readout circuit is well below the system jitter of our measurement setup for the input current level above 15 μA. The measured jitter of the SSPD connected to the SFQ readout circuit was 37 ps full width at half maximum (FWHM) for an SSPD bias current of around 18 μA, which is a significant improvement on 67 ps FWHM jitter observed in conventional readout without an SFQ readout circuit.
Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot
Deshpande, Saniya; Frost, Thomas; Hazari, Arnab; Bhattacharya, Pallab
2014-10-06
We demonstrate a semiconductor quantum dot based electrically pumped single-photon source operating at room temperature. Single photons emitted in the red spectral range from single In{sub 0.4}Ga{sub 0.6}N/GaN quantum dots exhibit a second-order correlation value g{sup (2)}(0) of 0.29, and fast recombination lifetime ∼1.3 ±0.3 ns at room temperature. The single-photon source can be driven at an excitation repetition rate of 200 MHz.
Hu, C Y
2017-03-28
The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks.
Hu, C. Y.
2017-01-01
The future Internet is very likely the mixture of all-optical Internet with low power consumption and quantum Internet with absolute security guaranteed by the laws of quantum mechanics. Photons would be used for processing, routing and com-munication of data, and photonic transistor using a weak light to control a strong light is the core component as an optical analogue to the electronic transistor that forms the basis of modern electronics. In sharp contrast to previous all-optical tran-sistors which are all based on optical nonlinearities, here I introduce a novel design for a high-gain and high-speed (up to terahertz) photonic transistor and its counterpart in the quantum limit, i.e., single-photon transistor based on a linear optical effect: giant Faraday rotation induced by a single electronic spin in a single-sided optical microcavity. A single-photon or classical optical pulse as the gate sets the spin state via projective measurement and controls the polarization of a strong light to open/block the photonic channel. Due to the duality as quantum gate for quantum information processing and transistor for optical information processing, this versatile spin-cavity quantum transistor provides a solid-state platform ideal for all-optical networks and quantum networks. PMID:28349960
Single-photon non-linear optics with a quantum dot in a waveguide.
Javadi, A; Söllner, I; Arcari, M; Hansen, S Lindskov; Midolo, L; Mahmoodian, S; Kiršanskė, G; Pregnolato, T; Lee, E H; Song, J D; Stobbe, S; Lodahl, P
2015-10-23
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
Single-photon non-linear optics with a quantum dot in a waveguide
Javadi, A.; Söllner, I.; Arcari, M.; Hansen, S. Lindskov; Midolo, L.; Mahmoodian, S.; Kiršanskė, G; Pregnolato, T.; Lee, E. H.; Song, J. D.; Stobbe, S.; Lodahl, P.
2015-01-01
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon–photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures. PMID:26492951
On-chip interference of single photons from an embedded quantum dot and an external laser
NASA Astrophysics Data System (ADS)
Prtljaga, N.; Bentham, C.; O'Hara, J.; Royall, B.; Clarke, E.; Wilson, L. R.; Skolnick, M. S.; Fox, A. M.
2016-06-01
In this work, we demonstrate the on-chip two-photon interference between single photons emitted by a single self-assembled InGaAs quantum dot and an external laser. The quantum dot is embedded within one arm of an air-clad directional coupler which acts as a beam-splitter for incoming light. Photons originating from an attenuated external laser are coupled to the second arm of the beam-splitter and then combined with the quantum dot photons, giving rise to two-photon quantum interference between dissimilar sources. We verify the occurrence of on-chip Hong-Ou-Mandel interference by cross-correlating the optical signal from the separate output ports of the directional coupler. This experimental approach allows us to use a classical light source (laser) to assess in a single step the overall device performance in the quantum regime and probe quantum dot photon indistinguishability on application realistic time scales.
Xu, Kebiao; Xie, Tianyu; Li, Zhaokai; Xu, Xiangkun; Wang, Mengqi; Ye, Xiangyu; Kong, Fei; Geng, Jianpei; Duan, Changkui; Shi, Fazhan; Du, Jiangfeng
2017-03-31
The adiabatic quantum computation is a universal and robust method of quantum computing. In this architecture, the problem can be solved by adiabatically evolving the quantum processor from the ground state of a simple initial Hamiltonian to that of a final one, which encodes the solution of the problem. Adiabatic quantum computation has been proved to be a compatible candidate for scalable quantum computation. In this Letter, we report on the experimental realization of an adiabatic quantum algorithm on a single solid spin system under ambient conditions. All elements of adiabatic quantum computation, including initial state preparation, adiabatic evolution (simulated by optimal control), and final state read-out, are realized experimentally. As an example, we found the ground state of the problem Hamiltonian S_{z}I_{z} on our adiabatic quantum processor, which can be mapped to the factorization of 35 into its prime factors 5 and 7.
Quantum proofs can be verified using only single-qubit measurements
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki; Nagaj, Daniel; Schuch, Norbert
2016-02-01
Quantum Merlin Arthur (QMA) is the class of problems which, though potentially hard to solve, have a quantum solution that can be verified efficiently using a quantum computer. It thus forms a natural quantum version of the classical complexity class NP (and its probabilistic variant MA, Merlin-Arthur games), where the verifier has only classical computational resources. In this paper, we study what happens when we restrict the quantum resources of the verifier to the bare minimum: individual measurements on single qubits received as they come, one by one. We find that despite this grave restriction, it is still possible to soundly verify any problem in QMA for the verifier with the minimum quantum resources possible, without using any quantum memory or multiqubit operations. We provide two independent proofs of this fact, based on measurement-based quantum computation and the local Hamiltonian problem. The former construction also applies to QMA1, i.e., QMA with one-sided error.
Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak
2014-08-22
The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing.
Quantum non-Gaussianity of frequency up-converted single photons.
Baune, Christoph; Schönbeck, Axel; Samblowski, Aiko; Fiurášek, Jaromír; Schnabel, Roman
2014-09-22
Nonclassical states of light are an important resource in today's quantum communication and metrology protocols. Quantum up-conversion of nonclassical states is a promising approach to overcome frequency differences between disparate subsystems within a quantum information network. Here, we present the generation of heralded narrowband single photons at 1550 nm via cavity enhanced spontaneous parametric down-conversion (SPDC) and their subsequent up-conversion to 532 nm. Quantum non-Gaussianity (QNG), which is an important feature for applications in quantum information science, was experimentally certified for the first time in frequency up-converted states.
Exciton-plasmon coupling of a single quantum dot and a metal nanowire
NASA Astrophysics Data System (ADS)
Wei, Hong
2016-11-01
The interactions between surface plasmons in metal nanostructures and excitons in quantum emitters lead to many interesting phenomena that are strongly dependent on the quantum yield of surface plasmons. The experimental measurement of this quantum yield is hindered due to the difficulty in distinguishing all the possible exciton recombination channels. By utilizing the propagation of surface plasmons, we experimentally measured the decay rates of all exciton recombination channels, and thus obtained the quantum yield of single surface plasmons generated by a quantum dot coupled with a silver nanowire.
Detecting the quantum discord of an unknown state by a single observable
Zhang Chengjie; Oh, C. H.; Yu Sixia; Chen Qing
2011-09-15
We propose a single observable to witness the nonzero quantum discord of an unknown quantum state provided that we have four copies of the state. The expectation value of this observable provides a necessary and sufficient condition for the nonzero quantum discord in 2xN systems and a necessary condition in higher finite-dimensional bipartite systems. Furthermore, a nontrivial lower bound of the quantum discord can be obtained from this expectation value. The proposed observable can be experimentally measured in exactly the same way as the entanglement witness. Moreover, a quantum circuit is designed to determine the expectation value of our observable with four simultaneous local qubit measurements.
Hoang, Thang B; Akselrod, Gleb M; Mikkelsen, Maiken H
2016-01-13
Efficient and bright single photon sources at room temperature are critical components for quantum information systems such as quantum key distribution, quantum state teleportation, and quantum computation. However, the intrinsic radiative lifetime of quantum emitters is typically ∼10 ns, which severely limits the maximum single photon emission rate and thus entanglement rates. Here, we demonstrate the regime of ultrafast spontaneous emission (∼10 ps) from a single quantum emitter coupled to a plasmonic nanocavity at room temperature. The nanocavity integrated with a single colloidal semiconductor quantum dot produces a 540-fold decrease in the emission lifetime and a simultaneous 1900-fold increase in the total emission intensity. At the same time, the nanocavity acts as a highly efficient optical antenna directing the emission into a single lobe normal to the surface. This plasmonic platform is a versatile geometry into which a variety of other quantum emitters, such as crystal color centers, can be integrated for directional, room-temperature single photon emission rates exceeding 80 GHz.
High-Fidelity Single-Shot Toffoli Gate via Quantum Control.
Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C
2015-05-22
A single-shot Toffoli, or controlled-controlled-not, gate is desirable for classical and quantum information processing. The Toffoli gate alone is universal for reversible computing and, accompanied by the Hadamard gate, forms a universal gate set for quantum computing. The Toffoli gate is also a key ingredient for (nontopological) quantum error correction. Currently Toffoli gates are achieved by decomposing into sequentially implemented single- and two-qubit gates, which require much longer times and yields lower overall fidelities compared to a single-shot implementation. We develop a quantum-control procedure to construct a single-shot Toffoli gate for three nearest-neighbor-coupled superconducting transmon systems such that the fidelity is 99.9% and is as fast as an entangling two-qubit gate under the same realistic conditions. The gate is achieved by a nongreedy quantum control procedure using our enhanced version of the differential evolution algorithm.
Tracking single viruses infecting their host cells using quantum dots.
Liu, Shu-Lin; Wang, Zhi-Gang; Zhang, Zhi-Ling; Pang, Dai-Wen
2016-03-07
Single-virus tracking (SVT) technique, which uses microscopy to monitor the behaviors of viruses, is a vital tool to study the real-time and in situ infection dynamics and virus-related interactions in live cells. To make SVT a more versatile tool in biological research, the researchers have developed a quantum dot (QD)-based SVT technique, which can be utilized for long-term and highly sensitive tracking in live cells. In this review, we describe the development of a QD-based SVT technique and its biological applications. We first discuss the advantage of QDs as tags in the SVT field by comparing the conventional tags, and then focus on the implementation of QD-based SVT experiments, including the QD labeling strategy, instrumentation, and image analysis method. Next, we elaborate the recent advances of QD-based SVT in the biological field, and mainly emphasize the representative examples to show how to use this technique to acquire more meaningful biological information.
Oriented conjugation of single-domain antibodies and quantum dots.
Brazhnik, Kristina; Nabiev, Igor; Sukhanova, Alyona
2014-01-01
Nanoparticle-based biodetection routinely employs monoclonal antibodies (mAbs) for targeting. However, the large size of mAbs limits the number of ligands per nanoparticle and severely restricts the bioavailability and distribution of these probes in a sample. Furthermore, conventional conjugation techniques provide nanoprobes with irregular orientation of mAbs on the nanoparticle surface and often provoke mAb unfolding. Here, we describe a protocol for engineering a new generation of ultrasmall diagnostic nanoprobes through oriented conjugation of semiconductor quantum dots (QDs) with 13 kDa single-domain antibodies (sdAbs) derived from llama immunoglobulin G (IgG). The sdAbs are conjugated with QDs in a highly oriented manner via an additional cysteine residue specifically integrated into the sdAb C-terminus. The resultant nanoprobes are <12 nm in diameter, ten times smaller in volume compared to the known alternatives. They have been proved highly efficient in flow cytometry and immunuhistochemical diagnostics. This approach can be easily extended to other semiconductor and plasmonic nanoparticles.
Semiconductor Quantum Rods as Single Molecule FluorescentBiological Labels
Fu, Aihua; Gu, Weiwei; Boussert, Benjamine; Koski, Kristie; Gerion, Daniele; Manna, Liberato; Le Gros, Mark; Larabell, Carolyn; Alivisatos, A. Paul
2006-05-29
In recent years, semiconductor quantum dots have beenapplied with great advantage in a wide range of biological imagingapplications. The continuing developments in the synthesis of nanoscalematerials and specifically in the area of colloidal semiconductornanocrystals have created an opportunity to generate a next generation ofbiological labels with complementary or in some cases enhanced propertiescompared to colloidal quantum dots. In this paper, we report thedevelopment of rod shaped semiconductor nanocrystals (quantum rods) asnew fluorescent biological labels. We have engineered biocompatiblequantum rods by surface silanization and have applied them fornon-specific cell tracking as well as specific cellular targeting. Theproperties of quantum rods as demonstrated here are enhanced sensitivityand greater resistance for degradation as compared to quantum dots.Quantum rods have many potential applications as biological labels insituations where their properties offer advantages over quantumdots.
Single electron probes of fractional quantum hall states
NASA Astrophysics Data System (ADS)
Venkatachalam, Vivek
When electrons are confined to a two dimensional layer with a perpendicular applied magnetic field, such that the ratio of electrons to flux quanta (nu) is a small integer or simple rational value, these electrons condense into remarkable new phases of matter that are strikingly different from the metallic electron gas that exists in the absence of a magnetic field. These phases, called integer or fractional quantum Hall (IQH or FQH) states, appear to be conventional insulators in their bulk, but behave as a dissipationless metal along their edge. Furthermore, electrical measurements of such a system are largely insensitive to the detailed geometry of how the system is contacted or even how large the system is... only the order in which contacts are made appears to matter. This insensitivity to local geometry has since appeared in a number of other two and three dimensional systems, earning them the classification of "topological insulators" and prompting an enormous experimental and theoretical effort to understand their properties and perhaps manipulate these properties to create robust quantum information processors. The focus of this thesis will be two experiments designed to elucidate remarkable properties of the metallic edge and insulating bulk of certain FQH systems. To study such systems, we can use mesoscopic devices known as single electron transistors (SETs). These devices operate by watching single electrons hop into and out of a confining box and into a nearby wire (for measurement). If it is initially unfavorable for an electron to leave the box, it can be made favorable by bringing another charge nearby, modifying the energy of the confined electron and pushing it out of the box and into the nearby wire. In this way, the SET can measure nearby charges. Alternatively, we can heat up the nearby wire to make it easier for electrons to enter and leave the box. In this way, the SET is a sensitive thermometer. First, by operating the SET as an
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-01-01
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan–Lukin–Cirac–Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices. PMID:26468996
Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory.
Tang, Jian-Shun; Zhou, Zong-Quan; Wang, Yi-Tao; Li, Yu-Long; Liu, Xiao; Hua, Yi-Lin; Zou, Yang; Wang, Shuang; He, De-Yong; Chen, Geng; Sun, Yong-Nan; Yu, Ying; Li, Mi-Feng; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Li, Chuan-Feng; Guo, Guang-Can
2015-10-15
Quantum repeaters are critical components for distributing entanglement over long distances in presence of unavoidable optical losses during transmission. Stimulated by the Duan-Lukin-Cirac-Zoller protocol, many improved quantum repeater protocols based on quantum memories have been proposed, which commonly focus on the entanglement-distribution rate. Among these protocols, the elimination of multiple photons (or multiple photon-pairs) and the use of multimode quantum memory are demonstrated to have the ability to greatly improve the entanglement-distribution rate. Here, we demonstrate the storage of deterministic single photons emitted from a quantum dot in a polarization-maintaining solid-state quantum memory; in addition, multi-temporal-mode memory with 1, 20 and 100 narrow single-photon pulses is also demonstrated. Multi-photons are eliminated, and only one photon at most is contained in each pulse. Moreover, the solid-state properties of both sub-systems make this configuration more stable and easier to be scalable. Our work will be helpful in the construction of efficient quantum repeaters based on all-solid-state devices.
Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits
NASA Astrophysics Data System (ADS)
Kiktenko, E. O.; Fedorov, A. K.; Strakhov, A. A.; Man'ko, V. I.
2015-07-01
Design of a large-scale quantum computer has paramount importance for science and technologies. We investigate a scheme for realization of quantum algorithms using noncomposite quantum systems, i.e., systems without subsystems. In this framework, n artificially allocated "subsystems" play a role of qubits in n-qubits quantum algorithms. With focus on two-qubit quantum algorithms, we demonstrate a realization of the universal set of gates using a d = 5 single qudit state. Manipulation with an ancillary level in the systems allows effective implementation of operators from U(4) group via operators from SU(5) group. Using a possible experimental realization of such systems through anharmonic superconducting many-level quantum circuits, we present a blueprint for a single qudit realization of the Deutsch algorithm, which generalizes previously studied realization based on the virtual spin representation (Kessel et al., 2002 [9]).
Magnetic-field-induced quantum criticality in a planar ferromagnet with single-ion anisotropy
NASA Astrophysics Data System (ADS)
Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.
2014-08-01
We analyze the effects induced by single-ion anisotropy on quantum criticality in a d-dimensional spin-3/2 planar ferromagnet. To tackle this problem we employ the two-time Green's function method, using the Tyablikov decoupling for exchange interactions and the Anderson-Callen decoupling for single-ion anisotropy. In our analysis the role of non-thermal control parameter which drives the quantum phase transition is played by a longitudinal external magnetic field. We find that the single-ion anisotropy has substantial effects on the structure of the phase diagram close to the quantum critical point.
Wei, Yu-Jia; He, Yu-Ming; Chen, Ming-Cheng; Hu, Yi-Nan; He, Yu; Wu, Dian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2014-11-12
Single photons are attractive candidates of quantum bits (qubits) for quantum computation and are the best messengers in quantum networks. Future scalable, fault-tolerant photonic quantum technologies demand both stringently high levels of photon indistinguishability and generation efficiency. Here, we demonstrate deterministic and robust generation of pulsed resonance fluorescence single photons from a single semiconductor quantum dot using adiabatic rapid passage, a method robust against fluctuation of driving pulse area and dipole moments of solid-state emitters. The emitted photons are background-free, have a vanishing two-photon emission probability of 0.3% and a raw (corrected) two-photon Hong-Ou-Mandel interference visibility of 97.9% (99.5%), reaching a precision that places single photons at the threshold for fault-tolerant surface-code quantum computing. This single-photon source can be readily scaled up to multiphoton entanglement and used for quantum metrology, boson sampling, and linear optical quantum computing.
Pure Gaussian states from quantum harmonic oscillator chains with a single local dissipative process
NASA Astrophysics Data System (ADS)
Ma, Shan; Woolley, Matthew J.; Petersen, Ian R.; Yamamoto, Naoki
2017-03-01
We study the preparation of entangled pure Gaussian states via reservoir engineering. In particular, we consider a chain consisting of (2\\aleph +1) quantum harmonic oscillators where the central oscillator of the chain is coupled to a single reservoir. We then completely parametrize the class of (2\\aleph +1) -mode pure Gaussian states that can be prepared by this type of quantum harmonic oscillator chain. This parametrization allows us to determine the steady-state entanglement properties of such quantum harmonic oscillator chains.
Single electron pumping in InAs nanowire double quantum dots
NASA Astrophysics Data System (ADS)
Fuhrer, A.; Fasth, C.; Samuelson, L.
2007-07-01
Closely spaced local gate electrodes are used to electrically define a double quantum dot along an InAs nanowire crystal. By applying a periodic pulse sequence to two plunger gate electrodes controlling the double quantum dot charge configuration, the device is operated as a single electron pump. The authors find that within measurement accuracy, the pumping current equals one electron per cycle for frequencies up to 2MHz, demonstrating the suitability of nanowire based quantum dots for pumping applications.
Ultrafast Laser System for Producing on-Demand Single-and Multi-Photon Quantum States
2015-09-20
quantum communication and computation technology; we have made significant progress toward that goal under this DURIP grant. In order to efficiently...photon quantum states The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 single-photon source, multiplexing, quantum state synthesis REPORT
Suppressed blinking in single quantum dots (QDs) immobilized near silver island films (SIFs)
NASA Astrophysics Data System (ADS)
Fu, Yi; Zhang, Jian; Lakowicz, Joseph R.
2007-10-01
In this report, we use single-molecule spectroscopic method to study emission behaviors of streptavidin-conjugated quantum dots immobilized on a biotinylated BSA (bovine serum albumin) monolayer near non-continuous rough silver nanostructures. We observed greatly reduced blinking and enhanced emission fluorescence of quantum dots next to silver island films.
The Heteronuclear Single-Quantum Correlation (HSQC) Experiment: Vectors versus Product Operators
ERIC Educational Resources Information Center
de la Vega-Herna´ndez, Karen; Antuch, Manuel
2015-01-01
A vectorial representation of the full sequence of events occurring during the 2D-NMR heteronuclear single-quantum correlation (HSQC) experiment is presented. The proposed vectorial representation conveys an understanding of the magnetization evolution during the HSQC pulse sequence for those who have little or no quantum mechanical background.…
Ultrafast single photon emitting quantum photonic structures based on a nano-obelisk
Kim, Je-Hyung; Ko, Young-Ho; Gong, Su-Hyun; Ko, Suk-Min; Cho, Yong-Hoon
2013-01-01
A key issue in a single photon source is fast and efficient generation of a single photon flux with high light extraction efficiency. Significant progress toward high-efficiency single photon sources has been demonstrated by semiconductor quantum dots, especially using narrow bandgap materials. Meanwhile, there are many obstacles, which restrict the use of wide bandgap semiconductor quantum dots as practical single photon sources in ultraviolet-visible region, despite offering free space communication and miniaturized quantum information circuits. Here we demonstrate a single InGaN quantum dot embedded in an obelisk-shaped GaN nanostructure. The nano-obelisk plays an important role in eliminating dislocations, increasing light extraction, and minimizing a built-in electric field. Based on the nano-obelisks, we observed nonconventional narrow quantum dot emission and positive biexciton binding energy, which are signatures of negligible built-in field in single InGaN quantum dots. This results in efficient and ultrafast single photon generation in the violet color region. PMID:23828558
Cavity-based quantum networks with single atoms and optical photons
NASA Astrophysics Data System (ADS)
Reiserer, Andreas; Rempe, Gerhard
2015-10-01
Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network. In order to scale such networks to many particles and long distances, an efficient interface between the nodes and the channels is required. This article describes the cavity-based approach to this goal, with an emphasis on experimental systems in which single atoms are trapped in and coupled to optical resonators. Besides being conceptually appealing, this approach is promising for quantum networks on larger scales, as it gives access to long qubit coherence times and high light-matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport quantum states between remote atoms, to entangle distant atoms, to detect optical photons nondestructively, to perform entangling quantum gates between an atom and one or several photons, and even provides a route toward efficient heralded quantum memories for future repeaters. The presented general protocols and the identification of key parameters are applicable to other experimental systems.
Control of the cavity reflectivity using a single quantum dot spin
NASA Astrophysics Data System (ADS)
Sun, Shuo; Kim, Hyochul; Solomon, Glenn; Waks, Edo
2015-03-01
The implementation of quantum network and distributive quantum information processing relies on interaction between stationary matter qubits and flying photons. The spin of a single electron or hole confined in a quantum dot is considered as promising matter qubit as it possesses microsecond coherence time and allows picosecond timescale control using optical pulses. The quantum dot spin can also interact with a photon by controlling the optical response of a strongly coupled cavity. Yet all the experimental demonstrations of the cavity spectrum control have used neutral dots. The spin-dependent cavity spectrum for a strongly coupled charged quantum dot and cavity system has not been reported. Here, we report an experimental realization of a spin-photon interface using a strongly coupled quantum dot and cavity system. We show large modulation of the cavity reflection spectrum by manipulating the spin states of the quantum dot. The spin-photon interface is crucial for realizing a quantum logic gate or generating hybrid entanglement between a quantum dot spin and a photon. Our results represent an important step towards semiconductor based quantum logic devices and on-chip quantum networks.
Quantum-confined single photon emission at room temperature from SiC tetrapods.
Castelletto, Stefania; Bodrog, Zoltán; Magyar, Andrew P; Gentle, Angus; Gali, Adam; Aharonovich, Igor
2014-09-07
Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H)--a geometry that creates spontaneous polarization within a single tetrapod. Modeling of the tetrapod structures predicts that a bound exciton should exist at the 3C-4H interface. The simulations are confirmed by the observation of fully polarized and narrowband single photon emission from the tetrapods at room temperature. The single photon emission provides important insights into understanding the quantum confinement effects in non-spherical nanostructures. Our results pave the way to a new class of crystal phase nanomaterials that exhibit single photon emission at room temperature and therefore are suitable for sensing, quantum information and nanophotonics.
Simple dispersion estimate for single-section quantum-dash and quantum-dot mode-locked laser diodes.
O Duill, Sean P; Murdoch, Stuart G; Watts, Regan T; Rosales, Ricardo; Ramdane, Abderrahim; Landais, Pascal; Barry, Liam P
2016-12-15
The optical outputs of single-section quantum-dash and quantum-dot mode-locked lasers (MLLs) are well known to exhibit strong group velocity dispersion. Based on careful measurements of the spectral phase of the pulses from these MLLs, we confirm that the difference in group delay between the modes at either end of the MLL spectrum equals the cavity round-trip time. This observation allows us to deduce an empirical formula relating the accumulated dispersion of the output pulse to the spectral extent and free-spectral range of the MLL. We find excellent agreement with previously reported dispersion measurements of both quantum-dash and quantum-dot MLLs over a wide range of operating conditions.
Quantum teleportation of multiple degrees of freedom of a single photon
NASA Astrophysics Data System (ADS)
Wang, Xi-Lin; Cai, Xin-Dong; Su, Zu-En; Chen, Ming-Cheng; Wu, Dian; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2015-02-01
Quantum teleportation provides a `disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.
Quantum teleportation of multiple degrees of freedom of a single photon.
Wang, Xi-Lin; Cai, Xin-Dong; Su, Zu-En; Chen, Ming-Cheng; Wu, Dian; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei
2015-02-26
Quantum teleportation provides a 'disembodied' way to transfer quantum states from one object to another at a distant location, assisted by previously shared entangled states and a classical communication channel. As well as being of fundamental interest, teleportation has been recognized as an important element in long-distance quantum communication, distributed quantum networks and measurement-based quantum computation. There have been numerous demonstrations of teleportation in different physical systems such as photons, atoms, ions, electrons and superconducting circuits. All the previous experiments were limited to the teleportation of one degree of freedom only. However, a single quantum particle can naturally possess various degrees of freedom--internal and external--and with coherent coupling among them. A fundamental open challenge is to teleport multiple degrees of freedom simultaneously, which is necessary to describe a quantum particle fully and, therefore, to teleport it intact. Here we demonstrate quantum teleportation of the composite quantum states of a single photon encoded in both spin and orbital angular momentum. We use photon pairs entangled in both degrees of freedom (that is, hyper-entangled) as the quantum channel for teleportation, and develop a method to project and discriminate hyper-entangled Bell states by exploiting probabilistic quantum non-demolition measurement, which can be extended to more degrees of freedom. We verify the teleportation for both spin-orbit product states and hybrid entangled states, and achieve a teleportation fidelity ranging from 0.57 to 0.68, above the classical limit. Our work is a step towards the teleportation of more complex quantum systems, and demonstrates an increase in our technical control of scalable quantum technologies.
Interference with a quantum dot single-photon source and a laser at telecom wavelength
Felle, M.; Huwer, J. Stevenson, R. M.; Skiba-Szymanska, J.; Ward, M. B.; Shields, A. J.; Farrer, I.; Ritchie, D. A.; Penty, R. V.
2015-09-28
The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here, we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.
Quantum-confined single photon emission at room temperature from SiC tetrapods
NASA Astrophysics Data System (ADS)
Castelletto, Stefania; Bodrog, Zoltán; Magyar, Andrew P.; Gentle, Angus; Gali, Adam; Aharonovich, Igor
2014-08-01
Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H) - a geometry that creates spontaneous polarization within a single tetrapod. Modeling of the tetrapod structures predicts that a bound exciton should exist at the 3C-4H interface. The simulations are confirmed by the observation of fully polarized and narrowband single photon emission from the tetrapods at room temperature. The single photon emission provides important insights into understanding the quantum confinement effects in non-spherical nanostructures. Our results pave the way to a new class of crystal phase nanomaterials that exhibit single photon emission at room temperature and therefore are suitable for sensing, quantum information and nanophotonics.Controlled engineering of isolated solid state quantum systems is one of the most prominent goals in modern nanotechnology. In this letter we demonstrate a previously unknown quantum system namely silicon carbide tetrapods. The tetrapods have a cubic polytype core (3C) and hexagonal polytype legs (4H) - a geometry that creates spontaneous polarization within a single tetrapod. Modeling of the tetrapod structures predicts that a bound exciton should exist at the 3C-4H interface. The simulations are confirmed by the observation of fully polarized and narrowband single photon emission from the tetrapods at room temperature. The single photon emission provides important insights into understanding the quantum confinement effects in non-spherical nanostructures. Our results pave the way to a new class of crystal phase nanomaterials that exhibit single photon emission at room temperature and therefore are suitable for sensing, quantum information and nanophotonics. Electronic supplementary information (ESI) available
Micro-Photoluminescence Confocal Mapping of Single V-Grooved GaAs Quantum Wire
NASA Astrophysics Data System (ADS)
Huang, Shao-Hua; Chen, Zhang-Hai; Bai, Li-Hui; Shen, Xue-Chu; Tan H., H.; L., Fu; Fraser, M.; Jagadish, C.
2006-12-01
We perform the micro-photoluminescence measurement at low temperatures and a scanning optical mapping with high spatial resolution of a single V-grooved GaAs quantum wire modified by the selective ion-implantation and rapid thermally annealing. While the mapping shows the luminescences respectively from the quantum wires and from quantum well areas between quantum wires in general, the micro-photoluminescence at liquid He temperatures reveals a plenty of spectral structures of the PL band for a single quantum wire. The spectral structures are attributed to the inhomogeneity and non-uniformity of both the space structure and compositions of real wires as well as the defects nearby the interface between quantum wire and surrounding quantum well structures. All these make the excitons farther localized in quasi-zero-dimensional quantum potential boxes related to these non-uniformity and/or defects. The results also demonstrate the ability of micro-photoluminescence measurement and mapping for the characterization of both opto-electronic and structural properties of real quantum wires.
NASA Astrophysics Data System (ADS)
Lin, Jun-You; He, Jun-Gang; Gao, Yan-Chun; Li, Xue-Mei; Zhou, Ping
2017-04-01
We present a scheme for controlled remote implementation of an arbitrary single-qubit operation by using partially entangled states as the quantum channel. The sender can remote implement an arbitrary single-qubit operation on the remote receiver's quantum system via partially entangled states under the controller's control. The success probability for controlled remote implementation of quantum operation can achieve 1 if the sender and the controller perform proper projective measurements on their entangled particles. Moreover, we also discuss the scheme for remote sharing the partially unknown operations via partially entangled quantum channel. It is shown that the quantum entanglement cost and classical communication can be reduced if the implemented operation belongs to the restrict sets.
Two-message quantum-Arthur-Merlin game with single-qubit measurements
NASA Astrophysics Data System (ADS)
Morimae, Tomoyuki
2016-06-01
We show that the class quantum-Arthur-Merlin (QAM) does not change even if the verifier's ability is restricted to only single-qubit measurements. To show the result, we use the idea of measurement-based quantum computing: the verifier, who can do only single-qubit measurements, can test the graph state sent from the prover and use it for his measurement-based quantum computing. Inspired by this construction, we also introduce a problem which we call stabilizer state optimization, and show that it is QMA-complete.
Extracting Quantum Work Statistics and Fluctuation Theorems by Single-Qubit Interferometry
NASA Astrophysics Data System (ADS)
Dorner, R.; Clark, S. R.; Heaney, L.; Fazio, R.; Goold, J.; Vedral, V.
2013-06-01
We propose an experimental scheme to verify the quantum nonequilibrium fluctuation relations using current technology. Specifically, we show that the characteristic function of the work distribution for a nonequilibrium quench of a general quantum system can be extracted by Ramsey interferometry of a single probe qubit. Our scheme paves the way for the full characterization of nonequilibrium processes in a variety of quantum systems, ranging from single particles to many-body atomic systems and spin chains. We demonstrate our idea using a time-dependent quench of the motional state of a trapped ion, where the internal pseudospin provides a convenient probe qubit.
Toward Real-time quantum imaging with a single pixel camera
Lawrie, Benjamin J; Pooser, Raphael C
2013-01-01
We present a workbench for the study of real-time quantum imaging by measuring the frame-by-frame quantum noise reduction of multi-spatial-mode twin beams generated by four wave mixing in Rb vapor. Exploiting the multiple spatial modes of this squeezed light source, we utilize spatial light modulators to selectively transmit macropixels of quantum correlated modes from each of the twin beams to a high quantum efficiency balanced detector. In low-light-level imaging applications, the ability to measure the quantum correlations between individual spatial modes and macropixels of spatial modes with a single pixel camera will facilitate compressive quantum imaging with sensitivity below the photon shot noise limit.
Quantum Router for Single Photons Carrying Spin and Orbital Angular Momentum
Chen, Yuanyuan; Jiang, Dong; Xie, Ling; Chen, Lijun
2016-01-01
Quantum router is an essential element in the quantum network. Here, we present a fully quantum router based on interaction free measurement and quantum dots. The signal photonic qubit can be routed to different output ports according to one control electronic qubit. Besides, our scheme is an interferometric method capable of routing single photons carrying either spin angular momentum (SAM) or orbital angular momentum (OAM), or simultaneously carrying SAM and OAM. Then we describe a cascaded multi-level quantum router to construct a one-to-many quantum router. Subsequently we analyze the success probability by using a tunable controlled phase gate. The implementation issues are also discussed to show that this scheme is feasible. PMID:27256772
Quantum Router for Single Photons Carrying Spin and Orbital Angular Momentum.
Chen, Yuanyuan; Jiang, Dong; Xie, Ling; Chen, Lijun
2016-06-03
Quantum router is an essential element in the quantum network. Here, we present a fully quantum router based on interaction free measurement and quantum dots. The signal photonic qubit can be routed to different output ports according to one control electronic qubit. Besides, our scheme is an interferometric method capable of routing single photons carrying either spin angular momentum (SAM) or orbital angular momentum (OAM), or simultaneously carrying SAM and OAM. Then we describe a cascaded multi-level quantum router to construct a one-to-many quantum router. Subsequently we analyze the success probability by using a tunable controlled phase gate. The implementation issues are also discussed to show that this scheme is feasible.
Large ordered arrays of single photon sources based on II-VI semiconductor colloidal quantum dot.
Zhang, Qiang; Dang, Cuong; Urabe, Hayato; Wang, Jing; Sun, Shouheng; Nurmikko, Arto
2008-11-24
In this paper, we developed a novel and efficient method of deterministically organizing colloidal particles on structured surfaces over macroscopic areas. Our approach utilizes integrated solution-based processes of dielectric encapsulation and electrostatic-force-mediated self-assembly, which allow precisely controlled placement of sub-10nm sized particles at single particle resolution. As a specific demonstration, motivated by application to single photon sources, highly ordered 2D arrays of single II-VI semiconductor colloidal quantum dots (QDs) were created by this method. Individually, the QDs display triggered single photon emission at room temperature with characteristic photon antibunching statistics, suggesting a pathway to scalable quantum optical radiative systems.
Overcoming lossy channel bounds using a single quantum repeater node
NASA Astrophysics Data System (ADS)
Luong, D.; Jiang, L.; Kim, J.; Lütkenhaus, N.
2016-04-01
We propose a scheme for performing quantum key distribution (QKD) which has the potential to beat schemes based on the direct transmission of photons between the communicating parties. In our proposal, the communicating parties exchange photons with two quantum memories placed between them. This is a very simple quantum repeater scheme and can be implemented with currently available technology. Ideally, its secret key rate scales as the square root of the transmittivity of the optical channel, which is superior to QKD schemes based on direct transmission because key rates for the latter scale at best linearly with transmittivity. Taking into account various imperfections in each component of our setup, we present parameter regimes in which our protocol outperforms protocols based on direct transmission.
Femtosecond few-fermion dynamics and deterministic single-photon gain in a quantum dot
NASA Astrophysics Data System (ADS)
Sotier, Florian; Thomay, Tim; Hanke, Tobias; Korger, Jan; Mahapatra, Suddhasatta; Frey, Alexander; Brunner, Karl; Bratschitsch, Rudolf; Leitenstorfer, Alfred
2009-05-01
The ability to coherently manipulate single electron and photon states is vital for quantum information processing. However, typical quantization and correlation energies restrict processing rates in real implementations owing to the time-energy uncertainty. Here we report optical initialization, manipulation and probing of a single CdSe/ZnSe semiconductor quantum dot on femtosecond timescales, the ultimate limit for clean quantum operations in such `artificial atoms'. Resonant pump-probe measurements on a donor-charged quantum dot reveal that the fundamental exciton absorption is switched off through instantaneous Coulomb renormalization. Optical gain builds up following ultrafast intraband relaxation, with a thermalization rate determined by the electron spin. Operating the system in a nonlinear regime, we demonstrate the ability to change the number of quanta in a femtosecond light pulse by exactly +/-1. This deterministic single-photon amplifier is characterized by a flat gain spectrum.
Cryogenic photoluminescence imaging system for nanoscale positioning of single quantum emitters.
Liu, Jin; Davanço, Marcelo I; Sapienza, Luca; Konthasinghe, Kumarasiri; De Miranda Cardoso, José Vinícius; Song, Jin Dong; Badolato, Antonio; Srinivasan, Kartik
2017-02-01
We report a photoluminescence imaging system for locating single quantum emitters with respect to alignment features. Samples are interrogated in a 4 K closed-cycle cryostat by a high numerical aperture (NA = 0.9, 100× magnification) objective that sits within the cryostat, enabling high efficiency collection of emitted photons without image distortions due to the cryostat windows. The locations of single InAs/GaAs quantum dots within a >50 μm × 50 μm field of view are determined with ≈4.5 nm uncertainty (one standard deviation) in a 1 s long acquisition. The uncertainty is determined through a combination of a maximum likelihood estimate for localizing the quantum dot emission, and a cross correlation method for determining the alignment mark center. This location technique can be an important step in the high-throughput creation of nanophotonic devices that rely upon the interaction of highly confined optical modes with single quantum emitters.
Single-hidden-layer feed-forward quantum neural network based on Grover learning.
Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min
2013-09-01
In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning.
Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films.
Dang, Cuong; Lee, Joonhee; Breen, Craig; Steckel, Jonathan S; Coe-Sullivan, Seth; Nurmikko, Arto
2012-04-29
Colloidal quantum dots exhibit efficient photoluminescence with widely tunable bandgaps as a result of quantum confinement effects. Such quantum dots are emerging as an appealing complement to epitaxial semiconductor laser materials, which are ubiquitous and technologically mature, but unable to cover the full visible spectrum (red, green and blue; RGB). However, the requirement for high colloidal-quantum-dot packing density, and losses due to non-radiative multiexcitonic Auger recombination, have hindered the development of lasers based on colloidal quantum dots. Here, we engineer CdSe/ZnCdS core/shell colloidal quantum dots with aromatic ligands, which form densely packed films exhibiting optical gain across the visible spectrum with less than one exciton per colloidal quantum dot on average. This single-exciton gain allows the films to reach the threshold of amplified spontaneous emission at very low optical pump energy densities of 90 µJ cm(-2), more than one order of magnitude better than previously reported values. We leverage the low-threshold gain of these nanocomposite films to produce the first colloidal-quantum-dot vertical-cavity surface-emitting lasers (CQD-VCSEL). Our results represent a significant step towards full-colour single-material lasers.
Rivas, David; Muñoz-Matutano, Guillermo; Canet-Ferrer, Josep; García-Calzada, Raúl; Trevisi, Giovanna; Seravalli, Luca; Frigeri, Paola; Martínez-Pastor, Juan P
2014-02-12
In this work, we propose the use of the Hanbury-Brown and Twiss interferometric technique and a switchable two-color excitation method for evaluating the exciton and noncorrelated electron-hole dynamics associated with single photon emission from indium arsenide (InAs) self-assembled quantum dots (QDs). Using a microstate master equation model we demonstrate that our single QDs are described by nonlinear exciton dynamics. The simultaneous detection of two-color, single photon emission from InAs QDs using these nonlinear dynamics was used to design a NOT AND logic transference function. This computational functionality combines the advantages of working with light/photons as input/output device parameters (all-optical system) and that of a nanodevice (QD size of ∼ 20 nm) while also providing high optical sensitivity (ultralow optical power operational requirements). These system features represent an important and interesting step toward the development of new prototypes for the incoming quantum information technologies.
Making Ternary Quantum Dots From Single-Source Precursors
NASA Technical Reports Server (NTRS)
Bailey, Sheila; Banger, Kulbinder; Castro, Stephanie; Hepp, Aloysius
2007-01-01
A process has been devised for making ternary (specifically, CuInS2) nanocrystals for use as quantum dots (QDs) in a contemplated next generation of high-efficiency solar photovoltaic cells. The process parameters can be chosen to tailor the sizes (and, thus, the absorption and emission spectra) of the QDs.
An integrated quantum repeater at telecom wavelength with single atoms in optical fiber cavities
NASA Astrophysics Data System (ADS)
Uphoff, Manuel; Brekenfeld, Manuel; Rempe, Gerhard; Ritter, Stephan
2016-03-01
Quantum repeaters promise to enable quantum networks over global distances by circumventing the exponential decrease in success probability inherent in direct photon transmission. We propose a realistic, functionally integrated quantum-repeater implementation based on single atoms in optical cavities. Entanglement is directly generated between the single-atom quantum memory and a photon at telecom wavelength. The latter is collected with high efficiency and adjustable temporal and spectral properties into a spatially well-defined cavity mode. It is heralded by a near-infrared photon emitted from a second, orthogonal cavity. Entanglement between two remote quantum memories can be generated via an optical Bell-state measurement, while we propose entanglement swapping based on a highly efficient, cavity-assisted atom-atom gate. Our quantum-repeater scheme eliminates any requirement for wavelength conversion such that only a single system is needed at each node. We investigate a particular implementation with rubidium and realistic parameters for Fabry-Perot cavities based on hbox {CO}_2 laser-machined optical fibers. We show that the scheme enables the implementation of a rather simple quantum repeater that outperforms direct entanglement generation over large distances and does not require any improvements in technology beyond the state of the art.
A quantum phase switch between a single solid-state spin and a photon.
Sun, Shuo; Kim, Hyochul; Solomon, Glenn S; Waks, Edo
2016-06-01
Interactions between single spins and photons are essential for quantum networks and distributed quantum computation. Achieving spin-photon interactions in a solid-state device could enable compact chip-integrated quantum circuits operating at gigahertz bandwidths. Many theoretical works have suggested using spins embedded in nanophotonic structures to attain this high-speed interface. These proposals implement a quantum switch where the spin flips the state of the photon and a photon flips the spin state. However, such a switch has not yet been realized using a solid-state spin system. Here, we report an experimental realization of a spin-photon quantum switch using a single solid-state spin embedded in a nanophotonic cavity. We show that the spin state strongly modulates the polarization of a reflected photon, and a single reflected photon coherently rotates the spin state. These strong spin-photon interactions open up a promising direction for solid-state implementations of high-speed quantum networks and on-chip quantum information processors using nanophotonic devices.
Distinct Quantum States Can Be Compatible with a Single State of Reality
NASA Astrophysics Data System (ADS)
Lewis, Peter; Jennings, David; Barrett, Jonathan; Rudolph, Terry
2013-03-01
Perhaps the quantum state represents information available to some agent or experimenter about reality, and not reality directly. This view is attractive because if quantum states represent only information, then wave function collapse is possibly no more mysterious than a Bayesian update of a probability distribution given new data. Several other ``puzzling'' features of quantum theory also follow naturally given this view. In order to explore this idea rigorously, we consider models for quantum systems with probabilities for measurement outcomes determined by some underlying physical state of the system, where the underlying state is not necessarily described by quantum theory. In our model, quantum states correspond to probability distributions over the underlying states so that the Born rule is recovered. More specifically, we consider models for quantum systems where several quantum states are consistent with a single underlying state-i.e., probability distributions for distinct quantum states overlap. Recent work shows that such a model is impossible (e.g. the PBR theorem (Nat. Phys. 8, p.474)). Significantly, our example demonstrates that non-trivial assumptions (beyond those required for a well-defined realistic model) are necessary for the PBR theorem and those like it. This work was supported by the Engineering and Physical Sciences Research Council, Leverhulme Foundation and The Royal Commission for the Exhibition of 1851
Young's double-slit experiment with single photons and quantum eraser
NASA Astrophysics Data System (ADS)
Rueckner, Wolfgang; Peidle, Joseph
2013-12-01
An apparatus for a double-slit interference experiment in the single-photon regime is described. The apparatus includes a which-path marker that destroys the interference as well as a quantum eraser that restores it. We present data taken with several light sources, coherent and incoherent and discuss the efficacy of these as sources of single photons.
NASA Astrophysics Data System (ADS)
Zenkevich, E.; von Borczyskowski, C.; Kowerko, D.
2013-05-01
Single molecule spectroscopy of QD-dye nanoassemblies is shown that single functionalized dye molecules (perylene-bisimides and meso-pyridyl porphyrins) can be considered as extremely sensitive probes for studying exciton and relaxation processes in semiconductor CdSe/ZnS quantum dots.
Red, green, and blue lasing enabled by single-exciton gain in colloidal quantum dot films
Nurmikko, Arto V.; Dang, Cuong
2016-06-21
The methods and materials described herein contemplate the use films of colloidal quantum dots as a gain medium in a vertical-cavity surface-emitting laser. The present disclosure demonstrates a laser with single-exciton gain in the red, green, and blue wavelengths. Leveraging this nanocomposite gain, the results realize a significant step toward full-color single-material lasers.
Multi-party quantum summation without a trusted third party based on single particles
NASA Astrophysics Data System (ADS)
Zhang, Cai; Situ, Haozhen; Huang, Qiong; Yang, Pingle
We propose multi-party quantum summation protocols based on single particles, in which participants are allowed to compute the summation of their inputs without the help of a trusted third party and preserve the privacy of their inputs. Only one participant who generates the source particles needs to perform unitary operations and only single particles are needed in the beginning of the protocols.
Photoluminescence Intermittency from Single Quantum Dots to Organic Molecules: Emerging Themes
Riley, Erin A.; Hess, Chelsea M.; Reid, Philip J.
2012-01-01
Recent experimental and theoretical studies of photoluminescence intermittency (PI) or “blinking” exhibited by single core/shell quantum dots and single organic luminophores are reviewed. For quantum dots, a discussion of early models describing the origin of PI in these materials and recent challenges to these models are presented. For organic luminophores the role of electron transfer, proton transfer and other photophysical processes in PI are discussed. Finally, new experimental and data analysis methods are outlined that promise to be instrumental in future discoveries regarding the origin(s) of PI exhibited by single emitters. PMID:23202909
A quantum gate between a flying optical photon and a single trapped atom.
Reiserer, Andreas; Kalb, Norbert; Rempe, Gerhard; Ritter, Stephan
2014-04-10
The steady increase in control over individual quantum systems supports the promotion of a quantum technology that could provide functionalities beyond those of any classical device. Two particularly promising applications have been explored during the past decade: photon-based quantum communication, which guarantees unbreakable encryption but which still has to be scaled to high rates over large distances, and quantum computation, which will fundamentally enhance computability if it can be scaled to a large number of quantum bits (qubits). It was realized early on that a hybrid system of light qubits and matter qubits could solve the scalability problem of each field--that of communication by use of quantum repeaters, and that of computation by use of an optical interconnect between smaller quantum processors. To this end, the development of a robust two-qubit gate that allows the linking of distant computational nodes is "a pressing challenge". Here we demonstrate such a quantum gate between the spin state of a single trapped atom and the polarization state of an optical photon contained in a faint laser pulse. The gate mechanism presented is deterministic and robust, and is expected to be applicable to almost any matter qubit. It is based on reflection of the photonic qubit from a cavity that provides strong light-matter coupling. To demonstrate its versatility, we use the quantum gate to create atom-photon, atom-photon-photon and photon-photon entangled states from separable input states. We expect our experiment to enable various applications, including the generation of atomic and photonic cluster states and Schrödinger-cat states, deterministic photonic Bell-state measurements, scalable quantum computation and quantum communication using a redundant quantum parity code.
A quantum gate between a flying optical photon and a single trapped atom
NASA Astrophysics Data System (ADS)
Reiserer, Andreas; Kalb, Norbert; Rempe, Gerhard; Ritter, Stephan
2014-04-01
The steady increase in control over individual quantum systems supports the promotion of a quantum technology that could provide functionalities beyond those of any classical device. Two particularly promising applications have been explored during the past decade: photon-based quantum communication, which guarantees unbreakable encryption but which still has to be scaled to high rates over large distances, and quantum computation, which will fundamentally enhance computability if it can be scaled to a large number of quantum bits (qubits). It was realized early on that a hybrid system of light qubits and matter qubits could solve the scalability problem of each field--that of communication by use of quantum repeaters, and that of computation by use of an optical interconnect between smaller quantum processors. To this end, the development of a robust two-qubit gate that allows the linking of distant computational nodes is ``a pressing challenge''. Here we demonstrate such a quantum gate between the spin state of a single trapped atom and the polarization state of an optical photon contained in a faint laser pulse. The gate mechanism presented is deterministic and robust, and is expected to be applicable to almost any matter qubit. It is based on reflection of the photonic qubit from a cavity that provides strong light-matter coupling. To demonstrate its versatility, we use the quantum gate to create atom-photon, atom-photon-photon and photon-photon entangled states from separable input states. We expect our experiment to enable various applications, including the generation of atomic and photonic cluster states and Schrödinger-cat states, deterministic photonic Bell-state measurements, scalable quantum computation and quantum communication using a redundant quantum parity code.
Detection of single quantum dots in model organisms with sheet illumination microscopy
Friedrich, Mike; Nozadze, Revaz; Gan, Qiang; Zelman-Femiak, Monika; Ermolayev, Vladimir; Wagner, Toni U.; Harms, Gregory S.
2009-12-18
Single-molecule detection and tracking is important for observing biomolecule interactions in the microenvironment. Here we report selective plane illumination microscopy (SPIM) with single-molecule detection in living organisms, which enables fast imaging and single-molecule tracking and optical penetration beyond 300 {mu}m. We detected single nanocrystals in Drosophila larvae and zebrafish embryo. We also report our first tracking of single quantum dots during zebrafish development, which displays a transition from flow to confined motion prior to the blastula stage. The new SPIM setup represents a new technique, which enables fast single-molecule imaging and tracking in living systems.
Valley splitting of single-electron Si MOS quantum dots
Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; ...
2016-12-19
Here, silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity, manufacturable qubits. Due to silicon's band structure, additional low-energy states persist in these devices, presenting both challenges and opportunities. Although the physics governing these valley states has been the subject of intense study, quantitative agreement between experiment and theory remains elusive. Here, we present data from an experiment probing the valley states of quantum dot devices and develop a theory that is in quantitative agreement with both this and a recently reported experiment. Through sampling millions of realistic cases of interface roughness, our method provides evidence that the valley physicsmore » between the two samples is essentially the same.« less
Valley splitting of single-electron Si MOS quantum dots
Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Baczewski, Andrew D.; Nielsen, Erik; Maurer, Leon; Montano, Ines; Rudolph, Martin; Carroll, M. S.; Yang, C. H.; Rossi, A.; Dzurak, A. S.; Muller, Richard P.
2016-12-19
Here, silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity, manufacturable qubits. Due to silicon's band structure, additional low-energy states persist in these devices, presenting both challenges and opportunities. Although the physics governing these valley states has been the subject of intense study, quantitative agreement between experiment and theory remains elusive. Here, we present data from an experiment probing the valley states of quantum dot devices and develop a theory that is in quantitative agreement with both this and a recently reported experiment. Through sampling millions of realistic cases of interface roughness, our method provides evidence that the valley physics between the two samples is essentially the same.
Valley splitting of single-electron Si MOS quantum dots
NASA Astrophysics Data System (ADS)
Gamble, John King; Harvey-Collard, Patrick; Jacobson, N. Tobias; Baczewski, Andrew D.; Nielsen, Erik; Maurer, Leon; Montaño, Inès; Rudolph, Martin; Carroll, M. S.; Yang, C. H.; Rossi, A.; Dzurak, A. S.; Muller, Richard P.
2016-12-01
Silicon-based metal-oxide-semiconductor quantum dots are prominent candidates for high-fidelity, manufacturable qubits. Due to silicon's band structure, additional low-energy states persist in these devices, presenting both challenges and opportunities. Although the physics governing these valley states has been the subject of intense study, quantitative agreement between experiment and theory remains elusive. Here, we present data from an experiment probing the valley states of quantum dot devices and develop a theory that is in quantitative agreement with both this and a recently reported experiment. Through sampling millions of realistic cases of interface roughness, our method provides evidence that the valley physics between the two samples is essentially the same.
No-go theorem for passive single-rail linear optical quantum computing.
Wu, Lian-Ao; Walther, Philip; Lidar, Daniel A
2013-01-01
Photonic quantum systems are among the most promising architectures for quantum computers. It is well known that for dual-rail photons effective non-linearities and near-deterministic non-trivial two-qubit gates can be achieved via the measurement process and by introducing ancillary photons. While in principle this opens a legitimate path to scalable linear optical quantum computing, the technical requirements are still very challenging and thus other optical encodings are being actively investigated. One of the alternatives is to use single-rail encoded photons, where entangled states can be deterministically generated. Here we prove that even for such systems universal optical quantum computing using only passive optical elements such as beam splitters and phase shifters is not possible. This no-go theorem proves that photon bunching cannot be passively suppressed even when extra ancilla modes and arbitrary number of photons are used. Our result provides useful guidance for the design of optical quantum computers.
Negative quantum capacitance induced by midgap states in single-layer graphene.
Wang, Lin; Wang, Yang; Chen, Xiaolong; Zhu, Wei; Zhu, Chao; Wu, Zefei; Han, Yu; Zhang, Mingwei; Li, Wei; He, Yuheng; Xiong, Wei; Law, Kam Tuen; Su, Dangsheng; Wang, Ning
2013-01-01
We demonstrate that single-layer graphene (SLG) decorated with a high density of Ag adatoms displays the unconventional phenomenon of negative quantum capacitance. The Ag adatoms act as resonant impurities and form nearly dispersionless resonant impurity bands near the charge neutrality point (CNP). Resonant impurities quench the kinetic energy and drive the electrons to the Coulomb energy dominated regime with negative compressibility. In the absence of a magnetic field, negative quantum capacitance is observed near the CNP. In the quantum Hall regime, negative quantum capacitance behavior at several Landau level positions is displayed, which is associated with the quenching of kinetic energy by the formation of Landau levels. The negative quantum capacitance effect near the CNP is further enhanced in the presence of Landau levels due to the magnetic-field-enhanced Coulomb interactions.
Park, Byung Cheol; Kim, Tae-Hyeon; Sim, Kyung Ik; Kang, Boyoun; Kim, Jeong Won; Cho, Beongki; Jeong, Kwang-Ho; Cho, Mann-Ho; Kim, Jae Hoon
2015-03-16
Strong spin-orbit interaction and time-reversal symmetry in topological insulators generate novel quantum states called topological surface states. Their study provides unique opportunities to explore exotic phenomena such as spin Hall effects and topological phase transitions, relevant to the development of quantum devices for spintronics and quantum computation. Although ultrahigh-vacuum surface probes can identify individual topological surface states, standard electrical and optical experiments have so far been hampered by the interference of bulk and quantum well states. Here, with terahertz time-domain spectroscopy of ultrathin Bi₂Se₃ films, we give evidence for topological phase transitions, a single conductance quantum per topological surface state, and a quantized terahertz absorbance of 2.9% (four times the fine structure constant). Our experiment demonstrates the feasibility to isolate, detect and manipulate topological surface states in the ambient at room temperature for future fundamental research on the novel physics of topological insulators and their practical applications.
Simultaneous SU(2) rotations on multiple quantum dot exciton qubits using a single shaped pulse
NASA Astrophysics Data System (ADS)
Mathew, Reuble; Yang, Hong Yi Shi; Hall, Kimberley C.
2015-10-01
Recent experimental demonstration of a parallel (π ,2 π ) single qubit rotation on excitons in two distant quantum dots [Nano Lett. 13, 4666 (2013), 10.1021/nl4018176] is extended in numerical simulations to the design of pulses for more general quantum state control, demonstrating the feasibility of full SU(2) rotations of each exciton qubit. Our results show that simultaneous high-fidelity quantum control is achievable within the experimentally accessible parameter space for commercial Fourier-domain pulse shaping systems. The identification of a threshold of distinguishability for the two quantum dots (QDs) for achieving high-fidelity parallel rotations, corresponding to a difference in transition energies of ˜0.25 meV , points to the possibility of controlling more than 10 QDs with a single shaped optical pulse.
Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes
Gong, Su-Hyun; Kim, Je-Hyung; Ko, Young-Ho; Rodriguez, Christophe; Shin, Jonghwa; Lee, Yong-Hee; Dang, Le Si; Zhang, Xiang; Cho, Yong-Hoon
2015-01-01
The quantum plasmonics field has emerged and been growing increasingly, including study of single emitter–light coupling using plasmonic system and scalable quantum plasmonic circuit. This offers opportunity for the quantum control of light with compact device footprint. However, coupling of a single emitter to highly localized plasmonic mode with nanoscale precision remains an important challenge. Today, the spatial overlap between metallic structure and single emitter mostly relies either on chance or on advanced nanopositioning control. Here, we demonstrate deterministic coupling between three-dimensionally nanofocused plasmonic modes and single quantum dots (QDs) without any positioning for single QDs. By depositing a thin silver layer on a site-controlled pyramid QD wafer, three-dimensional plasmonic nanofocusing on each QD at the pyramid apex is geometrically achieved through the silver-coated pyramid facets. Enhancement of the QD spontaneous emission rate as high as 22 ± 16 is measured for all processed QDs emitting over ∼150-meV spectral range. This approach could apply to high fabrication yield on-chip devices for wide application fields, e.g., high-efficiency light-emitting devices and quantum information processing. PMID:25870303
Comparison of coherently coupled multi-cavity and quantum dot embedded single cavity systems.
Kocaman, Serdar; Sayan, Gönül Turhan
2016-12-12
Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).
2013-03-19
spin based QD network mediated by a spin - photon interface .18,24 In many scalable quantum computing architectures, the ability to...required in quantum information protocols that rely on coherent mapping between a single elec- tron spin qubit confined to a QD and a photonic qubit .24...This coherent spin - photon interface can be used to deterministically entangle spin qubits through an appropriately designed optical
Excitation enhancement of CdSe quantum dots by single metal nanoparticles
NASA Astrophysics Data System (ADS)
Chen, Yeechi; Munechika, Keiko; Jen-La Plante, Ilan; Munro, Andrea M.; Skrabalak, Sara E.; Xia, Younan; Ginger, David S.
2008-08-01
We study plasmon-enhanced fluorescence from CdSe /CdS/CdZnS/ZnS core/shell quantum dots near a variety of Ag and Au nanoparticles. The photoluminescence excitation (PLE) spectrum of quantum dots closely follows the localized surface plasmon resonance (LSPR) scattering spectrum of the nanoparticles. We measure excitation enhancement factors of ˜3 to 10 for different shapes of single metal nanoparticles.
Single-electron pumping from a quantum dot into an electrode
NASA Astrophysics Data System (ADS)
Sasaoka, Kenji; Yamamoto, Takahiro; Watanabe, Satoshi
2010-03-01
The transient current dynamics of a quantum capacitor consisting of a quantum dot connected to a single electrode has been theoretically investigated by the nonequilibrium Green's function method. We have clarified the influence of dot-electrode coupling strength on the transient current behavior of the quantum capacitor. Our simulation reproduces very well the behaviors seen in recent experimental results by Fève et al., [Science 316, 1169 (2007)], such as the increase in maximum value of instantaneous current and the decrease in total amount of electrons pumped from the dot when the dot-electrode coupling increases.
Applications of single-qubit rotations in quantum public-key cryptography
NASA Astrophysics Data System (ADS)
Nikolopoulos, Georgios M.
2008-03-01
We discuss cryptographic applications of single-qubit rotations from the perspective of trapdoor one-way functions and public-key encryption. In particular, we present an asymmetric cryptosystem whose security relies on fundamental principles of quantum physics. A quantum public key is used for the encryption of messages while decryption is possible by means of a classical private key only. The trapdoor one-way function underlying the proposed cryptosystem maps integer numbers to quantum states of a qubit and its inversion can be infeasible by virtue of the Holevo’s theorem.
Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping
Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E.; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S.
2015-01-01
As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization. PMID:26067215
Silicon Metal-oxide-semiconductor Quantum Dots for Single-electron Pumping.
Rossi, Alessandro; Tanttu, Tuomo; Hudson, Fay E; Sun, Yuxin; Möttönen, Mikko; Dzurak, Andrew S
2015-06-03
As mass-produced silicon transistors have reached the nano-scale, their behavior and performances are increasingly affected, and often deteriorated, by quantum mechanical effects such as tunneling through single dopants, scattering via interface defects, and discrete trap charge states. However, progress in silicon technology has shown that these phenomena can be harnessed and exploited for a new class of quantum-based electronics. Among others, multi-layer-gated silicon metal-oxide-semiconductor (MOS) technology can be used to control single charge or spin confined in electrostatically-defined quantum dots (QD). These QD-based devices are an excellent platform for quantum computing applications and, recently, it has been demonstrated that they can also be used as single-electron pumps, which are accurate sources of quantized current for metrological purposes. Here, we discuss in detail the fabrication protocol for silicon MOS QDs which is relevant to both quantum computing and quantum metrology applications. Moreover, we describe characterization methods to test the integrity of the devices after fabrication. Finally, we give a brief description of the measurement set-up used for charge pumping experiments and show representative results of electric current quantization.
Kushwaha, Manvir S
2011-09-28
We report on the theoretical investigation of the elementary electronic excitations in a quantum wire made up of vertically stacked self-assembled InAs/GaAs quantum dots. The length scales (of a few nanometers) involved in the experimental setups prompt us to consider an infinitely periodic system of two-dimensionally confined (InAs) quantum dot layers separated by GaAs spacers. The resultant quantum wire is characterized by a two-dimensional harmonic confining potential in the x-y plane and a periodic (Kronig-Penney) potential along the z (or the growth) direction within the tight-binding approximation. Since the wells and barriers are formed from two different materials, we employ the Bastard's boundary conditions in order to determine the eigenfunctions along the z direction. These wave functions are then used to generate the Wannier functions, which, in turn, constitute the legitimate Bloch functions that govern the electron dynamics along the direction of periodicity. Thus, the Bloch functions and the Hermite functions together characterize the whole system. We then make use of the Bohm-Pines' (full) random-phase approximation in order to derive a general nonlocal, dynamic dielectric function. Thus, developed theoretical framework is then specified to work within a (lowest miniband and) two-subband model that enables us to scrutinize the single-particle as well as collective responses of the system. We compute and discuss the behavior of the eigenfunctions, band-widths, density of states, Fermi energy, single-particle and collective excitations, and finally size up the importance of studying the inverse dielectric function in relation with the quantum transport phenomena. It is remarkable to notice how the variation in the barrier- and well-widths can allow us to tailor the excitation spectrum in the desired energy range. Given the advantage of the vertically stacked quantum dots over the planar ones and the foreseen applications in the single-electron devices
Simplified quantum bit commitment using single photon nonlocality
NASA Astrophysics Data System (ADS)
He, Guang Ping
2014-10-01
We simplified our previously proposed quantum bit commitment (QBC) protocol based on the Mach-Zehnder interferometer, by replacing symmetric beam splitters with asymmetric ones. It eliminates the need for random sending time of the photons; thus, the feasibility and efficiency are both improved. The protocol is immune to the cheating strategy in the Mayers-Lo-Chau no-go theorem of unconditionally secure QBC, because the density matrices of the committed states do not satisfy a crucial condition on which the no-go theorem holds.
Schell, Andreas W; Engel, Philip; Werra, Julia F M; Wolff, Christian; Busch, Kurt; Benson, Oliver
2014-05-14
Their intrinsic properties render single quantum systems as ideal tools for quantum enhanced sensing and microscopy. As an additional benefit, their size is typically on an atomic scale that enables sensing with very high spatial resolution. Here, we report on utilizing a single nitrogen vacancy center in nanodiamond for performing three-dimensional scanning-probe fluorescence lifetime imaging microscopy. By measuring changes of the single emitter's lifetime, information on the local density of optical states is acquired at the nanoscale. Three-dimensional ab initio discontinuous Galerkin time-domain simulations are used in order to verify the results and to obtain additional insights. This combination of experiment and simulations to gather quantitative information on the local density of optical states is of direct relevance for the understanding of fundamental quantum optical processes as well as for the engineering of novel photonic and plasmonic devices.
Quantum interference and correlations in single dopants and exchange-coupled dopants in silicon
NASA Astrophysics Data System (ADS)
Salfi, Joe
2015-03-01
Quantum electronics exploiting the highly coherent states of single dopants in silicon invariably requires interactions between states and interfaces, and inter-dopant coupling by exchange interactions. We have developed a low temperature STM scheme for spatially resolved single-electron transport in a device-like environment, providing the first wave-function measurements of single donors and exchange-coupled acceptors in silicon. For single donors, we directly observed valley quantum interference due to linear superpositions of the valleys, and found that valley degrees of freedom are highly robust to the symmetry-breaking perturbation of nearby (3 nm) surfaces. For exchange-coupled acceptors, we measured the singlet-triplet splitting, and from the spatial tunneling probability, extracted enough information about the 2-body wavefunction amplitudes to determine the entanglement entropy, a measure of the quantum inseparability (quantum correlations) generated by the interactions between indistinguishable particles. Entanglement entropy of the J=3/2 holes was found to increase with increasing dopant distance, as Coulomb interactions overcome tunneling, coherently localizing spin towards a Heitler-London singlet, mimicing S=1/2 particles. In the future these capabilities will be exploited to peer into the inner workings of few-dopant quantum devices and shed new light on multi-dopant correlated states, engineered atom-by-atom. Work done collaboratively with J. A. Mol, R. Rahman, G. Klimeck, M. Y. Simmons, L. C. L. Hollenberg, and S. Rogge. Primary financial support from the ARC.
Longitudinal wave function control in single quantum dots with an applied magnetic field
NASA Astrophysics Data System (ADS)
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-01
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
Wallraff, A; Schuster, D I; Blais, A; Frunzio, L; Huang, R- S; Majer, J; Kumar, S; Girvin, S M; Schoelkopf, R J
2004-09-09
The interaction of matter and light is one of the fundamental processes occurring in nature, and its most elementary form is realized when a single atom interacts with a single photon. Reaching this regime has been a major focus of research in atomic physics and quantum optics for several decades and has generated the field of cavity quantum electrodynamics. Here we perform an experiment in which a superconducting two-level system, playing the role of an artificial atom, is coupled to an on-chip cavity consisting of a superconducting transmission line resonator. We show that the strong coupling regime can be attained in a solid-state system, and we experimentally observe the coherent interaction of a superconducting two-level system with a single microwave photon. The concept of circuit quantum electrodynamics opens many new possibilities for studying the strong interaction of light and matter. This system can also be exploited for quantum information processing and quantum communication and may lead to new approaches for single photon generation and detection.
Longitudinal wave function control in single quantum dots with an applied magnetic field.
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-27
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
Electrostatic Control of Single IndiumArsenic Quantum Dots using IndiumPhosphorus Nanotemplates
NASA Astrophysics Data System (ADS)
Cheriton, Ross
This thesis focuses on pioneering a scalable route to fabricate quantum information devices based upon single InAs/InP quantum dots emitting in the telecommunications wavelength band around lambda = 1550 nm. Using metallic gates in combination with nanotemplate, site-selective epitaxy techniques, arrays of single quantum dots are produced and electrostatically tuned with a high degree of control over the electrical and optical properties of each individual quantum dot. Using metallic gates to apply local electric fields, the number of electrons within each quantum dot can be tuned and the nature of the optical recombination process controlled. Four electrostatic gates mounted along the sides of a square-based, pyramidal nanotemplate in combination with a flat metallic gate on the back of the InP substrate allow the application of electric fields in any direction across a single quantum dot. Using lateral fields provided by the metallic gates on the sidewalls of the pyramid and a vertical electric field able to control the charge state of the quantum dot, the exchange splitting of the exciton, trion and biexciton are measured as a function of gate voltage. A quadrupole electric field configuration is predicted to symmetrize the product of electron and hole wavefunctions within the dot, producing two degenerate exciton states from the two possible optical decay pathways of the biexciton. Building upon these capabilities, the anisotropic exchange splitting between the exciton states within the biexciton cascade is shown to be reversibly tuned through zero for the first time. We show direct control over the electron and hole wavefunction symmetry, thus enabling the entanglement of emitted photon pairs in asymmetric quantum dots. Optical spectroscopy of single InAs/InP quantum dots atop pyramidal nanotemplates in magnetic fields up to 28T is used to examine the dispersion of the s, p and d shell states. The g-factor and diamagnetic shift of the exciton and charged
Four-Dimensional Spatial Nanometry of Single Particles in Living Cells Using Polarized Quantum Rods
Watanabe, Tomonobu M.; Fujii, Fumihiko; Jin, Takashi; Umemoto, Eiji; Miyasaka, Masayuki; Fujita, Hideaki; Yanagida, Toshio
2013-01-01
Single particle tracking is widely used to study protein movement with high spatiotemporal resolution both in vitro and in cells. Quantum dots, which are semiconductor nanoparticles, have recently been employed in single particle tracking because of their intense and stable fluorescence. Although single particles inside cells have been tracked in three spatial dimensions (X, Y, Z), measurement of the angular orientation of a molecule being tracked would significantly enhance our understanding of the molecule’s function. In this study, we synthesized highly polarized, rod-shaped quantum dots (Qrods) and developed a coating method that optimizes the Qrods for biological imaging. We describe a Qrod-based single particle tracking technique that blends optical nanometry with nanomaterial science to simultaneously measure the three-dimensional and angular movements of molecules. Using Qrods, we spatially tracked a membrane receptor in living cells in four dimensions with precision close to the single-digit range in nanometers and degrees. PMID:23931303
Differential-phase-shift quantum key distribution using heralded narrow-band single photons.
Liu, Chang; Zhang, Shanchao; Zhao, Luwei; Chen, Peng; Fung, C-H F; Chau, H F; Loy, M M T; Du, Shengwang
2013-04-22
We demonstrate the first proof of principle differential phase shift (DPS) quantum key distribution (QKD) using narrow-band heralded single photons with amplitude-phase modulations. In the 3-pulse case, we obtain a quantum bit error rate (QBER) as low as 3.06% which meets the unconditional security requirement. As we increase the pulse number up to 15, the key creation efficiency approaches 93.4%, but with a cost of increasing the QBER. Our result suggests that narrow-band single photons maybe a promising source for the DPS-QKD protocol.
Subnanosecond spectral diffusion of a single quantum dot in a nanowire
NASA Astrophysics Data System (ADS)
Sallen, G.; Tribu, A.; Aichele, T.; André, R.; Besombes, L.; Bougerol, C.; Richard, M.; Tatarenko, S.; Kheng, K.; Poizat, J.-Ph.
2011-07-01
We have studied spectral diffusion of the photoluminescence of a single CdSe quantum dot inserted in a ZnSe nanowire. We have measured the characteristic diffusion time as a function of pumping power and temperature using a recently developed technique [G. Sallen , Nat. Photon. RMPHAT1749-488510.1038/nphoton.2010.1744, 696 (2010)] that offers subnanosecond resolution. These data are consistent with a model where only a single carrier wanders around in traps located in the vicinity of the quantum dot.
Podoshvedov, S. A.
2008-03-15
We study a teleportation protocol of an unknown macroscopic qubit by means of a quantum channel composed of the displaced vacuum and single-photon states. The scheme is based on linear optical devices such as a beam splitter and photon number resolving detectors. A method based on conditional measurement is used to generate both the macroscopic qubit and entangled state composed from displaced vacuum and single-photon states. We show that such a qubit has both macroscopic and microscopic properties. In particular, we investigate a quantum teleportation protocol from a macroscopic object to a microscopic state.
Single photon transport in two waveguides chirally coupled by a quantum emitter.
Cheng, Mu-Tian; Ma, Xiao-San; Zhang, Jia-Yan; Wang, Bing
2016-08-22
We investigate single photon transport in two waveguides coupled to a two-level quantum emitter (QE). With the deduced analytical scattering amplitudes, we show that under condition of the chiral coupling between the QE and the photon in the two waveguides, the QE can play the role of ideal quantum router to redirect a single photon incident from one waveguide into the other waveguide with a probability of 100% in the ideal condition. The influences of cross coupling between two waveguides and dissipations on the routing are also shown.
Huang, Hao; Dorn, August; Nair, Gautham P; Bulović, Vladimir; Bawendi, Moungi G
2007-12-01
We demonstrate reversible quenching of the photoluminescence from single CdSe/ZnS colloidal quantum dots embedded in thin films of the molecular organic semiconductor N,N'-diphenyl-N,N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD) in a layered device structure. Our analysis, based on current and charge carrier density, points toward field ionization as the dominant photoluminescence quenching mechanism. Blinking traces from individual quantum dots reveal that the photoluminescence amplitude decreases continuously as a function of increasing forward bias even at the single quantum dot level. In addition, we show that quantum dot photoluminescence is quenched by aluminum tris(8-hydroxyquinoline) (Alq3) in chloroform solutions as well as in thin solid films of Alq3 whereas TPD has little effect. This highlights the importance of chemical compatibility between semiconductor nanocrystals and surrounding organic semiconductors. Our study helps elucidate elementary interactions between quantum dots and organic semiconductors, knowledge needed for designing efficient quantum dot organic optoelectronic devices.
Controlled rephasing of single spin-waves in a quantum memory based on cold atoms
NASA Astrophysics Data System (ADS)
Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team
2015-05-01
Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.
Double-slit experiment with single wave-driven particles and its relation to quantum mechanics.
Andersen, Anders; Madsen, Jacob; Reichelt, Christian; Rosenlund Ahl, Sonja; Lautrup, Benny; Ellegaard, Clive; Levinsen, Mogens T; Bohr, Tomas
2015-07-01
In a thought-provoking paper, Couder and Fort [Phys. Rev. Lett. 97, 154101 (2006)] describe a version of the famous double-slit experiment performed with droplets bouncing on a vertically vibrated fluid surface. In the experiment, an interference pattern in the single-particle statistics is found even though it is possible to determine unambiguously which slit the walking droplet passes. Here we argue, however, that the single-particle statistics in such an experiment will be fundamentally different from the single-particle statistics of quantum mechanics. Quantum mechanical interference takes place between different classical paths with precise amplitude and phase relations. In the double-slit experiment with walking droplets, these relations are lost since one of the paths is singled out by the droplet. To support our conclusions, we have carried out our own double-slit experiment, and our results, in particular the long and variable slit passage times of the droplets, cast strong doubt on the feasibility of the interference claimed by Couder and Fort. To understand theoretically the limitations of wave-driven particle systems as analogs to quantum mechanics, we introduce a Schrödinger equation with a source term originating from a localized particle that generates a wave while being simultaneously guided by it. We show that the ensuing particle-wave dynamics can capture some characteristics of quantum mechanics such as orbital quantization. However, the particle-wave dynamics can not reproduce quantum mechanics in general, and we show that the single-particle statistics for our model in a double-slit experiment with an additional splitter plate differs qualitatively from that of quantum mechanics.
Song, Guo-Zhu; Wu, Fang-Zhou; Zhang, Mei; Yang, Guo-Jian
2016-01-01
Quantum repeater is the key element in quantum communication and quantum information processing. Here, we investigate the possibility of achieving a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We design the compact quantum circuits for nonlocal entanglement generation, entanglement swapping, and entanglement purification, and discuss the feasibility of our protocols with current experimental technology. In our scheme, we use a parametric down-conversion source instead of ideal single-photon sources to realize the heralded quantum repeater. Moreover, our protocols can turn faulty events into the detection of photon polarization, and the fidelity can reach 100% in principle. Our scheme is attractive and scalable, since it can be realized with artificial solid-state quantum systems. With developed experimental technique on controlling emitter-waveguide systems, the repeater may be very useful in long-distance quantum communication. PMID:27350159
Including Memory Friction in Single- and Two-State Quantum Dynamics Simulations.
Brown, Paul A; Messina, Michael
2016-03-03
We present a simple computational algorithm that allows for the inclusion of memory friction in a quantum dynamics simulation of a small, quantum, primary system coupled to many atoms in the surroundings. We show how including a memory friction operator, F̂, in the primary quantum system's Hamiltonian operator builds memory friction into the dynamics of the primary quantum system. We show that, in the harmonic, semi-classical limit, this friction operator causes the classical phase-space centers of a wavepacket to evolve exactly as if it were a classical particle experiencing memory friction. We also show that this friction operator can be used to include memory friction in the quantum dynamics of an anharmonic primary system. We then generalize the algorithm so that it can be used to treat a primary quantum system that is evolving, non-adiabatically on two coupled potential energy surfaces, i.e., a model that can be used to model H atom transfer, for example. We demonstrate this approach's computational ease and flexibility by showing numerical results for both harmonic and anharmonic primary quantum systems in the single surface case. Finally, we present numerical results for a model of non-adiabatic H atom transfer between a reactant and product state that includes memory friction on one or both of the non-adiabatic potential energy surfaces and uncover some interesting dynamical effects of non-memory friction on the H atom transfer process.
A photon-photon quantum gate based on a single atom in an optical resonator.
Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan
2016-08-11
That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other's phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon's polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because "no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift''. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two-photon operations
A photon-photon quantum gate based on a single atom in an optical resonator
NASA Astrophysics Data System (ADS)
Hacker, Bastian; Welte, Stephan; Rempe, Gerhard; Ritter, Stephan
2016-08-01
That two photons pass each other undisturbed in free space is ideal for the faithful transmission of information, but prohibits an interaction between the photons. Such an interaction is, however, required for a plethora of applications in optical quantum information processing. The long-standing challenge here is to realize a deterministic photon-photon gate, that is, a mutually controlled logic operation on the quantum states of the photons. This requires an interaction so strong that each of the two photons can shift the other’s phase by π radians. For polarization qubits, this amounts to the conditional flipping of one photon’s polarization to an orthogonal state. So far, only probabilistic gates based on linear optics and photon detectors have been realized, because “no known or foreseen material has an optical nonlinearity strong enough to implement this conditional phase shift”. Meanwhile, tremendous progress in the development of quantum-nonlinear systems has opened up new possibilities for single-photon experiments. Platforms range from Rydberg blockade in atomic ensembles to single-atom cavity quantum electrodynamics. Applications such as single-photon switches and transistors, two-photon gateways, nondestructive photon detectors, photon routers and nonlinear phase shifters have been demonstrated, but none of them with the ideal information carriers: optical qubits in discriminable modes. Here we use the strong light-matter coupling provided by a single atom in a high-finesse optical resonator to realize the Duan-Kimble protocol of a universal controlled phase flip (π phase shift) photon-photon quantum gate. We achieve an average gate fidelity of (76.2 ± 3.6) per cent and specifically demonstrate the capability of conditional polarization flipping as well as entanglement generation between independent input photons. This photon-photon quantum gate is a universal quantum logic element, and therefore could perform most existing two
Deterministic secure quantum communication using a single d-level system
Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun
2017-01-01
Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected. PMID:28327557
Introducing single Mn2+ ions into spontaneously coupled quantum dot pairs
NASA Astrophysics Data System (ADS)
Koperski, M.; Goryca, M.; Kazimierczuk, T.; Smoleński, T.; Golnik, A.; Wojnar, P.; Kossacki, P.
2014-02-01
We present the photoluminescence excitation study of the self-assembled CdTe/ZnTe quantum dots doped with manganese ions. We demonstrate the identification method of spontaneously coupled quantum dots pairs containing single Mn2+ ions. As the result of the coupling, the resonant absorption of the photon in one quantum dot is followed by the exciton transfer into a neighboring dot. It is shown that the Mn2+ ion might be present in the absorbing, emitting, or both quantum dots. The magnetic properties of the Mn2+ spin are revealed by a characteristic sixfold splitting of the excitonic line. The statistics of the value of this splitting is analyzed for the large number of the dots and gives the information on the maximum density of the neutral exciton wave function.
Deterministic secure quantum communication using a single d-level system
NASA Astrophysics Data System (ADS)
Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun
2017-03-01
Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected.
Picosecond Acoustics in Single Quantum Wells of Cubic GaN /(Al ,Ga )N
NASA Astrophysics Data System (ADS)
Czerniuk, T.; Ehrlich, T.; Wecker, T.; As, D. J.; Yakovlev, D. R.; Akimov, A. V.; Bayer, M.
2017-01-01
A picosecond acoustic pulse is used to study the photoelastic interaction in single zinc-blende GaN /AlxGa1 -x N quantum wells. We use an optical time-resolved pump-probe setup and demonstrate that tuning the photon energy to the quantum well's lowest electron-hole transition makes the experiment sensitive to the quantum well only. Because of the small width, its temporal and spatial resolution allows us to track the few-picosecond-long transit of the acoustic pulse. We further deploy a model to analyze the unknown photoelastic coupling strength of the quantum well for different photon energies and find good agreement with the experiments.
Deterministic secure quantum communication using a single d-level system.
Jiang, Dong; Chen, Yuanyuan; Gu, Xuemei; Xie, Ling; Chen, Lijun
2017-03-22
Deterministic secure quantum communication (DSQC) can transmit secret messages between two parties without first generating a shared secret key. Compared with quantum key distribution (QKD), DSQC avoids the waste of qubits arising from basis reconciliation and thus reaches higher efficiency. In this paper, based on data block transmission and order rearrangement technologies, we propose a DSQC protocol. It utilizes a set of single d-level systems as message carriers, which are used to directly encode the secret message in one communication process. Theoretical analysis shows that these employed technologies guarantee the security, and the use of a higher dimensional quantum system makes our protocol achieve higher security and efficiency. Since only quantum memory is required for implementation, our protocol is feasible with current technologies. Furthermore, Trojan horse attack (THA) is taken into account in our protocol. We give a THA model and show that THA significantly increases the multi-photon rate and can thus be detected.
Silver Embedded Nanomesas as Enhanced Single Quantum Dot Emitters in the Telecommunication C Band
NASA Astrophysics Data System (ADS)
Huh, Jae-Hoon; Hermannstädter, Claus; Akahane, Kouichi; Jahan, Nahid A.; Sasaki, Masahide; Suemune, Ikuo
2012-06-01
We use high-density InAs quantum dots, which were grown by molecular beam epitaxy on InP(311)B substrates, as photon sources in the telecommunication C band at approximately 1.55 µm. To select a small numbers of dots, we fabricate sub-micrometer sized mesas by electron beam lithography and reactive ion etching. The benefit of using high-density quantum dot samples is that at least one optically active quantum dot can be expected in every single mesa. We show that the etching rate and resulting mesa shape of the In0.53Al0.22Ga0.25As epitaxial layer can be varied with the chamber pressure during the etching process. Furthermore, under constant pressure and with increasing etching time, the sequential etching of the epitaxial layer and the underneath substrate leads to a significant modification in the mesa shape, too. We demonstrate that the isolation of a small number of quantum dots within one mesa results in the appearance of single quantum dot emission with a narrow line width and minimal spectral overlap between different emission lines. We moreover present significant enhancement of the luminescence collected from single dots in silver-embedded nanomesas when compared with as-etched mesas.
Huang, Da; Freeley, Mark; Palma, Matteo
2017-01-01
We present a facile strategy of general applicability for the assembly of individual nanoscale moieties in array configurations with single-molecule control. Combining the programming ability of DNA as a scaffolding material with a one-step lithographic process, we demonstrate the patterning of single quantum dots (QDs) at predefined locations on silicon and transparent glass surfaces: as proof of concept, clusters of either one, two, or three QDs were assembled in highly uniform arrays with a 60 nm interdot spacing within each cluster. Notably, the platform developed is reusable after a simple cleaning process and can be designed to exhibit different geometrical arrangements. PMID:28349982
Huang, Da; Freeley, Mark; Palma, Matteo
2017-03-28
We present a facile strategy of general applicability for the assembly of individual nanoscale moieties in array configurations with single-molecule control. Combining the programming ability of DNA as a scaffolding material with a one-step lithographic process, we demonstrate the patterning of single quantum dots (QDs) at predefined locations on silicon and transparent glass surfaces: as proof of concept, clusters of either one, two, or three QDs were assembled in highly uniform arrays with a 60 nm interdot spacing within each cluster. Notably, the platform developed is reusable after a simple cleaning process and can be designed to exhibit different geometrical arrangements.
Quantum witness of high-speed low-noise single-photon detection.
Zhao, Lin; Huang, Kun; Liang, Yan; Chen, Jie; Shi, Xueshun; Wu, E; Zeng, Heping
2015-12-14
We demonstrate high-speed and low-noise near-infrared single-photon detection by using a capacitance balancing circuit to achieve a high spike noise suppression for an InGaAs/InP avalanche photodiode. The single-photon detector could operate at a tunable gate repetition rate from 10 to 60 MHz. A peak detection efficiency of 34% has been achieved with a dark count rate of 9 × 10⁻³ per gate when the detection window was set to 1 ns. Additionally, quantum detector tomography has also been performed at 60 MHz of repetition rate and for the detection window of 1 ns, enabling to witness the quantum features of the detector with the help of a negative Wigner function. By varying the bias voltage of the detector, we further demonstrated a transition from the full-quantum to semi-classical regime.
Formation of visible single-mode light sources using quantum dots
NASA Astrophysics Data System (ADS)
Baig, Sarfaraz; Xu, Jianfeng; Wu, Pengfei; Chen, Bing; Wang, Michael
2008-08-01
The market demands for innovative, efficient, small package and single-mode light sources are always high because of their broad applications in scientific, medical, industrial, and commercial fields. The high photoluminescence quantum yield, photophysical and photochemical stability, and tunable emission wavelength make quantum dots ideal for a new generation of solid state light sources. We report on the realization of various single-mode light sources in the visible spectral band by using semiconductor quantum dots. The effective use of a waveguide structure can help achieve the divergence control of the output light beam. This technique may benefit the development for next generation light emitting diodes, optical communication, intelligent optical sensors, microprocessors, and nanoscale optical imaging systems.
Quantum Stirling heat engine and refrigerator with single and coupled spin systems
NASA Astrophysics Data System (ADS)
Huang, Xiao-Li; Niu, Xin-Ya; Xiu, Xiao-Ming; Yi, Xue-Xi
2014-02-01
We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.
Orientation dependence of strained ZnSe/ZnS(h11) single quantum well luminescence
NASA Astrophysics Data System (ADS)
Tomasini, P.; Arai, K.; Lu, F.; Zhu, Z. Q.; Sekiguchi, T.; Suezawa, M.; Yao, T.; Shen, M. Y.; Goto, T.; Yasuda, T.; Segawa, Y.
1998-04-01
Pseudomorphic ZnSe/ZnS single quantum well (SQW) structures have been grown on GaP substrates with high Miller indices. Samples with different crystallographic axis, grown under similar experimental conditions, exhibit different thicknesses, since the growth rate of a crystal facet is axis dependent. The optical properties of ZnSe/ZnS(h11) single quantum wells have been successfully related to the axis orientation through a finite square well potential model. Optical transitions in ZnSe SQWs are dominated by the axis dependence of the heavy-hole effective masses. Furthermore, calculations concerning the piezoelectric effect show that the quantum confined Stark effect is almost negligible for 1-2 monolayers thick wells.
Simple and efficient absorption filter for single photons from a cold atom quantum memory.
Stack, Daniel T; Lee, Patricia J; Quraishi, Qudsia
2015-03-09
The ability to filter unwanted light signals is critical to the operation of quantum memories based on neutral atom ensembles. Here we demonstrate an efficient frequency filter which uses a vapor cell filled with (85)Rb and a buffer gas to attenuate both residual laser light and noise photons by nearly two orders of magnitude with little loss to the single photons associated with our cold (87)Rb quantum memory. This simple, passive filter provides an additional 18 dB attenuation of our pump laser and erroneous spontaneous emissions for every 1 dB loss of the single photon signal. We show that the addition of a frequency filter increases the non-classical correlations and the retrieval efficiency of our quantum memory by ≈ 35%.
Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit
Santhosh, Kotni; Bitton, Ora; Chuntonov, Lev; Haran, Gilad
2016-01-01
The strong interaction of individual quantum emitters with resonant cavities is of fundamental interest for understanding light–matter interactions. Plasmonic cavities hold the promise of attaining the strong coupling regime even under ambient conditions and within subdiffraction volumes. Recent experiments revealed strong coupling between individual plasmonic structures and multiple organic molecules; however, strong coupling at the limit of a single quantum emitter has not been reported so far. Here we demonstrate vacuum Rabi splitting, a manifestation of strong coupling, using silver bowtie plasmonic cavities loaded with semiconductor quantum dots (QDs). A transparency dip is observed in the scattering spectra of individual bowties with one to a few QDs, which are directly counted in their gaps. A coupling rate as high as 120 meV is registered even with a single QD, placing the bowtie-QD constructs close to the strong coupling regime. These observations are verified by polarization-dependent experiments and validated by electromagnetic calculations. PMID:27293116
Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit
NASA Astrophysics Data System (ADS)
Santhosh, Kotni; Bitton, Ora; Chuntonov, Lev; Haran, Gilad
2016-06-01
The strong interaction of individual quantum emitters with resonant cavities is of fundamental interest for understanding light-matter interactions. Plasmonic cavities hold the promise of attaining the strong coupling regime even under ambient conditions and within subdiffraction volumes. Recent experiments revealed strong coupling between individual plasmonic structures and multiple organic molecules; however, strong coupling at the limit of a single quantum emitter has not been reported so far. Here we demonstrate vacuum Rabi splitting, a manifestation of strong coupling, using silver bowtie plasmonic cavities loaded with semiconductor quantum dots (QDs). A transparency dip is observed in the scattering spectra of individual bowties with one to a few QDs, which are directly counted in their gaps. A coupling rate as high as 120 meV is registered even with a single QD, placing the bowtie-QD constructs close to the strong coupling regime. These observations are verified by polarization-dependent experiments and validated by electromagnetic calculations.
Three-waveform bidirectional pumping of single electrons with a silicon quantum dot
Tanttu, Tuomo; Rossi, Alessandro; Tan, Kuan Yen; Mäkinen, Akseli; Chan, Kok Wai; Dzurak, Andrew S.; Möttönen, Mikko
2016-01-01
Semiconductor-based quantum dot single-electron pumps are currently the most promising candidates for the direct realization of the emerging quantum standard of the ampere in the International System of Units. Here, we discuss a silicon quantum dot single-electron pump with radio frequency control over the transparencies of entrance and exit barriers as well as the dot potential. We show that our driving protocol leads to robust bidirectional pumping: one can conveniently reverse the direction of the quantized current by changing only the phase shift of one driving waveform with respect to the others. We anticipate that this pumping technique may be used in the future to perform error counting experiments by pumping the electrons into and out of a reservoir island monitored by a charge sensor. PMID:27821861
Device-independent quantum key distribution using single-photon entanglement
NASA Astrophysics Data System (ADS)
Kamaruddin, S.; Shaari, J. S.
2015-04-01
Quantum key distribution (QKD) with security features based on the notion of nonlocality has provided valuable insights into the possibility of device-independent scenarios. The essential resource for nonlocality in Nature described by quantum physics has been mainly associated with entanglement of two particles or more, although it has been shown that nonlocality of a single particle is indeed possible. Here, we consider a quantum key distribution scheme based on Phys. Rev. A, 68 (2003) 012324 exploiting single-particle nonlocality testing to demonstrate its security. We present our analysis of security against individual attack within a device-independent scenario where Eve is constrained only by the no-signaling principle. We further consider a family of QKD protocols based on binary measurements and discuss the possibility of optimal scenarios.
Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films.
Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R; Voznyy, Oleksandr; Kwon, S Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H
2015-07-13
Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.
Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films
Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.
2015-01-01
Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles—yet size–effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector. PMID:26165185
Single-step fabrication of quantum funnels via centrifugal colloidal casting of nanoparticle films
NASA Astrophysics Data System (ADS)
Kim, Jin Young; Adinolfi, Valerio; Sutherland, Brandon R.; Voznyy, Oleksandr; Kwon, S. Joon; Kim, Tae Wu; Kim, Jeongho; Ihee, Hyotcherl; Kemp, Kyle; Adachi, Michael; Yuan, Mingjian; Kramer, Illan; Zhitomirsky, David; Hoogland, Sjoerd; Sargent, Edward H.
2015-07-01
Centrifugal casting of composites and ceramics has been widely employed to improve the mechanical and thermal properties of functional materials. This powerful method has yet to be deployed in the context of nanoparticles--yet size-effect tuning of quantum dots is among their most distinctive and application-relevant features. Here we report the first gradient nanoparticle films to be constructed in a single step. By creating a stable colloid of nanoparticles that are capped with electronic-conduction-compatible ligands we were able to leverage centrifugal casting for thin-films devices. This new method, termed centrifugal colloidal casting, is demonstrated to form films in a bandgap-ordered manner with efficient carrier funnelling towards the lowest energy layer. We constructed the first quantum-gradient photodiode to be formed in a single deposition step and, as a result of the gradient-enhanced electric field, experimentally measured the highest normalized detectivity of any colloidal quantum dot photodetector.
Cuozzo, Domenico; Oppo, Gian-Luca
2011-10-15
We apply the input-output theory of optical cavities to formulate a quantum treatment of a continuous-wave singly resonant optical parametric oscillator. This case is mainly relevant to highly nondegenerate signal and idler modes. We show that both intensity and quadrature squeezing are present and that the maximum noise reduction below the standard quantum limit is the same at the signal and idler frequencies as in the doubly resonant case. As the threshold of oscillation is approached, however, the intensity-difference and quadrature spectra display a progressive line narrowing which is absent in the balanced doubly resonant case. By use of the separability criterion for continuous variables, the signal-idler state is found to be entangled over wide ranges of the parameters. We show that attainable levels of squeezing and entanglement make singly resonant configurations ideal candidates for two-color quantum information processes, because of their ease of tuning in experimental realizations.
Sharp exciton emission from single InAs quantum dots in GaAs nanowires
NASA Astrophysics Data System (ADS)
Panev, Nikolay; Persson, Ann I.; Sköld, Niklas; Samuelson, Lars
2003-09-01
We have performed photoluminescence spectroscopy on single GaAs nanowires with InAs quantum dots in the form of thin slices of InAs, possibly alloyed with Ga as InGaAs, incorporated into the GaAs. The nanowires were grown by chemical beam epitaxy using gold nanoparticles as catalysts. The photoluminescence measurements showed rich spectra consisting of sharp lines with energies and excitation power dependency behavior very similar to that observed for Stranski-Krastanow-grown InAs/GaAs quantum dots. By reducing the excitation power density we were able to obtain a quantum dot spectrum consisting of only one single sharp line—the exciton line.
On-chip electrically controlled routing of photons from a single quantum dot
Bentham, C.; Coles, R. J.; Royall, B.; O'Hara, J.; Prtljaga, N.; Fox, A. M.; Skolnick, M. S.; Wilson, L. R.; Itskevich, I. E.; Clarke, E.
2015-06-01
Electrical control of on-chip routing of photons emitted by a single InAs/GaAs self-assembled quantum dot (SAQD) is demonstrated in a photonic crystal cavity-waveguide system. The SAQD is located inside an H1 cavity, which is coupled to two photonic crystal waveguides. The SAQD emission wavelength is electrically tunable by the quantum-confined Stark effect. When the SAQD emission is brought into resonance with one of two H1 cavity modes, it is preferentially routed to the waveguide to which that mode is selectively coupled. This proof of concept provides the basis for scalable, low-power, high-speed operation of single-photon routers for use in integrated quantum photonic circuits.
Admittance Investigation of MIS Structures with HgTe-Based Single Quantum Wells.
Izhnin, Ihor I; Nesmelov, Sergey N; Dzyadukh, Stanislav M; Voitsekhovskii, Alexander V; Gorn, Dmitry I; Dvoretsky, Sergey A; Mikhailov, Nikolaj N
2016-12-01
This work presents results of the investigation of admittance of metal-insulator-semiconductor structure based on Hg1 - x Cd x Te grown by molecular beam epitaxy. The structure contains a single quantum well Hg0.35Cd0.65Te/HgTe/Hg0.35Cd0.65Te with thickness of 5.6 nm in the sub-surface layer of the semiconductor. Both the conductance-voltage and capacitance-voltage characteristics show strong oscillations when the metal-insulator-semiconductor (MIS) structure with a single quantum well based on HgTe is biased into the strong inversion mode. Also, oscillations on the voltage dependencies of differential resistance of the space charge region were observed. These oscillations were related to the recharging of quantum levels in HgTe.
Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit.
Santhosh, Kotni; Bitton, Ora; Chuntonov, Lev; Haran, Gilad
2016-06-13
The strong interaction of individual quantum emitters with resonant cavities is of fundamental interest for understanding light-matter interactions. Plasmonic cavities hold the promise of attaining the strong coupling regime even under ambient conditions and within subdiffraction volumes. Recent experiments revealed strong coupling between individual plasmonic structures and multiple organic molecules; however, strong coupling at the limit of a single quantum emitter has not been reported so far. Here we demonstrate vacuum Rabi splitting, a manifestation of strong coupling, using silver bowtie plasmonic cavities loaded with semiconductor quantum dots (QDs). A transparency dip is observed in the scattering spectra of individual bowties with one to a few QDs, which are directly counted in their gaps. A coupling rate as high as 120 meV is registered even with a single QD, placing the bowtie-QD constructs close to the strong coupling regime. These observations are verified by polarization-dependent experiments and validated by electromagnetic calculations.
Three-waveform bidirectional pumping of single electrons with a silicon quantum dot
NASA Astrophysics Data System (ADS)
Tanttu, Tuomo; Rossi, Alessandro; Tan, Kuan Yen; Mäkinen, Akseli; Chan, Kok Wai; Dzurak, Andrew S.; Möttönen, Mikko
2016-11-01
Semiconductor-based quantum dot single-electron pumps are currently the most promising candidates for the direct realization of the emerging quantum standard of the ampere in the International System of Units. Here, we discuss a silicon quantum dot single-electron pump with radio frequency control over the transparencies of entrance and exit barriers as well as the dot potential. We show that our driving protocol leads to robust bidirectional pumping: one can conveniently reverse the direction of the quantized current by changing only the phase shift of one driving waveform with respect to the others. We anticipate that this pumping technique may be used in the future to perform error counting experiments by pumping the electrons into and out of a reservoir island monitored by a charge sensor.
Carbon Nanotube-Quantum Dot Nanohybrids: Coupling with Single-Particle Control in Aqueous Solution.
Attanzio, Antonio; Sapelkin, Andrei; Gesuele, Felice; van der Zande, Arend; Gillin, William P; Zheng, Ming; Palma, Matteo
2017-02-10
A strategy is reported for the controlled assembly of organic-inorganic heterostructures consisting of individual single-walled carbon nanotubes (SWCNTs) selectively coupled to single semiconductor quantum dots (QDs). The assembly in aqueous solution was controlled towards the formation of monofunctionalized SWCNT-QD structures. Photoluminescence studies in solution, and on surfaces at the single nanohybrid level, showed evidence of electronic coupling between the two nanostructures. The ability to covalently couple heterostructures with single particle control is crucial for the design of novel QD-based optoelectronic and light-energy conversion devices.
Feng, X. T.; Zhang, Y.; Liu, X. G.; Zhang, F.; Wang, Y. L.; Yang, Y. Z.
2015-11-23
Carbon quantum dots (CQDs) with high quantum yield (51.4%) were synthesized by a one-step hydrothermal method using thiosalicylic acid and ethylenediamine as precursor. The CQDs have the average diameter of 2.3 nm and possess excitation-independent emission wavelength in the range from 320 to 440 nm excitation. Under an ultraviolet (UV) excitation, the CQDs aqueous solutions emit bright blue fluorescence directly and exhibit broad emission with a high spectral component ratio of 67.4% (blue to red intensity to total intensity). We applied the CQDs as a single white-light converter for white light emitting diodes (WLEDs) using a UV-LED chip as the excitation light source. The resulted WLED shows superior performance with corresponding color temperature of 5227 K and the color coordinates of (0.34, 0.38) belonging to the white gamut.
Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots.
Park, Young-Shin; Guo, Shaojun; Makarov, Nikolay S; Klimov, Victor I
2015-10-27
Lead-halide-based perovskites have been the subject of numerous recent studies largely motivated by their exceptional performance in solar cells. Electronic and optical properties of these materials have been commonly controlled by varying the composition (e.g., the halide component) and/or crystal structure. Use of nanostructured forms of perovskites can provide additional means for tailoring their functionalities via effects of quantum confinement and wave function engineering. Furthermore, it may enable applications that explicitly rely on the quantum nature of electronic excitations. Here, we demonstrate that CsPbX3 quantum dots (X = I, Br) can serve as room-temperature sources of quantum light, as indicated by strong photon antibunching detected in single-dot photoluminescence measurements. We explain this observation by the presence of fast nonradiative Auger recombination, which renders multiexciton states virtually nonemissive and limits the fraction of photon coincidence events to ∼6% on average. We analyze limitations of these quantum dots associated with irreversible photodegradation and fluctuations ("blinking") of the photoluminescence intensity. On the basis of emission intensity-lifetime correlations, we assign the "blinking" behavior to random charging/discharging of the quantum dot driven by photoassisted ionization. This study suggests that perovskite quantum dots hold significant promise for applications such as quantum emitters; however, to realize this goal, one must resolve the problems of photochemical stability and photocharging. These problems are largely similar to those of more traditional quantum dots and, hopefully, can be successfully resolved using advanced methodologies developed over the years in the field of colloidal nanostructures.
A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers
NASA Technical Reports Server (NTRS)
Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.
1990-01-01
The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.
Quantum teleportation of the angular spectrum of a single-photon field
Walborn, S. P.; Ether, D. S.; Matos Filho, R. L. de; Zagury, N.
2007-09-15
We propose a quantum teleportation scheme for the angular spectrum of a single-photon field, which allows for the transmission of a large amount of information. Our proposal also provides a method to tune the frequencies of spatially entangled fields, which is useful for interactions with stationary qubits.
NASA Astrophysics Data System (ADS)
Schlehahn, A.; Schmidt, R.; Hopfmann, C.; Schulze, J.-H.; Strittmatter, A.; Heindel, T.; Gantz, L.; Schmidgall, E. R.; Gershoni, D.; Reitzenstein, S.
2016-01-01
We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g(2)(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.
Schlehahn, A.; Schmidt, R.; Hopfmann, C.; Schulze, J.-H.; Strittmatter, A.; Heindel, T. Reitzenstein, S.; Gantz, L.; Schmidgall, E. R.; Gershoni, D.
2016-01-11
We report on the generation of single-photon pulse trains at a repetition rate of up to 1 GHz. We achieve this speed by modulating the external voltage applied on an electrically contacted quantum dot microlens, which is optically excited by a continuous-wave laser. By modulating the photoluminescence of the quantum dot microlens using a square-wave voltage, single-photon emission is triggered with a response time as short as (281 ± 19) ps, being 6 times faster than the radiative lifetime of (1.75 ± 0.02) ns. This large reduction in the characteristic emission time is enabled by a rapid capacitive gating of emission from the quantum dot, which is placed in the intrinsic region of a p-i-n-junction biased below the onset of electroluminescence. Here, since our circuit acts as a rectifying differentiator, the rising edge of the applied voltage pulses triggers the emission of single photons from the optically excited quantum dot. The non-classical nature of the photon pulse train generated at GHz-speed is proven by intensity autocorrelation measurements with g{sup (2)}(0) = 0.3 ± 0.1. Our results combine optical excitation with fast electrical gating and thus show promise for the generation of indistinguishable single photons at rates exceeding the limitations set by the intrinsic radiative lifetime.
Temperature Dependence of Optical Linewidth in Single InAs Quantum Dots
2006-10-19
We consider the temperature dependence of the exciton linewidth in single InAs self-assembled quantum dots. We show that in cases where etched mesas...are used to isolate the dots, the magnitude of the linear temperature coefficient and its dependence on mesa size are described well by exciton
Bailey, Danielle M; Kovtun, Oleg; Rosenthal, Sandra J
2017-01-01
Single particle tracking (SPT) experiments have provided the scientific community with invaluable single-molecule information about the dynamic regulation of individual receptors, transporters, kinases, lipids, and molecular motors. SPT is an alternative to ensemble averaging approaches, where heterogeneous modes of motion might be lost. Quantum dots (QDs) are excellent probes for SPT experiments due to their photostability, high brightness, and size-dependent, narrow emission spectra. In a typical QD-based SPT experiment, QDs are bound to the target of interest and imaged for seconds to minutes via fluorescence video microscopy. Single QD spots in individual frames are then linked to form trajectories that are analyzed to determine their mean square displacement, diffusion coefficient, confinement index, and instantaneous velocity. This chapter describes a generalizable protocol for the single particle tracking of membrane neurotransmitter transporters on cell membranes with either unmodified extracellular antibody probes and secondary antibody-conjugated quantum dots or biotinylated extracellular antibody probes and streptavidin-conjugated quantum dots in primary neuronal cultures. The neuronal cell culture, the biotinylation protocol and the quantum dot labeling procedures, as well as basic data analysis are discussed.
Quantum Chemical Characterization of Single Molecule Magnets Based on Uranium.
Spivak, Mariano; Vogiatzis, Konstantinos D; Cramer, Christopher J; Graaf, Coen de; Gagliardi, Laura
2017-03-02
Multiconfigurational electronic structure theory calculations including spin-orbit coupling effects were performed on four uranium-based single-molecule-magnets. Several quartet and doublet states were computed and the energy gaps between spin-orbit states were then used to determine magnetic susceptibility curves. Trends in experimental magnetic susceptibility curves were well reproduced by the calculations, and key factors affecting performance were identified.
NASA Astrophysics Data System (ADS)
Qian, Peng; Gu, Zhenjie; Cao, Rong; Wen, Rong; Ou, Z. Y.; Chen, J. F.; Zhang, Weiping
2016-07-01
The temporal purity of single photons is crucial to the indistinguishability of independent photon sources for the fundamental study of the quantum nature of light and the development of photonic technologies. Currently, the technique for single photons heralded from time-frequency entangled biphotons created in nonlinear crystals does not guarantee the temporal-quantum purity, except using spectral filtering. Nevertheless, an entirely different situation is anticipated for narrow-band biphotons with a coherence time far longer than the time resolution of a single-photon detector. Here we demonstrate temporally pure single photons with a coherence time of 100 ns, directly heralded from the time-frequency entangled biphotons generated by spontaneous four-wave mixing in cold atomic ensembles, without any supplemented filters or cavities. A near-perfect purity and indistinguishability are both verified through Hong-Ou-Mandel quantum interference using single photons from two independent cold atomic ensembles. The time-frequency entanglement provides a route to manipulate the pure temporal state of the single-photon source.
NASA Astrophysics Data System (ADS)
Yamanashi, Yuki; Masubuchi, Kota; Yoshikawa, Nobuyuki
2016-11-01
The relationship between the timing margin and the error rate of the large-scale single flux quantum logic circuits is quantitatively investigated to establish a timing design guideline. We observed that the fluctuation in the set-up/hold time of single flux quantum logic gates caused by thermal noises is the most probable origin of the logical error of the large-scale single flux quantum circuit. The appropriate timing margin for stable operation of the large-scale logic circuit is discussed by taking the fluctuation of setup/hold time and the timing jitter in the single flux quantum circuits. As a case study, the dependence of the error rate of the 1-million-bit single flux quantum shift register on the timing margin is statistically analyzed. The result indicates that adjustment of timing margin and the bias voltage is important for stable operation of a large-scale SFQ logic circuit.
Superconducting single electron transistor for charge sensing in Si/SiGe-based quantum dots
NASA Astrophysics Data System (ADS)
Yang, Zhen
Si-based quantum devices, including Si/SiGe quantum dots (QD), are promising candidates for spin-based quantum bits (quits), which are a potential platform for quantum information processing. Meanwhile, qubit readout remains a challenging task related to semiconductor-based quantum computation. This thesis describes two readout devices for Si/SiGe QDs and the techniques for developing them from a traditional single electron transistor (SET). By embedding an SET in a tank circuit and operating it in the radio-frequency (RF) regime, a superconducting RF-SET has quick response as well as ultra high charge sensitivity and can be an excellent charge sensor for the QDs. We demonstrate such RF-SETs for QDs in a Si/SiGe heterostructure. Characterization of the SET in magnetic fields is studied for future exploration of advanced techniques such as spin detection and spin state manipulation. By replacing the tank circuit with a high-quality-factor microwave cavity, the embedded SET will be operated in the supercurrent regime as a single Cooper pair transistor (CPT) to further increase the charge sensitivity and reduce any dissipation. The operating principle and implementation of the cavity-embedded CPT (cCPT) will be introduced.
Calibration of single-photon detectors using quantum statistics
Mogilevtsev, D.
2010-08-15
I show that calibration of the single-photon detector can be performed without knowledge of the signal parameters. Only partial information about the state statistics is sufficient for that. If one knows that the state is the squeezed one or the squeezed one mixed with the incoherent radiation, one can infer both the parameters of the state and the efficiency of the detector. For that one needs only to measure on/off statistics of detector clicks for the number of known absorbers placed before the detector. Thus, I suggest a scheme that performs a tomography of the signal and the measuring apparatus simultaneously.
Li, Tao; Deng, Fu-Guo
2015-10-27
Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication.
Thermoelectric transport properties through a T-shaped single quantum dot
NASA Astrophysics Data System (ADS)
Castellanos, R.; Franco, R.; Silva-Valencia, J.; Figueira, M. S.
2010-12-01
We study the thermopower, thermal conductance, electric conductance and the thermoelectric figure of merit for a gate-defined T-shaped single quantum dot (QD). The QD is solved in the limit of strong Coulombian repulsion U→∞, inside the dot, and the quantum wire is modeled on a tight-binding linear chain. We employ the X-boson approach for the Anderson impurity model to describe the localized level within the quantum dot. Our results are in qualitative agreement with recent experimental reports and other theoretical researches for the case of a quantum dot embedded into a conduction channel, employing analogies between the two systems. The results for the thermopower sign as a function of the gate voltage (associated with the quantum dot energy) are in agreement with a recent experimental result obtained for a suspended quantum dot. The thermoelectric figure of merit times temperature results indicates that, at low temperatures and in the crossover between the intermediate valence and Kondo regimes, the system might have practical applicability in the development of thermoelectric devices.
Li, Tao; Deng, Fu-Guo
2015-01-01
Quantum repeater is one of the important building blocks for long distance quantum communication network. The previous quantum repeaters based on atomic ensembles and linear optical elements can only be performed with a maximal success probability of 1/2 during the entanglement creation and entanglement swapping procedures. Meanwhile, the polarization noise during the entanglement distribution process is harmful to the entangled channel created. Here we introduce a general interface between a polarized photon and an atomic ensemble trapped in a single-sided optical cavity, and with which we propose a high-efficiency quantum repeater protocol in which the robust entanglement distribution is accomplished by the stable spatial-temporal entanglement and it can in principle create the deterministic entanglement between neighboring atomic ensembles in a heralded way as a result of cavity quantum electrodynamics. Meanwhile, the simplified parity-check gate makes the entanglement swapping be completed with unity efficiency, other than 1/2 with linear optics. We detail the performance of our protocol with current experimental parameters and show its robustness to the imperfections, i.e., detuning and coupling variation, involved in the reflection process. These good features make it a useful building block in long distance quantum communication. PMID:26502993
Strain Coupling of a Mechanical Resonator to a Single Quantum Emitter in Diamond
NASA Astrophysics Data System (ADS)
Lee, Kenneth W.; Lee, Donghun; Ovartchaiyapong, Preeti; Minguzzi, Joaquin; Maze, Jero R.; Bleszynski Jayich, Ania C.
2016-09-01
The recent maturation of hybrid quantum devices has led to significant enhancements in the functionality of a wide variety of quantum systems. In particular, harnessing mechanical resonators for manipulation and control has expanded the use of two-level systems in quantum-information science and quantum sensing. Here, we report on a monolithic hybrid quantum device in which strain fields associated with resonant vibrations of a diamond cantilever dynamically control the optical transitions of a single nitrogen-vacancy (NV) defect center in diamond. We quantitatively characterize the strain coupling to the orbital states of the NV center and, with mechanical driving, we observe NV-strain couplings exceeding 10 GHz. Furthermore, we use this strain-mediated coupling to match the frequency and polarization dependence of the zero-phonon lines of two spatially separated and initially distinguishable NV centers. The experiments demonstrated here mark an important step toward engineering a quantum device capable of realizing and probing the dynamics of nonclassical states of mechanical resonators, spin systems, and photons.
NASA Astrophysics Data System (ADS)
Odoi, Michael Yemoh
Single molecule studies on CdSe quantum dots functionalized with oligo-phenylene vinylene ligands (CdSe-OPV) provide evidence of strong electronic communication that facilitate charge and energy transport between the OPV ligands and the CdSe quantum dot core. This electronic interaction greatly modify, the photoluminescence properties of both bulk and single CdSe-OPV nanostructure thin film samples. Size-correlated wide-field fluorescence imaging show that blinking suppression in single CdSe-OPV is linked to the degree of OPV coverage (inferred from AFM height scans) on the quantum dot surface. The effect of the complex electronic environment presented by photoexcited OPV ligands on the excited state property of CdSe-OPV is measured with single photon counting and photon-pair correlation spectroscopy techniques. Time-tagged-time-resolved (TTTR) single photon counting measurements from individual CdSe-OPV nanostructures, show excited state lifetimes an order of magnitude shorter relative to conventional ZnS/CdSe quantum dots. Second-order intensity correlation measurements g(2)(tau) from individual CdSe-OPV nanostructures point to a weak multi-excitonic character with a strong wavelength dependent modulation depth. By tuning in and out of the absorption of the OPV ligands we observe changes in modulation depth from g(2) (0) ≈ 0.2 to 0.05 under 405 and 514 nm excitation respectively. Defocused images and polarization anisotropy measurements also reveal a well-defined linear dipole emission pattern in single CdSe-OPV nanostructures. These results provide new insights into to the mechanism behind the electronic interactions in composite quantum dot/conjugated organic composite systems at the single molecule level. The observed intensity flickering , blinking suppression and associated lifetime/count rate and antibunching behaviour is well explained by a Stark interaction model. Charge transfer from photo-excitation of the OPV ligands to the surface of the Cd
Quantum tunneling of two coupled single-molecular magnets
NASA Astrophysics Data System (ADS)
Hu, Jianming; Chen, Zhide; Shen, Shunqing
2003-03-01
Jian-Ming Hu, Zhi-De Chen and Shun-Qing Shen Department of Physics, The University of Hong Kong Pokfulam Road, Hong Kong December 02, 2002 Very recently a supramolecular dimer of two single-molecule magnets (SMM) was reported to be synthesized successfully. Two single-molecule magnets are coupled antiferromagnetically to form a supramolecule dimer. We study the coupling effect and tunneling process by the numerical exact diagonalization method. The sweeping rate effect in the derivatives of hysteresis loops has been quantitatively investigated using the modified Landau-Zener model. In addiction we find that exchange coupling between the two SMMs provides a biased field to expel the tunneling between SMMs to two new resonant points via an intermediate state, and direct tunneling is prohibited. The model parameters are calculated for the dimer based on the tunneling process. The outcome indicates that the coupling effect will not change the parameters of each SMM too much at all. This work is supported by a CRCG grant of The University of Hong Kong.
2013-04-16
PACS numbers: 78.67.Hc, 03.65.Ud, 03.67.Lx, 78.47.#p A single electron spin confined to a charged semicon- ductor quantum dot (QD) can effectively serve...maximum observable spin precession rate ( Zeeman splitting). For this QD, that splitting corresponds to a magnetic field of 1.1 T. For each photon...ni ts ) FIG. 1 (color online). (a) The effective four-level system generated when a magnetic field is applied perpendicular to the QD growth axis
Aradhya, Sriharsha V; Meisner, Jeffrey S; Krikorian, Markrete; Ahn, Seokhoon; Parameswaran, Radha; Steigerwald, Michael L; Nuckolls, Colin; Venkataraman, Latha
2012-03-14
Electronic factors in molecules such as quantum interference and cross-conjugation can lead to dramatic modulation and suppression of conductance in single-molecule junctions. Probing such effects at the single-molecule level requires simultaneous measurements of independent junction properties, as conductance alone cannot provide conclusive evidence of junction formation for molecules with low conductivity. Here, we compare the mechanics of the conducting para-terminated 4,4'-di(methylthio)stilbene and moderately conducting 1,2-bis(4-(methylthio)phenyl)ethane to that of insulating meta-terminated 3,3'-di(methylthio)stilbene single-molecule junctions. We simultaneously measure force and conductance across single-molecule junctions and use force signatures to obtain independent evidence of junction formation and rupture in the meta-linked cross-conjugated molecule even when no clear low-bias conductance is measured. By separately quantifying conductance and mechanics, we identify the formation of atypical 3,3'-di(methylthio)stilbene molecular junctions that are mechanically stable but electronically decoupled. While theoretical studies have envisaged many plausible systems where quantum interference might be observed, our experiments provide the first direct quantitative study of the interplay between contact mechanics and the distinctively quantum mechanical nature of electronic transport in single-molecule junctions.
NASA Astrophysics Data System (ADS)
Krönke, Sven; Knörzer, Johannes; Schmelcher, Peter
2015-05-01
We explore the correlated quantum dynamics of a single atom with a spatio-temporally localized coupling to a finite bosonic ensemble [arXiv:1410.8676]. The single atom is initially prepared in a coherent state of low energy and oscillates in a harmonic trap. An ensemble of NA interacting bosons is held in a displaced trap such that it is periodically penetrated by the single atom. The non-equilibrium quantum dynamics of the total system is simulated by means of an ab-initio method. Here, we focus on characterizing the impact of the peculiar inter-species coupling and the thereby induced inter-species correlations on the subsystem states: At instants of not too imbalanced excess energy distribution among the subsystems, inter-species correlations prove to be significant. A phase-space analysis for the single atom reveals that these correlations manifests themselves in short phases of strong deviations from a coherent state. In the bosonic ensemble, the single atom mainly induces singlet and delayed doublet excitations, for which we offer analytical insights with a stroboscopic time-dependent perturbation theory approach. When increasing the ensemble size, its maximal dynamical quantum depletion is shown to decrease faster than 1 /NA for a fixed excess energy.
Tunable-correlation phenomenon of single photons emitted from a self-assembled quantum dot
NASA Astrophysics Data System (ADS)
Yu, Shang; Wang, Yi-Tao; Tang, Jian-Shun; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2017-02-01
Deterministic single-photon source plays a key role in the quantum information technology. Thus, research on various properties of such kind of light source becomes a quite necessary task. In this work, we experimentally observe that the second-order correlation properties of single photons can be continuously tuned from pulsed excitation configuration to continuous-wave excitation configuration under the near resonant photoluminescence excitation. By increasing the power of pulsed excitation laser, the effective excitation time of quantum dot can be extended with assistance of the defect states, and more continuous-wave excitation characteristics will gradually appear in the second-order correlation functions. This abnormal power-induced tunable-correlation mechanism can affect the temporal property of the single-photon source but maintain its antibunching property.
Quantum interference between a single-photon Fock state and a coherent state
NASA Astrophysics Data System (ADS)
Windhager, A.; Suda, M.; Pacher, C.; Peev, M.; Poppe, A.
2011-04-01
We derive analytical expressions for the single mode quantum field state at the individual output ports of a beam splitter when a single-photon Fock state and a coherent state are incident on the input ports. The output states turn out to be a statistical mixture between a displaced Fock state and a coherent state. Consequently we are able to find an analytical expression for the corresponding Wigner function. Because of the generality of our calculations the obtained results are valid for all passive and lossless optical four port devices. We show further how the results can be adapted to the case of the Mach-Zehnder interferometer. In addition we consider the case for which the single-photon Fock state is replaced with a general input state: a coherent input state displaces each general quantum state at the output port of a beam splitter with the displacement parameter being the amplitude of the coherent state.
Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa
2007-07-27
We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.
Molecule-induced quantum confinement in single-walled carbon nanotube
NASA Astrophysics Data System (ADS)
Hida, Akira; Ishibashi, Koji
2015-04-01
A method of fabricating quantum-confined structures with single-walled carbon nanotubes (SWNTs) has been developed. Scanning tunneling spectroscopy revealed that a parabolic confinement potential appeared when collagen model peptides were attached to both ends of an individual SWNT via the formation of carboxylic anhydrides. On the other hand, the confinement potential was markedly changed by yielding the peptide bonds between the SWNT and the collagen model peptides. Photoluminescence spectroscopy measurements showed that a type-II quantum dot was produced in the obtained heterostructure.
On-chip micro-coil technique for single electron spin resonance with quantum dot
NASA Astrophysics Data System (ADS)
Obata, T.; Pioro-Ladrière, M.; Kubo, T.; Yoshida, K.; Tokura, Y.; Tarucha, S.
2007-12-01
We have developed a combined setup consisting of an on-chip micro-coil and a quantum dot for implementing single electron spin resonance, which operates relevantly even at dilution refrigerator temperatures. We have examined the micro-coil performance of the high-frequency response. Capacitive coupling between the coil and the quantum dot causes photon-assisted tunneling, whose signal can overlap greatly with the electron spin resonance signal. We have developed a technique to compensate for the influence of the capacitive coupling, and checked the performance using Coulomb blockade transport.
Non-Gaussianity of quantum states: An experimental test on single-photon-added coherent states
Barbieri, Marco; Ferreyrol, Franck; Blandino, Remi; Grangier, Philippe; Tualle-Brouri, Rosa; Spagnolo, Nicolo; Genoni, Marco G.; Paris, Matteo G. A.
2010-12-15
Non-Gaussian states and processes are useful resources in quantum information with continuous variables. An experimentally accessible criterion has been proposed to measure the degree of non-Gaussianity of quantum states based on the conditional entropy of the state with a Gaussian reference. Here we adopt such a criterion to characterize an important class of nonclassical states: single-photon-added coherent states. Our studies demonstrate the reliability and sensitivity of this measure and use it to quantify how detrimental is the role of experimental imperfections in our implementation.
Path-dependent initialization of a single quantum dot exciton spin in a nanophotonic waveguide
NASA Astrophysics Data System (ADS)
Coles, R. J.; Price, D. M.; Royall, B.; Clarke, E.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.
2017-03-01
We demonstrate a scheme for in-plane initialization of a single exciton spin in an InGaAs quantum dot (QD) coupled to a GaAs nanobeam waveguide. The chiral coupling of the QD and the optical mode of the nanobeam enables spin initialization fidelity approaching unity in magnetic field B =1 T and >0.9 without the field. We further show that this in-plane excitation scheme is independent of the incident excitation laser polarization and depends solely on the excitation direction. This scheme provides a robust in-plane spin excitation basis for a photon-mediated spin network for quantum information applications.
Coherent control of a linear microwave cavity via single flux quantum pulses
NASA Astrophysics Data System (ADS)
Zhu, Shaojiang; Ribeill, Guilhem; Thorbeck, Ted; Leonard, Edward; Vavilov, Maxim; Plourde, Britton; McDermott, Robert
Classical Josephson digital logic based on single flux quantum (SFQ) pulses offers a path to robust, low-latency control of a large-scale quantum processor. Here we describe the coherent control of a linear superconducting cavity by direct excitation via SFQ pulses. Resonant trains of SFQ pulses are capacitively coupled to a thin-film coplanar waveguide cavity. We examine the resulting cavity states as a function of subharmonic drive and temperature. In addition, we describe first steps toward the coherent control of a superconducting qubit with SFQ pulses.
Charge-driven feedback loop in the resonance fluorescence of a single quantum dot
NASA Astrophysics Data System (ADS)
Merkel, B.; Kurzmann, A.; Schulze, J.-H.; Strittmatter, A.; Geller, M.; Lorke, A.
2017-03-01
We demonstrate a feedback loop that manifests itself in a strong hysteresis and bistability of the exciton resonance fluorescence signal. Field ionization of photogenerated quantum dot excitons leads to the formation of a charged interface layer that drags the emission line along over a frequency range of more than 30 GHz . These measurements are well described by a rate equation model. With a time-resolved resonance fluorescence measurement we determined the buildup times for the hole gas in the orders of milliseconds. This internal charge-driven feedback loop could be used to reduce the spectral wandering in the emission spectra of single self-assembled quantum dots.
Secure quantum key distribution with a single not-so-weak coherent pulse
NASA Astrophysics Data System (ADS)
Kim, Chil-Min; Kim, Yong-Wan; Park, Young-Jai
2007-04-01
We propose a secure quantum key distribution (QKD) protocol using a single not-so-weak coherent qubit. With two preprocesses for random rotation and compensation, a key bit is encoded to a randomly polarized not-so-weak coherent qubit. We analyze the security of the QKD protocol, which counters the photon number splitting and the impersonation attacks. The estimated mean number of photon, which is less than 6.0, guarantees security. Additionally, we discuss the possibility of quantum secure direct communication.
Quantum routing of single photons with a cyclic three-level system.
Zhou, Lan; Yang, Li-Ping; Li, Yong; Sun, C P
2013-09-06
We propose an experimentally accessible single-photon routing scheme using a △-type three-level atom embedded in quantum multichannels composed of coupled-resonator waveguides. Via the on-demand classical field being applied to the atom, the router can extract a single photon from the incident channel, and then redirect it into another. The efficient function of the perfect reflection of the single-photon signal in the incident channel is rooted in the coherent resonance and the existence of photonic bound states.
Experimental single qubit quantum secret sharing in a fiber network configuration.
Ma, Hai-Qiang; Wei, Ke-Jin; Yang, Jian-Hui
2013-11-01
We present a robust single-photon quantum secret sharing (QSS) scheme with phase encoding in three-party implementations and a design way of more parties over a 50 km single-mode fiber network using a single QSS protocol. This scheme automatically provides perfect compensation for birefringence. A high visibility of 99.4% is obtained over three hours in visibility and stability measurements without any system adjustments, showing good potential for practical systems. Furthermore, polarization-insensitive phase modulators are realized using this system.
NASA Astrophysics Data System (ADS)
Jin, Fangzhou; Liu, Ying; Geng, Jianpei; Huang, Pu; Ma, Wenchao; Shi, Mingjun; Duan, Chang-Kui; Shi, Fazhan; Rong, Xing; Du, Jiangfeng
2017-01-01
As a fundamental postulate of quantum mechanics, Born's rule assigns probabilities to the measurement outcomes of quantum systems and excludes multiorder quantum interference. Here we report an experiment on a single spin in diamond to test Born's rule by inspecting the third-order quantum interference. The ratio of the third-order quantum interference to the second order in our experiment is bounded to the scale of 1 ×10-3 , which provides a stringent constraint on the potential breakdown of Born's rule.
Full control of quadruple quantum dot circuit charge states in the single electron regime
Delbecq, M. R. Nakajima, T.; Otsuka, T.; Amaha, S.; Watson, J. D.; Manfra, M. J.; Tarucha, S.
2014-05-05
We report the realization of an array of four tunnel coupled quantum dots in the single electron regime, which is the first required step toward a scalable solid state spin qubit architecture. We achieve an efficient tunability of the system but also find out that the conditions to realize spin blockade readout are not as straightforwardly obtained as for double and triple quantum dot circuits. We use a simple capacitive model of the series quadruple quantum dots circuit to investigate its complex charge state diagrams and are able to find the most suitable configurations for future Pauli spin blockade measurements. We then experimentally realize the corresponding charge states with a good agreement to our model.
Bidault, Sébastien; Devilez, Alexis; Maillard, Vincent; Lermusiaux, Laurent; Guigner, Jean-Michel; Bonod, Nicolas; Wenger, Jérôme
2016-04-26
Minimizing the luminescence lifetime while maintaining a high emission quantum yield is paramount in optimizing the excitation cross-section, radiative decay rate, and brightness of quantum solid-state light sources, particularly at room temperature, where nonradiative processes can dominate. We demonstrate here that DNA-templated 60 and 80 nm diameter gold nanoparticle dimers, featuring one fluorescent molecule, provide single-photon emission with lifetimes that can fall below 10 ps and typical quantum yields in a 45-70% range. Since these colloidal nanostructures are obtained as a purified aqueous suspension, fluorescence spectroscopy can be performed on both fixed and freely diffusing nanostructures to quantitatively estimate the distributions of decay rate and fluorescence intensity enhancements. These data are in excellent agreement with theoretical calculations and demonstrate that millions of bright fluorescent nanostructures, with radiative lifetimes below 100 ps, can be produced in parallel.
Banihashemi, Mehdi; Ahmadi, Vahid; Nakamura, Tatsuya; Kojima, Takanori; Kojima, Kazunobu; Noda, Susumu
2013-12-16
In this paper, we experimentally demonstrate that with sub-nanowatt coherent s-shell excitation of a single InAs quantum dot, off-resonant coupling of 4.1 nm is possible between L3 photonic crystal microcavity and the quantum dot at 50 K. This resonant excitation reduces strongly the effect of surrounding charges to quantum dot, multiexciton complexes and pure dephasing. It seems that this far off-resonant coupling is the result of increased number of acoustical phonons due to high operating temperature of 50 K. The 4.1 nm detuning is the largest amount for this kind of coupling.
Spin-orbit interaction induced current dip in a single quantum dot coupled to a spin
NASA Astrophysics Data System (ADS)
Giavaras, G.
2017-03-01
Experiments on semiconductor quantum dot systems have demonstrated the coupling between electron spins in quantum dots and spins localized in the neighboring area of the dots. Here we show that in a magnetic field the electrical current flowing through a single quantum dot tunnel-coupled to a spin displays a dip at the singlet-triplet anticrossing point which appears due to the spin-orbit interaction. We specify the requirements for which the current dip is formed and examine the properties of the dip for various system parameters, such as energy detuning, spin-orbit interaction strength, and coupling to leads. We suggest a parameter range in which the dip could be probed.
Chen, Ze-Sheng; Ma, Ben; Shang, Xiang-Jun; He, Yu; Zhang, Li-Chun; Ni, Hai-Qiao; Wang, Jin-Liang; Niu, Zhi-Chuan
2016-12-01
Single-photon emission in the telecommunication wavelength band is realized with self-assembled strain-coupled bilayer InAs quantum dots (QDs) embedded in a planar microcavity on GaAs substrate. Low-density large QDs in the upper layer active for ~1.3 μm emission are fabricated by precisely controlling the indium deposition amount and applying a gradient indium flux in both QD layers. Time-resolved photoluminescence (PL) intensity suggested that the radiative lifetime of their exciton emission is 1.5~1.6 ns. The second-order correlation function of g (2)(0) < 0.5 which demonstrates a pure single-photon emission.
Interacting single atoms with nanophotonics for chip-integrated quantum networks
NASA Astrophysics Data System (ADS)
Alton, Daniel James
Underlying matter and light are their building blocks of tiny atoms and photons. The ability to control and utilize matter-light interactions down to the elementary single atom and photon level at the nano-scale opens up exciting studies at the frontiers of science with applications in medicine, energy, and information technology. Of these, an intriguing front is the development of quantum networks where N ≫ 1 single-atom nodes are coherently linked by single photons, forming a collective quantum entity potentially capable of performing quantum computations and simulations. Here, a promising approach is to use optical cavities within the setting of cavity quantum electrodynamics (QED). However, since its first realization in 1992 by Kimble et al., current proof-of-principle experiments have involved just one or two conventional cavities. To move beyond to N ≫ 1 nodes, in this thesis we investigate a platform born from the marriage of cavity QED and nanophotonics, where single atoms at ˜100 nm near the surfaces of lithographically fabricated dielectric photonic devices can strongly interact with single photons, on a chip. Particularly, we experimentally investigate three main types of devices: microtoroidal optical cavities, optical nanofibers, and nanophotonic crystal based structures. With a microtoroidal cavity, we realized a robust and efficient photon router where single photons are extracted from an incident coherent state of light and redirected to a separate output with high efficiency. We achieved strong single atom-photon coupling with atoms located ~100 nm near the surface of a microtoroid, which revealed important aspects in the atom dynamics and QED of these systems including atom-surface interaction effects. We present a method to achieve state-insensitive atom trapping near optical nanofibers, critical in nanophotonic systems where electromagnetic fields are tightly confined. We developed a system that fabricates high quality nanofibers with high
A controllable single photon beam-splitter as a node of a quantum network
NASA Astrophysics Data System (ADS)
Kumar, Santosh; Gautam, Gaurav; Ghosh, Saikat; Kumar, Deepak; Indian Institute of Technology, Kanpur, India Collaboration; Jawaharlal Nehru University, New Delhi, India Collaboration
2016-05-01
A theoretical model for a controlled single-photon beam-splitter is proposed and analysed. It consists of two crossed optical-cavities with overlapping waists, dynamically coupled to a single flying atom. The system is shown to route a single photon with near-unity efficiency in an effective ``weak-coupling'' regime. Furthermore, two such nodes, forming a segment of a quantum network, are shown to perform several controlled quantum operations. All one-qubit operations involve a transfer of a photon from one cavity to another in a single node, while two-qubit operations involve transfer from one node to a next one, coupled via an optical fiber. Novel timing protocols for classical optical fields are found to simplify possible experimental realizations along with achievable effective parameter regime. This model can be extended to various other physical systems including gated quantum dots, circuit-QED or opto-mechanical elements. This work is supported by DST-SERB, and DAE, Government of India.
NASA Astrophysics Data System (ADS)
Kalliakos, Sokratis; Brody, Yarden; Bennett, Anthony J.; Ellis, David J. P.; Skiba-Szymanska, Joanna; Farrer, Ian; Griffiths, Jonathan P.; Ritchie, David A.; Shields, Andrew J.
2016-10-01
Integrated quantum light sources in photonic circuits are envisaged as the building blocks of future on-chip architectures for quantum logic operations. While semiconductor quantum dots have been proven to be the highly efficient emitters of quantum light, their interaction with the host material induces spectral decoherence, which decreases the indistinguishability of the emitted photons and limits their functionality. Here, we show that the indistinguishability of in-plane photons can be greatly enhanced by performing resonance fluorescence on a quantum dot coupled to a photonic crystal waveguide. We find that the resonant optical excitation of an exciton state induces an increase in the emitted single-photon coherence by a factor of 15. Two-photon interference experiments reveal a visibility of 0.80 ± 0.03, which is in good agreement with our theoretical model. Combined with the high in-plane light-injection efficiency of photonic crystal waveguides, our results pave the way for the use of this system for the on-chip generation and transmission of highly indistinguishable photons.
Nonpeturbative cavity-QED between a single quantum dot and a metal nanoparticle
NASA Astrophysics Data System (ADS)
Van Vlack, C.; Trøst Kristensen, Philip; Hughes, S.
2012-04-01
We investigate the quantum optical properties of an excited single photon emitter (quantum dot) near the surface of a finite-size metal nanoparticle using a photon Green function technique that rigorously quantizes the electromagnetic fields. We obtain Purcell factors of up to 5×104 due to higher order plasmon modes for both a 7-nm and 20-nm radius metal nanoparticle, and show the failure of employing a dipole approximation in regimes where useful quantum optical interactions occur. We also calculate enormous photonic Lamb shifts of up to 40 meV giving a normalized frequency shift up to |Δω|max/ωd = 1.28×10-2. Considering a small quantum-dot, positioned 2-nm from the metal nanoparticle surface, we demonstrate that the strong coupling regime should be observable in the far-field spontaneous emission spectrum, even at room temperature and despite the non-propagating nature of the higher order modes. The vacuum Rabi doublet becomes a rich spectral quartet with two of the four peaks anticrossing, and surviving in spite of significant non-radiative decays. We also discuss the role of optical quenching and highlight the importance of accounting for photon transport from the dot to the detector. Our formalism is quite general and can easily be extended to include interactions between multiple quantum dots and multiple metal nanoparticles.
Fast control of nuclear spin polarization in an optically pumped single quantum dot
NASA Astrophysics Data System (ADS)
Makhonin, M. N.; Kavokin, K. V.; Senellart, P.; Lemaître, A.; Ramsay, A. J.; Skolnick, M. S.; Tartakovskii, A. I.
2011-11-01
Highly polarized nuclear spins within a semiconductor quantum dot induce effective magnetic (Overhauser) fields of up to several Tesla acting on the electron spin, or up to a few hundred mT for the hole spin. Recently this has been recognized as a resource for intrinsic control of quantum-dot-based spin quantum bits. However, only static long-lived Overhauser fields could be used. Here we demonstrate fast redirection on the microsecond timescale of Overhauser fields on the order of 0.5 T experienced by a single electron spin in an optically pumped GaAs quantum dot. This has been achieved using coherent control of an ensemble of 105 optically polarized nuclear spins by sequences of short radiofrequency pulses. These results open the way to a new class of experiments using radiofrequency techniques to achieve highly correlated nuclear spins in quantum dots, such as adiabatic demagnetization in the rotating frame leading to sub-μK nuclear spin temperatures, rapid adiabatic passage, and spin squeezing.
Quantum superposition of a single microwave photon in two different 'colour' states
NASA Astrophysics Data System (ADS)
Zakka-Bajjani, Eva; Nguyen, François; Lee, Minhyea; Vale, Leila R.; Simmonds, Raymond W.; Aumentado, José
2011-08-01
Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element. Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (~7GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different 'colours'. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols on-chip.
Higher-order interference and single-system postulates characterizing quantum theory
NASA Astrophysics Data System (ADS)
Barnum, Howard; Müller, Markus P.; Ududec, Cozmin
2014-12-01
We present a new characterization of quantum theory in terms of simple physical principles that is different from previous ones in two important respects: first, it only refers to properties of single systems without any assumptions on the composition of many systems; and second, it is closer to experiment by having absence of higher-order interference as a postulate, which is currently the subject of experimental investigation. We give three postulates—no higher-order interference, classical decomposability of states, and strong symmetry—and prove that the only non-classical operational probabilistic theories satisfying them are real, complex, and quaternionic quantum theory, together with three-level octonionic quantum theory and ball state spaces of arbitrary dimension. Then we show that adding observability of energy as a fourth postulate yields complex quantum theory as the unique solution, relating the emergence of the complex numbers to the possibility of Hamiltonian dynamics. We also show that there may be interesting non-quantum theories satisfying only the first two of our postulates, which would allow for higher-order interference in experiments while still respecting the contextuality analogue of the local orthogonality principle.
Quantum decoherence of a single ion qubit induced by photon-number fluctuations
NASA Astrophysics Data System (ADS)
Lee, Moonjoo; Friebe, Konstantin; Ong, Florian R.; Fioretto, Dario A.; Schüppert, Klemens; Blatt, Rainer; Northup, Tracy E.
2016-09-01
Quantum measurement is based on the interaction between a quantum object and a meter entangled with the object. While information about the object is being extracted by the interaction, the quantum fluctuations of the object are imprinted onto the meter as a form of decoherence. Here, we study the nondestructive reconstruction of the photon number in an optical cavity, harnessing the quantum decoherence. We consider a single 40Ca+ ion that is dispersively coupled to a high-finesse cavity. While the cavity is populated with weak coherent states, Ramsey spectroscopy is performed on the qubit transition to identify the shift and the broadening of the atomic energy levels. The shift is due to the ac Stark effect induced by cavity photons, and the broadening is attributed to the photon-number fluctuations of the cavity field. We show theoretically that photon-number distributions of the intracavity fields can be reconstructed in a basis of up to eleven Fock states with the maximum likelihood method. Furthermore, we show that the photon number of each polarization component can also be reconstructed, taking advantage of the rich energy-level structure of the ion. In combination with currently available mirror-coating technology, quantum non-demolition (QND) measurement of cavity photons will make it possible to create and manipulate nonclassical cavity-field states in the optical domain.
NASA Technical Reports Server (NTRS)
Larsson, A.; Muttelstein, M.; Arakawa, Y.; Yariv, A.
1986-01-01
Broad-area single-quantum-well graded-index waveguide separate-confinement heterostructure lasers were fabricated by molecular beam epitaxy. A high external quantum efficiency of 79 percent and stable, single-lobed far-field patterns with a beam divergence as narrow as 0.8 deg (1.9 times diffraction limit) for a 100 micron-wide laser were obtained under pulsed conditions.
Single quantum dot controls a plasmonic cavity’s scattering and anisotropy
Hartsfield, Thomas; Chang, Wei-Shun; Yang, Seung-Cheol; Ma, Tzuhsuan; Shi, Jinwei; Sun, Liuyang; Shvets, Gennady; Link, Stephan; Li, Xiaoqin
2015-01-01
Plasmonic cavities represent a promising platform for controlling light–matter interaction due to their exceptionally small mode volume and high density of photonic states. Using plasmonic cavities for enhancing light’s coupling to individual two-level systems, such as single semiconductor quantum dots (QD), is particularly desirable for exploring cavity quantum electrodynamic (QED) effects and using them in quantum information applications. The lack of experimental progress in this area is in part due to the difficulty of precisely placing a QD within nanometers of the plasmonic cavity. Here, we study the simplest plasmonic cavity in the form of a spherical metallic nanoparticle (MNP). By controllably positioning a semiconductor QD in the close proximity of the MNP cavity via atomic force microscope (AFM) manipulation, the scattering spectrum of the MNP is dramatically modified due to Fano interference between the classical plasmonic resonance of the MNP and the quantized exciton resonance in the QD. Moreover, our experiment demonstrates that a single two-level system can render a spherical MNP strongly anisotropic. These findings represent an important step toward realizing quantum plasmonic devices. PMID:26372957
Quantum yield and excitation rate of single molecules close to metallic nanostructures.
Holzmeister, Phil; Pibiri, Enrico; Schmied, Jürgen J; Sen, Tapasi; Acuna, Guillermo P; Tinnefeld, Philip
2014-11-05
The interaction of dyes and metallic nanostructures strongly affects the fluorescence and can lead to significant fluorescence enhancement at plasmonic hot spots, but also to quenching. Here we present a method to distinguish the individual contributions to the changes of the excitation, radiative and non-radiative rate and use this information to determine the quantum yields for single molecules. The method is validated by precisely placing single fluorescent dyes with respect to gold nanoparticles as well as with respect to the excitation polarization using DNA origami nanostructures. Following validation, measurements in zeromode waveguides reveal that suppression of the radiative rate and enhancement of the non-radiative rate lead to a reduced quantum yield. Because the method exploits the intrinsic blinking of dyes, it can generally be applied to fluorescence measurements in arbitrary nanophotonic environments.
Microwave band on-chip coil technique for single electron spin resonance in a quantum dot
NASA Astrophysics Data System (ADS)
Obata, Toshiaki; Pioro-Ladrière, Michel; Kubo, Toshihiro; Yoshida, Katsuharu; Tokura, Yasuhiro; Tarucha, Seigo
2007-10-01
Microwave band on-chip microcoils are developed for the application to single electron spin resonance measurement with a single quantum dot. Basic properties such as characteristic impedance and electromagnetic field distribution are examined for various coil designs by means of experiment and simulation. The combined setup operates relevantly in the experiment at dilution temperature. The frequency responses of the return loss and Coulomb blockade current are examined. Capacitive coupling between a coil and a quantum dot causes photon assisted tunneling, whose signal can greatly overlap the electron spin resonance signal. To suppress the photon assisted tunneling effect, a technique for compensating for the microwave electric field is developed. Good performance of this technique is confirmed from measurement of Coulomb blockade oscillations.
Experimental Optimal Single Qubit Purification in an NMR Quantum Information Processor
Hou, Shi-Yao; Sheng, Yu-Bo; Feng, Guan-Ru; Long, Gui-Lu
2014-01-01
High quality single qubits are the building blocks in quantum information processing. But they are vulnerable to environmental noise. To overcome noise, purification techniques, which generate qubits with higher purities from qubits with lower purities, have been proposed. Purifications have attracted much interest and been widely studied. However, the full experimental demonstration of an optimal single qubit purification protocol proposed by Cirac, Ekert and Macchiavello [Phys. Rev. Lett. 82, 4344 (1999), the CEM protocol] more than one and half decades ago, still remains an experimental challenge, as it requires more complicated networks and a higher level of precision controls. In this work, we design an experiment scheme that realizes the CEM protocol with explicit symmetrization of the wave functions. The purification scheme was successfully implemented in a nuclear magnetic resonance quantum information processor. The experiment fully demonstrated the purification protocol, and showed that it is an effective way of protecting qubits against errors and decoherence. PMID:25358758
Hamiltonian of photons in a single-mode optical fiber for quantum communications protocols
NASA Astrophysics Data System (ADS)
Miroshnichenko, G. P.
2012-05-01
A phenomenological Hamiltonian of photons in a single-mode stochastic inhomogeneous optical fiber (OF) is derived. Quantization of radiation is performed in the basis of an ideal OF with proper calibration that ensures transversality of the electric-field-displacement vector. Stochastic parameters of the Hamiltonian are determined by using the reciprocal tensor of the dielectric permittivity averaged over the OF segment volume. The Hamiltonian is parametrized by three phenomenological parameters and preserves the number of photons. It is assumed that the segment of the OF is divided into random subsegments with optical parameters defined by the Wiener process with respect to the longitudinal coordinate. The temporal dynamics of the single-photon density matrix is analyzed in the basis of states with orthogonal polarizations. The relative quantum beat error rate in the sifted quantum key distributed according to the BB84 protocol with polarization coding of information averaged over the scatter of the OF parameters is calculated.
Linearly polarized single photon antibunching from a site-controlled InGaN quantum dot
Jemsson, Tomas; Machhadani, Houssaine; Karlsson, K. Fredrik; Hsu, Chih-Wei; Holtz, Per-Olof
2014-08-25
We report on the observation of linearly polarized single photon antibunching in the excitonic emission from a site-controlled InGaN quantum dot. The measured second order coherence function exhibits a significant dip at zero time difference, corresponding to g{sub m}{sup 2}(0)=0.90 under continuous laser excitation. This relatively high value of g{sub m}{sup 2}(0) is well understood by a model as the combination of short exciton life time (320 ps), limited experimental timing resolution and the presence of an uncorrelated broadband background emission from the sample. Our result provides the first rigorous evidence of InGaN quantum dot formation on hexagonal GaN pyramids, and it highlights a great potential in these dots as fast polarized single photon emitters if the background emission can be eliminated.
Lasing properties of non-resonant single quantum dot-cavity system under incoherent excitation.
Guan, Huan; Yao, Peijun; Yu, Wenhai; Wang, Pei; Ming, Hai
2012-12-17
Single quantum dot laser has earned extensive interest due to its peculiar properties, however, most of works are focused on the resonant case. In this paper, the lasing oscillation based on off-resonant quantum dot (QD)-cavity system is investigated detailedly through two-electrons QD model. By gradually increasing the pump rate, the typical lasing signatures are shown with and without detuning, include the spectral transition from multiple peaks to single peak, and antibunching to Poissonian distribution. It is also demonstrated how detuning factor strongly influence photon statistics and emission properties, specially, the side peak of spectra induced by the exchange energy (named "sub-peak") will go across the main peak from left to right when the detuning is gradually increased, and, furthermore, we find the "sub-peak cross of spectra" will facilitate the lasing oscillation because of the existence of exchange energy.
Thermal vibration of a rectangular single-layered graphene sheet with quantum effects
Wang, Lifeng Hu, Haiyan
2014-06-21
The thermal vibration of a rectangular single-layered graphene sheet is investigated by using a rectangular nonlocal elastic plate model with quantum effects taken into account when the law of energy equipartition is unreliable. The relation between the temperature and the Root of Mean Squared (RMS) amplitude of vibration at any point of the rectangular single-layered graphene sheet in simply supported case is derived first from the rectangular nonlocal elastic plate model with the strain gradient of the second order taken into consideration so as to characterize the effect of microstructure of the graphene sheet. Then, the RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet simply supported on an elastic foundation is derived. The study shows that the RMS amplitude of the rectangular single-layered graphene sheet predicted from the quantum theory is lower than that predicted from the law of energy equipartition. The maximal relative difference of RMS amplitude of thermal vibration appears at the sheet corners. The microstructure of the graphene sheet has a little effect on the thermal vibrations of lower modes, but exhibits an obvious effect on the thermal vibrations of higher modes. The quantum effect is more important for the thermal vibration of higher modes in the case of smaller sides and lower temperature. The relative difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet decreases monotonically with an increase of temperature. The absolute difference of maximal RMS amplitude of thermal vibration of a rectangular single-layered graphene sheet increases slowly with the rising of Winkler foundation modulus.
Rydberg Excitation of Single Atoms for Applications in Quantum Information and Metrology
Hankin, Aaron Michael
2014-08-01
With the advent of laser cooling and trapping, neutral atoms have become a foundational source of accuracy for applications in metrology and are showing great potential for their use as qubits in quantum information. In metrology, neutral atoms provide the most accurate references for the measurement of time and acceleration. The unsurpassed stability provided by these systems make neutral atoms an attractive avenue to explore applications in quantum information and computing. However, to fully investigate the eld of quantum information, we require a method to generate entangling interactions between neutral-atom qubits. Recent progress in the use of highly-excited Rydberg states for strong dipolar interactions has shown great promise for controlled entanglement using the Rydberg blockade phenomenon. I report the use of singly-trapped ^{133}Cs atoms as qubits for applications in metrology and quantum information. Each atom provides a physical basis for a single qubit by encoding the required information into the ground-state hyper ne structure of ^{133}Cs. Through the manipulation of these qubits with microwave and optical frequency sources, we demonstrate the capacity for arbitrary single-qubit control by driving qubit rotations in three orthogonal directions on the Bloch sphere. With this control, we develop an atom interferometer that far surpasses the force sensitivity of other approaches by applying the well-established technique of lightpulsed atom-matterwave interferometry to single atoms. Following this, we focus on two-qubit interactions using highly-excited Rydberg states. Through the development of a unique single-photon approach to Rydberg excitation using an ultraviolet laser at 319 nm, we observe the Rydberg blockade interaction between atoms separated by 6.6(3) m. Motivated by the observation of Rydberg blockade, we study the application of Rydberg-dressed states for a quantum controlled-phase gate. Using a realistic simulation of the
Dielectric Response of a Quantum Dot Measured with an Aluminum Single Electron Transistor
NASA Astrophysics Data System (ADS)
Berman, D.; Zhitenev, N. B.; Ashoori, R. C.; Melloch, M. R.
1997-03-01
We demonstrate the first use of an aluminum single electron transistor (SET) as a charge sensor coupled to a semiconductor structure. A quantum dot is electrostatically defined with metal gates on top of a GaAs/AlGaAs heterostructure. The SET functions both as one of the defining gates for the quantum dot and as an electrometer. The quantum dot acts as a dielectric between two capacitor plates, one of which is the SET, and the other is an opposing gate to which we apply an ac excitation and a dc voltage V_g. We vary the conductance of a single tunnel barrier (resistances in the range of 10^3-10^12 Ω) which connects the dot to a charge reservoir and measure the capacitance C between the opposing gate and the SET. Due to the effect of screening, C(V_g) displays periodically occurring dips for those Vg at which a single electron can move in and out of the dot. The oscillations are gradually washed out as the coupling strength to the lead increases beyond 2e^2/h. For sufficiently small couplings, electrons do not tunnel into the dot during one cycle of ac excitation. Surprisingly, the capacitance of such an effectively sealed dot also displays oscillations with electron number. These however are opposite in sign to the oscillations seen for moderate coupling.
Durrani, Zahid A K; Jones, Mervyn E; Wang, Chen; Liu, Dixi; Griffiths, Jonathan
2017-03-24
Single nanometre scale quantum dots (QDs) have significant potential for many 'beyond CMOS' nanoelectronics and quantum computation applications. The fabrication and measurement of few nanometre silicon point-contact QD single-electron transistors are reported, which both operate at room temperature (RT) and are fabricated using standard processes. By combining thin silicon-on-insulator wafers, specific device geometry, and controlled oxidation, <10 nm nanoscale point-contact channels are defined. In this limit of the point-contact approach, ultra-small, few nanometre scale QDs are formed, enabling RT measurement of the full QD characteristics, including excited states to be made. A remarkably large QD electron addition energy ∼0.8 eV, and a quantum confinement energy ∼0.3 eV, are observed, implying a QD only ∼1.6 nm in size. In measurements of 19 RT devices, the extracted QD radius lies within a narrow band, from 0.8 to 2.35 nm, emphasising the single-nanometre scale of the QDs. These results demonstrate that with careful control, 'beyond CMOS' RT QD transistors can be produced using current 'conventional' semiconductor device fabrication techniques.
NASA Astrophysics Data System (ADS)
Durrani, Zahid A. K.; Jones, Mervyn E.; Wang, Chen; Liu, Dixi; Griffiths, Jonathan
2017-03-01
Single nanometre scale quantum dots (QDs) have significant potential for many ‘beyond CMOS’ nanoelectronics and quantum computation applications. The fabrication and measurement of few nanometre silicon point-contact QD single-electron transistors are reported, which both operate at room temperature (RT) and are fabricated using standard processes. By combining thin silicon-on-insulator wafers, specific device geometry, and controlled oxidation, <10 nm nanoscale point-contact channels are defined. In this limit of the point-contact approach, ultra-small, few nanometre scale QDs are formed, enabling RT measurement of the full QD characteristics, including excited states to be made. A remarkably large QD electron addition energy ∼0.8 eV, and a quantum confinement energy ∼0.3 eV, are observed, implying a QD only ∼1.6 nm in size. In measurements of 19 RT devices, the extracted QD radius lies within a narrow band, from 0.8 to 2.35 nm, emphasising the single-nanometre scale of the QDs. These results demonstrate that with careful control, ‘beyond CMOS’ RT QD transistors can be produced using current ‘conventional’ semiconductor device fabrication techniques.
Yuan, Luqi; Xu, Shanshan; Fan, Shanhui
2015-11-15
We show that nonreciprocal unidirectional single-photon quantum transport can be achieved with the photonic Aharonov-Bohm effect. The system consists of a 1D waveguide coupling to two three-level atoms of the V-type. The two atoms, in addition, are each driven by an external coherent field. We show that the phase of the external coherent field provides a gauge potential for the photon states. With a proper choice of the phase difference between the two coherent fields, the transport of a single photon can exhibit unity contrast in its transmissions for the two propagation directions.
NASA Astrophysics Data System (ADS)
Eremchev, M. Yu.; Eremchev, I. Yu.; Naumov, A. V.
2015-09-01
In this research a relation between the accuracy of restoration of the single quantum dots (QD) CdSe/CdS/ZnS cross-cut coordinates and luminescence intensity was investigated. It was shown that the limit of the accuracy of determining the coordinates of a single QD for a considerable total amount of registered photons approaches its limiting value that is comparable to the size of the QD. It also means that the installation used in the research is mechanically stable enough to reach the limiting values of determination accuracy of point emitters coordinates.
Ballmann, Stefan; Härtle, Rainer; Coto, Pedro B; Elbing, Mark; Mayor, Marcel; Bryce, Martin R; Thoss, Michael; Weber, Heiko B
2012-08-03
We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.
Optical spectroscopy of single beryllium acceptors in GaAs/AlGaAs quantum well
NASA Astrophysics Data System (ADS)
Petrov, P. V.; Kokurin, I. A.; Klimko, G. V.; Ivanov, S. V.; Ivánov, Yu. L.; Koenraad, P. M.; Silov, A. Yu.; Averkiev, N. S.
2016-09-01
We carry out microphotoluminescence measurements of an acceptor-bound exciton (A0X ) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into account a quantum well (QW) confinement, an electron-hole and hole-hole exchange interaction. By means of fitting the measured data with the model we are able to study the fine structure of individual acceptors inside the QW. The good agreement between our experiments and the model indicates that we observe single acceptors in a pure two-dimensional environment whose states are unstrained in the QW plain.
Symmetries and security of a quantum-public-key encryption based on single-qubit rotations
NASA Astrophysics Data System (ADS)
Seyfarth, U.; Nikolopoulos, G. M.; Alber, G.
2012-02-01
Exploring the symmetries underlying a previously proposed encryption scheme that relies on single-qubit rotations, we derive an improved upper bound on the maximum information that an eavesdropper might extract from all the available copies of the public key. Subsequently, the robustness of the scheme is investigated in the context of attacks that address each public-key qubit independently. The attacks under consideration make use of projective measurements on single qubits and their efficiency is compared to attacks that address many qubits collectively and require complicated quantum operations.
Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system
NASA Astrophysics Data System (ADS)
Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.
2016-07-01
A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.
Photoluminescence enhancement of the single InAs quantum dots through plasmonic Au island films
Wang, H. Y.; Dou, X. M.; Yang, Sh.; Su, D.; Jiang, D. S.; Ni, H. Q.; Niu, Z. C.; Sun, B. Q.
2014-03-28
The approach of optical positioning the single InAs quantum dots (QDs) was used for investigating QD photoluminescence (PL) enhancement based on plasmonic effect of nanometer-sized Au island films. It is found that the maximum increase of QD PL intensity is about thirty-eight fold after 5-nm thick Au island films are evaporated on the QD sample surface. The enhanced localized excitation field and increased QD radiative decay rate are responsible for this PL enhancement. This provides an alternative way of preparing bright single photon sources based on the plasmonic effect.
Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies.
Tettamanzi, Giuseppe Carlo; Hile, Samuel James; House, Matthew Gregory; Fuechsle, Martin; Rogge, Sven; Simmons, Michelle Y
2017-03-28
The ability to apply gigahertz frequencies to control the quantum state of a single P atom is an essential requirement for the fast gate pulsing needed for qubit control in donor-based silicon quantum computation. Here, we demonstrate this with nanosecond accuracy in an all epitaxial single atom transistor by applying excitation signals at frequencies up to ≈13 GHz to heavily phosphorus-doped silicon leads. These measurements allow the differentiation between the excited states of the single atom and the density of states in the one-dimensional leads. Our pulse spectroscopy experiments confirm the presence of an excited state at an energy ≈9 meV, consistent with the first excited state of a single P donor in silicon. The relaxation rate of this first excited state to the ground state is estimated to be larger than 2.5 GHz, consistent with theoretical predictions. These results represent a systematic investigation of how an atomically precise single atom transistor device behaves under radio frequency excitations.
Single-shot readout of spin qubits in Si/SiGe quantum dots
NASA Astrophysics Data System (ADS)
Simmons, Christie
2012-02-01
Si/SiGe quantum dots are an attractive option for spin qubit development, because of the long coherence times for electron spins in silicon, arising from weak hyperfine interaction and low spin orbit coupling. I will present measurements of gate-defined single and double quantum dots formed in Si/SiGe semiconductor heterostuctures. Control of the gate voltages on these dots enables tuning of the tunnel coupling to the leads and to other dots. Careful tuning of these tunnel rates, in combination with fast, pulsed-gate manipulation and spin-to-charge conversion, allow spin state measurement using an integrated quantum point contact as a local charge detector. Single spin qubit readout relies on the Zeeman energy splitting from an external magnetic field for spin-to-charge conversion. Two-electron singlet-triplet qubits, on the other hand, can be measured by using Pauli spin blockade of tunneling between the dots to readout the qubit even at zero magnetic field. I will present real-time, single-shot readout measurements of both individual spin [1] and singlet-triplet qubits [2] in gated Si/SiGe quantum dots. Work performed in collaboration with J. R. Prance, Zhan Shi, B. J. Van Bael, Teck Seng Koh, D. E. Savage, M. G. Lagally, R. Joynt, L. R. Schreiber, L. M. K. Vandersypen, M. Friesen, S. N. Coppersmith, and M. A. Eriksson. [4pt] [1] C. B. Simmons et al. Physical Review Letters 106, 156804 (2011). [0pt] [2] J. R. Prance, et al., e-print: http://lanl.arxiv.org/abs/1110.6431
NASA Astrophysics Data System (ADS)
Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.
2013-08-01
The effects of single-ion anisotropy on quantum criticality in a d-dimensional spin- S planar ferromagnet is explored by means of the two-time Green's function method. We work at the Tyablikov decoupling level for exchange interactions and the Anderson-Callen decoupling level for single-ion anisotropy. In our analysis a longitudinal external magnetic field is used as the non-thermal control parameter and the phase diagram and the quantum critical properties are established for suitable values of the single-ion anisotropy parameter D. We find that the single-ion anisotropy has sensible effects on the structure of the phase diagram close to the quantum critical point. However, for values of the uniaxial crystal-field parameter below a positive threshold, the conventional magnetic-field-induced quantum critical scenario remains unchanged.
2005-05-10
correlation spectroscopy (FCS); (5) testing the lipid raft hypothesis by single molecule imaging of targeted peptide-coated quantum dots; and (6) molecular cloning and fusion of avidin to immunological synapse (IS) components.
Quasi-one-dimensional density of states in a single quantum ring
Kim, Heedae; Lee, Woojin; Park, Seongho; Kyhm, Kwangseuk; Je, Koochul; Taylor, Robert A.; Nogues, Gilles; Dang, Le Si; Song, Jin Dong
2017-01-01
Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width. PMID:28053350
Quasi-one-dimensional density of states in a single quantum ring
NASA Astrophysics Data System (ADS)
Kim, Heedae; Lee, Woojin; Park, Seongho; Kyhm, Kwangseuk; Je, Koochul; Taylor, Robert A.; Nogues, Gilles; Dang, Le Si; Song, Jin Dong
2017-01-01
Generally confinement size is considered to determine the dimensionality of nanostructures. While the exciton Bohr radius is used as a criterion to define either weak or strong confinement in optical experiments, the binding energy of confined excitons is difficult to measure experimentally. One alternative is to use the temperature dependence of the radiative recombination time, which has been employed previously in quantum wells and quantum wires. A one-dimensional loop structure is often assumed to model quantum rings, but this approximation ceases to be valid when the rim width becomes comparable to the ring radius. We have evaluated the density of states in a single quantum ring by measuring the temperature dependence of the radiative recombination of excitons, where the photoluminescence decay time as a function of temperature was calibrated by using the low temperature integrated intensity and linewidth. We conclude that the quasi-continuous finely-spaced levels arising from the rotation energy give rise to a quasi-one-dimensional density of states, as long as the confined exciton is allowed to rotate around the opening of the anisotropic ring structure, which has a finite rim width.
Coherent manipulation of quantum spin states in a single molecular nanomagnet
NASA Astrophysics Data System (ADS)
Wernsdorfer, Wolfgang
The endeavour of quantum electronics is driven by one of the most ambitious technological goals of today's scientists: the realization of an operational quantum computer (http://qurope.eu). We started to address this goal by the new research field of molecular quantum spintronics. The building blocks are magnetic molecules, i.e. well-defined spin qubits. We will discuss this still largely unexplored field and present our first results: For example, using a molecular spin-transistor, we achieved the electronic read-out of the nuclear spin of an individual metal atom embedded in an SMM. We could show very long spin lifetimes (>10 s). Using the hyperfine Stark effect, which transforms electric fields into local effective magnetic fields, we could not only tune the resonance frequency by several MHz, but also perform coherent quantum manipulations on a single nuclear qubit faster than a μs by means of electrical fields only, establishing the individual addressability of identical nuclear qubits. Using three different microwave frequencies, we could implement a simple four-level Grover algorithm. S. Thiele, F. Balestro, R. Ballou, S. Klyatskaya, M. Ruben, W. Wernsdorfer, Science 344, 1135 (2014).
Strained GaN quantum-well FETs on single crystal bulk AlN substrates
NASA Astrophysics Data System (ADS)
Qi, Meng; Li, Guowang; Ganguly, Satyaki; Zhao, Pei; Yan, Xiaodong; Verma, Jai; Song, Bo; Zhu, Mingda; Nomoto, Kazuki; Xing, Huili Grace; Jena, Debdeep
2017-02-01
We report the first realization of molecular beam epitaxy (MBE) grown strained GaN quantum well field-effect transistors on single-crystal bulk AlN substrates. The fabricated double heterostructure FETs exhibit a two-dimensional electron gas (2DEG) density in the excess of 2 × 1013/cm2. The ohmic contacts to the 2DEG channel were formed by the n+ GaN MBE regrowth process, with a contact resistance of 0.13 Ω . mm. The Raman spectroscopy using the quantum well as an optical marker reveals the strain in the quantum well and strain relaxation in the regrown GaN contacts. A 65-nm-long rectangular-gate device showed a record high DC drain current drive of 2.0 A/mm and peak extrinsic transconductance of 250 mS/mm. Small-signal RF performance of the device achieved the current gain cutoff frequency fT˜120 GHz. The DC and RF performances demonstrate that bulk AlN substrates offer an attractive alternative platform for strained quantum well nitride transistors for the future high-voltage and high-power microwave applications.
Horibe, Kosuke; Oda, Shunri; Kodera, Tetsuo
2015-02-02
Back-action in the readout of quantum bits is an area that requires a great deal of attention in electron spin based-quantum bit architecture. We report here back-action measurements in a silicon device with quantum dots and a single-electron transistor (SET) charge sensor. We observe the back-action-induced excitation of electrons from the ground state to an excited state in a quantum dot. Our measurements and theoretical fitting to the data reveal conditions under which both suitable SET charge sensor sensitivity for qubit readout and low back-action-induced transition rates (less than 1 kHz) can be achieved.
NASA Astrophysics Data System (ADS)
Iyer, Pavithran; da Silva, Marcus P.; Poulin, David
In this work, we aim to determine the parameters of a single qubit channel that can tightly bound the logical error rate of the Steane code. We do not assume any a priori structure for the quantum channel, except that it is a CPTP map and we use a concatenated Steane code to encode a single qubit. Unlike the standard Monte Carlo technique that requires many iterations to estimate the logical error rate with sufficient accuracy, we use techniques to compute the complete effect of a physical CPTP map, at the logical level. Using this, we have studied the predictive power of several physical noise metrics on the logical error rate, and show, through numerical simulations with random quantum channels, that, on their own, none of the natural physical metrics lead to accurate predictions about the logical error rate. We then show how machine learning techniques help us to explore which features of a random quantum channel are important in predicting its logical error rate.
Quantum Monte-Carlo simulation of spin-one antiferromagnets with single-ion anisotropy
NASA Astrophysics Data System (ADS)
Kato, Yasuyuki; Wierschem, Keola; Nishida, Yusuke; Batista, Cristian; Sengupta, Pinaki
2013-03-01
We study a spin-one Heisenberg model with uniaxial single-ion anisotropy, D, and Zeeman coupling to a magnetic field, B, parallel to the symmetry axis. We compute the (D / J , B / J) quantum phase diagram for square and simple cubic lattices by combining analytical and Quantum Monte Carlo approaches, and find a transition between XY-antiferromagnetic and ferronematic phases that spontaneously break the U(1) symmetry of the model. In the language of bosonic gases, this is a transition between a Bose-Einstein condensate (BEC) of single bosons and a BEC of pairs. For the efficient simulation of ferronematic phase, we developed and implemented a new multi-discontinuity algorithm based on the directed-loop algorithm. The ordinary quantum Monte-Carlo methods fall into freezing problems when we apply them to this system at large D / J and finite B / J ~ 1 . The new method does not suffer from the freezing problems. This research used resources of the NERSCC (DOE Contract No. DE-AC02-05CH11231). Work at LANL was performed under the auspices of a J. Robert Oppenheimer Fellowship and the U.S. DOE contract No. DE-AC52-06NA25396 through the LDRD program.
Fluorescent Carbon Quantum Dots as Single Light Converter for White LEDs
NASA Astrophysics Data System (ADS)
Feng, Xiaoting; Zhang, Feng; Wang, Yaling; Zhang, Yi; Yang, Yongzhen; Liu, Xuguang
2016-06-01
Synthesis of fluorescent carbon quantum dots (CQDs) as single light converter and their application in white light-emitting diodes (LEDs) are reported. CQDs were prepared by a one-step hydrothermal method using glucose and polyethylene glycol 200 as precursors. The structural and optical properties of the CQDs were investigated. The CQDs with uniform size of 4 nm possessed typical excitation-dependent emission wavelength and quantum yield of 3.5%. Under ultraviolet illumination, the CQDs in deionized water emitted bright blue fluorescence and produced broad visible-light emission with high red, green, and blue spectral component ratio of 63.5% (red-to-blue intensity to total intensity), suggesting great potential as single light converter for white LEDs. To demonstrate their potential, a white LED using CQDs as a single light converter was built. The device exhibited cool white light with corresponding color temperature of 5584 K and color coordinates of (0.32, 0.37), belonging to the white gamut. This research suggests that CQDs could be a promising candidate single light converter for white LEDs.
NASA Astrophysics Data System (ADS)
Krönke, Sven; Knörzer, Johannes; Schmelcher, Peter
2015-05-01
We explore the correlated quantum dynamics of a single atom, regarded as an open system, with a spatio-temporally localized coupling to a finite bosonic environment. The single atom, initially prepared in a coherent state of low energy, oscillates in a one-dimensional harmonic trap and thereby periodically penetrates an interacting ensemble of NA bosons held in a displaced trap. We show that the inter-species energy transfer accelerates with increasing NA and becomes less complete at the same time. System-environment correlations prove to be significant except for times when the excess energy distribution among the subsystems is highly imbalanced. These correlations result in incoherent energy transfer processes, which accelerate the early energy donation of the single atom and stochastically favour certain energy transfer channels, depending on the instantaneous direction of transfer. Concerning the subsystem states, the energy transfer is mediated by non-coherent states of the single atom and manifests itself in singlet and doublet excitations in the finite bosonic environment. These comprehensive insights into the non-equilibrium quantum dynamics of an open system are gained by ab initio simulations of the total system with the recently developed multi-layer multi-configuration time-dependent Hartree method for bosons.
Bloch Surface Wave-Coupled Emission from Quantum Dots by Ensemble and Single Molecule Spectroscopy.
Ray, Krishanu; Badugu, Ramachandram; Lakowicz, Joseph R
We report the spectral properties and spatial distribution of quantum dot (QD575 ) emission on a one-dimensional photonic crystal (1DPC). Our 1DPC substrate consists of multiple layers of dielectrics with a photonic band gap (PBG) near the QD575 emission maximum. The 1DPC was designed to display a surface-trapped electromagnetic state known as a Bloch surface wave (BSW) at the 1DPC-air (sample) interface. Ensemble angle-dependent emission intensities revealed a sharp angular emission peak near 41° from the normal which is consistent with the BSW resonance at 575 nm. We further examined the emission from single QDs on the 1DPC. A notable increase in fluorescence intensity from QD575 particles was observed on BSW substrate compared to the glass substrate from the scanning confocal fluorescence images and from the intensity-time trajectories of single QD575 particles. The intensity-decays showed substantially faster decay (4-fold decrease in emission lifetime) from the single QD575 particles on 1DPC substrate (∼4.8 nsec) as compared to the glass substrate (∼18 nsec). We observed the spectral characteristics of the individual QD575 particles on 1DPC and glass substrates, by recording the single particle emission spectra through the 1DPC. The emission spectra of the single QD575 particles are similar (with emission maxima around 575 nm) on both substrates except a substantial increase in intensity (over 10-fold) on the BSW substrate. Our results demonstrate that quantum dots can interact with Bloch Surface Waves (BSW) on a 1DPC. To the best of our knowledge, this is the first report on the single particle fluorescence studies on 1DPC substrate. The 10-fold increase in intensity in combination with 4-fold reduction in emission lifetime suggest 1DPCs with BSW modes have potential use in sensing and single molecule spectroscopy.
Leuenberger, Michael N; Flatté, Michael E; Awschalom, D D
2005-03-18
We propose a teleportation scheme that relies only on single-photon measurements and Faraday rotation, for teleportation of many-qubit entangled states stored in the electron spins of a quantum dot system. The interaction between a photon and the two electron spins, via Faraday rotation in microcavities, establishes Greenberger-Horne-Zeilinger entanglement in the spin-photon-spin system. The appropriate single-qubit measurements, and the communication of two classical bits, produce teleportation. This scheme provides the essential link between spintronic and photonic quantum information devices by permitting quantum information to be exchanged between them.
NASA Astrophysics Data System (ADS)
Motes, Keith R.; Mann, Ryan L.; Olson, Jonathan P.; Studer, Nicholas M.; Bergeron, E. Annelise; Gilchrist, Alexei; Dowling, Jonathan P.; Berry, Dominic W.; Rohde, Peter P.
2016-07-01
Fock states are a fundamental resource for many quantum technologies such as quantum metrology. While much progress has been made in single-photon source technologies, preparing Fock states with a large photon number remains challenging. We present and analyze a bootstrapped approach for nondeterministically preparing large photon-number Fock states by iteratively fusing smaller Fock states on a beamsplitter. We show that by employing state recycling we are able to exponentially improve the preparation rate over conventional schemes, allowing the efficient preparation of large Fock states. The scheme requires single-photon sources, beamsplitters, number-resolved photodetectors, fast-feedforward, and an optical quantum memory.
Resonant optical control of the spin of a single Cr atom in a quantum dot
NASA Astrophysics Data System (ADS)
Lafuente-Sampietro, A.; Utsumi, H.; Boukari, H.; Kuroda, S.; Besombes, L.
2017-01-01
A Cr atom in a semiconductor host carries a localized spin with an intrinsic large spin to strain coupling, which is particularly promising for the development of hybrid spin-mechanical systems and coherent mechanical spin driving. We demonstrate here that the spin of an individual Cr atom inserted in a semiconductor quantum dot can be controlled optically. We first show that a Cr spin can be prepared by resonant optical pumping. Monitoring the time dependence of the intensity of the resonant fluorescence of the quantum dot during this process permits us to probe the dynamics of the optical initialization of the Cr spin. Using this initialization and readout technique we measured a Cr spin relaxation time at T =5 K in the microsecond range. We finally demonstrate that, under a resonant single-mode laser field, the energy of any spin state of an individual Cr atom can be independently tuned by using the optical Stark effect.
Tzimis, A.; Savvidis, P. G.; Trifonov, A. V.; Ignatiev, I. V.; Christmann, G.; Tsintzos, S. I.; Hatzopoulos, Z.; Kavokin, A. V.
2015-09-07
We report observation of strong light-matter coupling in an AlGaAs microcavity (MC) with an embedded single parabolic quantum well. The parabolic potential is achieved by varying aluminum concentration along the growth direction providing equally spaced energy levels, as confirmed by Brewster angle reflectivity from a reference sample without MC. It acts as an active region of the structure which potentially allows cascaded emission of terahertz (THz) light. Spectrally and time resolved pump-probe spectroscopy reveals characteristic quantum beats whose frequencies range from 0.9 to 4.5 THz, corresponding to energy separation between relevant excitonic levels. The structure exhibits strong stimulated nonlinear emission with simultaneous transition to weak coupling regime. The present study highlights the potential of such devices for creating cascaded relaxation of bosons, which could be utilized for THz emission.
2012-01-01
We measured the quantum-confined Stark effect (QCSE) of several types of fluorescent colloidal semiconductor quantum dots and nanorods at the single molecule level at room temperature. These measurements demonstrate the possible utility of these nanoparticles for local electric field (voltage) sensing on the nanoscale. Here we show that charge separation across one (or more) heterostructure interface(s) with type-II band alignment (and the associated induced dipole) is crucial for an enhanced QCSE. To further gain insight into the experimental results, we numerically solved the Schrödinger and Poisson equations under self-consistent field approximation, including dielectric inhomogeneities. Both calculations and experiments suggest that the degree of initial charge separation (and the associated exciton binding energy) determines the magnitude of the QCSE in these structures. PMID:23075136
Single-point position and transition defects in continuous time quantum walks
Li, Z. J.; Wang, J. B.
2015-01-01
We present a detailed analysis of continuous time quantum walks (CTQW) with both position and transition defects defined at a single point in the line. Analytical solutions of both traveling waves and bound states are obtained, which provide valuable insight into the dynamics of CTQW. The number of bound states is found to be critically dependent on the defect parameters, and the localized probability peaks can be readily obtained by projecting the state vector of CTQW on to these bound states. The interference between two bound states are also observed in the case of a transition defect. The spreading of CTQW probability over the line can be finely tuned by varying the position and transition defect parameters, offering the possibility of precision quantum control of the system. PMID:26323855
Single quantum vibrational energy transfer from HCl (v=2) and HBr(v=2)
Dasch, C.J.; Moore, C.B.
1980-04-01
HCl (v=2) and HBr (v=2) have been directly excited with a pulsed optical parametric oscillator at 295 K. The relaxation in hydrogen halide mixtures proceeds largely by single quantum V--V exchange. Measured total relaxation rates include HCl..-->..HCl 9.5 +- 0.7; HCl..-->..HBr 9.3 +- 0.6; HCl..-->..DCl 1.3 +- 0.2; HBr..-->..HBr 6.2 +- 0.5; and HBr..-->..HCl (1.0 +- 0.2) x 10/sup 4/ Torr/sup -1/ s/sup -1/. The two quantum exchange rate for HCl (v=2)+ HBr (v=0) is <1 x 10/sup 3/ Torr/sup -1/ s/sup -1/. Upper limits on the V--R, T self-relaxation rates of HCl (v=2) and HBr (v=2) are 2 x and 1 x 10/sup 4/ Torr/sup -1/ s/sup -1/.
Kahl, Oliver; Ferrari, Simone; Kovalyuk, Vadim; Goltsman, Gregory N.; Korneev, Alexander; Pernice, Wolfram H. P.
2015-01-01
Superconducting nanowire single-photon detectors (SNSPDs) provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, compatibility with an integrated optical platform is a crucial requirement for applications in emerging quantum photonic technologies. Here we present SNSPDs embedded in nanophotonic integrated circuits which achieve internal quantum efficiencies close to unity at 1550 nm wavelength. This allows for the SNSPDs to be operated at bias currents far below the critical current where unwanted dark count events reach milli-Hz levels while on-chip detection efficiencies above 70% are maintained. The measured dark count rates correspond to noise-equivalent powers in the 10−19 W/Hz−1/2 range and the timing jitter is as low as 35 ps. Our detectors are fully scalable and interface directly with waveguide-based optical platforms. PMID:26061283
Distributed thermal tasks on many-body systems through a single quantum machine
NASA Astrophysics Data System (ADS)
Leggio, Bruno; Doyeux, Pierre; Messina, Riccardo; Antezza, Mauro
2015-11-01
We propose a configuration of a single three-level quantum emitter embedded in a non-equilibrium steady electromagnetic environment, able to stabilize and control the local temperatures of a target system it interacts with, consisting of a collection of coupled two-level systems. The temperatures are induced by dissipative processes only, without the need of further external couplings for each qubit. Moreover, by acting on a set of easily tunable geometric parameters, we demonstrate the possibility to manipulate and tune each qubit temperature independently over a remarkably broad range of values. These findings address one standard problem in quantum-scale thermodynamics, providing a way to induce a desired distribution of temperature among interacting qubits and to protect it from external noise sources.
Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes
Wang, Xu; Alexander-Webber, Jack A.; Jia, Wei; Reid, Benjamin P. L.; Stranks, Samuel D.; Holmes, Mark J.; Chan, Christopher C. S.; Deng, Chaoyong; Nicholas, Robin J.; Taylor, Robert A.
2016-01-01
Semiconducting single-walled carbon nanotubes are one-dimensional materials with great prospects for applications such as optoelectronic and quantum information devices. Yet, their optical performance is hindered by low fluorescent yield. Highly mobile excitons interacting with quenching sites are attributed to be one of the main non-radiative decay mechanisms that shortens the exciton lifetime. In this paper we report on time-integrated photoluminescence measurements on individual polymer wrapped semiconducting carbon nanotubes. An ultra narrow linewidth we observed demonstrates intrinsic exciton dynamics. Furthermore, we identify a state filling effect in individual carbon nanotubes at cryogenic temperatures as previously observed in quantum dots. We propose that each of the CNTs is segmented into a chain of zero-dimensional states confined by a varying local potential along the CNT, determined by local environmental factors such as the amount of polymer wrapping. Spectral diffusion is also observed, which is consistent with the tunneling of excitons between these confined states. PMID:27849046
Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes
NASA Astrophysics Data System (ADS)
Wang, Xu; Alexander-Webber, Jack A.; Jia, Wei; Reid, Benjamin P. L.; Stranks, Samuel D.; Holmes, Mark J.; Chan, Christopher C. S.; Deng, Chaoyong; Nicholas, Robin J.; Taylor, Robert A.
2016-11-01
Semiconducting single-walled carbon nanotubes are one-dimensional materials with great prospects for applications such as optoelectronic and quantum information devices. Yet, their optical performance is hindered by low fluorescent yield. Highly mobile excitons interacting with quenching sites are attributed to be one of the main non-radiative decay mechanisms that shortens the exciton lifetime. In this paper we report on time-integrated photoluminescence measurements on individual polymer wrapped semiconducting carbon nanotubes. An ultra narrow linewidth we observed demonstrates intrinsic exciton dynamics. Furthermore, we identify a state filling effect in individual carbon nanotubes at cryogenic temperatures as previously observed in quantum dots. We propose that each of the CNTs is segmented into a chain of zero-dimensional states confined by a varying local potential along the CNT, determined by local environmental factors such as the amount of polymer wrapping. Spectral diffusion is also observed, which is consistent with the tunneling of excitons between these confined states.
Towards a quantum representation of the ampere using single electron pumps
NASA Astrophysics Data System (ADS)
Giblin, S. P.; Kataoka, M.; Fletcher, J. D.; See, P.; Janssen, T. J. B. M.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.
2012-07-01
Electron pumps generate a macroscopic electric current by controlled manipulation of single electrons. Despite intensive research towards a quantum current standard over the last 25 years, making a fast and accurate quantized electron pump has proved extremely difficult. Here we demonstrate that the accuracy of a semiconductor quantum dot pump can be dramatically improved by using specially designed gate drive waveforms. Our pump can generate a current of up to 150 pA, corresponding to almost a billion electrons per second, with an experimentally demonstrated current accuracy better than 1.2 parts per million (p.p.m.) and strong evidence, based on fitting data to a model, that the true accuracy is approaching 0.01 p.p.m. This type of pump is a promising candidate for further development as a realization of the SI base unit ampere, following a redefinition of the ampere in terms of a fixed value of the elementary charge.
Quantum-state tomography of a single nuclear spin qubit of an optically manipulated ytterbium atom
Noguchi, Atsushi; Kozuma, Mikio; Eto, Yujiro; Ueda, Masahito
2011-09-15
A single Yb atom is loaded into a high-finesse optical cavity with a moving lattice, and its nuclear spin state is manipulated using a nuclear magnetic resonance technique. A highly reliable quantum state control with fidelity and purity greater than 0.98 and 0.96, respectively, is confirmed by the full quantum state tomography; a projective measurement with high speed (500 {mu}s) and high efficiency (0.98) is accomplished using the cavity QED technique. Because a hyperfine coupling is induced only when the projective measurement is operational, the long coherence times (T{sub 1}=0.49 s and T{sub 2}=0.10 s) are maintained.
Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot
Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo
2015-01-01
Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582
Lagrangian Description for Particle Interpretations of Quantum Mechanics: Single-Particle Case
NASA Astrophysics Data System (ADS)
Sutherland, Roderick I.
2015-11-01
A Lagrangian description is presented which can be used in conjunction with particle interpretations of quantum mechanics. A special example of such an interpretation is the well-known Bohm model. The Lagrangian density introduced here also contains a potential for guiding the particle. The advantages of this description are that the field equations and the particle equations of motion can both be deduced from a single Lagrangian density expression and that conservation of energy and momentum are assured. After being developed in a general form, this Lagrangian formulation is then applied to the special case of the Bohm model as an example. It is thereby demonstrated that such a Lagrangian description is compatible with the predictions of quantum mechanics.
Fundamental operation of single-flux-quantum circuits using coplanar-type high-Tc SQUIDs
NASA Astrophysics Data System (ADS)
Fuke, Hiroyuki; Saitoh, Kazuo; Utagawa, Tadashi; Enomoto, Youichi
1996-11-01
We have fabricated coplanar type dc SQUIDs using NdBa2Cu3Oy superconducting thin films and operated fundamental single-flux-quantum (SFQ) circuits. The Josephson junctions were made by the narrow-focused ion beam irradiation technique. For a 145 μm wide and 10 μm long logic SQUID having a critical current of 105 μA and an inductive parameter (βL) of 28, a store and a restore of the flux quantum have been demonstrated at temperatures of 4.2-30 K. These operations were performed with an input pulsewidth of 5 ns (5 ns was the shortest input pulse width available from our function generating equipment). These results show experimentally the possibility of high speed operation in all high-Tc superconducting digital circuits.
Berritta, Marco; Manrique, David Zs; Lambert, Colin J
2015-01-21
We theoretically explored the combined role of conformational fluctuations and quantum interference in determining the electrical conductance of single-molecule break junctions. In particular we computed the conductance of a family of methylsulfide-functionalized trans-α,ω-diphenyloligoene molecules, with terminal phenyl rings containing meta or para linkages, for which (at least in the absence of fluctuations) destructive interference in the former is expected to decrease their electrical conductance compared with the latter. We compared the predictions of density functional theory (DFT), in which fluctuational effects are absent, with results for the conformationally-averaged conductance obtained from an ensemble of conformations obtained from classical molecular dynamics. We found that junctions formed from these molecules exhibit distinct transport regimes during junction evolution and the signatures of quantum interference in these molecules survive the effect of conformational fluctuations. Furthermore, the agreement between theory and experiment is significantly improved by including conformational averaging.
Schmidt, Gordon Berger, Christoph; Veit, Peter; Metzner, Sebastian; Bertram, Frank; Bläsing, Jürgen; Dadgar, Armin; Strittmatter, André; Christen, Jürgen; Callsen, Gordon; Kalinowski, Stefan; Hoffmann, Axel
2015-06-22
Intense emission from GaN islands embedded in AlN resulting from GaN/AlN quantum well growth is directly resolved by performing cathodoluminescence spectroscopy in a scanning transmission electron microscope. Line widths down to 440 μeV are measured in a wavelength region between 220 and 310 nm confirming quantum dot like electronic properties in the islands. These quantum dot states can be structurally correlated to islands of slightly enlarged thicknesses of the GaN/AlN quantum well layer preferentially formed in vicinity to dislocations. The quantum dot states exhibit single photon emission in Hanbury Brown-Twiss experiments with a clear antibunching in the second order correlation function at zero time delay.
Ates, Serkan; Agha, Imad; Gulinatti, Angelo; Rech, Ivan; Rakher, Matthew T; Badolato, Antonio; Srinivasan, Kartik
2012-10-05
We show that quantum frequency conversion (QFC) can overcome the spectral distinguishability common to inhomogeneously broadened solid-state quantum emitters. QFC is implemented by combining single photons from an InAs/GaAs quantum dot (QD) at 980 nm with a 1550 nm pump laser in a periodically poled lithium niobate (PPLN) waveguide to generate photons at 600 nm with a signal-to-background ratio exceeding 100:1. Photon correlation and two-photon interference measurements confirm that both the single photon character and wave packet interference of individual QD states are preserved during frequency conversion. Finally, we convert two spectrally separate QD transitions to the same wavelength in a single PPLN waveguide and show that the resulting field exhibits nonclassical two-photon interference.
Quantum Otto engine of a two-level atom with single-mode fields.
Wang, Jianhui; Wu, Zhaoqi; He, Jizhou
2012-04-01
We establish a quantum Otto engine (QOE) of a two-level atom, which is confined in a one-dimensional (1D) harmonic trap and is coupled to single-mode radiation fields. Besides two adiabatic processes, the QOE cycle consists of two isochoric processes, along one of which the two-level atom as the working substance interacts with a single-mode radiation field. Based on the semigroup approach, we derive the time for completing any adiabatic process and then present a performance analysis of the heat engine model. Furthermore, we generalize the results to the performance optimization for a QOE of a single two-level atom trapped in a 1D power-law potential. Our result shows that the efficiency at maximum power output is dependent on the trap exponent θ but is independent of the energy spectrum index σ.
Quantum Otto engine of a two-level atom with single-mode fields
NASA Astrophysics Data System (ADS)
Wang, Jianhui; Wu, Zhaoqi; He, Jizhou
2012-04-01
We establish a quantum Otto engine (QOE) of a two-level atom, which is confined in a one-dimensional (1D) harmonic trap and is coupled to single-mode radiation fields. Besides two adiabatic processes, the QOE cycle consists of two isochoric processes, along one of which the two-level atom as the working substance interacts with a single-mode radiation field. Based on the semigroup approach, we derive the time for completing any adiabatic process and then present a performance analysis of the heat engine model. Furthermore, we generalize the results to the performance optimization for a QOE of a single two-level atom trapped in a 1D power-law potential. Our result shows that the efficiency at maximum power output is dependent on the trap exponent θ but is independent of the energy spectrum index σ.
Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter.
Wang, Hui; Duan, Z-C; Li, Y-H; Chen, Si; Li, J-P; He, Y-M; Chen, M-C; He, Yu; Ding, X; Peng, Cheng-Zhi; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2016-05-27
By pulsed s-shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of 1000 near-transform-limited single photons with high mutual indistinguishability. The Hong-Ou-Mandel interference of two photons is measured as a function of their emission time separation varying from 13 ns to 14.7 μs, where the visibility slightly drops from 95.9(2)% to a plateau of 92.1(5)% through a slow dephasing process occurring at a time scale of 0.7 μs. A temporal and spectral analysis reveals the pulsed resonance fluorescence single photons are close to the transform limit, which are readily useful for multiphoton entanglement and interferometry experiments.
Near-Transform-Limited Single Photons from an Efficient Solid-State Quantum Emitter
NASA Astrophysics Data System (ADS)
Wang, Hui; Duan, Z.-C.; Li, Y.-H.; Chen, Si; Li, J.-P.; He, Y.-M.; Chen, M.-C.; He, Yu; Ding, X.; Peng, Cheng-Zhi; Schneider, Christian; Kamp, Martin; Höfling, Sven; Lu, Chao-Yang; Pan, Jian-Wei
2016-05-01
By pulsed s -shell resonant excitation of a single quantum dot-micropillar system, we generate long streams of 1000 near-transform-limited single photons with high mutual indistinguishability. The Hong-Ou-Mandel interference of two photons is measured as a function of their emission time separation varying from 13 ns to 14.7 μ s , where the visibility slightly drops from 95.9(2)% to a plateau of 92.1(5)% through a slow dephasing process occurring at a time scale of 0.7 μ s . A temporal and spectral analysis reveals the pulsed resonance fluorescence single photons are close to the transform limit, which are readily useful for multiphoton entanglement and interferometry experiments.
Electron quantum optics: current and noise of a single electron emitter
NASA Astrophysics Data System (ADS)
Fève, Gwendal
2010-03-01
Ballistic electronic transport along the Quantum Hall edge states of two dimensional electron gases presents strong analogies with the propagation of photons which have been best illustrated by the realization of electronic Mach-Zehnder interferometers [1]. The analogy can be pushed to quantum optics where single electron emitters are realized to manipulate one or few charges. Celebrated experiments such as the one electron Hanbury-Brown and Twiss or the two electrons Hong-Ou-Mandel experiments can then be implemented [2]. This brings us closer to the on demand generation of entangled electron pairs. The feasibility of these new quantum optics experiments relies also on the ability to measure the output correlations of the current generated by the source. We will present the first realization of such a single electron source characterized both by the measurement of the average ac current [3] and its fluctuations. The source is made of a periodically driven mesoscopic capacitor [4,5] coupled to the electron reservoir by a tunnel barrier of adjustable transmission. At the first half period of the excitation drive, an occupied energy level of the dot is suddenly promoted above the Fermi energy and a single charge is emitted on the tunnelling escape time. In the second half period, the level is brought back to its initial value and an electron is absorbed, leaving a hole in the Fermi sea. Single electron emission appears as a quantization of the ac current in units of the electric charge times the drive frequency. The occurrence of spurious multiple charge events can be ruled out by the measurement of the noise presented here. Our measurements confirm single electron emission where the noise reduces to the quantum jitter associated with the Heisenberg uncertainty on the emission time.[4pt] [1] Y. Ji et al., Nature 422, 415 (2003) [0pt] [2] S. Ol'khovskaya et al., Phys. Rev. Lett. 101, 166802 (2008)[0pt] [3] G. Fève et al., Science 316, 1169 (2007) [0pt] [4] M. B
Generation of single photons with highly tunable wave shape from a cold atomic quantum memory
NASA Astrophysics Data System (ADS)
Heinze, Georg; Farrera, Pau; Albrecht, Boris; de Riedmatten, Hugues; Ho, Melvyn; Chavez, Matias; Teo, Colin; Sangouard, Nicolas
2016-05-01
We report on a single photon source with highly tunable photon shape based on a cold ensemble of Rubidium atoms. We follow the DLCZ scheme to implement an emissive quantum memory, which can be operated as a photon pair source with controllable delay. We find that the temporal wave shape of the emitted read photon can be precisely controlled by changing the shape of the driving read pulse. We generate photons with temporal durations varying over three orders of magnitude up to 10 μs without a significant change of the read-out efficiency. We prove the non-classicality of the emitted photons by measuring their antibunching, showing near single photon behavior at low excitation probabilities. We also show that the photons are emitted in a pure state by measuring unconditional autocorrelation functions. Finally, to demonstrate the usability of the source for realistic applications, we create ultra-long single photons with a rising exponential or doubly peaked time-bin wave shape which are important for several quantum information tasks. ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
Acoustically regulated carrier injection into a single optically active quantum dot
NASA Astrophysics Data System (ADS)
Schülein, Florian J. R.; Müller, Kai; Bichler, Max; Koblmüller, Gregor; Finley, Jonathan J.; Wixforth, Achim; Krenner, Hubert J.
2013-08-01
We study the carrier injection into a single InGaAs/GaAs quantum dot regulated by a radio frequency surface acoustic wave. We find that the time of laser excitation during the acoustic cycle programs both the emission intensities and time of formation of neutral (X0) and negatively charged (X-) excitons. We identify underlying, characteristic formation pathways of both few-particle states in the time-domain experiments and show that both exciton species can be formed either with the optical pump or at later times by injection of single electrons and holes “surfing” the acoustic wave. All experimental observations are in excellent agreement with calculated electron and hole trajectories in the plane of the two-dimensional wetting layer which is dynamically modulated by the acoustically induced piezoelectric potentials. Taken together, our findings provide insight on both the onset of acoustoelectric transport of electrons and holes and their conversion into the optical domain after regulated injection into a single quantum dot emitter.
Ultraclean single, double, and triple carbon nanotube quantum dots with recessed Re bottom gates
NASA Astrophysics Data System (ADS)
Jung, Minkyung; Schindele, Jens; Nau, Stefan; Weiss, Markus; Baumgartner, Andreas; Schoenenberger, Christian
2014-03-01
Ultraclean carbon nanotubes (CNTs) that are free from disorder provide a promising platform to manipulate single electron or hole spins for quantum information. Here, we demonstrate that ultraclean single, double, and triple quantum dots (QDs) can be formed reliably in a CNT by a straightforward fabrication technique. The QDs are electrostatically defined in the CNT by closely spaced metallic bottom gates deposited in trenches in Silicon dioxide by sputter deposition of Re. The carbon nanotubes are then grown by chemical vapor deposition (CVD) across the trenches and contacted using conventional electron beam lithography. The devices exhibit reproducibly the characteristics of ultraclean QDs behavior even after the subsequent electron beam lithography and chemical processing steps. We demonstrate the high quality using CNT devices with two narrow bottom gates and one global back gate. Tunable by the gate voltages, the device can be operated in four different regimes: i) fully p-type with ballistic transport between the outermost contacts (over a length of 700 nm), ii) clean n-type single QD behavior where a QD can be induced by either the left or the right bottom gate, iii) n-type double QD and iv) triple bipolar QD where the middle QD has opposite doping (p-type). Research at Basel is supported by the NCCR-Nano, NCCR-QIST, ERC project QUEST, and FP7 project SE2ND.
Blinking effect and the use of quantum dots in single molecule spectroscopy
Rombach-Riegraf, Verena; Oswald, Peter; Bienert, Roland; Petersen, Jan; Domingo, M.P.; Pardo, Julian; Graeber, P.; Galvez, E.M.
2013-01-04
Highlights: Black-Right-Pointing-Pointer It is possible to eliminate the blinking effect of a water-soluble QD. Black-Right-Pointing-Pointer We provide a direct method to study protein function and dynamics at the single level. Black-Right-Pointing-Pointer QD, potent tool for single molecule studies of biochemical and biological processes. -- Abstract: Luminescent semiconductor nanocrystals (quantum dots, QD) have unique photo-physical properties: high photostability, brightness and narrow size-tunable fluorescence spectra. Due to their unique properties, QD-based single molecule studies have become increasingly more popular during the last years. However QDs show a strong blinking effect (random and intermittent light emission), which may limit their use in single molecule fluorescence studies. QD blinking has been widely studied and some hypotheses have been done to explain this effect. Here we summarise what is known about the blinking effect in QDs, how this phenomenon may affect single molecule studies and, on the other hand, how the 'on'/'off' states can be exploited in diverse experimental settings. In addition, we present results showing that site-directed binding of QD to cysteine residues of proteins reduces the blinking effect. This option opens a new possibility of using QDs to study protein-protein interactions and dynamics by single molecule fluorescence without modifying the chemical composition of the solution or the QD surface.
Dirac Equation and Quantum Relativistic Effects in a Single Trapped Ion
Lamata, L.; Leon, J.; Schaetz, T.; Solano, E.
2007-06-22
We present a method of simulating the Dirac equation in 3+1 dimensions for a free spin-1/2 particle in a single trapped ion. The Dirac bispinor is represented by four ionic internal states, and position and momentum of the Dirac particle are associated with the respective ionic variables. We show also how to simulate the simplified 1+1 case, requiring the manipulation of only two internal levels and one motional degree of freedom. Moreover, we study relevant quantum-relativistic effects, like the Zitterbewegung and Klein's paradox, the transition from massless to massive fermions, and the relativistic and nonrelativistic limits, via the tuning of controllable experimental parameters.
Single-electron transistors based on self-assembled silicon-on-insulator quantum dots
NASA Astrophysics Data System (ADS)
Wolf, Conrad R.; Thonke, Klaus; Sauer, Rolf
2010-04-01
We present an approach to fabricate single-electron devices consisting of a silicon quantum dot (QD) between metallic leads. Silicon QDs are obtained by reactive ion etching into a silicon-on-insulator substrate partially protected by a self-assembled etch mask. Electrodes are fabricated and aligned to the QDs by an electromigration process whereby their native oxide serves as tunneling barrier. The devices show Coulomb blockade corresponding to a charging energy of 19.4 meV and can be switched from the nonconducting to a conducting state giving rise to Coulomb diamonds. The behavior is well reproduced by a numerical orthodox theory calculation.
AlxGa1-xAs Single-Quantum-Well Surface-Emitting Lasers
NASA Technical Reports Server (NTRS)
Kim, Jae H.
1992-01-01
Surface-emitting solid-state laser contains edge-emitting Al0.08Ga0.92As single-quantum-well (SQW) active layer sandwiched between graded-index-of-refraction separate-confinement-heterostructure (GRINSCH) layers of AlxGa1-xAs, includes etched 90 degree mirrors and 45 degree facets to direct edge-emitted beam perpendicular to top surface. Laser resembles those described in "Pseudomorphic-InxGa1-xAs Surface-Emitting Lasers" (NPO-18243). Suitable for incorporation into optoelectronic integrated circuits for photonic computing; e.g., optoelectronic neural networks.
Progress in single quantum well structures for high power laser device applications
NASA Astrophysics Data System (ADS)
Waters, R. G.; Tihanyi, P. L.; Hill, D. S.; Soltz, B. A.
1988-01-01
Recent advances made toward performance optimization of (Al)GaAs quantum well lasers are described. Topics covered include: laser reliability for broad-area devices emitting less than 300 mW and its relation to the epitaxial structure and operating current density; parametric crystal growth studies and the implications for device efficiency; realization of 57 percent cw power conversion efficiency in an oxide-defined device; progress in dry-etching technology including array fabrication and development of device-quality laser facets suitable for integration. Finally, work in the high-power regime is discussed. This includes broad-area, single-emitter lasers emitting 6W cw.
Multiparty quantum sealed-bid auction using single photons as message carrier
NASA Astrophysics Data System (ADS)
Liu, Wen-Jie; Wang, Hai-Bin; Yuan, Gong-Lin; Xu, Yong; Chen, Zhen-Yu; An, Xing-Xing; Ji, Fu-Gao; Gnitou, Gnim Tchalim
2016-02-01
In this study, a novel multiparty quantum sealed-bid auction protocol using the single photons as the message carrier of bids is proposed, followed by an example of three-party auction. Compared with those protocols based on the entangled states (GHZ state, EPR pairs, etc.), the present protocol is more economic and feasible within present technology. In order to guarantee the security and the fairness of the auction, the decoy photon checking technique and an improved post-confirmation mechanism with EPR pairs are introduced, respectively.
Room temperature single-photon detectors for high bit rate quantum key distribution
Comandar, L. C.; Patel, K. A.; Fröhlich, B. Lucamarini, M.; Sharpe, A. W.; Dynes, J. F.; Yuan, Z. L.; Shields, A. J.; Penty, R. V.
2014-01-13
We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.
Generating Entangled Spin States for Quantum Metrology by Single-Photon Detection
NASA Astrophysics Data System (ADS)
McConnell, Robert; Zhang, Hao; Cuk, Senka; Hu, Jiazhong; Schleier-Smith, Monika; Vuletic, Vladan
2014-05-01
We present a proposal and latest experimental results on a probabilistic but heralded scheme to generate non-Gaussian entangled states of collective spin in large atomic ensembles by means of single-photon detection. One photon announces the preparation of a Dicke state, while two or more photons announce Schrödinger cat states. The entangled states thus produced allow interferometry below the Standard Quantum Limit (SQL). The method produces nearly pure states even for finite photon detection efficiency and weak atom-photon coupling. The entanglement generation can be made quasi-deterministic by means of repeated trial and feedback.
Hangauer, Andreas; Spinner, Georg; Nikodem, Michal; Wysocki, Gerard
2014-09-22
Both intensity- (IM) and frequency-modulation (FM) behavior of a directly modulated quantum cascade laser (QCL) are measured from 300 Hz to 1.7 GHz. Quantitative measurements of tuning coefficients has been performed and the transition from thermal- to electronic-tuning is clearly observed. A very specific FM behavior of QCLs has been identified which allows for optical quasi single sideband (SSB) modulation through current injection and has not been observed in directly modulated semiconductor lasers before. This predestines QCLs in applications where SSB is required, such as telecommunication or high speed spectroscopy. The experimental procedure and theoretical modeling for data extraction is discussed.
Implications of the general constraints for single-qubit quantum process tomography
NASA Astrophysics Data System (ADS)
Bhandari, Ramesh; Peters, Nicholas
We revisit the general constraints of single qubit quantum process tomography and derive simplified forms in the Pauli basis. These forms give insight into the structure of the process matrix, which we examine in light of several examples. Specifically, we study some qubit leakage error models and show how different error models are manifest in the process matrix. NAP's research sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy.
Quantum interference of stored dual-channel spin-wave excitations in a single tripod system
Wang Hai; Li Shujing; Xu Zhongxiao; Zhao Xingbo; Zhang Lijun; Li Jiahua; Wu Yuelong; Xie Changde; Peng Kunchi; Xiao Min
2011-04-15
We present an experimental demonstration of dual-channel memory in a single tripod atomic system. The total readout signal exhibits either constructive or destructive interference when the dual-channel spin-wave excitations (SWEs) are retrieved by two reading beams with a controllable relative phase. When the two reading beams have opposite phases, the SWEs will remain in the medium, which can be retrieved later with two in-phase reading beams. Such a phase-sensitive storage and retrieval scheme can be used to measure and control the relative phase between the two SWEs in the memory medium, which may find applications in quantum-information processing.
Quantum-electrodynamic treatment of photoemission by a single-electron wave packet
Corson, John P.; Peatross, Justin
2011-11-15
A quantum-field-theory description of photoemission by a laser-driven single-electron wave packet is presented. We show that, when the incident light is represented with multimode coherent states then, to all orders of perturbation theory, the relative phases of the electron's constituent momenta have no influence on the amount of scattered light. These results are extended using the Furry picture, where the (unidirectional) arbitrary incident light pulse is treated nonperturbatively with Volkov functions. This analysis increases the scope of our prior results in [Phys. Rev. A 84, 053831 (2011)], which demonstrate that the spatial size of the electron wave packet does not influence photoemission.
Quantum dynamics of a hole migration through DNA: A single strand DNA model.
Shirmovsky, S Eh
2016-10-01
A model predicting the behavior of a hole acting on the DNA strand was investigated. The hole-DNA interaction on the basis of a quantum-classical, non-linear DNA single strand model was described. The fact that a DNA molecule is formed by a furanose ring as its sugar, phosphate group and bases was taken into consideration. Based on the model, results were obtained for the probability of a hole location on the DNA base sequences, such as GTTGGG, GATGTGGG, GTTGTTGGG as well as on the sugar-phosphate groups mated with them.
Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon
2015-01-01
geometry developed by the Princeton group to study spin-cavity coupling in InAs nanowires . The sample, shown in Fig. 1, couples an InAs spin-orbit qubit...electric field amplitude of 0.2 V/m (4, 6). It is this electric field that couples to the charge trapped in the InAs nanowire quantum dot. Figure 1...Superconducting resonator architecture. A) A Nb stripline resonator supports a 6 GHz resonant frequency. B) We couple a single InAs nanowire double
Martín-Cano, Diego; Haakh, Harald R; Murr, Karim; Agio, Mario
2014-12-31
We investigate the reduction of the electromagnetic field fluctuations in resonance fluorescence from a single emitter coupled to an optical nanostructure. We find that such hybrid systems can lead to the creation of squeezed states of light, with quantum fluctuations significantly below the shot-noise level. Moreover, the physical conditions for achieving squeezing are strongly relaxed with respect to an emitter in free space. A high degree of control over squeezed light is feasible both in the far and near fields, opening the pathway to its manipulation and applications on the nanoscale with state-of-the-art setups.
Reithmaier, G; Lichtmannecker, S; Reichert, T; Hasch, P; Müller, K; Bichler, M; Gross, R; Finley, J J
2013-01-01
We report the routing of quantum light emitted by self-assembled InGaAs quantum dots (QDs) into the optical modes of a GaAs ridge waveguide and its efficient detection on-chip via evanescent coupling to NbN superconducting nanowire single photon detectors (SSPDs). The waveguide coupled SSPDs primarily detect QD luminescence, with scattered photons from the excitation laser onto the proximal detector being negligible by comparison. The SSPD detection efficiency from the evanescently coupled waveguide modes is shown to be two orders of magnitude larger when compared with operation under normal incidence illumination, due to the much longer optical interaction length. Furthermore, in-situ time resolved measurements performed using the integrated detector show an average QD spontaneous emission lifetime of 0.95 ns, measured with a timing jitter of only 72 ps. The performance metrics of the SSPD integrated directly onto GaAs nano-photonic hardware confirms the strong potential for on-chip few-photon quantum optics using such semiconductor-superconductor hybrid systems.
Passive states as optimal inputs for single-jump lossy quantum channels
NASA Astrophysics Data System (ADS)
De Palma, Giacomo; Mari, Andrea; Lloyd, Seth; Giovannetti, Vittorio
2016-06-01
The passive states of a quantum system minimize the average energy among all the states with a given spectrum. We prove that passive states are the optimal inputs of single-jump lossy quantum channels. These channels arise from a weak interaction of the quantum system of interest with a large Markovian bath in its ground state, such that the interaction Hamiltonian couples only consecutive energy eigenstates of the system. We prove that the output generated by any input state ρ majorizes the output generated by the passive input state ρ0 with the same spectrum of ρ . Then, the output generated by ρ can be obtained applying a random unitary operation to the output generated by ρ0. This is an extension of De Palma et al. [IEEE Trans. Inf. Theory 62, 2895 (2016)], 10.1109/TIT.2016.2547426, where the same result is proved for one-mode bosonic Gaussian channels. We also prove that for finite temperature this optimality property can fail already in a two-level system, where the best input is a coherent superposition of the two energy eigenstates.
Carrier capture dynamics of single InGaAs/GaAs quantum-dot layers
Chauhan, K. N.; Riffe, D. M.; Everett, E. A.; Kim, D. J.; Yang, H.; Shen, F. K.
2013-05-28
Using 800 nm, 25-fs pulses from a mode locked Ti:Al{sub 2}O{sub 3} laser, we have measured the ultrafast optical reflectivity of MBE-grown, single-layer In{sub 0.4}Ga{sub 0.6}As/GaAs quantum-dot (QD) samples. The QDs are formed via two-stage Stranski-Krastanov growth: following initial InGaAs deposition at a relatively low temperature, self assembly of the QDs occurs during a subsequent higher temperature anneal. The capture times for free carriers excited in the surrounding GaAs (barrier layer) are as short as 140 fs, indicating capture efficiencies for the InGaAs quantum layer approaching 1. The capture rates are positively correlated with initial InGaAs thickness and annealing temperature. With increasing excited carrier density, the capture rate decreases; this slowing of the dynamics is attributed to Pauli state blocking within the InGaAs quantum layer.
ZnO/(ZnMg)O single quantum wells with high Mg content graded barriers
Laumer, Bernhard; Schuster, Fabian; Wassner, Thomas A.; Stutzmann, Martin; Rohnke, Marcus; Schoermann, Joerg; Eickhoff, Martin
2012-06-01
ZnO/Zn{sub 1-x}Mg{sub x}O single quantum wells (SQWs) were grown by plasma-assisted molecular beam epitaxy on c-plane sapphire substrates. Compositional grading allows the application of optimized growth conditions for the fabrication of Zn{sub 1-x}Mg{sub x}O barriers with high crystalline quality and a maximum Mg content of x = 0.23. High resolution x-ray diffraction reveals partial relaxation of the graded barriers. Due to exciton localization, the SQW emission is found to consist of contributions from donor-bound and free excitons. While for narrow SQWs with well width d{sub W}{<=}2.5nm, the observed increase of the exciton binding energy is caused by quantum confinement, the drop of the photoluminescence emission below the ZnO bulk value found for wide SQWs is attributed to the quantum-confined Stark effect. For a Mg content of x = 0.23, a built-in electric field of 630 kV/cm is extracted, giving rise to a decrease of the exciton binding energy and rapid thermal quenching of the SQW emission characterized by an activation energy of (24 {+-} 4) meV for d{sub W} = 8.3 nm.
Distributing entanglement and single photons through an intra-city, free-space quantum channel.
Resch, K; Lindenthal, M; Blauensteiner, B; Böhm, H; Fedrizzi, A; Kurtsiefer, C; Poppe, A; Schmitt-Manderbach, T; Taraba, M; Ursin, R; Walther, P; Weier, H; Weinfurter, H; Zeilinger, A
2005-01-10
We have distributed entangled photons directly through the atmosphere to a receiver station 7.8 km away over the city of Vienna, Austria at night. Detection of one photon from our entangled pairs constitutes a triggered single photon source from the sender. With no direct time-stable connection, the two stations found coincidence counts in the detection events by calculating the cross-correlation of locally-recorded time stamps shared over a public internet channel. For this experiment, our quantum channel was maintained for a total of 40 minutes during which time a coincidence lock found approximately 60000 coincident detection events. The polarization correlations in those events yielded a Bell parameter, S=2.27+/-0.019, which violates the CHSH-Bell inequality by 14 standard deviations. This result is promising for entanglement-based freespace quantum communication in high-density urban areas. It is also encouraging for optical quantum communication between ground stations and satellites since the length of our free-space link exceeds the atmospheric equivalent.
Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory.
Fisher, Kent A G; England, Duncan G; MacLean, Jean-Philippe W; Bustard, Philip J; Resch, Kevin J; Sussman, Benjamin J
2016-04-05
The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion.
Frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory
Fisher, Kent A. G.; England, Duncan G.; MacLean, Jean-Philippe W.; Bustard, Philip J.; Resch, Kevin J.; Sussman, Benjamin J.
2016-01-01
The spectral manipulation of photons is essential for linking components in a quantum network. Large frequency shifts are needed for conversion between optical and telecommunication frequencies, while smaller shifts are useful for frequency-multiplexing quantum systems, in the same way that wavelength division multiplexing is used in classical communications. Here we demonstrate frequency and bandwidth conversion of single photons in a room-temperature diamond quantum memory. Heralded 723.5 nm photons, with 4.1 nm bandwidth, are stored as optical phonons in the diamond via a Raman transition. Upon retrieval from the diamond memory, the spectral shape of the photons is determined by a tunable read pulse through the reverse Raman transition. We report central frequency tunability over 4.2 times the input bandwidth, and bandwidth modulation between 0.5 and 1.9 times the input bandwidth. Our results demonstrate the potential for diamond, and Raman memories in general, as an integrated platform for photon storage and spectral conversion. PMID:27045988
Single-shot single-voxel lactate measurements using FOCI-LASER and a multiple-quantum filter.
Payne, Geoffrey S; deSouza, Nandita M; Messiou, Christina; Leach, Martin O
2015-04-01
Measurement of tissue lactate using (1) H MRS is often confounded by overlap with intense lipid signals at 1.3 ppm. Single-voxel localization using PRESS is also compromised by the large chemical shift displacement between voxels for the 4.1 ppm (-CH) resonance and the 1.3 ppm -CH3 resonance, leading to subvoxels with signals of opposite phase and hence partial signal cancellation. To reduce the chemical shift displacement to negligible proportions, a modified semi-LASER sequence was written ("FOCI-LASER", abbreviated as fLASER) using FOCI pulses to permit high RF bandwidth even with the limited RF amplitude characteristic of clinical MRI scanners. A further modification, MQF-fLASER, includes a selective multiple-quantum filter to detect lactate and reject lipid signals. The sequences were implemented on a Philips 3 T Achieva TX system. In a solution of brain metabolites fLASER lactate signals were 2.7 times those of PRESS. MQF-fLASER lactate was 47% of fLASER (the theoretical maximum is 50%) but still larger than PRESS lactate. In oil, the main 1.3 ppm lipid peak was suppressed to less than 1%. Enhanced suppression was possible using increased gradient durations. The minimum detectable lactate concentration was approximately 0.5 mM. Coherence selection gradients needed to be at the magic angle to avoid large water signals derived from intermolecular multiple-quantum coherences. In pilot patient measurements, lactate peaks were often observed in brain tumours, but not in cervix tumours; lipids were effectively suppressed. In summary, compared with PRESS, the fLASER sequence yields greatly superior sensitivity for direct detection of lactate (and equivalent sensitivity for other metabolites), while the single-voxel single-shot MQF-fLASER sequence surpasses PRESS for lactate detection while eliminating substantial signals from lipids. This sequence will increase the potential for in vivo lactate measurement as a biomarker in targeted anti-cancer treatments as well as
NASA Astrophysics Data System (ADS)
Dousse, A.; Lanco, L.; Suffczyński, J.; Semenova, E.; Miard, A.; Lemaître, A.; Sagnes, I.; Roblin, C.; Bloch, J.; Senellart, P.
2008-12-01
Using far-field optical lithography, a single quantum dot is positioned within a pillar microcavity with a 50 nm accuracy. The lithography is performed in situ at 10 K while measuring the quantum dot emission. Deterministic spectral and spatial matching of the cavity-dot system is achieved in a single step process and evidenced by the observation of strong Purcell effect. Deterministic coupling of two quantum dots to the same optical mode is achieved, a milestone for quantum computing.
NASA Astrophysics Data System (ADS)
Pooley, M. A.; Bennett, A. J.; Stevenson, R. M.; Ward, M. B.; Patel, R. B.; Boyer de la Giroday, A.; Sköld, N.; Farrer, I.; Nicoll, C. A.; Ritchie, D. A.; Shields, A. J.
2011-03-01
Single quantum dots have many potential applications across the field of quantum computation, ranging from the generation of single photons or entangled photon pairs to the storage and manipulation of qubits. Single InAs quantum dots are optically active and thus can be used as an interface between photonic flying qubits and spin-based stationary qubits. Incorporating single InAs quantum dots into semiconductor devices allows the stationary qubits to be manipulated, making this system a promising candidate for quantum computation. It is well known that the exciton state of quantum dots is split into two polarisation dependent states; the energy difference between the states is the fine-structure splitting, (s). A vertical electric field has been used to tune |s| over a large range of ~ 100μeV, such that a dot which has |s| over 50μeV at zero field has been tuned to emit polarisation entangled photon pairs[1]. We observe coherent coupling between the two polarisation eigenstates. This coupling results in an anticrossing as the two states are tuned close to each other, and a rotation of the eigenstates through 90° as |s| is swept through its minimum value.
Komatsuzaki, Akihito; Ohyanagi, Tatsuya; Tsukasaki, Yoshikazu; Miyanaga, Yukihiro; Ueda, Masahiro; Jin, Takashi
2015-03-25
To detect single molecules within the optical diffraction limit (< ca. 200 nm), a multicolored imaging technique is developed using Halo-ligand conjugated quantum dots (Halo-QDs; <6 nm in diameter). Using three types of Halo-QDs, multicolored single-molecule fluorescence imaging of GPCR proteins in Dictyostelium cells is achieved.
Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules.
Song, Nianhui; Zhu, Haiming; Jin, Shengye; Zhan, Wei; Lian, Tianquan
2011-01-25
Functional quantum dot (QD)-based nanostructures are often constructed through the self-assembly of QDs with binding partners (molecules or other nanoparticles), a process that leads to a statistical distribution of the number of binding partners. Using single QD fluorescence spectroscopy, we probe this distribution and its effect on the function (electron-transfer dynamics) in QD-C60 complexes. Ensemble-averaged transient absorption and fluorescence decay as well as single QD fluorescence decay measurements show that the QD exciton emission was quenched by electron transfer from the QD to C60 molecules and the electron-transfer rate increases with the C60-to-QD ratio. The electron-transfer rate of single QD-C60 complexes fluctuates with time and varies among different QDs. The standard deviation increases linearly with the average of electron-transfer rates of single QD-C60 complexes, and the distributions of both quantities obey Poisson statistics. The observed distributions of single QD-C60 complexes and ensemble-averaged fluorescence decay kinetics can be described by a model that assumes a Poisson distribution of the number of adsorbed C60 molecules per QD. Our findings suggest that, in self-assembled QD nanostructures, the statistical distribution of the number of adsorbed partners can dominate the distributions of the averages and standard deviation of their interfacial dynamical properties.
High-dimensional quantum key distribution with the entangled single-photon-added coherent state
NASA Astrophysics Data System (ADS)
Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei
2017-04-01
High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious.
High temperature laser diode based on a single sheet of quantum dots
NASA Astrophysics Data System (ADS)
Ledentsov, N. N.; Shchukin, V. A.; Maximov, M. V.; Shernyakov, Yu M.; Payusov, A. S.; Gordeev, N. Yu; Rouvimov, S. S.
2015-10-01
A single sheet of high-density InGaAs quantum dots (QDs) is used as a gain medium of InGaAs-GaAs-AlGaAs lasers. The devices operate at high power in the continuous mode beyond 160 °C with an emission wavelength up to ˜1.27 μm. At short cavity lengths a strong broadening (>300 nm) of the electroluminescence spectrum is observed at high current densities, permitting light sources for broadly wavelength tuneable and multi-wavelength infrared lasers based on a single gain chip, and related frequency conversion devices for the whole visible spectrum range. High power cw operation (>2 W) limited by catastrophic optical mirror damage is realized.
An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies
NASA Astrophysics Data System (ADS)
Brida, G.; Degiovanni, I. P.; Genovese, M.; Piacentini, F.; Traina, P.; Della Frera, A.; Tosi, A.; Bahgat Shehata, A.; Scarcella, C.; Gulinatti, A.; Ghioni, M.; Polyakov, S. V.; Migdall, A.; Giudice, A.
2012-11-01
Low noise single-photon sources are a critical element for quantum technologies. We present a heralded single-photon source with an extremely low level of residual background photons, by implementing low-jitter detectors and electronics and a fast custom-made pulse generator controlling an optical shutter (a LiNbO3 waveguide optical switch) on the output of the source. This source has a second-order autocorrelation g(2)(0)=0.005(7), and an output noise factor (defined as the ratio of the number of noise photons to total photons at the source output channel) of 0.25(1)%. These are the best performance characteristics reported to date.
Fluorescence modulation in single CdSe quantum dots by moderate applied electric fields
LeBlanc, Sharonda J.; McClanahan, Mason R.; Moyer, Tully; Moyer, Patrick J.; Jones, Marcus
2014-01-21
Single molecule time-resolved fluorescence spectroscopy of CdSe/ZnS core-shell quantum dots (QDs) under the influence of moderate applied electric fields reveals distributed emission from states which are neither fully on nor off and pronounced changes in the excited state decay. The data suggest that a 54 kV/cm applied electric field causes small perturbations to the QD surface charge distribution, effectively increasing the surface trapping probability and resulting in the appearance of gray states. We present simultaneous blinking and fluorescence decay results for two sets of QDs, with and without an applied electric field. Further kinetic modeling analysis suggests that a single trapped charged cannot be responsible for a blinking off event.
Li, Q.; Han, R.; Meng, X.; Gai, H.; Yeung, E.
2008-03-16
Thermal motions of semiconductor quantum dots (QDs) are suppressed on a dehydrated agarose-modified surface. The diffusion coefficients (D) of particles can be controlled by modifying the surface with an appropriate agarose concentration. The value of D is more than 100 times lower than the theoretical value when the dried agarose surface is made with an 8% agarose solution. This makes it possible to real-time record the diffusion process of single particles and single molecules in low-viscosity solution. A transmission grating installed in front of the charge-coupled device separates the QD fluorescence into the zeroth-order and first-order spectrum. Therefore, the spectrum of dynamic QDs is tracked on the modified surface. Tracking the dynamic QD spectral image is a promising method to explore the process of the molecular interactions in the physiological buffer.
Qu, Zhi-bei; Zhang, Min; Zhou, Tianshu; Shi, Guoyue
2014-10-13
Ratiometric fluorescent probes are of great importance in research, because a built-in correction for environmental effects can be provided to reduce background interference. However, the traditional ratiometric fluorescent probes require two luminescent materials with different emission bands. Herein a novel ratiometric probe based on a single-wavelength-emitting material is reported. The probe works by regulating the luminescent property of graphene quantum dots with UV illumination as activator. The ratiometric sensor shows high sensitivity and specificity for iron ions. Moreover, the ratiometric sensor was successfully employed to monitor ferritin levels in Sprague Dawley rats with chemical-induced acute liver damage. The proposed single-wavelength ratiometric fluorescent probe may greatly broaden the applicability of ratiometric sensors in diagnostic devices, medical applications, and analytical chemistry.
High-speed rapid single-flux-quantum (RSFQ) Batcher-banyan switching core
NASA Astrophysics Data System (ADS)
Zinoviev, Dmitry Y.
1996-11-01
We have carried out a paper feasibility study of the implementation of most common packet switching cores (crossbar, Batcher-banyan, time-division shared bus, and token ring) using the superconductor rapid single flux quantum (RSFQ) digital technology. According to our estimates, the best performance-to-complexity ratio may be obtained for the Batcher-banyan network. For example, a 128 by 128 switching core with self-routing (but without address translation, contention resolution, and broadcast features), consisting of about 180,000 Josephson junctions with the internal clock frequency of 60 GHz could handle a workload of 7.5 Tbps. This core could fit on a single 1 cm by 1 cm chip and dissipate as low as 45 mW. The estimated parameters are achievable using a simple 1.5-micrometer niobium- trilayer technology.
Probing the Dynamics of a Superradiant Quantum Phase Transition with a Single Trapped Ion.
Puebla, Ricardo; Hwang, Myung-Joong; Casanova, Jorge; Plenio, Martin B
2017-02-17
We demonstrate that the quantum phase transition (QPT) of the Rabi model and critical dynamics near the QPT can be probed in the setup of a single trapped ion. We first demonstrate that there exists equilibrium and nonequilibrium scaling functions of the Rabi model by finding a proper rescaling of the system parameters and observables, and show that those scaling functions are representative of the universality class to which the Rabi model belongs. We then propose a scheme that can faithfully realize the Rabi model in the limit of a large ratio of the effective atomic transition frequency to the oscillator frequency using a single trapped ion and, therefore, the QPT. It is demonstrated that the predicted universal functions can indeed be observed based on our scheme. Finally, the effects of realistic noise sources on probing the universal functions in experiments are examined.
All-electric spin pumping in quantum channels with a single finger-gate capacitor
NASA Astrophysics Data System (ADS)
Wang, L. Y.; Chu, C. S.
2017-02-01
In this paper, we show that a single finger-gate capacitor (FGC) can generate pure spin pumping in a quantum channel (QC). Two dynamic fields, ac spin-orbit interaction and ac potential energy, both induced by the FGC onto the QC, are the agents driving the spin pumping. Smooth spatial profiles of the two ac fields are taken into account both perturbatively and full numerically for the nonadiabatic spin pumping. Our perturbative approach reveals that the spin-pumping mechanism is resonant sideband processes associated with simultaneous coupling of the two ac fields with traversing carriers. Full sideband-process treatment is carried out numerically by a time-dependent scattering matrix method. The same spin-pumping mechanism holds also for the case of a single finger-gated QC, albeit with smaller pumping amplitudes.
Probing the Dynamics of a Superradiant Quantum Phase Transition with a Single Trapped Ion
NASA Astrophysics Data System (ADS)
Puebla, Ricardo; Hwang, Myung-Joong; Casanova, Jorge; Plenio, Martin B.
2017-02-01
We demonstrate that the quantum phase transition (QPT) of the Rabi model and critical dynamics near the QPT can be probed in the setup of a single trapped ion. We first demonstrate that there exists equilibrium and nonequilibrium scaling functions of the Rabi model by finding a proper rescaling of the system parameters and observables, and show that those scaling functions are representative of the universality class to which the Rabi model belongs. We then propose a scheme that can faithfully realize the Rabi model in the limit of a large ratio of the effective atomic transition frequency to the oscillator frequency using a single trapped ion and, therefore, the QPT. It is demonstrated that the predicted universal functions can indeed be observed based on our scheme. Finally, the effects of realistic noise sources on probing the universal functions in experiments are examined.
Rife, Jack C; Long, James P; Wilkinson, John; Whitman, Lloyd J
2009-04-09
We evaluate commercial QD585 and QD605 streptavidin-functionalized quantum dots (QDs) for single-particle tracking microscopy at surfaces using total internal reflectance fluorescence and measure single QD diffusion and nonspecific binding at silica surfaces in static and flow conditions. The QD diffusion coefficient on smooth, near-ideal, highly hydroxylated silica surfaces is near bulk-solution diffusivity, as expected for repulsive surfaces, but many QD trajectories on rougher, less-than-ideal surfaces or regions display transient adsorptions. We attribute the binding to defect sites or adsorbates, possibly in conjunction with protein conformation changes, and estimate binding energies from the transient adsorption lifetimes. We also assess QD parameters relevant to tracking, including hydrodynamic radius, charge state, signal levels, blinking reduction with reducing solutions, and photoinduced blueing and bleaching.
Time-resolved photoluminescence and photostability of single semiconductor quantum dots
NASA Astrophysics Data System (ADS)
Chae, Weon-Sik; Dieu Thuy Ung, Thi; Liem Nguyen, Quang
2013-12-01
Time-resolved photoluminescence (TRPL) and photostability were studied for several core/shell-type semiconductor quantum dots (QDs) of CdTe/CdS, In(Zn)P/ZnS and CdZnS/ZnS using a TRPL microscopy at a single QD level, of which results were compared to that of CdSe/ZnS QD. The CdTe/CdS and In(Zn)P/ZnS QDs show unstable PL at a single QD level on both bare and polymer-coated glass coverslips, so that they mostly lose emissions within a few seconds. The CdZnS/ZnS QD shows better emission stability than those of the former two QDs, but still less stable than the case of the CdSe/ZnS.
Xie, Zhihua; Lefier, Yannick; Suarez, Miguel Angel; Mivelle, Mathieu; Salut, Roland; Merolla, Jean-Marc; Grosjean, Thierry
2017-03-24
Colloidal quantum dots (CQDs) have drawn strong interest in the past for their high prospects in scientific, medical, and industrial applications. However, the full characterization of these quantum emitters is currently restricted to the visible wavelengths, and it remains a key challenge to optically probe single CQDs operating in the infrared spectral domain, which is targeted by a growing number of applications. Here, we report the first experimental detection and imaging at room temperature of single infrared CQDs operating at telecommunication wavelengths. Imaging was done with a doubly resonant bowtie nanoaperture antenna (BNA) written at the end of a fiber nanoprobe, whose resonances spectrally fit the CQD absorption and emission wavelengths. Direct near-field characterization of PbS CQDs reveal individual nanocrystals with a spatial resolution of 75 nm (λ/20) together with their intrinsic 2D dipolar free-space emission properties and exciton dynamics (blinking phenomenon). Because the doubly resonant BNA is strongly transmissive at both the CQD absorption and the emission wavelengths, we are able to perform all-fiber nanoimaging with a standard 20% efficiency InGaAs avalanche photodiode (APD). The detection efficiency is predicted to be 3000 fold larger than with a conventional circular aperture tip of the same transmission area. Double resonance BNA fiber probes thus offer the possibility of exploring extreme light-matter interaction in low band gap CQDs with current plug-and-play detection techniques, opening up new avenues in the fields of infrared light-emitting devices, photodetectors, telecommunications, bioimaging, and quantum information technology.
NASA Astrophysics Data System (ADS)
Koc, Fatih; Sahin, Mehmet
2014-05-01
In this study, a detailed investigation of the electronic and optical properties (i.e., binding energies, absorption wavelength, overlap of the electron-hole wave functions, recombination oscillator strength, etc.) of an exciton and a biexciton in CdTe/CdSe core/shell type-II quantum dot heterostructures has been carried out in the frame of the single band effective mass approximation. In order to determine the electronic properties, we have self-consistently solved the Poisson-Schrödinger equations in the Hartree approximation. We have considered all probable Coulomb interaction effects on both energy levels and also on the corresponding wave functions for both single exciton and biexciton. In addition, we have taken into account the quantum mechanical exchange-correlation effects in the local density approximation between same kinds of particles for biexciton. Also, we have examined the effect of the ligands and dielectric mismatch on the electronic and optical properties. We have used a different approximation proposed by Sahin and Koc [Appl. Phys. Lett. 102, 183103 (2013)] for the recombination oscillator strength of the biexciton for bound and unbound cases. The results obtained have been presented comparatively as a function of the shell thicknesses and probable physical reasons in behind of the results have been discussed in a detail.
A nanocryotron comparator can connect single-flux-quantum circuits to conventional electronics
NASA Astrophysics Data System (ADS)
Zhao, Qing-Yuan; McCaughan, Adam N.; Dane, Andrew E.; Berggren, Karl K.; Ortlepp, Thomas
2017-04-01
Integration with conventional electronics offers a straightforward and economical approach to upgrading existing superconducting technologies, such as scaling up superconducting detectors into large arrays and combining single flux quantum (SFQ) digital circuits with semiconductor logic gates and memories. However, direct output signals from superconducting devices (e.g., Josephson junctions) are usually not compatible with the input requirements of conventional devices (e.g., transistors). Here, we demonstrate the use of a single three-terminal superconducting-nanowire device, called the nanocryotron (nTron), as a digital comparator to combine SFQ circuits with mature semiconductor circuits such as complementary metal oxide semiconductor (CMOS) circuits. Since SFQ circuits can digitize output signals from general superconducting devices and CMOS circuits can interface existing CMOS-compatible electronics, our results demonstrate the feasibility of a general architecture that uses an nTron as an interface to realize a ‘super-hybrid’ system consisting of superconducting detectors, superconducting quantum electronics, CMOS logic gates and memories, and other conventional electronics.
Koc, Fatih; Sahin, Mehmet E-mail: mehsahin@gmail.com
2014-05-21
In this study, a detailed investigation of the electronic and optical properties (i.e., binding energies, absorption wavelength, overlap of the electron-hole wave functions, recombination oscillator strength, etc.) of an exciton and a biexciton in CdTe/CdSe core/shell type-II quantum dot heterostructures has been carried out in the frame of the single band effective mass approximation. In order to determine the electronic properties, we have self-consistently solved the Poisson-Schrödinger equations in the Hartree approximation. We have considered all probable Coulomb interaction effects on both energy levels and also on the corresponding wave functions for both single exciton and biexciton. In addition, we have taken into account the quantum mechanical exchange-correlation effects in the local density approximation between same kinds of particles for biexciton. Also, we have examined the effect of the ligands and dielectric mismatch on the electronic and optical properties. We have used a different approximation proposed by Sahin and Koc [Appl. Phys. Lett. 102, 183103 (2013)] for the recombination oscillator strength of the biexciton for bound and unbound cases. The results obtained have been presented comparatively as a function of the shell thicknesses and probable physical reasons in behind of the results have been discussed in a detail.
Water drops kinematic analysis: the classic-quantum and single-multiparticle viewpoints
NASA Astrophysics Data System (ADS)
De Wrachien, Daniele; Lorenzini, Giulio
2013-03-01
One of the most challenging modelling problems in science is that of a particle crossing a gaseous mean. In sprinkler irrigation this applies to a water droplet travelling from the nozzle to the ground. The challenge mainly refers to the intense difficulty in writing and solving the system of governing equations for such complicate process, where many non-linearities occur when describing the relations and dependences among one influential parameter and another. The problem becomes even more complicate when not just a single droplet alone is assessed but a multi-droplet system is accounted for as, in addition to the inter-parameter dependencies, it is also observed an inter-droplet reciprocal affection, mainly due to electrical interactions between the hydrogen and the oxygen atoms of the different water molecules. An alternative to traditional classic approaches to analyse water droplet dynamics in sprinkler irrigation have been recently proposed in the form of a quantum approach, but the whole classic-quantum and single-droplet versus multi-droplet alternatives need to be discussed and pinpointed and these are among the main aims of the present paper which focuses on the theoretical part of the issue, thus highlighting the new perspectives of a deeper comprehension in the spray flow related phenomena.
Observation of the quantum paradox of separation of a single photon from one of its properties
NASA Astrophysics Data System (ADS)
Ashby, James M.; Schwarz, Peter D.; Schlosshauer, Maximilian
2016-07-01
We report an experimental realization of the quantum paradox of the separation of a single photon from one of its properties (the so-called "quantum Cheshire cat"). We use a modified Sagnac interferometer with displaced paths to produce appropriately pre- and postselected states of heralded single photons. Weak measurements of photon presence and circular polarization are performed in each arm of the interferometer by introducing weak absorbers and small polarization rotations and analyzing changes in the postselected signal. The absorber is found to have an appreciable effect only in one arm of the interferometer, while the polarization rotation significantly affects the signal only when performed in the other arm. We carry out both sequential and simultaneous weak measurements and find good agreement between measured and predicted weak values. In the language of Aharonov et al. and in the sense of the ensemble averages described by weak values, the experiment establishes the separation of a particle from one its properties during the passage through the interferometer.
Single-step colloidal quantum dot films for infrared solar harvesting
NASA Astrophysics Data System (ADS)
Kiani, Amirreza; Sutherland, Brandon R.; Kim, Younghoon; Ouellette, Olivier; Levina, Larissa; Walters, Grant; Dinh, Cao-Thang; Liu, Mengxia; Voznyy, Oleksandr; Lan, Xinzheng; Labelle, Andre J.; Ip, Alexander H.; Proppe, Andrew; Ahmed, Ghada H.; Mohammed, Omar F.; Hoogland, Sjoerd; Sargent, Edward H.
2016-10-01
Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ˜1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by the full solar spectrum, and 0.4% through a simulated silicon solar cell filter.
NASA Astrophysics Data System (ADS)
Qiu, B. C.; Kowalski, O.; McDougall, S. D.; Liu, X. F.; Marsh, J. H.
2008-02-01
Single mode laser diode arrays operating at 808 nm have been designed and fabricated using several different waveguide and quantum well combinations. In order to operate these devices at 200 mW per element a quantum well intermixing process has been used to render their facets non-absorbing and thus they do not suffer from mirror damage related failure. In this paper we demonstrate extremely high levels of reliability for GaAs and AlGaAs quantum well devices with arrays of 64 elements completing over 6000 hours continuous operation without any single laser element failure and a correspondingly low power degradation rate of <1% k/hr. In contrast we show extremely high power degradation rates for arrays using InGaAs and InAlGaAs 808 nm quantum wells laser arrays.
NASA Astrophysics Data System (ADS)
Song, Guo-Zhu; Zhang, Mei; Ai, Qing; Yang, Guo-Jian; Alsaedi, Ahmed; Hobiny, Aatef; Deng, Fu-Guo
2017-03-01
We propose a heralded quantum repeater based on the scattering of photons off single emitters in one-dimensional waveguides. We show the details by implementing nonlocal entanglement generation, entanglement swapping, and entanglement purification modules with atoms in waveguides, and discuss the feasibility of the repeater with currently achievable technology. In our scheme, the faulty events can be discarded by detecting the polarization of the photons. That is, our protocols are accomplished with a fidelity of 100% in principle, which is advantageous for implementing realistic long-distance quantum communication. Moreover, additional atomic qubits are not required, but only a single-photon medium. Our scheme is scalable and attractive since it can be realized in solid-state quantum systems. With the great progress on controlling atom-waveguide systems, the repeater may be very useful in quantum information processing in the future.
NASA Astrophysics Data System (ADS)
Qin, Xiao-Ke
2016-12-01
We present the model that two-level system (TLS) nonlocally interacts with one-dimensional coupled-resonator array (CRA). The coherent transport of single-photon inside CRA is well controlled by the state of TLS, which functions as quantum switch. Spin up and spin down correspond to switch on and switch off respectively, or vice versa, which originate from the constructive interference and the destructive interference of two coupling paths. We improve the fidelity of quantum switch by preadjusting the frequency of resonators which couple to TLS. Quantum switch realizes quantum beam splitter when TLS is in the superposition state. The single-photon wave packet would entangle with qubit and propagate to the remote resonators.
Nair, Lakshmi V; Nagaoka, Yutaka; Maekawa, Toru; Sakthikumar, D; Jayasree, Ramapurath S
2014-07-23
Hybrid nanomaterial based on quantum dots and SWCNTs is used for cellular imaging and photothermal therapy. Furthermore, the ligand conjugated hybrid system (FaQd@CNT) enables selective targeting in cancer cells. The imaging capability of quantum dots and the therapeutic potential of SWCNT are available in a single system with cancer targeting property. Heat generated by the system is found to be high enough to destroy cancer cells.
NASA Astrophysics Data System (ADS)
Ban, Yue; Chen, Xi; Li, Chun-Fang
2007-04-01
We investigate the controllable negative and positive group delay in transmission through a single quantum well at the finite longitudinal magnetic fields. It is shown that the magneto-coupling effect between the longitudinal motion component and the transverse Landau orbits plays an important role in the group delay. The group delay depends not only on the width of potential well and the incident energy, but also on the magnetic-field strengthen and the Landau quantum number. The results show that the group delay can be changed from positive to negative by the modulation of the magnetic field. These interesting phenomena may lead to the tunable quantum mechanical delay line.
Operation of a quantum dot in the finite-state machine mode: Single-electron dynamic memory
NASA Astrophysics Data System (ADS)
Klymenko, M. V.; Klein, M.; Levine, R. D.; Remacle, F.
2016-07-01
A single electron dynamic memory is designed based on the non-equilibrium dynamics of charge states in electrostatically defined metallic quantum dots. Using the orthodox theory for computing the transfer rates and a master equation, we model the dynamical response of devices consisting of a charge sensor coupled to either a single and or a double quantum dot subjected to a pulsed gate voltage. We show that transition rates between charge states in metallic quantum dots are characterized by an asymmetry that can be controlled by the gate voltage. This effect is more pronounced when the switching between charge states corresponds to a Markovian process involving electron transport through a chain of several quantum dots. By simulating the dynamics of electron transport we demonstrate that the quantum box operates as a finite-state machine that can be addressed by choosing suitable shapes and switching rates of the gate pulses. We further show that writing times in the ns range and retention memory times six orders of magnitude longer, in the ms range, can be achieved on the double quantum dot system using experimentally feasible parameters, thereby demonstrating that the device can operate as a dynamic single electron memory.
Nuclear-driven electron spin rotations in a coupled silicon quantum dot and single donor system
NASA Astrophysics Data System (ADS)
Harvey-Collard, Patrick; Jacobson, Noah Tobias; Rudolph, Martin; Ten Eyck, Gregory A.; Wendt, Joel R.; Pluym, Tammy; Lilly, Michael P.; Pioro-Ladrière, Michel; Carroll, Malcolm S.
Single donors in silicon are very good qubits. However, a central challenge is to couple them to one another. To achieve this, many proposals rely on using a nearby quantum dot (QD) to mediate an interaction. In this work, we demonstrate the coherent coupling of electron spins between a single 31P donor and an enriched 28Si metal-oxide-semiconductor few-electron QD. We show that the electron-nuclear spin interaction can drive coherent rotations between singlet and triplet electron spin states. Moreover, we are able to tune electrically the exchange interaction between the QD and donor electrons. The combination of single-nucleus-driven rotations and voltage-tunable exchange provides all elements for future all-electrical control of a spin qubit, and requires only a single dot and no additional magnetic field gradients. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Electronic shell structure and carrier dynamics of high aspect ratio InP single quantum dots
NASA Astrophysics Data System (ADS)
Beirne, Gareth J.; Reischle, Matthias; Roßbach, Robert; Schulz, Wolfgang-Michael; Jetter, Michael; Seebeck, Jan; Gartner, Paul; Gies, Christopher; Jahnke, Frank; Michler, Peter
2007-05-01
Systematic excitation-power-density dependent and time-resolved single-dot photoluminescence studies have been performed on type-I InP/Ga0.51In0.49P quantum dots. These dots are rather flat and therefore exhibit larger than normal single-dot ground-state transition energies ranging from 1.791 to 1.873eV . As a result of their low height, the dots have a very high aspect ratio (ratio of width to height) of approximately 27:1 . In general, even at high excitation power densities, the dots with ground-state transition energies above 1.82eV exhibit only s -shell emission, while the larger dots exhibiting ground-state emission below 1.82eV tend to exhibit emission from several (in some cases up to eight) shells. Calculations indicate that this change is due to the smaller dots having only one confined election level while the larger dots have two or more. Time-resolved investigations indicate the presence of fast carrier relaxation and recombination processes for both dot types, however, only the larger dots display clear interlevel relaxation effects as expected. The temporal behavior has been qualitatively simulated using a rate equation model. Also, in a more detailed analysis, the fast carrier relaxation is described on the basis of a quantum kinetic treatment of the carrier-phonon interaction. Finally, the dots display a clear single-photon emission signature in photon statistics measurements.
NASA Astrophysics Data System (ADS)
Solano-Carrillo, E.; Franco, R.; Silva-Valencia, J.
2011-06-01
We study the ground-state and thermal entanglement in the mixed-spin (S,s)=(1,1/2) Heisenberg chain with single-ion anisotropy D using exact diagonalization of small clusters. In this system, a quantum phase transition is revealed to occur at the value D=0, which is the bifurcation point for the global ground state; that is, when the single-ion anisotropy energy is positive, the ground state is unique, whereas when it is negative, the ground state becomes doubly degenerate and the system has the ferrimagnetic long-range order. Using the negativity as a measure of entanglement, we find that a pronounced dip in this quantity, taking place just at the bifurcation point, serves to signal the quantum phase transition. Moreover, we show that the single-ion anisotropy helps to improve the characteristic temperatures above which the quantum behavior disappears.
Optical Spin Noise of a Single Hole Spin Localized in an (InGa)As Quantum Dot
NASA Astrophysics Data System (ADS)
Dahbashi, Ramin; Hübner, Jens; Berski, Fabian; Pierz, Klaus; Oestreich, Michael
2014-04-01
We advance spin noise spectroscopy to the ultimate limit of single spin detection. This technique enables the measurement of the spin dynamic of a single heavy hole localized in a flat (InGa)As quantum dot. Magnetic field and light intensity dependent studies reveal even at low magnetic fields a strong magnetic field dependence of the longitudinal heavy hole spin relaxation time with an extremely long T1 of ≥180 μs at 31 mT and 5 K. The wavelength dependence of the spin noise power discloses for finite light intensities an inhomogeneous single quantum dot spin noise spectrum which is explained by charge fluctuations in the direct neighborhood of the quantum dot. The charge fluctuations are corroborated by the distinct intensity dependence of the effective spin relaxation rate.
NASA Astrophysics Data System (ADS)
Liu, Jianbo; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Liu, Wei; Wang, Dong
2013-10-01
The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to the QD560-TBA I substrate. Thus, the presence of the target thrombin can be determined based on fluorescent colocalization measurements of the nanoassemblies, without target amplification or probe separation. The detection limit of this assay reached 0.8 pM. This fluorescent colocalization assay has enabled single molecule recognition in a separation-free detection format, and can serve as a sensitive biosensing platform that greatly suppresses the nonspecific adsorption false-positive signal. This method can be extended to other areas such as multiplexed immunoassay, single cell analysis, and real time biomolecule interaction studies.The development of solid-phase surface-based single molecule imaging technology has attracted significant interest during the past decades. Here we demonstrate a sandwich hybridization method for highly sensitive detection of a single thrombin protein at a solid-phase surface based on the use of dual-color colocalization of fluorescent quantum dot (QD) nanoprobes. Green QD560-modified thrombin binding aptamer I (QD560-TBA I) were deposited on a positive poly(l-lysine) assembled layer, followed by bovine serum albumin blocking. It allowed the thrombin protein to mediate the binding of the easily detectable red QD650-modified thrombin binding aptamer II (QD650-TBA II) to
Single layer of Ge quantum dots in HfO2 for floating gate memory capacitors.
Lepadatu, A M; Palade, C; Slav, A; Maraloiu, A V; Lazanu, S; Stoica, T; Logofatu, C; Teodorescu, V S; Ciurea, M L
2017-04-28
High performance trilayer memory capacitors with a floating gate of a single layer of Ge quantum dots (QDs) in HfO2 were fabricated using magnetron sputtering followed by rapid thermal annealing (RTA). The layer sequence of the capacitors is gate HfO 2/floating gate of single layer of Ge QDs in HfO 2/tunnel HfO 2/p-Si wafers. Both Ge and HfO2 are nanostructured by RTA at moderate temperatures of 600-700 °C. By nanostructuring at 600 °C, the formation of a single layer of well separated Ge QDs with diameters of 2-3 nm at a density of 4-5 × 10(15) m(-2) is achieved in the floating gate (intermediate layer). The Ge QDs inside the intermediate layer are arranged in a single layer and are separated from each other by HfO2 nanocrystals (NCs) about 8 nm in diameter with a tetragonal/orthorhombic structure. The Ge QDs in the single layer are located at the crossing of the HfO2 NCs boundaries. In the intermediate layer, besides Ge QDs, a part of the Ge atoms is segregated by RTA at the HfO2 NCs boundaries, while another part of the Ge atoms is present inside the HfO2 lattice stabilizing the tetragonal/orthorhombic structure. The fabricated capacitors show a memory window of 3.8 ± 0.5 V and a capacitance-time characteristic with 14% capacitance decay in the first 3000-4000 s followed by a very slow capacitance decrease extrapolated to 50% after 10 years. This high performance is mainly due to the floating gate of a single layer of well separated Ge QDs in HfO2, distanced from the Si substrate by the tunnel oxide layer with a precise thickness.
Schramm, A; Tommila, J; Strelow, C; Hakkarainen, T V; Tukiainen, A; Dumitrescu, M; Mews, A; Kipp, T; Guina, M
2012-05-04
We present the growth of single, site-controlled InAs quantum dots on GaAs templates using UV-nanoimprint lithography and molecular beam epitaxy. A large quantum dot array with a period of 1.5 µm was achieved. Single quantum dots were studied by steady-state and time-resolved micro-photoluminescence experiments. We obtained single exciton emission with a linewidth of 45 µeV. In time-resolved experiments, we observed decay times of about 670 ps. Our results underline the potential of nanoimprint lithography and molecular beam epitaxy to create large-scale, single quantum dot arrays.
Universal set of single-qubit gates based on geometric phase of electron spin in a quantum dot
NASA Astrophysics Data System (ADS)
Malinovsky, Vladimir; Rudin, Sergey
2012-02-01
The electron spin in a single quantum dot is one of the perspective realizations of a qubit for the implementation of a quantum computer. During last decade several control schemes to perform single gate operations on a single quantum dot spin have been reported. We propose a scheme that allows performing ultrafast arbitrary unitary operations on a single qubit. We demonstrate how to use the geometric phase, which the Bloch vector gains along the cyclic path, to prepare an arbitrary state of a single qubit. It is shown that, the geometrical phase is fully controllable by the relative phase between the external fields. Using the analytic expression of the evolution operator for the electron spin in a quantum dot, we propose a scheme to design a universal set of single-qubit gates based solely on the geometrical phase that the qubit state acquires after a cyclic evolution in the parameter space. The scheme is utilizing ultrafast linearly-chirped pulses providing adiabatic excitation of the qubit states and the geometric phase is fully controlled by the relative phase between pulses.
Cleland, A.N.
1991-04-01
Experiments investigating the process of macroscopic quantum tunneling in a moderately-damped, resistively shunted, Josephson junction are described, followed by a discussion of experiments performed on very small capacitance normal-metal tunnel junctions. The experiments on the resistively-shunted Josephson junction were designed to investigate a quantum process, that of the tunneling of the Josephson phase variable under a potential barrier, in a system in which dissipation plays a major role in the dynamics of motion. All the parameters of the junction were measured using the classical phenomena of thermal activation and resonant activation. Theoretical predictions are compared with the experimental results, showing good agreement with no adjustable parameters; the tunneling rate in the moderately damped (Q {approx} 1) junction is seen to be reduced by a factor of 300 from that predicted for an undamped junction. The phase is seen to be a good quantum-mechanical variable. The experiments on small capacitance tunnel junctions extend the measurements on the larger-area Josephson junctions from the region in which the phase variable has a fairly well-defined value, i.e. its wavefunction has a narrow width, to the region where its value is almost completely unknown. The charge on the junction becomes well-defined and is predicted to quantize the current through the junction, giving rise to the Coulomb blockade at low bias. I present the first clear observation of the Coulomb blockade in single junctions. The electrical environment of the tunnel junction, however, strongly affects the behavior of the junction: higher resistance leads are observed to greatly sharpen the Coulomb blockade over that seen with lower resistance leads. I present theoretical descriptions of how the environment influences the junctions; comparisons with the experimental results are in reasonable agreement.
Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models
NASA Astrophysics Data System (ADS)
Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine
2016-06-01
Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.
Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models.
Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine
2016-06-30
Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.
NASA Astrophysics Data System (ADS)
Laugharn, Andrew; Maleki, Seyfollah
We constructed a quantum optical apparatus to control and detect single photons. We generated these photons via Type-I and Type-II spontaneous parametric down conversion by pumping a GaN laser (405nm) incident on a BBO crystal. We detected the two down converted photons (810nm), denoted signal and idler, in coincidence so as to measure and control single photons. We implemented a coincidence counting unite onto an Altera DE2 board and used LabView for data acquisition. We used these photon pairs to demonstrate quantum entanglement and indistinguishability using multiple optical experiments.
Cernoch, Antonin; Soubusta, Jan; Celechovska, Lucie; Dusek, Miloslav; Fiurasek, Jaromir
2009-12-15
We report on experimental implementation of the optimal universal asymmetric 1->2 quantum cloning machine for qubits encoded into polarization states of single photons. Our linear-optical machine performs asymmetric cloning by partially symmetrizing the input polarization state of signal photon and a blank copy idler photon prepared in a maximally mixed state. We show that the employed method of measurement of mean clone fidelities exhibits strong resilience to imperfect calibration of the relative efficiencies of single-photon detectors used in the experiment. Reliable characterization of the quantum cloner is thus possible even when precise detector calibration is difficult to achieve.
High-temperature Aharonov-Bohm effect in transport through a single-channel quantum ring
NASA Astrophysics Data System (ADS)
Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Polyakov, D. G.; Shmakov, P. M.
2015-02-01
We overview transport properties of an Aharonov-Bohm interferometer made of a single-channel quantum ring. Remarkably, in this setup, essentially quantum effects survive thermal averaging: the high-temperature tunneling conductance G of a ring shows sharp dips (antiresonances) as a function of magnetic flux. We discuss effects of the electron-electron interaction, disorder, and spin-orbit coupling on the Aharonov-Bohm transport through the ring. The interaction splits the dip into series of dips broadened by dephasing. The physics behind this behavior is the persistent-current-blockade: the current through the ring is blocked by the circular current inside the ring. Dephasing is then dominated by tunneling-induced fluctuations of the circular current. The short-range disorder broadens antiresonances, while the long-range one induces additional dips. In the presence of a spin-orbit coupling, G exhibits two types of sharp antiresonances: Aharonov-Bohm and Aharonov-Casher ones. In the vicinity of the antiresonances, the tunneling electrons acquire spin polarization, so that the ring serves as a spin polarizer.
Low Temperature Properties and Quantum Criticality of CrAs1-x Px single crystal
NASA Astrophysics Data System (ADS)
Luo, Jianlin; Institute of Physics, Chinese Academy of Sciences Team
We report a systematically study of resistivity and specific heat on phosphorus doped CrAs1-xPx single crystals with x =0 to 0.2. With the increasing of phosphorus doping concentration x, the magnetic and structural transition temperature TN is suppressed. Non-fermi liquid behavior and quantum criticality phenomenon are observed from low temperature resistivity around critical doping with xc ~0.05 where the long-range antiferromagnetic ordering is completely suppressed. The low temperature specific heat of CrAs1-xPx is contributed by the thermal excitation of phonons and electrons. The electronic specific heat coefficient γ, which reflects the effective mass of quasi-particles, shows maximum around xc ~0.05, also indicating the existence of quantum critical phenomenon around the critical doping. The value of Kadowaki-Woods ratio of CrAs1-xPx shows no significant different from that of CrAs. Work is done in collaboration with Fukun Lin, Wei Wu, Ping Zheng, Guozhi Fan, Jinguang Cheng.
Controllable microwave three-wave mixing via a single three-level superconducting quantum circuit.
Liu, Yu-xi; Sun, Hui-Chen; Peng, Z H; Miranowicz, Adam; Tsai, J S; Nori, Franco
2014-12-09
Three-wave mixing in second-order nonlinear optical processes cannot occur in atomic systems due to the electric-dipole selection rules. In contrast, we demonstrate that second-order nonlinear processes can occur in a superconducting quantum circuit (i.e., a superconducting artificial atom) when the inversion symmetry of the potential energy is broken by simply changing the applied magnetic flux. In particular, we show that difference- and sum-frequencies (and second harmonics) can be generated in the microwave regime in a controllable manner by using a single three-level superconducting flux quantum circuit (SFQC). For our proposed parameters, the frequency tunability of this circuit can be achieved in the range of about 17 GHz for the sum-frequency generation, and around 42 GHz (or 26 GHz) for the difference-frequency generation. Our proposal provides a simple method to generate second-order nonlinear processes within current experimental parameters of SFQCs.
Controllable microwave three-wave mixing via a single three-level superconducting quantum circuit
Liu, Yu-xi; Sun, Hui-Chen; Peng, Z. H.; Miranowicz, Adam; Tsai, J. S.; Nori, Franco
2014-01-01
Three-wave mixing in second-order nonlinear optical processes cannot occur in atomic systems due to the electric-dipole selection rules. In contrast, we demonstrate that second-order nonlinear processes can occur in a superconducting quantum circuit (i.e., a superconducting artificial atom) when the inversion symmetry of the potential energy is broken by simply changing the applied magnetic flux. In particular, we show that difference- and sum-frequencies (and second harmonics) can be generated in the microwave regime in a controllable manner by using a single three-level superconducting flux quantum circuit (SFQC). For our proposed parameters, the frequency tunability of this circuit can be achieved in the range of about 17 GHz for the sum-frequency generation, and around 42 GHz (or 26 GHz) for the difference-frequency generation. Our proposal provides a simple method to generate second-order nonlinear processes within current experimental parameters of SFQCs. PMID:25487352
Single active-layer structured dual-function devices using hybrid polymer-quantum dots.
Son, Dong-Ick; Park, Dong-Hee; Ie, Sang-Yub; Choi, Won-Kook; Choi, Ji-Won; Li, Fushan; Kim, Tae-Whan
2008-10-01
We demonstrate hybrid polymer-quantum dot dual-function devices with a single active-layer structure consisting of CdSe/ZnS semiconductor quantum dots dispersed with poly N-vinylcarbazole (PVK) and 1,3,5-tirs-(N-phenylbenzimidazol-2-yl) benzene (TPBi) fabricated on an indium-tin-oxide (ITO)/glass substrate by using a simple spin-coating technique. The dual-function devices are composed of light-emitting diodes (LED) on the top side and nonvolatile organic bistable memory devices (OBD) on the bottom side and can show electroluminescence (EL) along with electrical bistability concurrently. Both the functionality of LEDs and OBDs can be successfully achieved by adding an electron transport layer (ETL) TPBi to the OBD to attain an LED in which the lowest unoccupied molecular orbital (LUMO) level of TPBi is positioned at the energy level between the conduction band of CdSe/ZnS and the LiF/Al electrode. Through transmission electron microscopy (TEM) study, it is revealed that CdSe/ZnS QDs distributed on the interface of the hole transport layer (HTL) and ETL significantly take part in the electroluminescence process rather than those existing at the outer surface of the ETL.
NASA Astrophysics Data System (ADS)
Crane, Jonathan M.; Haggie, Peter M.; Verkman, A. S.
2009-02-01
Single particle tracking (SPT) provides information about the microscopic motions of individual particles in live cells. We applied SPT to study the diffusion of membrane transport proteins in cell plasma membranes in which individual proteins are labeled with quantum dots at engineered extracellular epitopes. Software was created to deduce particle diffusive modes from quantum dot trajectories. SPT of aquaporin (AQP) water channels and cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels revealed several types of diffusion. AQP1 was freely mobile in cell membranes, showing rapid, Brownian-type diffusion. The full-length (M1) isoform of AQP4 also diffused rapidly, though the diffusion of a shorter (M23) isoform of AQP4 was highly restricted due to its supermolecular assembly in raft-like orthogonal arrays. CFTR mobility was also highly restricted, in a spring-like potential, due to its tethering to the actin cytoskeleton through PDZ-domain C-terminus interactions. The biological significance of regulated diffusion of membrane transport proteins is a subject of active investigation.
Position dependent optical coupling between single quantum dots and photonic crystal nanocavities
NASA Astrophysics Data System (ADS)
Kuruma, K.; Ota, Y.; Kakuda, M.; Takamiya, D.; Iwamoto, S.; Arakawa, Y.
2016-08-01
We demonstrate precise and quick detection of the positions of quantum dots (QDs) embedded in two-dimensional photonic crystal nanocavities. We apply this technique to investigate the QD position dependence of the optical coupling between the QD and the nanocavity. We use a scanning electron microscope (SEM) operating at a low acceleration voltage to detect surface bumps induced by the QDs buried underneath. This enables QD detection with a sub-10 nm precision. We then experimentally measure the vacuum Rabi spectra to extract the optical coupling strengths (gs) between single QDs and cavities, and compare them to the values estimated by a combination of the SEM-measured QD positions and electromagnetic cavity field simulations. We found a highly linear relationship between the local cavity field intensities and the QD-cavity gs, suggesting the validity of the point dipole approximation used in the estimation of the gs. The estimation using SEM has a small standard deviation of ±6.2%, which potentially enables the high accuracy prediction of g prior to optical measurements. Our technique will play a key role for deeply understanding the interaction between QDs and photonic nanostructures and for advancing QD-based cavity quantum electrodynamics.
Transport studies of quantum dots sensitized single Mn-ZnO nanowire field effect transistors
NASA Astrophysics Data System (ADS)
Sapkota, Keshab R.; Maloney, Francis Scott; Rimal, Gaurab; Poudyal, Uma; Tang, Jinke; Wang, Wenyong
We present opto-electrical transport properties of Mn-CdSe quantum dots (QDs) sensitized single Mn-ZnO nanowire (NW) field effect transistors (FET). The ZnO NWs with 2 atomic % of Mn doping are grown by chemical vapor deposition. The NWs are ferromagnetic at low temperature. The as grown nanowires are transferred to clean SiO2/Si substrate and single nanowire field effect transistors (FET) are fabricated by standard e-beam lithography. Mobility and carrier concentration of Mn-ZnO NWs are estimated from FET device measurement which shows NWs are n-type semiconductors. Pulse laser deposition of Mn-CdSe QDs on the single NW FET significantly increases carrier concentration of the QD-NW system in dark where the QD monolayer conduction is negligibly small. The photoconductivity study of QD sensitized NW FET enlightens the conduction spectrum of QD-NW system and QD to NW carrier transfer mechanism. This work has been supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-10ER46728.
Preparation of a single-photon dark state in a chiral quantum system
NASA Astrophysics Data System (ADS)
Zhu, Fengzheng; Zhao, Teng; Zhang, Hebin; Li, Gao-xiang; Ficek, Zbigniew
2017-02-01
We examine conditions under which an open quantum system composed of a driven degenerated parametric oscillator cavity and a driven two-level atom coupled to a waveguide could decay to a pure dark state rather than the expected mixed state. The calculations are carried out analytically in a low-dimensional Hilbert space truncated at the double-excitation states of the combined system. The validity of the truncation is confirmed by the exact numerical analysis. It is found that one way to produce the pure state is to chirally couple the cavity and the atom to the waveguide. Another way to produce the pure state is to drive the cavity and the atom with unequal detunings. In both cases, if the driving fields are weak, the produced state is a coherent superposition of only the single-excitation and ground states of the combined system. In addition, we have found a direct correspondence between the generation of the dark state and the photon blockade effect. In other words, the generation of the dark state acts as a blockade to the number of photons so that only a single photon can be present in the cavity. We investigate the normalized second-order correlation function of the cavity field and find that the conditions under which the correlation function vanishes coincide with the conditions for the creation of the pure dark state. This system is, therefore, suggested as an alternative scheme for the generation of single-photon states.
Single-electron tunneling and Coulomb blockade in carbon-based quantum dots
NASA Astrophysics Data System (ADS)
Fan, Wei; Zhang, Rui-Qin
2009-09-01
Single-electron tunneling (SET) and Coulomb blockade (CB) phenomena have been widely observed in nanoscaled electronics and have received intense attention around the world. In the past few years, we have studied SET in carbon nanotube fragments and fullerenes by applying the so-called “Orthodox” theory [28]. As outlined in this review article, we investigated the single-electron charging and discharging process via current-voltage characteristics, gate effect, and electronic structure-related factors. Because the investigated geometric structures are three-dimensionally confined, resulting in a discrete spectrum of energy levels resembling the property of quantum dots, we evidenced the CB and Coulomb staircases in these structures. These nanostructures are sufficiently small that introducing even a single electron is sufficient to dramatically change the transport properties as a result of the charging energy associated with this extra electron. We found that the Coulomb staircases occur in the I-V characteristics only when the width of the left barrier junction is smaller than that of the right barrier junction. In this case, the transmission coefficient of the emitter junction is larger than that of the collector junction; also, occupied levels enter the bias window, thereby enhancing the tunneling extensively.
Palacios, Manuel A; Lacy, Michael M; Schubert, Stephanie M; Manesse, Mael; Walt, David R
2013-07-16
Single molecule detection schemes promise that one has the ability to reach the ultimate limit of detection: one molecule. In this paper, we use the stochastic luminescence of single semiconductor nanocrystals (quantum dots, QDs) to detect and localize particles as digital counts. These digital counts can be correlated to the concentration of analytes in solution. Here, we use total internal reflection fluorescence (TIRF) microscopy to probe individual QDs immobilized on a functionalized substrate. QDs have found their niche in the bioanalytical community due to their remarkable brightness and stability. Despite their numerous outstanding photophysical properties, QDs at the single particle level display a pronounced intermittent luminescence, posing a challenge for the detection of individual particles. In this paper, we demonstrate a reliable method for detecting QDs that takes advantage of these signal fluctuations by comparing the variations in the QD's fluorescence signals against variations of the background signal. The quantitative methodology developed here results in signal-to-background ratios up to 90:1, which is at least 8-times higher than the ratios obtained using methodologies relying solely on signal integration. This enhanced signal-to-background ratio facilitates a robust thresholding process and results in femtomolar limits of detection.
Optical magnetic detection of single-neuron action potentials using quantum defects in diamond
Barry, John F.; Turner, Matthew J.; Schloss, Jennifer M.; Glenn, David R.; Song, Yuyu; Lukin, Mikhail D.; Park, Hongkun; Walsworth, Ronald L.
2016-01-01
Magnetic fields from neuronal action potentials (APs) pass largely unperturbed through biological tissue, allowing magnetic measurements of AP dynamics to be performed extracellularly or even outside intact organisms. To date, however, magnetic techniques for sensing neuronal activity have either operated at the macroscale with coarse spatial and/or temporal resolution—e.g., magnetic resonance imaging methods and magnetoencephalography—or been restricted to biophysics studies of excised neurons probed with cryogenic or bulky detectors that do not provide single-neuron spatial resolution and are not scalable to functional networks or intact organisms. Here, we show that AP magnetic sensing can be realized with both single-neuron sensitivity and intact organism applicability using optically probed nitrogen-vacancy (NV) quantum defects in diamond, operated under ambient conditions and with the NV diamond sensor in close proximity (∼10 µm) to the biological sample. We demonstrate this method for excised single neurons from marine worm and squid, and then exterior to intact, optically opaque marine worms for extended periods and with no observed adverse effect on the animal. NV diamond magnetometry is noninvasive and label-free and does not cause photodamage. The method provides precise measurement of AP waveforms from individual neurons, as well as magnetic field correlates of the AP conduction velocity, and directly determines the AP propagation direction through the inherent sensitivity of NVs to the associated AP magnetic field vector. PMID:27911765
Strained-layer InGaAs/GaAs/AlGaAs single quantum well lasers with high internal quantum efficiency
NASA Technical Reports Server (NTRS)
Larsson, Anders; Cody, Jeffrey; Lang, Robert J.
1989-01-01
Low threshold current density strained-layer In(0.2)Ga(0.8)As/GaAs/AlGaAs single quantum well lasers, emitting at 980 nm, have been grown by molecular beam epitaxy. Contrary to what has been reported for broad-area lasers with pseudomorphic InGaAs active layers grown by metalorganic chemical vapor deposition, these layers exhibit a high internal quantum efficiency (about 90 percent). The maximum external differential quantum efficiency is 70 percent, limited by an anomalously high internal loss possibly caused by a large lateral spreading of the optical mode. In addition, experimental results supporting the theoretically predicted strain-induced reduction of the valence-band nonparabolicity and density of states are presented.
Seniority in quantum many-body systems. I. Identical particles in a single shell
Van Isacker, P.
2014-10-15
A discussion of the seniority quantum number in many-body systems is presented. The analysis is carried out for bosons and fermions simultaneously but is restricted to identical particles occupying a single shell. The emphasis of the paper is on the possibility of partial conservation of seniority which turns out to be a peculiar property of spin-9/2 fermions but prevalent in systems of interacting bosons of any spin. Partial conservation of seniority is at the basis of the existence of seniority isomers, frequently observed in semi-magic nuclei, and also gives rise to peculiar selection rules in one-nucleon transfer reactions. - Highlights: • Unified derivation of conditions for the total and partial conservation of seniority. • General analysis of the partial conservation of seniority in boson systems. • Why partial conservation of seniority is crucial for seniority isomers in nuclei. • The effect of partial conservation of seniority on one-nucleon transfer intensities.
Coherent control of the dynamics of a single quantum-dot exciton qubit in a cavity
NASA Astrophysics Data System (ADS)
de Freitas, Antonio; Sanz, L.; Villas-Bôas, José M.
2017-03-01
In this paper we demonstrate theoretically how to use an external laser field to control the population inversion of a single quantum dot exciton qubit in a nanocavity. We consider the Jaynes-Cummings model to describe the system, and the incoherent losses were taken into account by using Lindblad operators. We have demonstrated how to prepare the initial state in a superposition of the exciton in the ground state and the cavity in a coherent state. The effects of exciton-cavity detuning, the laser-cavity detunings, the pulse area, and losses over the qubit dynamics are analyzed. We also show how to use a continuous laser pumping in resonance with the cavity mode to sustain a coherent state inside the cavity, providing some protection to the qubit against cavity loss.
NASA Astrophysics Data System (ADS)
Barseghyan, M. G.
2016-11-01
The intraband optical absorption in GaAs/Ga0.7Al0.3As two-dimensional single quantum ring is investigated. Considering the combined effects of hydrostatic pressure and intense laser field the energy of the ground and few excited states has been found using the effective mass approximation and exact diagonalization technique. The energies of these states and the corresponding threshold energy of the intraband optical transitions are examined as a function of hydrostatic pressure for the different values of the laser field parameter. We also investigated the dependencies of the intraband optical absorption coefficient as a function of incident photon energy for different values of hydrostatic pressure and laser field parameter. It is found that the effects of hydrostatic pressure and intense laser field lead to redshift and blueshift of the intraband optical spectrum respectively.
Quantum calculation of disordered length in fcc single crystals using channelling techniques
NASA Astrophysics Data System (ADS)
Abu-Assy, M. K.
2006-04-01
Lattices of face-centred cubic crystals (fcc), due to irradiation processes, may become disordered in stable configurations like the dumb-bell configuration (DBC) or body-centred interstitial (BCI). In this work, a quantum mechanical treatment for the calculation of transmission coefficients of channelled positrons from their bound states in the normal lattice regions into the allowed bound states in the disordered regions is given as a function of the length of the disordered regions. In order to obtain more reliable results, higher anharmonic terms in the planar channelling potential are considered in the calculations by using first-order perturbation theory where new bound states have been found. The calculations were executed in the energy range 10 200 MeV of the incident positron on a copper single crystal in the planar direction (100).
Kang, Hyeong-Gon; Tokumasu, Fuyuki; Clarke, Matthew; Zhou, Zhenping; Tang, Jianyong; Nguyen, Tinh; Hwang, Jeeseong
2010-01-01
We present results on the dynamic fluorescence properties of bioconjugated nanocrystals or quantum dots (QDs) in different chemical and physical environments. A variety of QD samples was prepared and compared: isolated individual QDs, QD aggregates, and QDs conjugated to other nanoscale materials, such as single-wall carbon nanotubes (SWCNTs) and human erythrocyte plasma membrane proteins. We discuss plausible scenarios to explain the results obtained for the fluorescence characteristics of QDs in these samples, especially for the excitation time-dependent fluorescence emission from clustered QDs. We also qualitatively demonstrate enhanced fluorescence emission signals from clustered QDs and deduce that the band 3 membrane proteins in erythrocytes are clustered. This approach is promising for the development of QD-based quantitative molecular imaging techniques for biomedical studies involving biomolecule clustering.
Effects of phonon scattering on the magneto-conductance in single and double quantum wires
NASA Astrophysics Data System (ADS)
Huang, D.; Lyo, S. K.
2003-03-01
We present an exact numerical formalism for the solution of the Boltzmann equation dominated by elastic (e.g., interface-roughness) and phonon scattering in a quasi-one-dimensional system. The result is employed to study the temperature-dependent conductance of a single and tunnel-coupled double quantum wells (DQWs) as a function of a perpendicular magnetic field. According to recent studies, the zero-temperature conductance is enhanced dramatically as a function of the field when the Fermi level lies inside the anticrossing gap of the DQWs. [S. K. Lyo, J. Phys.-Condens. Matter 8, L703 (1996), D. Huang and S. K. Lyo, ibid, 12, 3383 (2000), S. V. Korepov and M. A. Liberman, Phys. Rev. B 60, 13770 (1999)] Our results show that phonon scattering modifies the conductance and its enhancement significantly at temperatures corresponding to the gap energy or the sublevel separation or higher.
Quantum dots (QDs) immobilization on metal nanowire end-facets for single photon source application
NASA Astrophysics Data System (ADS)
Kim, J.; Lee, B. C.; Kang, C.; Lee, S. Y.; Park, J. H.; Shin, H. J.
2010-02-01
We introduce a fabrication process to immobilize cadmium selenide (CdSe) Quantum Dots (QDs) on end-facets of metal nanowires, which can be possibly used as a cavity-free unidirectional single photon source with high coupling efficiency due to high Purcell factor. Nanowires were fabricated using E-beam lithography, E-beam evaporation, and lift-off process and finally covered with chemically deposited silicon dioxide (SiO2) layer. End-facets of metal nanowires were defined using wet etching process. QD immobilization was accomplished through surface modifications on both metal and QD surfaces. We immobilized thiol (-SH) functionalized 15 base pair (bp) ssDNA on Au nanowire surface to hybridize with its complimentary amine (- NH3) functionalized 15bp ssDNA and conjugated the amine functionalized 15bp ssDNA with QD. Presenting QD immobilization method showed high selectivity between metal nanowire and SiO2 surfaces.
Single-particle and collective motion in nuclear open quantum systems
NASA Astrophysics Data System (ADS)
Fossez, Kevin
2017-01-01
The properties of drip-line nuclei are profoundly affected by the environment of continuum states and the presence of decay channels. Their description requires the development of realistic theoretical approaches rooted in the open quantum system framework. However this formidable task presents many challenges and calls for closer collaborations between theorists and experimentalists. In this presentation a brief introduction to the problem of the description of weakly bound and unbound nuclei will be given with an emphasis on the relationship between nuclear structure and reactions. This will be illustrated by two recent investigations on the nuclei 11Be and 39Mg, where the role of the interplay between the collectivity and the continuum on single-particle structure has been studied. Finally the question of the existence of a nuclear system in the continuum is discussed for the case of the four-neutron system.
Dynamics of InP/(Ga,In)P quantum-dot single-photon emitters
NASA Astrophysics Data System (ADS)
Nowak, A. K.; Martín, M. D.; Gallardo, E.; van der Meulen, H. P.; Viña, L.; Calleja, J. M.; Ripalda, J. M.; González, L.; González, Y.
2011-12-01
The dynamics of single photon emitters based on InP/(Ga,In)P quantum dots (QDs) has been studied by time-resolved photo luminescence (TRPL) and photon correlation spectroscopy (PCS) up to 50 K. The increase of temperature produces marked effects on the exciton photoluminescence (PL) decay time (τX) and on the anti-bunching time (τR) in the second order photon correlation function. Both times are found to depend on the QD size. A competition of the thermally activated Dark-to-Bright (D→B) exciton transition and the thermal excitation of the carriers to- and from the QD give a good qualitative understanding of the observed results. Resonant excitation at the QD p-states produces a marked decrease of τR together with the appearance of time bunching in a longer time scale.
Li, Bin; Zhang, Guofeng; Wang, Zao; Li, Zhijie; Chen, Ruiyun; Qin, Chengbing; Gao, Yan; Xiao, Liantuan; Jia, Suotang
2016-01-01
N-type semiconductor indium tin oxide (ITO) nanoparticles are used to effectively suppress the fluorescence blinking of single near-infrared-emitting CdSeTe/ZnS core/shell quantum dots (QDs), where the ITO could block the electron transfer from excited QDs to trap states and facilitate more rapid regeneration of neutral QDs by back electron transfer. The average blinking rate of QDs is significantly reduced by more than an order of magnitude and the largest proportion of on-state is 98%, while the lifetime is not considerably reduced. Furthermore, an external electron transfer model is proposed to analyze the possible effect of radiative, nonradiative, and electron transfer pathways on fluorescence blinking. Theoretical analysis based on the model combined with measured results gives a quantitative insight into the blinking mechanism. PMID:27605471
NASA Astrophysics Data System (ADS)
Li, Bin; Zhang, Guofeng; Wang, Zao; Li, Zhijie; Chen, Ruiyun; Qin, Chengbing; Gao, Yan; Xiao, Liantuan; Jia, Suotang
2016-09-01
N-type semiconductor indium tin oxide (ITO) nanoparticles are used to effectively suppress the fluorescence blinking of single near-infrared-emitting CdSeTe/ZnS core/shell quantum dots (QDs), where the ITO could block the electron transfer from excited QDs to trap states and facilitate more rapid regeneration of neutral QDs by back electron transfer. The average blinking rate of QDs is significantly reduced by more than an order of magnitude and the largest proportion of on-state is 98%, while the lifetime is not considerably reduced. Furthermore, an external electron transfer model is proposed to analyze the possible effect of radiative, nonradiative, and electron transfer pathways on fluorescence blinking. Theoretical analysis based on the model combined with measured results gives a quantitative insight into the blinking mechanism.
Quantum oscillations in EuFe2As2 single crystals
NASA Astrophysics Data System (ADS)
Rosa, P. F. S.; Zeng, B.; Adriano, C.; Garitezi, T. M.; Grant, T.; Fisk, Z.; Balicas, L.; Johannes, M. D.; Urbano, R. R.; Pagliuso, P. G.
2014-11-01
Quantum oscillation measurements provide relevant information about the Fermi surface (FS) properties of strongly correlated metals. Here, we report on the Shubnikov-de Haas effect via high-field resistivity measurements of EuFe2As2 (Eu122) and BaFe2As2 (Ba122) single crystals. Although both pnictide compounds are isovalent with similar effective masses and density of states, at the Fermi level, our results reveal subtle changes in their fermiology. Remarkably, although the spin-density-wave (SDW) ordering temperature is higher in the Eu-rich end, Eu122 displays a much more isotropic and three-dimensional-like FS when compared with Ba122, in agreement with band structure calculations. Our experimental results suggest an anisotropic contribution of the Fe 3 d orbitals to the FS in Ba122. We speculate that this orbital differentiation may be responsible for the suppression of the SDW phase in the FeAs-based compounds.
Quantum metrology with a single spin-3/2 defect in silicon carbide
NASA Astrophysics Data System (ADS)
Soykal, Ö. O.; Reinecke, T. L.
2017-02-01
We show that implementations for quantum sensing with exceptional sensitivity and spatial resolution can be made using spin-3/2 semiconductor defect states. We illustrate this using the silicon monovacancy deep center in hexagonal SiC based on our rigorous derivation of this defect's ground state and of its electronic and optical properties. For a single VSi- defect, we obtain magnetic field sensitivities capable of detecting individual nuclear magnetic moments. We also show that its zero-field splitting has an exceptional strain and temperature sensitivity within the technologically desirable near-infrared window of biological systems. The concepts and sensing schemes developed here are applicable to other point defects with half spin multiplet (S ≥3/2 ) configurations.
Fine structure of a biexciton in a single quantum dot with a magnetic impurity
NASA Astrophysics Data System (ADS)
Trojnar, Anna H.; Korkusinski, Marek; Mendes, Udson C.; Goryca, Mateusz; Koperski, Maciej; Smolenski, Tomasz; Kossacki, Piotr; Wojnar, Piotr; Hawrylak, Pawel
2013-05-01
We show theoretically and experimentally that the ground state of a biexciton in a CdTe self-assembled quantum dot with a magnetic Mn impurity exhibits a fine structure due to electron-electron Coulomb and electron-Mn exchange interactions. Results of exact diagonalization of the microscopic biexciton-manganese-ion model predict a pattern of three pairs of states in the ground-state manifold, each pair labeled by the projection of Mn spin. We show that the fine structure determines the ordering of the biexciton emission maxima and can be derived from the biexciton and exciton emission spectra. Theoretical predictions are successfully compared with measured biexciton and exciton emission spectra of a single CdTe dot with a Mn ion in its center.
Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond
Toyli, David M.; de las Casas, Charles F.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.
2013-01-01
We demonstrate fluorescence thermometry techniques with sensitivities approaching 10 mK⋅Hz−1/2 based on the spin-dependent photoluminescence of nitrogen vacancy (NV) centers in diamond. These techniques use dynamical decoupling protocols to convert thermally induced shifts in the NV center's spin resonance frequencies into large changes in its fluorescence. By mitigating interactions with nearby nuclear spins and facilitating selective thermal measurements, these protocols enhance the spin coherence times accessible for thermometry by 45-fold, corresponding to a 7-fold improvement in the NV center’s temperature sensitivity. Moreover, we demonstrate these techniques can be applied over a broad temperature range and in both finite and near-zero magnetic field environments. This versatility suggests that the quantum coherence of single spins could be practically leveraged for sensitive thermometry in a wide variety of biological and microscale systems. PMID:23650364
Single step, bulk synthesis of engineered MoS2 quantum dots for multifunctional electrocatalysis
NASA Astrophysics Data System (ADS)
Tadi, Kiran Kumar; Palve, Anil M.; Pal, Shubhadeep; Sudeep, P. M.; Narayanan, Tharangattu N.
2016-07-01
Bi- or tri- functional catalysts based on atomic layers are receiving tremendous scientific attention due to their importance in various energy technologies. Recent studies on molybdenum disulphide (MoS2) nanosheets revealed that controlling the edge states and doping/modifying with suitable elements are highly important in tuning the catalytic activities of MoS2. Here we report a bulk, single step method to synthesize metal modified MoS2 quantum dots (QDs). Three elements, namely Fe, Mg and Li, are chosen to study the effects of dopants in the catalytic activities of MoS2. Fe and Mg are found to act like dopants in the MoS2 lattice forming respective doped MoS2 QDs, while Li formed an intercalated MoS2 QD. The efficacy and tunability of these luminescent doped QDs towards various electrocatalytic activities (hydrogen evolution reaction, oxygen evolution reaction and oxygen reduction action) are reported here.
40-GHz operation of a single-flux-quantum (SFQ) 4 × 4 switch scheduler
NASA Astrophysics Data System (ADS)
Kameda, Y.; Yorozu, S.; Hashimoto, Y.; Terai, H.; Fujimaki, A.; Yoshikawa, N.
2006-10-01
We designed a single-flux-quantum (SFQ) scheduler for a 4 × 4 network switch. It receives requests serially and arbitrates them. Fair scheduling is achieved by using a round-robin priority pointer at each output port. The pointer is updated so that the input port that was granted permission has the lowest priority in the next scheduling cycle. We divided the scheduler into sub-blocks, which were separately designed. The sub-blocks, which have asynchronous interfaces, were then connected with passive transmission lines. Ladder-type on-chip clock generators were included in the circuit for high-speed operation. Using logic simulation, we verified the scheduler test circuit. The scheduler test circuit was composed of about 3000 Josephson junctions. We tested the scheduler circuit at high speed and confirmed correct operations at over 40 GHz.
Quantum-electrodynamic treatment of photoemission by a single-electron wave packet
NASA Astrophysics Data System (ADS)
Corson, John P.; Peatross, Justin
2011-11-01
A quantum-field-theory description of photoemission by a laser-driven single-electron wave packet is presented. We show that, when the incident light is represented with multimode coherent states then, to all orders of perturbation theory, the relative phases of the electron's constituent momenta have no influence on the amount of scattered light. These results are extended using the Furry picture, where the (unidirectional) arbitrary incident light pulse is treated nonperturbatively with Volkov functions. This analysis increases the scope of our prior results in [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.84.053831 84, 053831 (2011)], which demonstrate that the spatial size of the electron wave packet does not influence photoemission.
Quantum frequency translation of single-photon states in a photonic crystal fiber.
McGuinness, H J; Raymer, M G; McKinstrie, C J; Radic, S
2010-08-27
We experimentally demonstrate frequency translation of a nonclassical optical field via four-wave mixing (Bragg-scattering process) in a photonic crystal fiber (PCF). The high nonlinearity and the ability to control dispersion in PCF enable efficient translation between nearby photon channels within the visible to-near-infrared spectral range, useful in quantum networks. Heralded single photons at 683 nm were translated to 659 nm with an efficiency of 28.6±2.2 percent. Second-order correlation measurements on the 683- and 659-nm fields yielded g(683)(2) (0)=0.21±0.02 and g(659)(2) (0)=0.19±0.05, respectively, showing the nonclassical nature of both fields.
Detuning-dependent Mollow triplet of a coherently-driven single quantum dot.
Ulhaq, Ata; Weiler, Stefanie; Roy, Chiranjeeb; Ulrich, Sven Marcus; Jetter, Michael; Hughes, Stephen; Michler, Peter
2013-02-25
We present both experimental and theoretical investigations of a laser-driven quantum dot (QD) in the dressed-state regime of resonance fluorescence. We explore the role of phonon scattering and pure dephasing on the detuning-dependence of the Mollow triplet and show that the triplet sidebands may spectrally broaden or narrow with increasing detuning. Based on a polaron master equation approach, which includes electron-phonon interaction nonperturbatively, we derive a fully analytical expression for the spectrum. With respect to detuning dependence, we identify a crossover between the regimes of spectral sideband narrowing or broadening. We also predict regimes of phonon-induced squeezing and anti-squeezing of the spectral resonances. A comparison of the theoretical predictions to detailed experimental studies on the laser detuning-dependence of Mollow triplet resonance emission from single In(Ga)As QDs reveals excellent agreement.
Quantum secret sharing and random hopping: Using single states instead of entanglement
NASA Astrophysics Data System (ADS)
Karimipour, V.; Asoudeh, M.
2015-09-01
Quantum secret sharing (QSS) protocols between N players, for sharing classical secrets, either use multipartite entangled states or use sequential manipulation of single d -level states only when d is prime (A. Tavakoli et al., arXiv:1501.05582). We propose a sequential scheme which is valid for any value of d . In contrast to A. Tavakoli et al. whose efficiency (number of valid rounds) is 1/d , the efficiency of our scheme is 1/2 for any d . This, together with the fact that in the limit d ⟶∞ the scheme can be implemented by continuous variable optical states, brings the scheme into the domain of present day technology.
Field emission of carbon quantum dots synthesized from a single organic solvent.
Liu, Xiahui; Yang, Bingjun; Yang, Juan; Yu, Shengxue; Chen, Jiangtao
2016-11-04
In this paper, a facile synthesis of carbon quantum dots (CQDs) and its field emission performance are reported. The CQDs are prepared from a single N, N-dimethylformamide acting as carbon and nitrogen-doping sources simultaneously. The CQDs are investigated by photoluminescence, transmission electron microscopy and x-ray photoelectron spectroscopy. The CQDs have an average size of 3 nm and are doped with N atoms. CQD dispersion shows strong fluorescence under UV illumination. For the first time, the field emission behavior of CQDs coated on Si substrate is studied. As a candidate of cold cathode, the CQDs display good field emission performance. The CQD emitter reaches the current density of 1.1 mA cm(-2) at 7.0 V μm(-1) and exhibits good long-term emission stability, suggesting promising application in field emission devices.
NASA Technical Reports Server (NTRS)
Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.
1991-01-01
A 980-nm-ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs single-quantum-well laser with a maximum single-ended output power of 240 mW from a facet-coated device is fabricated from a graded-index separate-confinement heterostructure grown by molecular-beam epitaxy. The laser oscillates in the fundamental spatial mode, allowing 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. Life testing at an output power of 30 mW per facet from uncoated devices reveals a superior reliability to GaAs/AlGaAs quantum-well lasers but also the need for protective facet coatings for long term reliability at power levels required for pumping Er-doped fiber amplifiers.
Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa
2015-11-24
Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.
Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa
2015-01-01
Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances. PMID:26597223
Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P
2015-05-01
Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.
NASA Astrophysics Data System (ADS)
Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa
2015-11-01
Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.
McAfee, Jason L; Poirier, Bill
2011-02-21
In a previous paper [J. L. McAfee and B. Poirier, J. Chem. Phys. 130, 064701 (2009)], using spin-polarized density functional theory (DFT), the authors reported a binding energy of 0.755 eV, for a single hydrogen atom adsorbed on a pristine (unrelaxed) (5,5) single-walled carbon nanotube (SWNT) substrate. A full three-dimensional (3D) potential energy surface (PES) for the SWNT-H system was also developed, and used in a quantum dynamics calculation to compute all rovibrational bound states, and associated equatorial and longitudinal adsorbate migration rates. A highly pronounced preference for the latter migration pathway at ambient temperatures was observed. In this work, we extend the aforementioned study to include multiple H-atom adsorbates. Extensive DFT calculations are performed, in order to ascertain the most relevant dynamical pathways. For two adsorbates, the SWNT-H-H system is found to exhibit highly site-specific binding, as well as long-range correlation and pronounced binding energy enhancement. The latter effect is even more pronounced in the full-hydrogenation limit, increasing the per-adsorbate binding energy to 2.6 eV. To study migration dynamics, a single-hole model is developed, for which the binding energy drops to 2.11 eV. A global 3D PES is developed for the hole migration model, using 40 radial × 18 cylindrical ab initio geometries, fit to a Fourier basis with radially dependent expansion coefficients (rms error 4.9 meV). As compared with the single-adsorbate case, the hole migration PES does not exhibit separate chemisorption and physisorption wells. The barrier to longitudinal migration is also found to be much lower. Quantum dynamics calculations for all rovibrational states are then performed (using a mixed spectral basis/phase-space optimized discrete variable representation), and used to compute longitudinal migration rates. Ramifications for the use of SWNTs as potential hydrogen storage materials are discussed.
NASA Astrophysics Data System (ADS)
Battista, F.; Samuelsson, P.
2012-02-01
We investigate theoretically a scheme for spectroscopy of electrons emitted by an on-demand single-particle source. The total system, with an electron turnstile source and a single-level quantum dot spectrometer, is implemented with edge states in a conductor in the quantum Hall regime. Employing a Floquet scattering approach, the source and the spectrometer are analyzed within a single theoretical framework. The nonequilibrium distribution of the emitted electrons is analyzed via the direct current at the dot spectrometer. In the adiabatic and intermediate source frequency regimes, the distribution is found to be strongly peaked around the active resonant level of the turnstile. At high frequencies the distribution is split up into a set of fringes, resulting from the interplay of resonant transport through the turnstile and absorption or emission of individual Floquet quanta. For ideal source operation, with exactly one electron emitted per cycle, an expression for the single-electron wave function is derived.
Bright single-photon source based on an InAs quantum dot in a silver-embedded nanocone structure
NASA Astrophysics Data System (ADS)
Liu, X.; Asano, T.; Odashima, S.; Nakajima, H.; Kumano, H.; Suemune, I.
2013-04-01
High photon-extraction efficiency is strongly required for a practical single-photon source. We succeed in fabricating metal (sliver)-embedded nanocone structure incorporating an InAs quantum dot. Efficient photon emission of ˜200 000 photons per second is detected and single-photon emission is demonstrated using autocorrelation measurements. The photon-extraction efficiency as high as 24.6% is obtained from the structure.
Magnetic-field-induced quantum criticality in a spin-1 planar ferromagnet with single-ion anisotropy
NASA Astrophysics Data System (ADS)
Mercaldo, Maria Teresa; Rabuffo, Ileana; Decesare, Luigi; Caramicod'Auria, Alvaro
2014-03-01
The effects of single-ion anisotropy on field-induced quantum criticality in spin-1 planar ferromagnet is explored by means of the two-time Green's function method. We work at the Tyablikov decoupling level for exchange interactions and the Anderson-Callen decoupling level for single-ion anisotropy. In our analysis a longitudinal external magnetic field is used as the non-thermal control parameter and the phase diagram and the quantum critical properties are established for suitable values of the single-ion anisotropy parameter. We find that the single-ion anisotropy has sensible effects on the structure of the phase diagram close to the quantum critical point. Indeed, for values of the uniaxial crystal-field parameter above a positive threshold a re-entrant behavior appears for the critical line, while above this value the conventional magnetic-field-induced quantum critical scenario remains unchanged. M. T. Mercaldo, I. Rabuffo, L. De Cesare, A. Caramico D'Auria, Eur. Phys. J. B 86, 340 (2013)
Formation of quantum magnetization plateaux in mixed-spin Ising chains with single-ion anisotropy
NASA Astrophysics Data System (ADS)
Solano-Carrillo, E.; Franco, R.; Silva-Valencia, J.
2010-12-01
We investigate the physical processes which give rise to a multi-plateau ground-state magnetization curve in ferrimagnetic Ising chains with alternating spins ( S, s) and different single-ion anisotropies on each sublattice of the system under an applied magnetic field, by using an elaboration of the molecular-field theory. Our analysis is started with the system ( S,{1}/{2}) for which we use the transfer-matrix technique for comparison. In this system, we find a double-plateau structure (initial and saturation) in the magnetization curve for all values of S>{1}/{2}, independent of anisotropies. Then we study two more elaborate systems, comparing the results with density-matrix renormalization group calculations, and finally generalize our argument to the general case. We find that for a specified range of the anisotropy parameters, the system exhibits 2 s+1 plateaux, including the two classical and all those allowed for general quantum spin chains. This follows a similar rule as that known for spin- S(S≥1) Ising chains with single-ion anisotropy, for which 2 S+1 plateaux appear in the ground-state magnetization curve, surviving even at low temperatures.
Live-cell single-molecule labeling and analysis of myosin motors with quantum dots
Hatakeyama, Hiroyasu; Nakahata, Yoshihito; Yarimizu, Hirokazu; Kanzaki, Makoto
2017-01-01
Quantum dots (QDs) are a powerful tool for quantitatively analyzing dynamic cellular processes by single-particle tracking. However, tracking of intracellular molecules with QDs is limited by their inability to penetrate the plasma membrane and bind to specific molecules of interest. Although several techniques for overcoming these problems have been proposed, they are either complicated or inconvenient. To address this issue, in this study, we developed a simple, convenient, and nontoxic method for labeling intracellular molecules in cells using HaloTag technology and electroporation. We labeled intracellular myosin motors with this approach and tracked their movement within cells. By simultaneously imaging myosin movement and F-actin architecture, we observed that F-actin serves not only as a rail but also as a barrier for myosin movement. We analyzed the effect of insulin on the movement of several myosin motors, which have been suggested to regulate intracellular trafficking of the insulin-responsive glucose transporter GLUT4, but found no significant enhancement in myosin motor motility as a result of insulin treatment. Our approach expands the repertoire of proteins for which intracellular dynamics can be analyzed at the single-molecule level. PMID:28035048
Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; ...
2015-09-23
Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results andmore » further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.« less
Wang, Feng; Karan, Niladri S.; Minh Nguyen, Hue; Ghosh, Yagnaseni; Hollingsworth, Jennifer A.; Htoon, Han
2015-09-23
Through single dot spectroscopy and numerical simulation studies, we demonstrate that the fundamental mode of gold patch nanoantennas have fringe-field resonance capable of enhancing the nano-emitters coupled around the edge of the patch antenna. This fringe-field coupling is used to enhance the radiative rates of core/thick-shell nanocrystal quantum dots (g-NQDs) that cannot be embedded into the ultra-thin dielectric gap of patch nanoantennas due to their large sizes. We attain 14 and 3 times enhancements in single exciton radiative decay rate and bi-exciton emission efficiencies of g-NQDs respectively, with no detectable metal quenching. Our numerical studies confirmed our experimental results and further reveal that patch nanoantennas can provide strong emission enhancement for dipoles lying not only in radial direction of the circular patches but also in the direction normal to the antennas surface. Finally, this provides a distinct advantage over the parallel gap-bar antennas that can provide enhancement only for the dipoles oriented across the gap.
Photoluminescence Intermittency and Photo-Bleaching of Single Colloidal Quantum Dot.
Qin, Haiyan; Meng, Renyang; Wang, Na; Peng, Xiaogang
2017-03-03
Photoluminescence (PL) blinking of single colloidal quantum dot (QD)-PL intensity switching between different brightness states under constant excitation-and photo-bleaching are roadblocks for most applications of QDs. This progress report shall treat PL blinking and photo-bleaching both as photochemical events, namely, PL blinking as reversible and photo-bleaching being irreversible ones. Most studies on single-molecule spectroscopy of QDs in literature are related to PL blinking, which invites us to concentrate our discussions on the PL blinking, including its brief history in 20 years, analysis methods, competitive mechanisms and different strategies to battle it. In terms of suppression of the PL blinking, wavefunction confinement-confining photo-generated electron and hole within the core and inner portion of the shell of a core/shell QD-demonstrates significant advantages. This strategy yields nearly non-blinking QDs with their emission peaks covering most part of the visible window. As expected, the resulting QDs from this new strategy also show substantially improved anti-bleaching features.