Recoverability in quantum information theory
NASA Astrophysics Data System (ADS)
Wilde, Mark
The fact that the quantum relative entropy is non-increasing with respect to quantum physical evolutions lies at the core of many optimality theorems in quantum information theory and has applications in other areas of physics. In this work, we establish improvements of this entropy inequality in the form of physically meaningful remainder terms. One of the main results can be summarized informally as follows: if the decrease in quantum relative entropy between two quantum states after a quantum physical evolution is relatively small, then it is possible to perform a recovery operation, such that one can perfectly recover one state while approximately recovering the other. This can be interpreted as quantifying how well one can reverse a quantum physical evolution. Our proof method is elementary, relying on the method of complex interpolation, basic linear algebra, and the recently introduced Renyi generalization of a relative entropy difference. The theorem has a number of applications in quantum information theory, which have to do with providing physically meaningful improvements to many known entropy inequalities. This is based on arXiv:1505.04661, now accepted for publication in Proceedings of the Royal Society A. I acknowledge support from startup funds from the Department of Physics and Astronomy at LSU, the NSF under Award No. CCF-1350397, and the DARPA Quiness Program through US Army Research Office award W31P4Q-12-1-0019.
The BIG Bell Test: quantum physics experiments with direct public participation
NASA Astrophysics Data System (ADS)
Mitchell, Morgan; Abellan, Carlos; Tura, Jordi; Garcia Matos, Marta; Hirschmann, Alina; Beduini, Federica; Pruneri, Valerio; Acin, Antonio; Marti, Maria; BIG Bell Test Collaboration
The BIG Bell Test is a suite of physics experiments - tests of quantum nonlocality, quantum communications, and related experiments - that use crowd-sourced human randomness as an experimental resource. By connecting participants - anyone with an internet connection - to state-of-the-art experiments on five continents, the project aims at two complementary goals: 1) to provide bits generated directly from human choices, a unique information resource, to physics experiments, and 2) to give the world public the opportunity to contribute in a meaningful way to quantum physics research. We also describe related outreach and educational efforts to spread awareness of quantum physics and its applications.
NASA Astrophysics Data System (ADS)
Giannetto, E. A.; Pozzi, F.
We would like to discuss the historical emergence of quantum physics and quantum non-separability, by analysing Pauli's point of view in relation to Jung's ideas. Recent inquiries on EPR shows that quantum non-separability indicates an a-causal connection of the "quantum reality" for space-like intervals ("simultaneity region ") of world (measurement) events: this non-causal connection is the physical counterpart of what Jung called "synchronicity " with an assessment given also by Pauli. This does not imply any violation of mechanical causality by any introduction of action-at-a-distance. From a physical point of view a-causal connections can be interpreted as implying a particular quantum topology of space-time, which leads to a non-mechanistic conception of nature and which could be related to a holistic quantum dynamical reality of the world like Bohm's "holomovement" or "light". This kind of non-mechanistic conception of nature as well as the idea of non-separability of the world and of synchronicity, as stated by Jung itself, was developed by Leibnitz: from this point of view, we can look at quantum physics (as well as for relativity it was shown) as related to a new emergence of concepts belonging to the Leibnitzian (anti-Newtonian) tradition.
Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Gang; Duan, Yi-Shi
General relativity and quantum mechanism are two separate rules of modern physics explaining how nature works. Both theories are accurate, but the direct connection between two theories was not yet clarified. Recently, researchers blur the line between classical and quantum physics by connecting chaos and entanglement equation. Here in this paper, we showed the Duan's extended HM theory, which has the solution of the general relativity, can also have the solutions of the classic chaos equations and even the solution of Schrödinger equation in quantum physics, suggesting the extended theory of harmonic maps may act as a universal theory ofmore » physics.« less
Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism
Ren, Gang; Duan, Yi-Shi
2017-07-20
General relativity and quantum mechanism are two separate rules of modern physics explaining how nature works. Both theories are accurate, but the direct connection between two theories was not yet clarified. Recently, researchers blur the line between classical and quantum physics by connecting chaos and entanglement equation. Here in this paper, we showed the Duan's extended HM theory, which has the solution of the general relativity, can also have the solutions of the classic chaos equations and even the solution of Schrödinger equation in quantum physics, suggesting the extended theory of harmonic maps may act as a universal theory ofmore » physics.« less
Physics at the FQMT'11 conference
NASA Astrophysics Data System (ADS)
Špička, V.; Nieuwenhuizen, Th M.; Keefe, P. D.
2012-11-01
This paper deals with the recent state of the art of the following topics presented at the FQMT'11 conference: foundations of quantum physics, quantum measurement; nonequilibrium quantum statistical physics; quantum thermodynamics; quantum measurement, entanglement and coherence; dissipation, dephasing, noise, and decoherence; quantum optics; macroscopic quantum behavior; e.g. cold atoms; Bose-Einstein condensates; physics of quantum computing and quantum information; mesoscopic, nano-electro-mechanical systems and nano-optical systems; spin systems and their dynamics; biological systems and molecular motors; and cosmology, gravitation and astrophysics. The lectures and discussions at the FQMT'11 conference, as well as the contributions to the related topical issue, reveal important themes for future development. The recent literature is included.
Quantum optics. Gravity meets quantum physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Bernhard W.
2015-02-27
Albert Einstein’s general theory of relativity is a classical formulation but a quantum mechanical description of gravitational forces is needed, not only to investigate the coupling of classical and quantum systems but simply to give a more complete description of our physical surroundings. In this issue of Nature Photonics, Wen-Te Liao and Sven Ahrens reveal a link between quantum and gravitational physics. They propose that in the quantum-optical effect of superradiance, the world line of electromagnetic radiation is changed by the presence of a gravitational field.
Modern Fysics Phallacies: The Best Way Not to Unify Physics
NASA Astrophysics Data System (ADS)
Beichler, James E.
Too many physicists believe the `phallacy' that the quantum is more fundamental than relativity without any valid supporting evidence, so the earliest attempts to unify physics based on the continuity of relativity have been all but abandoned. This belief is probably due to the wealth of pro-quantum propaganda and general `phallacies in fysics' that were spread during the second quarter of the twentieth century, although serious `phallacies' exist throughout physics on both sides of the debate. Yet both approaches are basically flawed because both relativity and the quantum theory are incomplete and grossly misunderstood as they now stand. Had either side of the quantum versus relativity controversy sought common ground between the two worldviews, total unification would have been accomplished long ago. The point is, literally, that the discrete quantum, continuous relativity, basic physical geometry, theoretical mathematics and classical physics all share one common characteristic that has never been fully explored or explained - a paradoxical duality between a dimensionless point (discrete) and an extended length (continuity) in any dimension - and if the problem of unification is approached from an understanding of how this paradox relates to each paradigm, all of physics and indeed all of science could be unified under a single new theoretical paradigm.
The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer
NASA Astrophysics Data System (ADS)
Garner, Andrew J. P.; Müller, Markus P.; Dahlsten, Oscar C. O.
2017-12-01
The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.
The complex and quaternionic quantum bit from relativity of simultaneity on an interferometer.
Garner, Andrew J P; Müller, Markus P; Dahlsten, Oscar C O
2017-12-01
The patterns of fringes produced by an interferometer have long been important testbeds for our best contemporary theories of physics. Historically, interference has been used to contrast quantum mechanics with classical physics, but recently experiments have been performed that test quantum theory against even more exotic alternatives. A physically motivated family of theories are those where the state space of a two-level system is given by a sphere of arbitrary dimension. This includes classical bits, and real, complex and quaternionic quantum theory. In this paper, we consider relativity of simultaneity (i.e. that observers may disagree about the order of events at different locations) as applied to a two-armed interferometer, and show that this forbids most interference phenomena more complicated than those of complex quantum theory. If interference must depend on some relational property of the setting (such as path difference), then relativity of simultaneity will limit state spaces to standard complex quantum theory, or a subspace thereof. If this relational assumption is relaxed, we find one additional theory compatible with relativity of simultaneity: quaternionic quantum theory. Our results have consequences for current laboratory interference experiments: they have to be designed carefully to avoid rendering beyond-quantum effects invisible by relativity of simultaneity.
Lesovik, G B; Lebedev, A V; Sadovskyy, I A; Suslov, M V; Vinokur, V M
2016-09-12
Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy.
The Oxford Questions on the foundations of quantum physics.
Briggs, G A D; Butterfield, J N; Zeilinger, A
2013-09-08
The twentieth century saw two fundamental revolutions in physics-relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment.
NASA Astrophysics Data System (ADS)
Emigh, Paul Jeffrey
This dissertation describes research on student understanding of quantum mechanics across multiple levels of instruction. The primary focus has been to identify patterns in student reasoning related to key concepts in quantum mechanics. The specific topics include quantum measurements, time dependence, vector spaces, and angular momentum. The research has spanned a variety of different quantum courses intended for introductory physics students, upper-division physics majors, and graduate students in physics. The results of this research have been used to develop a set of curriculum, Tutorials in Physics: Quantum Mechanics, for addressing the most persistent student difficulties. We document both the development of this curriculum and how it has impacted and improved student understanding of quantum mechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.
Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less
Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; Suslov, M. V.; Vinokur, V. M.
2016-01-01
Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. We further demonstrate that the typical evolution of energy-isolated quantum systems occurs with non-diminishing entropy. PMID:27616571
Lesovik, G. B.; Lebedev, A. V.; Sadovskyy, I. A.; ...
2016-09-12
Remarkable progress of quantum information theory (QIT) allowed to formulate mathematical theorems for conditions that data-transmitting or data-processing occurs with a non-negative entropy gain. However, relation of these results formulated in terms of entropy gain in quantum channels to temporal evolution of real physical systems is not thoroughly understood. Here we build on the mathematical formalism provided by QIT to formulate the quantum H-theorem in terms of physical observables. We discuss the manifestation of the second law of thermodynamics in quantum physics and uncover special situations where the second law can be violated. Lastly, we further demonstrate that the typicalmore » evolution of energy-isolated quantum systems occurs with non-diminishing entropy.« less
Increasing complexity with quantum physics.
Anders, Janet; Wiesner, Karoline
2011-09-01
We argue that complex systems science and the rules of quantum physics are intricately related. We discuss a range of quantum phenomena, such as cryptography, computation and quantum phases, and the rules responsible for their complexity. We identify correlations as a central concept connecting quantum information and complex systems science. We present two examples for the power of correlations: using quantum resources to simulate the correlations of a stochastic process and to implement a classically impossible computational task.
TOPICAL REVIEW: Knot theory and a physical state of quantum gravity
NASA Astrophysics Data System (ADS)
Liko, Tomás; Kauffman, Louis H.
2006-02-01
We discuss the theory of knots, and describe how knot invariants arise naturally in gravitational physics. The focus of this review is to delineate the relationship between knot theory and the loop representation of non-perturbative canonical quantum general relativity (loop quantum gravity). This leads naturally to a discussion of the Kodama wavefunction, a state which is conjectured to be the ground state of the gravitational field with positive cosmological constant. This review can serve as a self-contained introduction to loop quantum gravity and related areas. Our intent is to make the paper accessible to a wider audience that may include topologists, knot theorists, and other persons innocent of the physical background to this approach to quantum gravity.
Quantum Metric of Classic Physics
NASA Astrophysics Data System (ADS)
Machusky, Eugene
2017-09-01
By methods of differential geometry and number theory the following has been established: All fundamental physical constants are the medians of quasi-harmonic functions of relative space and relative time. Basic quantum units are, in fact, the gradients of normal distribution of standing waves between the points of pulsating spherical spiral, which are determined only by functional bonds of transcendental numbers PI and E. Analytically obtained values of rotational speed, translational velocity, vibrational speed, background temperature and molar mass give the possibility to evaluate all basic quantum units with practically unlimited accuracy. Metric of quantum physics really is two-dimensional image of motion of waves in three-dimensional space. Standard physical model is correct, but SI metric system is insufficiently exact at submillimeter distances.
Reflections on the information paradigm in quantum and gravitational physics
NASA Astrophysics Data System (ADS)
Andres Höhn, Philipp
2017-08-01
We reflect on the information paradigm in quantum and gravitational physics and on how it may assist us in approaching quantum gravity. We begin by arguing, using a reconstruction of its formalism, that quantum theory can be regarded as a universal framework governing an observer’s acquisition of information from physical systems taken as information carriers. We continue by observing that the structure of spacetime is encoded in the communication relations among observers and more generally the information flow in spacetime. Combining these insights with an information-theoretic Machian view, we argue that the quantum architecture of spacetime can operationally be viewed as a locally finite network of degrees of freedom exchanging information. An advantage - and simultaneous limitation - of an informational perspective is its quasi-universality, i.e. quasi-independence of the precise physical incarnation of the underlying degrees of freedom. This suggests to exploit these informational insights to develop a largely microphysics independent top-down approach to quantum gravity to complement extant bottom-up approaches by closing the scale gap between the unknown Planck scale physics and the familiar physics of quantum (field) theory and general relativity systematically from two sides. While some ideas have been pronounced before in similar guise and others are speculative, the way they are strung together and justified is new and supports approaches attempting to derive emergent spacetime structures from correlations of quantum degrees of freedom.
Time and a physical Hamiltonian for quantum gravity.
Husain, Viqar; Pawłowski, Tomasz
2012-04-06
We present a nonperturbative quantization of general relativity coupled to dust and other matter fields. The dust provides a natural time variable, leading to a physical Hamiltonian with spatial diffeomorphism symmetry. The surprising feature is that the Hamiltonian is not a square root. This property, together with the kinematical structure of loop quantum gravity, provides a complete theory of quantum gravity, and puts applications to cosmology, quantum gravitational collapse, and Hawking radiation within technical reach. © 2012 American Physical Society
Quantum simulation of disordered systems with cold atoms
NASA Astrophysics Data System (ADS)
Garreau, Jean-Claude
2017-01-01
This paper reviews the physics of quantum disorder in relation with a series of experiments using laser-cooled atoms exposed to "kicks" of a standing wave, realizing a paradigmatic model of quantum chaos, the kicked rotor. This dynamical system can be mapped onto a tight-binding Hamiltonian with pseudo-disorder, formally equivalent to the Anderson model of quantum disorder, with quantum chaos playing the role of disorder. This provides a very good quantum simulator for the Anderson physics. xml:lang="fr"
From black holes to quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, N.
1987-01-01
Since modern physics now deals simultaneously with quantum theory, general relativity, cosmology and elementary particle physics, this volume caters to the need for a book of such a wide scope of interest. Aspects of grand unification, the thermodynamics of space-time, the loss of quantum coherence and the problem of time are expertly treated within a unified presentation. Contents: Introduction; The Global Structure of Space-time in the Classical Theory of General Relativity; Connection between the Structure of the Space-time and the Propagation of Quantum Fields; The Different Approaches to Quantization; Outlook and Conclusions.
ERIC Educational Resources Information Center
Bøe, Maria Vetleseter; Henriksen, Ellen Karoline; Angell, Carl
2018-01-01
Calls for renewal of physics education include more varied learning activities and increased focus on qualitative understanding and history and philosophy of science (HPS) aspects. We have studied an innovative approach implementing such features in quantum physics in traditional upper secondary physics classrooms in Norway. Data consists of 11…
NASA Astrophysics Data System (ADS)
Berghofer, Philipp
2018-05-01
Ontic structural realism refers to the novel, exciting, and widely discussed basic idea that the structure of physical reality is genuinely relational. In its radical form, the doctrine claims that there are, in fact, no objects but only structure, i.e., relations. More moderate approaches state that objects have only relational but no intrinsic properties. In its most moderate and most tenable form, ontic structural realism assumes that at the most fundamental level of physical reality there are only relational properties. This means that the most fundamental objects only possess relational but no non-reducible intrinsic properties. The present paper will argue that our currently best physics refutes even this most moderate form of ontic structural realism. More precisely, I will claim that 1) according to quantum field theory, the most fundamental objects of matter are quantum fields and not particles, and show that 2) according to the Standard Model, quantum fields have intrinsic non-relational properties.
The Tie That Binds:. A Fundamental Unit of `Change' in Space and Time
NASA Astrophysics Data System (ADS)
Beichler, James E.
2013-09-01
Why, despite all efforts to the contrary, have attempts at unification based on the supposedly more fundamental quantum theory failed miserably? The truth is that the essential idea or concept of the quantum itself has never been fully understood. What is the quantum, or rather, what is its ultimate nature? Science may be able to work adequately with the quantum; in a sense science is quite articulate in the language of the quantum, i.e., its mathematical interpretation of the quantum mechanics, but science has no idea of the true physical nature of the quantum. Scientists and philosophers have wasted energy and efforts on irrelevant issues such as the debate over determinism and indeterminism instead of carefully analyzing the physical source of the quantum. Only with a true understanding of the physical nature of the quantum will the unification of the quantum and relativity ever become a reality.
ERIC Educational Resources Information Center
Velentzas, Athanasios; Halkia, Krystallia; Skordoulis, Constantine
2007-01-01
This work investigates the presence of Thought Experiments (TEs) which refer to the theory of relativity and to quantum mechanics in physics textbooks and in books popularizing physics theories. A further point of investigation is whether TEs--as presented in popular physics books--can be used as an introduction to familiarize secondary school…
Causal fermion systems as a candidate for a unified physical theory
NASA Astrophysics Data System (ADS)
Finster, Felix; Kleiner, Johannes
2015-07-01
The theory of causal fermion systems is an approach to describe fundamental physics. Giving quantum mechanics, general relativity and quantum field theory as limiting cases, it is a candidate for a unified physical theory. We here give a non-technical introduction.
Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics
ERIC Educational Resources Information Center
Marshman, Emily; Singh, Chandralekha
2015-01-01
Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that…
Quantum Approach to Informatics
NASA Astrophysics Data System (ADS)
Stenholm, Stig; Suominen, Kalle-Antti
2005-08-01
An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.
Quantum effects in the understanding of consciousness.
Hameroff, Stuart R; Craddock, Travis J A; Tuszynski, Jack A
2014-06-01
This paper presents a historical perspective on the development and application of quantum physics methodology beyond physics, especially in biology and in the area of consciousness studies. Quantum physics provides a conceptual framework for the structural aspects of biological systems and processes via quantum chemistry. In recent years individual biological phenomena such as photosynthesis and bird navigation have been experimentally and theoretically analyzed using quantum methods building conceptual foundations for quantum biology. Since consciousness is attributed to human (and possibly animal) mind, quantum underpinnings of cognitive processes are a logical extension. Several proposals, especially the Orch OR hypothesis, have been put forth in an effort to introduce a scientific basis to the theory of consciousness. At the center of these approaches are microtubules as the substrate on which conscious processes in terms of quantum coherence and entanglement can be built. Additionally, Quantum Metabolism, quantum processes in ion channels and quantum effects in sensory stimulation are discussed in this connection. We discuss the challenges and merits related to quantum consciousness approaches as well as their potential extensions.
The Oxford Questions on the foundations of quantum physics
Briggs, G. A. D.; Butterfield, J. N.; Zeilinger, A.
2013-01-01
The twentieth century saw two fundamental revolutions in physics—relativity and quantum. Daily use of these theories can numb the sense of wonder at their immense empirical success. Does their instrumental effectiveness stand on the rock of secure concepts or the sand of unresolved fundamentals? Does measuring a quantum system probe, or even create, reality or merely change belief? Must relativity and quantum theory just coexist or might we find a new theory which unifies the two? To bring such questions into sharper focus, we convened a conference on Quantum Physics and the Nature of Reality. Some issues remain as controversial as ever, but some are being nudged by theory's secret weapon of experiment. PMID:24062626
Machine learning with quantum relative entropy
NASA Astrophysics Data System (ADS)
Tsuda, Koji
2009-12-01
Density matrices are a central tool in quantum physics, but it is also used in machine learning. A positive definite matrix called kernel matrix is used to represent the similarities between examples. Positive definiteness assures that the examples are embedded in an Euclidean space. When a positive definite matrix is learned from data, one has to design an update rule that maintains the positive definiteness. Our update rule, called matrix exponentiated gradient update, is motivated by the quantum relative entropy. Notably, the relative entropy is an instance of Bregman divergences, which are asymmetric distance measures specifying theoretical properties of machine learning algorithms. Using the calculus commonly used in quantum physics, we prove an upperbound of the generalization error of online learning.
Quantum decoherence and interlevel relations
NASA Astrophysics Data System (ADS)
Crull, Elise M.
Quantum decoherence is a dynamical process whereby a system's phase relations become delocalized due to interaction and subsequent entanglement with its environment. This delocalization, or decoherence, forces the quantum system into a state that is apparently classical (or apparently an eigenstate) by prodigiously suppressing features that typically give rise to so-called quantum behavior. Thus it has been frequently proposed by physicists and philosophers alike that decoherence explains the dynamical transition from quantum behavior to classical behavior. Statements like this assume the existence of distinct realms, however, and the present thesis is an exploration of the metaphysical consequences of quantum decoherence motivated by the question of the quantum-to-classical transition and interlevel relations: if there are in-principle "classical" and "quantum" levels, what are the relations between them? And if there are no such levels, what follows? Importantly, the following philosophical investigations are carried out by intentionally leaving aside the measurement problem and concerns about particular interpretations of quantum mechanics. Good philosophical work, it is argued, can be done without adopting a specific interpretational framework and without recourse to the measurement problem. After introducing the physics of decoherence and exploring the four canonical models applied to system-environment interactions, it is argued that, ontologically speaking, there exist no levels. This claim---called the "nontological thesis"---exposes as ill-posed questions regarding the transition from the quantum regime to the classical regime and reveals the inappropriateness of interlevel relations (like reduction, supervenience and emergence) operating within metaphysical frameworks. The nontological thesis has further important consequences regarding intralevel relations: not only are there no meaningful ways to carve the world into levels, but there are no meaningful ways to carve the world into parts and wholes either. These conclusions, supported by quantum decoherence and the empirical success of its models, drastically alter the philosophical terrain---not just in physics or in the philosophy of physics, but in traditional metaphysics as well.
Designing quantum information processing via structural physical approximation.
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
Designing quantum information processing via structural physical approximation
NASA Astrophysics Data System (ADS)
Bae, Joonwoo
2017-10-01
In quantum information processing it may be possible to have efficient computation and secure communication beyond the limitations of classical systems. In a fundamental point of view, however, evolution of quantum systems by the laws of quantum mechanics is more restrictive than classical systems, identified to a specific form of dynamics, that is, unitary transformations and, consequently, positive and completely positive maps to subsystems. This also characterizes classes of disallowed transformations on quantum systems, among which positive but not completely maps are of particular interest as they characterize entangled states, a general resource in quantum information processing. Structural physical approximation offers a systematic way of approximating those non-physical maps, positive but not completely positive maps, with quantum channels. Since it has been proposed as a method of detecting entangled states, it has stimulated fundamental problems on classifications of positive maps and the structure of Hermitian operators and quantum states, as well as on quantum measurement such as quantum design in quantum information theory. It has developed efficient and feasible methods of directly detecting entangled states in practice, for which proof-of-principle experimental demonstrations have also been performed with photonic qubit states. Here, we present a comprehensive review on quantum information processing with structural physical approximations and the related progress. The review mainly focuses on properties of structural physical approximations and their applications toward practical information applications.
ERIC Educational Resources Information Center
Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Catherine W.; Frågåt, Thomas; Bøe, Maria Vetleseter
2014-01-01
In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for…
Superfluid helium quantum interference devices: physics and applications.
Sato, Y; Packard, R E
2012-01-01
We present an overview of recent developments related to superfluid helium quantum interference devices (SHeQUIDs). We discuss the physics of two reservoirs of superfluid helium coupled together and describe the quantum oscillations that result from varying the coupling strength. We explain the principles behind SHeQUIDs that can be built based on these oscillations and review some techniques and applications.
Entropic cohering power in quantum operations
NASA Astrophysics Data System (ADS)
Xi, Zhengjun; Hu, Ming-Liang; Li, Yongming; Fan, Heng
2018-02-01
Coherence is a basic feature of quantum systems and a common necessary condition for quantum correlations. It is also an important physical resource in quantum information processing. In this paper, using relative entropy, we consider a more general definition of the cohering power of quantum operations. First, we calculate the cohering power of unitary quantum operations and show that the amount of distributed coherence caused by non-unitary quantum operations cannot exceed the quantum-incoherent relative entropy between system of interest and its environment. We then find that the difference between the distributed coherence and the cohering power is larger than the quantum-incoherent relative entropy. As an application, we consider the distributed coherence caused by purification.
Reality, Contextuality, and Probability in Quantum Theory and Beyond
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
This chapter explores the relationships among reality, contextuality, and probability, especially in quantum theory and, brie y and by extension, in other fields where these concepts, in their quantum-like versions, may play key roles. The chapter contends, following Derrida's argument, that while no meaning or event could be determined apart from its context, no context ultimately permits saturation, that is, could ever be determined with certainty. Any such determination is ultimately provisional. However, because of its mathematical-experimental character, physics allows one, in classical physics and relativity, to disregard the role of the context of observation in describing the physical systems considered, and in quantum mechanics, where the context of observation cannot be so disregarded, to determine such a context sufficiently. While, however, classical physics or relativity and quantum mechanics can do so sufficiently for their disciplinary functioning and practice, they cannot do so entirely. Moreover, a given concept of this functioning, especially as concerns what is considered its proper functioning, still depends on a broader contextual field that defies saturation or guaranteed determination.
From classical to quantum mechanics: ``How to translate physical ideas into mathematical language''
NASA Astrophysics Data System (ADS)
Bergeron, H.
2001-09-01
Following previous works by E. Prugovečki [Physica A 91A, 202 (1978) and Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)] on common features of classical and quantum mechanics, we develop a unified mathematical framework for classical and quantum mechanics (based on L2-spaces over classical phase space), in order to investigate to what extent quantum mechanics can be obtained as a simple modification of classical mechanics (on both logical and analytical levels). To obtain this unified framework, we split quantum theory in two parts: (i) general quantum axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoints operators, and so on) and (ii) quantum mechanics proper that specifies the Hilbert space as L2(Rn); the Heisenberg rule [pi,qj]=-iℏδij with p=-iℏ∇, the free Hamiltonian H=-ℏ2Δ/2m and so on. We show that general quantum axiomatics (up to a supplementary "axiom of classicity") can be used as a nonstandard mathematical ground to formulate physical ideas and equations of ordinary classical statistical mechanics. So, the question of a "true quantization" with "ℏ" must be seen as an independent physical problem not directly related with quantum formalism. At this stage, we show that this nonstandard formulation of classical mechanics exhibits a new kind of operation that has no classical counterpart: this operation is related to the "quantization process," and we show why quantization physically depends on group theory (the Galilei group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows us to map classical mechanics into quantum mechanics, giving all operators of quantum dynamics and the Schrödinger equation. The great advantage of this point of view is that quantization is based on concrete physical arguments and not derived from some "pure algebraic rule" (we exhibit also some limit of the correspondence principle). Moreover spins for particles are naturally generated, including an approximation of their interaction with magnetic fields. We also recover by this approach the semi-classical formalism developed by E. Prugovečki [Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)].
Improving students' understanding of quantum mechanics
NASA Astrophysics Data System (ADS)
Zhu, Guangtian
2011-12-01
Learning physics is challenging at all levels. Students' difficulties in the introductory level physics courses have been widely studied and many instructional strategies have been developed to help students learn introductory physics. However, research shows that there is a large diversity in students' preparation and skills in the upper-level physics courses and it is necessary to provide scaffolding support to help students learn advanced physics. This thesis explores issues related to students' common difficulties in learning upper-level undergraduate quantum mechanics and how these difficulties can be reduced by research-based learning tutorials and peer instruction tools. We investigated students' difficulties in learning quantum mechanics by administering written tests and surveys to many classes and conducting individual interviews with a subset of students. Based on these investigations, we developed Quantum Interactive Learning Tutorials (QuILTs) and peer instruction tools to help students build a hierarchical knowledge structure of quantum mechanics through a guided approach. Preliminary assessments indicate that students' understanding of quantum mechanics is improved after using the research-based learning tools in the junior-senior level quantum mechanics courses. We also designed a standardized conceptual survey that can help instructors better probe students' understanding of quantum mechanics concepts in one spatial dimension. The validity and reliability of this quantum mechanics survey is discussed.
Physics Meets Philosophy at the Planck Scale
NASA Astrophysics Data System (ADS)
Callender, Craig; Huggett, Nick
2001-04-01
Preface; 1. Introduction Craig Callendar and Nick Huggett; Part I. Theories of Quantum Gravity and their Philosophical Dimensions: 2. Spacetime and the philosophical challenge of quantum gravity Jeremy Butterfield and Christopher Isham; 3. Naive quantum gravity Steven Weinstein; 4. Quantum spacetime: what do we know? Carlo Rovelli; Part II. Strings: 5. Reflections on the fate of spacetime Edward Witten; 6. A philosopher looks at string theory Robert Weingard; 7. Black holes, dumb holes, and entropy William G. Unruh; Part III. Topological Quantum Field Theory: 8. Higher-dimensional algebra and Planck scale physics John C. Baez; Part IV. Quantum Gravity and the Interpretation of General Relativity: 9. On general covariance and best matching Julian B. Barbour; 10. Pre-Socratic quantum gravity Gordon Belot and John Earman; 11. The origin of the spacetime metric: Bell's 'Lorentzian Pedagogy' and its significance in general relativity Harvey R. Brown and Oliver Pooley; Part IV. Quantum Gravity and the Interpretation of Quantum Mechanics: 12. Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity Sheldon Goldstein and Stefan Teufel; 13. On gravity's role in quantum state reduction Roger Penrose; 14. Why the quantum must yield to gravity Joy Christian.
(Proceedings) 18th Advanced ICFA Beam Dynamics Workshop on Quantum Aspects of Beam Physics (QABP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin
2002-10-25
The 18th Advanced ICFA Beam Dynamics Workshop on ''Quantum Aspects of Beam Physics'' was held from October 15 to 20, 2000, in Capri, Italy. This was the second workshop under the same title. The first one was held in Monterey, California, in January, 1998. Following the footstep of the first meeting, the second one in Capri was again a tremendous success, both scientifically and socially. About 70 colleagues from astrophysics, atomic physics, beam physics, condensed matter physics, particle physics, and general relativity gathered to update and further explore the topics covered in the Monterey workshop. Namely, the following topics weremore » actively discussed: (1) Quantum Fluctuations in Beam Dynamics; (2) Photon-Electron Interaction in Beam handling; (3) Physics of Condensed Beams; (4) Beam Phenomena under Strong Fields; (5) Quantum Methodologies in Beam Physics. In addition, there was a newly introduced subject on Astro-Beam Physics and Laboratory Astrophysics.« less
XXIV International Conference on Integrable Systems and Quantum symmetries (ISQS-24)
NASA Astrophysics Data System (ADS)
Burdík, Čestmír; Navrátil, Ondřej; Posta, Severin
2017-01-01
The XXIV International Conference on Integrable Systems and Quantum Symmetries (ISQS-24), organized by the Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University Prague and the Bogoliubov Laboratory of Theoretical Physics of the Joint Institute for Nuclear Research, belongs to the successful series of conferences held at the Czech Technical University which began in 1992 and is devoted to problems of mathematical physics related to the theory of integrable systems, quantum groups and quantum symmetries. During the last 5 years, each of the conferences gathered around 110 scientists from all over the world. 43 papers of plenary lectures and contributions presented at ISQS-24 are published in the present issue of Journal of Physics: Conference Series.
Mathematical methods of studying physical phenomena
NASA Astrophysics Data System (ADS)
Man'ko, Margarita A.
2013-03-01
In recent decades, substantial theoretical and experimental progress was achieved in understanding the quantum nature of physical phenomena that serves as the foundation of present and future quantum technologies. Quantum correlations like the entanglement of the states of composite systems, the phenomenon of quantum discord, which captures other aspects of quantum correlations, quantum contextuality and, connected with these phenomena, uncertainty relations for conjugate variables and entropies, like Shannon and Rényi entropies, and the inequalities for spin states, like Bell inequalities, reflect the recently understood quantum properties of micro and macro systems. The mathematical methods needed to describe all quantum phenomena mentioned above were also the subject of intense studies in the end of the last, and beginning of the new, century. In this section of CAMOP 'Mathematical Methods of Studying Physical Phenomena' new results and new trends in the rapidly developing domain of quantum (and classical) physics are presented. Among the particular topics under discussion there are some reviews on the problems of dynamical invariants and their relations with symmetries of the physical systems. In fact, this is a very old problem of both classical and quantum systems, e.g. the systems of parametric oscillators with time-dependent parameters, like Ermakov systems, which have specific constants of motion depending linearly or quadratically on the oscillator positions and momenta. Such dynamical invariants play an important role in studying the dynamical Casimir effect, the essence of the effect being the creation of photons from the vacuum in a cavity with moving boundaries due to the presence of purely quantum fluctuations of the electromagnetic field in the vacuum. It is remarkable that this effect was recently observed experimentally. The other new direction in developing the mathematical approach in physics is quantum tomography that provides a new vision of quantum states. In the tomographic picture of quantum mechanics, the states are identified with fair conditional probability distributions, which contain the same information on the states as the wave function or the density matrix. The mathematical methods of the tomographic approach are based on studying the star-product (associative product) quantization scheme. The tomographic star-product technique provides an additional understanding of the associative product, which is connected with the existence of specific pairs of operators called quantizers and dequantizers. These operators code information on the kernels of all the star-product schemes, including the traditional phase-space Weyl-Wigner-Moyal picture describing the quantum-system evolution. The new equation to find quantizers, if the kernel of the star product of functions is given, is presented in this CAMOP section. For studying classical systems, the mathematical methods developed in quantum mechanics can also be used. The case of paraxial-radiation beams propagating in waveguides is a known example of describing a purely classical phenomenon by means of quantum-like equations. Thus, some quantum phenomenon like the entanglement can be mimicked by the properties of classical beams, for example, Gaussian modes. The mathematical structures and relations to the symplectic symmetry group are analogous for both classical and quantum phenomena. Such analogies of the mathematical classical and quantum methods used in research on quantum-like communication channels provide new tools for constructing a theoretical basis of the new information-transmission technologies. The conventional quantum mechanics and its relation to classical mechanics contain mathematical recipes of the correspondence principle and quantization rules. Attempts to find rules for deriving the quantum-mechanical formalism starting from the classical field theory, taking into account the influence of classical fluctuations of the field, is considered in these papers. The methods to solve quantum equations and formulate the boundary conditions in the problems with singular potentials are connected with the mathematical problems of self-adjointness of the Hamiltonians. The progress and some new results in this direction are reflected in this CAMOP section. The Gaussian states of the photons play an important role in quantum optics. The multimode electromagnetic field and quantum correlations in the Gaussian states are considered in this section. The new results in the statistical properties of the laser radiation discussed here are based on applications of mathematical methods in this traditional domain of physics. It is worth stressing that the universality of the mathematical procedures permitted to consider the physical phenomena in the ocean is on the same footing as the phenomena in the microworld. In this CAMOP section, there are also papers devoted to traditional problems of solving the Schrödinger equation for interesting quantum systems. Recently obtained results related to different domains of theoretical physics are united by applying mathematical methods and tools, that provide new possibilities to better understand the theoretical foundations needed to develop new quantum technologies like quantum computing and quantum communications. The papers are arranged alphabetically by the name of the first author. We are grateful to all authors who accepted our invitation to contribute to this CAMOP section.
Physics Without Physics. The Power of Information-theoretical Principles
NASA Astrophysics Data System (ADS)
D'Ariano, Giacomo Mauro
2017-01-01
David Finkelstein was very fond of the new information-theoretic paradigm of physics advocated by John Archibald Wheeler and Richard Feynman. Only recently, however, the paradigm has concretely shown its full power, with the derivation of quantum theory (Chiribella et al., Phys. Rev. A 84:012311, 2011; D'Ariano et al., 2017) and of free quantum field theory (D'Ariano and Perinotti, Phys. Rev. A 90:062106, 2014; Bisio et al., Phys. Rev. A 88:032301, 2013; Bisio et al., Ann. Phys. 354:244, 2015; Bisio et al., Ann. Phys. 368:177, 2016) from informational principles. The paradigm has opened for the first time the possibility of avoiding physical primitives in the axioms of the physical theory, allowing a re-foundation of the whole physics over logically solid grounds. In addition to such methodological value, the new information-theoretic derivation of quantum field theory is particularly interesting for establishing a theoretical framework for quantum gravity, with the idea of obtaining gravity itself as emergent from the quantum information processing, as also suggested by the role played by information in the holographic principle (Susskind, J. Math. Phys. 36:6377, 1995; Bousso, Rev. Mod. Phys. 74:825, 2002). In this paper I review how free quantum field theory is derived without using mechanical primitives, including space-time, special relativity, Hamiltonians, and quantization rules. The theory is simply provided by the simplest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the three following simple principles: homogeneity, locality, and isotropy. The inherent discrete nature of the informational derivation leads to an extension of quantum field theory in terms of a quantum cellular automata and quantum walks. A simple heuristic argument sets the scale to the Planck one, and the currently observed regime where discreteness is not visible is the so-called "relativistic regime" of small wavevectors, which holds for all energies ever tested (and even much larger), where the usual free quantum field theory is perfectly recovered. In the present quantum discrete theory Einstein relativity principle can be restated without using space-time in terms of invariance of the eigenvalue equation of the automaton/walk under change of representations. Distortions of the Poincaré group emerge at the Planck scale, whereas special relativity is perfectly recovered in the relativistic regime. Discreteness, on the other hand, has some plus compared to the continuum theory: 1) it contains it as a special regime; 2) it leads to some additional features with GR flavor: the existence of an upper bound for the particle mass (with physical interpretation as the Planck mass), and a global De Sitter invariance; 3) it provides its own physical standards for space, time, and mass within a purely mathematical adimensional context. The paper ends with the future perspectives of this project, and with an Appendix containing biographic notes about my friendship with David Finkelstein, to whom this paper is dedicated.
CALL FOR PAPERS: Optics and squeeze transformations after Einstein
NASA Astrophysics Data System (ADS)
Kim, Young S.; Man'ko, Margarita A.; Planat, Michel
2005-01-01
Journal of Optics B: Quantum and Semiclassical Optics will publish a special issue in connection with the 9th International Conference on Squeezed States and Uncertainty Relations, to be held in Besançon, France, on 2-6 May 2005. In 2005, the physics community celebrates the 100th anniversary of the publication of Einstein’s theories of relativity and quantum physics. To celebrate these great contributions to physics, the conference will include sessions on Einstein’s influence on modern optics and the foundations of quantum mechanics. Conference participants, as well as other researchers working in the field, are invited to submit research papers to this special issue of the journal. The topics to be covered include: • Superposition principle • Squeezed states • Uncertainty relations • Quantum state generation and characterization • Phase space and group representations in quantum physics • Quantum transforms in signal analysis • Information theory and quantum computing • Quantum interference, decoherence and entanglement measure • Quantum chaos and quantum control • Bell inequalities • Nonstationary Casimir effect • Quantum-like and mesoscopic systems Manuscripts should be submitted by 1 August 2005 as the special issue is scheduled for publication in March 2006. All papers will be peer reviewed and the normal refereeing standards of Journal of Optics B: Quantum and Semiclassical Optics will be maintained. The Editorial Division of IOP Publishing at the P N Lebedev Physical Institute in Moscow will oversee editorial procedures in association with the IOP Publishing office in Bristol. There are no page charges for publication. Submissions should preferably be in either standard LaTeX form or Microsoft Word. Advice on publishing your work in the journal, including specific information on figures, tables and references, may be found at www.iop.org/journals/authors. Manuscripts should be submitted by e-mail to the Guest Editors at IOPP@sci.lebedev.ru quoting the reference 'Special Issue/ST'. Authors are strongly encouraged to submit their work as soon as possible. Any subsequent change of address should be notified to the publishing office. If you have any questions, please do not hesitate to contact Claire Bedrock, Publisher (claire.bedrock@iop.org) or Margarita A Man'ko, Guest Editor (mmanko@sci.lebedev.ru). For further information on the journal, please visit our Website at www.iop.org/journals/jopb.
CALL FOR PAPERS: Optics and squeeze transformations after Einstein
NASA Astrophysics Data System (ADS)
Kim, Young S.; Man'ko, Margarita A.; Planat, Michel
2004-12-01
Journal of Optics B: Quantum and Semiclassical Optics will publish a special issue in connection with the 9th International Conference on Squeezed States and Uncertainty Relations, to be held in Besançon, France, on 2-6 May 2005. In 2005, the physics community celebrates the 100th anniversary of the publication of Einstein’s theories of relativity and quantum physics. To celebrate these great contributions to physics, the conference will include sessions on Einstein’s influence on modern optics and the foundations of quantum mechanics. Conference participants, as well as other researchers working in the field, are invited to submit research papers to this special issue of the journal. The topics to be covered include: • Superposition principle • Squeezed states • Uncertainty relations • Quantum state generation and characterization • Phase space and group representations in quantum physics • Quantum transforms in signal analysis • Information theory and quantum computing • Quantum interference, decoherence and entanglement measure • Quantum chaos and quantum control • Bell inequalities • Nonstationary Casimir effect • Quantum-like and mesoscopic systems Manuscripts should be submitted by 1 August 2005 as the special issue is scheduled for publication in March 2006. All papers will be peer reviewed and the normal refereeing standards of Journal of Optics B: Quantum and Semiclassical Optics will be maintained. The Editorial Division of IOP Publishing at the P N Lebedev Physical Institute in Moscow will oversee editorial procedures in association with the IOP Publishing office in Bristol. There are no page charges for publication. Submissions should preferably be in either standard LaTeX form or Microsoft Word. Advice on publishing your work in the journal, including specific information on figures, tables and references, may be found at www.iop.org/journals/authors. Manuscripts should be submitted by e-mail to the Guest Editors at IOPP@sci.lebedev.ru quoting the reference 'Special Issue/ST'. Authors are strongly encouraged to submit their work as soon as possible. Any subsequent change of address should be notified to the publishing office. If you have any questions, please do not hesitate to contact Claire Bedrock, Publisher (claire.bedrock@iop.org) or Margarita A Man'ko, Guest Editor (mmanko@sci.lebedev.ru). For further information on the journal, please visit our Website at www.iop.org/journals/jopb.
NASA Astrophysics Data System (ADS)
Klink, William H.; Schweiger, Wolfgang
2018-03-01
This book covers relativistic quantum theory from the point of view of a particle theory, based on the irreducible representations of the Poincaré group, the group that expresses the symmetry of Einstein relativity. There are several ways of formulating such a theory; this book develops what is called relativistic point form quantum mechanics, which, unlike quantum field theory, deals with a fixed number of particles in a relativistically invariant way. A chapter is devoted to applications of point form quantum mechanics to nuclear physics.
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
NASA Astrophysics Data System (ADS)
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit QED. Another rapidly growing research field (although its origin can be traced to the beginning of the 1980s) is the quantum control of evolution at the microscopic level. These examples show that quantum non-stationary systems continue to be a living and very interesting part of quantum physics, uniting researchers from many different areas. Thus it is no mere chance that several special scientific meetings devoted to these topics have been organized recently. One was the international seminar 'Time-Dependent Phenomena in Quantum Mechanics' organized by Manfred Kleber and Tobias Kramer in 2007 at Blaubeuren, Germany. The proceedings of that event were published in 2008 as volume 99 of Journal of Physics: Conference Series. Another recent meeting was the International Workshop on Quantum Non-Stationary Systems, held on 19-23 October 2009 at the International Center for Condensed Matter Physics (ICCMP) in Brasilia, Brazil. It was organized and directed by Victor Dodonov (Institute of Physics, University of Brasilia, Brazil), Vladimir Man'ko (P N Lebedev Physical Institute, Moscow, Russia) and Salomon Mizrahi (Physics Department, Federal University of Sao Carlos, Brazil). This event was accompanied by a satellite workshop 'Quantum Dynamics in Optics and Matter', organized by Salomon Mizrahi and Victor Dodonov on 25-26 October 2009 at the Physics Department of the Federal University of Sao Carlos, Brazil. These two workshops, supported by the Brazilian federal agencies CAPES and CNPq and the local agencies FAP-DF and FAPESP, were attended by more than 120 participants from 16 countries. Almost 50 invited talks and 20 poster presentations covered a wide area of research in quantum mechanics, quantum optics and quantum information. This special issue of CAMOP/Physica Scripta contains contributions presented by some invited speakers and participants of the workshop in Brasilia. Although they do not cover all of the wide spectrum of problems related to quantum non-stationary systems, they nonetheless show some general trends. However, readers should remember that these comments represent the personal points of view of their authors. About a third of the comments are devoted to the evolution of quantum systems in the presence of dissipation or other sources of decoherence. This area, started by Landau in 1927, still contains many extremely interesting and unsolved problems. Here they are discussed in view of such different applications as the dynamics of quantum entanglement, cavity QED, optomechanics and the dynamical Casimir effect. Another group of comments deals with different (e.g. geometrical, tomographic, PT-symmetric) approaches to the dynamics of quantum systems, which have been developed in the past two decades. In particular, the problem of transition from quantum to classical description is considered and the inequalities generalizing the standard uncertainty relations are discussed in this connection. Three comments are devoted to the applications of nonclassical states, analytic representations and the algebraic techniques for resolving problems in quantum information and quantum statistical physics. The other contributions are related to different aspects of the dynamics of concrete physical systems, such as the wave-packet approach to the description of transport phenomena in mesoscopic systems, tunneling phenomena in low-dimensional semiconductor structures and resonance states of two-electron quantum dots. We thank all the authors and referees for their efforts in preparing this special issue. We hope that the comments in this collection will be useful for interested readers.
PREFACE: International Symposium "Nanoscience and Quantum Physics 2011" (nanoPHYS'11)
NASA Astrophysics Data System (ADS)
Saito, Susumu; Tanaka, Hidekazu; Nakamura, Takashi; Nakamura, Masaaki
2011-07-01
Quantum physics has developed modern views of nature for more than a century. In addition to this traditional role, quantum physics has acquired new significance in the 21st century as the field responsible for driving and supporting nanoscience research, which will have even greater importance in the future because nanoscience will be the academic foundation for new technologies. The Department of Physics, Tokyo Institute of Technology, are now conducting a "Nanoscience and Quantum Physics" project (Physics G-COE project) supported by the Global Center of Excellence Program of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) in order to promote research and education in these important academic fields. The International Symposium on Nanoscience and Quantum Physics, held in Tokyo, Japan, 26-28 January 2011 (nanoPHYS'11) was organized by the Physics G-COE project of the Tokyo Institute of Technology to provide an international forum for the open exchange of topical information and for stimulating discussion on novel concepts and future prospects of nanoscience and quantum physics. There were a total of 118 papers including 34 invited papers. This nanoPHYS'11 is the fourth symposium of this kind organized by the Tokyo Institute of Technology. Topics focused on in the symposium included: Category 1: Novel nanostructure (Nanowires, Nanotubes, Spin-related structure, etc) Category 2: Novel transport and electronic properties (Graphene, Topological insulators, Coherent control, etc) Category 3: Electronic and optical properties of nanostructure Category 4: Fundamental physics and new concept in quantum physics Category 5: Quantum Physics - Quantum information Category 6: Quantum Physics - Nuclear and Hadron Physics Category 7: Quantum Physics - Astrophysics, etc All the papers submitted to this issue have been reviewed under a stringent refereeing process, according to the normal rules of this Journal. The editors are grateful to all the authors, the referees, and all the individuals involved in the symposium organization, in particular, all the committee members and secretaries who helped to make this symposium so successful. The organizing committee would like to take this opportunity to thank the invited speakers, the session chairs, and all the attendees for their contribution to the symposium. Susumu Saito, Hidekazu Tanaka, Takashi Nakamura and Masaaki Nakamura, Editors Conference photograph
Another look through Heisenberg’s microscope
NASA Astrophysics Data System (ADS)
Boughn, Stephen; Reginatto, Marcel
2018-05-01
Heisenberg introduced his famous uncertainty relations in a seminal 1927 paper entitled The Physical Content of Quantum Kinematics and Mechanics. He motivated his arguments with a gedanken experiment, a gamma ray microscope to measure the position of a particle. A primary result was that, due to the quantum nature of light, there is an inherent uncertainty in the determinations of the particle’s position and momentum dictated by an indeterminacy relation, δ qδ p∼ h. Heisenberg offered this demonstration as ‘a direct physical interpretation of the [quantum mechanical] equation {{pq}}-{{qp}}=-{{i}}{\\hslash }’ but considered the indeterminacy relation to be much more than this. He also argued that it implies limitations on the very meanings of position and momentum and emphasised that these limitations are the source of the statistical character of quantum mechanics. In addition, Heisenberg hoped but was unable to demonstrate that the laws of quantum mechanics could be derived directly from the uncertainty relation. In this paper, we revisit Heisenberg’s microscope and argue that the Schrödinger equation for a free particle does indeed follow from the indeterminacy relation together with reasonable statistical assumptions.
Constituting objectivity: Transcendental perspectives on modern physics
NASA Astrophysics Data System (ADS)
Everett, Jonathan
2012-05-01
There is increasing interest in exploring Kantian approaches in the study of the history and philosophy of physics. The most well-known examples of this trend-Friedman's (2001), Ryckman's (2005) and DiSalle's (2006)-focus on Kantianism in the context of the development of the general theory of relativity. The edited collection Constituting Objectivity seeks to develop key Kantian insights-in the most part-in the context of later developments in physics: as well as discussing relativity the volume also provides Kantian interpretations of Bohr's development of quantum theory and continues to provide Kantian insight from later interpretations of quantum mechanics all the way through to considering noncommutative geometry and loop quantum gravity. The volume contains papers on a wide variety of subjects and offers an essential introduction to the breadth of Kantian trends in modern physics.
"Evaluations" of Observables Versus Measurements in Quantum Theory
NASA Astrophysics Data System (ADS)
Nisticò, Giuseppe; Sestito, Angela
2016-03-01
In Quantum Physics there are circumstances where the direct measurement of a given observable encounters difficulties; in some of these cases, however, its value can be "evaluated", i.e. it can be inferred by measuring another observable characterized by perfect correlation with the observable of interest. Though an evaluation is often interpreted as a measurement of the evaluated observable, we prove that the two concepts cannot be identified in Quantum Physics, because the identification yields contradictions. Then, we establish the conceptual status of evaluations in Quantum Theory and how they are related to measurements.
NASA Astrophysics Data System (ADS)
Roszak, K.; Cywiński, Ł.
2015-10-01
We study quantum teleportation via Bell-diagonal mixed states of two qubits in the context of the intrinsic properties of the quantum discord. We show that when the quantum-correlated state of the two qubits is used for quantum teleportation, the character of the teleportation efficiency changes substantially depending on the Bell-diagonal-state parameters, which can be seen when the worst-case-scenario or best-case-scenario fidelity is studied. Depending on the parameter range, one of two types of single-qubit states is hardest/easiest to teleport. The transition between these two parameter ranges coincides exactly with the transition between the range of classical correlation decay and quantum correlation decay characteristic for the evolution of the quantum discord. The correspondence provides a physical interpretation for the prominent feature of the decay of the quantum discord.
QCCM Center for Quantum Algorithms
2008-10-17
algorithms (e.g., quantum walks and adiabatic computing ), as well as theoretical advances relating algorithms to physical implementations (e.g...Park, NC 27709-2211 15. SUBJECT TERMS Quantum algorithms, quantum computing , fault-tolerant error correction Richard Cleve MITACS East Academic...0511200 Algebraic results on quantum automata A. Ambainis, M. Beaudry, M. Golovkins, A. Kikusts, M. Mercer, D. Thrien Theory of Computing Systems 39(2006
NASA Astrophysics Data System (ADS)
Brennan, Kevin F.
1999-02-01
Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.
Quantum information aspects of noncommutative quantum mechanics
NASA Astrophysics Data System (ADS)
Bertolami, Orfeu; Bernardini, Alex E.; Leal, Pedro
2018-01-01
Some fundamental aspects related with the construction of Robertson-Schrödinger-like uncertainty-principle inequalities are reported in order to provide an overall description of quantumness, separability and nonlocality of quantum systems in the noncommutative phase-space. Some consequences of the deformed noncommutative algebra are also considered in physical systems of interest.
NASA Astrophysics Data System (ADS)
Grössing, Gerhard
1987-05-01
It is shown on the basis of quantum cybernetics that one can obtain the usual predictions of quantum theory without ever referring to complex numbered “quantum mechanical amplitudes”. Instead, a very simple formula for transition and certain conditional probabilities is developed that involves real numbers only, thus relating intuitively understandable and in principle directly observable physical quantities.
Quantum Mechanics for Everyone: Can it be done with Technology?
NASA Astrophysics Data System (ADS)
Zollman, Dean
2004-10-01
The Visual Quantum Mechanics project has created a series of teaching/learning units to introduce quantum physics to a variety of audiences ranging from high school students who normally would not study these topics to undergraduate physics majors. Most recently we have been developing materials relating modern medical procedures and contemporary physics. In all of these materials interactive computer visualizations are coupled with hands-on experiences to create a series of activities which help students learn about some aspects of quantum mechanics. Our goal is to enable students to obtain a qualitative and, where appropriate, a quantitative understanding of contemporary ideas in physics. Included in the instructional materials are student-centered activities that address a variety of concepts in quantum physics and applications to devices such as the light emitting diode, the electron microscope, an inexpensive infrared detection card, and the Star Trek Transporter. Whenever possible the students begin the study of a new concept with an experiment using inexpensive equipment. They, then, build models of the physical phenomenon using interactive computer visualization and conclude by applying those models to new situations. For physics students these visualizations are usually followed by a mathematical approach. For others the visualizations provide a framework for understanding the concepts. Thus, Visual Quantum Mechanics allows a wide range of students to begin to understand the basic concepts, implications and interpretations of quantum physics. At present we are building on this foundation to create materials which show the connection between contemporary physics and modern medical diagnosis. Additional information is available at http://web.phys.ksu.edu/.
The Quantum Measurement Problem and Physical reality: A Computation Theoretic Perspective
NASA Astrophysics Data System (ADS)
Srikanth, R.
2006-11-01
Is the universe computable? If yes, is it computationally a polynomial place? In standard quantum mechanics, which permits infinite parallelism and the infinitely precise specification of states, a negative answer to both questions is not ruled out. On the other hand, empirical evidence suggests that NP-complete problems are intractable in the physical world. Likewise, computational problems known to be algorithmically uncomputable do not seem to be computable by any physical means. We suggest that this close correspondence between the efficiency and power of abstract algorithms on the one hand, and physical computers on the other, finds a natural explanation if the universe is assumed to be algorithmic; that is, that physical reality is the product of discrete sub-physical information processing equivalent to the actions of a probabilistic Turing machine. This assumption can be reconciled with the observed exponentiality of quantum systems at microscopic scales, and the consequent possibility of implementing Shor's quantum polynomial time algorithm at that scale, provided the degree of superposition is intrinsically, finitely upper-bounded. If this bound is associated with the quantum-classical divide (the Heisenberg cut), a natural resolution to the quantum measurement problem arises. From this viewpoint, macroscopic classicality is an evidence that the universe is in BPP, and both questions raised above receive affirmative answers. A recently proposed computational model of quantum measurement, which relates the Heisenberg cut to the discreteness of Hilbert space, is briefly discussed. A connection to quantum gravity is noted. Our results are compatible with the philosophy that mathematical truths are independent of the laws of physics.
The ambiguity of simplicity in quantum and classical simulation
NASA Astrophysics Data System (ADS)
Aghamohammadi, Cina; Mahoney, John R.; Crutchfield, James P.
2017-04-01
A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the ;elegance; of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.
Asymptotic Time Decay in Quantum Physics: a Selective Review and Some New Results
NASA Astrophysics Data System (ADS)
Marchetti, Domingos H. U.; Wreszinski, Walter F.
2013-05-01
Decay of various quantities (return or survival probability, correlation functions) in time are the basis of a multitude of important and interesting phenomena in quantum physics, ranging from spectral properties, resonances, return and approach to equilibrium, to dynamical stability properties and irreversibility and the "arrow of time" in [Asymptotic Time Decay in Quantum Physics (World Scientific, 2013)]. In this review, we study several types of decay — decay in the average, decay in the Lp-sense, and pointwise decay — of the Fourier-Stieltjes transform of a measure, usually identified with the spectral measure, which appear naturally in different mathematical and physical settings. In particular, decay in the Lp-sense is related both to pointwise decay and to decay in the average and, from a physical standpoint, relates to a rigorous form of the time-energy uncertainty relation. Both decay on the average and in the Lp-sense are related to spectral properties, in particular, absolute continuity of the spectral measure. The study of pointwise decay for singular continuous measures (Rajchman measures) provides a bridge between ergodic theory, number theory and analysis, including the method of stationary phase. The theory is illustrated by some new results in the theory of sparse models.
NASA Astrophysics Data System (ADS)
He, Juan; Xu, Shuai; Ye, Liu
2016-05-01
We investigate the quantum correlation via measurement-induced-nonlocality (MIN) for Dirac particles in Garfinkle-Horowitz-Strominger (GHS) dilation space-time. It is shown that the physical accessible quantum correlation decreases as the dilation parameter increases monotonically. Unlike the case of scalar fields, the physical accessible correlation is not zero when the Hawking temperature is infinite owing to the Pauli exclusion principle and the differences between Fermi-Dirac and Bose-Einstein statistics. Meanwhile, the boundary of MIN related to Bell-violation is derived, which indicates that MIN is more general than quantum nonlocality captured by the violation of Bell-inequality. As a by-product, a tenable quantitative relation about MIN redistribution is obtained whatever the dilation parameter is. In addition, it is worth emphasizing that the underlying reason why the physical accessible correlation and mutual information decrease is that they are redistributed to the physical inaccessible regions.
Mathematical sense-making in quantum mechanics: An initial peek
NASA Astrophysics Data System (ADS)
Dreyfus, Benjamin W.; Elby, Andrew; Gupta, Ayush; Sohr, Erin Ronayne
2017-12-01
Mathematical sense-making—looking for coherence between the structure of the mathematical formalism and causal or functional relations in the world—is a core component of physics expertise. Some physics education research studies have explored what mathematical sense-making looks like at the introductory physics level, while some historians and "science studies" have explored how expert physicists engage in it. What is largely missing, with a few exceptions, is theoretical and empirical work at the intermediate level—upper division physics students—especially when they are learning difficult new mathematical formalism. In this paper, we present analysis of a segment of video-recorded discussion between two students grappling with a quantum mechanics question to illustrate what mathematical sense-making can look like in quantum mechanics. We claim that mathematical sense-making is possible and productive for learning and problem solving in quantum mechanics. Mathematical sense-making in quantum mechanics is continuous in many ways with mathematical sense-making in introductory physics. However, in the context of quantum mechanics, the connections between formalism, intuitive conceptual schema, and the physical world become more compound (nested) and indirect. We illustrate these similarities and differences in part by proposing a new symbolic form, eigenvector eigenvalue, which is composed of multiple primitive symbolic forms.
Localization and Entanglement in Relativistic Quantum Physics
NASA Astrophysics Data System (ADS)
Yngvason, Jakob
These notes are a slightly expanded version of a lecture presented in February 2012 at the workshop "The Message of Quantum Science—Attempts Towards a Synthesis" held at the ZIF in Bielefeld. The participants were physicists with a wide range of different expertise and interests. The lecture was intended as a survey of a small selection of the insights into the structure of relativistic quantum physics that have accumulated through the efforts of many people over more than 50 years. (Including, among many others, R. Haag, H. Araki, D. Kastler, H.-J. Borchers, A. Wightman, R. Streater, B. Schroer, H. Reeh, S. Schlieder, S. Doplicher, J. Roberts, R. Jost, K. Hepp, J. Fröhlich, J. Glimm, A. Jaffe, J. Bisognano, E. Wichmann, D. Buchholz, K. Fredenhagen, R. Longo, D. Guido, R. Brunetti, J. Mund, S. Summers, R. Werner, H. Narnhofer, R. Verch, G. Lechner, ….) This contribution discusses some facts about relativistic quantum physics, most of which are quite familiar to practitioners of Algebraic Quantum Field Theory (AQFT) [Also known as Local Quantum Physics (Haag, Local quantum physics. Springer, Berlin, 1992).] but less well known outside this community. No claim of originality is made; the goal of this contribution is merely to present these facts in a simple and concise manner, focusing on the following issues: Explaining how quantum mechanics (QM) combined with (special) relativity, in particular an upper bound on the propagation velocity of effects, leads naturally to systems with an infinite number of degrees of freedom (relativistic quantum fields).
NASA Astrophysics Data System (ADS)
Laino, Luigi
2018-06-01
In the following paper, the author will try to test the meaning of the transcendental approach in respect of the inner changes implied by the idea of quantum gravity. He will firstly describe the basic methodological Kant's aim, viz. the grounding of a meta-science of physics as the a priori corpus of physical knowledge. After that, he will take into account the problematic physical and philosophical relationship between the theory of relativity and the quantum mechanics; in showing how the elementary ontological and epistemological assumptions of experience result to be changed within them, he will also show the further modifications occurred in the development of the loop quantum gravity. He will particularly focus on the tough problem of the relationship space-matter, in order to settle the decisive question about the possibility of keeping a transcendental approach in the light of quantum gravity. He will positively answer by recalling Cassirer's theory of the invariants of experience, although he will also add some problematic issues arising from the new physical context.
Bell's Inequality: Revolution in Quantum Physics or Just AN Inadequate Mathematical Model?
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
The main aim of this review is to stress the role of mathematical models in physics. The Bell inequality (BI) is often called the "most famous inequality of the 20th century." It is commonly accepted that its violation in corresponding experiments induced a revolution in quantum physics. Unlike "old quantum mechanics" (of Einstein, Schrodinger Bohr, Heisenberg, Pauli, Landau, Fock), "modern quantum mechanics" (of Bell, Aspect, Zeilinger, Shimony, Green-berger, Gisin, Mermin) takes seriously so called quantum non-locality. We will show that the conclusion that one has to give up the realism (i.e., a possibility to assign results of measurements to physical systems) or the locality (i.e., to assume action at a distance) is heavily based on one special mathematical model. This model was invented by A. N. Kolmogorov in 1933. One should pay serious attention to the role of mathematical models in physics. The problems of the realism and locality induced by Bell's argument can be solved by using non-Kolmogorovian probabilistic models. We compare this situation with non-Euclidean geometric models in relativity theory.
Quantum theory and Aquinas's doctrine on matter
NASA Astrophysics Data System (ADS)
Grove, Stanley F.
The Aristotelian conception of the material principle, deepened by Aquinas, is today widely misunderstood and largely alien to modern mathematical physics, despite the latter's preoccupation with matter and the spatiotemporal. The present dissertation seeks to develop a coherent understanding of matter in the Aristotelian-Thomistic sense, and to apply it to some key interpretive issues in quantum physics. I begin with a brief historical analysis of the Aristotelian, Newtonian ("classical"), and modern (quantum) approaches to physics, in order to highlight their commonality as well as their differences. Next, matter---especially prime matter---is investigated, in an Aristotelian-Thomistic perspective, under several rationes: as principle of individuation, as principle of extension or spatiality, as principle of corruptibility, as related to essence and existence, and as ground of intelligibility. An attempt is made to order these different rationes according to primordiality. A number of topics concerning the formal structure of hylomorphic being are then addressed: elementarity, virtual presence, the "dispositions of matter," entia vialia, natural minima, atomism, the nature of local motion, the plenum and instantaneous action at a distance---all with a view to their incorporation in a unified account of formed matter at or near the elementary level. Finally I take up several interpretive problems in quantum physics which were introduced early in the dissertation, and show how the material and formal principles expounded in the central chapters can render these problems intelligible. Thus I propose that wave and particle aspects in the quantum realm are related substantially rather than accidentally, and that characteristics of substantial (prime) matter and substantial form are therefore being evidenced directly at this level---in the reversibility of the wave-particle transition, in the spatial and temporal instantaneity of quantum events, and in the probabilism encountered in such phenomena. I offer related hypotheses for Heisenberg uncertainty and for quantum nonlocality. In closing, I address some strengths and weaknesses in others' work on quantum interpretation in the light of Aristotelian principles. Three Appendices explore further aspects of matter as a cosmic principle.
NASA Astrophysics Data System (ADS)
Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Cathrine W.; Frågåt, Thomas; Vetleseter Bøe, Maria
2014-11-01
In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for physics (final year of upper secondary education), which is unique in that it includes general relativity, entangled photons and the epistemological consequences of modern physics. These topics, with their high demands on students’ understanding of abstract and counter-intuitive concepts and principles, are challenging for teachers to teach and for students to learn. However, they also provide opportunities to present modern physics in innovative ways that students may find motivating and relevant both in terms of modern technological applications and in terms of contributions to students’ intellectual development. Beginning with these challenges and opportunities, we briefly present previous research and theoretical perspectives with relevance to student learning and motivation in modern physics. Based on this, we outline the ReleQuant teaching approach, where students use written and oral language and a collaborative exploration of animations and simulations as part of their learning process. Finally, we present some of the first experiences from classroom tests of the quantum physics modules.
Synthetic electromagnetic knot in a three-dimensional skyrmion
Lee, Wonjae; Gheorghe, Andrei H.; Tiurev, Konstantin; Ollikainen, Tuomas; Möttönen, Mikko; Hall, David S.
2018-01-01
Classical electromagnetism and quantum mechanics are both central to the modern understanding of the physical world and its ongoing technological development. Quantum simulations of electromagnetic forces have the potential to provide information about materials and systems that do not have conveniently solvable theoretical descriptions, such as those related to quantum Hall physics, or that have not been physically observed, such as magnetic monopoles. However, quantum simulations that simultaneously implement all of the principal features of classical electromagnetism have thus far proved elusive. We experimentally realize a simulation in which a charged quantum particle interacts with the knotted electromagnetic fields peculiar to a topological model of ball lightning. These phenomena are induced by precise spatiotemporal control of the spin field of an atomic Bose-Einstein condensate, simultaneously creating a Shankar skyrmion—a topological excitation that was theoretically predicted four decades ago but never before observed experimentally. Our results reveal the versatile capabilities of synthetic electromagnetism and provide the first experimental images of topological three-dimensional skyrmions in a quantum system. PMID:29511735
Minimal Length Scale Scenarios for Quantum Gravity.
Hossenfelder, Sabine
2013-01-01
We review the question of whether the fundamental laws of nature limit our ability to probe arbitrarily short distances. First, we examine what insights can be gained from thought experiments for probes of shortest distances, and summarize what can be learned from different approaches to a theory of quantum gravity. Then we discuss some models that have been developed to implement a minimal length scale in quantum mechanics and quantum field theory. These models have entered the literature as the generalized uncertainty principle or the modified dispersion relation, and have allowed the study of the effects of a minimal length scale in quantum mechanics, quantum electrodynamics, thermodynamics, black-hole physics and cosmology. Finally, we touch upon the question of ways to circumvent the manifestation of a minimal length scale in short-distance physics.
Insights into teaching quantum mechanics in secondary and lower undergraduate education
NASA Astrophysics Data System (ADS)
Krijtenburg-Lewerissa, K.; Pol, H. J.; Brinkman, A.; van Joolingen, W. R.
2017-06-01
This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences between the conceptual nature of quantum mechanics and classical physics, research on misconceptions, testing, and teaching strategies for introductory quantum mechanics is needed. For this review, 74 articles were selected and analyzed for the misconceptions, research tools, teaching strategies, and multimedia applications investigated. Outcomes were categorized according to their contribution to the various subtopics of quantum mechanics. Analysis shows that students have difficulty relating quantum physics to physical reality. It also shows that the teaching of complex quantum behavior, such as time dependence, superposition, and the measurement problem, has barely been investigated for the secondary and lower undergraduate level. At the secondary school level, this article shows a need to investigate student difficulties concerning wave functions and potential wells. Investigation of research tools shows the necessity for the development of assessment tools for secondary and lower undergraduate education, which cover all major topics and are suitable for statistical analysis. Furthermore, this article shows the existence of very diverse ideas concerning teaching strategies for quantum mechanics and a lack of research into which strategies promote understanding. This article underlines the need for more empirical research into student difficulties, teaching strategies, activities, and research tools intended for a conceptual approach for quantum mechanics.
Quantization and Quantum-Like Phenomena: A Number Amplitude Approach
NASA Astrophysics Data System (ADS)
Robinson, T. R.; Haven, E.
2015-12-01
Historically, quantization has meant turning the dynamical variables of classical mechanics that are represented by numbers into their corresponding operators. Thus the relationships between classical variables determine the relationships between the corresponding quantum mechanical operators. Here, we take a radically different approach to this conventional quantization procedure. Our approach does not rely on any relations based on classical Hamiltonian or Lagrangian mechanics nor on any canonical quantization relations, nor even on any preconceptions of particle trajectories in space and time. Instead we examine the symmetry properties of certain Hermitian operators with respect to phase changes. This introduces harmonic operators that can be identified with a variety of cyclic systems, from clocks to quantum fields. These operators are shown to have the characteristics of creation and annihilation operators that constitute the primitive fields of quantum field theory. Such an approach not only allows us to recover the Hamiltonian equations of classical mechanics and the Schrödinger wave equation from the fundamental quantization relations, but also, by freeing the quantum formalism from any physical connotation, makes it more directly applicable to non-physical, so-called quantum-like systems. Over the past decade or so, there has been a rapid growth of interest in such applications. These include, the use of the Schrödinger equation in finance, second quantization and the number operator in social interactions, population dynamics and financial trading, and quantum probability models in cognitive processes and decision-making. In this paper we try to look beyond physical analogies to provide a foundational underpinning of such applications.
Rovelli, Carlo
2008-01-01
The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.
Revealing missing charges with generalised quantum fluctuation relations.
Mur-Petit, J; Relaño, A; Molina, R A; Jaksch, D
2018-05-22
The non-equilibrium dynamics of quantum many-body systems is one of the most fascinating problems in physics. Open questions range from how they relax to equilibrium to how to extract useful work from them. A critical point lies in assessing whether a system has conserved quantities (or 'charges'), as these can drastically influence its dynamics. Here we propose a general protocol to reveal the existence of charges based on a set of exact relations between out-of-equilibrium fluctuations and equilibrium properties of a quantum system. We apply these generalised quantum fluctuation relations to a driven quantum simulator, demonstrating their relevance to obtain unbiased temperature estimates from non-equilibrium measurements. Our findings will help guide research on the interplay of quantum and thermal fluctuations in quantum simulation, in studying the transition from integrability to chaos and in the design of new quantum devices.
The quantum Hall effects: Philosophical approach
NASA Astrophysics Data System (ADS)
Lederer, P.
2015-05-01
The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.
Generalized uncertainty principle and quantum gravity phenomenology
NASA Astrophysics Data System (ADS)
Bosso, Pasquale
The fundamental physical description of Nature is based on two mutually incompatible theories: Quantum Mechanics and General Relativity. Their unification in a theory of Quantum Gravity (QG) remains one of the main challenges of theoretical physics. Quantum Gravity Phenomenology (QGP) studies QG effects in low-energy systems. The basis of one such phenomenological model is the Generalized Uncertainty Principle (GUP), which is a modified Heisenberg uncertainty relation and predicts a deformed canonical commutator. In this thesis, we compute Planck-scale corrections to angular momentum eigenvalues, the hydrogen atom spectrum, the Stern-Gerlach experiment, and the Clebsch-Gordan coefficients. We then rigorously analyze the GUP-perturbed harmonic oscillator and study new coherent and squeezed states. Furthermore, we introduce a scheme for increasing the sensitivity of optomechanical experiments for testing QG effects. Finally, we suggest future projects that may potentially test QG effects in the laboratory.
Advanced Concepts in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George
2014-11-01
Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.
Quantum Optical Implementations of Quantum Computing and Quantum Informatics Protocols
2007-11-20
4, 2005. ) 14. M. 0. Scully, "The EPR Paradox Revisted", AMO Physics Seminar, TAMU Jan. 18, 2005. 15. M. S. Zubairy, "Quantum computing: Cavity QED...the EPR dispersion relation and the average photon number. We have shown that atomic coherence is the key to the development of such a laser. In...PRISM-TAMU Symposium on Quantum Material Science, Princeton University, February 21-22, 2005. ) 21. M. 0. Scully, "From EPR to quantum eraser: The Role
Scale relativity: from quantum mechanics to chaotic dynamics.
NASA Astrophysics Data System (ADS)
Nottale, L.
Scale relativity is a new approach to the problem of the origin of fundamental scales and of scaling laws in physics, which consists in generalizing Einstein's principle of relativity to the case of scale transformations of resolutions. We recall here how it leads one to the concept of fractal space-time, and to introduce a new complex time derivative operator which allows to recover the Schrödinger equation, then to generalize it. In high energy quantum physics, it leads to the introduction of a Lorentzian renormalization group, in which the Planck length is reinterpreted as a lowest, unpassable scale, invariant under dilatations. These methods are successively applied to two problems: in quantum mechanics, that of the mass spectrum of elementary particles; in chaotic dynamics, that of the distribution of planets in the Solar System.
Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors
NASA Astrophysics Data System (ADS)
Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.
2016-12-01
The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.
Physics in the Twentieth Century
ERIC Educational Resources Information Center
Weisskopf, Victor F.
1970-01-01
Provides a review of the great discoveries, theoretical concepts and development of physics in the 20th century. The growth and significance of diverse fields such as quantum theory, relativity theory, atomic physics, molecular physics, the physics of the solid state, nuclear physics, astrophysics, plasma physics, and particle physics are…
Einstein 1905-1955: His Approach to Physics
NASA Astrophysics Data System (ADS)
Damour, Thibault
We review Einstein's epistemological conceptions, and indicate their philosophical roots. The particular importance of the ideas of Hume, Kant, Mach, and Poincaré is highlighted. The specific characteristics of Einstein's approach to physics are underlined. Lastly, we consider the practical application of Einstein's methodological principles to the two theories of relativity, and to quantum theory. We emphasize a Kantian approach to quantum theory.
NASA Astrophysics Data System (ADS)
Di Stefano, Omar; Stassi, Roberto; Garziano, Luigi; Frisk Kockum, Anton; Savasta, Salvatore; Nori, Franco
2017-05-01
In quantum field theory, bare particles are dressed by a cloud of virtual particles to form physical particles. The virtual particles affect properties such as the mass and charge of the physical particles, and it is only these modified properties that can be measured in experiments, not the properties of the bare particles. The influence of virtual particles is prominent in the ultrastrong-coupling regime of cavity quantum electrodynamics (QED), which has recently been realised in several condensed-matter systems. In some of these systems, the effective interaction between atom-like transitions and the cavity photons can be switched on or off by external control pulses. This offers unprecedented possibilities for exploring quantum vacuum fluctuations and the relation between physical and bare particles. We consider a single three-level quantum system coupled to an optical resonator. Here we show that, by applying external electromagnetic pulses of suitable amplitude and frequency, each virtual photon dressing a physical excitation in cavity-QED systems can be converted into a physical observable photon, and back again. In this way, the hidden relationship between the bare and the physical excitations can be unravelled and becomes experimentally testable. The conversion between virtual and physical photons can be clearly pictured using Feynman diagrams with cut loops.
Biological Physics major as a means to stimulate an undergraduate physics program
NASA Astrophysics Data System (ADS)
Jaeger, Herbert; Eid, Khalid; Yarrison-Rice, Jan
2013-03-01
In an effort to stress the cross-disciplinary nature of modern physics we added a Biological Physics major. Drawing from coursework in physics, biology, chemistry, mathematics, and related disciplines, it combines a broad curriculum with physical and mathematical rigor in preparation for careers in biophysics, medical physics, and biomedical engineering. Biological Physics offers a new path of studies to a large pool of life science students. We hope to grow our physics majors from 70-80 to more than 100 students and boost our graduation rate from the mid-teens to the mid-twenties. The new major brought about a revision of our sophomore curriculum to make room for modern topics without sidelining fundamentals. As a result, we split our 1-semester long Contemporary Physics course (4 cr hrs) into a year-long sequence Contemporary Physics Foundations and Contemporary Physics Frontiers (both 3 cr hrs). Foundations starts with relativity, then focuses on 4 quantum mechanics topics: wells, spin 1/2, oscillators, and hydrogen. Throughout the course applications are woven in whenever the opportunity arises, e.g. magnetism and NMR with spin 1/2. The following semester Frontiers explores scientific principles and technological advances that make quantum science and resulting technologies different from the large scale. Frontiers covers enabling techniques from atomic, molecular, condensed matter, and particle physics, as well as advances in nanotechnology, quantum optics, and biophysics.
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.
On the Reasonable and Unreasonable Effectiveness of Mathematics in Classical and Quantum Physics
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2011-03-01
The point of departure for this article is Werner Heisenberg's remark, made in 1929: "It is not surprising that our language [or conceptuality] should be incapable of describing processes occurring within atoms, for … it was invented to describe the experiences of daily life, and these consist only of processes involving exceedingly large numbers of atoms. … Fortunately, mathematics is not subject to this limitation, and it has been possible to invent a mathematical scheme—the quantum theory [quantum mechanics]—which seems entirely adequate for the treatment of atomic processes." The cost of this discovery, at least in Heisenberg's and related interpretations of quantum mechanics (such as that of Niels Bohr), is that, in contrast to classical mechanics, the mathematical scheme in question no longer offers a description, even an idealized one, of quantum objects and processes. This scheme only enables predictions, in general, probabilistic in character, of the outcomes of quantum experiments. As a result, a new type of the relationships between mathematics and physics is established, which, in the language of Eugene Wigner adopted in my title, indeed makes the effectiveness of mathematics unreasonable in quantum but, as I shall explain, not in classical physics. The article discusses these new relationships between mathematics and physics in quantum theory and their implications for theoretical physics—past, present, and future.
Consistent resolution of some relativistic quantum paradoxes
NASA Astrophysics Data System (ADS)
Griffiths, Robert B.
2002-12-01
A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics.
RESEARCH AREA 7.1: Exploring the Systematics of Controlling Quantum Phenomena
2016-10-05
the bottom to the top of the landscape. Computational analyses for simple model quantum systems are performed to ascertain the relative abundance of...SECURITY CLASSIFICATION OF: This research is concerned with the theoretical and experimental control quantum dynamics phenomena. Advances include new...algorithms to accelerate quantum control as well as provide physical insights into the controlled dynamics. The latter research includes the
Optimal Correlations in Many-Body Quantum Systems
NASA Astrophysics Data System (ADS)
Amico, L.; Rossini, D.; Hamma, A.; Korepin, V. E.
2012-06-01
Information and correlations in a quantum system are closely related through the process of measurement. We explore such relation in a many-body quantum setting, effectively bridging between quantum metrology and condensed matter physics. To this aim we adopt the information-theory view of correlations and study the amount of correlations after certain classes of positive-operator-valued measurements are locally performed. As many-body systems, we consider a one-dimensional array of interacting two-level systems (a spin chain) at zero temperature, where quantum effects are most pronounced. We demonstrate how the optimal strategy to extract the correlations depends on the quantum phase through a subtle interplay between local interactions and coherence.
Design and Validation of the Quantum Mechanics Conceptual Survey
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…
Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket
NASA Astrophysics Data System (ADS)
Gover, Avraham; Pan, Yiming
2018-06-01
In the foundation of quantum mechanics, the spatial dimensions of electron wavepacket are understood only in terms of an expectation value - the probability distribution of the particle location. One can still inquire how the quantum electron wavepacket size affects a physical process. Here we address the fundamental physics problem of particle-wave duality and the measurability of a free electron quantum wavepacket. Our analysis of stimulated radiative interaction of an electron wavepacket, accompanied by numerical computations, reveals two limits. In the quantum regime of long wavepacket size relative to radiation wavelength, one obtains only quantum-recoil multiphoton sidebands in the electron energy spectrum. In the opposite regime, the wavepacket interaction approaches the limit of classical point-particle acceleration. The wavepacket features can be revealed in experiments carried out in the intermediate regime of wavepacket size commensurate with the radiation wavelength.
Edge physics of the quantum spin Hall insulator from a quantum dot excited by optical absorption.
Vasseur, Romain; Moore, Joel E
2014-04-11
The gapless edge modes of the quantum spin Hall insulator form a helical liquid in which the direction of motion along the edge is determined by the spin orientation of the electrons. In order to probe the Luttinger liquid physics of these edge states and their interaction with a magnetic (Kondo) impurity, we consider a setup where the helical liquid is tunnel coupled to a semiconductor quantum dot that is excited by optical absorption, thereby inducing an effective quantum quench of the tunneling. At low energy, the absorption spectrum is dominated by a power-law singularity. The corresponding exponent is directly related to the interaction strength (Luttinger parameter) and can be computed exactly using boundary conformal field theory thanks to the unique nature of the quantum spin Hall edge.
Experimental quantum simulations of many-body physics with trapped ions.
Schneider, Ch; Porras, Diego; Schaetz, Tobias
2012-02-01
Direct experimental access to some of the most intriguing quantum phenomena is not granted due to the lack of precise control of the relevant parameters in their naturally intricate environment. Their simulation on conventional computers is impossible, since quantum behaviour arising with superposition states or entanglement is not efficiently translatable into the classical language. However, one could gain deeper insight into complex quantum dynamics by experimentally simulating the quantum behaviour of interest in another quantum system, where the relevant parameters and interactions can be controlled and robust effects detected sufficiently well. Systems of trapped ions provide unique control of both the internal (electronic) and external (motional) degrees of freedom. The mutual Coulomb interaction between the ions allows for large interaction strengths at comparatively large mutual ion distances enabling individual control and readout. Systems of trapped ions therefore exhibit a prominent system in several physical disciplines, for example, quantum information processing or metrology. Here, we will give an overview of different trapping techniques of ions as well as implementations for coherent manipulation of their quantum states and discuss the related theoretical basics. We then report on the experimental and theoretical progress in simulating quantum many-body physics with trapped ions and present current approaches for scaling up to more ions and more-dimensional systems.
Quantum speed limits: from Heisenberg’s uncertainty principle to optimal quantum control
NASA Astrophysics Data System (ADS)
Deffner, Sebastian; Campbell, Steve
2017-11-01
One of the most widely known building blocks of modern physics is Heisenberg’s indeterminacy principle. Among the different statements of this fundamental property of the full quantum mechanical nature of physical reality, the uncertainty relation for energy and time has a special place. Its interpretation and its consequences have inspired continued research efforts for almost a century. In its modern formulation, the uncertainty relation is understood as setting a fundamental bound on how fast any quantum system can evolve. In this topical review we describe important milestones, such as the Mandelstam-Tamm and the Margolus-Levitin bounds on the quantum speed limit, and summarise recent applications in a variety of current research fields—including quantum information theory, quantum computing, and quantum thermodynamics amongst several others. To bring order and to provide an access point into the many different notions and concepts, we have grouped the various approaches into the minimal time approach and the geometric approach, where the former relies on quantum control theory, and the latter arises from measuring the distinguishability of quantum states. Due to the volume of the literature, this topical review can only present a snapshot of the current state-of-the-art and can never be fully comprehensive. Therefore, we highlight but a few works hoping that our selection can serve as a representative starting point for the interested reader.
Quantum Physics for Beginners.
ERIC Educational Resources Information Center
Strand, J.
1981-01-01
Suggests a new approach for teaching secondary school quantum physics. Reviews traditional approaches and presents some characteristics of the three-part "Quantum Physics for Beginners" project, including: quantum physics, quantum mechanics, and a short historical survey. (SK)
Observables and dispersion relations in κ-Minkowski spacetime
NASA Astrophysics Data System (ADS)
Aschieri, Paolo; Borowiec, Andrzej; Pachoł, Anna
2017-10-01
We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommutative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of κ-Minkowski spacetime. The corresponding quantum Poincaré-Weyl Lie algebra of in-finitesimal translations, rotations and dilatations is obtained. The d'Alembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.
On the structure of quantum L∞ algebras
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Fuchs, Michael; Traube, Matthias
2017-10-01
It is believed that any classical gauge symmetry gives rise to an L∞ algebra. Based on the recently realized relation between classical W algebras and L∞ algebras, we analyze how this generalizes to the quantum case. Guided by the existence of quantum W algebras, we provide a physically well motivated definition of quantum L∞ algebras describing the consistency of global symmetries in quantum field theories. In this case we are restricted to only two non-trivial graded vector spaces X 0 and X -1 containing the symmetry variations and the symmetry generators. This quantum L∞ algebra structure is explicitly exemplified for the quantum W_3 algebra. The natural quantum product between fields is the normal ordered one so that, due to contractions between quantum fields, the higher L∞ relations receive off-diagonal quantum corrections. Curiously, these are not present in the loop L∞ algebra of closed string field theory.
Measurement and Ontology: What Kind of Evidence Can We Have for Quantum Fields?
NASA Astrophysics Data System (ADS)
Falkenburg, Brigitte
In the following, I deal with the ontology of quantum field theory (QFT) from a Kantian point of view, in terms of parts of empirical reality and their relations. In contradistinction to a formal ontology of QFT that is based primarily on the formal structure of the theory, I focus on the ways in which quantum fields can be measured, and on the structural features of empirical reality to which these measurements give rise. To approach the ontology of quantum fields in terms of measurement results in two paradoxes. First, ontology is about the structure of independent entities which belong to the furniture of the world, but measurements rely on interaction. Second, experimental evidence for quantum field theories is mainly based on particle tracks and other local phenomena. Thus, what kind of evidence can we have for the field structure of quantum fields? My paper attempts to unravel these paradoxes in the following steps. First, I give a rough sketch of the appearances of particle physics, the kinds of experimental evidence which count as tests of quantum electrodynamcs (QED) and the standard model of particle physics (1). In an intermezzo on Kant's view of scientific experience, I explain in which terms we might conceive of empirical reality beyond the claims of strict empiricism (2). Finally, I apply these ideas to the appearances of particle physics and suggest that they commit us to a relational ontology of QFT (3).
Experimental simulation of the Unruh effect on an NMR quantum simulator
NASA Astrophysics Data System (ADS)
Jin, FangZhou; Chen, HongWei; Rong, Xing; Zhou, Hui; Shi, MingJun; Zhang, Qi; Ju, ChenYong; Cai, YiFu; Luo, ShunLong; Peng, XinHua; Du, JiangFeng
2016-03-01
The Unruh effect is one of the most fundamental manifestations of the fact that the particle content of a field theory is observer dependent. However, there has been so far no experimental verification of this effect, as the associated temperatures lie far below any observable threshold. Recently, physical phenomena, which are of great experimental challenge, have been investigated by quantum simulations in various fields. Here we perform a proof-of-principle simulation of the evolution of fermionic modes under the Unruh effect with a nuclear magnetic resonance (NMR) quantum simulator. By the quantum simulator, we experimentally demonstrate the behavior of Unruh temperature with acceleration, and we further investigate the quantum correlations quantified by quantum discord between two fermionic modes as seen by two relatively accelerated observers. It is shown that the quantum correlations can be created by the Unruh effect from the classically correlated states. Our work may provide a promising way to explore the quantum physics of accelerated systems.
The Problem of Representation and Experience in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Ronde, Christian De
2014-03-01
In this paper we discuss the problem of representation and experience in quantum mechanics. We analyze the importance of metaphysics in physical thought and its relation to empiricism and analytic philosophy. We argue against both instrumentalism and scientific realism and claim that both perspectives tend to bypass the problem of representation and justify a "common sense" type experience. Finally, we present our expressionist conception of physics.
Quantum critical dynamics for a prototype class of insulating antiferromagnets
NASA Astrophysics Data System (ADS)
Wu, Jianda; Yang, Wang; Wu, Congjun; Si, Qimiao
2018-06-01
Quantum criticality is a fundamental organizing principle for studying strongly correlated systems. Nevertheless, understanding quantum critical dynamics at nonzero temperatures is a major challenge of condensed-matter physics due to the intricate interplay between quantum and thermal fluctuations. The recent experiments with the quantum spin dimer material TlCuCl3 provide an unprecedented opportunity to test the theories of quantum criticality. We investigate the nonzero-temperature quantum critical spin dynamics by employing an effective O (N ) field theory. The on-shell mass and the damping rate of quantum critical spin excitations as functions of temperature are calculated based on the renormalized coupling strength and are in excellent agreement with experiment observations. Their T lnT dependence is predicted to be dominant at very low temperatures, which will be tested in future experiments. Our work provides confidence that quantum criticality as a theoretical framework, which is being considered in so many different contexts of condensed-matter physics and beyond, is indeed grounded in materials and experiments accurately. It is also expected to motivate further experimental investigations on the applicability of the field theory to related quantum critical systems.
A Algebraic Approach to the Quantization of Constrained Systems: Finite Dimensional Examples.
NASA Astrophysics Data System (ADS)
Tate, Ranjeet Shekhar
1992-01-01
General relativity has two features in particular, which make it difficult to apply to it existing schemes for the quantization of constrained systems. First, there is no background structure in the theory, which could be used, e.g., to regularize constraint operators, to identify a "time" or to define an inner product on physical states. Second, in the Ashtekar formulation of general relativity, which is a promising avenue to quantum gravity, the natural variables for quantization are not canonical; and, classically, there are algebraic identities between them. Existing schemes are usually not concerned with such identities. Thus, from the point of view of canonical quantum gravity, it has become imperative to find a framework for quantization which provides a general prescription to find the physical inner product, and is flexible enough to accommodate non -canonical variables. In this dissertation I present an algebraic formulation of the Dirac approach to the quantization of constrained systems. The Dirac quantization program is augmented by a general principle to find the inner product on physical states. Essentially, the Hermiticity conditions on physical operators determine this inner product. I also clarify the role in quantum theory of possible algebraic identities between the elementary variables. I use this approach to quantize various finite dimensional systems. Some of these models test the new aspects of the algebraic framework. Others bear qualitative similarities to general relativity, and may give some insight into the pitfalls lurking in quantum gravity. The previous quantizations of one such model had many surprising features. When this model is quantized using the algebraic program, there is no longer any unexpected behaviour. I also construct the complete quantum theory for a previously unsolved relativistic cosmology. All these models indicate that the algebraic formulation provides powerful new tools for quantization. In (spatially compact) general relativity, the Hamiltonian is constrained to vanish. I present various approaches one can take to obtain an interpretation of the quantum theory of such "dynamically constrained" systems. I apply some of these ideas to the Bianchi I cosmology, and analyze the issue of the initial singularity in quantum theory.
Physics Literacy for All Students
NASA Astrophysics Data System (ADS)
Hobson, Art
2010-03-01
Physics teachers must broaden their focus from physics for scientists to physics for all. The reason, as the American Association for the Advancement of Science puts it, is: ``Without a scientifically literate population, the outlook for a better world is not promising.'' Physics for all (including the first course for scientists) should be conceptual, not technical. It should describe the universe as we understand it today, including special and general relativity, quantum physics, modern cosmology, the standard model, and quantum fields. Many science writers have shown this is possible. It should include physics-related social topics such as global warming and nuclear weapons, because citizens need to vote on these issues. Above all, it should emphasize the scientific process and the difference between science and nonsense. Science is based not on beliefs but rather on evidence and reason. We should constantly ask ``How do we know?'' and ``What is the evidence?''
Elementary Excitations in Quantum Liquids.
ERIC Educational Resources Information Center
Pines, David
1981-01-01
Discusses elementary excitations and their role in condensed matter physics, focusing on quantum plasma, helium liquids, and superconductors. Considers research primarily conducted in the 1950s and concludes with a brief survey of some closely related further developments. (Author/JN)
Quantum gambling using mesoscopic ring qubits
NASA Astrophysics Data System (ADS)
Pakuła, Ireneusz
2007-07-01
Quantum Game Theory provides us with new tools for practising games and some other risk related enterprices like, for example, gambling. The two party gambling protocol presented by Goldenberg {\\it et al} is one of the simplest yet still hard to implement applications of Quantum Game Theory. We propose potential physical realisation of the quantum gambling protocol with use of three mesoscopic ring qubits. We point out problems in implementation of such game.
The case for artificial black holes.
Leonhardt, Ulf; Philbin, Thomas G
2008-08-28
The event horizon is predicted to generate particles from the quantum vacuum, an effect that bridges three areas of physics--general relativity, quantum mechanics and thermodynamics. The quantum radiation of real black holes is too feeble to be detectable, but black-hole analogues may probe several aspects of quantum black holes. In this paper, we explain in simple terms some of the motivations behind the study of artificial black holes.
On the emergence of the structure of physics
NASA Astrophysics Data System (ADS)
Majid, S.
2018-04-01
We consider Hilbert's problem of the axioms of physics at a qualitative or conceptual level. This is more pressing than ever as we seek to understand how both general relativity and quantum theory could emerge from some deeper theory of quantum gravity, and in this regard I have previously proposed a principle of self-duality or quantum Born reciprocity as a key structure. Here, I outline some of my recent work around the idea of quantum space-time as motivated by this non-standard philosophy, including a new toy model of gravity on a space-time consisting of four points forming a square. This article is part of the theme issue `Hilbert's sixth problem'.
Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law
NASA Astrophysics Data System (ADS)
Asano, Masanari; Basieva, Irina; Khrennikov, Andrei; Ohya, Masanori; Yamato, Ichiro
2013-07-01
There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological and psychological sciences. Our approach is an extension of traditional quantum probability theory, and it is general enough to describe aforementioned contextual phenomena outside of quantum physics.
On the emergence of the structure of physics.
Majid, S
2018-04-28
We consider Hilbert's problem of the axioms of physics at a qualitative or conceptual level. This is more pressing than ever as we seek to understand how both general relativity and quantum theory could emerge from some deeper theory of quantum gravity, and in this regard I have previously proposed a principle of self-duality or quantum Born reciprocity as a key structure. Here, I outline some of my recent work around the idea of quantum space-time as motivated by this non-standard philosophy, including a new toy model of gravity on a space-time consisting of four points forming a square.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Canonical methods in classical and quantum gravity: An invitation to canonical LQG
NASA Astrophysics Data System (ADS)
Reyes, Juan D.
2018-04-01
Loop Quantum Gravity (LQG) is a candidate quantum theory of gravity still under construction. LQG was originally conceived as a background independent canonical quantization of Einstein’s general relativity theory. This contribution provides some physical motivations and an overview of some mathematical tools employed in canonical Loop Quantum Gravity. First, Hamiltonian classical methods are reviewed from a geometric perspective. Canonical Dirac quantization of general gauge systems is sketched next. The Hamiltonian formultation of gravity in geometric ADM and connection-triad variables is then presented to finally lay down the canonical loop quantization program. The presentation is geared toward advanced undergradute or graduate students in physics and/or non-specialists curious about LQG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freitag, Mark A.
2001-12-31
The major title of this dissertation, 'From first principles,' is a phase often heard in the study of thermodynamics and quantum mechanics. These words embody a powerful idea in the physical sciences; namely, that it is possible to distill the complexities of nature into a set of simple, well defined mathematical laws from which specific relations can then be derived . In thermodynamics, these fundamental laws are immediately familiar to the physical scientist by their numerical order: the First, Second and Third Laws. However, the subject of the present volume is quantum mechanics-specifically, non-relativistic quantum mechanics, which is appropriate formore » most systems of chemical interest.« less
Gravitons as Embroidery on the Weave
NASA Astrophysics Data System (ADS)
Iwasaki, Junichi; Rovelli, Carlo
We investigate the physical interpretation of the loop states that appear in the loop representation of quantum gravity. By utilizing the “weave” state, which has been recently introduced as a quantum description of the microstructure of flat space, we analyze the relation between loop states and graviton states. This relation determines a linear map M from the state-space of the nonperturbative theory (loop space) into the state-space of the linearized theory (Fock space). We present an explicit form of this map, and a preliminary investigation of its properties. The existence of such a map indicates that the full nonperturbative quantum theory includes a sector that describes the same physics as (the low energy regimes of) the linearized theory, namely gravitons on flat space.
A lattice approach to spinorial quantum gravity
NASA Technical Reports Server (NTRS)
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
More About Robustness of Coherence
NASA Astrophysics Data System (ADS)
Li, Pi-Yu; Liu, Feng; Xu, Yan-Qin; La, Dong-Sheng
2018-07-01
Quantum coherence is an important physical resource in quantum computation and quantum information processing. In this paper, the distribution of the robustness of coherence in multipartite quantum system is considered. It is shown that the additivity of the robustness of coherence is not always valid for general quantum state, but the robustness of coherence is decreasing under partial trace for any bipartite quantum system. The ordering states with the coherence measures RoC, the l 1 norm of coherence C_{l1} and the relative entropy of coherence C r are also discussed.
A Novel Quantum Solution to Privacy-Preserving Nearest Neighbor Query in Location-Based Services
NASA Astrophysics Data System (ADS)
Luo, Zhen-yu; Shi, Run-hua; Xu, Min; Zhang, Shun
2018-04-01
We present a cheating-sensitive quantum protocol for Privacy-Preserving Nearest Neighbor Query based on Oblivious Quantum Key Distribution and Quantum Encryption. Compared with the classical related protocols, our proposed protocol has higher security, because the security of our protocol is based on basic physical principles of quantum mechanics, instead of difficulty assumptions. Especially, our protocol takes single photons as quantum resources and only needs to perform single-photon projective measurement. Therefore, it is feasible to implement this protocol with the present technologies.
Properties and relative measure for quantifying quantum synchronization
NASA Astrophysics Data System (ADS)
Li, Wenlin; Zhang, Wenzhao; Li, Chong; Song, Heshan
2017-07-01
Although quantum synchronization phenomena and corresponding measures have been widely discussed recently, it is still an open question how to characterize directly the influence of nonlocal correlation, which is the key distinction for identifying classical and quantum synchronizations. In this paper, we present basic postulates for quantifying quantum synchronization based on the related theory in Mari's work [Phys. Rev. Lett. 111, 103605 (2013), 10.1103/PhysRevLett.111.103605], and we give a general formula of a quantum synchronization measure with clear physical interpretations. By introducing Pearson's parameter, we show that the obvious characteristics of our measure are the relativity and monotonicity. As an example, the measure is applied to describe synchronization among quantum optomechanical systems under a Markovian bath. We also show the potential by quantifying generalized synchronization and discrete variable synchronization with this measure.
Reply to "Comment on 'Fractional quantum mechanics' and 'Fractional Schrödinger equation' ".
Laskin, Nick
2016-06-01
The fractional uncertainty relation is a mathematical formulation of Heisenberg's uncertainty principle in the framework of fractional quantum mechanics. Two mistaken statements presented in the Comment have been revealed. The origin of each mistaken statement has been clarified and corrected statements have been made. A map between standard quantum mechanics and fractional quantum mechanics has been presented to emphasize the features of fractional quantum mechanics and to avoid misinterpretations of the fractional uncertainty relation. It has been shown that the fractional probability current equation is correct in the area of its applicability. Further studies have to be done to find meaningful quantum physics problems with involvement of the fractional probability current density vector and the extra term emerging in the framework of fractional quantum mechanics.
Multimode squeezing, biphotons and uncertainty relations in polarization quantum optics
NASA Technical Reports Server (NTRS)
Karassiov, V. P.
1994-01-01
The concept of squeezing and uncertainty relations are discussed for multimode quantum light with the consideration of polarization. Using the polarization gauge SU(2) invariance of free electromagnetic fields, we separate the polarization and biphoton degrees of freedom from other ones, and consider uncertainty relations characterizing polarization and biphoton observables. As a consequence, we obtain a new classification of states of unpolarized (and partially polarized) light within quantum optics. We also discuss briefly some interrelations of our analysis with experiments connected with solving some fundamental problems of physics.
Relativistic quantum information
NASA Astrophysics Data System (ADS)
Mann, R. B.; Ralph, T. C.
2012-11-01
Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from special relativity, quantum optics, general relativity, quantum communication and quantum computation. The high level of current interest in these subjects is exemplified by the recent award of the 2012 Nobel Prize in Physics to Serge Haroche and David J Wineland for ground-breaking experimental methods that enable measuring and manipulation of individual quantum systems. It is our hope that this issue will encourage new researchers to enter this rapidly developing and exciting new field. R B Mann and T C RalphGuest Editors
NASA Astrophysics Data System (ADS)
Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco
2008-11-01
The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.
A Framework for Understanding the Patterns of Student Difficulties in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2015-04-01
Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. We describe a theoretical framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates the effects of diversity in students' prior preparation, goals and motivation for taking upper-level physics courses in general as well as the ``paradigm shift'' from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics will be discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a theoretical framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics. Support from the National Science Foundation is gratefully acknowledged.
Ordering relations for quantum states
NASA Astrophysics Data System (ADS)
Durham, Ian
2015-03-01
It is often desirable to model physical states in an order-theoretic manner, e.g. as a partially ordered set. Classical states are known to possess a unique ordering relation corresponding to a neo-realist interpretation of these states. No such unique relation exists for quantum states. This lack of a unique ordering relation for quantum states turns out to be a manifestation of quantum contextuality vis-à-vis the Kochen-Specker theorem. It also turns out that this provides a link to certain large-scale thermodynamic processes. The suggestion that the ordering of quantum states leads to macroscopic thermodynamic processes is at least five decades old. The suggestion that the mechanism that drives the ordering is contextuality, is unique to this work. The argument is framed in the language of the theories of domains, categories, and topoi. Financial support provided by FQXi.
Thermal machines beyond the weak coupling regime
NASA Astrophysics Data System (ADS)
Gallego, R.; Riera, A.; Eisert, J.
2014-12-01
How much work can be extracted from a heat bath using a thermal machine? The study of this question has a very long history in statistical physics in the weak-coupling limit, when applied to macroscopic systems. However, the assumption that thermal heat baths remain uncorrelated with associated physical systems is less reasonable on the nano-scale and in the quantum setting. In this work, we establish a framework of work extraction in the presence of quantum correlations. We show in a mathematically rigorous and quantitative fashion that quantum correlations and entanglement emerge as limitations to work extraction compared to what would be allowed by the second law of thermodynamics. At the heart of the approach are operations that capture the naturally non-equilibrium dynamics encountered when putting physical systems into contact with each other. We discuss various limits that relate to known results and put our work into the context of approaches to finite-time quantum thermodynamics.
EDITORIAL: Squeezed states and uncertainty relations
NASA Astrophysics Data System (ADS)
Jauregue-Renaud, Rocio; Kim, Young S.; Man'ko, Margarita A.; Moya-Cessa, Hector
2004-06-01
This special issue of Journal of Optics B: Quantum and Semiclassical Optics is composed mainly of extended versions of talks and papers presented at the Eighth International Conference on Squeezed States and Uncertainty Relations held in Puebla, Mexico on 9-13 June 2003. The Conference was hosted by Instituto de Astrofísica, Óptica y Electrónica, and the Universidad Nacional Autónoma de México. This series of meetings began at the University of Maryland, College Park, USA, in March 1991. The second and third workshops were organized by the Lebedev Physical Institute in Moscow, Russia, in 1992 and by the University of Maryland Baltimore County, USA, in 1993, respectively. Afterwards, it was decided that the workshop series should be held every two years. Thus the fourth meeting took place at the University of Shanxi in China and was supported by the International Union of Pure and Applied Physics (IUPAP). The next three meetings in 1997, 1999 and 2001 were held in Lake Balatonfüred, Hungary, in Naples, Italy, and in Boston, USA, respectively. All of them were sponsored by IUPAP. The ninth workshop will take place in Besançon, France, in 2005. The conference has now become one of the major international meetings on quantum optics and the foundations of quantum mechanics, where most of the active research groups throughout the world present their new results. Accordingly this conference has been able to align itself to the current trend in quantum optics and quantum mechanics. The Puebla meeting covered most extensively the following areas: quantum measurements, quantum computing and information theory, trapped atoms and degenerate gases, and the generation and characterization of quantum states of light. The meeting also covered squeeze-like transformations in areas other than quantum optics, such as atomic physics, nuclear physics, statistical physics and relativity, as well as optical devices. There were many new participants at this meeting, particularly from Latin American countries including, of course, Mexico. There were many talks on the subjects traditionally covered in this conference series, including quantum fluctuations, different forms of squeezing, unlike kinds of nonclassical states of light, and distinct representations of the quantum superposition principle, such as even and odd coherent states. The entanglement phenomenon, frequently in the form of the EPR paradox, is responsible for the main advantages of quantum engineering compared with classical methods. Even though entanglement has been known since the early days of quantum mechanics, its properties, such as the most appropriate entanglement measures, are still under current investigation. The phenomena of dissipations and decoherence of the initial pure states are very important because the fast decoherence can destroy all the advantages of quantum processes in teleportation, quantum computing and image processing. Due to this, methods of controlling the decoherence, such as by the use of different kinds of nonlinearities and deformations, are also under study. From the very beginning of quantum mechanics, the uncertainty relations were basic inequalities distinguishing the classical and quantum worlds. Among the theoretical methods for quantum optics and quantum mechanics, this conference covered phase space and group representations, such as the Wigner and probability distribution functions, which provide an alternative approach to the Schr\\"odinger or Heisenberg picture. Different forms of probability representations of quantum states are important tools to be applied in studying various quantum phenomena, such as quantum interference, decoherence and quantum tomography. They have been established also as a very useful tool in all branches of classical optics. From the mathematical point of view, it is well known that the coherent and squeezed states are representations of the Lorentz group. It was noted throughout the conference that another form of the Lorentz group, namely, the 2 x 2 representation of the SL(2,c) group, is becoming more prominent while providing the mathematical basis for the Poincaré sphere, entanglement, qubits and decoherence, as well as classical ray optics traditionally based on 2 x 2 `ABCD' matrices. The contributions of this special issue cover the most recent trends in all areas of quantum optics and the foundations of quantum mechanics.
NASA Astrophysics Data System (ADS)
Aharonov, Dorit
In the last few years, theoretical study of quantum systems serving as computational devices has achieved tremendous progress. We now have strong theoretical evidence that quantum computers, if built, might be used as a dramatically powerful computational tool, capable of performing tasks which seem intractable for classical computers. This review is about to tell the story of theoretical quantum computation. I l out the developing topic of experimental realizations of the model, and neglected other closely related topics which are quantum information and quantum communication. As a result of narrowing the scope of this paper, I hope it has gained the benefit of being an almost self contained introduction to the exciting field of quantum computation. The review begins with background on theoretical computer science, Turing machines and Boolean circuits. In light of these models, I define quantum computers, and discuss the issue of universal quantum gates. Quantum algorithms, including Shor's factorization algorithm and Grover's algorithm for searching databases, are explained. I will devote much attention to understanding what the origins of the quantum computational power are, and what the limits of this power are. Finally, I describe the recent theoretical results which show that quantum computers maintain their complexity power even in the presence of noise, inaccuracies and finite precision. This question cannot be separated from that of quantum complexity because any realistic model will inevitably be subjected to such inaccuracies. I tried to put all results in their context, asking what the implications to other issues in computer science and physics are. In the end of this review, I make these connections explicit by discussing the possible implications of quantum computation on fundamental physical questions such as the transition from quantum to classical physics.
Relativity, entanglement and the physical reality of the photon
NASA Astrophysics Data System (ADS)
Tiwari, S. C.
2002-04-01
Recent experiments on the classic Einstein-Podolsky-Rosen (EPR) setting claim to test the compatibility between nonlocal quantum entanglement and the (special) theory of relativity. Confirmation of quantum theory has led to the interpretation that Einstein's image of physical reality for each photon in the EPR pair cannot be maintained. A detailed critique on two representative experiments is presented following the original EPR notion of local realism. It is argued that relativity does not enter into the picture, however for the Bell-Bohm version of local realism in terms of hidden variables such experiments are significant. Of the two alternatives, namely incompleteness of quantum theory for describing an individual quantum system, and the ensemble view, it is only the former that has been ruled out by the experiments. An alternative approach gives a statistical ensemble interpretation of the observed data, and the significant conclusion that these experiments do not deny physical reality of the photon is obtained. After discussing the need for a photon model, a vortex structure is proposed based on the space-time invariant property-spin, and pure gauge fields. To test the prime role of spin for photons and the angular-momentum interpretation of electromagnetic fields, experimental schemes feasible in modern laboratories are suggested.
NASA Astrophysics Data System (ADS)
Vinjusveen Myhrehagen, Henning; Bungum, Berit
2016-09-01
The thought experiment ‘Schrödinger’s cat’ exposes fundamental dilemmas in how we interpret quantum physics, and has a potential for deepening students’ understanding of this part of modern physics, including its philosophical consequences. In this paper we report results from the project ReleQuant on how Norwegian physics students in upper secondary schools interpret the thought experiment. The analysis resulted in nine categories, and we discuss how these relate to interpretations made by physicists, in particular the concept of superposition. Even if students’ responses in many cases can be related to interpretations that make sense in physics, we conclude that lack of knowledge about the purpose and the historical context of the thought experiment limits students understanding of the physics content. Exploring the thought experiment from a historical perspective might deepen student understanding of key concepts in quantum physics as well as of how physics develops.
Quantum electronic stress: density-functional-theory formulation and physical manifestation.
Hu, Hao; Liu, Miao; Wang, Z F; Zhu, Junyi; Wu, Dangxin; Ding, Hepeng; Liu, Zheng; Liu, Feng
2012-08-03
The concept of quantum electronic stress (QES) is introduced and formulated within density functional theory to elucidate extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. A formal expression of QES (σ(QE)) is derived in relation to deformation potential of electronic states (Ξ) and variation of electron density (Δn), σ(QE) = ΞΔn as a quantum analog of classical Hooke's law. Two distinct QES manifestations are demonstrated quantitatively by density functional theory calculations: (1) in the form of bulk stress induced by charge carriers and (2) in the form of surface stress induced by quantum confinement. Implications of QES in some physical phenomena are discussed to underlie its importance.
From quantum foundations to applications and back.
Gisin, Nicolas; Fröwis, Florian
2018-07-13
Quantum non-locality has been an extremely fruitful subject of research, leading the scientific revolution towards quantum information science, in particular, to device-independent quantum information processing. We argue that the time is ripe to work on another basic problem in the foundations of quantum physics, the quantum measurement problem, which should produce good physics in theoretical, mathematical, experimental and applied physics. We briefly review how quantum non-locality contributed to physics (including some outstanding open problems) and suggest ways in which questions around macroscopic quantumness could equally contribute to all aspects of physics.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Brown, Matthew J.
2014-02-01
The framework of quantum frames can help unravel some of the interpretive difficulties i the foundation of quantum mechanics. In this paper, I begin by tracing the origins of this concept in Bohr's discussion of quantum theory and his theory of complementarity. Engaging with various interpreters and followers of Bohr, I argue that the correct account of quantum frames must be extended beyond literal space-time reference frames to frames defined by relations between a quantum system and the exosystem or external physical frame, of which measurement contexts are a particularly important example. This approach provides superior solutions to key EPR-type measurement and locality paradoxes.
Composition in the Quantum World
NASA Astrophysics Data System (ADS)
Hall, Edward Jonathan
This thesis presents a problem for the foundations of quantum mechanics. It arises from the way that theory describes the composition of larger systems in terms of smaller ones, and renders untenable a wide range of interpretations of quantum mechanics. That quantum mechanics is difficult to interpret is old news, given the well-known Measurement Problem. But the problem I raise is quite different, and in important respects more fundamental. In brief: The physical world exhibits mereological structure: physical objects have parts, which in turn have parts, and so on. A natural way to try to represent this structure is by means of a particle theory, according to which the physical world consists entirely enduring physical objects which themselves have no proper parts, but aggregates of which are, or compose, all physical objects. Elementary, non-relativistic quantum mechanics can be cast in this mold--at least, according to the usual expositions of that theory. But herein lies the problem: the standard attempt to give a systematic particle interpretation to elementary quantum mechanics results in nonsense, thanks to the well-established principle of Permutation Invariance, which constrains the quantum -mechanical description of systems containing identical particles. Specifically, it follows from the most minimal principles of a particle interpretation (much weaker than those needed to generate the Measurement Problem), together with Permutation Invariance, that systems identical in composition must have the same physical state. In other words, systems which merely have the same numbers of the same types of particles are therefore, at all times, perfect physical duplicates. This conclusion is absurd: e.g., it is quite plausible that some of those particles which compose my body make up a system identical in composition to some pepperoni pizza. Yet no part of me is a qualitative physical duplicate of any pepperoni pizza. Perhaps "you are what you eat" --but not in this sense! In what follows I develop the principles needed to explore this problem, contrast it with the Measurement Problem, and consider, finally, how it should influence our judgments of the relative merits of the many extant interpretations of quantum mechanics.
Framework for understanding the patterns of student difficulties in quantum mechanics
NASA Astrophysics Data System (ADS)
Marshman, Emily; Singh, Chandralekha
2015-12-01
[This paper is part of the Focused Collection on Upper Division Physics Courses.] Compared with introductory physics, relatively little is known about the development of expertise in advanced physics courses, especially in the case of quantum mechanics. Here, we describe a framework for understanding the patterns of student reasoning difficulties and how students develop expertise in quantum mechanics. The framework posits that the challenges many students face in developing expertise in quantum mechanics are analogous to the challenges introductory students face in developing expertise in introductory classical mechanics. This framework incorporates both the effects of diversity in upper-level students' prior preparation, goals, and motivation in general (i.e., the facts that even in upper-level courses, students may be inadequately prepared, have unclear goals, and have insufficient motivation to excel) as well as the "paradigm shift" from classical mechanics to quantum mechanics. The framework is based on empirical investigations demonstrating that the patterns of reasoning, problem-solving, and self-monitoring difficulties in quantum mechanics bear a striking resemblance to those found in introductory classical mechanics. Examples from research in quantum mechanics and introductory classical mechanics are discussed to illustrate how the patterns of difficulties are analogous as students learn to unpack the respective principles and grasp the formalism in each knowledge domain during the development of expertise. Embracing such a framework and contemplating the parallels between the difficulties in these two knowledge domains can enable researchers to leverage the extensive literature for introductory physics education research to guide the design of teaching and learning tools for helping students develop expertise in quantum mechanics.
Quantum information and general relativity
NASA Astrophysics Data System (ADS)
Peres, A.
2004-11-01
The Einstein-Podolsky-Rosen paradox (1935) is reexamined in the light of Shannon's information theory (1948). The EPR argument did not take into account that the observers' information was localized, like any other physical object. General relativity introduces new problems: there are horizons which act as on-way membranes for the propagation of quantum information, in particular black holes which act like sinks.
NASA Astrophysics Data System (ADS)
Gerdt, V. P.; Tarasov, O. V.; Shirkov, Dmitrii V.
1980-01-01
The present state of analytic calculations on computers is reviewed. Several programming systems which are used for analytic calculations are discussed: SCHOONSCHIP, CLAM, REDUCE-2, SYMBAL, CAMAL, AVTO-ANALITIK, MACSYMA, etc. It is shown that these systems can be used to solve a wide range of problems in physics and mathematics. Some physical applications are discussed in celestial mechanics, the general theory of relativity, quantum field theory, plasma physics, hydrodynamics, atomic and molecular physics, and quantum chemistry. Some mathematical applications which are discussed are evaluating indefinite integrals, solving differential equations, and analyzing mathematical expressions. This review is addressed to physicists and mathematicians working in a wide range of fields.
Experimental joint quantum measurements with minimum uncertainty.
Ringbauer, Martin; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Branciard, Cyril; White, Andrew G
2014-01-17
Quantum physics constrains the accuracy of joint measurements of incompatible observables. Here we test tight measurement-uncertainty relations using single photons. We implement two independent, idealized uncertainty-estimation methods, the three-state method and the weak-measurement method, and adapt them to realistic experimental conditions. Exceptional quantum state fidelities of up to 0.999 98(6) allow us to verge upon the fundamental limits of measurement uncertainty.
Quantum Theory, Active Information and the Mind-Matter Problem
NASA Astrophysics Data System (ADS)
Pylkkänen, Paavo
Bohm and Hiley suggest that a certain new type of active information plays a key objective role in quantum processes. This chapter discusses the implications of this suggestion to our understanding of the relation between the mental and the physical aspects of reality.
Integrating Computational Chemistry into a Course in Classical Thermodynamics
ERIC Educational Resources Information Center
Martini, Sheridan R.; Hartzell, Cynthia J.
2015-01-01
Computational chemistry is commonly addressed in the quantum mechanics course of undergraduate physical chemistry curricula. Since quantum mechanics traditionally follows the thermodynamics course, there is a lack of curricula relating computational chemistry to thermodynamics. A method integrating molecular modeling software into a semester long…
Unifying Quantum Physics with Biology
NASA Astrophysics Data System (ADS)
Goradia, Shantilal
2014-09-01
We find that the natural logarithm of the age of the universe in quantum mechanical units is close to 137. Since science is not religion, it is our moral duty to recognize the importance of this finding on the following ground. The experimentally obtained number 137 is a mystical number in science, as if written by the hand of God. It is found in cosmology; unlike other theories, it works in biology too. A formula by Boltzmann also works in both: biology and physics, as if it is in the heart of God. His formula simply leads to finding the logarithm of microstates. One of the two conflicting theories of physics (1) Einstein's theory of General Relativity and (2) Quantum Physics, the first applies only in cosmology, but the second applies in biology too. Since we have to convert the age of the universe, 13 billion years, into 1,300,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 Planck times to get close to 137, quantum physics clearly shows the characteristics of unifying with biology. The proof of its validity also lies in its ability to extend information system observed in biology.
Sudden death of entanglement and non-locality in two- and three-component quantum systems
NASA Astrophysics Data System (ADS)
Ann, Kevin
2011-12-01
Quantum entanglement and non-locality are non-classical characteristics of quantum states with phase coherence that are of central importance to physics, and relevant to the foundations of quantum mechanics and quantum information science. This thesis examines quantum entanglement and non-locality in two- and three-component quantum states with phase coherence when they are subject to statistically independent, classical, Markovian, phase noise in various combinations at the local and collective level. Because this noise reduces phase coherence, it can also reduce quantum entanglement and Bell non-locality. After introducing and contextualizing the research, the results are presented in three broad areas. The first area characterizes the relative time scales of decoherence and disentanglement in 2 x 2 and 3 x 3 quantum states, as well as the various subsystems of the two classes of entangled tripartite two-level quantum states. In all cases, it was found that disentanglement time scales are less than or equal to decoherence time scales. The second area examines the finite-time loss of entanglement, even as quantum state coherence is lost only asymptotically in time due to local dephasing noise, a phenomenon entitled "Entanglement Sudden Death" (ESD). Extending the initial discovery in the simplest 2 x 2 case, ESD is shown to exist in all other systems where mixed-state entanglement measures exist, the 2 x 3 and d x d systems, for finite d > 2. The third area concerns non-locality, which is a physical phenomenon independent of quantum mechanics and related to, though fundamentally different from, entanglement. Non-locality, as quantified by classes of Bell inequalities, is shown to be lost in finite time, even when decoherence occurs only asymptotically. This phenomenon was named "Bell Non-locality Sudden Death" (BNSD).
Software-aided discussion about classical picture of Mach-Zehnder interferometer
NASA Astrophysics Data System (ADS)
Cavalcanti, C. J. H.; Ostermann, F.; Lima, N. W.; Netto, J. S.
2017-11-01
The Mach-Zehnder interferometer has played an important role both in quantum and classical physics research over the years. In physics education, it has been used as a didactic tool for quantum physics teaching, allowing fundamental concepts, such as particle-wave duality, to be addressed from the very beginning. For a student to understand the novelties of the quantum scenario, it is first worth introducing the classical picture. In this paper, we introduce a new version of the software developed by our research group to deepen the discussion on the classical picture of the Mach-Zehnder interferometer. We present its equivalence with the double slit experiment and we derive the mathematical expressions relating to the interference pattern. We also explore the concept of visibility (which is very important for understanding wave-particle complementarity in quantum physics) to help students become familiar with this experiment and to enhance their knowledge of its counterintuitive aspects. We use the software articulated by the mathematical formalism and phenomenological features. We also present excerpts of the discursive interactions of students using the software in didactic situations.
Mapping repulsive to attractive interaction in driven-dissipative quantum systems
NASA Astrophysics Data System (ADS)
Li, Andy C. Y.; Koch, Jens
2017-11-01
Repulsive and attractive interactions usually lead to very different physics. Striking exceptions exist in the dynamics of driven-dissipative quantum systems. For the example of a photonic Bose-Hubbard dimer, we establish a one-to-one mapping relating cases of onsite repulsion and attraction. We prove that the mapping is valid for an entire class of Markovian open quantum systems with a time-reversal-invariant Hamiltonian and physically meaningful inverse-sign Hamiltonian. To underline the broad applicability of the mapping, we illustrate the one-to-one correspondence between the nonequilibrium dynamics in a geometrically frustrated spin lattice and those in a non-frustrated partner lattice.
A simple quantum mechanical treatment of scattering in nanoscale transistors
NASA Astrophysics Data System (ADS)
Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.
2003-05-01
We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.
Black holes in loop quantum gravity.
Perez, Alejandro
2017-12-01
This is a review of results on black hole physics in the context of loop quantum gravity. The key feature underlying these results is the discreteness of geometric quantities at the Planck scale predicted by this approach to quantum gravity. Quantum discreteness follows directly from the canonical quantization prescription when applied to the action of general relativity that is suitable for the coupling of gravity with gauge fields, and especially with fermions. Planckian discreteness and causal considerations provide the basic structure for the understanding of the thermal properties of black holes close to equilibrium. Discreteness also provides a fresh new look at more (at the moment) speculative issues, such as those concerning the fate of information in black hole evaporation. The hypothesis of discreteness leads, also, to interesting phenomenology with possible observational consequences. The theory of loop quantum gravity is a developing program; this review reports its achievements and open questions in a pedagogical manner, with an emphasis on quantum aspects of black hole physics.
The principle of finiteness - a guideline for physical laws
NASA Astrophysics Data System (ADS)
Sternlieb, Abraham
2013-04-01
I propose a new principle in physics-the principle of finiteness (FP). It stems from the definition of physics as a science that deals with measurable dimensional physical quantities. Since measurement results including their errors, are always finite, FP postulates that the mathematical formulation of legitimate laws in physics should prevent exactly zero or infinite solutions. I propose finiteness as a postulate, as opposed to a statement whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories or principles. Some consequences of FP are discussed, first in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The corrected Lorentz transformations include an additional translation term depending on the minimum length epsilon. The relativistic gamma is replaced by a corrected gamma, that is finite for v=c. To comply with FP, physical laws should include the relevant extremum finite values in their mathematical formulation. An important prediction of FP is that there is a maximum attainable relativistic mass/energy which is the same for all subatomic particles, meaning that there is a maximum theoretical value for cosmic rays energy. The Generalized Uncertainty Principle required by Quantum Gravity is actually a necessary consequence of FP at Planck's scale. Therefore, FP may possibly contribute to the axiomatic foundation of Quantum Gravity.
Exactly solvable quantum cosmologies from two killing field reductions of general relativity
NASA Astrophysics Data System (ADS)
Husain, Viqar; Smolin, Lee
1989-11-01
An exact and, possibly, general solution to the quantum constraints is given for the sector of general relativity containing cosmological solutions with two space-like, commuting, Killing fields. The dynamics of these model space-times, which are known as Gowdy space-times, is formulated in terms of Ashtekar's new variables. The quantization is done by using the recently introduced self-dual and loop representations. On the classical phase space we find four explicit physical observables, or constants of motion, which generate a GL(2) symmetry group on the space of solutions. In the loop representations we find that a complete description of the physical state space, consisting of the simultaneous solutions to all of the constraints, is given in terms of the equivalence classes, under Diff(S1), of a pair of densities on the circle. These play the same role that the link classes play in the loop representation solution to the full 3+1 theory. An infinite dimensional algebra of physical observables is found on the physical state space, which is a GL(2) loop algebra. In addition, by freezing the local degrees of freedom of the model, we find a finite dimensional quantum system which describes a set of degenerate quantum cosmologies on T3 in which the length of one of the S1's has gone to zero, while the area of the remaining S1×S1 is quantized in units of the Planck area. The quantum kinematics of this sector of the model is identical to that of a one-plaquette SU(2) lattice gauge theory.
Quantum Stress: Density Functional Theory Formulation and Physical Manifestation
NASA Astrophysics Data System (ADS)
Hu, Hao; Liu, Feng
2012-02-01
The concept of ``quantum stress (QS)'' is introduced and formulated within density functional theory (DFT), to underlie extrinsic electronic effects on the stress state of solids and thin films in the absence of lattice strain. An explicit expression of QS (σ^Q) is derived in relation to the deformation potential of electronic states (ξ) and the variation of electron density (δn), σ^Q=ξ(δn), as a quantum analog of classical Hook's law. Two distinct QS manifestations are demonstrated quantitatively by DFT calculations: (1) in the form of bulk stress induced by charge carriers; and (2) in the form of surface stress induced by quantum confinement. QS has broad implications in physical phenomena and technological applications that are based on coupling of electronic structure with lattice strain.
Quantum Consciousness - The Road to Reality
NASA Astrophysics Data System (ADS)
Goradia, Shantilal
Per Einstein's theory mass tells space how to curve and space tells mass how to move. How do they tell\\x9D? The question boils down to information created by quantum particles blinking ON and OFF analogous to 'Ying and Yang' or some more complex ways that may include dark matter. Consciousness, dark matter, quantum physics, uncertainty principle, constants of nature like strong coupling, fine structure constant, cosmological constant introduced by Einstein, information, gravitation etc. are fundamentally consequences of that ONE TOE. Vedic philosophers, who impressed Schrodinger so much, called it ATMA split in the categories of AnuAtma (particle soul), JivAtma (life soul) and ParamAtma (Omnipresent soul) which we relate to quantum physics, biology and cosmology. There is no separate TOE (Theory of Everything) for any one thing.
Fourth International Conference on Squeezed States and Uncertainty Relations
NASA Technical Reports Server (NTRS)
Han, D. (Editor); Peng, Kunchi (Editor); Kim, Y. S. (Editor); Manko, V. I. (Editor)
1996-01-01
The fourth International Conference on Squeezed States and Uncertainty Relations was held at Shanxi University, Taiyuan, Shanxi, China, on June 5 - 9, 1995. This conference was jointly organized by Shanxi University, the University of Maryland (U.S.A.), and the Lebedev Physical Institute (Russia). The first meeting of this series was called the Workshop on Squeezed States and Uncertainty Relations, and was held in 1991 at College Park, Maryland. The second and third meetings in this series were hosted in 1992 by the Lebedev Institute in Moscow, and in 1993 by the University of Maryland Baltimore County, respectively. The scientific purpose of this series was initially to discuss squeezed states of light, but in recent years, the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics, including, of course, quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic transformation. This transition took place at the fourth meeting of this series held at Shanxi University in 1995. The fifth meeting in this series will be held in Budapest (Hungary) in 1997, and the principal organizer will be Jozsef Janszky of the Laboratory of Crystal Physics, P.O. Box 132, H-1052. Budapest, Hungary.
Millikan Award Lecture, 2006: Physics For All
NASA Astrophysics Data System (ADS)
Hobson, Art
2006-12-01
We physics teachers must broaden our focus from physics for physicists and other scientists to physics for all. The reason, as the American Association for the Advancement of Science puts it, is that "[w]ithout a scientifically literate population, the outlook for a better world is not promising." Physics for all (including the first course for scientists) should be conceptual, not technical. It should describe the universe as we understand it today, including special and general relativity, quantum physics, modern cosmology, nuclear physics, the standard model of particles and interactions, and quantum fields. Many science writers have shown that this description is possible. It should emphasize the scientific process and include such societal topics as global warming, nuclear weapons, and pseudoscience, because citizens need to vote intelligently on such issues.
Biofield Science: Current Physics Perspectives.
Kafatos, Menas C; Chevalier, Gaétan; Chopra, Deepak; Hubacher, John; Kak, Subhash; Theise, Neil D
2015-11-01
This article briefly reviews the biofield hypothesis and its scientific literature. Evidence for the existence of the biofield now exists, and current theoretical foundations are now being developed. A review of the biofield and related topics from the perspective of physical science is needed to identify a common body of knowledge and evaluate possible underlying principles of origin of the biofield. The properties of such a field could be based on electromagnetic fields, coherent states, biophotons, quantum and quantum-like processes, and ultimately the quantum vacuum. Given this evidence, we intend to inquire and discuss how the existence of the biofield challenges reductionist approaches and presents its own challenges regarding the origin and source of the biofield, the specific evidence for its existence, its relation to biology, and last but not least, how it may inform an integrated understanding of consciousness and the living universe.
Simple model dielectric functions for insulators
NASA Astrophysics Data System (ADS)
Vos, Maarten; Grande, Pedro L.
2017-05-01
The Drude dielectric function is a simple way of describing the dielectric function of free electron materials, which have an uniform electron density, in a classical way. The Mermin dielectric function describes a free electron gas, but is based on quantum physics. More complex metals have varying electron densities and are often described by a sum of Drude dielectric functions, the weight of each function being taken proportional to the volume with the corresponding density. Here we describe a slight variation on the Drude dielectric functions that describes insulators in a semi-classical way and a form of the Levine-Louie dielectric function including a relaxation time that does the same within the framework of quantum physics. In the optical limit the semi-classical description of an insulator and the quantum physics description coincide, in the same way as the Drude and Mermin dielectric function coincide in the optical limit for metals. There is a simple relation between the coefficients used in the classical and quantum approaches, a relation that ensures that the obtained dielectric function corresponds to the right static refractive index. For water we give a comparison of the model dielectric function at non-zero momentum with inelastic X-ray measurements, both at relative small momenta and in the Compton limit. The Levine-Louie dielectric function including a relaxation time describes the spectra at small momentum quite well, but in the Compton limit there are significant deviations.
The Qubit as Key to Quantum Physics Part II: Physical Realizations and Applications
ERIC Educational Resources Information Center
Dür, Wolfgang; Heusler, Stefan
2016-01-01
Using the simplest possible quantum system--the qubit--the fundamental concepts of quantum physics can be introduced. This highlights the common features of many different physical systems, and provides a unifying framework when teaching quantum physics at the high school or introductory level. In a previous "TPT" article and in a…
String theory, quantum phase transitions, and the emergent Fermi liquid.
Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad
2009-07-24
A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.
Physics Without Causality — Theory and Evidence
NASA Astrophysics Data System (ADS)
Shoup, Richard
2006-10-01
The principle of cause and effect is deeply rooted in human experience, so much so that it is routinely and tacitly assumed throughout science, even by scientists working in areas where time symmetry is theoretically ingrained, as it is in both classical and quantum physics. Experiments are said to cause their results, not the other way around. In this informal paper, we argue that this assumption should be replaced with a more general notion of mutual influence — bi-directional relations or constraints on joint values of two or more variables. From an analysis based on quantum entropy, it is proposed that quantum measurement is a unitary three-interaction, with no collapse, no fundamental randomness, and no barrier to backward influence. Experimental results suggesting retrocausality are seen frequently in well-controlled laboratory experiments in parapsychology and elsewhere, especially where a random element is included. Certain common characteristics of these experiments give the appearance of contradicting well-established physical laws, thus providing an opportunity for deeper understanding and important clues that must be addressed by any explanatory theory. We discuss how retrocausal effects and other anomalous phenomena can be explained without major injury to existing physical theory. A modified quantum formalism can give new insights into the nature of quantum measurement, randomness, entanglement, causality, and time.
Hearing the shape of the Ising model with a programmable superconducting-flux annealer.
Vinci, Walter; Markström, Klas; Boixo, Sergio; Roy, Aidan; Spedalieri, Federico M; Warburton, Paul A; Severini, Simone
2014-07-16
Two objects can be distinguished if they have different measurable properties. Thus, distinguishability depends on the Physics of the objects. In considering graphs, we revisit the Ising model as a framework to define physically meaningful spectral invariants. In this context, we introduce a family of refinements of the classical spectrum and consider the quantum partition function. We demonstrate that the energy spectrum of the quantum Ising Hamiltonian is a stronger invariant than the classical one without refinements. For the purpose of implementing the related physical systems, we perform experiments on a programmable annealer with superconducting flux technology. Departing from the paradigm of adiabatic computation, we take advantage of a noisy evolution of the device to generate statistics of low energy states. The graphs considered in the experiments have the same classical partition functions, but different quantum spectra. The data obtained from the annealer distinguish non-isomorphic graphs via information contained in the classical refinements of the functions but not via the differences in the quantum spectra.
Existence of an information unit as a postulate of quantum theory.
Masanes, Lluís; Müller, Markus P; Augusiak, Remigiusz; Pérez-García, David
2013-10-08
Does information play a significant role in the foundations of physics? Information is the abstraction that allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever there exists an information unit such that the state of any system can be reversibly encoded in a sufficient number of such units. In this work, we show how the abstract formalism of quantum theory can be deduced solely from the existence of an information unit with suitable properties, together with two further natural assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of a composite system by local measurements. This constitutes a set of postulates for quantum theory with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it articulates a strong connection between physics and information.
Existence of an information unit as a postulate of quantum theory
Masanes, Lluís; Müller, Markus P.; Augusiak, Remigiusz; Pérez-García, David
2013-01-01
Does information play a significant role in the foundations of physics? Information is the abstraction that allows us to refer to the states of systems when we choose to ignore the systems themselves. This is only possible in very particular frameworks, like in classical or quantum theory, or more generally, whenever there exists an information unit such that the state of any system can be reversibly encoded in a sufficient number of such units. In this work, we show how the abstract formalism of quantum theory can be deduced solely from the existence of an information unit with suitable properties, together with two further natural assumptions: the continuity and reversibility of dynamics, and the possibility of characterizing the state of a composite system by local measurements. This constitutes a set of postulates for quantum theory with a simple and direct physical meaning, like the ones of special relativity or thermodynamics, and it articulates a strong connection between physics and information. PMID:24062431
NASA Astrophysics Data System (ADS)
Ronde, Christian De
In classical physics, probabilistic or statistical knowledge has been always related to ignorance or inaccurate subjective knowledge about an actual state of affairs. This idea has been extended to quantum mechanics through a completely incoherent interpretation of the Fermi-Dirac and Bose-Einstein statistics in terms of "strange" quantum particles. This interpretation, naturalized through a widespread "way of speaking" in the physics community, contradicts Born's physical account of Ψ as a "probability wave" which provides statistical information about outcomes that, in fact, cannot be interpreted in terms of `ignorance about an actual state of affairs'. In the present paper we discuss how the metaphysics of actuality has played an essential role in limiting the possibilities of understating things differently. We propose instead a metaphysical scheme in terms of immanent powers with definite potentia which allows us to consider quantum probability in a new light, namely, as providing objective knowledge about a potential state of affairs.
NASA Astrophysics Data System (ADS)
Vizgin, Vladimir P.
1999-12-01
This article deals with the almost 'thirty-year war' led by physicists against the authorities' incompetent philosophical and ideological interference with science. The 'war' is shown to have been related to the history of Soviet nuclear weapons. Theoretical milestones of 20th century physics, to wit, theory of relativity and quantum mechanics, suffered endless 'attacks on philosophical grounds'. The theories were proclaimed idealistic as well as unduly abstract and out of touch with practice; their authors and followers were labelled 'physical idealists', and later, in the 1940s and 1950s, even 'cosmopolitans without kith or kin'. Meanwhile, quantum and relativistic theories, as is widely known, had become the basis of nuclear physics and of the means of studying the atomic nucleus (charged particle accelerators, for instance). The two theories thus served, to a great extent, as a basis for both peaceful and military uses of nuclear energy, made possible by the discovery of uranium nuclear fission under the action of neutrons. In the first part, the article recounts how prominent physicists led the way to resisting philosophical and ideological pressure and standing up for relativity, quantum theories and nuclear physics, thus enabling the launch of the atomic project. The second part contains extensive material proving the point that physicists effectively used the 'nuclear shield' in the 1940s and 1950s against the 'philosophical-cosmopolitan' pressure, indeed saving physics from a tragic fate as that of biology at the Academy of Agricultural Sciences (VASKhNIL) session in 1948.
Daemonic ergotropy: enhanced work extraction from quantum correlations
NASA Astrophysics Data System (ADS)
Francica, Gianluca; Goold, John; Plastina, Francesco; Paternostro, Mauro
2017-03-01
We investigate how the presence of quantum correlations can influence work extraction in closed quantum systems, establishing a new link between the field of quantum non-equilibrium thermodynamics and the one of quantum information theory. We consider a bipartite quantum system and we show that it is possible to optimize the process of work extraction, thanks to the correlations between the two parts of the system, by using an appropriate feedback protocol based on the concept of ergotropy. We prove that the maximum gain in the extracted work is related to the existence of quantum correlations between the two parts, quantified by either quantum discord or, for pure states, entanglement. We then illustrate our general findings on a simple physical situation consisting of a qubit system.
Bays, Harold
2005-05-01
Excessive fat (adiposity) and dysfunctional fat (adiposopathy) constitute the most common worldwide epidemics of our time -- and perhaps of all time. Ongoing efforts to explain how the micro (adipocyte) and macro (body organ) biologic systems interact through function and dysfunction in promoting Type 2 diabetes mellitus, hypertension and dyslipidemia are not unlike the mechanistic and philosophical thinking processes involved in reconciling the micro (quantum physics) and macro (general relativity) theories in physics. Currently, the term metabolic syndrome refers to a constellation of consequences often associated with excess body fat and is an attempt to unify the associations known to exist between the four fundamental metabolic diseases of obesity, hyperglycemia (including Type 2 diabetes mellitus), hypertension and dyslipidemia. However, the association of adiposity with these metabolic disorders is not absolute and the metabolic syndrome does not describe underlying causality, nor does the metabolic syndrome necessarily reflect any reasonably related pathophysiologic process. Just as with quantum physics, general relativity and the four fundamental forces of the universe, the lack of an adequate unifying theory of micro causality and macro consequence is unsatisfying, and in medicine, impairs the development of agents that may globally improve both obesity and obesity-related metabolic disease. Emerging scientific and clinical evidence strongly supports the novel concept that it is not adiposity alone, but rather it is adiposopathy that is the underlying cause of most cases of Type 2 diabetes mellitus, hypertension and dyslipidemia. Adiposopathy is a plausible Theory of Everything for mankind's greatest metabolic epidemics.
Urns and Chameleons: two metaphors for two different types of measurements
NASA Astrophysics Data System (ADS)
Accardi, Luigi
2013-09-01
The awareness of the physical possibility of models of space, alternative with respect to the Euclidean one, begun to emerge towards the end of the 19-th century. At the end of the 20-th century a similar awareness emerged concerning the physical possibility of models of the laws of chance alternative with respect to the classical probabilistic models (Kolmogorov model). In geometry the mathematical construction of several non-Euclidean models of space preceded of about one century their applications in physics, which came with the theory of relativity. In physics the opposite situation took place. In fact, while the first example of non Kolmogorov probabilistic models emerged in quantum physics approximately one century ago, at the beginning of 1900, the awareness of the fact that this new mathematical formalism reflected a new mathematical model of the laws of chance had to wait until the early 1980's. In this long time interval the classical and the new probabilistic models were both used in the description and the interpretation of quantum phenomena and negatively interfered with each other because of the absence (for many decades) of a mathematical theory that clearly delimited the respective domains of application. The result of this interference was the emergence of the so-called the "paradoxes of quantum theory". For several decades there have been many different attempts to solve these paradoxes giving rise to what K. Popper baptized "the great quantum muddle": a debate which has been at the core of the philosophy of science for more than 50 years. However these attempts have led to contradictions between the two fundamental theories of the contemporary physical: the quantum theory and the theory of the relativity. Quantum probability identifies the reason of the emergence of non Kolmogorov models, and therefore of the so-called the paradoxes of quantum theory, in the difference between the notion of passive measurements like "reading pre-existent properties" (urn metaphor) and measurements consisting in reading "a response to an interaction" (chameleon metaphor). The non-trivial point is that one can prove that, while the urn scheme cannot lead to empirical data outside of classic probability, response based measurements can give rise to non classical statistics. The talk will include entirely classical examples of non classical statistics and potential applications to economic, sociological or biomedical phenomena.
BOOK REVIEW: Once Upon Einstein
NASA Astrophysics Data System (ADS)
Giannetto, E.
2007-07-01
Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conté (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein `those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within À la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: `time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a historical problem briefly discussed by Damour (pp 17--21, 48--52 and related endnotes): had Henri Poincaré constructed a special relativistic dynamics before Einstein? There is a long debate on this subject in the literature. Damour's answer is negative and his conclusions seem related to the conservation of a myth of Einstein, that is, the rise of special relativity is considered as a creatio ex nihilo within Einstein's mind and Einstein is considered as the only genius able to conceive the relativity of time. Poincaré's texts are undervalued and misunderstood by Damour's cutting quotations from their context. Damour never quotes La Science et l'Hypothèse (1902): we know it was read by Einstein and here Poincaré first (within chapters already published as separate papers in 1900) stated the relativity of time and of simultaneity. Damour never quotes Poincaré's paper published on 5 June 1905, La dynamique de l'èlectron, which presents the first relativistic dynamics, invariant by Lorentz transformations. Poincaré's (July 1905) introduction of a quadrimensional space-time is considered by Damour only a mathematical artifice (p 51) and Damour never said that Minkowski took this idea from Poincaré! Poincaré's interpretation of relativistic time implies that it is not an illusion but a complex net of different real flows related to different processes. Poincaré and Einstein had different conceptions of Nature at the root of special relativity: respectively an electromagnetic conception (Poincaré) and a semi-mechanist one (Einstein). Thus, the (philosophical) meaning of relativity can be very different from the one presented by Damour. Furthermore, Damour accepts Kantian philosophy as a key to understanding relativity and quantum theories. This perspective seems to me very anachronistic and based on a misunderstanding: an interpretation of 20th century physical theories (relativity and quantum physics) is given within the framework of an 18th century philosophical perspective, created to give a foundation to Newton's theory. Relativity and quantum physics imply a breakdown of Kantian philosophy (see, for instance, G Bachelard's La Philosophie du Non). Relativity of space and time was considered possible only by overcoming the epistemological obstacle of Kantian idealistic foundation of Euclidean geometry and of Newton's absolute space and time. Relativity and quantum theories turn up not only the hierarchy between mathematics and physics, but also between epistemology (and logic) and physics: quantum physics implies not only a new conception of an indeterminate and unpredictable Nature, but a quantum logic too, that is, it implies a change in our way of thinking and knowing. When will the revolutionary impact of 20th century physics be reduced (by physicists themselves) to an already given philosophical framework?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoilova, N. I.
Generalized quantum statistics, such as paraboson and parafermion statistics, are characterized by triple relations which are related to Lie (super)algebras of type B. The correspondence of the Fock spaces of parabosons, parafermions as well as the Fock space of a system of parafermions and parabosons to irreducible representations of (super)algebras of type B will be pointed out. Example of generalized quantum statistics connected to the basic classical Lie superalgebra B(1|1) ≡ osp(3|2) with interesting physical properties, such as noncommutative coordinates, will be given. Therefore the article focuses on the question, addressed already in 1950 by Wigner: do the equation ofmore » motion determine the quantum mechanical commutation relation?.« less
Quantum Information in Non-physics Departments at Liberal Arts Colleges
NASA Astrophysics Data System (ADS)
Westmoreland, Michael
2012-02-01
Quantum information and quantum computing have changed our thinking about the basic concepts of quantum physics. These fields have also introduced exciting new applications of quantum mechanics such as quantum cryptography and non-interactive measurement. It is standard to teach such topics only to advanced physics majors who have completed coursework in quantum mechanics. Recent encounters with teaching quantum cryptography to non-majors and a bout of textbook-writing suggest strategies for teaching this interesting material to those without the standard quantum mechanics background. This talk will share some of those strategies.
On the realization of quantum Fisher information
NASA Astrophysics Data System (ADS)
Saha, Aparna; Talukdar, B.; Chatterjee, Supriya
2017-03-01
With special attention to the role of information theory in physical sciences we present analytical results for the coordinate- and momentum-space Fisher information of some important one-dimensional quantum systems which differ in spacing of their energy levels. The studies envisaged allow us to relate the coordinate-space information ({I}ρ ) with the familiar energy levels of the quantum system. The corresponding momentum-space information ({I}γ ) does not obey such a simple relationship with the energy spectrum. Our results for the product ({I}ρ {I}γ ) depend quadratically on the principal quantum number n and satisfy an appropriate uncertainty relation derived by Dehesa et al (2007 J. Phys. A: Math. Theor. 40 1845)
NASA Astrophysics Data System (ADS)
Lombardi, Olimpia; Fortin, Sebastian; Holik, Federico; López, Cristian
2017-04-01
Preface; Introduction; Part I. About the Concept of Information: 1. About the concept of information Sebastian Fortin and Olimpia Lombardi; 2. Representation, information, and theories of information Armond Duwell; 3. Information, communication, and manipulability Olimpia Lombardi and Cristian López; Part II. Information and quantum mechanics: 4. Quantum versus classical information Jeffrey Bub; 5. Quantum information and locality Dennis Dieks; 6. Pragmatic information in quantum mechanics Juan Roederer; 7. Interpretations of quantum theory: a map of madness Adán Cabello; Part III. Probability, Correlations, and Information: 8. On the tension between ontology and epistemology in quantum probabilities Amit Hagar; 9. Inferential versus dynamical conceptions of physics David Wallace; 10. Classical models for quantum information Federico Holik and Gustavo Martin Bosyk; 11. On the relative character of quantum correlations Guido Bellomo and Ángel Ricardo Plastino; Index.
Space and time in the quantum universe.
NASA Astrophysics Data System (ADS)
Smolin, L.
This paper is devoted to the problem of constructing a quantum theory that could describe a closed system - a quantum cosmology. The author argues that this problem is an aspect of a much older problem - that of how to eliminate from the physical theories "ideal elements", which are elements of the mathematical structure whose interpretation requires the existence of things outside the dynamical system described by the theory. This discussion is aimed at uncovering criteria that a theory of quantum cosmology must satisfy, if it is to give physically sensible predictions. The author proposes three such criteria and shows that conventional quantum cosmology can only satisfy them, if there is an intrinsic time coordinate on the phase space of the theory. It is shown that approaches based on correlations in the wave function, that do not use an inner product, cannot satisfy these criteria. As example, the author discusses the problem of quantizing a class of relational dynamical models invented by Barbour and Bertotti. The dynamical structure of these theories is closely analogous to general relativity, and the problem of their measurement theory is also similar. It is concluded that these theories can only be sensibly quantized if they contain an intrinsic time.
Anti-gravity: The key to 21st century physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noyes, H.P.
1993-01-01
The masses coupling constants and cosmological parameters obtained using our discrete and combinatorial physics based on discrimination between bit-strings indicate that we can achieve the unification of quantum mechanics with relativity which had become the goal of twentieth century physics. To broaden our case we show that limitations on measurement of the position and velocity of an individual massive particle observed in a colliding beam scattering experiment imply real, rational commutation relations between position and velocity. Prior to this limit being pushed down to quantum effects, the lower bound is set by the available technology, but is otherwise scale invariant.more » Replacing force by force per unit mass and force per unit charge allows us to take over the Feynman-Dyson proof of the Maxwell Equations and extend it to weak gravity. The crossing symmetry of the individual scattering processes when one or more particles are replaced by anti-particles predicts both Coulomb attraction (for charged particles) and a Newtonian repulsion between any particle and its anti-particle. Previous quantum results remain intact, and predict the expected relativistic fine structure and spin dependencies. Experimental confirmation of this anti-gravity prediction would inaugurate the physics of the twenty-first century.« less
Anti-gravity: The key to 21st century physics
NASA Astrophysics Data System (ADS)
Noyes, H. P.
1993-01-01
The masses coupling constants and cosmological parameters obtained using our discrete and combinatorial physics based on discrimination between bit-strings indicate that we can achieve the unification of quantum mechanics with relativity which had become the goal of twentieth century physics. To broaden our case we show that limitations on measurement of the position and velocity of an individual massive particle observed in a colliding beam scattering experiment imply real, rational commutation relations between position and velocity. Prior to this limit being pushed down to quantum effects, the lower bound is set by the available technology, but is otherwise scale invariant. Replacing force by force per unit mass and force per unit charge allows us to take over the Feynman-Dyson proof of the Maxwell Equations and extend it to weak gravity. The crossing symmetry of the individual scattering processes when one or more particles are replaced by anti-particles predicts both Coulomb attraction (for charged particles) and a Newtonian repulsion between any particle and its anti-particle. Previous quantum results remain intact, and predict the expected relativistic fine structure and spin dependencies. Experimental confirmation of this anti-gravity prediction would inaugurate the physics of the twenty-first century.
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I. K.
2002-01-01
This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.
Principle of maximum entanglement entropy and local physics of strongly correlated materials.
Lanatà, Nicola; Strand, Hugo U R; Yao, Yongxin; Kotliar, Gabriel
2014-07-18
We argue that, because of quantum entanglement, the local physics of strongly correlated materials at zero temperature is described in a very good approximation by a simple generalized Gibbs distribution, which depends on a relatively small number of local quantum thermodynamical potentials. We demonstrate that our statement is exact in certain limits and present numerical calculations of the iron compounds FeSe and FeTe and of the elemental cerium by employing the Gutzwiller approximation that strongly support our theory in general.
PREFACE: Advanced many-body and statistical methods in mesoscopic systems
NASA Astrophysics Data System (ADS)
Anghel, Dragos Victor; Sabin Delion, Doru; Sorin Paraoanu, Gheorghe
2012-02-01
It has increasingly been realized in recent times that the borders separating various subfields of physics are largely artificial. This is the case for nanoscale physics, physics of lower-dimensional systems and nuclear physics, where the advanced techniques of many-body theory developed in recent times could provide a unifying framework for these disciplines under the general name of mesoscopic physics. Other fields, such as quantum optics and quantum information, are increasingly using related methods. The 6-day conference 'Advanced many-body and statistical methods in mesoscopic systems' that took place in Constanta, Romania, between 27 June and 2 July 2011 was, we believe, a successful attempt at bridging an impressive list of topical research areas: foundations of quantum physics, equilibrium and non-equilibrium quantum statistics/fractional statistics, quantum transport, phases and phase transitions in mesoscopic systems/superfluidity and superconductivity, quantum electromechanical systems, quantum dissipation, dephasing, noise and decoherence, quantum information, spin systems and their dynamics, fundamental symmetries in mesoscopic systems, phase transitions, exactly solvable methods for mesoscopic systems, various extension of the random phase approximation, open quantum systems, clustering, decay and fission modes and systematic versus random behaviour of nuclear spectra. This event brought together participants from seventeen countries and five continents. Each of the participants brought considerable expertise in his/her field of research and, at the same time, was exposed to the newest results and methods coming from the other, seemingly remote, disciplines. The talks touched on subjects that are at the forefront of topical research areas and we hope that the resulting cross-fertilization of ideas will lead to new, interesting results from which everybody will benefit. We are grateful for the financial and organizational support from IFIN-HH, Ovidius University (where the conference took place), the Academy of Romanian Scientists and the Romanian National Authority for Scientific Research. This conference proceedings volume brings together some of the invited and contributed talks of the conference. The hope of the editors is that they will constitute reference material for applying many-body techniques to problems in mesoscopic and nuclear physics. We thank all the participants for their contribution to the success of this conference. D V Anghel and D S Delion IFIN-HH, Bucharest, Romania G S Paraoanu Aalto University, Finland Conference photograph
Quantum technology: from research to application
NASA Astrophysics Data System (ADS)
Schleich, Wolfgang P.; Ranade, Kedar S.; Anton, Christian; Arndt, Markus; Aspelmeyer, Markus; Bayer, Manfred; Berg, Gunnar; Calarco, Tommaso; Fuchs, Harald; Giacobino, Elisabeth; Grassl, Markus; Hänggi, Peter; Heckl, Wolfgang M.; Hertel, Ingolf-Volker; Huelga, Susana; Jelezko, Fedor; Keimer, Bernhard; Kotthaus, Jörg P.; Leuchs, Gerd; Lütkenhaus, Norbert; Maurer, Ueli; Pfau, Tilman; Plenio, Martin B.; Rasel, Ernst Maria; Renn, Ortwin; Silberhorn, Christine; Schiedmayer, Jörg; Schmitt-Landsiedel, Doris; Schönhammer, Kurt; Ustinov, Alexey; Walther, Philip; Weinfurter, Harald; Welzl, Emo; Wiesendanger, Roland; Wolf, Stefan; Zeilinger, Anton; Zoller, Peter
2016-05-01
The term quantum physics refers to the phenomena and characteristics of atomic and subatomic systems which cannot be explained by classical physics. Quantum physics has had a long tradition in Germany, going back nearly 100 years. Quantum physics is the foundation of many modern technologies. The first generation of quantum technology provides the basis for key areas such as semiconductor and laser technology. The "new" quantum technology, based on influencing individual quantum systems, has been the subject of research for about the last 20 years. Quantum technology has great economic potential due to its extensive research programs conducted in specialized quantum technology centres throughout the world. To be a viable and active participant in the economic potential of this field, the research infrastructure in Germany should be improved to facilitate more investigations in quantum technology research.
ERIC Educational Resources Information Center
Baily, Charles; Finkelstein, Noah D.
2015-01-01
Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to…
General Relativity without paradigm of space-time covariance, and resolution of the problem of time
NASA Astrophysics Data System (ADS)
Soo, Chopin; Yu, Hoi-Lai
2014-01-01
The framework of a theory of gravity from the quantum to the classical regime is presented. The paradigm shift from full space-time covariance to spatial diffeomorphism invariance, together with clean decomposition of the canonical structure, yield transparent physical dynamics and a resolution of the problem of time. The deep divide between quantum mechanics and conventional canonical formulations of quantum gravity is overcome with a Schrödinger equation for quantum geometrodynamics that describes evolution in intrinsic time. Unitary time development with gauge-invariant temporal ordering is also viable. All Kuchar observables become physical; and classical space-time, with direct correlation between its proper times and intrinsic time intervals, emerges from constructive interference. The framework not only yields a physical Hamiltonian for Einstein's theory, but also prompts natural extensions and improvements towards a well behaved quantum theory of gravity. It is a consistent canonical scheme to discuss Horava-Lifshitz theories with intrinsic time evolution, and of the many possible alternatives that respect 3-covariance (rather than the more restrictive 4-covariance of Einstein's theory), Horava's "detailed balance" form of the Hamiltonian constraint is essentially pinned down by this framework. Issues in quantum gravity that depend on radiative corrections and the rigorous definition and regularization of the Hamiltonian operator are not addressed in this work.
NASA Astrophysics Data System (ADS)
Doebner, H.-D.
2008-02-01
Ladies and Gentlemen Dear Friends and Colleagues I welcome you at the 5th International Symposium `Quantum Theory and Symmetries, QTS5' in Valladolid as Chairman of the Conference Board of this biannual series. The aim of the series is to arrange an international meeting place for scientists working in theoretical and mathematical physics, in mathematics, in mathematical biology and chemistry and in other sciences for the presentation and discussion of recent developments in connection with quantum physics and chemistry, material science and related further fields, like life sciences and engineering, which are based on mathematical methods which can be applied to model and to understand microphysical and other systems through inherent symmetries in their widest sense. These systems include, e.g., foundations and extensions of quantum theory; quantum probability; quantum optics and quantum information; the description of nonrelativistic, finite dimensional and chaotic systems; quantum field theory, particle physics, string theory and quantum gravity. Symmetries in their widest sense describe properties of a system which could be modelled, e.g., through geometry, group theory, topology, algebras, differential geometry, noncommutative geometry, functional analysis and approximation methods; numerical evaluation techniques are necessary to connect such symmetries with experimental results. If you ask for a more detailed characterisation of this notion a hand waving indirect answer is: Collect titles and contents of the contributions of the proceedings of QTS4 and get a characterisation through semantic closure. Quantum theory and its Symmetries was and is a diversified and rapidly growing field. The number of and the types of systems with an internal symmetry and the corresponding mathematical models develop fast. This is reflected in the content of the five former international symposia of this series: The first symposium, QTS1-1999, was organized in Goslar (Germany) with 170 participants and 89 contributions in the proceedings; it was centred on the foundations and extensions of quantum theory, on quantisation methods and on q-algebras. In QTS2-2001 in Cracow (Poland) with 175 participants and 81 contributions; the main topics were applications of quantum mechanics, representations of algebras and group theoretical techniques in physics. In the symposium QTS3-2003 in Cincinnati (USA) with 145 participants and 92 contributions, quantum field theory, loop quantum gravity, string and brane theory was discussed. The focus in QTS4-2005 in Varna (Bulgaria) with 228 participant and 105 contributions, was on conformal field theory, quantum gravity, noncommutative geometry and quantum groups. Three proceedings volumes were published with World Scientific and one volume with Heron Press. The promising and interesting programme for QTS5-2007 in Valladolid (Spain) attracted more than 200 participants; the contributions will be published in a special issue of Journal of Physics A: Mathematical and Theoretical and a volume of Journal of Physics: Conference Series. This shows the wide scope of symmetry in connection with quantum physics and related sciences. In the background of the symposia series is the Conference Board with presently 13 members. The Board encourages scientists and Institutions to present detailed proposals for a QTS symposium; it agrees to one proposal and is prepared to assist in matters of organisation; the local organisers are responsible for the scientific programme and for the organisation, including the budget. The Board decided that the next symposium QTS6 will be held 2009 at the University of Kentucky in Lexington (USA); Alan Shapere is the chairman of the Local Organizing committee. In the name of all of you I express my appreciation and my thanks to the members of the Local Organizing Committee of QTS5, especially to Mariano del Olmo. The programme is outstanding; it covers recent and new developments in our field. The organization is very effective and complete. We have all the necessary condition for a successful and smooth meeting. Thank you again Mariano. H-D Doebner Chairman of the Conference Board of QTS5
Innovative quantum technologies for microgravity fundamental physics and biological research
NASA Technical Reports Server (NTRS)
Kierk, I.; Israelsson, U.; Lee, M.
2001-01-01
This paper presents a new technology program, within the fundamental physics research program, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum fluid based sensor and modeling technology.
Gapless Spin Excitations in the Field-Induced Quantum Spin Liquid Phase of α -RuCl3
NASA Astrophysics Data System (ADS)
Zheng, Jiacheng; Ran, Kejing; Li, Tianrun; Wang, Jinghui; Wang, Pengshuai; Liu, Bin; Liu, Zheng-Xin; Normand, B.; Wen, Jinsheng; Yu, Weiqiang
2017-12-01
α -RuCl3 is a leading candidate material for the observation of physics related to the Kitaev quantum spin liquid (QSL). By combined susceptibility, specific-heat, and nuclear-magnetic-resonance measurements, we demonstrate that α -RuCl3 undergoes a quantum phase transition to a QSL in a magnetic field of 7.5 T applied in the a b plane. We show further that this high-field QSL phase has gapless spin excitations over a field range up to 16 T. This highly unconventional result, unknown in either Heisenberg or Kitaev magnets, offers insight essential to establishing the physics of α -RuCl3 .
On protection against a bright-pulse attack in the two-pass quantum cryptography system
NASA Astrophysics Data System (ADS)
Balygin, K. A.; Klimov, A. N.; Korol'kov, A. V.; Kulik, S. P.; Molotkov, S. N.
2016-06-01
The security of keys in quantum cryptography systems, in contrast to mathematical cryptographic algorithms, is guaranteed by fundamental quantum-mechanical laws. However, the cryptographic resistance of such systems, which are distributed physical devices, fundamentally depends on the method of their implementation and particularly on the calibration and control of critical parameters. The most important parameter is the number of photons in quasi-single-photon information states in a communication channel. The sensitivity to a bright-pulse attack has been demonstrated in an explicit form for a number of systems. A method guaranteeing the resistance to such attacks has been proposed and implemented. Furthermore, the relation of physical observables used and obtained at the control of quantum states to the length of final secret keys has been obtained for the first time.
Holography as a principle in quantum gravity?-Some historical and systematic observations
NASA Astrophysics Data System (ADS)
Sieroka, Norman; Mielke, Eckehard W.
2014-05-01
Holography is a fruitful concept in modern physics. However, there is no generally accepted definition of the term, and its significance, especially as a guiding principle in quantum gravity, is rather uncertain. The present paper critically evaluates variants of the holographic principle from two perspectives: (i) their relevance in contemporary approaches to quantum gravity and in closely related areas; (ii) their historical forerunners in the early twentieth century and the role played by past and present concepts of holography in attempts to unify physics. By combining these two perspectives a certain depth of focus is gained which allows us to draw some tentative conclusions about what might be reasonable aspirations and prospects for holography in quantum gravity. By the same token, we will have a brief and critical look at wider philosophical interpretations of the term.
From Feynman rules to conserved quantum numbers, I
NASA Astrophysics Data System (ADS)
Nogueira, P.
2017-05-01
In the context of Quantum Field Theory (QFT) there is often the need to find sets of graph-like diagrams (the so-called Feynman diagrams) for a given physical model. If negative, the answer to the related problem 'Are there any diagrams with this set of external fields?' may settle certain physical questions at once. Here the latter problem is formulated in terms of a system of linear diophantine equations derived from the Lagrangian density, from which necessary conditions for the existence of the required diagrams may be obtained. Those conditions are equalities that look like either linear diophantine equations or linear modular (i.e. congruence) equations, and may be found by means of fairly simple algorithms that involve integer computations. The diophantine equations so obtained represent (particle) number conservation rules, and are related to the conserved (additive) quantum numbers that may be assigned to the fields of the model.
Biofield Science: Current Physics Perspectives
Chevalier, Gaétan; Chopra, Deepak; Hubacher, John; Kak, Subhash; Theise, Neil D.
2015-01-01
This article briefly reviews the biofield hypothesis and its scientific literature. Evidence for the existence of the biofield now exists, and current theoretical foundations are now being developed. A review of the biofield and related topics from the perspective of physical science is needed to identify a common body of knowledge and evaluate possible underlying principles of origin of the biofield. The properties of such a field could be based on electromagnetic fields, coherent states, biophotons, quantum and quantum-like processes, and ultimately the quantum vacuum. Given this evidence, we intend to inquire and discuss how the existence of the biofield challenges reductionist approaches and presents its own challenges regarding the origin and source of the biofield, the specific evidence for its existence, its relation to biology, and last but not least, how it may inform an integrated understanding of consciousness and the living universe. PMID:26665039
Quantum metabolism explains the allometric scaling of metabolic rates.
Demetrius, Lloyd; Tuszynski, J A
2010-03-06
A general model explaining the origin of allometric laws of physiology is proposed based on coupled energy-transducing oscillator networks embedded in a physical d-dimensional space (d = 1, 2, 3). This approach integrates Mitchell's theory of chemi-osmosis with the Debye model of the thermal properties of solids. We derive a scaling rule that relates the energy generated by redox reactions in cells, the dimensionality of the physical space and the mean cycle time. Two major regimes are found corresponding to classical and quantum behaviour. The classical behaviour leads to allometric isometry while the quantum regime leads to scaling laws relating metabolic rate and body size that cover a broad range of exponents that depend on dimensionality and specific parameter values. The regimes are consistent with a range of behaviours encountered in micelles, plants and animals and provide a conceptual framework for a theory of the metabolic function of living systems.
Sarkar, Sujit
2018-04-12
An attempt is made to study and understand the behavior of quantization of geometric phase of a quantum Ising chain with long range interaction. We show the existence of integer and fractional topological characterization for this model Hamiltonian with different quantization condition and also the different quantized value of geometric phase. The quantum critical lines behave differently from the perspective of topological characterization. The results of duality and its relation to the topological quantization is presented here. The symmetry study for this model Hamiltonian is also presented. Our results indicate that the Zak phase is not the proper physical parameter to describe the topological characterization of system with long range interaction. We also present quite a few exact solutions with physical explanation. Finally we present the relation between duality, symmetry and topological characterization. Our work provides a new perspective on topological quantization.
Foundations of Quantum Mechanics and Quantum Computation
NASA Astrophysics Data System (ADS)
Aspect, Alain; Leggett, Anthony; Preskill, John; Durt, Thomas; Pironio, Stefano
2013-03-01
I ask the question: What can we infer about the nature and structure of the physical world (a) from experiments already done to test the predictions of quantum mechanics (b) from the assumption that all future experiments will agree with those predictions? I discuss existing and projected experiments related to the two classic paradoxes of quantum mechanics, named respectively for EPR and Schrödinger's Cat, and show in particular that one natural conclusion from both types of experiment implies the abandonment of the concept of macroscopic counterfactual definiteness.
The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deta, U. A., E-mail: utamaalan@yahoo.co.id, E-mail: utamadeta@unesa.ac.id; Suparmi
2015-09-30
Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.
Quantum Talk: How Small-Group Discussions May Enhance Students' Understanding in Quantum Physics
ERIC Educational Resources Information Center
Bungum, Berit; Bøe, Maria Vetleseter; Henriksen, Ellen Karoline
2018-01-01
Quantum physics challenges our views of the physical world and describes phenomena that cannot be directly observed. The use of language is hence essential in the teaching of quantum physics. With a sociocultural view of learning, we investigate characteristics of preuniversity students' small-group discussions and their potential for enhancing…
Mathematical Sense-Making in Quantum Mechanics: An Initial Peek
ERIC Educational Resources Information Center
Dreyfus, Benjamin W.; Elby, Andrew; Gupta, Ayush; Sohr, Erin Ronayne
2017-01-01
Mathematical sense-making--looking for coherence between the structure of the mathematical formalism and causal or functional relations in the world--is a core component of physics expertise. Some physics education research studies have explored what mathematical sense-making looks like at the introductory physics level, while some historians and…
A Century of PhysicsÂThe Future of Renewable Energy
Society (APS) and the role of physics in the 20th century. Advancements in physics and related fields of world. Several story ideas can be developed to explore the role of physics in energy development for a wind turbine blade? How do scientists use physics, including quantum and solid-state physics
Consciousness, the brain, and spacetime geometry.
Hameroff, S
2001-04-01
What is consciousness? Conventional approaches see it as an emergent property of complex interactions among individual neurons; however these approaches fail to address enigmatic features of consciousness. Accordingly, some philosophers have contended that "qualia," or an experiential medium from which consciousness is derived, exists as a fundamental component of reality. Whitehead, for example, described the universe as being composed of "occasions of experience." To examine this possibility scientifically, the very nature of physical reality must be re-examined. We must come to terms with the physics of spacetime--as described by Einstein's general theory of relativity, and its relation to the fundamental theory of matter--as described by quantum theory. Roger Penrose has proposed a new physics of objective reduction: "OR," which appeals to a form of quantum gravity to provide a useful description of fundamental processes at the quantum/classical borderline. Within the OR scheme, we consider that consciousness occurs if an appropriately organized system is able to develop and maintain quantum coherent superposition until a specific "objective" criterion (a threshold related to quantum gravity) is reached; the coherent system then self-reduces (objective reduction: OR). We contend that this type of objective self-collapse introduces non-computability, an essential feature of consciousness which distinguishes our minds from classical computers. Each OR is taken as an instantaneous event--the climax of a self-organizing process in fundamental spacetime--and a candidate for a conscious Whitehead "occasion of experience." How could an OR process occur in the brain, be coupled to neural activities, and account for other features of consciousness? We nominate a quantum computational OR process with the requisite characteristics to be occurring in cytoskeletal micro-tubules within the brain's neurons. In this model, quantum-superposed states develop in microtubule subunit proteins ("tubulins") within certain brain neurons, remain coherent, and recruit more superposed tubulins until a mass-time-energy threshold (related to quantum gravity) is reached. At that point, self-collapse, or objective reduction (OR), abruptly occurs. We equate the pre-reduction, coherent superposition ("quantum computing") phase with pre-conscious processes, and each instantaneous (and non-computable) OR, or self-collapse, with a discrete conscious event. Sequences of OR events give rise to a "stream" of consciousness. Microtubule-associated proteins can "tune" the quantum oscillations of the coherent superposed states; the OR is thus self-organized, or "orchestrated" ("Orch OR"). Each Orch OR event selects (non-computably) microtubule subunit states which regulate synaptic/neural functions using classical signaling. The quantum gravity threshold for self-collapse is relevant to consciousness, according to our arguments, because macroscopic superposed quantum states each have their own spacetime geometries. These geometries are also superposed, and in some way "separated," but when sufficiently separated, the superposition of spacetime geometries becomes significantly unstable and reduces to a single universe state. Quantum gravity determines the limits of the instability; we contend that the actual choice of state made by Nature is non-computable. Thus each Orch OR event is a self-selection of spacetime geometry, coupled to the brain through microtubules and other biomolecules. If conscious experience is intimately connected with the very physics underlying spacetime structure, then Orch OR in microtubules indeed provides us with a completely new and uniquely promising perspective on the difficult problems of consciousness.
The solution of the sixth Hilbert problem: the ultimate Galilean revolution
NASA Astrophysics Data System (ADS)
D'Ariano, Giacomo Mauro
2018-04-01
I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: `physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as `clock', `rigid rod', `force', `inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory. This article is part of the theme issue `Hilbert's sixth problem'.
The solution of the sixth Hilbert problem: the ultimate Galilean revolution.
D'Ariano, Giacomo Mauro
2018-04-28
I argue for a full mathematization of the physical theory, including its axioms, which must contain no physical primitives. In provocative words: 'physics from no physics'. Although this may seem an oxymoron, it is the royal road to keep complete logical coherence, hence falsifiability of the theory. For such a purely mathematical theory the physical connotation must pertain only the interpretation of the mathematics, ranging from the axioms to the final theorems. On the contrary, the postulates of the two current major physical theories either do not have physical interpretation (as for von Neumann's axioms for quantum theory), or contain physical primitives as 'clock', 'rigid rod', 'force', 'inertial mass' (as for special relativity and mechanics). A purely mathematical theory as proposed here, though with limited (but relentlessly growing) domain of applicability, will have the eternal validity of mathematical truth. It will be a theory on which natural sciences can firmly rely. Such kind of theory is what I consider to be the solution of the sixth Hilbert problem. I argue that a prototype example of such a mathematical theory is provided by the novel algorithmic paradigm for physics, as in the recent information-theoretical derivation of quantum theory and free quantum field theory.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
Quantum critical scaling near the antiferromagnetic quantum critical point in CeCu6-xPdx
NASA Astrophysics Data System (ADS)
Wu, Liusuo; Poudel, L.; May, A. F.; Nelson, W. L.; Gallagher, A.; Lai, Y.; Graf, D. E.; Besara, T.; Siegrist, T. M.; Baumbach, R.; Ehlers, G.; Podlesnyak, A. A.; Lumsden, M. D.; Mandrus, D.; Christianson, A. D.
A remarkable behavior of many quantum critical systems is the scaling of physical properties such as the dynamic susceptibility near a quantum critical point (QCP), where Fermi liquid physics usually break down. The quantum critical behavior in the vicinity of a QCP in metallic systems remains an important open question. In particular, a self-consistent universal scaling of both magnetic susceptibility and the specific heat remains missing for most cases. Recently, we have studied CeCu6-xTx (T =Au, Ag, Pd), which is a prototypical heavy fermion material that hosts an antiferromagnetic (AF) QCP. We have investigated the low temperature thermal properties including the specific heat and magnetic susceptibility. We also investigated the spin fluctuation spectrum at both critical doping and within the magnetically ordered phase. A key finding is the spin excitations exhibit a strong Ising character, resulting in the strong suppression of transverse fluctuations. A detailed scaling analysis of the quantum critical behaviors relating the thermodynamic properties to the dynamic susceptibility will be presented. DOE, ORNL LDRD.
The Second Law and Quantum Physics
NASA Astrophysics Data System (ADS)
Bennett, Charles H.
2008-08-01
In this talk, I discuss the mystery of the second law and its relation to quantum information. There are many explanations of the second law, mostly satisfactory and not mutually exclusive. Here, I advocate quantum mechanics and quantum information as something that, through entanglement, helps resolve the paradox or the puzzle of the origin of the second law. I will discuss the interpretation called quantum Darwinism and how it helps explain why our world seems so classical, and what it has to say about the permanence or transience of information. And I will discuss a simple model illustrating why systems away from thermal equilibrium tend to be more complicated.
Physics of lateral triple quantum-dot molecules with controlled electron numbers.
Hsieh, Chang-Yu; Shim, Yun-Pil; Korkusinski, Marek; Hawrylak, Pawel
2012-11-01
We review the recent progress in theory and experiments with lateral triple quantum dots with controlled electron numbers down to one electron in each dot. The theory covers electronic and spin properties as a function of topology, number of electrons, gate voltage and external magnetic field. The orbital Hund's rules and Nagaoka ferromagnetism, magnetic frustration and chirality, interplay of quantum interference and electron-electron interactions and geometrical phases are described and related to charging and transport spectroscopy. Fabrication techniques and recent experiments are covered, as well as potential applications of triple quantum-dot molecule in coherent control, spin manipulation and quantum computation.
Physics at the FMQT’08 conference
NASA Astrophysics Data System (ADS)
Špička, V.; Nieuwenhuizen, Th. M.; Keefe, P. D.
2010-01-01
This paper summarizes the recent state of the art of the following topics presented at the FQMT’08 conference: Foundations of quantum physics, Quantum measurement; Quantum noise, decoherence and dephasing; Cold atoms and Bose-Einstein condensation; Physics of quantum computing and information; Nonequilibrium quantum statistical mechanics; Quantum, mesoscopic and partly classical thermodynamics; Mesoscopic, nano-electro-mechanical systems and optomechanical systems; Spins systems and their dynamics, Brownian motion and molecular motors; Physics of biological systems, and Relevant experiments from the nanoscale to the macroscale. To all these subjects an introduction is given and the recent literature is overviewed. The paper contains some 680 references in total.
Physics of frequency-modulated comb generation in quantum-well diode lasers
NASA Astrophysics Data System (ADS)
Dong, Mark; Cundiff, Steven T.; Winful, Herbert G.
2018-05-01
We investigate the physical origin of frequency-modulated combs generated from single-section semiconductor diode lasers based on quantum wells, isolating the essential physics necessary for comb generation. We find that the two effects necessary for comb generation—spatial hole burning (leading to multimode operation) and four-wave mixing (leading to phase locking)—are indeed present in some quantum-well systems. The physics of comb generation in quantum wells is similar to that in quantum dot and quantum cascade lasers. We discuss the nature of the spectral phase and some important material parameters of these diode lasers.
Horizon quantum fuzziness for non-singular black holes
NASA Astrophysics Data System (ADS)
Giugno, Andrea; Giusti, Andrea; Helou, Alexis
2018-03-01
We study the extent of quantum gravitational effects in the internal region of non-singular, Hayward-like solutions of Einstein's field equations according to the formalism known as horizon quantum mechanics. We grant a microscopic description to the horizon by considering a huge number of soft, off-shell gravitons, which superimpose in the same quantum state, as suggested by Dvali and Gomez. In addition to that, the constituents of such a configuration are understood as loosely confined in a binding harmonic potential. A simple analysis shows that the resolution of a central singularity through quantum physics does not tarnish the classical description, which is bestowed upon this extended self-gravitating system by General Relativity. Finally, we estimate the appearance of an internal horizon as being negligible, because of the suppression of the related probability caused by the large number of virtual gravitons.
Augmenting Phase Space Quantization to Introduce Additional Physical Effects
NASA Astrophysics Data System (ADS)
Robbins, Matthew P. G.
Quantum mechanics can be done using classical phase space functions and a star product. The state of the system is described by a quasi-probability distribution. A classical system can be quantized in phase space in different ways with different quasi-probability distributions and star products. A transition differential operator relates different phase space quantizations. The objective of this thesis is to introduce additional physical effects into the process of quantization by using the transition operator. As prototypical examples, we first look at the coarse-graining of the Wigner function and the damped simple harmonic oscillator. By generalizing the transition operator and star product to also be functions of the position and momentum, we show that additional physical features beyond damping and coarse-graining can be introduced into a quantum system, including the generalized uncertainty principle of quantum gravity phenomenology, driving forces, and decoherence.
Third International Workshop on Squeezed States and Uncertainty Relations
NASA Technical Reports Server (NTRS)
Han, D. (Editor); Kim, Y. S. (Editor); Rubin, Morton H. (Editor); Shih, Yan-Hua (Editor); Zachary, Woodford W. (Editor)
1994-01-01
The purpose of these workshops is to bring together an international selection of scientists to discuss the latest developments in Squeezed States in various branches of physics, and in the understanding of the foundations of quantum mechanics. At the third workshop, special attention was given to the influence that quantum optics is having on our understanding of quantum measurement theory. The fourth meeting in this series will be held in the People's Republic of China.
NASA Astrophysics Data System (ADS)
Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna
2017-06-01
In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent research reporting the fragmentation of students' mental models of quantum concepts after initial instruction, we collected and analyzed data using the assessment tools provided by knowledge integration theory. Our results on the group of n =14 students who performed the final test indicate that the functional explanation of wave particle duality provided by the sum over paths approach may be effective in leading students to build consistent mental models of quantum objects, and in providing them with a unified perspective on both the photon and the electron. Results on the uncertainty principle are less clear cut, as the improvements over traditional instruction appear less significant. Given the low number of students in the sample, this work should be interpreted as a case study, and we do not attempt to draw definitive conclusions. However, our study suggests that (i) the sum over paths approach may deserve more attention from researchers and educators as a possible route to introduce basic concepts of quantum physics in high school, and (ii) more research should be focused not only on the correctness of students' mental models on individual concepts, but also on the ability of students to connect different ideas and experiments related to quantum theory in an organized whole.
ERIC Educational Resources Information Center
Kizilcik, Hasan Sahin; Yavas, Pervin Ünlü
2017-01-01
The aim of this study is to identify the opinions of pre-service physics teachers about the difficulties in introductory quantum physics topics. In this study conducted with twenty-five pre-service physics teachers, the case study method was used. The participants were interviewed about introductory quantum physics topics. The interviews were…
NASA Astrophysics Data System (ADS)
Kiefer, C.
2005-10-01
The most difficult unsolved problem in fundamental theoretical physics is the consistent implementation of the gravitational interaction into a quantum framework, which would lead to a theory of quantum gravity. Although a final answer is still pending, several promising attempts do exist. Despite the general title, this book is about one of them - loop quantum gravity. This approach proceeds from the idea that a direct quantization of Einstein's theory of general relativity is possible. In contrast to string theory, it presupposes that the unification of all interactions is not needed as a prerequisite for quantum gravity. Usually one divides theories of quantum general relativity into covariant and canonical approaches. Covariant theories employ four-dimensional concepts in its formulation, one example being the path integral approach. Canonical theories start from a classical Hamiltonian version of the theory in which spacetime is foliated into spacelike hypersurfaces. Loop quantum gravity is a variant of the canonical approach, the oldest being quantum geometrodynamics where the fundamental configuration variable is the three-metric. Loop quantum gravity has developed from a new choice of canonical variables introduced by Abhay Ashtekar in 1986, the new configuration variable being a connection defined on a three-manifold. Instead of the connection itself, the loop approach employs a non-local version in which the connection is integrated over closed loops. This is similar to the Wilson loops used in gauge theories. Carlo Rovelli is one of the pioneers of loop quantum gravity which he started to develop with Lee Smolin in two papers written in 1988 and 1990. In his book, he presents a comprehensive and competent overview of this approach and provides at the same time the necessary technical background in order to make the treatment self-contained. In fact, half of the book is devoted to 'preparations' giving a detailed account of Hamiltonian mechanics, quantum mechanics, general relativity and other topics. According to the level of the reader, this part can be skipped or studied as interesting material on its own. The penetrating theme of the whole book (its leitmotiv) is background independence. In non-gravitational theories, dynamical fields are formulated on a fixed background spacetime that plays the role of an absolute structure in the theory. In general relativity, on the other hand, there is no background structure - all fields are dynamical. This was a confusing point already during the development of general relativity and led Albert Einstein in 1913 erroneously to give up general covariance before recognizing his error and presenting his final correct field equations that are of course covariant. This story is instructive, circling around the famous 'hole problem', and is told in detail in Rovelli's book. Its solution is that points on a bare manifold do not make sense in physics; everything, including the gravitational field, is dragged around by a diffeomorphism - there is just no background available, only the fields exist. In loop quantum gravity, physical space (called 'quantum geometry') itself is formed by loop-like quantum states: a suitable orthonormal basis is provided by spin-network states (a spin-network is a graph with edges and nodes, where spins are assigned to the edges), and the quantum geometry is a superposition of such states. Time and space in the usual sense have disappeared. In the second half of his book, Rovelli discusses at length the major successes of this approach. First of all, the formalism yields a unique kinematical Hilbert space for the quantum states obeying the Gauss and diffeomorphism constraints. The situation with the Hamiltonian constraint is more subtle. The need for a Hilbert-space structure in quantum gravity is, however, not discussed. After all, the Hilbert-space structure in quantum mechanics is tied to the presence of an external time and the conservation of probability with respect to this external time. But in quantum gravity there is no background structure, in particular no external time. Secondly, there exist two important operators that are connected, respectively, with area and volume in the classical limit. These operators have a discrete spectrum and thus provide elementary 'quanta' of area and volume. This gives a vague hint of a discrete structure at the Planck scale, about which there were speculations for many decades. In spite of these promising results, loop quantum gravity is still far away from a physical theory. This is also reflected in this volume where the technical treatment prevails and where physical applications are relegated to about 20 pages. These applications deal with quantum cosmology and black holes. The part on loop quantum cosmology summarizes briefly recent results about a possible singularity avoidance and a new mechanism for inflation. These results are not derived from loop quantum gravity but from imposing the discrete structure of the full theory directly on the quantum cosmological models. The part on black holes discusses the derivation of the Bekenstein-Hawking entropy from counting the number of relevant spin-network states. Since the theory contains a free parameter (the 'Barbero-Immirzi parameter'), the best one can do is to determine this parameter by demanding that the result be the Bekenstein-Hawking entropy. The book does not yet contain the results of recent papers, published in 2004, that correct the earlier entropy calculations presented here. From the new value of the Barbero-Immirzi parameter, the appealing connection with quasi-normal modes, as discussed in the book, may be lost. The book concludes with a brief discussion of the major open issues. Among these are the following: a well-defined and physically sensible semiclassical limit, the precise form of the Hamiltonian, the role of unification (most of the work in loop quantum gravity deals only with pure gravity) and, last but not least, the issue of quantitative and testable predictions. Whether loop quantum gravity will become a physical theory is not clear. Nor is this clear for string theory or any other approach. However, loop quantum gravity provides a fascinating line of research and has much conceptual appeal. The present volume gives both an introduction and a review of this approach, making it suitable for advanced students as well as experts. It is certainly of interest for the readers of Classical and Quantum Gravity.
Nesvizhevsky, Valery
2018-05-14
We will discuss the scientific program to be studied in a new gravitational spectrometer GRANIT in a broad context of quantum states (quantum behaviour) of ultracold neutrons (UCN) in gravitational [1] and centrifugal [2] potentials, as well as applications of these phenomena/spectrometer to various domains of physics, ranging from studies of fundamental short-range interactions and symmetries to neutron quantum optics and reflectometry using UCN. All these topics, as well as related instrumental and methodical developments have been discussed during dedicated GRANIT-2010 Workshop [3]. The GRANIT spectrometer has been recently installed at the Institut Laue-Langevin, Grenoble, France [4] and could become operational in near future. 1. V.V. Nesvizhevsky et al (2002), Nature 415, 297. 2. V.V. Nesvizhevsky et al (2010), Nature Physics 6, 114. 3. GRANIT-2010, Les Houches, 14-19 february 2010. 4. M. Kreuz et al (2009), NIM 611, 326.
The QUANTGRID Project (RO)—Quantum Security in GRID Computing Applications
NASA Astrophysics Data System (ADS)
Dima, M.; Dulea, M.; Petre, M.; Petre, C.; Mitrica, B.; Stoica, M.; Udrea, M.; Sterian, R.; Sterian, P.
2010-01-01
The QUANTGRID Project, financed through the National Center for Programme Management (CNMP-Romania), is the first attempt at using Quantum Crypted Communications (QCC) in large scale operations, such as GRID Computing, and conceivably in the years ahead in the banking sector and other security tight communications. In relation with the GRID activities of the Center for Computing & Communications (Nat.'l Inst. Nucl. Phys.—IFIN-HH), the Quantum Optics Lab. (Nat.'l Inst. Plasma and Lasers—INFLPR) and the Physics Dept. (University Polytechnica—UPB) the project will build a demonstrator infrastructure for this technology. The status of the project in its incipient phase is reported, featuring tests for communications in classical security mode: socket level communications under AES (Advanced Encryption Std.), both proprietary code in C++ technology. An outline of the planned undertaking of the project is communicated, highlighting its impact in quantum physics, coherent optics and information technology.
Problems in particle theory. Technical report - 1993--1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adler, S.L.; Wilczek, F.
This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed abovemore » (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) Acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition. (2) Construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space.« less
Physical realization of quantum teleportation for a nonmaximal entangled state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori
2010-08-15
Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis Quantum Probability and Related Topics 10, 411 (2007)]. To discuss a physical realization of the K-O scheme, we propose a model based on quantum optics. In our model, we take a superposition of Schroedinger's cat states as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state through a beam splitter. When the average photon number for our input states is equalmore » to half the number of photons into the beam splitter, our model has high fidelity.« less
Is There Any Physics After the End of the Nineteenth Century?
ERIC Educational Resources Information Center
Aubrecht, Gordon J., II
The twentieth century has witnessed a burst of discovery in physics unparalleled in human history. Despite the fact that general relativity and quantum mechanics are well over half a century old, introductory physics classes in high schools, colleges, and universities essentially ignore them. These two seminal ideas, the phenomena of…
NASA Astrophysics Data System (ADS)
Kahn, Yoni; Anderson, Adam
2018-03-01
Preface; How to use this book; Resources; 1. Classical mechanics; 2. Electricity and magnetism; 3. Optics and waves; 4. Thermodynamics and statistical mechanics; 5. Quantum mechanics and atomic physics; 6. Special relativity; 7. Laboratory methods; 8. Specialized topics; 9. Special tips and tricks for the Physics GRE; Sample exams and solutions; References; Equation index; Subject index; Problems index.
Practical Quantum Realization of the Ampere from the Elementary Charge
NASA Astrophysics Data System (ADS)
Brun-Picard, J.; Djordjevic, S.; Leprat, D.; Schopfer, F.; Poirier, W.
2016-10-01
One major change of the future revision of the International System of Units is a new definition of the ampere based on the elementary charge e . Replacing the former definition based on Ampère's force law will allow one to fully benefit from quantum physics to realize the ampere. However, a quantum realization of the ampere from e , accurate to within 10-8 in relative value and fulfilling traceability needs, is still missing despite the many efforts made for the development of single-electron tunneling devices. Starting again with Ohm's law, applied here in a quantum circuit combining the quantum Hall resistance and Josephson voltage standards with a superconducting cryogenic amplifier, we report on a practical and universal programmable quantum current generator. We demonstrate that currents generated in the milliampere range are accurately quantized in terms of e fJ (fJ is the Josephson frequency) with measurement uncertainty of 10-8. This new quantum current source, which is able to deliver such accurate currents down to the microampere range, can greatly improve the current measurement traceability, as demonstrated with the calibrations of digital ammeters. In addition, it opens the way to further developments in metrology and in fundamental physics, such as a quantum multimeter or new accurate comparisons to single-electron pumps.
EDITORIAL: Squeeze transformation and optics after Einstein
NASA Astrophysics Data System (ADS)
Kim, Young S.; Man'ko, Margarita A.; Planat, Michel
2005-12-01
With this special issue, Journal of Optics B: Quantum and Semiclassical Optics contributes to the celebration of the World Year of Physics held in recognition of five brilliant papers written by Albert Einstein in 1905. There is no need to explain to the readers of this journal the content and importance of these papers, which are cornerstones of modern physics. The 51 contributions in this special issue represent current trends in quantum optics —100 years after the concept of light quanta was introduced. At first glance, in his famous papers of 1905, Einstein treated quite independent subjects—special relativity, the nature and statistical properties of light, electrodynamics of moving bodies and Brownian motion. We now know that all these phenomena are deeply related, and these relations are clearly shown in many papers in this issue. Most of the papers are based on the talks and poster contributions from participants of the 9th International Conference on Squeezed States and Uncertainty Relations (ICSSUR'05), which took place in Besançon, France, 2-6 May, 2005. This was the continuation of a series of meetings, originating with the first workshops organized by Professor Y S Kim at the University of Maryland, College Park, USA, in 1991 and by Professor V I Man'ko at the Lebedev Physical Institute, Moscow in 1992. One of the main topics of ICSSUR'05 and this special issue is the theory and applications of squeezed states and their generalizations. At first glance, one could think that this subject has no relation to Einstein's papers. However, this is not true: the theory of squeezed states is deeply related to special relativity, as far as it is based on the representations of the Lorentz group (see the paper by Kim Y S and Noz M E, S458-S467), which also links the current concepts of entanglement and decoherence with Lorentz-covariance. Besides, studies of the different quantum states of light imply, after all, the study of photon (or photo-electron) statistics and fluctuations of the electromagnetic field, whose importance was first emphasized by Einstein in 1905. The squeezed states can also be considered as a generalization of the concept of coherent states, which turned out to be one of the most important theoretical tools for solving the numerous problems of quantum optics. It seems highly symbolical that the printed version of this special issue will appear in the same month when one of the prominent creators of the theory of coherent states and modern quantum optics—Professor Roy J Glauber—will receive his Nobel Prize in Stockholm. ICSSUR'05 was opened by the invited talk of R J Glauber, `What makes a quantum jump?', and we take great pleasure in congratulating him on this well deserved award. We are sure that all participants of ICSSUR'05 and all readers of this special issue share our feelings. Two other Nobel Prize winners of 2005—Professor J L Hall and Professor T W H\\"ansch—also made great contributions to quantum optics. In particular, in 1986, J L Hall with collaborators, performed the first experiments on the generation of squeezed states by parametric down conversion, having obtained squeezing at the 50% level (Wu L A, Kimble H J, Hall J L and Wu H 1986 Phys. Rev. Lett. 57 2520). Another area, which has attracted the attention of many researchers in the past decade and which is well represented in this special issue, is related to the problems of quantum correlations, entanglement and quantum nonlocality. It is also connected with the name of Einstein due to his famous `EPR' paper of 1935 written together with Podolsky and Rosen. For several decades this was an area of `thought experiments' only, but now this field is becoming a new part of physics, known as `quantum information'. The reader can find several papers which introduce new concepts in this area, such as applications of the Galois algebras and discrete Wigner functions. Solutions of different problems of the interaction between light and matter (which also take their origin in Einstein's paper of 1905), stationary and nonstationary Casimir effect, decoherence, new forms of uncertainty relations and their experimental verification, etc, can also be found in this issue. Many other contributions will be published in another special issue of the International Journal of Modern Physics B entitled `Quantum Information in Modern Optics'. This special issue is also the last issue of Journal of Optics B: Quantum and Semiclassical Optics. For the past 15 years this journal and its predecessors—Quantum Optics and Quantum and Semiclassical Optics—gained great respect among the quantum optics community. Many breakthrough papers were published in its pages during this period (see, for example, Schrade G, Man'ko V I, Schleich W P and Glauber R J 1995 Wigner Functions in the Paul trap Quantum Semiclass. Opt. 7 307). Since 1999, Journal of Optics B: Quantum and Semiclassical Optics has published a special issue for each ICSSUR meeting. This is the fourth issue of this series. We would like to thank Institute of Physics Publishing and the staff of Journal of Optics B: Quantum and Semiclassical Optics for providing the opportunity to pursue this programme, hoping that such a cooperation will continue in the future. We would also like to thank the many colleagues, who served as referees and whose efforts helped immensely in the preparation of this issue at such a high standard. The 10th ICSSUR conference will be organized for 2007 in Bradford, UK, by Professor A Vourdas. We invite readers to join us in two years.
Fifth International Conference on Squeezed States and Uncertainty Relations
NASA Technical Reports Server (NTRS)
Han, D. (Editor); Janszky, J. (Editor); Kim, Y. S. (Editor); Man'ko, V. I. (Editor)
1998-01-01
The Fifth International Conference on Squeezed States and Uncertainty Relations was held at Balatonfured, Hungary, on 27-31 May 1997. This series was initiated in 1991 at the College Park Campus of the University of Maryland as the Workshop on Squeezed States and Uncertainty Relations. The scientific purpose of this series was to discuss squeezed states of light, but in recent years the scope is becoming broad enough to include studies of uncertainty relations and squeeze transformations in all branches of physics including quantum optics and foundations of quantum mechanics. Quantum optics will continue playing the pivotal role in the future, but the future meetings will include all branches of physics where squeeze transformations are basic. As the meeting attracted more participants and started covering more diversified subjects, the fourth meeting was called an international conference. The Fourth International Conference on Squeezed States and Uncertainty Relations was held in 1995 was hosted by Shanxi University in Taiyuan, China. The fifth meeting of this series, which was held at Balatonfured, Hungary, was also supported by the IUPAP. In 1999, the Sixth International Conference will be hosted by the University of Naples in 1999. The meeting will take place in Ravello near Naples.
A Holoinformational Model of the Physical Observer
NASA Astrophysics Data System (ADS)
di Biase, Francisco
2013-09-01
The author proposes a holoinformational view of the observer based, on the holonomic theory of brain/mind function and quantum brain dynamics developed by Karl Pribram, Sir John Eccles, R.L. Amoroso, Hameroff, Jibu and Yasue, and in the quantumholographic and holomovement theory of David Bohm. This conceptual framework is integrated with nonlocal information properties of the Quantum Field Theory of Umesawa, with the concept of negentropy, order, and organization developed by Shannon, Wiener, Szilard and Brillouin, and to the theories of self-organization and complexity of Prigogine, Atlan, Jantsch and Kauffman. Wheeler's "it from bit" concept of a participatory universe, and the developments of the physics of information made by Zureck and others with the concepts of statistical entropy and algorithmic entropy, related to the number of bits being processed in the mind of the observer are also considered. This new synthesis gives a self-organizing quantum nonlocal informational basis for a new model of awareness in a participatory universe. In this synthesis, awareness is conceived as meaningful quantum nonlocal information interconnecting the brain and the cosmos, by a holoinformational unified field (integrating nonlocal holistic (quantum) and local (Newtonian). We propose that the cosmology of the physical observer is this unified nonlocal quantum-holographic cosmos manifesting itself through awareness, interconnected in a participatory holistic and indivisible way the human mind-brain to all levels of the self-organizing holographic anthropic multiverse.
Butterfly in the Quantum World; The story of the most fascinating quantum fractal
NASA Astrophysics Data System (ADS)
Satija, Indubala I.
2016-08-01
``Butterfly in the Quantum World'' by Indu Satija, with contributions by Douglas Hofstadter, is the first book ever to tell the story of the ``Hofstadter butterfly'', a beautiful and fascinating graph lying at the heart of the quantum theory of matter. The butterfly came out of a simple-sounding question: What happens if you immerse a crystal in a magnetic field? What energies can the electrons take on? From 1930 onwards, physicists struggled to answer this question, until 1974, when graduate student Douglas Hofstadter discovered that the answer was a graph consisting of nothing but copies of itself nested down infinitely many times. This wild mathematical object caught the physics world totally by surprise, and it continues to mesmerize physicists and mathematicians today. The butterfly plot is intimately related to many other important phenomena in number theory and physics, including Apollonian gaskets, the Foucault pendulum, quasicrystals, the quantum Hall effect, and many more. Its story reflects the magic, the mystery, and the simplicity of the laws of nature, and Indu Satija, in a wonderfully personal style, relates this story, enriching it with a vast number of lively historical anecdotes, many photographs, beautiful visual images, and even poems, making her book a great feast, for the eyes, for the mind and for the soul.
On total noncommutativity in quantum mechanics
NASA Astrophysics Data System (ADS)
Lahti, Pekka J.; Ylinen, Kari
1987-11-01
It is shown within the Hilbert space formulation of quantum mechanics that the total noncommutativity of any two physical quantities is necessary for their satisfying the uncertainty relation or for their being complementary. The importance of these results is illustrated with the canonically conjugate position and momentum of a free particle and of a particle closed in a box.
Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.
Selesnick, S A; Rawling, J P; Piccinini, Gualtiero
2017-09-01
Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.
Refined Characterization of Student Perspectives on Quantum Physics
ERIC Educational Resources Information Center
Baily, Charles; Finkelstein, Noah D.
2010-01-01
The perspectives of introductory classical physics students can often negatively influence how those students later interpret quantum phenomena when taking an introductory course in modern physics. A detailed exploration of student perspectives on the interpretation of quantum physics is needed, both to characterize student understanding of…
NASA Astrophysics Data System (ADS)
Bozic, Mirjana; Man'ko, Margarita; Arsenovic, Dusan
2009-07-01
The development of quantum optics was part and parcel of the formation of modern physics following the fundamental work of Max Planck and Albert Einstein, which gave rise to quantum mechanics. The possibility of working with pure quantum objects, like single atoms and single photons, has turned quantum optics into the main tool for testing the fundamentals of quantum physics. Thus, despite a long history, quantum optics nowadays remains an extremely important branch of physics. It represents a natural base for the development of advanced technologies, like quantum information processing and quantum computing. Previous Central European Workshops on Quantum Optics (CEWQO) took place in Palermo (2007), Vienna (2006), Ankara (2005), Trieste (2004), Rostock (2003), Szeged (2002), Prague (2001), Balatonfüred (2000), Olomouc (1999), Prague (1997), Budmerice (1995, 1996), Budapest (1994) and Bratislava (1993). Those meetings offered excellent opportunities for the exchange of knowledge and ideas between leading scientists and young researchers in quantum optics, foundations of quantum mechanics, cavity quantum electrodynamics, photonics, atom optics, condensed matter optics, and quantum informatics, etc. The collaborative spirit and tradition of CEWQO were a great inspiration and help to the Institute of Physics, Belgrade, and the Serbian Academy of Sciences and Arts, as the organizers of CEWQO 2008. The 16th CEWQO will take place in 2009 in Turku, Finland, and the 17th CEWQO will be organized in 2010 in St Andrews, United Kingdom. The 15th CEWQO was organized under the auspices and support of the Ministry of Science of the Republic of Serbia, the Serbian Physical Society, the European Physical Society with sponsorship from the University of Belgrade, the Central European Initiative, the FP6 Program of the European Commission under INCO project QUPOM No 026322, the FP7 Program of the European Commission under project NANOCHARM, Europhysics Letters (EPL), The European Physical Journal (EPJ), and John Wiley and Sons.
A Quantum Universe Before the Big Bang(s)?
NASA Astrophysics Data System (ADS)
Veneziano, Gabriele
2017-08-01
The predictions of general relativity have been verified by now in a variety of different situations, setting strong constraints on any alternative theory of gravity. Nonetheless, there are strong indications that general relativity has to be regarded as an approximation of a more complete theory. Indeed theorists have long been looking for ways to connect general relativity, which describes the cosmos and the infinitely large, to quantum physics, which has been remarkably successful in explaining the infinitely small world of elementary particles. These two worlds, however, come closer and closer to each other as we go back in time all the way up to the big bang. Actually, modern cosmology has changed completely the old big bang paradigm: we now have to talk about (at least) two (big?) bangs. If we know quite something about the one closer to us, at the end of inflation, we are much more ignorant about the one that may have preceded inflation and possibly marked the beginning of time. No one doubts that quantum mechanics plays an essential role in answering these questions: unfortunately a unified theory of gravity and quantum mechanics is still under construction. Finding such a synthesis and confirming it experimentally will no doubt be one of the biggest challenges of this century’s physics.
Quantum-classical correspondence for the inverted oscillator
NASA Astrophysics Data System (ADS)
Maamache, Mustapha; Ryeol Choi, Jeong
2017-11-01
While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)
NASA Astrophysics Data System (ADS)
Barrow, John D.; Davies, Paul C. W.; Harper, Charles L., Jr.
2004-06-01
This preview of the future of physics comprises contributions from recognized authorities inspired by the pioneering work of John Wheeler. Quantum theory represents a unifying theme within the book, as it relates to the topics of the nature of physical reality, cosmic inflation, the arrow of time, models of the universe, superstrings, quantum gravity and cosmology. Attempts to formulate a final unification theory of physics are also considered, along with the existence of hidden dimensions of space, hidden cosmic matter, and the strange world of quantum technology. John Archibald Wheeler is one of the most influential scientists of the twentieth century. His extraordinary career has spanned momentous advances in physics, from the birth of the nuclear age to the conception of the quantum computer. Famous for coining the term "black hole," Professor Wheeler helped lay the foundations for the rebirth of gravitation as a mainstream branch of science, triggering the explosive growth in astrophysics and cosmology that followed. His early contributions to physics include the S matrix, the theory of nuclear rotation (with Edward Teller), the theory of nuclear fission (with Niels Bohr), action-at-a-distance electrodynamics (with Richard Feynman), positrons as backward-in-time electrons, the universal Fermi interaction (with Jayme Tiomno), muonic atoms, and the collective model of the nucleus. His inimitable style of thinking, quirky wit, and love of the bizarre have inspired generations of physicists.
Designing Learning Environments to Teach Interactive Quantum Physics
ERIC Educational Resources Information Center
Puente, Sonia M. Gomez; Swagten, Henk J. M.
2012-01-01
This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small…
Teaching Quantum Physics in Upper Secondary School in France:
ERIC Educational Resources Information Center
Lautesse, Philippe; Vila Valls, Adrien; Ferlin, Fabrice; Héraud, Jean-Loup; Chabot, Hugues
2015-01-01
One of the main problems in trying to understand quantum physics is the nature of the referent of quantum theory. This point is addressed in the official French curriculum in upper secondary school. Starting in 2012, after about 20 years of absence, quantum physics has returned to the national program. On the basis of the historical construction…
NASA Astrophysics Data System (ADS)
Palmer, T. N.
2012-12-01
This essay discusses a proposal that draws together the three great revolutionary theories of 20th Century physics: quantum theory, relativity theory and chaos theory. Motivated by the Bohmian notion of implicate order, and what in chaos theory would be described as a strange attractor, the proposal attributes special ontological significance to certain non-computable, dynamically invariant state-space geometries for the universe as a whole. Studying the phenomenon of quantum interference, it is proposed to understand quantum wave-particle duality, and indeed classical electromagnetism, in terms of particles in space time and waves on this state space geometry. Studying the EPR experiment, the acausal constraints that this invariant geometry provides on spatially distant degrees of freedom, provides a way for the underlying dynamics to be consistent with the Bell theorem, yet be relativistically covariant ("nonlocality without nonlocality"). It is suggested that the physical basis for such non-computable geometries lies in properties of gravity with the information irreversibility implied by black hole no-hair theorems being crucial. In conclusion it is proposed that quantum theory may be emergent from an extended theory of gravity which is geometric not only in space time, but also in state space. Such a notion would undermine most current attempts to "quantise gravity".
Covariance and Quantum Cosmology: A Comparison of Two Matter Clocks
NASA Astrophysics Data System (ADS)
Halnon, Theodore; Bojowald, Martin
2017-01-01
In relativity, time is relative between reference frames. However, quantum mechanics requires a specific time coordinate in order to write an evolution equation for wave functions. This difference between the two theories leads to the problem of time in quantum gravity. One method to study quantum relativity is to interpret the dynamics of a matter field as a clock. In order to test the relationship between different reference frames, an isotropic cosmological model with two matter ingredients is introduced. One is given by a scalar field and one by vacuum energy or a cosmological constant. There are two matter fields, and thus two different Hamiltonians are derived from the respective clock rates. Semi-classical solutions are found for these equations and a comparison is made of the physical predictions that they imply. Partial funding from the Ronald E. McNair Postbaccalaureate Achievement Program.
Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy
2016-08-25
life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an... quantum computer . DOI: 10.1103/PhysRevX.6.021028 Subject Areas: Condensed Matter Physics, Quantum Physics, Quantum Information I. INTRODUCTION Quantum ... computing hardware is affected by a substantial level of intrinsic noise and therefore naturally realizes dis- sipative quantum dynamics [1,2
A novel quantum solution to secure two-party distance computation
NASA Astrophysics Data System (ADS)
Peng, Zhen-wan; Shi, Run-hua; Wang, Pan-hong; Zhang, Shun
2018-06-01
Secure Two-Party Distance Computation is an important primitive of Secure Multiparty Computational Geometry that it involves two parties, where each party has a private point, and the two parties want to jointly compute the distance between their points without revealing anything about their respective private information. Secure Two-Party Distance Computation has very important and potential applications in settings of high secure requirements, such as privacy-preserving Determination of Spatial Location-Relation, Determination of Polygons Similarity, and so on. In this paper, we present a quantum protocol for Secure Two-Party Distance Computation by using QKD-based Quantum Private Query. The security of the protocol is based on the physical principles of quantum mechanics, instead of difficulty assumptions, and therefore, it can ensure higher security than the classical related protocols.
NASA Astrophysics Data System (ADS)
Rutkowski, Adam; Buraczewski, Adam; Horodecki, Paweł; Stobińska, Magdalena
2017-01-01
Quantum steering is a relatively simple test for proving that the values of quantum-mechanical measurement outcomes come into being only in the act of measurement. By exploiting quantum correlations, Alice can influence—steer—Bob's physical system in a way that is impossible in classical mechanics, as shown by the violation of steering inequalities. Demonstrating this and similar quantum effects for systems of increasing size, approaching even the classical limit, is a long-standing challenging problem. Here, we prove an experimentally feasible unbounded violation of a steering inequality. We derive its universal form where tolerance for measurement-setting errors is explicitly built in by means of the Deutsch-Maassen-Uffink entropic uncertainty relation. Then, generalizing the mutual unbiasedness, we apply the inequality to the multisinglet and multiparticle bipartite Bell state. However, the method is general and opens the possibility of employing multiparticle bipartite steering for randomness certification and development of quantum technologies, e.g., random access codes.
Hans Bethe and Physics in/of the 20th Century
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweber, Silvan
2012-12-12
I will present some facets of Hans Bethe’s life to illustrate how I have used biography to narrate certain aspects of the history of twentieth century physics. I will focus on post World War II quantum field theory, on the relation between solid state/condensed matter physics and high energy physics, and make some observations regarding certain “top down” views in solid state physics in postmodernity.
NASA Astrophysics Data System (ADS)
Samuel, Joseph
2011-08-01
The problem of quantum gravity has been with us for over 80 years. After quantum theory was established in the 1920s, it was successfully applied to the electromagnetic field. Over the years there have been many attempts to bring gravity into the fold. There has been work on the Hamiltonian formulation of general relativity, perturbative approaches to quantum gravity and more. Much intellectual effort went into understanding conceptual and technical problems stemming from the general covariance of the theory. However, in earlier decades, the subject of quantum gravity was relatively on the fringes of theoretical physics research, pursued by a small and diverse community of people. In the mid 1980s the situation changed dramatically. The subject of quantum gravity came to the forefront of fundamental physics research, no longer a backwater but the mainstream. Quantum gravity was widely acknowledged as the last frontier of fundamental physics and attracted the brightest young people. Unlike in previous decades, workers in this area were no longer isolated groups or individuals ploughing lonely furrows, but organised into coherent `programmes' for a concerted attack on the problem. The main programmes coincidentally were all formulated in the mid 1980s. The two `programmes' covered in this section are string theory and loop quantum gravity. String theory was born an offshoot of Hadronic models in particle physics and reflects the particle physicists view that gravity is just one more interaction to be encompassed by a unified theory. Loop quantum gravity reflects the general relativist's conviction that gravity is different and should not be treated as a perturbation about Minkowski spacetime. Each of these approaches has its proponents, adherents and critics. It is now about a quarter of a century since these programmes started. It is perhaps a good time to take stock and assess where we are now and where each of these programmes is headed. The idea in this focus section is to get a comparative perspective on these programmes, by asking our reviewers to critically evaluate progress in their programmes over the last 25 years (1986-2011). This section features invited review articles from physicists who have been associated with these programmes from their inception. They were invited to write a retrospective review: what were the initial hopes? To what extent have these hopes been realised? What were the major successes, surprises, and disappointments? The emphasis is on what has come out of the programme rather than technical developments internal to the programme. We hope that the reader, whatever his/her persuasion, will be able to form a panoramic view of quantum gravity research today within these two programmes. We hope to complement this view with a topical review of causal sets in the future.
Transnational Quantum: Quantum Physics in India through the Lens of Satyendranath Bose
NASA Astrophysics Data System (ADS)
Banerjee, Somaditya
2016-08-01
This paper traces the social and cultural dimensions of quantum physics in colonial India where Satyendranath Bose worked. By focusing on Bose's approach towards the quantum and his collaboration with Albert Einstein, I argue that his physics displayed both the localities of doing science in early twentieth century India as well as a cosmopolitan dimension. He transformed the fundamental new concept of the light quantum developed by Einstein in 1905 within the social and political context of colonial India. This cross-pollination of the local with the global is termed here as the locally rooted cosmopolitan nature of Bose's science. The production of new knowledge through quantum statistics by Bose show the co-constructed nature of physics and the transnational nature of the quantum.
Old Wine in New Bottles: Quantum Theory in Historical Perspective.
ERIC Educational Resources Information Center
Bent, Henry A.
1984-01-01
Discusses similarities between chemistry and three central concepts of quantum physics: (1) stationary states; (2) wave functions; and (3) complementarity. Based on these and other similarities, it is indicated that quantum physics is a chemical physics. (JN)
Teaching Physics and Feeling Good about It.
ERIC Educational Resources Information Center
Prokop, Charles F.
1988-01-01
Describes a high school physics teaching sequence including more modern topics. The first quarter covers cosmology, astronomy, optics, wave mechanics, relativity, gravity, and quantum theory. The second quarter covers classical mechanics. The third quarter covers electromagnetism and electronics. The fourth quarter consists of thermodynamics and…
NASA Astrophysics Data System (ADS)
2008-01-01
Why did you originally choose to study physics? I was really interested in science at school, and I also read a couple of fascinating popular-science books about quantum mechanics and special relativity. My interest in these topics made me decide to study physics at Oxford University. Straight after I graduated in 1967 I did a theoretical-physics DPhil, also at Oxford.
Entropy and the Shelf Model: A Quantum Physical Approach to a Physical Property
ERIC Educational Resources Information Center
Jungermann, Arnd H.
2006-01-01
In contrast to most other thermodynamic data, entropy values are not given in relation to a certain--more or less arbitrarily defined--zero level. They are listed in standard thermodynamic tables as absolute values of specific substances. Therefore these values describe a physical property of the listed substances. One of the main tasks of…
On the history of the quantum. Introduction to the HQ2 special issue
NASA Astrophysics Data System (ADS)
van Dongen, Jeroen; Dieks, Dennis; Uffink, Jos; Kox, A. J.
The historiography of quantum theory exhibits a period of intense activity that started in the 1960s, with the Archives for the History of Quantum Physics project, and continued with the work of scholars like Max Jammer, Martin J. Klein, John Heilbron, Paul Forman and Thomas Kuhn. At the end of the 1970s, however, interest of historians seems to have shifted away, even if there have been notable exceptions, such as the multi-volume work by Jagdish Mehra and Helmut Rechenberg, and monographs like those of Olivier Darrigol and Mara Beller. Perhaps this development has had to do with a diminishing number of scholars possessing the necessary technical skills in physics together with historical sensitivity. Moreover, many historians of physics in this period have focused their interest on another subject, namely the development of the theory of relativity. Stimulated by the start of the Einstein Papers Project, and initiated by pioneers such as John Stachel and John Norton around 1980, very soon a dedicated group of scholars devoted time and energy to analyzing the genesis and development of general relativity, and other aspects of Einstein's science.
Majorana Fermions in Particle Physics, Solid State and Quantum Information
NASA Astrophysics Data System (ADS)
Borsten, L.; Duff, M. J.
This review is based on lectures given by M. J. Duff summarising the far reaching contributions of Ettore Majorana to fundamental physics, with special focus on Majorana fermions in all their guises. The theoretical discovery of the eponymous fcrmion in 1937 has since had profound implications for particlc physics, solid state and quantum computation. The breadth of these disciplines is testimony to Majorana's genius, which continues to permeate physics today. These lectures offer a whistle-stop tour through some limited subset of the key ideas. In addition to touching on these various applications, we will draw out some fascinating relations connecting the normed division algebras R, ℂ, H, O to spinors, trialities. K-theory and the classification of stable topological states of symmetry-protected gapped free-fermion systems.
Imagery, Intuition and Imagination in Quantum Physics Education
ERIC Educational Resources Information Center
Stapleton, Andrew J.
2018-01-01
In response to the authors, I demonstrate how threshold concepts offer a means to both contextualise teaching and learning of quantum physics and help transform students into the culture of physics, and as a way to identify particularly troublesome concepts within quantum physics. By drawing parallels from my own doctoral research in another area…
Loop Quantum Gravity and Asymptotically Flat Spaces
NASA Astrophysics Data System (ADS)
Arnsdorf, Matthias
2002-12-01
Remarkable progress has been made in the field of non-perturbative (loop) quantum gravity in the last decade or so and it is now a rigorously defined kinematical theory (c.f. [5] for a review and references). We are now at the stage where physical applications of loop quantum gravity can be studied and used to provide checks for the consistency of the quantisation programme. Equally, old fundamental problems of canonical quantum gravity such as the problem of time or the interpretation of quantum cosmology need to be reevaluated seriously. These issues can be addressed most profitably in the asymptotically flat sector of quantum gravity. Indeed, it is likely that we should obtain a quantum theory for this special case even if it is not possible to quantise full general relativity. The purpose of this summary is to advertise the extension of loop quantum gravity to this sector that was developed in [1]...
[Discussion on quantum entanglement theory and acupuncture].
Wang, Jun; Wu, Bin; Chen, Sheng
2017-11-12
The quantum entanglement is a new discovery of modern physics and has drawn a widely attention in the world. After learning the quantum entanglement, the authors have found that many characteristics of quantum are reflected in TCM, acupuncture theory and clinical practice. For example, the quantum entanglement phenomenon is mutually verified with the holism, yinyang doctrine, the theory of primary, secondary, root and knot in TCM, etc. It can be applied to interpret the clinical situations which is difficult to be explained in clinical practice, such as the instant effect of acupuncture, multi-point stimulation in one disorder and the points with specific effects. On the basis of the discovery above, the quantum entanglement theory achieved the mutual treatment among the relatives in acupuncture clinical practice and the therapeutic effects were significant. The results suggest that the coupling relationship in quantum entanglement presents between the diseases and the acupoints in the direct relative. The authors believe that the discovery in this study contributes to the exploration on the approaches to the acupuncture treatment in clinical practice and enrich the ideas on the disease prevention.
Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems
NASA Astrophysics Data System (ADS)
Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W.
2018-06-01
On the basis of Nelson's stochastic mechanics derivation of the Schrödinger equation, a formal mathematical structure of non-relativistic quantum mechanics equivalent to the one in classical analytical mechanics has been established in the literature. We recently were able to augment this structure by deriving quantum Hamilton equations of motion by finding the Nash equilibrium of a stochastic optimal control problem, which is the generalization of Hamilton's principle of classical mechanics to quantum systems. We showed that these equations allow a description and numerical determination of the ground state of quantum problems without using the Schrödinger equation. We extend this approach here to deliver the complete discrete energy spectrum and related eigenfunctions for bound states of one-dimensional stationary quantum systems. We exemplify this analytically for the one-dimensional harmonic oscillator and numerically by analyzing a quartic double-well potential, a model of broad importance in many areas of physics. We furthermore point out a relation between the tunnel splitting of such models and mean first passage time concepts applied to Nelson's diffusion paths in the ground state.
Quantum Spacetime: Mimicry of Paths and Black Holes
NASA Astrophysics Data System (ADS)
Spaans, Marco
2015-08-01
Since its inception, general relativity has been unreceptive to a marriage with the quantum aspects of our universe. Following the ideas of Einstein, one may pursue an approach that allows spacetime itself to take center stage. The quantum properties of matter are then carried by the dynamics of spacetime shape and connectivity. This monograph introduces the reader to the foundations of quantum spacetime in a manner accessible to researchers and students. Likewise, interested laymen that lack a strong background in quantum mechanics or spacetime studies but are keen to learn will find this book worthwhile. It is shown from first principles how spacetime is globally built up by paths which constitute entire histories in four dimensions. The central physical idea is that the collective existence of observers and observed derives from one mimicking the other unremittingly, thereby inducing tangible reality. This world of identity by mimicry creates a multitude of interacting histories. Throughout the text, thought experiments are used to derive physical principles. Obtained results are therefore intuitive and accessible to non-experts. This monograph also discusses consequences of quantum spacetime for black holes, dark energy, inflation, the Higgs boson, and the multiverse.
Astrophysical Applications of Quantum Corrections to the Equation of State of a Plasma
NASA Technical Reports Server (NTRS)
Heckler, Andrew F.
1994-01-01
The quantum electrodynamic correction to the equation of state of a plasma at finite temperature is applied to the areas of solar physics and cosmology. A previously neglected, purely quantum term in the correction is found to change the equation of state in the solar core by -0.37%, which is roughly estimated to decrease the calculated high energy neutrino flux by about 2.2%. We also show that a previous calculation of the effect of this correction on big bang nucleosynthesis is incomplete, and we estimate the correction to the primordial helium abundance Y to be Delta A= 1.4 x 10(exp -4). A physical explanation for the correction is found in terms of corrections to the dispersion relation of the electron, positron, and photon.
Cold atom quantum sensors for space
NASA Astrophysics Data System (ADS)
Singh, Yeshpal
2016-07-01
Quantum sensors based on cold atoms offer the opportunity to perform highly accurate measurements of physical phenomena related to time, gravity and rotation. The deployment of such technologies in the microgravity environment of space may enable further enhancement of their performance, whilst permitting the detection of these physical phenomena over much larger scales than is possible with a ground-based instrument. In this talk, I will present an overview of the activities of the UK National Quantum Hub in Sensors and Metrology in developing cold atoms technology for space. Our activities are focused in two main areas: optical clocks and atom interferometers. I will also discuss our contributions to recent initiatives including STE-QUEST and AI-GOAT, the ESA/NASA initiative aiming at an atom interferometer gravitational wave detector in space.
NASA Astrophysics Data System (ADS)
Isaacs, Alan
The dictionary is derived from the Concise Science Dictionary, first published by Oxford University Press in 1984 (third edition, 1996). It consists of all the entries relating to physics in that dictionary, together with some of those entries relating to astronomy that are required for an understanding of astrophysics and many entries that relate to physical chemistry. It also contains a selection of the words used in mathematics that are relevant to physics, as well as the key words in metal science, computing, and electronics. For this third edition a number of words from quantum field physics and statistical mechanics have been added. Cosmology and particle physics have been updated and a number of general entries have been expanded.
On the physical realizability of quantum stochastic walks
NASA Astrophysics Data System (ADS)
Taketani, Bruno; Govia, Luke; Schuhmacher, Peter; Wilhelm, Frank
Quantum walks are a promising framework that can be used to both understand and implement quantum information processing tasks. The recently developed quantum stochastic walk combines the concepts of a quantum walk and a classical random walk through open system evolution of a quantum system, and have been shown to have applications in as far reaching fields as artificial intelligence. However, nature puts significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution, and the physical assumptions underpinning them. We then introduce a way to circumvent some of these restrictions, and simulate a more general quantum stochastic walk on a quantum computer, using a technique we call quantum trajectories on a quantum computer. We finally describe a circuit QED approach to implement discrete time quantum stochastic walks.
Quantum channels and memory effects
NASA Astrophysics Data System (ADS)
Caruso, Filippo; Giovannetti, Vittorio; Lupo, Cosmo; Mancini, Stefano
2014-10-01
Any physical process can be represented as a quantum channel mapping an initial state to a final state. Hence it can be characterized from the point of view of communication theory, i.e., in terms of its ability to transfer information. Quantum information provides a theoretical framework and the proper mathematical tools to accomplish this. In this context the notion of codes and communication capacities have been introduced by generalizing them from the classical Shannon theory of information transmission and error correction. The underlying assumption of this approach is to consider the channel not as acting on a single system, but on sequences of systems, which, when properly initialized allow one to overcome the noisy effects induced by the physical process under consideration. While most of the work produced so far has been focused on the case in which a given channel transformation acts identically and independently on the various elements of the sequence (memoryless configuration in jargon), correlated error models appear to be a more realistic way to approach the problem. A slightly different, yet conceptually related, notion of correlated errors applies to a single quantum system which evolves continuously in time under the influence of an external disturbance which acts on it in a non-Markovian fashion. This leads to the study of memory effects in quantum channels: a fertile ground where interesting novel phenomena emerge at the intersection of quantum information theory and other branches of physics. A survey is taken of the field of quantum channels theory while also embracing these specific and complex settings.
Quantum auctions: Facts and myths
NASA Astrophysics Data System (ADS)
Piotrowski, Edward W.; Sładkowski, Jan
2008-06-01
Quantum game theory, whatever opinions may be held due to its abstract physical formalism, have already found various applications even outside the orthodox physics domain. In this paper we introduce the concept of a quantum auction, its advantages and drawbacks. Then we describe the models that have already been put forward. A general model involves Wigner formalism and infinite dimensional Hilbert spaces - we envisage that the implementation might not be an easy task. But a restricted model advocated by the Hewlett-Packard group (Hogg et al.) seems to be much easier to implement. We focus on problems related to combinatorial auctions and technical assumptions that are made. Powerful quantum algorithms for finding solutions would extend the range of possible applications. Quantum strategies, being qubits, can be teleported but are immune from cloning - therefore extreme privacy of the agent’s activity could in principle be guaranteed. Then we point out some key problems that have to be solved before commercial use would be possible. With present technology, optical networks, single photon sources and detectors seems to be sufficient for an experimental realization in the near future.
Quantum Dots in Diagnostics and Detection: Principles and Paradigms
Pisanic, T. R.; Zhang, Y.; Wang, T. H.
2014-01-01
Quantum dots are semiconductor nanocrystals that exhibit exceptional optical and electrical behaviors not found in their bulk counterparts. Following seminal work in the development of water-soluble quantum dots in the late 1990's, researchers have sought to develop interesting and novel ways of exploiting the extraordinary properties of quantum dots for biomedical applications. Since that time, over 10,000 articles have been published related to the use of quantum dots in biomedicine, many of which regard their use in detection and diagnostic bioassays. This review presents a didactic overview of fundamental physical phenomena associated with quantum dots and paradigm examples of how these phenomena can and have been readily exploited for manifold uses in nanobiotechnology with a specific focus on their implementation in in vitro diagnostic assays and biodetection. PMID:24770716
ERIC Educational Resources Information Center
Baily, Charles Raymond
2011-01-01
A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively "realist" perspectives of introductory…
Integrating Computational Chemistry into the Physical Chemistry Curriculum
ERIC Educational Resources Information Center
Johnson, Lewis E.; Engel, Thomas
2011-01-01
Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…
ERIC Educational Resources Information Center
Brown, Laurie M.
This document is a monograph intended for advanced undergraduate students, or beginning graduate students, who have some knowledge of modern physics as well as classical physics, including the elementary quantum mechanical treatment of the hydrogen atom and angular momentum. The first chapter introduces symmetry and relates it to the mathematical…
On the physical Hilbert space of loop quantum cosmology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noui, Karim; Perez, Alejandro; Vandersloot, Kevin
2005-02-15
In this paper we present a model of Riemannian loop quantum cosmology with a self-adjoint quantum scalar constraint. The physical Hilbert space is constructed using refined algebraic quantization. When matter is included in the form of a cosmological constant, the model is exactly solvable and we show explicitly that the physical Hilbert space is separable, consisting of a single physical state. We extend the model to the Lorentzian sector and discuss important implications for standard loop quantum cosmology.
Uncertain for a century: quantum mechanics and the dilemma of interpretation.
Frank, Adam
2015-12-01
Quantum mechanics, the physical theory describing the microworld, is one of science's greatest triumphs. Remarkably, however, after more than 100 years it is still unclear what quantum mechanics means in terms of basic philosophical questions about the nature of reality. While there are many interpretations of the mathematical machinery of quantum physics, there remain no experimental means to distinguish between most of them. In this contribution, I wish to consider the ways in which the enduring lack of an agreed-upon interpretation of quantum physics influences a number of critical philosophical debates about physics and reality. I briefly review two problems affected by quantum interpretations: the meaning of the term universe and the nature of consciousness. © 2015 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Castro, E.; Gómez, R.; Ladera, C. L.; Zambrano, A.
2013-11-01
Among many applications quantum weak measurements have been shown to be important in exploring fundamental physics issues, such as the experimental violation of the Heisenberg uncertainty relation and the Hardy paradox, and have also technological implications in quantum optics, quantum metrology and quantum communications, where the precision of the measurement is as important as the precision of quantum state preparation. The theory of weak measurement can be formulated using the pre-and post-selected quantum systems, as well as using the weak measurement operator formalism. In this work, we study the quantum discord (QD) of quasi-Werner mixed states based on bipartite entangled coherent states using the weak measurements operator, instead of the projective measurement operators. We then compare the quantum discord for both kinds of measurement operators, in terms of the entanglement quality, the latter being measured using the concept of concurrence. It's found greater quantum correlations using the weak measurement operators.
Quantum energy teleportation in a quantum Hall system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusa, Go; Izumida, Wataru; Hotta, Masahiro
2011-09-15
We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.
A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics
ERIC Educational Resources Information Center
Pujol, O.; Perez, J. P.
2007-01-01
The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…
Quantum reversibility is relative, or does a quantum measurement reset initial conditions?
Zurek, Wojciech H
2018-07-13
I compare the role of the information in classical and quantum dynamics by examining the relation between information flows in measurements and the ability of observers to reverse evolutions. I show that in the Newtonian dynamics reversibility is unaffected by the observer's retention of the information about the measurement outcome. By contrast-even though quantum dynamics is unitary, hence, reversible-reversing quantum evolution that led to a measurement becomes, in principle, impossible for an observer who keeps the record of its outcome. Thus, quantum irreversibility can result from the information gain rather than just its loss-rather than just an increase of the (von Neumann) entropy. Recording of the outcome of the measurement resets, in effect, initial conditions within the observer's (branch of) the Universe. Nevertheless, I also show that the observer's friend-an agent who knows what measurement was successfully carried out and can confirm that the observer knows the outcome but resists his curiosity and does not find out the result-can, in principle, undo the measurement. This relativity of quantum reversibility sheds new light on the origin of the arrow of time and elucidates the role of information in classical and quantum physics. Quantum discord appears as a natural measure of the extent to which dissemination of information about the outcome affects the ability to reverse the measurement.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).
Entanglement in a Quantum Annealing Processor
2016-09-07
that QA is a viable technology for large- scale quantum computing . DOI: 10.1103/PhysRevX.4.021041 Subject Areas: Quantum Physics, Quantum Information...Superconductivity I. INTRODUCTION The past decade has been exciting for the field of quantum computation . A wide range of physical imple- mentations...measurements used in studying prototype universal quantum computers [9–14]. These constraints make it challenging to experimentally determine whether a scalable
Scheme for Quantum Computing Immune to Decoherence
NASA Technical Reports Server (NTRS)
Williams, Colin; Vatan, Farrokh
2008-01-01
A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.
Mathematical and physical meaning of the Bell inequalities
NASA Astrophysics Data System (ADS)
Santos, Emilio
2016-09-01
It is shown that the Bell inequalities are closely related to the triangle inequalities involving distance functions amongst pairs of random variables with values \\{0,1\\}. A hidden variables model may be defined as a mapping between a set of quantum projection operators and a set of random variables. The model is noncontextual if there is a joint probability distribution. The Bell inequalities are necessary conditions for its existence. The inequalities are most relevant when measurements are performed at space-like separation, thus showing a conflict between quantum mechanics and local realism (Bell's theorem). The relations of the Bell inequalities with contextuality, the Kochen-Specker theorem, and quantum entanglement are briefly discussed.
Some Remarks on Knowledge and Probability Arising from Counterfactual Quantum Effects
NASA Astrophysics Data System (ADS)
Lupacchini, Rossella
Can the mere possibility of a physical phenomenon affect the outcome of an experiment? In fact quantum theory presents us actual physical effects arising from "counterfactuals", that is physical effects brought about by things that might have happened, although they did not happen. How can it be? After a short outline of the quantum-mechanical description of physical reality, the occurrence of such counterfactual effects in quantum theory is illustrated by means of a Mach-Zehnder interferometer. Then these paradoxical phenomena undermining the very notion of physical event and questioning about which knowledge of physical reality can ever be obtained will be analysed using a classical possible-worlds model of knowledge and probability. Finally, a surprising application of counterfactual quantum effects producing a new kind of computing with no classical analogue will be shown.
Philosophical perspectives on quantum chaos: Models and interpretations
NASA Astrophysics Data System (ADS)
Bokulich, Alisa Nicole
2001-09-01
The problem of quantum chaos is a special case of the larger problem of understanding how the classical world emerges from quantum mechanics. While we have learned that chaos is pervasive in classical systems, it appears to be almost entirely absent in quantum systems. The aim of this dissertation is to determine what implications the interpretation of quantum mechanics has for attempts to explain the emergence of classical chaos. There are three interpretations of quantum mechanics that have set out programs for solving the problem of quantum chaos: the standard interpretation, the statistical interpretation, and the deBroglie-Bohm causal interpretation. One of the main conclusions of this dissertation is that an interpretation alone is insufficient for solving the problem of quantum chaos and that the phenomenon of decoherence must be taken into account. Although a completely satisfactory solution of the problem of quantum chaos is still outstanding, I argue that the deBroglie-Bohm interpretation with the help of decoherence outlines the most promising research program to pursue. In addition to making a contribution to the debate in the philosophy of physics concerning the interpretation of quantum mechanics, this dissertation reveals two important methodological lessons for the philosophy of science. First, issues of reductionism and intertheoretic relations cannot be divorced from questions concerning the interpretation of the theories involved. Not only is the exploration of intertheoretic relations a central part of the articulation and interpretation of an individual theory, but the very terms used to discuss intertheoretic relations, such as `state' and `classical limit', are themselves defined by particular interpretations of the theory. The second lesson that emerges is that, when it comes to characterizing the relationship between classical chaos and quantum mechanics, the traditional approaches to intertheoretic relations, namely reductionism and theoretical pluralism, are inadequate. The fruitful ways in which models have been used in quantum chaos research point to the need for a new framework for addressing intertheoretic relations that focuses on models rather than laws.
A Particle Model Explaining Mass and Relativity in a Physical Way
NASA Astrophysics Data System (ADS)
Giese, Albrecht
Physicists' understanding of relativity and the way it is handled is up to present days dominated by the interpretation of Albert Einstein, who related relativity to specific properties of space and time. The principal alternative to Einstein's interpretation is based on a concept proposed by Hendrik A. Lorentz, which uses knowledge of classical physics alone to explain relativistic phenomena. In this paper, we will show that on the one hand the Lorentz-based interpretation provides a simpler mathematical way of arriving at the known results for both Special and General Relativity. On the other hand, it is able to solve problems which have remained open to this day. Furthermore, a particle model will be presented, based on Lorentzian relativity and the quantum mechanical concept of Louis de Broglie, which explains the origin of mass without the use of the Higgs mechanism. It is based on the finiteness of the speed of light and provides classical results for particle properties which are currently only accessible through quantum mechanics.
NASA Astrophysics Data System (ADS)
Le Bellac, Michel
2006-03-01
Quantum physics allows us to understand the nature of the physical phenomena which govern the behavior of solids, semi-conductors, lasers, atoms, nuclei, subnuclear particles and light. In Quantum Physics, Le Bellac provides a thoroughly modern approach to this fundamental theory. Throughout the book, Le Bellac teaches the fundamentals of quantum physics using an original approach which relies primarily on an algebraic treatment and on the systematic use of symmetry principles. In addition to the standard topics such as one-dimensional potentials, angular momentum and scattering theory, the reader is introduced to more recent developments at an early stage. These include a detailed account of entangled states and their applications, the optical Bloch equations, the theory of laser cooling and of magneto-optical traps, vacuum Rabi oscillations, and an introduction to open quantum systems. This is a textbook for a modern course on quantum physics, written for advanced undergraduate and graduate students. Completely original and contemporary approach, using algebra and symmetry principles Introduces recent developments at an early stage, including many topics that cannot be found in standard textbooks. Contains 130 physically relevant exercises
A New Principle in Physiscs: the Principle "Finiteness", and Some Consequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham Sternlieb
2010-06-25
In this paper I propose a new principle in physics: the principle of "finiteness". It stems from the definition of physics as a science that deals (among other things) with measurable dimensional physical quantities. Since measurement results, including their errors, are always finite, the principle of finiteness postulates that the mathematical formulation of "legitimate" laws of physics should prevent exactly zero or infinite solutions. Some consequences of the principle of finiteness are discussed, in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The consequences are derived independently of any other theory ormore » principle in physics. I propose "finiteness" as a postulate (like the constancy of the speed of light in vacuum, "c"), as opposed to a notion whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories, or principles.« less
A novel quantum scheme for secure two-party distance computation
NASA Astrophysics Data System (ADS)
Peng, Zhen-wan; Shi, Run-hua; Zhong, Hong; Cui, Jie; Zhang, Shun
2017-12-01
Secure multiparty computational geometry is an essential field of secure multiparty computation, which computes a computation geometric problem without revealing any private information of each party. Secure two-party distance computation is a primitive of secure multiparty computational geometry, which computes the distance between two points without revealing each point's location information (i.e., coordinate). Secure two-party distance computation has potential applications with high secure requirements in military, business, engineering and so on. In this paper, we present a quantum solution to secure two-party distance computation by subtly using quantum private query. Compared to the classical related protocols, our quantum protocol can ensure higher security and better privacy protection because of the physical principle of quantum mechanics.
Philosophical Concepts in Physics
NASA Astrophysics Data System (ADS)
Cushing, James T.
1998-01-01
Preface; Part I. The Scientific Enterprise: 1. Ways of knowing; 2. Aristotle and Francis Bacon; 3. Science and metaphysics; Part II. Ancient and Modern Models of the Universe: 4. Observational astronomy and the Ptolemaic model; 5. The Copernican model and Kepler's laws; 6. Galileo on motion; Part III. The Newtonian Universe: 7. Newton's Principia; 8. Newton's law of universal gravitation; 9. Some old questions revisited; Part IV. A Perspective: 10. Galileo's Letter to the Grand Duchess; 11. An overarching Newtonian framework; 12. A view of the world based on science: determinism; Part V. Mechanical Versus Electrodynamical World Views: 13. Models of the aether; 14. Maxwell's theory; 15. The Kaufmann experiments; Part VI. The Theory of Relativity: 16. The background to and essentials of special relativity; 17. Further logical consequences of Einstein's postulates; 18. General relativity and the expanding universe; Part VII. The Quantum World and the Completeness of Quantum Mechanics: 19. The road to quantum mechanics; 20. 'Copenhage' quantum mechanics; 21. Is quantum mechanics complete?; Part VIII. Some Philosophical Lessons from Quantum Mechanics: 22. The EPR paper and Bell's theorem; 23. An alternative version of quantum mechanics; 24. An essential role for historical contingency?; Part IX. A Retrospective: 25. The goals of science and the status of its knowledge; Notes; General references; Bibliography; Author index; Subject index.
Pylkkänen, Paavo
2015-12-01
The theme of phenomenology and quantum physics is here tackled by examining some basic interpretational issues in quantum physics. One key issue in quantum theory from the very beginning has been whether it is possible to provide a quantum ontology of particles in motion in the same way as in classical physics, or whether we are restricted to stay within a more limited view of quantum systems, in terms of complementary but mutually exclusive phenomena. In phenomenological terms we could describe the situation by saying that according to the usual interpretation of quantum theory (especially Niels Bohr's), quantum phenomena require a kind of epoché (i.e. a suspension of assumptions about reality at the quantum level). However, there are other interpretations (especially David Bohm's) that seem to re-establish the possibility of a mind-independent ontology at the quantum level. We will show that even such ontological interpretations contain novel, non-classical features, which require them to give a special role to "phenomena" or "appearances", a role not encountered in classical physics. We will conclude that while ontological interpretations of quantum theory are possible, quantum theory implies the need of a certain kind of epoché even for this type of interpretations. While different from the epoché connected to phenomenological description, the "quantum epoché" nevertheless points to a potentially interesting parallel between phenomenology and quantum philosophy. Copyright © 2015. Published by Elsevier Ltd.
Project Physics Tests 5, Models of the Atom.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Harvard Project Physics.
Test items relating to Project Physics Unit 5 are presented in this booklet. Included are 70 multiple-choice and 23 problem-and-essay questions. Concepts of atomic model are examined on aspects of relativistic corrections, electron emission, photoelectric effects, Compton effect, quantum theories, electrolysis experiments, atomic number and mass,…
NASA Astrophysics Data System (ADS)
Tanona, Scott Daniel
I develop a new analysis of Niels Bohr's Copenhagen interpretation of quantum mechanics by examining the development of his views from his earlier use of the correspondence principle in the so-called 'old quantum theory' to his articulation of the idea of complementarity in the context of the novel mathematical formalism of quantum mechanics. I argue that Bohr was motivated not by controversial and perhaps dispensable epistemological ideas---positivism or neo-Kantianism, for example---but by his own unique perspective on the difficulties of creating a new working physics of the internal structure of the atom. Bohr's use of the correspondence principle in the old quantum theory was associated with an empirical methodology that used this principle as an epistemological bridge to connect empirical phenomena with quantum models. The application of the correspondence principle required that one determine the validity of the idealizations and approximations necessary for the judicious use of classical physics within quantum theory. Bohr's interpretation of the new quantum mechanics then focused on the largely unexamined ways in which the developing abstract mathematical formalism is given empirical content by precisely this process of approximation. Significant consistency between his later interpretive framework and his forms of argument with the correspondence principle indicate that complementarity is best understood as a relationship among the various approximations and idealizations that must be made when one connects otherwise meaningless quantum mechanical symbols to empirical situations or 'experimental arrangements' described using concepts from classical physics. We discover that this relationship is unavoidable not through any sort of a priori analysis of the priority of classical concepts, but because quantum mechanics incorporates the correspondence approach in the way in which it represents quantum properties with matrices of transition probabilities, the empirical meaning of which depend on the situation but in general are tied to the correspondence connection to the spectra. For Bohr, it is then the commutation relations, which arise from the formalism, which inform us of the complementary nature of this approximate representation of quantum properties via the classical equations through which we connect them to experiments.
A quantum–quantum Metropolis algorithm
Yung, Man-Hong; Aspuru-Guzik, Alán
2012-01-01
The classical Metropolis sampling method is a cornerstone of many statistical modeling applications that range from physics, chemistry, and biology to economics. This method is particularly suitable for sampling the thermal distributions of classical systems. The challenge of extending this method to the simulation of arbitrary quantum systems is that, in general, eigenstates of quantum Hamiltonians cannot be obtained efficiently with a classical computer. However, this challenge can be overcome by quantum computers. Here, we present a quantum algorithm which fully generalizes the classical Metropolis algorithm to the quantum domain. The meaning of quantum generalization is twofold: The proposed algorithm is not only applicable to both classical and quantum systems, but also offers a quantum speedup relative to the classical counterpart. Furthermore, unlike the classical method of quantum Monte Carlo, this quantum algorithm does not suffer from the negative-sign problem associated with fermionic systems. Applications of this algorithm include the study of low-temperature properties of quantum systems, such as the Hubbard model, and preparing the thermal states of sizable molecules to simulate, for example, chemical reactions at an arbitrary temperature. PMID:22215584
Bacon, Dave; Flammia, Steven T
2009-09-18
The difficulty in producing precisely timed and controlled quantum gates is a significant source of error in many physical implementations of quantum computers. Here we introduce a simple universal primitive, adiabatic gate teleportation, which is robust to timing errors and many control errors and maintains a constant energy gap throughout the computation above a degenerate ground state space. This construction allows for geometric robustness based upon the control of two independent qubit interactions. Further, our piecewise adiabatic evolution easily relates to the quantum circuit model, enabling the use of standard methods from fault-tolerance theory for establishing thresholds.
Shannon entropy and avoided crossings in closed and open quantum billiards
NASA Astrophysics Data System (ADS)
Park, Kyu-Won; Moon, Songky; Shin, Younghoon; Kim, Jinuk; Jeong, Kabgyun; An, Kyungwon
2018-06-01
The relation between Shannon entropy and avoided crossings is investigated in dielectric microcavities. The Shannon entropy of the probability density for eigenfunctions in an open elliptic billiard as well as a closed quadrupole billiard increases as the center of the avoided crossing is approached. These results are opposite to those of atomic physics for electrons. It is found that the collective Lamb shift of the open quantum system and the symmetry breaking in the closed chaotic quantum system have equivalent effects on the Shannon entropy.
Analytic structure of the S-matrix for singular quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camblong, Horacio E.; Epele, Luis N.; Fanchiotti, Huner
2015-06-15
The analytic structure of the S-matrix of singular quantum mechanics is examined within a multichannel framework, with primary focus on its dependence with respect to a parameter (Ω) that determines the boundary conditions. Specifically, a characterization is given in terms of salient mathematical and physical properties governing its behavior. These properties involve unitarity and associated current-conserving Wronskian relations, time-reversal invariance, and Blaschke factorization. The approach leads to an interpretation of effective nonunitary solutions in singular quantum mechanics and their determination from the unitary family.
Delayed-Choice Experiments and the Metaphysics of Entanglement
NASA Astrophysics Data System (ADS)
Egg, Matthias
2013-09-01
Delayed-choice experiments in quantum mechanics are often taken to undermine a realistic interpretation of the quantum state. More specifically, Healey has recently argued that the phenomenon of delayed-choice entanglement swapping is incompatible with the view that entanglement is a physical relation between quantum systems. This paper argues against these claims. It first reviews two paradigmatic delayed-choice experiments and analyzes their metaphysical implications. It then applies the results of this analysis to the case of entanglement swapping, showing that such experiments pose no threat to realism about entanglement.
Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko
2009-01-01
Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a “pedestrian guide” to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future “quantum biology,” its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena. PMID:20234806
Quantum physics meets biology.
Arndt, Markus; Juffmann, Thomas; Vedral, Vlatko
2009-12-01
Quantum physics and biology have long been regarded as unrelated disciplines, describing nature at the inanimate microlevel on the one hand and living species on the other hand. Over the past decades the life sciences have succeeded in providing ever more and refined explanations of macroscopic phenomena that were based on an improved understanding of molecular structures and mechanisms. Simultaneously, quantum physics, originally rooted in a world-view of quantum coherences, entanglement, and other nonclassical effects, has been heading toward systems of increasing complexity. The present perspective article shall serve as a "pedestrian guide" to the growing interconnections between the two fields. We recapitulate the generic and sometimes unintuitive characteristics of quantum physics and point to a number of applications in the life sciences. We discuss our criteria for a future "quantum biology," its current status, recent experimental progress, and also the restrictions that nature imposes on bold extrapolations of quantum theory to macroscopic phenomena.
Generalized Entanglement Entropies of Quantum Designs.
Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun
2018-03-30
The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.
Quantum Cause of Gravity Waves and Dark Matter
NASA Astrophysics Data System (ADS)
Goradia, Shantilal; Goradia Team
2016-09-01
Per Einstein's theory mass tells space how to curve and space tells mass how to move. How do they tell''? The question boils down to information created by quantum particles blinking ON and OFF analogous to `Ying and Yang' or some more complex ways that may include dark matter. If not, what creates curvature of space-time? Consciousness, dark matter, quantum physics, uncertainty principle, constants of nature like strong coupling, fine structure constant, cosmological constant introduced by Einstein, information, gravitation etc. are fundamentally consequences of that ONE TOE. Vedic philosophers, who impressed Schrodinger so much, called it ATMA split in the categories of AnuAtma (particle soul), JivAtma (life soul) and ParamAtma (Omnipresent soul) which we relate to quantum physics, biology and cosmology. There is no separate TOE for any one thing. The long range relativistic propagations of the strong and weak couplings of the microscopic black holes in are just gravity waves. What else could they be?
Generalized Entanglement Entropies of Quantum Designs
NASA Astrophysics Data System (ADS)
Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun
2018-03-01
The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.
Probability and Locality: Determinism Versus Indeterminism in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Dickson, William Michael
1995-01-01
Quantum mechanics is often taken to be necessarily probabilistic. However, this view of quantum mechanics appears to be more the result of historical accident than of careful analysis. Moreover, quantum mechanics in its usual form faces serious problems. Although the mathematical core of quantum mechanics--quantum probability theory- -does not face conceptual difficulties, the application of quantum probability to the physical world leads to problems. In particular, quantum mechanics seems incapable of describing our everyday macroscopic experience. Therefore, several authors have proposed new interpretations --including (but not limited to) modal interpretations, spontaneous localization interpretations, the consistent histories approach, and the Bohm theory--each of which deals with quantum-mechanical probabilities differently. Each of these interpretations promises to describe our macroscopic experience and, arguably, each succeeds. Is there any way to compare them? Perhaps, if we turn to another troubling aspect of quantum mechanics, non-locality. Non -locality is troubling because prima facie it threatens the compatibility of quantum mechanics with special relativity. This prima facie threat is mitigated by the no-signalling theorems in quantum mechanics, but nonetheless one may find a 'conflict of spirit' between nonlocality in quantum mechanics and special relativity. Do any of these interpretations resolve this conflict of spirit?. There is a strong relation between how an interpretation deals with quantum-mechanical probabilities and how it deals with non-locality. The main argument here is that only a completely deterministic interpretation can be completely local. That is, locality together with the empirical predictions of quantum mechanics (specifically, its strict correlations) entails determinism. But even with this entailment in hand, comparison of the various interpretations requires a look at each, to see how non-locality arises, or in the case of deterministic interpretations, whether it arises. The result of this investigation is that, at the least, deterministic interpretations are no worse off with respect to special relativity than indeterministic interpretations. This conclusion runs against a common view that deterministic interpretations, specifically the Bohm theory, have more difficulty with special relativity than other interpretations.
A quantum annealing architecture with all-to-all connectivity from local interactions.
Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter
2015-10-01
Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is-in the spirit of topological quantum memories-redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems.
A quantum annealing architecture with all-to-all connectivity from local interactions
Lechner, Wolfgang; Hauke, Philipp; Zoller, Peter
2015-01-01
Quantum annealers are physical devices that aim at solving NP-complete optimization problems by exploiting quantum mechanics. The basic principle of quantum annealing is to encode the optimization problem in Ising interactions between quantum bits (qubits). A fundamental challenge in building a fully programmable quantum annealer is the competing requirements of full controllable all-to-all connectivity and the quasi-locality of the interactions between physical qubits. We present a scalable architecture with full connectivity, which can be implemented with local interactions only. The input of the optimization problem is encoded in local fields acting on an extended set of physical qubits. The output is—in the spirit of topological quantum memories—redundantly encoded in the physical qubits, resulting in an intrinsic fault tolerance. Our model can be understood as a lattice gauge theory, where long-range interactions are mediated by gauge constraints. The architecture can be realized on various platforms with local controllability, including superconducting qubits, NV-centers, quantum dots, and atomic systems. PMID:26601316
"A dedicated missionary". Charles Galton Darwin and the new quantum mechanics in Britain
NASA Astrophysics Data System (ADS)
Navarro, Jaume
In this paper I discuss the work on quantum physics and wave mechanics by Charles Galton Darwin, a Cambridge wrangler of the last generation, as a case study to better understand the early reception of quantum physics in Britain. I argue that his proposal in the early 1920s to abandon the strict conservation of energy, as well as his enthusiastic embracement of wave mechanics at the end of the decade, can be easily understood by tracing his ontological and epistemological commitments to his early training in the Cambridge Mathematical Tripos. I also suggest that Darwin's work cannot be neglected in a study of quantum physics in Britain, since he was one of very few fellows of the Royal Society able to judge and explain quantum physics and quantum mechanics.
PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity
NASA Astrophysics Data System (ADS)
Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier
2012-05-01
Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not only was it a showroom for the research currently being carried out by many groups throughout the world, but there was also a permanent look towards the future. During these days, the CSIC Campus witnessed many scientific conversations triggered by the interaction amongst the people and groups that participated in LOOPS'11 Madrid and which, in many cases, will crystallise into new results and advances in the field. The conference would not have been possible without the generous help of a number of national and international institutions. The organizers would like to acknowledge the financial support provided by the Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovación), the Spanish Research Council, CSIC (Consejo Superior de Investigaciones Cientĺficas), The BBVA Foundation (Fundación BBVA), The CONSOLIDER-CPAN project, the Spanish Society for Gravitation and Relativity (SEGRE), The Universidad Carlos III of Madrid (UC3M), and the European Science Foundation (ESF). The ESF, through the Quantum Gravity and Quantum Geometry network, provided full support for a number of young participants that have contributed to these proceedings: Dario Benedetti (Albert Einstein Institute, Potsdam, Germany), Norbert Bodendorfer (Institute for Theoretical Physics III, FAU Erlangen Nürnberg, Germany), Mariam Bouhmadi López (CENTRA, Centro Multidisciplinar de Astrofĺsica, Lisbon), Timothy Budd (Institute for Theoretical Physics, Utrecht University, The Netherlands), Miguel Campiglia (Institute for Gravitation and the Cosmos, Penn State University, USA), Gianluca Delfino (School of Mathematical Sciences, University of Nottingham, UK), Maite Dupuis (Institute for Theoretical Physics III, FAU Erlangen Nürnberg, Germany), Michał Dziendzikowski (Institute of Theoretical Physics, Warsaw University, Poland), Muxin Han (Centre de Physique Théorique de Luminy, Marseille, France), Philipp Höhn (Institute for Theoretical Physics, Utrecht University, The Netherlands), Jacek Puchta (Centre de Physique Théorique de Luminy, Marseille, France), James Ryan (Albert Einstein Institute, Potsdam, Germany), Lorenzo Sindoni (Albert Einstein Institute, Golm, Germany), David Sloan (Institute for Theoretical Physics, Utrecht University, The Netherlands), Johannes Tambornino (Laboratoire de Physique, ENS Lyon, France), Andreas Thurn (Institute for Theoretical Physics III, FAU Erlangen Nürnberg, Germany), Francesca Vidotto (Laboratoire de Physique Subatomique et de Cosmologie, Grenoble, France), and Matteo Smerlak (Albert Einstein Institute, Golm, Germany). We would like to conclude this preamble by thanking all the attendants of the conference for their high and enthusiastic participation. The presence of a large number of past and present Loop Quantum Gravity practitioners, as well as a significant number of top researchers in other approaches to quantum gravity, provided ample opportunities for fruitful scientific exchanges and a very lively atmosphere. It is encouraging to see that, 25 years after the inception of Loop Quantum Gravity, there is a vibrant young community of researchers entering the field. Let us hope that, with their help, the quantization of general relativity can be successfully accomplished in the near future. The Editors Conference photograph
Parts and Wholes. An Inquiry into Quantum and Classical Correlations
NASA Astrophysics Data System (ADS)
Seevinck, M. P.
2008-10-01
The primary topic of this dissertation is, firstly, the study of the correlations between outcomes of measurements on the subsystems of a composed system as predicted by a particular physical theory; secondly, the study of what this physical theory predicts for the relationships these subsystems can have to the composed system they are a part of; and thirdly, the comparison of different physical theories with respect to these two aspects. The physical theories investigated and compared are generalized probability theories in a quasi-classical physics framework and non-relativistic quantum theory. The motivation for these enquiries is that a comparison of the relationships between parts and whole as described by each theory, and of the correlations predicted by each theory between separated subsystems yields a fruitful method to investigate what these physical theories say about the world. One then finds, independent of any physical model, relationships and constraints that capture the essential physical assumptions and structural aspects of the theory in question. As such one gains a larger and deeper understanding of the different physical theories under investigation and of what they say about the world. A large part of this dissertation is devoted to understanding different aspects of different kinds of correlations that can exist between the outcomes of measurement on subsystems of a larger system. Four different kinds of correlation have been investigated: local, partially-local, no-signaling and quantum mechanical. Novel characteristics of these correlations have been used to study how they are related and how they can be discerned. The main tool of this investigation has been the usage of Bell-type inequalities that give non-trivial bounds on the strength of the correlations. The study of quantum correlations has also prompted us to study the multi-partite qubit state space with respect to its entanglement and separability characteristics, and the differing strength of the correlations in separable and entangled qubit states. Comparing the different types of correlations has provided us with many new results on the various strengths of the different types of correlation. Because of the generality of the investigation -- we have considered abstract general models, not some specific and particular ones -- these results have strong repercussions for different sorts of physical theories. These repercussions have foundational as well as philosophical impact, notably for the viability of hidden variable theories for quantum mechanics, for the possibility of doing experimental metaphysics, for the question of holism in physical theories, and for the classical vs. quantum dichotomy.
Frobenius-norm-based measures of quantum coherence and asymmetry
Yao, Yao; Dong, G. H.; Xiao, Xing; Sun, C. P.
2016-01-01
We formulate the Frobenius-norm-based measures for quantum coherence and asymmetry respectively. In contrast to the resource theory of coherence and asymmetry, we construct a natural measure of quantum coherence inspired from optical coherence theory while the group theoretical approach is employed to quantify the asymmetry of quantum states. Besides their simple structures and explicit physical meanings, we observe that these quantities are intimately related to the purity (or linear entropy) of the corresponding quantum states. Remarkably, we demonstrate that the proposed coherence quantifier is not only a measure of mixedness, but also an intrinsic (basis-independent) quantification of quantum coherence contained in quantum states, which can also be viewed as a normalized version of Brukner-Zeilinger invariant information. In our context, the asymmetry of N-qubit quantum systems is considered under local independent and collective transformations. In- triguingly, it is illustrated that the collective effect has a significant impact on the asymmetry measure, and quantum correlation between subsystems plays a non-negligible role in this circumstance. PMID:27558009
Realization of Quantum Maxwell’s Demon with Solid-State Spins*
NASA Astrophysics Data System (ADS)
Wang, W.-B.; Chang, X.-Y.; Wang, F.; Hou, P.-Y.; Huang, Y.-Y.; Zhang, W.-G.; Ouyang, X.-L.; Huang, X.-Z.; Zhang, Z.-Y.; Wang, H.-Y.; He, L.; Duan, L.-M.
2018-04-01
Resolution of the century-long paradox on Maxwell's demon reveals a deep connection between information theory and thermodynamics. Although initially introduced as a thought experiment, Maxwell's demon can now be implemented in several physical systems, leading to intriguing test of information-thermodynamic relations. Here, we report experimental realization of a quantum version of Maxwell's demon using solid state spins where the information acquiring and feedback operations by the demon are achieved through conditional quantum gates. A unique feature of this implementation is that the demon can start in a quantum superposition state or in an entangled state with an ancilla observer. Through quantum state tomography, we measure the entropy in the system, demon, and the ancilla, showing the influence of coherence and entanglement on the result. A quantum implementation of Maxwell's demon adds more controllability to this paradoxical thermal machine and may find applications in quantum thermodynamics involving microscopic systems.
PREFACE: The 5th International Symposium on Quantum Theory and Symmetries (QTS5)
NASA Astrophysics Data System (ADS)
Gadella, M.; Izquierdo, J. M.; Kuru, S.; Negro, J.; del Olmo, M. A.
2008-08-01
This special issue of Journal of Physics A: Mathematical and Theoretical appears on the occasion of the 5th International Symposium on Quantum Theory and Symmetries (QTS5), held in Valladolid, Spain, from 22-28 July 2007. This is the fith in a series of conferences previously held in Goslar (Germany) 1999, QTS1; Cracow (Poland) 2001, QTS2; Cincinnati (USA) 2003, QTS3; and Varna (Bulgaria) 2005, QTS4. The QTS5 symposium gathered 181 participants from 39 countries working in different fields of theoretical physics. The spirit of the QTS conference series is to join researchers in a wide variety of topics in theoretical physics, as a way of making accessible recent results and the new lines of different fields. This is based on the feeling that it is good for a physicist to have a general overview as well as expertise in his/her own field. There are many other conferences devoted to specific topics, which are of interest to gain deeper insight in many technical aspects and that are quite suitable for discussions due to their small size. However, we believe that general conferences like this are interesting and worth keeping. We like the talks, in both plenary and parallel sessions, which are devoted to specific topics, to be prepared so as to be accessible to any researcher in any branch of theoretical physics. We think that this objective is compatible with rigour and high standards. As is well known, similar methods and techniques can be useful for many problems in different fields. We hope that this has been appreciated during the sessions of the QTS5 conference. The QTS5 conference offered the following list of topics: 1. Symmetries in string theory, quantum gravity and related topics 2. Symmetries in quantum field theories, conformal and related field theories, lattice and noncommutative theories, gauge theories 3.Quantum computing, information and control 4. Foundations of quantum theory 5. Quantum optics, coherent states, Wigner functions 6. Dynamical and integrable systems 7. Symmetries in condensed matter and statistical physics 8. Symmetries in particle physics, nuclear, atomic and molecular physics 9. Nonlinear quantum mechanics 10. Time asymmetric quantum mechanics 11. SUSY quantum mechanics, PT symmetries and pseudo-Hamiltonians 12. Mathematical methods for symmetries and quantum theories 13. Symmetries in chemistry, biology and other sciences Papers accepted for publication in this issue aim to provide a survey of the state of the art in different fields and contain contributions from plenary speakers. In addition, the issue contains contributions from other participants and it has also been open to other authors whose work fits into the topics of the conference. In any case, all the contributions have been refereed according to the high standards of Journal of Physics A: Mathematical and Theoretical. We are much indebted to several institutions; without their support the organization of the QTS5 symposium would not have been possible. In this respect we acknowledge the Ministerio de Educación of Spain and Junta de Castilla y León for general financial support; to Fundación Universidades de Castilla y León for a number of grants to young researchers who otherwise would not have attended the conference; also to the European Physical Society that provided a number of grants for eastern countries, and to the University of Valladolid where the event took place. We thank IOP Publishing and the staff of Journal of Physics A: Mathematical and Theoretical for the publication of this special issue. In addition, we want to express our gratitude to other members of the Local Organizing Committe of QTS5, who are not Editors of this special issue: Oscar Arratia, Juan A Calzada and Fernando Gómez. Finally, we would like to thank all the participants in the QTS5 conference for their presence, contributions, and for the good atmosphere achieved during their stay. We hope that the experience of spending these days in Valladolid has been most fruitful for all of them.
Avoiding irreversible dynamics in quantum systems
NASA Astrophysics Data System (ADS)
Karasik, Raisa Iosifovna
2009-10-01
Devices that exploit laws of quantum physics offer revolutionary advances in computation and communication. However, building such devices presents an enormous challenge, since it would require technologies that go far beyond current capabilities. One of the main obstacles to building a quantum computer and devices needed for quantum communication is decoherence or noise that originates from the interaction between a quantum system and its environment, and which leads to the destruction of the fragile quantum information. Encoding into decoherence-free subspaces (DFS) provides an important strategy for combating decoherence effects in quantum systems and constitutes the focus of my dissertation. The theory of DFS relies on the existence of certain symmetries in the decoherence process, which allow some states of a quantum system to be completely decoupled from the environment and thus to experience no decoherence. In this thesis I describe various approaches to DFS that are developed in the current literature. Although the general idea behind various approaches to DFS is the same, I show that different mathematical definitions of DFS actually have different physical meaning. I provide a rigorous definition of DFS for every approach, explaining its physical meaning and relation to other definitions. I also examine the theory of DFS for Markovian systems. These are systems for which the environment has no memory, i.e., any change in the environment affects the quantum system instantaneously. Examples of such systems include many systems in quantum optics that have been proposed for implementation of a quantum computer, such as atomic and molecular gases, trapped ions, and quantum dots. Here I develop a rigorous theory that provides necessary and sufficient conditions for the existence of DFS. This theory allows us to identify a special new class of DFS that was not known before. Under particular circumstances, dynamics of a quantum system can connive together with the interactions between the system and its environment in a special way to reduce decoherence. This property is used to discover new DFS that rely on rather counterintuitive phenomenon, which I call an "incoherent generation of coherences." I also provide examples of physical systems that support such states. These DFS can be used to suppress & coherence, but may not be sufficient for performing full quantum computation. I also explore the possibility of physically generating the DFS that are useful for quantum computation. For quantum computation we need to preserve at least two quantum states to encode the quantum analogue of classical bits. Here I aim to generate DFS in a system composed from a large collection of atoms or molecules and I need to determine how one should position atoms or molecules in 3D space so that the overall system possesses a DFS with at least two states (i.e., non-trivial DFS). I show that for many Markovian systems, non-trivial DFS can exist only when particles are located in exactly the same position in space. This, of course, is not possible in the real world. For these systems, I also show that states in DFS are states with infinite lifetime. However, for all practical applications we just need long-lived states. Thus in reality, we do just need to bring quantum particles close together to generate an imperfect DFS, i.e. a collection of long-lived states. This can be achieved, for example, for atoms within a single molecule.
Limits on efficient computation in the physical world
NASA Astrophysics Data System (ADS)
Aaronson, Scott Joel
More than a speculative technology, quantum computing seems to challenge our most basic intuitions about how the physical world should behave. In this thesis I show that, while some intuitions from classical computer science must be jettisoned in the light of modern physics, many others emerge nearly unscathed; and I use powerful tools from computational complexity theory to help determine which are which. In the first part of the thesis, I attack the common belief that quantum computing resembles classical exponential parallelism, by showing that quantum computers would face serious limitations on a wider range of problems than was previously known. In particular, any quantum algorithm that solves the collision problem---that of deciding whether a sequence of n integers is one-to-one or two-to-one---must query the sequence O (n1/5) times. This resolves a question that was open for years; previously no lower bound better than constant was known. A corollary is that there is no "black-box" quantum algorithm to break cryptographic hash functions or solve the Graph Isomorphism problem in polynomial time. I also show that relative to an oracle, quantum computers could not solve NP-complete problems in polynomial time, even with the help of nonuniform "quantum advice states"; and that any quantum algorithm needs O (2n/4/n) queries to find a local minimum of a black-box function on the n-dimensional hypercube. Surprisingly, the latter result also leads to new classical lower bounds for the local search problem. Finally, I give new lower bounds on quantum one-way communication complexity, and on the quantum query complexity of total Boolean functions and recursive Fourier sampling. The second part of the thesis studies the relationship of the quantum computing model to physical reality. I first examine the arguments of Leonid Levin, Stephen Wolfram, and others who believe quantum computing to be fundamentally impossible. I find their arguments unconvincing without a "Sure/Shor separator"---a criterion that separates the already-verified quantum states from those that appear in Shor's factoring algorithm. I argue that such a separator should be based on a complexity classification of quantum states, and go on to create such a classification. Next I ask what happens to the quantum computing model if we take into account that the speed of light is finite---and in particular, whether Grover's algorithm still yields a quadratic speedup for searching a database. Refuting a claim by Benioff, I show that the surprising answer is yes. Finally, I analyze hypothetical models of computation that go even beyond quantum computing. I show that many such models would be as powerful as the complexity class PP, and use this fact to give a simple, quantum computing based proof that PP is closed under intersection. On the other hand, I also present one model---wherein we could sample the entire history of a hidden variable---that appears to be more powerful than standard quantum computing, but only slightly so.
ERIC Educational Resources Information Center
Héraud, Jean-Loup; Lautesse, Philippe; Ferlin, Fabrice; Chabot, Hugues
2017-01-01
Our work extends a previous study of epistemological presuppositions in teaching quantum physics in upper scientific secondary school in France. Here, the problematic reference of quantum theory's concepts is treated at the ontological level (the counterintuitive nature of quantum objects). We consider the approach of using narratives describing…
Franceschetti, Donald R; Gire, Elizabeth
2013-06-01
Quantum probability theory offers a viable alternative to classical probability, although there are some ambiguities inherent in transferring the quantum formalism to a less determined realm. A number of physicists are now looking at the applicability of quantum ideas to the assessment of physics learning, an area particularly suited to quantum probability ideas.
NASA Astrophysics Data System (ADS)
Hey, Anthony J. G.; Walters, Patrick
This book provides a descriptive, popular account of quantum physics. The basic topics addressed include: waves and particles, the Heisenberg uncertainty principle, the Schroedinger equation and matter waves, atoms and nuclei, quantum tunneling, the Pauli exclusion principle and the elements, quantum cooperation and superfluids, Feynman rules, weak photons, quarks, and gluons. The applications of quantum physics to astrophyics, nuclear technology, and modern electronics are addressed.
John Wheeler, 1952 - 1976: Black Holes and Geometrodynamics
NASA Astrophysics Data System (ADS)
Thorne, Kip S.
2009-05-01
In 1952 John Wheeler turned his attention from nuclear physics and national defense to a backwater of physics: general relativity. Over the next 25 years, with students and postdocs he led a ``revolution'' that made relativity a major subfield of fundamental physics and a tool for astrophysics. Wheeler viewed curved spacetime as a nonlinear dynamical entity, to be studied via tools of geometrodynamics (by analogy with electrodynamics) -- including numerical relativity, for which his students laid the earliest foundations. With Joseph Weber (his postdoc), he did theoretical work on gravitational waves that helped launch Weber on a career of laying foundations for modern gravitational-wave detectors. Wheeler and his students showed compellingly that massive stars must form black holes; and he gave black holes their name, formulated the theory of their pulsations and stability (with Tullio Regge), and mentored several generations of students in seminal black-hole research (including Jacob Bekenstein's black-hole entropy). Before the discovery of pulsars, Wheeler identified magnetized, spinning neutron stars as the likely power sources for supernova remnants including the Crab nebula. He identified the Planck length and time as the characteristic scales for the laws of quantum gravity, and formulated the concept of quantum fluctuations of spacetime geometry and quantum foam. With Bryce DeWitt, he defined a quantum wave function on the space of 3-geometries and derived the Wheeler-DeWitt equation that governs it, and its a sum-over-histories action principle. Wheeler was a great inspiration to his colleagues and students, pointing the directions toward fruitful research problems and making intuitive-leap speculations about what lies beyond the frontiers of knowledge. Many of his ideas that sounded crazy at the time were ``just crazy enough to be right''.
Realism, positivism, instrumentalism, and quantum geometry
NASA Astrophysics Data System (ADS)
Prugovečki, Eduard
1992-02-01
The roles of classical realism, logical positivism, and pragmatic instrumentalism in the shaping of fundamental ideas in quantum physics are examined in the light of some recent historical and sociological studies of the factors that influenced their development. It is shown that those studies indicate that the conventionalistic form of instrumentalism that has dominated all the major post-World War II developments in quantum physics is not an outgrowth of the Copenhagen school, and that despite the “schism” in twentieth century physics created by the Bohr-Einstein “disagreements” on foundational issues in quantum theory, both their philosophical stands were very much opposed to those of conventionalistic instrumentalism. Quotations from the writings of Dirac, Heisenberg, Popper, Russell, and other influential thinkers, are provided, illustrating the fact that, despite the various divergencies in their opinions, they all either opposed the instrumentalist concept of “truth” in general, or its conventionalistic version in post-World War II quantum physics in particular. The basic epistemic ideas of a quantum geometry approach to quantum physics are reviewed and discussed from the point of view of a quantum realism that seeks to reconcile Bohr's “positivism” with Einstein's “realism” by emphasizing the existence of an underlying quantum reality, in which they both believed. This quantum geometry framework seeks to introduce geometro-stochastic concepts that are specifically designed for the systematic description of that underlying quantum reality, by developing the conceptual and mathematical tools that are most appropriate for such a use.
NASA Astrophysics Data System (ADS)
2011-07-01
WE RECOMMEND Fun Fly Stick Science Kit Fun fly stick introduces electrostatics to youngsters Special Relativity Text makes a useful addition to the study of relativity as an undergraduate LabVIEWTM 2009 Education Edition LabVIEW sets industry standard for gathering and analysing data, signal processing, instrumentation design and control, and automation and robotics Edison and Ford Winter Estates Thomas Edison's home is open to the public The Computer History Museum Take a walk through technology history at this computer museum WORTH A LOOK Fast Car Physics Book races through physics Beautiful Invisible The main subject of this book is theoretical physics Quantum Theory Cannot Hurt You A guide to physics on the large and small scale Chaos: The Science of Predictable Random Motion Book explores the mathematics behind chaotic behaviour Seven Wonders of the Universe A textual trip through the wonderful universe HANDLE WITH CARE Marie Curie: A Biography Book fails to capture Curie's science WEB WATCH Web clips to liven up science lessons
Metal-to-insulator switching in quantum anomalous Hall states
Kou, Xufeng; Pan, Lei; Wang, Jing; ...
2015-10-07
After decades of searching for the dissipationless transport in the absence of any external magnetic field, quantum anomalous Hall effect (QAHE) was recently achieved in magnetic topological insulator films. However, the universal phase diagram of QAHE and its relation with quantum Hall effect (QHE) remain to be investigated. Here, we report the experimental observation of the giant longitudinal resistance peak and zero Hall conductance plateau at the coercive field in the six quintuple-layer (Cr 0.12Bi 0.26Sb 0.62) 2Te 3 film, and demonstrate the metal-to-insulator switching between two opposite QAHE plateau states up to 0.3 K. Moreover, the universal QAHE phasemore » diagram is confirmed through the angle-dependent measurements. Our results address that the quantum phase transitions in both QAHE and QHE regimes are in the same universality class, yet the microscopic details are different. Additionally, the realization of the QAHE insulating state unveils new ways to explore quantum phase-related physics and applications.« less
Entanglement of spin waves among four quantum memories.
Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J
2010-11-18
Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.
NASA Astrophysics Data System (ADS)
Haven, Emmanuel; Khrennikov, Andrei
2013-01-01
Preface; Part I. Physics Concepts in Social Science? A Discussion: 1. Classical, statistical and quantum mechanics: all in one; 2. Econophysics: statistical physics and social science; 3. Quantum social science: a non-mathematical motivation; Part II. Mathematics and Physics Preliminaries: 4. Vector calculus and other mathematical preliminaries; 5. Basic elements of quantum mechanics; 6. Basic elements of Bohmian mechanics; Part III. Quantum Probabilistic Effects in Psychology: Basic Questions and Answers: 7. A brief overview; 8. Interference effects in psychology - an introduction; 9. A quantum-like model of decision making; Part IV. Other Quantum Probabilistic Effects in Economics, Finance and Brain Sciences: 10. Financial/economic theory in crisis; 11. Bohmian mechanics in finance and economics; 12. The Bohm-Vigier Model and path simulation; 13. Other applications to economic/financial theory; 14. The neurophysiological sources of quantum-like processing in the brain; Conclusion; Glossary; Index.
Teaching Physics Using Virtual Reality
NASA Astrophysics Data System (ADS)
Savage, C.; McGrath, D.; McIntyre, T.; Wegener, M.; Williamson, M.
2010-07-01
We present an investigation of game-like simulations for physics teaching. We report on the effectiveness of the interactive simulation "Real Time Relativity" for learning special relativity. We argue that the simulation not only enhances traditional learning, but also enables new types of learning that challenge the traditional curriculum. The lessons drawn from this work are being applied to the development of a simulation for enhancing the learning of quantum mechanics.
Generalized Ehrenfest Relations, Deformation Quantization, and the Geometry of Inter-model Reduction
NASA Astrophysics Data System (ADS)
Rosaler, Joshua
2018-03-01
This study attempts to spell out more explicitly than has been done previously the connection between two types of formal correspondence that arise in the study of quantum-classical relations: one the one hand, deformation quantization and the associated continuity between quantum and classical algebras of observables in the limit \\hbar → 0, and, on the other, a certain generalization of Ehrenfest's Theorem and the result that expectation values of position and momentum evolve approximately classically for narrow wave packet states. While deformation quantization establishes a direct continuity between the abstract algebras of quantum and classical observables, the latter result makes in-eliminable reference to the quantum and classical state spaces on which these structures act—specifically, via restriction to narrow wave packet states. Here, we describe a certain geometrical re-formulation and extension of the result that expectation values evolve approximately classically for narrow wave packet states, which relies essentially on the postulates of deformation quantization, but describes a relationship between the actions of quantum and classical algebras and groups over their respective state spaces that is non-trivially distinct from deformation quantization. The goals of the discussion are partly pedagogical in that it aims to provide a clear, explicit synthesis of known results; however, the particular synthesis offered aspires to some novelty in its emphasis on a certain general type of mathematical and physical relationship between the state spaces of different models that represent the same physical system, and in the explicitness with which it details the above-mentioned connection between quantum and classical models.
Probing University Students' Pre-Knowledge in Quantum Physics with QPCS Survey
ERIC Educational Resources Information Center
Asikainen, Mervi A.
2017-01-01
The study investigated the use of Quantum Physics Conceptual Survey (QPCS) in probing student understanding of quantum physics. Altogether 103 Finnish university students responded to QPCS. The mean scores of the student responses were calculated and the test was evaluated using common five indices: Item difficulty index, Item discrimination…
Quantum Sensing for High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Bibber, Karl; Boshier, Malcolm; Demarteau, Marcel
The Coordinating Panel for Advanced Detectors (CPAD) of the APS Division of Particles and Fields organized a first workshop on Quantum Sensing for High Energy Physics (HEP) in early December 2017 at Argonne National Laboratory. Participants from universities and national labs were drawn from the intersecting fields of Quantum Information Science (QIS), high energy physics, atomic, molecular and optical physics, condensed matter physics, nuclear physics and materials science. Quantum-enabled science and technology has seen rapid technical advances and growing national interest and investments over the last few years. The goal of the workshop was to bring the various communities togethermore » to investigate pathways to integrate the expertise of these two disciplines to accelerate the mutual advancement of scientific progress.« less
Images of Inherited War: Three American Presidents in Vietnam
2011-06-01
Dependent Realism to demonstrate how theoretical advances in modern physical science correlate to cognitive theories in International Relations. We...Quantum Physics and Model-Dependent Realism In his book, The Grand Design, theoretical physicist and cosmologist Stephen Hawking draws on theoretical...exhibited wave-like properties and that existing scientific laws could not account for their behavior. Newtonian physics was “built on a framework
Zero Thermal Noise in Resistors at Zero Temperature
NASA Astrophysics Data System (ADS)
Kish, Laszlo B.; Niklasson, Gunnar A.; Granqvist, Claes-Göran
2016-06-01
The bandwidth of transistors in logic devices approaches the quantum limit, where Johnson noise and associated error rates are supposed to be strongly enhanced. However, the related theory — asserting a temperature-independent quantum zero-point (ZP) contribution to Johnson noise, which dominates the quantum regime — is controversial and resolution of the controversy is essential to determine the real error rate and fundamental energy dissipation limits of logic gates in the quantum limit. The Callen-Welton formula (fluctuation-dissipation theorem) of voltage and current noise for a resistance is the sum of Nyquist’s classical Johnson noise equation and a quantum ZP term with a power density spectrum proportional to frequency and independent of temperature. The classical Johnson-Nyquist formula vanishes at the approach of zero temperature, but the quantum ZP term still predicts non-zero noise voltage and current. Here, we show that this noise cannot be reconciled with the Fermi-Dirac distribution, which defines the thermodynamics of electrons according to quantum-statistical physics. Consequently, Johnson noise must be nil at zero temperature, and non-zero noise found for certain experimental arrangements may be a measurement artifact, such as the one mentioned in Kleen’s uncertainty relation argument.
ERIC Educational Resources Information Center
Barnes, Marianne B.; Garner, James; Reid, David
2004-01-01
In this article we use the pendulum as the vehicle for discussing the transition from classical to quantum physics. Since student knowledge of the classical pendulum can be generalized to all harmonic oscillators, we propose that a quantum analysis of the pendulum can lead students into the unanticipated consequences of quantum phenomena at the…
Emergent mechanics, quantum and un-quantum
NASA Astrophysics Data System (ADS)
Ralston, John P.
2013-10-01
There is great interest in quantum mechanics as an "emergent" phenomenon. The program holds that nonobvious patterns and laws can emerge from complicated physical systems operating by more fundamental rules. We find a new approach where quantum mechanics itself should be viewed as an information management tool not derived from physics nor depending on physics. The main accomplishment of quantum-style theory comes in expanding the notion of probability. We construct a map from macroscopic information as data" to quantum probability. The map allows a hidden variable description for quantum states, and efficient use of the helpful tools of quantum mechanics in unlimited circumstances. Quantum dynamics via the time-dependent Shroedinger equation or operator methods actually represents a restricted class of classical Hamiltonian or Lagrangian dynamics, albeit with different numbers of degrees of freedom. We show that under wide circumstances such dynamics emerges from structureless dynamical systems. The uses of the quantum information management tools are illustrated by numerical experiments and practical applications
Effective Lagrangian in de Sitter spacetime
NASA Astrophysics Data System (ADS)
Kitamoto, Hiroyuki; Kitazawa, Yoshihisa
2017-01-01
Scale invariant fluctuations of metric are a universal feature of quantum gravity in de Sitter spacetime. We construct an effective Lagrangian which summarizes their implications on local physics by integrating superhorizon metric fluctuations. It shows infrared quantum effects are local and render fundamental couplings time dependent. We impose Lorenz invariance on the effective Lagrangian as it is required by the principle of general covariance. We show that such a requirement leads to unique physical predictions by fixing the quantization ambiguities. We explain how the gauge parameter dependence of observables is canceled. In particular the relative evolution speed of the couplings are shown to be gauge invariant.
Quantum vacuum energy in general relativity
NASA Astrophysics Data System (ADS)
Henke, Christian
2018-02-01
The paper deals with the scale discrepancy between the observed vacuum energy in cosmology and the theoretical quantum vacuum energy (cosmological constant problem). Here, we demonstrate that Einstein's equation and an analogy to particle physics leads to the first physical justification of the so-called fine-tuning problem. This fine-tuning could be automatically satisfied with the variable cosmological term Λ (a)=Λ_0+Λ_1 a^{-(4-ɛ)}, 0 < ɛ ≪ 1, where a is the scale factor. As a side effect of our solution of the cosmological constant problem, the dynamical part of the cosmological term generates an attractive force and solves the missing mass problem of dark matter.
Building non-commutative spacetimes at the Planck length for Friedmann flat cosmologies
NASA Astrophysics Data System (ADS)
Tomassini, Luca; Viaggiu, Stefano
2014-09-01
We propose physically motivated spacetime uncertainty relations (STUR) for flat Friedmann-Lemaître cosmologies. We show that the physical features of these STUR crucially depend on whether a particle horizon is present or not. In particular, when this is the case we deduce the existence of a maximal value for the Hubble rate (or equivalently for the matter density), thus providing an indication that quantum effects may rule out a pointlike big bang singularity. Finally, we construct a concrete realization of the corresponding quantum Friedmann spacetime in terms of operators on a Hilbert space. In loving memory of Francesco Saverio de Blasi, mathematician and friend.
Relational quadrilateralland II: The Quantum Theory
NASA Astrophysics Data System (ADS)
Anderson, Edward; Kneller, Sophie
2014-04-01
We provide the quantum treatment of the relational quadrilateral. The underlying reduced configuration spaces are ℂℙ2 and the cone over this. We consider exact free and isotropic HO potential cases and perturbations about these. Moreover, our purely relational kinematical quantization is distinct from the usual one for ℂℙ2, which turns out to carry absolutist connotations instead. Thus, this paper is the first to note absolute-versus-relational motion distinctions at the kinematical rather than dynamical level. It is also an example of value to the discussion of kinematical quantization along the lines of Isham, 1984. The relational quadrilateral is the simplest RPM whose mathematics is not standard in atomic physics (the triangle and four particles on a line are both based on 𝕊2 and ℝ3 mathematics). It is far more typical of the general quantum relational N-a-gon than the previously studied case of the relational triangle. We consider useful integrals as regards perturbation theory and the peaking interpretation of quantum cosmology. We subsequently consider problem of time (PoT) applications of this: quantum Kuchař beables, the Machian version of the semiclassical approach and the timeless naïve Schrödinger interpretation. These go toward extending the combined Machian semiclassical-Histories-Timeless Approach of [Int. J. Mod. Phys. D23 (2014) 1450014] to the case of the quadrilateral, which will be treated in subsequent papers.
Exploration of quantum-memory-assisted entropic uncertainty relations in a noninertial frame
NASA Astrophysics Data System (ADS)
Wang, Dong; Ming, Fei; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu
2017-05-01
The uncertainty principle offers a bound to show accuracy of the simultaneous measurement outcome for two incompatible observables. In this letter, we investigate quantum-memory-assisted entropic uncertainty relation (QMA-EUR) when the particle to be measured stays at an open system, and another particle is treated as quantum memory under a noninertial frame. In such a scenario, the collective influence of the unital and nonunital noise environment, and of the relativistic motion of the system, on the QMA-EUR is examined. By numerical analysis, we conclude that, firstly, the noises and the Unruh effect can both increase the uncertainty, due to the decoherence of the bipartite system induced by the noise or Unruh effect; secondly, the uncertainty is more affected by the noises than by the Unruh effect from the acceleration; thirdly, unital noises can reduce the uncertainty in long-time regime. We give a possible physical interpretation for those results: that the information of interest is redistributed among the bipartite, the noisy environment and the physically inaccessible region in the noninertial frame. Therefore, we claim that our observations provide an insight into dynamics of the entropic uncertainty in a noninertial frame, and might be important to quantum precision measurement under relativistic motion.
A rational explanation of wave-particle duality of light
NASA Astrophysics Data System (ADS)
Rashkovskiy, S. A.
2013-10-01
The wave-particle duality is a fundamental property of the nature. At the same time, it is one of the greatest mysteries of modern physics. This gave rise to a whole direction in quantum physics - the interpretation of quantum mechanics. The Wiener experiments demonstrating the wave-particle duality of light are discussed. It is shown that almost all interpretations of quantum mechanics allow explaining the double-slit experiments, but are powerless to explain the Wiener experiments. The reason of the paradox, associated with the wave-particle duality is analyzed. The quantum theory consists of two independent parts: (i) the dynamic equations describing the behavior of a quantum object (for example, the Schrodinger or Maxwell equations), and (ii) the Born's rule, the relation between the wave function and the probability of finding the particle at a given point. It is shown that precisely the Born's rule results in paradox in explaining the wave-particle duality. In order to eliminate this paradox, we propose a new rational interpretation of the wave-particle duality and associated new rule, connecting the corpuscular and wave properties of quantum objects. It is shown that this new rational interpretation of the wave-particle duality allows using the classic images of particle and wave in explaining the quantum mechanical and optical phenomena, does not result in paradox in explaining the doubleslit experiments and Wiener experiments, and does not contradict to the modern quantum mechanical concepts. It is shown that the Born's rule follows immediately from proposed new rules as an approximation.
Quantum spin liquids: a review.
Savary, Lucile; Balents, Leon
2017-01-01
Quantum spin liquids may be considered 'quantum disordered' ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.
Towards the map of quantum gravity
NASA Astrophysics Data System (ADS)
Mielczarek, Jakub; Trześniewski, Tomasz
2018-06-01
In this paper we point out some possible links between different approaches to quantum gravity and theories of the Planck scale physics. In particular, connections between loop quantum gravity, causal dynamical triangulations, Hořava-Lifshitz gravity, asymptotic safety scenario, Quantum Graphity, deformations of relativistic symmetries and nonlinear phase space models are discussed. The main focus is on quantum deformations of the Hypersurface Deformations Algebra and Poincaré algebra, nonlinear structure of phase space, the running dimension of spacetime and nontrivial phase diagram of quantum gravity. We present an attempt to arrange the observed relations in the form of a graph, highlighting different aspects of quantum gravity. The analysis is performed in the spirit of a mind map, which represents the architectural approach to the studied theory, being a natural way to describe the properties of a complex system. We hope that the constructed graphs (maps) will turn out to be helpful in uncovering the global picture of quantum gravity as a particular complex system and serve as a useful guide for the researchers.
Hilbert's 17th Problem and the Quantumness of States
NASA Astrophysics Data System (ADS)
Korbicz, J. K.; Cirac, J. I.; Wehr, Jan; Lewenstein, M.
2005-04-01
A state of a quantum system can be regarded as classical (quantum) with respect to measurements of a set of canonical observables if and only if there exists (does not exist) a well defined, positive phase-space distribution, the so called Glauber-Sudarshan P representation. We derive a family of classicality criteria that requires that the averages of positive functions calculated using P representation must be positive. For polynomial functions, these criteria are related to Hilbert’s 17th problem, and have physical meaning of generalized squeezing conditions; alternatively, they may be interpreted as nonclassicality witnesses. We show that every generic nonclassical state can be detected by a polynomial that is a sum-of-squares of other polynomials. We introduce a very natural hierarchy of states regarding their degree of quantumness, which we relate to the minimal degree of a sum-of-squares polynomial that detects them.
A fabrication guide for planar silicon quantum dot heterostructures
NASA Astrophysics Data System (ADS)
Spruijtenburg, Paul C.; Amitonov, Sergey V.; van der Wiel, Wilfred G.; Zwanenburg, Floris A.
2018-04-01
We describe important considerations to create top-down fabricated planar quantum dots in silicon, often not discussed in detail in literature. The subtle interplay between intrinsic material properties, interfaces and fabrication processes plays a crucial role in the formation of electrostatically defined quantum dots. Processes such as oxidation, physical vapor deposition and atomic-layer deposition must be tailored in order to prevent unwanted side effects such as defects, disorder and dewetting. In two directly related manuscripts written in parallel we use techniques described in this work to create depletion-mode quantum dots in intrinsic silicon, and low-disorder silicon quantum dots defined with palladium gates. While we discuss three different planar gate structures, the general principles also apply to 0D and 1D systems, such as self-assembled islands and nanowires.
Constraining the loop quantum gravity parameter space from phenomenology
NASA Astrophysics Data System (ADS)
Brahma, Suddhasattwa; Ronco, Michele
2018-03-01
Development of quantum gravity theories rarely takes inputs from experimental physics. In this letter, we take a small step towards correcting this by establishing a paradigm for incorporating putative quantum corrections, arising from canonical quantum gravity (QG) theories, in deriving falsifiable modified dispersion relations (MDRs) for particles on a deformed Minkowski space-time. This allows us to differentiate and, hopefully, pick between several quantization choices via testable, state-of-the-art phenomenological predictions. Although a few explicit examples from loop quantum gravity (LQG) (such as the regularization scheme used or the representation of the gauge group) are shown here to establish the claim, our framework is more general and is capable of addressing other quantization ambiguities within LQG and also those arising from other similar QG approaches.
Cosmic Acceleration, Dark Energy, and Fundamental Physics
NASA Astrophysics Data System (ADS)
Turner, Michael S.; Huterer, Dragan
2007-11-01
A web of interlocking observations has established that the expansion of the Universe is speeding up and not slowing, revealing the presence of some form of repulsive gravity. Within the context of general relativity the cause of cosmic acceleration is a highly elastic ( p˜-ρ), very smooth form of energy called “dark energy” accounting for about 75% of the Universe. The “simplest” explanation for dark energy is the zero-point energy density associated with the quantum vacuum; however, all estimates for its value are many orders-of-magnitude too large. Other ideas for dark energy include a very light scalar field or a tangled network of topological defects. An alternate explanation invokes gravitational physics beyond general relativity. Observations and experiments underway and more precise cosmological measurements and laboratory experiments planned for the next decade will test whether or not dark energy is the quantum energy of the vacuum or something more exotic, and whether or not general relativity can self consistently explain cosmic acceleration. Dark energy is the most conspicuous example of physics beyond the standard model and perhaps the most profound mystery in all of science.
Demonstration of entanglement assisted invariance on IBM's quantum experience.
Deffner, Sebastian
2017-11-01
Quantum entanglement is among the most fundamental, yet from classical intuition also most surprising properties of the fully quantum nature of physical reality. We report several experiments performed on IBM's Quantum Experience demonstrating envariance - entanglement assisted invariance. Envariance is a recently discovered symmetry of composite quantum systems, which is at the foundational origin of physics and a quantum phenomenon of pure states. These very easily reproducible and freely accessible experiments on Quantum Experience provide simple tools to study the properties of envariance, and we illustrate this for several cases with "quantum universes" consisting of up to five qubits.
Physical realizability of continuous-time quantum stochastic walks
NASA Astrophysics Data System (ADS)
Taketani, Bruno G.; Govia, Luke C. G.; Wilhelm, Frank K.
2018-05-01
Quantum walks are a promising methodology that can be used to both understand and implement quantum information processing tasks. The quantum stochastic walk is a recently developed framework that combines the concept of a quantum walk with that of a classical random walk, through open system evolution of a quantum system. Quantum stochastic walks have been shown to have applications in as far reaching fields as artificial intelligence. However, there are significant constraints on the kind of open system evolutions that can be realized in a physical experiment. In this work, we discuss the restrictions on the allowed open system evolution and the physical assumptions underpinning them. We show that general direct implementations would require the complete solution of the underlying unitary dynamics and sophisticated reservoir engineering, thus weakening the benefits of experimental implementation.
NASA Astrophysics Data System (ADS)
Delgado, Francisco
2017-12-01
Quantum information processing should be generated through control of quantum evolution for physical systems being used as resources, such as superconducting circuits, spinspin couplings in ions and artificial anyons in electronic gases. They have a quantum dynamics which should be translated into more natural languages for quantum information processing. On this terrain, this language should let to establish manipulation operations on the associated quantum information states as classical information processing does. This work shows how a kind of processing operations can be settled and implemented for quantum states design and quantum processing for systems fulfilling a SU(2) reduction in their dynamics.
NASA Astrophysics Data System (ADS)
Clegg, Brian
2018-04-01
Everybody knows that quantum physics is weird, right? Indeed, quantum physicist Richard Feynman once said in a lecture: "The theory of quantum electrodynamics describes Nature as absurd from the point of view of common sense." Beyond Weird: Why Everything You Thought You Knew About Quantum Physics is Different by Philip Ball presents a refreshing challenge to this viewpoint.
Large & Small: Exploring the Laws of Nature
ERIC Educational Resources Information Center
Creutz, E.
1976-01-01
Illustrates how both large entities (such as stars and galaxies) and small entities (such as fundamental particles) obey the same physical laws. Discusses quantum mechanics, Newton's laws, and general relativity. (MLH)
Non-Markovianity-assisted high-fidelity Deutsch-Jozsa algorithm in diamond
NASA Astrophysics Data System (ADS)
Dong, Yang; Zheng, Yu; Li, Shen; Li, Cong-Cong; Chen, Xiang-Dong; Guo, Guang-Can; Sun, Fang-Wen
2018-01-01
The memory effects in non-Markovian quantum dynamics can induce the revival of quantum coherence, which is believed to provide important physical resources for quantum information processing (QIP). However, no real quantum algorithms have been demonstrated with the help of such memory effects. Here, we experimentally implemented a non-Markovianity-assisted high-fidelity refined Deutsch-Jozsa algorithm (RDJA) with a solid spin in diamond. The memory effects can induce pronounced non-monotonic variations in the RDJA results, which were confirmed to follow a non-Markovian quantum process by measuring the non-Markovianity of the spin system. By applying the memory effects as physical resources with the assistance of dynamical decoupling, the probability of success of RDJA was elevated above 97% in the open quantum system. This study not only demonstrates that the non-Markovianity is an important physical resource but also presents a feasible way to employ this physical resource. It will stimulate the application of the memory effects in non-Markovian quantum dynamics to improve the performance of practical QIP.
Physical explanation of the periodic table.
Ostrovsky, V N
2003-05-01
The Periodic Table of the elements, the most important generalization in chemistry, is often considered as a representative special case in the study of the relation between chemistry and physics. Its quantum interpretation was initiated, but not completed, by Niels Bohr. In this paper, post-Bohr conceptual developments are discussed from historical and epistemological points of view. The difference between high-precision numerical calculations for individual atoms and the theory of the periodic system as a whole is emphasized. Periodic laws met in Nature are not restricted to the chemical Periodic Table. A comparative study of these laws makes it possible to single out essential features that define the particular pattern of periodicity. It is shown that the periodic system of neutral ground state atoms now has a firm nonempirical quantum-theoretical basis. Alternative approaches, based on group theory and other mathematical schemes, are briefly discussed. It is argued that, while quantum theory is capable of fully accurate calculations for relatively simple atoms or molecular objects, the complexity of polyatomic molecules and chemical reactions guarantees the flourishing of chemistry as a separate scientific discipline.
Beyond Peaceful Coexistence: The Emergence of Space, Time and Quantum
NASA Astrophysics Data System (ADS)
Licata, Ignazio
A physical theory consists of a formal structure and one or more interpretations. The latter can come out from cultural and cognitive tension going far beyond any sound operational pact between theoretical constructs and empirical data. We have no reason to doubt about the consistency and efficacy of syntaxes if properly used in the right range. The formal side of Physics has grown in a strongly connected and stratified way through an almost autopoietic, self-dual procedure (let's think of the extraordinary success of the gauge theories), whereas the foundational debate is still blustering about the two pillars of such monumental construction. The general relativity (GR) and the quantum mechanics (QM), which still appear to be greatly incompatible and stopped in a limited peaceful coexistence between local causality in space-time and quantum non-locality [1]. The formidable challenges waiting for us beyond the Standard Model seem to require a new semantic consistency [2] within the two theories, so as to build a new way to look at them, to work and to relate them...
Are quantum-mechanical-like models possible, or necessary, outside quantum physics?
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2014-12-01
This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well.
How is quantum information localized in gravity?
NASA Astrophysics Data System (ADS)
Donnelly, William; Giddings, Steven B.
2017-10-01
A notion of localization of information within quantum subsystems plays a key role in describing the physics of quantum systems, and in particular is a prerequisite for discussing important concepts such as entanglement and information transfer. While subsystems can be readily defined for finite quantum systems and in local quantum field theory, a corresponding definition for gravitational systems is significantly complicated by the apparent nonlocality arising due to gauge invariance, enforced by the constraints. A related question is whether "soft hair" encodes otherwise localized information, and the question of such localization also remains an important puzzle for proposals that gravity emerges from another structure such as a boundary field theory as in AdS/CFT. This paper describes different approaches to defining local subsystem structure, and shows that at least classically, perturbative gravity has localized subsystems based on a split structure, generalizing the split property of quantum field theory. This, and related arguments for QED, give simple explanations that in these theories there is localized information that is independent of fields outside a region, in particular so that there is no role for "soft hair" in encoding such information. Additional subtleties appear in quantum gravity. We argue that localized information exists in perturbative quantum gravity in the presence of global symmetries, but that nonperturbative dynamics is likely tied to a modification of such structure.
Exploiting Quantum Resonance to Solve Combinatorial Problems
NASA Technical Reports Server (NTRS)
Zak, Michail; Fijany, Amir
2006-01-01
Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.
Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2
2015-12-15
quantum dots (SAQD) in Schottky diodes . Based on spins in these dots, a scalable architecture has been proposed [Adv. in Physics, 59, 703 (2010)] by us...housed in two coupled quantum dots with tunneling between them, as described above, may not be scalable but can serve as a node in a quantum network. The... tunneling -coupled two-electron spin ground states in the vertically coupled quantum dots for “universal computation” two spin qubits within the universe of
Phase-factor-dependent symmetries and quantum phases in a three-level cavity QED system.
Fan, Jingtao; Yu, Lixian; Chen, Gang; Jia, Suotang
2016-05-03
Unlike conventional two-level particles, three-level particles may support some unitary-invariant phase factors when they interact coherently with a single-mode quantized light field. To gain a better understanding of light-matter interaction, it is thus necessary to explore the phase-factor-dependent physics in such a system. In this report, we consider the collective interaction between degenerate V-type three-level particles and a single-mode quantized light field, whose different components are labeled by different phase factors. We mainly establish an important relation between the phase factors and the symmetry or symmetry-broken physics. Specifically, we find that the phase factors affect dramatically the system symmetry. When these symmetries are breaking separately, rich quantum phases emerge. Finally, we propose a possible scheme to experimentally probe the predicted physics of our model. Our work provides a way to explore phase-factor-induced nontrivial physics by introducing additional particle levels.
Fewster, Christopher J
2015-08-06
The framework of locally covariant quantum field theory is discussed, motivated in part using 'ignorance principles'. It is shown how theories can be represented by suitable functors, so that physical equivalence of theories may be expressed via natural isomorphisms between the corresponding functors. The inhomogeneous scalar field is used to illustrate the ideas. It is argued that there are two reasonable definitions of the local physical content associated with a locally covariant theory; when these coincide, the theory is said to be dynamically local. The status of the dynamical locality condition is reviewed, as are its applications in relation to (i) the foundational question of what it means for a theory to represent the same physics in different space-times and (ii) a no-go result on the existence of natural states. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
1994-05-15
Nogues superconducting quantum interference device magnetometry and small-angle neutron-scattering techniques 5829 Thermodynamical properties of a...sa’nple magnetometer (VSM) and superconducting Coey et al.1 have been extensively studied during the past quantum interference device (SQUID) were used to...were measured in a superconducting quantum- interference 30 device magnetometer at 273 K. 20 e 10 U1 Y3 U RESULTS - C0 20 40 60 80 100 Phase relations
The Wonders of Supersymmetry: From Quantum Mechanics, Topology, and Noise, to (maybe) the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppitz, Erich
2010-04-07
Supersymmetry, relating bosons and fermions was discovered almost 40 years ago in string theory and in quantum field theory, but the seeds of its 'miraculous' properties could have been seen already in quantum mechanics - which is also where it has found some of its more important applications. This talk introduces supersymmetry via the supersymmetric anharmonic oscillator. We shall see that this seemingly trivial example is sufficiently rich, allowing us to illustrate the uses of supersymmetric concepts in a variety of fields: mathematics, elementary particle physics, critical phenomena, and stochastic dynamics.
A quantum analogy to the classical gravitomagnetic clock effect
NASA Astrophysics Data System (ADS)
Faruque, S. B.
2018-06-01
We present an approximation to the solution of Dirac equation in Schwarzschild field found through the use of Foldy-Wouthuysen Hamiltonian. We solve the equation for the positive energy states and found the frequencies by which the states oscillate. Difference of the periods of oscillation of the two states with two different total angular momentum quantum number j has an analogical form of the classical clock effect found in general relativity. But unlike the term that appears as clock effect in classical physics, here the term is quantized. Thus, we find a quantum analogue of the classical gravitomagnetic clock effect.
Probing quantum gravity through exactly soluble midi-superspaces I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashtekar, A.; Pierri, M.
1996-12-01
It is well-known that the Einstein-Rosen solutions to the 3+1- dimensional vacuum Einstein{close_quote}s equations are in one to one correspondence with solutions of 2+1-dimensional general relativity coupled to axi-symmetric, zero rest mass scalar fields. We first re-examine the quantization of this midi-superspace paying special attention to the asymptotically flat boundary conditions and to certain functional analytic subtleties associated with regularization. We then use the resulting quantum theory to analyze several conceptual and technical issues of quantum gravity. {copyright} {ital 1996 American Institute of Physics.}
The Wonders of Supersymmetry: From Quantum Mechanics, Topology, and Noise, to (maybe) the LHC
Poppitz, Erich
2017-12-22
Supersymmetry, relating bosons and fermions was discovered almost 40 years ago in string theory and in quantum field theory, but the seeds of its 'miraculous' properties could have been seen already in quantum mechanics - which is also where it has found some of its more important applications. This talk introduces supersymmetry via the supersymmetric anharmonic oscillator. We shall see that this seemingly trivial example is sufficiently rich, allowing us to illustrate the uses of supersymmetric concepts in a variety of fields: mathematics, elementary particle physics, critical phenomena, and stochastic dynamics.
Second-scale nuclear spin coherence time of ultracold 23Na40K molecules.
Park, Jee Woo; Yan, Zoe Z; Loh, Huanqian; Will, Sebastian A; Zwierlein, Martin W
2017-07-28
Coherence, the stability of the relative phase between quantum states, is central to quantum mechanics and its applications. For ultracold dipolar molecules at sub-microkelvin temperatures, internal states with robust coherence are predicted to offer rich prospects for quantum many-body physics and quantum information processing. We report the observation of stable coherence between nuclear spin states of ultracold fermionic sodium-potassium (NaK) molecules in the singlet rovibrational ground state. Ramsey spectroscopy reveals coherence times on the scale of 1 second; this enables high-resolution spectroscopy of the molecular gas. Collisional shifts are shown to be absent down to the 100-millihertz level. This work opens the door to the use of molecules as a versatile quantum memory and for precision measurements on dipolar quantum matter. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Exponential Sensitivity and its Cost in Quantum Physics
Gilyén, András; Kiss, Tamás; Jex, Igor
2016-01-01
State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed. PMID:26861076
Budiyono, Agung; Rohrlich, Daniel
2017-11-03
Where does quantum mechanics part ways with classical mechanics? How does quantum randomness differ fundamentally from classical randomness? We cannot fully explain how the theories differ until we can derive them within a single axiomatic framework, allowing an unambiguous account of how one theory is the limit of the other. Here we derive non-relativistic quantum mechanics and classical statistical mechanics within a common framework. The common axioms include conservation of average energy and conservation of probability current. But two axioms distinguish quantum mechanics from classical statistical mechanics: an "ontic extension" defines a nonseparable (global) random variable that generates physical correlations, and an "epistemic restriction" constrains allowed phase space distributions. The ontic extension and epistemic restriction, with strength on the order of Planck's constant, imply quantum entanglement and uncertainty relations. This framework suggests that the wave function is epistemic, yet it does not provide an ontic dynamics for individual systems.
Exponential Sensitivity and its Cost in Quantum Physics.
Gilyén, András; Kiss, Tamás; Jex, Igor
2016-02-10
State selective protocols, like entanglement purification, lead to an essentially non-linear quantum evolution, unusual in naturally occurring quantum processes. Sensitivity to initial states in quantum systems, stemming from such non-linear dynamics, is a promising perspective for applications. Here we demonstrate that chaotic behaviour is a rather generic feature in state selective protocols: exponential sensitivity can exist for all initial states in an experimentally realisable optical scheme. Moreover, any complex rational polynomial map, including the example of the Mandelbrot set, can be directly realised. In state selective protocols, one needs an ensemble of initial states, the size of which decreases with each iteration. We prove that exponential sensitivity to initial states in any quantum system has to be related to downsizing the initial ensemble also exponentially. Our results show that magnifying initial differences of quantum states (a Schrödinger microscope) is possible; however, there is a strict bound on the number of copies needed.
Computation in generalised probabilisitic theories
NASA Astrophysics Data System (ADS)
Lee, Ciarán M.; Barrett, Jonathan
2015-08-01
From the general difficulty of simulating quantum systems using classical systems, and in particular the existence of an efficient quantum algorithm for factoring, it is likely that quantum computation is intrinsically more powerful than classical computation. At present, the best upper bound known for the power of quantum computation is that {{BQP}}\\subseteq {{AWPP}}, where {{AWPP}} is a classical complexity class (known to be included in {{PP}}, hence {{PSPACE}}). This work investigates limits on computational power that are imposed by simple physical, or information theoretic, principles. To this end, we define a circuit-based model of computation in a class of operationally-defined theories more general than quantum theory, and ask: what is the minimal set of physical assumptions under which the above inclusions still hold? We show that given only an assumption of tomographic locality (roughly, that multipartite states and transformations can be characterized by local measurements), efficient computations are contained in {{AWPP}}. This inclusion still holds even without assuming a basic notion of causality (where the notion is, roughly, that probabilities for outcomes cannot depend on future measurement choices). Following Aaronson, we extend the computational model by allowing post-selection on measurement outcomes. Aaronson showed that the corresponding quantum complexity class, {{PostBQP}}, is equal to {{PP}}. Given only the assumption of tomographic locality, the inclusion in {{PP}} still holds for post-selected computation in general theories. Hence in a world with post-selection, quantum theory is optimal for computation in the space of all operational theories. We then consider whether one can obtain relativized complexity results for general theories. It is not obvious how to define a sensible notion of a computational oracle in the general framework that reduces to the standard notion in the quantum case. Nevertheless, it is possible to define computation relative to a ‘classical oracle’. Then, we show there exists a classical oracle relative to which efficient computation in any theory satisfying the causality assumption does not include {{NP}}.
Can quantum transition state theory be defined as an exact t = 0+ limit?
NASA Astrophysics Data System (ADS)
Jang, Seogjoo; Voth, Gregory A.
2016-02-01
The definition of the classical transition state theory (TST) as a t → 0+ limit of the flux-side time correlation function relies on the assumption that simultaneous measurement of population and flux is a well defined physical process. However, the noncommutativity of the two measurements in quantum mechanics makes the extension of such a concept to the quantum regime impossible. For this reason, quantum TST (QTST) has been generally accepted as any kind of quantum rate theory reproducing the TST in the classical limit, and there has been a broad consensus that no unique QTST retaining all the properties of TST can be defined. Contrary to this widely held view, Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)] recently suggested that a true QTST can be defined as the exact t → 0+ limit of a certain kind of quantum flux-side time correlation function and that it is equivalent to the ring polymer molecular dynamics (RPMD) TST. This work seeks to question and clarify certain assumptions underlying these suggestions and their implications. First, the time correlation function used by HA as a starting expression is not related to the kinetic rate constant by virtue of linear response theory, which is the first important step in relating a t = 0+ limit to a physically measurable rate. Second, a theoretical analysis calls into question a key step in HA's proof which appears not to rely on an exact quantum mechanical identity. The correction of this makes the true t = 0+ limit of HA's QTST different from the RPMD-TST rate expression, but rather equal to the well-known path integral quantum transition state theory rate expression for the case of centroid dividing surface. An alternative quantum rate expression is then formulated starting from the linear response theory and by applying a recently developed formalism of real time dynamics of imaginary time path integrals [S. Jang, A. V. Sinitskiy, and G. A. Voth, J. Chem. Phys. 140, 154103 (2014)]. It is shown that the t → 0+ limit of the new rate expression vanishes in the exact quantum limit.
Quantum Dots: An Experiment for Physical or Materials Chemistry
ERIC Educational Resources Information Center
Winkler, L. D.; Arceo, J. F.; Hughes, W. C.; DeGraff, B. A.; Augustine, B. H.
2005-01-01
An experiment is conducted for obtaining quantum dots for physical or materials chemistry. This experiment serves to both reinforce the basic concept of quantum confinement and providing a useful bridge between the molecular and solid-state world.
Why natural science needs phenomenological philosophy.
Rosen, Steven M
2015-12-01
Through an exploration of theoretical physics, this paper suggests the need for regrounding natural science in phenomenological philosophy. To begin, the philosophical roots of the prevailing scientific paradigm are traced to the thinking of Plato, Descartes, and Newton. The crisis in modern science is then investigated, tracking developments in physics, science's premier discipline. Einsteinian special relativity is interpreted as a response to the threat of discontinuity implied by the Michelson-Morley experiment, a challenge to classical objectivism that Einstein sought to counteract. We see that Einstein's efforts to banish discontinuity ultimately fall into the "black hole" predicted in his general theory of relativity. The unavoidable discontinuity that haunts Einstein's theory is also central to quantum mechanics. Here too the attempt has been made to manage discontinuity, only to have this strategy thwarted in the end by the intractable problem of quantum gravity. The irrepressible discontinuity manifested in the phenomena of modern physics proves to be linked to a merging of subject and object that flies in the face of Cartesian philosophy. To accommodate these radically non-classical phenomena, a new philosophical foundation is called for: phenomenology. Phenomenological philosophy is elaborated through Merleau-Ponty's concept of depth and is then brought into focus for use in theoretical physics via qualitative work with topology and hypercomplex numbers. In the final part of this paper, a detailed summary is offered of the specific application of topological phenomenology to quantum gravity that was systematically articulated in The Self-Evolving Cosmos (Rosen, 2008a). Copyright © 2015. Published by Elsevier Ltd.
Quantum-Like Models for Decision Making in Psychology and Cognitive Science
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei.
2009-02-01
We show that (in contrast to rather common opinion) the domain of applications of the mathematical formalism of quantum mechanics is not restricted to physics. This formalism can be applied to the description of various quantum-like (QL) information processing. In particular, the calculus of quantum (and more general QL) probabilities can be used to explain some paradoxical statistical data which was collected in psychology and cognitive science. The main lesson of our study is that one should sharply distinguish the mathematical apparatus of QM from QM as a physical theory. The domain of application of the mathematical apparatus is essentially wider than quantum physics. Quantum-like representation algorithm, formula of total probability, interference of probabilities, psychology, cognition, decision making.
NASA Astrophysics Data System (ADS)
Chiao, Raymond Y.; Cohen, Marvin L.; Leggett, Anthony J.; Phillips, William D.; Harper, Charles L., Jr.
2010-10-01
List of contributors; Foreword Charles H. Townes; Editors' preface; Preface Freeman J. Dyson; Laureates' preface: reflections from four physics Nobelists Roy J. Glauber, John L. Hall, Theodore W. Hänsch and Wolfgang Ketterle; Acknowledgments; Part I. Illumination: The History and Future of Physical Science and Technology: 1. A short history of light in the Western world John L. Heilbron; 2. Tools and innovation Peter L. Galison; 3. The future of science Freeman J. Dyson; 4. The end of everything: will AI replace humans? Will everything die when the universe freezes over? Michio Kaku; Part II. Fundamental Physics and Quantum Mechanics: 5. Fundamental constants Frank Wilczek; 6. New insights on time symmetry in quantum mechanics Yakir Aharonov and Jeffrey Tollaksen; 7. The major unknowns in particle physics and cosmology David J. Gross; 8. The major unknown in quantum mechanics: Is it the whole truth? Anthony J. Leggett; 9. Precision cosmology and the landscape Raphael Bousso; 10. Hairy black holes, phase transitions, and AdS/CFT Steven S. Gubser; Part III. Astrophysics and Astronomy: 11. The microwave background: a cosmic time machine Adrian T. Lee; 12. Dark matter and dark energy Marc Kamionkowski; 13. New directions and intersections for observational cosmology: the case of dark energy Saul Perlmutter; 14. Inward bound: high-resolution astronomy and the quest for black holes and extrasolar planets Reinhard Genzel; 15. Searching for signatures of life beyond the solar system: astrophysical interferometry and the 150 km Exo-Earth Imager Antoine Labeyrie; 16. New directions for gravitational wave physics via 'Millikan oil drops' Raymond Y. Chiao; 17. An 'ultrasonic' image of the embryonic universe: CMB polarization tests of the inflationary paradigm Brian G. Keating; Part IV. New Approaches in Technology and Science: 18. Visualizing complexity: development of 4D microscopy and diffraction for imaging in space and time Ahmed H. Zewail; 19. Is life based on laws of physics? Steven Chu; 20. Quantum information J. Ignacio Cirac; 21. Emergence in condensed matter physics Marvin L. Cohen; 22. Achieving the highest spectral resolution over the widest spectral bandwidth: precision measurement meets ultrafast science Jun Ye; 23. Wireless non-radiative energy transfer Marin Soljačić; Part V. Consciousness and Free Will: 24. The big picture: exploring questions on the boundaries of science - consciousness and free will George F. R. Ellis; 25. Quantum entanglement: from fundamental questions to quantum communication and quantum computation and back Anton Zeilinger; 26. Consciousness, body, and brain: the matter of the mind Gerald M. Edelman; 27. The relation between quantum mechanics and higher brain functions: lessons from quantum computation and neurobiology Christof Koch and Klaus Hepp; 28. Free will and the causal closure of physics Robert C. Bishop; 29. Natural laws and the closure of physics Nancy L. Cartwright; 30. Anti-Cartesianism and downward causation: reshaping the free-will debate Nancey Murphy; 31. Can we understand free will? Charles H. Townes; Part VI. Reflections on the Big Questions: Mind, Matter. Mathematics, and Ultimate Reality: 32. The big picture: exploring questions on the boundaries of science - mind, matter, mathematics George F. R. Ellis; 33. The mathematical universe Max Tegmark; 34. Where do the laws of physics come from? Paul C. W. Davies; 35. Science, energy, ethics, and civilization Vaclav Smil; 36. Life of science, life of faith William T. Newsome; 37. The science of light and the light of science: an appreciative theological reflection on the life and work of Charles Hard Townes Robert J. Russell; 38. Two quibbles about 'ultimate' Gerald Gabrielse; Index.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Wei
Phase transitions and their associated critical phenomena are of fundamental importance and play a crucial role in the development of statistical physics for both classical and quantum systems. Phase transitions embody diverse aspects of physics and also have numerous applications outside physics, e.g., in chemistry, biology, and combinatorial optimization problems in computer science. Many problems can be reduced to a system consisting of a large number of interacting agents, which under some circumstances (e.g., changes of external parameters) exhibit collective behavior; this type of scenario also underlies phase transitions. The theoretical understanding of equilibrium phase transitions was put on a solid footing with the establishment of the renormalization group. In contrast, non-equilibrium phase transition are relatively less understood and currently a very active research topic. One important milestone here is the Kibble-Zurek (KZ) mechanism, which provides a useful framework for describing a system with a transition point approached through a non-equilibrium quench process. I developed two efficient Monte Carlo techniques for studying phase transitions, one is for classical phase transition and the other is for quantum phase transitions, both are under the framework of KZ scaling. For classical phase transition, I develop a non-equilibrium quench (NEQ) simulation that can completely avoid the critical slowing down problem. For quantum phase transitions, I develop a new algorithm, named quasi-adiabatic quantum Monte Carlo (QAQMC) algorithm for studying quantum quenches. I demonstrate the utility of QAQMC quantum Ising model and obtain high-precision results at the transition point, in particular showing generalized dynamic scaling in the quantum system. To further extend the methods, I study more complex systems such as spin-glasses and random graphs. The techniques allow us to investigate the problems efficiently. From the classical perspective, using the NEQ approach I verify the universality class of the 3D Ising spin-glasses. I also investigate the random 3-regular graphs in terms of both classical and quantum phase transitions. I demonstrate that under this simulation scheme, one can extract information associated with the classical and quantum spin-glass transitions without any knowledge prior to the simulation.
Developing and assessing research-based tools for teaching quantum mechanics and thermodynamics
NASA Astrophysics Data System (ADS)
Brown, Benjamin R.
Research-based tools to educate college students in physics courses from introductory level to graduate level are essential for helping students with a diverse set of goals and backgrounds learn physics. This thesis explores issues related to student common difficulties with some topics in undergraduate quantum mechanics and thermodynamics courses. Student difficulties in learning quantum mechanics and thermodynamics are investigated by administering written tests and surveys to many classes and conducting individual interviews with a subset of students outside the class to unpack the cognitive mechanisms of the difficulties. The quantum mechanics research also focuses on using the research on student difficulties for the development and evaluation of a Quantum Interactive Learning Tutorial (QuILT) to help students learn about the time-dependence of expectation values using the context of Larmor precession of spin and evaluating the role of asking students to self-diagnose their mistakes on midterm examination on their performance on subsequent problem solving. The QuILT on Larmor precession of spin has both paper-pencil activities and a simulation component to help students learn these foundational issues in quantum mechanics. Preliminary evaluations suggest that the QuILT, which strives to help students build a robust knowledge structure of time-dependence of expectation values in quantum mechanics using a guided approach, is successful in helping students learn these topics in the junior-senior level quantum mechanics courses. The technique to help upper-level students in quantum mechanics courses effectively engage in the process of learning from their mistakes is also found to be effective. In particular, research shows that the self-diagnosis activity in upper-level quantum mechanics significantly helps students who are struggling and this activity can reduce the gap between the high and low achieving students on subsequent problem solving. Finally, a survey of Thermodynamic Processes and the First and Second Laws (STPFaSL) is developed and validated with the purpose of evaluating the effectiveness of these topics in a thermodynamics curriculum. The validity and reliability of this survey are discussed and the student difficulties with these topics among various groups from introductory students to physics graduate students are cataloged.
A Safari Through Density Functional Theory
NASA Astrophysics Data System (ADS)
Dreizler, Reiner M.; Lüdde, Cora S.
Density functional theory is widely used to treat quantum many body problems in many areas of physics and related fields. A brief survey of this method covering foundations, functionals and applications is presented here.
Undergraduate computational physics projects on quantum computing
NASA Astrophysics Data System (ADS)
Candela, D.
2015-08-01
Computational projects on quantum computing suitable for students in a junior-level quantum mechanics course are described. In these projects students write their own programs to simulate quantum computers. Knowledge is assumed of introductory quantum mechanics through the properties of spin 1/2. Initial, more easily programmed projects treat the basics of quantum computation, quantum gates, and Grover's quantum search algorithm. These are followed by more advanced projects to increase the number of qubits and implement Shor's quantum factoring algorithm. The projects can be run on a typical laptop or desktop computer, using most programming languages. Supplementing resources available elsewhere, the projects are presented here in a self-contained format especially suitable for a short computational module for physics students.
Introducing Quantum Mechanics in the Upper Secondary School: A Study in Norway.
ERIC Educational Resources Information Center
Olsen, Rolf V.
2002-01-01
Reports on a study examining how upper secondary students (18-19-years-old) in Norway come to terms with wave-particle duality as presented as part of a short introduction to quantum physics. Concludes that school physics should give a more explicit focus to the challenge that quantum physics presents to the classical worldview. (Contains 30…
Two-Dimensional Arrays of Neutral Atom Quantum Gates
2012-10-20
Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS quantum computing , Rydberg atoms, entanglement Mark Saffman University of...Nature Physics, (01 2009): 0. doi: 10.1038/nphys1178 10/19/2012 9.00 K. Mølmer, M. Saffman. Scaling the neutral-atom Rydberg gate quantum computer by...Saffman, E. Brion, K. Mølmer. Error Correction in Ensemble Registers for Quantum Repeaters and Quantum Computers , Physical Review Letters, (3 2008): 0
Beauvais, Francis
2017-02-01
In previous articles, a description of 'unconventional' experiments (e.g. in vitro or clinical studies based on high dilutions, 'memory of water' or homeopathy) using quantum-like probability was proposed. Because the mathematical formulations of quantum logic are frequently an obstacle for physicians and biologists, a modified modeling that rests on classical probability is described in the present article. This modeling is inspired from a relational interpretation of quantum physics that applies not only to microscopic objects, but also to macroscopic structures, including experimental devices and observers. In this framework, any outcome of an experiment is not an absolute property of the observed system as usually considered but is expressed relatively to an observer. A team of interacting observers is thus described from an external view point based on two principles: the outcomes of experiments are expressed relatively to each observer and the observers agree on outcomes when they interact with each other. If probability fluctuations are also taken into account, correlations between 'expected' and observed outcomes emerge. Moreover, quantum-like correlations are predicted in experiments with local blind design but not with centralized blind design. No assumption on 'memory' or other physical modification of water is necessary in the present description although such hypotheses cannot be formally discarded. In conclusion, a simple modeling of 'unconventional' experiments based on classical probability is now available and its predictions can be tested. The underlying concepts are sufficiently intuitive to be spread into the homeopathy community and beyond. It is hoped that this modeling will encourage new studies with optimized designs for in vitro experiments and clinical trials. Copyright © 2017 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Quantum neurophysics: From non-living matter to quantum neurobiology and psychopathology.
Tarlacı, Sultan; Pregnolato, Massimo
2016-05-01
The concepts of quantum brain, quantum mind and quantum consciousness have been increasingly gaining currency in recent years, both in scientific papers and in the popular press. In fact, the concept of the quantum brain is a general framework. Included in it are basically four main sub-headings. These are often incorrectly used interchangeably. The first of these and the one which started the quantum mind/consciousness debate was the place of consciousness in the problem of measurement in quantum mechanics. Debate on the problem of quantum measurement and about the place of the conscious observer has lasted almost a century. One solution to this problem is that the participation of a conscious observer in the experiment will radically change our understanding of the universe and our relationship with the outside world. The second topic is that of quantum biology. This topic has become a popular field of research, especially in the last decade. It concerns whether or not the rules of quantum physics operate in biological structures. It has been shown in the latest research on photosynthesis, the sense of smell and magnetic direction finding in animals that the laws of quantum physics may operate in warm-wet-noisy biological structures. The third sub-heading is quantum neurobiology. This topic has not yet gained wide acceptance and is still in its early stages. Its primary purpose is directed to understand whether the laws of quantum physics are effective in the biology of the nervous system or not. A further step in brain neurobiology, toward the understanding of consciousness formation, is the research of quantum laws effects upon neural network functions. The fourth and final topic is quantum psychopathology. This topic takes its basis and its support from quantum neurobiology. It comes from the idea that if quantum physics is involved in the normal working of the brain, diseased conditions of the brain such as depression, anxiety, dementia, schizophrenia and hallucinations can be explained by quantum physical pathology. In this article, these topics will be reviewed in a general framework, and for the first time a general classification will be made for the quantum brain theory. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maxmilian Caligiuri, Luigi; Musha, Takaaki
Sonoluminescence, or its more frequently studied version known as Single Bubble Sonoluminescence, consisting in the emission of light by a collapsing bubble in water under ultrasounds, represents one of the most challenging and interesting phenomenon in theoretical physics. In fact, despite its relatively easy reproducibility in a simple laboratory, its understanding within the commonly accepted picture of condensed matter remained so far unsatisfactory. On the other hand, the possibility to control the physical process involved in sonoluminescence, representing a sort of nuclear fusion on small scale, could open unthinkable prospects of free energy production from water. Different explanations has been proposed during the past years considering, in various way, the photoemission to be related to electromagnetic Zero Point Field energy dynamics, by considering the bubble surface as a Casimir force boundary. More recently a model invoking Cherenkov radiation emission from superluminal photons generated in quantum vacuum has been successfully proposed. In this paper it will be shown that the same results can be more generally explained and quantitative obtained within a QED coherent dynamics of quantum vacuum, according to which the electromagnetic energy of the emitted photons would be related to the latent heat involved in the phase transition from water's vapor to liquid phase during the bubble collapse. The proposed approach could also suggest an explanation of a possible mechanism of generation of faster than light (FTL) photons required to start Cherenkov radiation as well as possible applications to energy production from quantum vacuum.
Novel Quantum Criticality in Two Dimensional Topological Phase transitions
Cho, Gil Young; Moon, Eun-Gook
2016-01-01
Topological quantum phase transitions intrinsically intertwine self-similarity and topology of many-electron wave-functions, and divining them is one of the most significant ways to advance understanding in condensed matter physics. Our focus is to investigate an unconventional class of the transitions between insulators and Dirac semimetals whose description is beyond conventional pseudo relativistic Dirac Hamiltonian. At the transition without the long-range Coulomb interaction, the electronic energy dispersion along one direction behaves like a relativistic particle, linear in momentum, but along the other direction it behaves like a non-relativistic particle, quadratic in momentum. Various physical systems ranging from TiO2-VO2 heterostructure to organic material α-(BEDT-TTF)2I3 under pressure have been proposed to have such anisotropic dispersion relation. Here, we discover a novel quantum criticality at the phase transition by incorporating the long range Coulomb interaction. Unique interplay between the Coulomb interaction and electronic critical modes enforces not only the anisotropic renormalization of the Coulomb interaction but also marginally modified electronic excitation. In connection with experiments, we investigate several striking effects in physical observables of our novel criticality. PMID:26791803
Consciousness and Quantum Physics: Empirical Research on the Subjective Reduction of the Statevector
NASA Astrophysics Data System (ADS)
Bierman, Dick J.; Whitmarsh, Stephen
There are two major theoretical perspectives on the relation between quantum physics and consciousness. The first one is the proposal by Hameroff and Penrose CHEXX[16] that consciousness arises from the collapse of the statevector describing nonconscious brainstates. The second perspective is the proposition that consciousness acts as the ultimate measurement device, i. e. a measurement is defined as the collapse of the statevector describing the external physical system, due to interaction with a conscious observer. The latter (dualistic) proposition has resulted in the thought experiment with Schrodinger's cat and is generally considered as extremely unlikely. However, that proposition is, under certain assumptions, open to empirical verification. This was originally done by Hall et al. CHEXX[15]. A refined experiment to test the "subjective" reduction' interpretation of the measurement problem in quantum physics was reported by Bierman CHEXX[3]. In the latter experiment, auditory evoked potentials (AEPs) of subjects observing (previously unobserved) radioactive decay were recorded. These were compared with AEPs from events that were already observed and thus supposedly already collapsed into a singular state. Significant differences in brain signals of the observer were found. In this chapter we report a further replication that is improved upon the previous experiments by adding a nonquantum event as control. Differential effects of preobservation were expected not to appear in this classical condition since the quantum character of the event is presumed crucial. No differential effects were found in either condition, however. Marginal differences were found between the quantum and classical conditions. Possible explanations for the inability to replicate the previous findings are given as well as suggestions for further research.
Exploring the quantum critical behaviour in a driven Tavis–Cummings circuit
Feng, M.; Zhong, Y.P.; Liu, T.; Yan, L.L.; Yang, W.L.; Twamley, J.; Wang, H.
2015-01-01
Quantum phase transitions play an important role in many-body systems and have been a research focus in conventional condensed-matter physics over the past few decades. Artificial atoms, such as superconducting qubits that can be individually manipulated, provide a new paradigm of realising and exploring quantum phase transitions by engineering an on-chip quantum simulator. Here we demonstrate experimentally the quantum critical behaviour in a highly controllable superconducting circuit, consisting of four qubits coupled to a common resonator mode. By off-resonantly driving the system to renormalize the critical spin-field coupling strength, we have observed a four-qubit nonequilibrium quantum phase transition in a dynamical manner; that is, we sweep the critical coupling strength over time and monitor the four-qubit scaled moments for a signature of a structural change of the system's eigenstates. Our observation of the nonequilibrium quantum phase transition, which is in good agreement with the driven Tavis–Cummings theory under decoherence, offers new experimental approaches towards exploring quantum phase transition-related science, such as scaling behaviours, parity breaking and long-range quantum correlations. PMID:25971985
Colloquium: Physics of the Riemann hypothesis
NASA Astrophysics Data System (ADS)
Schumayer, Dániel; Hutchinson, David A. W.
2011-04-01
Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here a particular number-theoretical function is chosen, the Riemann zeta function, and its influence on the realm of physics is examined and also how physics may be suggestive for the resolution of one of mathematics’ most famous unconfirmed conjectures, the Riemann hypothesis. Does physics hold an essential key to the solution for this more than 100-year-old problem? In this work numerous models from different branches of physics are examined, from classical mechanics to statistical physics, where this function plays an integral role. This function is also shown to be related to quantum chaos and how its pole structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations light is shed on how the Riemann hypothesis can highlight physics. Naturally, the aim is not to be comprehensive, but rather focusing on the major models and aim to give an informed starting point for the interested reader.
Novel Plasmonic and Hyberbolic Optical Materials for Control of Quantum Nanoemitters
2016-12-08
properties, metal ion implantation techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. 15. SUBJECT TERMS nanotechnology 16...techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. During the course of this project we studied plasmonic
Quantum technologies with hybrid systems
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-01-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558
Quantum technologies with hybrid systems.
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-31
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
Quantum technologies with hybrid systems
NASA Astrophysics Data System (ADS)
Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg
2015-03-01
An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.
The Spiritual and Educational Dimensions of The New Science Movement.
ERIC Educational Resources Information Center
Walz-Michaels, Gerda
With the emergence in physics of relativity and quantum theories in the first decade of this century a paradigm shift took place from a predominantly mechanistic to a dynamic world view. This shift formed the basis of the New Science Movement, including the new physics, in the 1970s. The movement is international, interdisciplinary, dynamic, and…
2008-06-13
environment can be found in Soviet research on cultural-historical psychology. Lev Vygotsky , A.N. Leont’ev, A.R. Luria and others struggled to promote...Werner Heisenberg’s The Physical Principles of the Quantum Theory for post-relativity physics cast the problem of environmental interaction as driven...
No Presentism in Quantum Gravity
NASA Astrophysics Data System (ADS)
Wüthrich, Christian
This essay offers a reaction to the recent resurgence of presentism in the philosophy of time. What is of particular interest in this renaissance is that a number of recent arguments supporting presentism are crafted in an untypically naturalistic vein, breathing new life into a metaphysics of time with a bad track record of co-habitation with modern physics. Against this trend, the present essay argues that the pressure on presentism exerted by special relativity and its core lesson of Lorentz symmetry cannot easily be shirked. A categorization of presentist responses to this pressure is offered. As a case in point, I analyze a recent argument by Monton (Presentism and quantum gravity, 263-280, 2006) presenting a case for the compatibility of presentism with quantum gravity. Monton claims that this compatibility arises because there are quantum theories of gravity that use fixed foliations of spacetime and that such fixed foliations provide a natural home for a metaphysically robust notion of the present. A careful analysis leaves Monton's argument wanting. In sum, the prospects of presentism to be alleviated from the stress applied by fundamental physics are faint.
Coherence and measurement in quantum thermodynamics
Kammerlander, P.; Anders, J.
2016-01-01
Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed. PMID:26916503
Coherence and measurement in quantum thermodynamics.
Kammerlander, P; Anders, J
2016-02-26
Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.
Coherence and measurement in quantum thermodynamics
NASA Astrophysics Data System (ADS)
Kammerlander, P.; Anders, J.
2016-02-01
Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.
General Method for Constructing Local Hidden Variable Models for Entangled Quantum States
NASA Astrophysics Data System (ADS)
Cavalcanti, D.; Guerini, L.; Rabelo, R.; Skrzypczyk, P.
2016-11-01
Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent quantum information protocols. However, not all entangled quantum states display nonlocality. A central question is to determine the precise relation between entanglement and nonlocality. Here we present the first general test to decide whether a quantum state is local, and show that the test can be implemented by semidefinite programing. This method can be applied to any given state and for the construction of new examples of states with local hidden variable models for both projective and general measurements. As applications, we provide a lower-bound estimate of the fraction of two-qubit local entangled states and present new explicit examples of such states, including those that arise from physical noise models, Bell-diagonal states, and noisy Greenberger-Horne-Zeilinger and W states.
Local Thermometry of Neutral Modes on the Quantum Hall Edge
NASA Astrophysics Data System (ADS)
Hart, Sean; Venkatachalam, Vivek; Pfeiffer, Loren; West, Ken; Yacoby, Amir
2012-02-01
A system of electrons in two dimensions and strong magnetic fields can be tuned to create a gapped 2D system with one dimensional channels along the edge. Interactions among these edge modes can lead to independent transport of charge and heat, even in opposite directions. Measuring the chirality and transport properties of these charge and heat modes can reveal otherwise hidden structure in the edge. Here, we heat the outer edge of such a quantum Hall system using a quantum point contact. By placing quantum dots upstream and downstream along the edge of the heater, we can measure both the chemical potential and temperature of that edge to study charge and heat transport, respectively. We find that charge is transported exclusively downstream, but heat can be transported upstream when the edge has additional structure related to fractional quantum Hall physics.
Experimental test of photonic entanglement in accelerated reference frames
NASA Astrophysics Data System (ADS)
Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert
2017-05-01
The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g--under free-fall as well on a spinning centrifuge--and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.
SEMICONDUCTOR PHYSICS: Properties of the two- and three-dimensional quantum dot qubit
NASA Astrophysics Data System (ADS)
Shihua, Chen
2010-05-01
On the condition of electric-longitudinal-optical (LO) phonon strong coupling in both two- and three-dimensional parabolic quantum dots (QDs), we obtain the eigenenergies of the ground state (GS) and the first excited state (ES), the eigenfunctions of the GS and the first ES by using a variational method of Pekar type. This system in QD may be employed as a quantum system-quantum bit (qubit). When the electron is in the superposition state of the GS and the first ES, we obtain the time evolution of the electron density. The relations of both the electron probability density and the period of oscillation with the electric-LO phonon coupling strength and confinement length are discussed.
Experimental test of photonic entanglement in accelerated reference frames.
Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C; Ursin, Rupert
2017-05-10
The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g-under free-fall as well on a spinning centrifuge-and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement.
Quantum Sensing for High Energy Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Zeeshan; et al.
Report of the first workshop to identify approaches and techniques in the domain of quantum sensing that can be utilized by future High Energy Physics applications to further the scientific goals of High Energy Physics.
Feasibility of self-correcting quantum memory and thermal stability of topological order
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Beni, E-mail: rouge@mit.edu
2011-10-15
Recently, it has become apparent that the thermal stability of topologically ordered systems at finite temperature, as discussed in condensed matter physics, can be studied by addressing the feasibility of self-correcting quantum memory, as discussed in quantum information science. Here, with this correspondence in mind, we propose a model of quantum codes that may cover a large class of physically realizable quantum memory. The model is supported by a certain class of gapped spin Hamiltonians, called stabilizer Hamiltonians, with translation symmetries and a small number of ground states that does not grow with the system size. We show that themore » model does not work as self-correcting quantum memory due to a certain topological constraint on geometric shapes of its logical operators. This quantum coding theoretical result implies that systems covered or approximated by the model cannot have thermally stable topological order, meaning that systems cannot be stable against both thermal fluctuations and local perturbations simultaneously in two and three spatial dimensions. - Highlights: > We define a class of physically realizable quantum codes. > We determine their coding and physical properties completely. > We establish the connection between topological order and self-correcting memory. > We find they do not work as self-correcting quantum memory. > We find they do not have thermally stable topological order.« less
NASA Astrophysics Data System (ADS)
Marshman, Emily; Sayer, Ryan; Henderson, Charles; Singh, Chandralekha
2017-06-01
At large research universities, physics graduate teaching assistants (TAs) are often responsible for grading in courses at all levels. However, few studies have focused on TAs' grading practices in introductory and advanced physics courses. This study was designed to investigate whether physics graduate TAs grade students in introductory physics and quantum mechanics using different criteria and if so, why they may be inclined to do so. To investigate possible discrepancies in TAs' grading approaches in courses at different levels, we implemented a sequence of instructional activities in a TA professional development course that asked TAs to grade student solutions of introductory physics and upper-level quantum mechanics problems and explain why, if at all, their grading approaches were different or similar in the two contexts. We analyzed the differences in TAs' grading approaches in the two contexts and discuss the reasons they provided for the differences in their grading approaches in introductory physics and quantum mechanics in individual interviews, class discussions, and written responses. We find that a majority of the TAs graded solutions to quantum mechanics problems differently than solutions to introductory physics problems. In quantum mechanics, the TAs focused more on physics concepts and reasoning and penalized students for not showing evidence of understanding. The findings of the study have implications for TA professional development programs, e.g., the importance of helping TAs think about the difficulty of a problem from an introductory students' perspective and reflecting on the benefits of formative assessment.
Physical approach to quantum networks with massive particles
NASA Astrophysics Data System (ADS)
Andersen, Molte Emil Strange; Zinner, Nikolaj Thomas
2018-04-01
Assembling large-scale quantum networks is a key goal of modern physics research with applications in quantum information and computation. Quantum wires and waveguides in which massive particles propagate in tailored confinement is one promising platform for realizing a quantum network. In the literature, such networks are often treated as quantum graphs, that is, the wave functions are taken to live on graphs of one-dimensional edges meeting in vertices. Hitherto, it has been unclear what boundary conditions on the vertices produce the physical states one finds in nature. This paper treats a quantum network from a physical approach, explicitly finds the physical eigenstates and compares them to the quantum-graph description. The basic building block of a quantum network is an X-shaped potential well made by crossing two quantum wires, and we consider a massive particle in such an X well. The system is analyzed using a variational method based on an expansion into modes with fast convergence and it provides a very clear intuition for the physics of the problem. The particle is found to have a ground state that is exponentially localized to the center of the X well, and the other symmetric solutions are formed so to be orthogonal to the ground state. This is in contrast to the predictions of the conventionally used so-called Kirchoff boundary conditions in quantum graph theory that predict a different sequence of symmetric solutions that cannot be physically realized. Numerical methods have previously been the only source of information on the ground-state wave function and our results provide a different perspective with strong analytical insights. The ground-state wave function has a spatial profile that looks very similar to the shape of a solitonic solution to a nonlinear Schrödinger equation, enabling an analytical prediction of the wave number. When combining multiple X wells into a network or grid, each site supports a solitonlike localized state. These localized solutions only couple to each other and are able to jump from one site to another as if they were trapped in a discrete lattice.
Quantum chaos in nuclear physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu
A definition of classical and quantum chaos on the basis of the Liouville–Arnold theorem is proposed. According to this definition, a chaotic quantum system that has N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) that are determined by the symmetry of the Hamiltonian for the system being considered. Quantitative measures of quantum chaos are established. In the classical limit, they go over to the Lyapunov exponent or the classical stability parameter. The use of quantum-chaos parameters in nuclear physics is demonstrated.
Neural implementation of operations used in quantum cognition.
Busemeyer, Jerome R; Fakhari, Pegah; Kvam, Peter
2017-11-01
Quantum probability theory has been successfully applied outside of physics to account for numerous findings from psychology regarding human judgement and decision making behavior. However, the researchers who have made these applications do not rely on the hypothesis that the brain is some type of quantum computer. This raises the question of how could the brain implement quantum algorithms other than quantum physical operations. This article outlines one way that a neural based system could perform the computations required by applications of quantum probability to human behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Delgado, Francisco
2017-12-01
Quantum information is an emergent area merging physics, mathematics, computer science and engineering. To reach its technological goals, it is requiring adequate approaches to understand how to combine physical restrictions, computational approaches and technological requirements to get functional universal quantum information processing. This work presents the modeling and the analysis of certain general type of Hamiltonian representing several physical systems used in quantum information and establishing a dynamics reduction in a natural grammar for bipartite processing based on entangled states.
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Zeilinger, Anton
2008-07-01
Pure curiosity has been the driving force behind many groundbreaking experiments in physics. This is no better illustrated than in quantum mechanics, initially the physics of the extremely small. Since its beginnings in the 1920s and 1930s, researchers have wanted to observe the counterintuitive properties of quantum mechanics directly in the laboratory. However, because experimental technology was not sufficiently developed at the time, people like Niels Bohr, Albert Einstein, Werner Heisenberg and Erwin Schrödinger relied instead on "gedankenexperiments" (thought experiments) to investigate the quantum physics of individual particles, mainly electrons and photons.
Atomtronics: Material and Device Physics of Quantum Gases
matter physics to electrical engineering. Our projects title Atomtronics: Material and device physics of quantum gases illustrates the chasm we bridged...starting from therich and fundamental physics already revealed with cold atoms systems, then leading to an understanding of the functional materials
PREFACE: Quantum Information, Communication, Computation and Cryptography
NASA Astrophysics Data System (ADS)
Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D.
2007-07-01
The application of quantum mechanics to information related fields such as communication, computation and cryptography is a fast growing line of research that has been witnessing an outburst of theoretical and experimental results, with possible practical applications. On the one hand, quantum cryptography with its impact on secrecy of transmission is having its first important actual implementations; on the other hand, the recent advances in quantum optics, ion trapping, BEC manipulation, spin and quantum dot technologies allow us to put to direct test a great deal of theoretical ideas and results. These achievements have stimulated a reborn interest in various aspects of quantum mechanics, creating a unique interplay between physics, both theoretical and experimental, mathematics, information theory and computer science. In view of all these developments, it appeared timely to organize a meeting where graduate students and young researchers could be exposed to the fundamentals of the theory, while senior experts could exchange their latest results. The activity was structured as a school followed by a workshop, and took place at The Abdus Salam International Center for Theoretical Physics (ICTP) and The International School for Advanced Studies (SISSA) in Trieste, Italy, from 12-23 June 2006. The meeting was part of the activity of the Joint European Master Curriculum Development Programme in Quantum Information, Communication, Cryptography and Computation, involving the Universities of Cergy-Pontoise (France), Chania (Greece), Leuven (Belgium), Rennes1 (France) and Trieste (Italy). This special issue of Journal of Physics A: Mathematical and Theoretical collects 22 contributions from well known experts who took part in the workshop. They summarize the present day status of the research in the manifold aspects of quantum information. The issue is opened by two review articles, the first by G Adesso and F Illuminati discussing entanglement in continuous variable systems, the second by T Prosen, discussing chaos and complexity in quantum systems. Both topics have theoretical as well as experimental relevance and are likely to witness a fast growing development in the near future. The remaining contributions present more specific and very recent results. They involve the study of the structure of quantum states and their estimation (B Baumgartner et al, C King et al, S Olivares et al, D Petz et al and W van Dam et al), of entanglement generation and its quantification (G Brida et al, F Ciccarello et al, G Costantini et al, O Romero-Isart et al, D Rossini et al, A Serafini et al and D Vitali et al), of randomness related effects on entanglement behaviour (I Akhalwaya et al, O Dahlsten et al and L Viola et al), and of abstract and applied aspects of quantum computation and communication (K Audenart, G M D'Ariano et al, N Datta et al, L C Kwek et al and M Nathanson et al). We would like to express our gratitude to the European Commission, the Abdus Salam ICTP, SISSA and Eurotech SpA (Amaro, Udine, Italy) for financial and/or logistic support. Special thanks also go to the workshop secretary Marina De Comelli, and the secretaries of the Department of Theoretical Physics, University of Trieste, Sabrina Gaspardis and Rosita Glavina for their precious help and assistance.
Baladrón, Carlos; Khrennikov, Andrei
2016-12-01
The similarities between biological and physical systems as respectively defined in quantum information biology (QIB) and in a Darwinian approach to quantum mechanics (DAQM) have been analysed. In both theories the processing of information is a central feature characterising the systems. The analysis highlights a mutual support on the thesis contended by each theory. On the one hand, DAQM provides a physical basis that might explain the key role played by quantum information at the macroscopic level for bio-systems in QIB. On the other hand, QIB offers the possibility, acting as a macroscopic testing ground, to analyse the emergence of quantumness from classicality in the terms held by DAQM. As an added result of the comparison, a tentative definition of quantum information in terms of classical information flows has been proposed. The quantum formalism would appear from this comparative analysis between QIB and DAQM as an optimal information scheme that would maximise the stability of biological and physical systems at any scale. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Testing Nonassociative Quantum Mechanics.
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-27
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Consciousness and values in the quantum universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, H.P.
1985-01-01
Application of quantum mechanical description to neurophysiological processes appears to provide for a natural unification of the physical and humanistic sciences. The categories of thought used to represent physical and psychical processes become united, and the mechanical conception of man created by classical physics is replaced by a profoundly different quantum conception. This revised image of man allows human values to be rooted in contemporary science.
Can different quantum state vectors correspond to the same physical state? An experimental test
NASA Astrophysics Data System (ADS)
Nigg, Daniel; Monz, Thomas; Schindler, Philipp; Martinez, Esteban A.; Hennrich, Markus; Blatt, Rainer; Pusey, Matthew F.; Rudolph, Terry; Barrett, Jonathan
2016-01-01
A century after the development of quantum theory, the interpretation of a quantum state is still discussed. If a physicist claims to have produced a system with a particular quantum state vector, does this represent directly a physical property of the system, or is the state vector merely a summary of the physicist’s information about the system? Assume that a state vector corresponds to a probability distribution over possible values of an unknown physical or ‘ontic’ state. Then, a recent no-go theorem shows that distinct state vectors with overlapping distributions lead to predictions different from quantum theory. We report an experimental test of these predictions using trapped ions. Within experimental error, the results confirm quantum theory. We analyse which kinds of models are ruled out.
Imagery, intuition and imagination in quantum physics education
NASA Astrophysics Data System (ADS)
Stapleton, Andrew J.
2018-03-01
In response to the authors, I demonstrate how threshold concepts offer a means to both contextualise teaching and learning of quantum physics and help transform students into the culture of physics, and as a way to identify particularly troublesome concepts within quantum physics. By drawing parallels from my own doctoral research in another area of contemporary physics—special relativity—I highlight concepts that require an ontological change, namely a shift beyond the reality of everyday Newtonian experience such as time dilation and length contraction, as being troublesome concepts that can present barriers to learning with students often asking "is it real?". Similarly, the domain of quantum physics requires students to move beyond "common sense" perception as it brings into sharp focus the difference between what is experienced via the sense perceptions and the mental abstraction of phenomena. And it's this issue that highlights the important role imagery and creativity have both in quantum physics and in the evolution of physics more generally, and lies in stark contrast to the apparent mathematical focus and lack of opportunity for students to explore ontological issues evident in the authors' research. By reflecting on the authors' observations of a focus on mathematical formalisms and problem solving at the expense of alternative approaches, I explore the dialectic between Heisenberg's highly mathematical approach and Schrödinger's mechanical wave view of the atom, together with its conceptual imagery, at the heart of the evolution of quantum mechanics. In turn, I highlight the significance of imagery, imagination and intuition in quantum physics, together with the importance of adopting an epistemological pluralism—multiple ways of knowing and thinking—in physics education. Again drawing parallels with the authors' work and my own, I identify the role thought experiments have in both quantum physics education and in physics more generally. By introducing the notion of play, I advocate adopting and celebrating multiple approaches of teaching and learning, including thought experiments, play, dialogue and a more conceptual approach inclusive of multiple forms of representation, that complements the current instructional, mathematical approach so as to provide better balance to learning, teaching and the curriculum.
NASA Astrophysics Data System (ADS)
Hiesmayr, Beatrix C.
2015-07-01
About 50 years ago John St. Bell published his famous Bell theorem that initiated a new field in physics. This contribution discusses how discrete symmetries relate to the big open questions of quantum mechanics, in particular: (i) how correlations stronger than those predicted by theories sharing randomness (Bell's theorem) relate to the violation of the CP symmetry and the P symmetry; and its relation to the security of quantum cryptography, (ii) how the measurement problem (“why do we observe no tables in superposition?”) can be polled in weakly decaying systems, (iii) how strongly and weakly interacting quantum systems are affected by Newton's self gravitation. These presented preliminary results show that the meson-antimeson systems and the hyperon- antihyperon systems are a unique laboratory to tackle deep fundamental questions and to contribute to the understand what impact the violation of discrete symmetries has.
Hacking the quantum revolution: 1925-1975
NASA Astrophysics Data System (ADS)
Schweber, Silvan S.
2015-01-01
I argue that the quantum revolution should be seen as an Ian Hacking type of scientific revolution: a profound, longue durée, multidisciplinary process of transforming our understanding of physical nature, with deep-rooted social components from the start. The "revolution" exhibits a characteristic style of reasoning - the hierarchization of physical nature - and developed and uses a specific language - quantum field theory (QFT). It is by virtue of that language that the quantum theory has achieved some of its deepest insights into the description of the dynamics of the physical world. However, the meaning of what a quantum field theory is and what it describes has deeply altered, and one now speaks of "effective" quantum field theories. Interpreting all present day quantum field theories as but "effective" field theories sheds additional light on Phillip Anderson's assertion that "More is different". This important element is addressed in the last part of the paper.
Quantum and Multidimensional Explanations in a Neurobiological Context of Mind.
Korf, Jakob
2015-08-01
This article examines the possible relevance of physical-mathematical multidimensional or quantum concepts aiming at understanding the (human) mind in a neurobiological context. Some typical features of the quantum and multidimensional concepts are briefly introduced, including entanglement, superposition, holonomic, and quantum field theories. Next, we consider neurobiological principles, such as the brain and its emerging (physical) mind, evolutionary and ontological origins, entropy, syntropy/neg-entropy, causation, and brain energy metabolism. In many biological processes, including biochemical conversions, protein folding, and sensory perception, the ubiquitous involvement of quantum mechanisms is well recognized. Quantum and multidimensional approaches might be expected to help describe and model both brain and mental processes, but an understanding of their direct involvement in mental activity, that is, without mediation by molecular processes, remains elusive. More work has to be done to bridge the gap between current neurobiological and physical-mathematical concepts with their associated quantum-mind theories. © The Author(s) 2014.
Quantum speed limit constraints on a nanoscale autonomous refrigerator
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Chiranjib; Misra, Avijit; Bhattacharya, Samyadeb; Pati, Arun Kumar
2018-06-01
Quantum speed limit, furnishing a lower bound on the required time for the evolution of a quantum system through the state space, imposes an ultimate natural limitation to the dynamics of physical devices. Quantum absorption refrigerators, however, have attracted a great deal of attention in the past few years. In this paper, we discuss the effects of quantum speed limit on the performance of a quantum absorption refrigerator. In particular, we show that there exists a tradeoff relation between the steady cooling rate of the refrigerator and the minimum time taken to reach the steady state. Based on this, we define a figure of merit called "bounding second order cooling rate" and show that this scales linearly with the unitary interaction strength among the constituent qubits. We also study the increase of bounding second-order cooling rate with the thermalization strength. We subsequently demonstrate that coherence in the initial three qubit system can significantly increase the bounding second-order cooling rate. We study the efficiency of the refrigerator at maximum bounding second-order cooling rate and, in a limiting case, we show that the efficiency at maximum bounding second-order cooling rate is given by a simple formula resembling the Curzon-Ahlborn relation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthew Mihelic, F.
2010-12-22
Nucleic acids theoretically possess a Szilard engine function that can convert the energy associated with the Shannon entropy of molecules for which they have coded recognition, into the useful work of geometric reconfiguration of the nucleic acid molecule. This function is logically reversible because its mechanism is literally and physically constructed out of the information necessary to reduce the Shannon entropy of such molecules, which means that this information exists on both sides of the theoretical engine, and because information is retained in the geometric degrees of freedom of the nucleic acid molecule, a quantum gate is formed through whichmore » multi-state nucleic acid qubits can interact. Entangled biophotons emitted as a consequence of symmetry breaking nucleic acid Szilard engine (NASE) function can be used to coordinate relative positioning of different nucleic acid locations, both within and between cells, thus providing the potential for quantum coherence of an entire biological system. Theoretical implications of understanding biological systems as such 'quantum adaptive systems' include the potential for multi-agent based quantum computing, and a better understanding of systemic pathologies such as cancer, as being related to a loss of systemic quantum coherence.« less
NASA Astrophysics Data System (ADS)
Matthew Mihelic, F.
2010-12-01
Nucleic acids theoretically possess a Szilard engine function that can convert the energy associated with the Shannon entropy of molecules for which they have coded recognition, into the useful work of geometric reconfiguration of the nucleic acid molecule. This function is logically reversible because its mechanism is literally and physically constructed out of the information necessary to reduce the Shannon entropy of such molecules, which means that this information exists on both sides of the theoretical engine, and because information is retained in the geometric degrees of freedom of the nucleic acid molecule, a quantum gate is formed through which multi-state nucleic acid qubits can interact. Entangled biophotons emitted as a consequence of symmetry breaking nucleic acid Szilard engine (NASE) function can be used to coordinate relative positioning of different nucleic acid locations, both within and between cells, thus providing the potential for quantum coherence of an entire biological system. Theoretical implications of understanding biological systems as such "quantum adaptive systems" include the potential for multi-agent based quantum computing, and a better understanding of systemic pathologies such as cancer, as being related to a loss of systemic quantum coherence.
Quantum simulation of the integer factorization problem: Bell states in a Penning trap
NASA Astrophysics Data System (ADS)
Rosales, Jose Luis; Martin, Vicente
2018-03-01
The arithmetic problem of factoring an integer N can be translated into the physics of a quantum device, a result that supports Pólya's and Hilbert's conjecture to demonstrate Riemann's hypothesis. The energies of this system, being univocally related to the factors of N , are the eigenvalues of a bounded Hamiltonian. Here we solve the quantum conditions and show that the histogram of the discrete energies, provided by the spectrum of the system, should be interpreted in number theory as the relative probability for a prime to be a factor candidate of N . This is equivalent to a quantum sieve that is shown to require only o (ln√{N}) 3 energy measurements to solve the problem, recovering Shor's complexity result. Hence the outcome can be seen as a probability map that a pair of primes solve the given factorization problem. Furthermore, we show that a possible embodiment of this quantum simulator corresponds to two entangled particles in a Penning trap. The possibility to build the simulator experimentally is studied in detail. The results show that factoring numbers, many orders of magnitude larger than those computed with experimentally available quantum computers, is achievable using typical parameters in Penning traps.
Study of Atomic Quasi-Stable States, Decoherence And Cooling of Mesoscale Particles
NASA Astrophysics Data System (ADS)
Zhong, Changchun
Quantum mechanics, since its very beginning, has totally changed the way we understand nature. The past hundred years have seen great successes in the application of quantum physics, including atomic spectra, laser technology, condensed matter physics and the remarkable possibility for quantum computing, etc. This thesis is dedicated to a small regime of quantum physics. In the first part of the thesis, I present the studies of atomic quasi-stable states, which refer to those Rydberg states of an atom that are relatively stable in the presence of strong fields. Through spectrally probing the quasi-stable states, series of survival peaks are found. If the quasi-stable electrons were created by ultraviolet (UV) lasers with two different frequencies, the survival peaks could be modulated by continuously changing the phase difference between the UV and the IR laser. The quantum simulation, through directly solving the Schrodinger equation, matches the experimental results performed with microwave fields, and our studies should provide a guidance for future experiments. Despite the huge achievements in the application of quantum theory, there are still some fundamental problems that remain unresolved. One of them is the so-called quantum-to-classical transition, which refers to the expectation that the system behaves in a more classical manner when the system size increases. This basic question was not well answered until decoherence theory was proposed, which states that the coherence of a quantum system tends to be destroyed by environmental interruptions. Thus, if a system is well isolated from its environment, it is in principle possible to observe macroscopic quantum coherence. Quite recently, testing quantum principles in the macroscale has become a hot topic due to rapic technological developments. A very promising platform for testing macroscale quantum physics is a laser levitated nanoparticle, and cooling its mechanical motion to the ground state is the first step. In the second part of this thesis, we develop the theory of decoherence for a mesoscopic system's rotational degrees of freedom. Combining decoherence in the translational degrees of freedom, the system's shot noise heating is discussed. We then focus on cooling the nanoparticle in the laser-shot-noise-dominant regime using two different feedback cooling schemes: the force feedback cooling and the parametric feedback cooling. Both quantum and classical calculations are performed, and an exact match is observed. We also explore the parameters that could possibly affect the cooling trend, where we find that the cooling limit for both cooling schemes strongly depends on the position measurement efficiency, and it poses good questions for researchers interested in achieving ground state cooling: what is the best measurement efficiency for a given measurement setup and what can be done to get a better measurement efficiency?
Probing quantum entanglement in the Schwarzschild space-time beyond the single-mode approximation
NASA Astrophysics Data System (ADS)
He, Juan; Ding, Zhi-Yong; Ye, Liu
2018-05-01
In this paper, we deduce the vacuum structure for Dirac fields in the background of Schwarzschild space-time beyond the single-mode approximation and discuss the performance of quantum entanglement between particle and antiparticle modes of a Dirac field with Hawking effect. It is shown that Hawking radiation does not always destroy the physically accessible entanglement, and entanglement amplification may happen in some cases. This striking result is different from that of the single-mode approximation, which holds that the Hawking radiation can only destroy entanglement. Lastly, we analyze the physically accessible entanglement relation outside the event horizon and demonstrate that the monogamy inequality is constantly established regardless of the choice of given parameters.
TEACHING PHYSICS: The quantum understanding of pre-university physics students
NASA Astrophysics Data System (ADS)
Ireson, Gren
2000-01-01
Students in England and Wales wishing to read for a physics-based degree will, in all but the more exceptional situations, be required to follow the two-year GCE Advanced-level physics course. This course includes, in its mandatory core, material that addresses the topic of `quantum phenomena'. Over the years journals such as this have published teaching strategies, for example Lawrence (1996), but few studies addressing what students understand of quantum phenomena can be found. This paper aims to address just this problem.
Supercritical entanglement in local systems: Counterexample to the area law for quantum matter.
Movassagh, Ramis; Shor, Peter W
2016-11-22
Quantum entanglement is the most surprising feature of quantum mechanics. Entanglement is simultaneously responsible for the difficulty of simulating quantum matter on a classical computer and the exponential speedups afforded by quantum computers. Ground states of quantum many-body systems typically satisfy an "area law": The amount of entanglement between a subsystem and the rest of the system is proportional to the area of the boundary. A system that obeys an area law has less entanglement and can be simulated more efficiently than a generic quantum state whose entanglement could be proportional to the total system's size. Moreover, an area law provides useful information about the low-energy physics of the system. It is widely believed that for physically reasonable quantum systems, the area law cannot be violated by more than a logarithmic factor in the system's size. We introduce a class of exactly solvable one-dimensional physical models which we can prove have exponentially more entanglement than suggested by the area law, and violate the area law by a square-root factor. This work suggests that simple quantum matter is richer and can provide much more quantum resources (i.e., entanglement) than expected. In addition to using recent advances in quantum information and condensed matter theory, we have drawn upon various branches of mathematics such as combinatorics of random walks, Brownian excursions, and fractional matching theory. We hope that the techniques developed herein may be useful for other problems in physics as well.
Supercritical entanglement in local systems: Counterexample to the area law for quantum matter
Movassagh, Ramis; Shor, Peter W.
2016-01-01
Quantum entanglement is the most surprising feature of quantum mechanics. Entanglement is simultaneously responsible for the difficulty of simulating quantum matter on a classical computer and the exponential speedups afforded by quantum computers. Ground states of quantum many-body systems typically satisfy an “area law”: The amount of entanglement between a subsystem and the rest of the system is proportional to the area of the boundary. A system that obeys an area law has less entanglement and can be simulated more efficiently than a generic quantum state whose entanglement could be proportional to the total system’s size. Moreover, an area law provides useful information about the low-energy physics of the system. It is widely believed that for physically reasonable quantum systems, the area law cannot be violated by more than a logarithmic factor in the system’s size. We introduce a class of exactly solvable one-dimensional physical models which we can prove have exponentially more entanglement than suggested by the area law, and violate the area law by a square-root factor. This work suggests that simple quantum matter is richer and can provide much more quantum resources (i.e., entanglement) than expected. In addition to using recent advances in quantum information and condensed matter theory, we have drawn upon various branches of mathematics such as combinatorics of random walks, Brownian excursions, and fractional matching theory. We hope that the techniques developed herein may be useful for other problems in physics as well. PMID:27821725
The quantum pinch effect in semiconducting quantum wires: A bird’s-eye view
NASA Astrophysics Data System (ADS)
Kushwaha, Manvir S.
2016-01-01
Those who measure success with culmination do not seem to be aware that life is a journey not a destination. This spirit is best reflected in the unceasing failures in efforts for solving the problem of controlled thermonuclear fusion for even the simplest pinches for over decades; and the nature keeps us challenging with examples. However, these efforts have permitted researchers the obtention of a dense plasma with a lifetime that, albeit short, is sufficient to study the physics of the pinch effect, to create methods of plasma diagnostics, and to develop a modern theory of plasma processes. Most importantly, they have impregnated the solid state plasmas, particularly the electron-hole plasmas in semiconductors, which do not suffer from the issues related with the confinement and which have demonstrated their potential not only for the fundamental physics but also for the device physics. Here, we report on a two-component, cylindrical, quasi-one-dimensional quantum plasma subjected to a radial confining harmonic potential and an applied magnetic field in the symmetric gauge. It is demonstrated that such a system, as can be realized in semiconducting quantum wires, offers an excellent medium for observing the quantum pinch effect at low temperatures. An exact analytical solution of the problem allows us to make significant observations: Surprisingly, in contrast to the classical pinch effect, the particle density as well as the current density display a determinable maximum before attaining a minimum at the surface of the quantum wire. The effect will persist as long as the equilibrium pair density is sustained. Therefore, the technological promise that emerges is the route to the precise electronic devices that will control the particle beams at the nanoscale.
Excitons in the Fractional Quantum Hall Effect
DOE R&D Accomplishments Database
Laughlin, R. B.
1984-09-01
Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.
ERIC Educational Resources Information Center
Bao, Lei; Redish, Edward F.
2002-01-01
Explains the critical role of probability in making sense of quantum physics and addresses the difficulties science and engineering undergraduates experience in helping students build a model of how to think about probability in physical systems. (Contains 17 references.) (Author/YDS)
Cluster expansion for ground states of local Hamiltonians
NASA Astrophysics Data System (ADS)
Bastianello, Alvise; Sotiriadis, Spyros
2016-08-01
A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.
NASA Astrophysics Data System (ADS)
Giannetto, E.
2005-08-01
This book is a sort of tribute to Rob Clifton (1964 2002), Associate Professor of Philosophy and Associate Director of the Center for Philosophy of Science at the University of Pittsburgh, philosopher of physics and editor of the journal Studies in the History and Philosophy of Modern Physics, who tragically died of cancer. It contains fourteen papers by Clifton, for the most part written in collaboration with other authors (Jeffrey Bub (2), Sheldon Goldstein, Michael Dickson, Hans Halvorson (6), Adrian Kent (2)), published between 1995 and 2002. The choice of papers made by the editors is very impressive. They concern the foundations of quantum mechanics and quantum field theory. Among the issues discussed are the modal interpretations of quantum mechanics, the problems of hidden variables theories, non-locality, Bell's inequality, the Einstein Podolsky Rosen paradox, Lorentz invariance, de-coherence, non-contextuality, complementarity, entanglement and quantum information. A consequence of such investigations is that non-separability is a more complex issue than violation of Bell's inequality. Apart from the perspective one can follow—whether one agrees or not with Clifton—these papers are effective contributions to an understanding of the problems involved in the foundations of quantum mechanics. The most interesting parts, in my opinion, are related to the extension of the discussion of foundational problems to quantum field theory: on the algebraic approach, and on the twin concepts of particle and vacuum. Non-locality appears to be `worse' in relativistic quantum field theory than in non-relativistic quantum mechanics. All the papers deal with relevant epistemological and even historical aspects of quantum mechanics interpretations, but all the issues are discussed from a technical, logical and mathematical approach. A complete bibliography of Clifton's papers is given at the end of the volume.
Investigations in quantum games using EPR-type set-ups
NASA Astrophysics Data System (ADS)
Iqbal, Azhar
2006-04-01
Research in quantum games has flourished during recent years. However, it seems that opinion remains divided about their true quantum character and content. For example, one argument says that quantum games are nothing but 'disguised' classical games and that to quantize a game is equivalent to replacing the original game by a different classical game. The present thesis contributes towards the ongoing debate about quantum nature of quantum games by developing two approaches addressing the related issues. Both approaches take Einstein-Podolsky-Rosen (EPR)-type experiments as the underlying physical set-ups to play two-player quantum games. In the first approach, the players' strategies are unit vectors in their respective planes, with the knowledge of coordinate axes being shared between them. Players perform measurements in an EPR-type setting and their payoffs are defined as functions of the correlations, i.e. without reference to classical or quantum mechanics. Classical bimatrix games are reproduced if the input states are classical and perfectly anti-correlated, as for a classical correlation game. However, for a quantum correlation game, with an entangled singlet state as input, qualitatively different solutions are obtained. The second approach uses the result that when the predictions of a Local Hidden Variable (LHV) model are made to violate the Bell inequalities the result is that some probability measures assume negative values. With the requirement that classical games result when the predictions of a LHV model do not violate the Bell inequalities, our analysis looks at the impact which the emergence of negative probabilities has on the solutions of two-player games which are physically implemented using the EPR-type experiments.
Indeterministic metaphors: The popular science books of Fritjof Capra and Gary Zukav.
Smith, Bradon Tl
2013-07-01
In the popular accounts of the new physics (i.e. relativity and quantum mechanics) by Fritjof Capra and Gary Zukav, the new physics is represented as fatally undermining the universal determinism associated with Newton and Laplace. This paper explores how different metaphors - anthropomorphic metaphors, metaphors of exploration and mapping, and metaphors of shadows - are used strategically by these writers to advance this characterisation of the new physics as indeterministic.
Freedom and the psychoanalytic ontology of quantum physics.
Gullatz, Stefan; Gildersleeve, Matthew
2018-02-01
Jung's paper 'Synchronicity - an acausal connecting principle', defining the phenomenon as a 'meaningful' coincidence depending on archetypal activation, was published in 1952, together with a conceptually related piece by physicist and Nobel Laureate Wolfgang Pauli entitled, 'The influence of archetypal ideas on the scientific theories of Kepler'. Slavoj Žižek, in The Indivisible Remainder: On Schelling and Related Matters, suggests that, in contrast to any notion of a 'pre-modern Jungian harmony', the main lesson of quantum physics was that not only was the psychoanalytic, empty subject of the signifier constitutively out-of-joint with respect to the world, but that the Real in itself was already incomplete, out-of-joint, 'not-all'. Yet while Žižek frequently tries to separate Jung from his own ontology, this paper shows that his ontology is not as different as he suggests. Consistent with our earlier publications on Jung and Zizek, a closer investigation reveals an underlying congruence of both of their approaches. In this paper we show that this affinity lies in the rejection by both Jung and Žižek of the ideology of reductive materialism, a rejection that demonstrably draws on quantum physics in similar ways. While Jung posits an inherently meaningful universe, Žižek attempts to salvage the freedom of human subjectivity by opposing his Lacanian 'dialectical materialism' to reductive materialism. © 2018, The Society of Analytical Psychology.
NASA Astrophysics Data System (ADS)
Heusler, Stefan
2006-12-01
The main focus of the second, enlarged edition of the book Mathematica for Theoretical Physics is on computational examples using the computer program Mathematica in various areas in physics. It is a notebook rather than a textbook. Indeed, the book is just a printout of the Mathematica notebooks included on the CD. The second edition is divided into two volumes, the first covering classical mechanics and nonlinear dynamics, the second dealing with examples in electrodynamics, quantum mechanics, general relativity and fractal geometry. The second volume is not suited for newcomers because basic and simple physical ideas which lead to complex formulas are not explained in detail. Instead, the computer technology makes it possible to write down and manipulate formulas of practically any length. For researchers with experience in computing, the book contains a lot of interesting and non-trivial examples. Most of the examples discussed are standard textbook problems, but the power of Mathematica opens the path to more sophisticated solutions. For example, the exact solution for the perihelion shift of Mercury within general relativity is worked out in detail using elliptic functions. The virial equation of state for molecules' interaction with Lennard-Jones-like potentials is discussed, including both classical and quantum corrections to the second virial coefficient. Interestingly, closed solutions become available using sophisticated computing methods within Mathematica. In my opinion, the textbook should not show formulas in detail which cover three or more pages—these technical data should just be contained on the CD. Instead, the textbook should focus on more detailed explanation of the physical concepts behind the technicalities. The discussion of the virial equation would benefit much from replacing 15 pages of Mathematica output with 15 pages of further explanation and motivation. In this combination, the power of computing merged with physical intuition would be of benefit even for newcomers. In summary, this book shows in a convincing manner how classical problems in physics can be attacked with modern computing technology. The second volume is interesting for experienced users of Mathematica. For students, the textbook can be very useful in combination with a seminar.
Quantum Chemistry, 5th Edition by Ira N. Levine
NASA Astrophysics Data System (ADS)
Hinde, Robert J.
2000-12-01
Of course, there is no one- or two-week shortcut by which nonspecialists can master enough quantum mechanics to become informed users of quantum chemical techniques. Nevertheless, a text that integrated the fundamentals of quantum theory with a rigorous introduction to quantum chemistry could help instructors design a class that would benefit both these nonspecialists and graduate students in physical chemistry. Could such a class overcome the (undeserved) stigma associated with the physical chemistry curriculum? That remains to be seen.
Causal and causally separable processes
NASA Astrophysics Data System (ADS)
Oreshkov, Ognyan; Giarmatzi, Christina
2016-09-01
The idea that events are equipped with a partial causal order is central to our understanding of physics in the tested regimes: given two pointlike events A and B, either A is in the causal past of B, B is in the causal past of A, or A and B are space-like separated. Operationally, the meaning of these order relations corresponds to constraints on the possible correlations between experiments performed in the vicinities of the respective events: if A is in the causal past of B, an experimenter at A could signal to an experimenter at B but not the other way around, while if A and B are space-like separated, no signaling is possible in either direction. In the context of a concrete physical theory, the correlations compatible with a given causal configuration may obey further constraints. For instance, space-like correlations in quantum mechanics arise from local measurements on joint quantum states, while time-like correlations are established via quantum channels. Similarly to other variables, however, the causal order of a set of events could be random, and little is understood about the constraints that causality implies in this case. A main difficulty concerns the fact that the order of events can now generally depend on the operations performed at the locations of these events, since, for instance, an operation at A could influence the order in which B and C occur in A’s future. So far, no formal theory of causality compatible with such dynamical causal order has been developed. Apart from being of fundamental interest in the context of inferring causal relations, such a theory is imperative for understanding recent suggestions that the causal order of events in quantum mechanics can be indefinite. Here, we develop such a theory in the general multipartite case. Starting from a background-independent definition of causality, we derive an iteratively formulated canonical decomposition of multipartite causal correlations. For a fixed number of settings and outcomes for each party, these correlations form a polytope whose facets define causal inequalities. The case of quantum correlations in this paradigm is captured by the process matrix formalism. We investigate the link between causality and the closely related notion of causal separability of quantum processes, which we here define rigorously in analogy with the link between Bell locality and separability of quantum states. We show that causality and causal separability are not equivalent in general by giving an example of a physically admissible tripartite quantum process that is causal but not causally separable. We also show that there are causally separable quantum processes that become non-causal if extended by supplying the parties with entangled ancillas. This motivates the concepts of extensibly causal and extensibly causally separable (ECS) processes, for which the respective property remains invariant under extension. We characterize the class of ECS quantum processes in the tripartite case via simple conditions on the form of the process matrix. We show that the processes realizable by classically controlled quantum circuits are ECS and conjecture that the reverse also holds.
NASA Astrophysics Data System (ADS)
Greca, Ileana Maria; Freire, Olival
Teaching physics implies making choices. In the case of teaching quantum physics, besides an educational choice - the didactic strategy - another choice must be made, an epistemological one, concerning the interpretation of quantum theory itself. These two choices are closely connected. We have chosen a didactic strategy that privileges the phenomenological-conceptual approach, with emphasis upon quantum features of the systems, instead of searching for classical analogies. This choice has led us to present quantum theory associated with an orthodox, yet realistic, interpretation of the concept of quantum state, considered as the key concept of quantum theory, representing the physical reality of a system, independent of measurement processes. The results of the mplementation of this strategy, with three groups of engineering students, showed that more than a half of them attained a reasonable understanding of the basics of quantum mechanics (QM) for this level. In addition, a high degree of satisfaction was attained with the classes as 80% of the students of the experimental groups claimed to have liked it and to be interested in learning more about QM.
Classical command of quantum systems.
Reichardt, Ben W; Unger, Falk; Vazirani, Umesh
2013-04-25
Quantum computation and cryptography both involve scenarios in which a user interacts with an imperfectly modelled or 'untrusted' system. It is therefore of fundamental and practical interest to devise tests that reveal whether the system is behaving as instructed. In 1969, Clauser, Horne, Shimony and Holt proposed an experimental test that can be passed by a quantum-mechanical system but not by a system restricted to classical physics. Here we extend this test to enable the characterization of a large quantum system. We describe a scheme that can be used to determine the initial state and to classically command the system to evolve according to desired dynamics. The bipartite system is treated as two black boxes, with no assumptions about their inner workings except that they obey quantum physics. The scheme works even if the system is explicitly designed to undermine it; any misbehaviour is detected. Among its applications, our scheme makes it possible to test whether a claimed quantum computer is truly quantum. It also advances towards a goal of quantum cryptography: namely, the use of 'untrusted' devices to establish a shared random key, with security based on the validity of quantum physics.
Edwards, James P; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
NASA Astrophysics Data System (ADS)
Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel
2018-04-01
We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).
Quantum corrections to newtonian potential and generalized uncertainty principle
NASA Astrophysics Data System (ADS)
Scardigli, Fabio; Lambiase, Gaetano; Vagenas, Elias
2017-08-01
We use the leading quantum corrections to the newtonian potential to compute the deformation parameter of the generalized uncertainty principle. By assuming just only General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum, our calculation gives, to first order, a specific numerical result. We briefly discuss the physical meaning of this value, and compare it with the previously obtained bounds on the generalized uncertainty principle deformation parameter.
Thermal quantum coherence and correlation in the extended XY spin chain
NASA Astrophysics Data System (ADS)
Sha, Ya-Ting; Wang, Yue; Sun, Zheng-Hang; Hou, Xi-Wen
2018-05-01
Quantum coherence and correlation of thermal states in the extended XY spin chain are studied in terms of the recently proposed l1 norm, skew information, and Bures distance of geometry discord (BGD), respectively. The entanglement measured via concurrence is calculated for reference. A two-dimensional susceptibility is introduced to explore their capability in highlighting the critical lines associated with quantum phase transitions in the model. It is shown that the susceptibility of the skew information and BGD is a genuine indicator of quantum phase transitions, and characterizes the factorization. However, the l1 norm is trivial for the factorization. An explicit scaling law of BGD is captured at low temperature in the XY model. In contrast to the entanglement, quantum coherence reveals a kind of long-range nonclassical correlation. Moreover, the obvious relation among model parameters is extracted for the factorized line in the extended model. Those are instructive for the understanding of quantum coherence and correlation in the theory of quantum information, and quantum phase transitions and factorization in condensed-matter physics.
NASA Astrophysics Data System (ADS)
Beenakker, C. W. J.
2005-08-01
Quantum Noise is advertised as a handbook, and this is indeed how it functions for me these days: it is a book that I keep within hand's reach, ready to be consulted on the proper use of quantum stochastic methods in the course of my research on quantum dots. I should point out that quantum optics, the target field for this book, is not my field by training. So I have much to learn, and find this handbook to be a reliable and helpful guide. Crispin Gardiner previously wrote the Handbook of Stochastic Methods (also published by Springer), which provides an overview of methods in classical statistical physics. Quantum Noise, written jointly with Peter Zoller, is the counterpart for quantum statistical physics, and indeed the two books rely on each other by frequent cross referencing. The fundamental problem addressed by Quantum Noise is how the quantum dynamics of an open system can be described statistically by treating the environment as a source of noise. This is a general problem in condensed matter physics (in particular in the context of Josephson junctions) and in quantum optics. The emphasis in this book in on the optical applications (for condensed matter applications one could consult Quantum Dissipative Systems by Ulrich Weiss, published by World Scientific). The optical applications centre around the interaction of light with atoms, where the atoms represent the open system and the light is the noisy environment. A complete description of the production and detection of non-classical states of radiation (such as squeezed states) can be obtained using one of the equivalent quantum stochastic formulations: the quantum Langevin equation for the field operators (in either the Ito or the Stratonovich form), the Master equation for the density matrix, or the stochastic Schrödinger equation for the wave functions. Each formulation is fully developed here (as one would expect from a handbook), with detailed instructions on how to go from one to the other. The development of the topic is precise and well-organized. The derivations are written out in sufficient detail, without frustrating comments like `it can be shown that'. The book is not quite self-contained, because it relies on the Handbook of Stochastic Methods for some background material (notably the issue of Ito versus Stratonovich). Still, one could very well use this book as a text for a course, supplying the background material to the students in some other form. Quantum Noise is now in its third edition. The second edition was a major expansion, including applications to laser cooling and quantum information processing. The third edition is a relatively minor upgrade, consisting mainly of pointers to recent literature. If you own the second edition, you might well skip this upgrade. If you do not yet own the book, or are still at edition 1, then I would enthusiastically recommend acquiring this handbook, regardless of whether you work in quantum optics or in another field of quantum physics. As I did, you might well find a new tool to attack your favourite problem.
Quantum Mechanics for Everyone: Hands-On Activities Integrated with Technology.
ERIC Educational Resources Information Center
Zollman, Dean A.; Rebello, N. Sanjay; Hogg, Kirsten
2002-01-01
Explains a hands-on approach to teaching quantum mechanics that challenges the belief shared by many physics instructors that quantum mechanics is a very abstract subject that cannot be understood until students have learned much of the classical physics. (Contains 23 references.) (Author/YDS)
this award for his wide-ranging experimental physics research accomplishments. From 2015-2017 Fenton is a JQI Fellow and assistant professor of physics, and his chief area of research is experimental starting a new experimental research program focused on quantum memory and quantum information in solid
ERIC Educational Resources Information Center
Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna
2017-01-01
In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent…
Beyond quantum probability: another formalism shared by quantum physics and psychology.
Dzhafarov, Ehtibar N; Kujala, Janne V
2013-06-01
There is another meeting place for quantum physics and psychology, both within and outside of cognitive modeling. In physics it is known as the issue of classical (probabilistic) determinism, and in psychology it is known as the issue of selective influences. The formalisms independently developed in the two areas for dealing with these issues turn out to be identical, opening ways for mutually beneficial interactions.
NASA Astrophysics Data System (ADS)
Goudarzi, H.; Dousti, M. J.; Shafaei, A.; Pedram, M.
2014-05-01
This paper presents a physical mapping tool for quantum circuits, which generates the optimal universal logic block (ULB) that can, on average, perform any logical fault-tolerant (FT) quantum operations with the minimum latency. The operation scheduling, placement, and qubit routing problems tackled by the quantum physical mapper are highly dependent on one another. More precisely, the scheduling solution affects the quality of the achievable placement solution due to resource pressures that may be created as a result of operation scheduling, whereas the operation placement and qubit routing solutions influence the scheduling solution due to resulting distances between predecessor and current operations, which in turn determines routing latencies. The proposed flow for the quantum physical mapper captures these dependencies by applying (1) a loose scheduling step, which transforms an initial quantum data flow graph into one that explicitly captures the no-cloning theorem of the quantum computing and then performs instruction scheduling based on a modified force-directed scheduling approach to minimize the resource contention and quantum circuit latency, (2) a placement step, which uses timing-driven instruction placement to minimize the approximate routing latencies while making iterative calls to the aforesaid force-directed scheduler to correct scheduling levels of quantum operations as needed, and (3) a routing step that finds dynamic values of routing latencies for the qubits. In addition to the quantum physical mapper, an approach is presented to determine the single best ULB size for a target quantum circuit by examining the latency of different FT quantum operations mapped onto different ULB sizes and using information about the occurrence frequency of operations on critical paths of the target quantum algorithm to weigh these latencies. Experimental results show an average latency reduction of about 40 % compared to previous work.
What can we learn from noise? — Mesoscopic nonequilibrium statistical physics —
KOBAYASHI, Kensuke
2016-01-01
Mesoscopic systems — small electric circuits working in quantum regime — offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics. PMID:27477456
What can we learn from noise? - Mesoscopic nonequilibrium statistical physics.
Kobayashi, Kensuke
2016-01-01
Mesoscopic systems - small electric circuits working in quantum regime - offer us a unique experimental stage to explorer quantum transport in a tunable and precise way. The purpose of this Review is to show how they can contribute to statistical physics. We introduce the significance of fluctuation, or equivalently noise, as noise measurement enables us to address the fundamental aspects of a physical system. The significance of the fluctuation theorem (FT) in statistical physics is noted. We explain what information can be deduced from the current noise measurement in mesoscopic systems. As an important application of the noise measurement to statistical physics, we describe our experimental work on the current and current noise in an electron interferometer, which is the first experimental test of FT in quantum regime. Our attempt will shed new light in the research field of mesoscopic quantum statistical physics.
Investigation of possible observable e ects in a proposed theory of physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freidan, Daniel
2015-03-31
The work supported by this grant produced rigorous mathematical results on what is possible in quantum field theory. Quantum field theory is the well-established mathematical language for fundamental particle physics, for critical phenomena in condensed matter physics, and for Physical Mathematics (the numerous branches of Mathematics that have benefitted from ideas, constructions, and conjectures imported from Theoretical Physics). Proving rigorous constraints on what is possible in quantum field theories thus guides the field, puts actual constraints on what is physically possible in physical or mathematical systems described by quantum field theories, and saves the community the effort of trying tomore » do what is proved impossible. Results were obtained in two dimensional qft (describing, e.g., quantum circuits) and in higher dimensional qft. Rigorous bounds were derived on basic quantities in 2d conformal field theories, i.e., in 2d critical phenomena. Conformal field theories are the basic objects in quantum field theory, the scale invariant theories describing renormalization group fixed points from which all qfts flow. The first known lower bounds on the 2d boundary entropy were found. This is the entropy- information content- in junctions in critical quantum circuits. For dimensions d > 2, a no-go theorem was proved on the possibilities of Cauchy fields, which are the analogs of the holomorphic fields in d = 2 dimensions, which have had enormously useful applications in Physics and Mathematics over the last four decades. This closed o the possibility of finding analogously rich theories in dimensions above 2. The work of two postdoctoral research fellows was partially supported by this grant. Both have gone on to tenure track positions.« less
A quantum Rosetta Stone for the information paradox
NASA Astrophysics Data System (ADS)
Pando Zayas, Leopoldo A.
2014-11-01
The black hole information loss paradox epitomizes the contradictions between general relativity and quantum field theory. The AdS/conformal field theory (CFT) correspondence provides an implicit answer for the information loss paradox in black hole physics by equating a gravity theory with an explicitly unitary field theory. Gravitational collapse in asymptotically AdS spacetimes is generically turbulent. Given that the mechanism to read out the information about correlations functions in the field theory side is plagued by deterministic classical chaos, we argue that quantum chaos might provide the true Rosetta Stone for answering the information paradox in the context of the AdS/CFT correspondence.
"Shut up and calculate": the available discursive positions in quantum physics courses
NASA Astrophysics Data System (ADS)
Johansson, Anders; Andersson, Staffan; Salminen-Karlsson, Minna; Elmgren, Maja
2018-03-01
Educating new generations of physicists is often seen as a matter of attracting good students, teaching them physics and making sure that they stay at the university. Sometimes, questions are also raised about what could be done to increase diversity in recruitment. Using a discursive perspective, in this study of three introductory quantum physics courses at two Swedish universities, we instead ask what it means to become a physicist, and whether certain ways of becoming a physicist and doing physics is privileged in this process. Asking the question of what discursive positions are made accessible to students, we use observations of lectures and problem solving sessions together with interviews with students to characterize the discourse in the courses. Many students seem to have high expectations for the quantum physics course and generally express that they appreciate the course more than other courses. Nevertheless, our analysis shows that the ways of being a "good quantum physics student" are limited by the dominating focus on calculating quantum physics in the courses. We argue that this could have negative consequences both for the education of future physicists and the discipline of physics itself, in that it may reproduce an instrumental "shut up and calculate"-culture of physics, as well as an elitist physics education. Additionally, many students who take the courses are not future physicists, and the limitation of discursive positions may also affect these students significantly.
The world, entanglement, and God: Quantum theory and the Christian doctrine of creation
NASA Astrophysics Data System (ADS)
Wegter-McNelly, Kirk Matthew
The adequacy of classical physics' mechanistic worldview is called into question by an "entanglement" interpretation of quantum nonlocal correlations, which suggests a relational holistic account of physical processes. Albert Einstein rejected the possibility of such behavior, but recent experiments confirm its existence in the world. The concept of entanglement provides an especially fruitful locus for appropriating quantum insights into theological reflection because it bridges two otherwise antithetical interpretations of the theory, the indeterministic "Copenhagen" version developed by Niels Bohr and the deterministic version later discovered by David Bohm. Entanglement also offers an opportunity to explore what Robert Russell has called the method of "mutual interaction," by which theology can play a legitimate heuristic role in scientific research programs even as it responds to scientific discoveries. The concept of entanglement offers rich possibilities for developing a theological program within which to situate an ecological, trinitarian understanding of creation. In particular, a theological appropriation of entanglement can strengthen an ecological approach such as that of Sallie McFague, who argues powerfully for the importance of naturalistic metaphors in crafting a cosmic vision of wholeness but whose use of "organic" metaphors does not entirely eliminate the specter of mechanism. Entanglement can also strengthen a trinitarian approach such as one finds in Wolfhart Pannenberg, whose relational understanding of creation remains mechanistic insofar as it depends primarily on classical rather than quantum field theory. According to the theological approach developed in this dissertation, a trinitarian relational God creates a universe that is entangled with itself and, as a result of the incarnation, also with God. Additionally, this theological perspective leads to the scientific prediction that no complete solution to the quantum measurement problem beyond "decoherence" will be forthcoming. Decoherence accounts for the emergence of real separation at the macroscopic level in a world that remains holistically interconnected at the quantum level, and it does so in a manner that is consonant with an ecological, trinitarian perspective. Three appendices provide: a derivation and discussion of John Bell's inequality, a summary of several key entanglement experiments, and a general time line of related scientific developments.
Archetypal Dreams: the Quantum Theater of Robert Wilson
NASA Astrophysics Data System (ADS)
Dietrich, Dawn Yvette
1992-01-01
My topic is situated within the larger framework of interdisciplinary study currently exploring the impact of new physics on various "soft" disciplines and sciences. Aligning myself with thinkers like Fritjof Capra and N. Katherine Hayles, who argue that quantum mechanics has brought about a new paradigm for the conceptualization of the physical world and our relation to it, I demonstrate that there is a connection, a kind of cultural translation, which relates contemporary physics to some avant-garde theater. Specifically, I center my research on American theater designer, Robert Wilson, who, recognized for his manipulation of the formal elements of stagecraft, owes much to the reconstruction of principles governing space and time. Taken further, I maintain that it is through the paradigm established from relativity theory and quantum mechanics that Wilson experiments with the elementary "forces" of the theater itself. This "restructuring" occurs through the dramatist's conceptions of space and time and the relation of those properties to both performers and spectators. Unlike most conventional theater, but as in many contemporary visual arts, time is manipulated through spatial metaphors and events take place in an amplified space--effecting a kind of dramatic space/time. Through manipulation of scale, the exploration of discontinuous time, and segregated stage zones, Wilson demonstrates that theater time is fluid and that it is not necessary for dramatic action to take place within the unified stage space delineated by the proscenium itself. Unlike conventional theater, where the stage is constructed with one perspective in mind, Wilson's theatrical mise-en-scene--a kind of new "perceptual field"--requires "imaginative watching"; that is, more perceptual discrimination from the audience who must sort and organize the visual material, highlighting the essential while reconfiguring the incidental. And this is where the myth is born, where archetypal dreams stir the psyche through the symbolic forms of the stage. Robert Wilson confronts audiences with moonlit forests, rising pyramids, angels, monsters and shooting stars--mythic apparitions which connect to our deepest sense of time, while lodging this "quantum" theater within the postmodernist paradigm which has transformed the way in which we perceive ourselves in relation to the world.
The amazing graphene: an educational bridge connecting different physics concepts
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Bellomonte, Leonardo; Pizzolato, Nicola
2018-01-01
The purpose of this work is to present a learning workshop covering various physics concepts aimed at strengthening physics/engineering student understanding about the remarkable properties of two dimensional materials, graphene in particular. At the basis of this learning experience is the idea of blending and interconnecting separate pieces of knowledge already acquired by undergraduates in different courses and to help them visualize and link the concepts lying beyond separate chunks of information or equations. Graphene represents an appropriate unifying framework to achieve this task in view of its monatomic structure and various exotic processes peculiar to this and some other two dimensional crystals. We first discuss essential elements of group theory and their application to the symmetry properties of graphene with the aim of presenting to physics/electronic engineering undergraduates that in a system characterized by symmetry properties such as a crystal, the acquisition of the solutions of the Schrödinger equation is simpler and easier to visualize than when these properties are ignored. We have then selected and discussed some remarkable properties of graphene: the linear electron energy-momentum dispersion relation in proximity of some edge points of the Brillouin zone; the consequential massless Dirac behaviour of the electrons; their tunnelling behaviour and the related Klein paradox; the chiral behaviour of electrons and holes; the fractional quantum Hall effect in massless particles; and the quantum behaviour of correlated quasiparticles observable at macroscopic level. These arguments are presented in a context covering related pieces of knowledge about classical, quantum and relativistic mechanics. Finally, we mention current applications and possible future ones with the aim of providing students with an expertise that could be useful for further work experiences and scientific investigations regarding new materials, having far-reaching implications in various fields such as basic physics, materials science and engineering applications.
From the necessary to the possible: the genesis of the spin-statistics theorem
NASA Astrophysics Data System (ADS)
Blum, Alexander
2014-12-01
The spin-statistics theorem, which relates the intrinsic angular momentum of a single particle to the type of quantum statistics obeyed by a system of many such particles, is one of the central theorems in quantum field theory and the physics of elementary particles. It was first formulated in 1939/40 by Wolfgang Pauli and his assistant Markus Fierz. This paper discusses the developments that led up to this first formulation, starting from early attempts in the late 1920s to explain why charged matter particles obey Fermi-Dirac statistics, while photons obey Bose-Einstein statistics. It is demonstrated how several important developments paved the way from such general philosophical musings to a general (and provable) theorem, most notably the use of quantum field theory, the discovery of new elementary particles, and the generalization of the notion of spin. It is also discussed how the attempts to prove a spin-statistics connection were driven by Pauli from formal to more physical arguments, culminating in Pauli's 1940 proof. This proof was a major success for the beleaguered theory of quantum field theory and the methods Pauli employed proved essential for the renaissance of quantum field theory and the development of renormalization techniques in the late 1940s.
Undergraduate quantum mechanics: lost opportunities for engaging motivated students?
NASA Astrophysics Data System (ADS)
Johansson, Anders
2018-03-01
Quantum mechanics is widely recognised as an important and difficult subject, and many studies have been published focusing on students’ conceptual difficulties. However, the sociocultural aspects of studying such an emblematic subject have not been researched to any large extent. This study explores students’ experiences of undergraduate quantum mechanics using qualitative analysis of semi-structured interview data. The results inform discussions about the teaching of quantum mechanics by adding a sociocultural dimension. Students pictured quantum mechanics as an intriguing subject that inspired them to study physics. The study environment they encountered when taking their first quantum mechanics course was however not always as inspiring as expected. Quantum mechanics instruction has commonly focused on the mathematical framework of quantum mechanics, and this kind of teaching was also what the interviewees had experienced. Two ways of handling the encounter with a traditional quantum mechanics course were identified in the interviews; either students accept the practice of studying quantum mechanics in a mathematical, exercise-centred way or they distance themselves from these practices and the subject. The students who responded by distancing themselves experienced a crisis and disappointment, where their experiences did not match the way they imagined themselves engaging with quantum mechanics. The implications of these findings are discussed in relation to efforts to reform the teaching of undergraduate quantum mechanics.
NASA Astrophysics Data System (ADS)
Goradia, Shantilal
2015-10-01
We modify Newtonian gravity to probabilistic quantum mechanical gravity to derive strong coupling. If this approach is valid, we should be able to extend it to the physical body (life) as follows. Using Boltzmann equation, we get the entropy of the universe (137) as if its reciprocal, the fine structure constant (ALPHA), is the hidden candidate representing the negative entropy of the universe which is indicative of the binary information as its basis (http://www.arXiv.org/pdf/physics0210040v5). Since ALPHA relates to cosmology, it must relate to molecular biology too, with the binary system as the fundamental source of information for the nucleotides of the DNA as implicit in the book by the author: ``Quantum Consciousness - The Road to Reality.'' We debate claims of anthropic principle based on the negligible variation of ALPHA and throw light on thermodynamics. We question constancy of G in multiple ways.
Connecting the hadron mass scale to the fundamental mass scale of quantum chromodynamics
Deur, Alexandre; Brodsky, Stanley J.; de Teramond, Guy F.
2015-10-01
We establish an explicit connection between the long distance physics of confinement and the dynamical interactions of quarks and gluons at short distances and it has been a long-sought goal of quantum chromodynamics. Using holographic QCD, we derive a direct analytic relation between the scale κ which determines the masses of hadrons and the scale Λ s which controls the predictions of perturbative QCD at very short distances. The resulting prediction Λ s=0.341±0.032 GeV in the MS -scheme agrees well with the experimental average 0.339±0.016 GeV. We also derive a relation between Λs and the QCD string tension σ. Furthermore,more » this connection between the fundamental hadronic scale underlying the physics of quark confinement and the perturbative QCD scale controlling hard collisions can be carried out in any renormalization scheme.« less
NASA Astrophysics Data System (ADS)
Svenson, Eric Johan
Participants on the Invincible America Assembly in Fairfield, Iowa, and neighboring Maharishi Vedic City, Iowa, practicing Maharishi Transcendental Meditation(TM) (TM) and the TM-Sidhi(TM) programs in large groups, submitted written experiences that they had had during, and in some cases shortly after, their daily practice of the TM and TM-Sidhi programs. Participants were instructed to include in their written experiences only what they observed and to leave out interpretation and analysis. These experiences were then read by the author and compared with principles and phenomena of modern physics, particularly with quantum theory, astrophysics, quantum cosmology, and string theory as well as defining characteristics of higher states of consciousness as described by Maharishi Vedic Science. In all cases, particular principles or phenomena of physics and qualities of higher states of consciousness appeared qualitatively quite similar to the content of the given experience. These experiences are presented in an Appendix, in which the corresponding principles and phenomena of physics are also presented. These physics "commentaries" on the experiences were written largely in layman's terms, without equations, and, in nearly every case, with clear reference to the corresponding sections of the experiences to which a given principle appears to relate. An abundance of similarities were apparent between the subjective experiences during meditation and principles of modern physics. A theoretic framework for understanding these rich similarities may begin with Maharishi's theory of higher states of consciousness provided herein. We conclude that the consistency and richness of detail found in these abundant similarities warrants the further pursuit and development of such a framework.
Experimental Demonstration of Observability and Operability of Robustness of Coherence
NASA Astrophysics Data System (ADS)
Zheng, Wenqiang; Ma, Zhihao; Wang, Hengyan; Fei, Shao-Ming; Peng, Xinhua
2018-06-01
Quantum coherence is an invaluable physical resource for various quantum technologies. As a bona fide measure in quantifying coherence, the robustness of coherence (ROC) is not only mathematically rigorous, but also physically meaningful. We experimentally demonstrate the witness-observable and operational feature of the ROC in a multiqubit nuclear magnetic resonance system. We realize witness measurements by detecting the populations of quantum systems in one trial. The approach may also apply to physical systems compatible with ensemble or nondemolition measurements. Moreover, we experimentally show that the ROC quantifies the advantage enabled by a quantum state in a phase discrimination task.
Decoherence effect on quantum-memory-assisted entropic uncertainty relations
NASA Astrophysics Data System (ADS)
Ming, Fei; Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu
2018-01-01
Uncertainty principle significantly provides a bound to predict precision of measurement with regard to any two incompatible observables, and thereby plays a nontrivial role in quantum precision measurement. In this work, we observe the dynamical features of the quantum-memory-assisted entropic uncertainty relations (EUR) for a pair of incompatible measurements in an open system characterized by local generalized amplitude damping (GAD) noises. Herein, we derive the dynamical evolution of the entropic uncertainty with respect to the measurement affecting by the canonical GAD noises when particle A is initially entangled with quantum memory B. Specifically, we examine the dynamics of EUR in the frame of three realistic scenarios: one case is that particle A is affected by environmental noise (GAD) while particle B as quantum memory is free from any noises, another case is that particle B is affected by the external noise while particle A is not, and the last case is that both of the particles suffer from the noises. By analytical methods, it turns out that the uncertainty is not full dependent of quantum correlation evolution of the composite system consisting of A and B, but the minimal conditional entropy of the measured subsystem. Furthermore, we present a possible physical interpretation for the behavior of the uncertainty evolution by means of the mixedness of the observed system; we argue that the uncertainty might be dramatically correlated with the systematic mixedness. Furthermore, we put forward a simple and effective strategy to reduce the measuring uncertainty of interest upon quantum partially collapsed measurement. Therefore, our explorations might offer an insight into the dynamics of the entropic uncertainty relation in a realistic system, and be of importance to quantum precision measurement during quantum information processing.
Advanced Level Physics Students' Conceptions of Quantum Physics.
ERIC Educational Resources Information Center
Mashhadi, Azam
This study addresses questions about particle physics that focus on the nature of electrons. Speculations as to whether they are more like particles or waves or like neither illustrate the difficulties with which students are confronted when trying to incorporate the concepts of quantum physics into their overall conceptual framework. Such…
Teaching and Understanding of Quantum Interpretations in Modern Physics Courses
ERIC Educational Resources Information Center
Baily, Charles; Finkelstein, Noah D.
2010-01-01
Just as expert physicists vary in their personal stances on interpretation in quantum mechanics, instructors vary on whether and how to teach interpretations of quantum phenomena in introductory modern physics courses. In this paper, we document variations in instructional approaches with respect to interpretation in two similar modern physics…
Students' Epistemological Framing in Quantum Mechanics Problem Solving
ERIC Educational Resources Information Center
Modir, Bahar; Thompson, John D.; Sayre, Eleanor C.
2017-01-01
Students' difficulties in quantum mechanics may be the result of unproductive framing and not a fundamental inability to solve the problems or misconceptions about physics content. We observed groups of students solving quantum mechanics problems in an upper-division physics course. Using the lens of epistemological framing, we investigated four…
Designing, programming, and optimizing a (small) quantum computer
NASA Astrophysics Data System (ADS)
Svore, Krysta
In 1982, Richard Feynman proposed to use a computer founded on the laws of quantum physics to simulate physical systems. In the more than thirty years since, quantum computers have shown promise to solve problems in number theory, chemistry, and materials science that would otherwise take longer than the lifetime of the universe to solve on an exascale classical machine. The practical realization of a quantum computer requires understanding and manipulating subtle quantum states while experimentally controlling quantum interference. It also requires an end-to-end software architecture for programming, optimizing, and implementing a quantum algorithm on the quantum device hardware. In this talk, we will introduce recent advances in connecting abstract theory to present-day real-world applications through software. We will highlight recent advancement of quantum algorithms and the challenges in ultimately performing a scalable solution on a quantum device.
Direct quantum process tomography via measuring sequential weak values of incompatible observables.
Kim, Yosep; Kim, Yong-Su; Lee, Sang-Yun; Han, Sang-Wook; Moon, Sung; Kim, Yoon-Ho; Cho, Young-Wook
2018-01-15
The weak value concept has enabled fundamental studies of quantum measurement and, recently, found potential applications in quantum and classical metrology. However, most weak value experiments reported to date do not require quantum mechanical descriptions, as they only exploit the classical wave nature of the physical systems. In this work, we demonstrate measurement of the sequential weak value of two incompatible observables by making use of two-photon quantum interference so that the results can only be explained quantum physically. We then demonstrate that the sequential weak value measurement can be used to perform direct quantum process tomography of a qubit channel. Our work not only demonstrates the quantum nature of weak values but also presents potential new applications of weak values in analyzing quantum channels and operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertsch, G.F.; Janssens, R.V.
1997-07-01
An analysis of the gamma-ray spectra produced using the quantum mechanical rotational energy formula is presented for nuclei with large angular momentum. This analysis is suitable for quantum mechanics, modern physics, or nuclear physics courses. (AIP) {copyright}{ital 1997 American Institute of Physics}
Quantum Algorithms Based on Physical Processes
2013-12-03
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
Quantum Algorithms Based on Physical Processes
2013-12-02
quantum walks with hard-core bosons and the graph isomorphism problem,” American Physical Society March meeting, March 2011 Kenneth Rudinger, John...King Gamble, Mark Wellons, Mark Friesen, Dong Zhou, Eric Bach, Robert Joynt, and S.N. Coppersmith, “Quantum random walks of non-interacting bosons on...and noninteracting Bosons to distinguish nonisomorphic graphs. 1) We showed that quantum walks of two hard-core Bosons can distinguish all pairs of
Teaching Einsteinian Physics at Schools: Part 2, Models and Analogies for Quantum Physics
ERIC Educational Resources Information Center
Kaur, Tejinder; Blair, David; Moschilla, John; Zadnik, Marjan
2017-01-01
The Einstein-First project approaches the teaching of Einsteinian physics through the use of physical models and analogies. This paper presents an approach to the teaching of quantum physics which begins by emphasising the particle-nature of light through the use of toy projectiles to represent photons. This allows key concepts including the…
Programming languages and compiler design for realistic quantum hardware.
Chong, Frederic T; Franklin, Diana; Martonosi, Margaret
2017-09-13
Quantum computing sits at an important inflection point. For years, high-level algorithms for quantum computers have shown considerable promise, and recent advances in quantum device fabrication offer hope of utility. A gap still exists, however, between the hardware size and reliability requirements of quantum computing algorithms and the physical machines foreseen within the next ten years. To bridge this gap, quantum computers require appropriate software to translate and optimize applications (toolflows) and abstraction layers. Given the stringent resource constraints in quantum computing, information passed between layers of software and implementations will differ markedly from in classical computing. Quantum toolflows must expose more physical details between layers, so the challenge is to find abstractions that expose key details while hiding enough complexity.
Programming languages and compiler design for realistic quantum hardware
NASA Astrophysics Data System (ADS)
Chong, Frederic T.; Franklin, Diana; Martonosi, Margaret
2017-09-01
Quantum computing sits at an important inflection point. For years, high-level algorithms for quantum computers have shown considerable promise, and recent advances in quantum device fabrication offer hope of utility. A gap still exists, however, between the hardware size and reliability requirements of quantum computing algorithms and the physical machines foreseen within the next ten years. To bridge this gap, quantum computers require appropriate software to translate and optimize applications (toolflows) and abstraction layers. Given the stringent resource constraints in quantum computing, information passed between layers of software and implementations will differ markedly from in classical computing. Quantum toolflows must expose more physical details between layers, so the challenge is to find abstractions that expose key details while hiding enough complexity.
Lattice of quantum predictions
NASA Astrophysics Data System (ADS)
Drieschner, Michael
1993-10-01
What is the structure of reality? Physics is supposed to answer this question, but a purely empiristic view is not sufficient to explain its ability to do so. Quantum mechanics has forced us to think more deeply about what a physical theory is. There are preconditions every physical theory must fulfill. It has to contain, e.g., rules for empirically testable predictions. Those preconditions give physics a structure that is “a priori” in the Kantian sense. An example is given how the lattice structure of quantum mechanics can be understood along these lines.
Nonequilibrium Quantum Simulation in Circuit QED
NASA Astrophysics Data System (ADS)
Raftery, James John
Superconducting circuits have become a leading architecture for quantum computing and quantum simulation. In particular, the circuit QED framework leverages high coherence qubits and microwave resonators to construct systems realizing quantum optics models with exquisite precision. For example, the Jaynes-Cummings model has been the focus of significant theoretical interest as a means of generating photon-photon interactions. Lattices of such strongly correlated photons are an exciting new test bed for exploring non-equilibrium condensed matter physics such as dissipative phase transitions of light. This thesis covers a series of experiments which establish circuit QED as a powerful tool for exploring condensed matter physics with photons. The first experiment explores the use of ultra high speed arbitrary waveform generators for the direct digital synthesis of complex microwave waveforms. This new technique dramatically simplifies the classical control chain for quantum experiments and enables high bandwidth driving schemes expected to be essential for generating interesting steady-states and dynamical behavior. The last two experiments explore the rich physics of interacting photons, with an emphasis on small systems where a high degree of control is possible. The first experiment realizes a two-site system called the Jaynes-Cummings dimer, which undergoes a self-trapping transition where the strong photon-photon interactions block photon hopping between sites. The observation of this dynamical phase transition and the related dissipation-induced transition are key results of this thesis. The final experiment augments the Jaynes-Cummings dimer by redesigning the circuit to include in-situ control over photon hopping between sites using a tunable coupler. This enables the study of the dimer's localization transition in the steady-state regime.
Experimental test of photonic entanglement in accelerated reference frames
Fink, Matthias; Rodriguez-Aramendia, Ana; Handsteiner, Johannes; Ziarkash, Abdul; Steinlechner, Fabian; Scheidl, Thomas; Fuentes, Ivette; Pienaar, Jacques; Ralph, Timothy C.; Ursin, Rupert
2017-01-01
The unification of the theory of relativity and quantum mechanics is a long-standing challenge in contemporary physics. Experimental techniques in quantum optics have only recently reached the maturity required for the investigation of quantum systems under the influence of non-inertial motion, such as being held at rest in gravitational fields, or subjected to uniform accelerations. Here, we report on experiments in which a genuine quantum state of an entangled photon pair is exposed to a series of different accelerations. We measure an entanglement witness for g-values ranging from 30 mg to up to 30 g—under free-fall as well on a spinning centrifuge—and have thus derived an upper bound on the effects of uniform acceleration on photonic entanglement. PMID:28489082
The generalized Lyapunov theorem and its application to quantum channels
NASA Astrophysics Data System (ADS)
Burgarth, Daniel; Giovannetti, Vittorio
2007-05-01
We give a simple and physically intuitive necessary and sufficient condition for a map acting on a compact metric space to be mixing (i.e. infinitely many applications of the map transfer any input into a fixed convergency point). This is a generalization of the 'Lyapunov direct method'. First we prove this theorem in topological spaces and for arbitrary continuous maps. Finally we apply our theorem to maps which are relevant in open quantum systems and quantum information, namely quantum channels. In this context, we also discuss the relations between mixing and ergodicity (i.e. the property that there exists only a single input state which is left invariant by a single application of the map) showing that the two are equivalent when the invariant point of the ergodic map is pure.
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2017-06-01
The history of mathematical modeling outside physics has been dominated by the use of classical mathematical models, C-models, primarily those of a probabilistic or statistical nature. More recently, however, quantum mathematical models, Q-models, based in the mathematical formalism of quantum theory have become more prominent in psychology, economics, and decision science. The use of Q-models in these fields remains controversial, in part because it is not entirely clear whether Q-models are necessary for dealing with the phenomena in question or whether C-models would still suffice. My aim, however, is not to assess the necessity of Q-models in these fields, but instead to reflect on what the possible applicability of Q-models may tell us about the corresponding phenomena there, vis-à-vis quantum phenomena in physics. In order to do so, I shall first discuss the key reasons for the use of Q-models in physics. In particular, I shall examine the fundamental principles that led to the development of quantum mechanics. Then I shall consider a possible role of similar principles in using Q-models outside physics. Psychology, economics, and decision science borrow already available Q-models from quantum theory, rather than derive them from their own internal principles, while quantum mechanics was derived from such principles, because there was no readily available mathematical model to handle quantum phenomena, although the mathematics ultimately used in quantum did in fact exist then. I shall argue, however, that the principle perspective on mathematical modeling outside physics might help us to understand better the role of Q-models in these fields and possibly to envision new models, conceptually analogous to but mathematically different from those of quantum theory, helpful or even necessary there or in physics itself. I shall suggest one possible type of such models, singularized probabilistic, SP, models, some of which are time-dependent, TDSP-models. The necessity of using such models may change the nature of mathematical modeling in science and, thus, the nature of science, as it happened in the case of Q-models, which not only led to a revolutionary transformation of physics but also opened new possibilities for scientific thinking and mathematical modeling beyond physics.
Physical realization of topological quantum walks on IBM-Q and beyond
NASA Astrophysics Data System (ADS)
Balu, Radhakrishnan; Castillo, Daniel; Siopsis, George
2018-07-01
We discuss an efficient physical realization of topological quantum walks on a one-dimensional finite lattice with periodic boundary conditions (circle). The N-point lattice is realized with {log}}2N qubits, and the quantum circuit utilizes a number of quantum gates that are polynomial in the number of qubits. In a certain scaling limit, we show that a large number of steps are implemented with a number of quantum gates which are independent of the number of steps. We ran the quantum algorithm on the IBM-Q five-qubit quantum computer, thus experimentally demonstrating topological features, such as boundary bound states, on a one-dimensional lattice with N = 4 points.
Yang-Mills matrix mechanics and quantum phases
NASA Astrophysics Data System (ADS)
Pandey, Mahul; Vaidya, Sachindeo
The SU(2) Yang-Mills matrix model coupled to fundamental fermions is studied in the adiabatic limit, and quantum critical behavior is seen at special corners of the gauge field configuration space. The quantum scalar potential for the gauge field induced by the fermions diverges at the corners, and is intimately related to points of enhanced degeneracy of the fermionic Hamiltonian. This in turn leads to superselection sectors in the Hilbert space of the gauge field, the ground states in different sectors being orthogonal to each other. The SU(2) Yang-Mills matrix model coupled to two Weyl fermions has three quantum phases. When coupled to a massless Dirac fermion, the number of quantum phases is four. One of these phases is the color-spin locked phase. This paper is an extended version of the lectures given by the second author (SV) at the International Workshop on Quantum Physics: Foundations and Applications, Bangalore, in February 2016, and is based on [1].
NASA Astrophysics Data System (ADS)
Albash, Tameem; Lidar, Daniel A.
2018-01-01
Adiabatic quantum computing (AQC) started as an approach to solving optimization problems and has evolved into an important universal alternative to the standard circuit model of quantum computing, with deep connections to both classical and quantum complexity theory and condensed matter physics. This review gives an account of the major theoretical developments in the field, while focusing on the closed-system setting. The review is organized around a series of topics that are essential to an understanding of the underlying principles of AQC, its algorithmic accomplishments and limitations, and its scope in the more general setting of computational complexity theory. Several variants are presented of the adiabatic theorem, the cornerstone of AQC, and examples are given of explicit AQC algorithms that exhibit a quantum speedup. An overview of several proofs of the universality of AQC and related Hamiltonian quantum complexity theory is given. Considerable space is devoted to stoquastic AQC, the setting of most AQC work to date, where obstructions to success and their possible resolutions are discussed.
The Physical Tourist. A European Study Course
NASA Astrophysics Data System (ADS)
Kortemeyer, Gerd; Westfall, Catherine
2010-03-01
We organized and led a European study course for American undergraduate university students to explore the early history of relativity and quantum theory. We were inspired by The Physical Tourist articles published in this journal on Munich, Bern, Berlin, Copenhagen, and Göttingen. We describe this adventure both for others wishing to teach such a course and for anyone wishing to walk in the footsteps of the physicists who revolutionized physics in the early decades of the twentieth century.
A Solution to the Cosmic Conundrum including Cosmological Constant and Dark Energy Problems
NASA Astrophysics Data System (ADS)
Singh, A.
2009-12-01
A comprehensive solution to the cosmic conundrum is presented that also resolves key paradoxes of quantum mechanics and relativity. A simple mathematical model, the Gravity Nullification model (GNM), is proposed that integrates the missing physics of the spontaneous relativistic conversion of mass to energy into the existing physics theories, specifically a simplified general theory of relativity. Mechanistic mathematical expressions are derived for a relativistic universe expansion, which predict both the observed linear Hubble expansion in the nearby universe and the accelerating expansion exhibited by the supernova observations. The integrated model addresses the key questions haunting physics and Big Bang cosmology. It also provides a fresh perspective on the misconceived birth and evolution of the universe, especially the creation and dissolution of matter. The proposed model eliminates singularities from existing models and the need for the incredible and unverifiable assumptions including the superluminous inflation scenario, multiple universes, multiple dimensions, Anthropic principle, and quantum gravity. GNM predicts the observed features of the universe without any explicit consideration of time as a governing parameter.
Quantum-like Modeling of Cognition
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2015-09-01
This paper begins with a historical review of the mutual influence of physics and psychology, from Freud's invention of psychic energy inspired by von Boltzmann' thermodynamics to the enrichment quantum physics gained from the side of psychology by the notion of complementarity (the invention of Niels Bohr who was inspired by William James), besides we consider the resonance of the correspondence between Wolfgang Pauli and Carl Jung in both physics and psychology. Then we turn to the problem of development of mathematical models for laws of thought starting with Boolean logic and progressing towards foundations of classical probability theory. Interestingly, the laws of classical logic and probability are routinely violated not only by quantum statistical phenomena but by cognitive phenomena as well. This is yet another common feature between quantum physics and psychology. In particular, cognitive data can exhibit a kind of the probabilistic interference effect. This similarity with quantum physics convinced a multi-disciplinary group of scientists (physicists, psychologists, economists, sociologists) to apply the mathematical apparatus of quantum mechanics to modeling of cognition. We illustrate this activity by considering a few concrete phenomena: the order and disjunction effects, recognition of ambiguous figures, categorization-decision making. In Appendix 1 we briefly present essentials of theory of contextual probability and a method of representations of contextual probabilities by complex probability amplitudes (solution of the ``inverse Born's problem'') based on a quantum-like representation algorithm (QLRA).
Mapping quantum-classical Liouville equation: projectors and trajectories.
Kelly, Aaron; van Zon, Ramses; Schofield, Jeremy; Kapral, Raymond
2012-02-28
The evolution of a mixed quantum-classical system is expressed in the mapping formalism where discrete quantum states are mapped onto oscillator states, resulting in a phase space description of the quantum degrees of freedom. By defining projection operators onto the mapping states corresponding to the physical quantum states, it is shown that the mapping quantum-classical Liouville operator commutes with the projection operator so that the dynamics is confined to the physical space. It is also shown that a trajectory-based solution of this equation can be constructed that requires the simulation of an ensemble of entangled trajectories. An approximation to this evolution equation which retains only the Poisson bracket contribution to the evolution operator does admit a solution in an ensemble of independent trajectories but it is shown that this operator does not commute with the projection operators and the dynamics may take the system outside the physical space. The dynamical instabilities, utility, and domain of validity of this approximate dynamics are discussed. The effects are illustrated by simulations on several quantum systems.
Cognitive Issues in Learning Advanced Physics: An Example from Quantum Mechanics
NASA Astrophysics Data System (ADS)
Singh, Chandralekha; Zhu, Guangtian
2009-11-01
We are investigating cognitive issues in learning quantum mechanics in order to develop effective teaching and learning tools. The analysis of cognitive issues is particularly important for bridging the gap between the quantitative and conceptual aspects of quantum mechanics and for ensuring that the learning tools help students build a robust knowledge structure. We discuss the cognitive aspects of quantum mechanics that are similar or different from those of introductory physics and their implications for developing strategies to help students develop a good grasp of quantum mechanics.
Nonlocal character of quantum theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, H.P.
1997-04-01
According to a common conception of causality, the truth of a statement that refers only to phenomena confined to an earlier time cannot depend upon which measurement an experimenter will freely choose to perform at a later time. According to a common idea of the theory of relativity this causality condition should be valid in all Lorentz frames. It is shown here that this concept of relativistic causality is incompatible with some simple predictions of quantum theory. {copyright} {ital 1997 American Association of Physics Teachers.}
NASA Astrophysics Data System (ADS)
Jahanbakhsh, F.; Honarasa, G.
2018-04-01
The potential of nonharmonic systems has several applications in the field of quantum physics. The photon-added coherent states for annharmonic oscillators in a nonlinear Kerr medium can be used to describe some quantum systems. In this paper, the phase properties of these states including number-phase Wigner distribution function, Pegg-Barnett phase distribution function, number-phase squeezing and number-phase entropic uncertainty relations are investigated. It is found that these states can be considered as the nonclassical states.
The Origin of Complex Quantum Amplitudes
NASA Astrophysics Data System (ADS)
Goyal, Philip; Knuth, Kevin H.; Skilling, John
2009-12-01
Physics is real. Measurement produces real numbers. Yet quantum mechanics uses complex arithmetic, in which √-1 is necessary but mysteriously relates to nothing else. By applying the same sort of symmetry arguments that Cox [1, 2] used to justify probability calculus, we are now able to explain this puzzle. The dual device/object nature of observation requires us to describe the world in terms of pairs of real numbers about which we never have full knowledge. These pairs combine according to complex arithmetic, using Feynman's rules.
NASA Astrophysics Data System (ADS)
Silva, L. D. Da; Dos Santos, J. L. L.; Ranciaro Neto, A.; Sales, M. O.; de Moura, F. A. B. F.
In this work, we consider a one-electron moving on a Fermi, Pasta, Ulam disordered chain under effect of electron-phonon interaction and a Gaussian acoustic pulse pumping. We describe electronic dynamics using quantum mechanics formalism and the nonlinear atomic vibrations using standard classical physics. Solving numerical equations related to coupled quantum/classical behavior of this system, we study electronic propagation properties. Our calculations suggest that the acoustic pumping associated with the electron-lattice interaction promote a sub-diffusive electronic dynamics.
GUP parameter from quantum corrections to the Newtonian potential
NASA Astrophysics Data System (ADS)
Scardigli, Fabio; Lambiase, Gaetano; Vagenas, Elias C.
2017-04-01
We propose a technique to compute the deformation parameter of the generalized uncertainty principle by using the leading quantum corrections to the Newtonian potential. We just assume General Relativity as theory of Gravitation, and the thermal nature of the GUP corrections to the Hawking spectrum. With these minimal assumptions our calculation gives, to first order, a specific numerical result. The physical meaning of this value is discussed, and compared with the previously obtained bounds on the generalized uncertainty principle deformation parameter.
The Six Core Theories of Modern Physics
NASA Astrophysics Data System (ADS)
Stevens, Charles F.
1996-09-01
Charles Stevens, a prominent neurobiologist who originally trained as a biophysicist (with George Uhlenbeck and Mark Kac), wrote this book almost by accident. Each summer he found himself reviewing key areas of physics that he had once known and understood well, for use in his present biological research. Since there was no book, he created his own set of notes, which formed the basis for this brief, clear, and self-contained summary of the basic theoretical structures of classical mechanics, electricity and magnetism, quantum mechanics, statistical physics, special relativity, and quantum field theory. The Six Core Theories of Modern Physics can be used by advanced undergraduates or beginning graduate students as a supplement to the standard texts or for an uncluttered, succinct review of the key areas. Professionals in such quantitative sciences as chemistry, engineering, computer science, applied mathematics, and biophysics who need to brush up on the essentials of a particular area will find most of the required background material, including the mathematics.
A Non-Relativistic Look at the Compton Effect
ERIC Educational Resources Information Center
Feller, Steve; Giri, Sandeep; Zakrasek, Nicholas; Affatigato, Mario
2014-01-01
In a usual modern physics class the Compton effect is used as the pedagogical model for introducing relativity into quantum effects. The shift in photon wavelengths is usually introduced and derived using special relativity. Indeed, this works well for explaining the effect. However, in the senior author's class one of the student coauthors…
Philosophy and Quantum Mechanics in Science Teaching
NASA Astrophysics Data System (ADS)
Pospiech, Gesche
Research in physics has its impact on world view; physics influences the image of nature. On the other hand philosophy thinks about nature and the role of man. The insight that philosophy might indicate the frontiers of human possibilities of thought makes it highly desirable to teach these aspects in physics education. One of the most exciting examples is quantum theory which v. Weizsäcker called a fundamental philosophical advance. I give some hints to implementing philosophical aspects into a course on quantum theory. For this purpose I designed a dialogue between three philosophers - from the Antique, the Enlightenment and a quantum philosopher - discussing results of quantum theory on the background of important philosophical terms. Especially the views of Aristotle are reviewed. This idea has been carried out in a supplementary course on quantum theory for interested teacher students and for in-service training of teachers.
The physical origins of the uncertainty theorem
NASA Astrophysics Data System (ADS)
Giese, Albrecht
2013-10-01
The uncertainty principle is an important element of quantum mechanics. It deals with certain pairs of physical parameters which cannot be determined to an arbitrary level of precision at the same time. According to the so-called Copenhagen interpretation of quantum mechanics, this uncertainty is an intrinsic property of the physical world. - This paper intends to show that there are good reasons for adopting a different view. According to the author, the uncertainty is not a property of the physical world but rather a limitation of our knowledge about the actual state of a physical process. This view conforms to the quantum theory of Louis de Broglie and to Albert Einstein's interpretation.
Quantum enigma cipher as a generalization of the quantum stream cipher
NASA Astrophysics Data System (ADS)
Kato, Kentaro
2016-09-01
Various types of randomizations for the quantum stream cipher by Y00 protocol have been developed so far. In particular, it must be noted that the analysis of immunity against correlation attacks with a new type of randomization by Hirota and Kurosawa prompted a new look at the quantum stream cipher by Y00 protocol (Quant. Inform. Process. 6(2) 2007). From the preceding study on the quantum stream cipher, we recognized that the quantum stream cipher by Y00 protocol would be able to be generalized to a new type of physical cipher that has potential to exceed the Shannon limit by installing additional randomization mechanisms, in accordance with the law of quantum mechanics. We call this new type of physical random cipher the quantum enigma cipher. In this article, we introduce the recent developments for the quantum stream cipher by Y00 protocol and future plans toward the quantum enigma cipher.
Minimal analytical model for undular tidal bore profile; quantum and Hawking effect analogies
NASA Astrophysics Data System (ADS)
Berry, M. V.
2018-05-01
Waves travelling up-river, driven by high tides, often consist of a smooth front followed by a series of undulations. A simple approximate theory gives the rigidly travelling profile of such ‘undular hydraulic jumps’, up to scaling, as the integral of the Airy function; applying self-consistency fixes the scaling. The theory combines the standard hydraulic jump with ideas borrowed from quantum physics: Hamiltonian operators and zero-energy eigenfunctions. There is an analogy between undular bores and the Hawking effect in relativity: both concern waves associated with horizons. ‘Physics is not just Concerning the Nature of Things, but Concerning the Interconnectedness of all the Natures of Things’(Sir Charles Frank, retirement speech 1976).
Adirectional temporal zones in quantum physics and brain physiology
NASA Astrophysics Data System (ADS)
Ruhnau, Eva; Pöppel, Ernst
1991-08-01
Change in space and time of an observed object creates a logistical problem for our brain because the temporal central availability is undefined. As solution we claim the existence of elementary integration units (EIUs) which are defined as zones of simultaneity; i.e., within such an EIU the before-after relationship has to be abandoned. Experimental evidence points to a duration of the EIUs of the order of 30 msec. In considering a delayed choice experiment in physics, we propose that a similar renunciation of the before-after relation leads to a deeper understanding of the individuality of processes in quantum theory. In short, “time” may be more momentous than its usual appearance as a real-valued parameter demonstrates.
EPR & Klein Paradoxes in Complex Hamiltonian Dynamics and Krein Space Quantization
NASA Astrophysics Data System (ADS)
Payandeh, Farrin
2015-07-01
Negative energy states are applied in Krein space quantization approach to achieve a naturally renormalized theory. For example, this theory by taking the full set of Dirac solutions, could be able to remove the propagator Green function's divergences and automatically without any normal ordering, to vanish the expected value for vacuum state energy. However, since it is a purely mathematical theory, the results are under debate and some efforts are devoted to include more physics in the concept. Whereas Krein quantization is a pure mathematical approach, complex quantum Hamiltonian dynamics is based on strong foundations of Hamilton-Jacobi (H-J) equations and therefore on classical dynamics. Based on complex quantum Hamilton-Jacobi theory, complex spacetime is a natural consequence of including quantum effects in the relativistic mechanics, and is a bridge connecting the causality in special relativity and the non-locality in quantum mechanics, i.e. extending special relativity to the complex domain leads to relativistic quantum mechanics. So that, considering both relativistic and quantum effects, the Klein-Gordon equation could be derived as a special form of the Hamilton-Jacobi equation. Characterizing the complex time involved in an entangled energy state and writing the general form of energy considering quantum potential, two sets of positive and negative energies will be realized. The new states enable us to study the spacetime in a relativistic entangled “space-time” state leading to 12 extra wave functions than the four solutions of Dirac equation for a free particle. Arguing the entanglement of particle and antiparticle leads to a contradiction with experiments. So, in order to correct the results, along with a previous investigation [1], we realize particles and antiparticles as physical entities with positive energy instead of considering antiparticles with negative energy. As an application of modified descriptions for entangled (space-time) states, the original version of EPR paradox can be discussed and the correct answer can be verified based on the strong rooted complex quantum Hamilton-Jacobi theory [2-27] and as another example we can use the negative energy states, to remove the Klein's paradox without the need of any further explanations or justifications like backwardly moving electrons. Finally, comparing the two approaches, we can point out to the existence of a connection between quantum Hamiltonian dynamics, standard quantum field theory, and Krein space quantization [28-43].
Quantum Sensors for the Generating Functional of Interacting Quantum Field Theories
NASA Astrophysics Data System (ADS)
Bermudez, A.; Aarts, G.; Müller, M.
2017-10-01
Difficult problems described in terms of interacting quantum fields evolving in real time or out of equilibrium abound in condensed-matter and high-energy physics. Addressing such problems via controlled experiments in atomic, molecular, and optical physics would be a breakthrough in the field of quantum simulations. In this work, we present a quantum-sensing protocol to measure the generating functional of an interacting quantum field theory and, with it, all the relevant information about its in- or out-of-equilibrium phenomena. Our protocol can be understood as a collective interferometric scheme based on a generalization of the notion of Schwinger sources in quantum field theories, which make it possible to probe the generating functional. We show that our scheme can be realized in crystals of trapped ions acting as analog quantum simulators of self-interacting scalar quantum field theories.
Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light.
Schäfermeier, Clemens; Kerdoncuff, Hugo; Hoff, Ulrich B; Fu, Hao; Huck, Alexander; Bilek, Jan; Harris, Glen I; Bowen, Warwick P; Gehring, Tobias; Andersen, Ulrik L
2016-11-29
Laser cooling is a fundamental technique used in primary atomic frequency standards, quantum computers, quantum condensed matter physics and tests of fundamental physics, among other areas. It has been known since the early 1990s that laser cooling can, in principle, be improved by using squeezed light as an electromagnetic reservoir; while quantum feedback control using a squeezed light probe is also predicted to allow improved cooling. Here we show the implementation of quantum feedback control of a micro-mechanical oscillator using squeezed probe light. This allows quantum-enhanced feedback cooling with a measurement rate greater than it is possible with classical light, and a consequent reduction in the final oscillator temperature. Our results have significance for future applications in areas ranging from quantum information networks, to quantum-enhanced force and displacement measurements and fundamental tests of macroscopic quantum mechanics.
Observing a scale anomaly and a universal quantum phase transition in graphene.
Ovdat, O; Mao, Jinhai; Jiang, Yuhang; Andrei, E Y; Akkermans, E
2017-09-11
One of the most interesting predictions resulting from quantum physics, is the violation of classical symmetries, collectively referred to as anomalies. A remarkable class of anomalies occurs when the continuous scale symmetry of a scale-free quantum system is broken into a discrete scale symmetry for a critical value of a control parameter. This is an example of a (zero temperature) quantum phase transition. Such an anomaly takes place for the quantum inverse square potential known to describe 'Efimov physics'. Broken continuous scale symmetry into discrete scale symmetry also appears for a charged and massless Dirac fermion in an attractive 1/r Coulomb potential. The purpose of this article is to demonstrate the universality of this quantum phase transition and to present convincing experimental evidence of its existence for a charged and massless fermion in an attractive Coulomb potential as realized in graphene.When the continuous scale symmetry of a quantum system is broken, anomalies occur which may lead to quantum phase transitions. Here, the authors provide evidence for such a quantum phase transition in the attractive Coulomb potential of vacancies in graphene, and further envision its universality for diverse physical systems.
NASA Astrophysics Data System (ADS)
Cataloglu, Erdat
The purpose of this study was to construct a valid and reliable multiple-choice achievement test to assess students' understanding of core concepts of introductory quantum mechanics. Development of the Quantum Mechanics Visualization Instrument (QMVI) occurred across four successive semesters in 1999--2001. During this time 213 undergraduate and graduate students attending the Pennsylvania State University (PSU) at University Park and Arizona State University (ASU) participated in this development and validation study. Participating students were enrolled in four distinct groups of courses: Modern Physics, Undergraduate Quantum Mechanics, Graduate Quantum Mechanics, and Chemistry Quantum Mechanics. Expert panels of professors of physics experienced in teaching quantum mechanics courses and graduate students in physics and science education established the core content and assisted in the validating of successive versions of the 24-question QMVI. Instrument development was guided by procedures outlined in the Standards for Educational and Psychological Testing (AERA-APA-NCME, 1999). Data gathered in this study provided information used in the development of successive versions of the QMVI. Data gathered in the final phase of administration of the QMVI also provided evidence that the intended score interpretation of the QMVI achievement test is valid and reliable. A moderate positive correlation coefficient of 0.49 was observed between the students' QMVI scores and their confidence levels. Analyses of variance indicated that students' scores in Graduate Quantum Mechanics and Undergraduate Quantum Mechanics courses were significantly higher than the mean scores of students in Modern Physics and Chemistry Quantum Mechanics courses (p < 0.05). That finding is consistent with the additional understanding and experience that should be anticipated in graduate students and junior-senior level students over sophomore physics majors and majors in another field. The moderate positive correlation coefficient of 0.42 observed between students' QMVI scores and their final course grades was also consistent with expectations in a valid instrument. In addition, the Cronbach-alpha reliability coefficient of the QMVI was found to be 0.82. Limited findings were drawn on students' understanding of introductory quantum mechanics concepts. Data suggested that the construct of quantum mechanics understanding is most likely multidimensional and the Main Topic defined as "Quantum Mechanics Postulates" may be an especially important factor for students in acquiring a successful understanding of quantum mechanics.
NASA Astrophysics Data System (ADS)
Hadzidaki, Pandora
2008-06-01
In this paper, we present a multi-dimensional study concerning Heisenberg’s ‚gamma ray microscope’, a thought experiment, which is intimately connected with the historical development of quantum mechanics (QM), and also with the most disputed interpretations of quantum theory. In this study: (a) we investigate how philosophers of science read and explicate the function of thought experimentation in physical science; (b) in the light of relevant philosophical theories, we examine the complicated epistemological questions raised by the ‚gamma-ray microscope’ during the birth-process of QM and the contribution of this thought experiment to the clarification of the physical meaning of Heisenberg’s indeterminacy relations; (c) on the basis of the preceding analysis, we propose an instructional intervention, which aims at leading learners not only to an essential understanding of QM worldview, but to a deep insight into the Nature of Science as well.
NASA Astrophysics Data System (ADS)
Amoroso, Richard L.
2013-09-01
The concept of time in the `clockwork' Newtonian world was irrelevant; and has generally been ignored until recently by several generations of physicists since the implementation of quantum mechanics. We will set aside the utility of time as a property relating to physical calculations of events relating to a metrics line element or as an aspect of the transformation of a particles motion/interaction in a coordinate system or in relation to thermodynamics etc., i.e. we will discard all the usual uses of time as a concept used to circularly define physical parameters in terms of other physical parameters; concentrating instead on time as an aspect of the fundamental cosmic topology of our virtual reality especially as it inseparably relates to the nature and role of the observer in natural science.
Evidence for consciousness-related anomalies in random physical systems
NASA Astrophysics Data System (ADS)
Radin, Dean I.; Nelson, Roger D.
1989-12-01
Speculations about the role of consciousness in physical systems are frequently observed in the literature concerned with the interpretation of quantum mechanics. While only three experimental investigations can be found on this topic in physics journals, more than 800 relevant experiments have been reported in the literature of parapsychology. A well-defined body of empirical evidence from this domain was reviewed using meta-analytic techniques to assess methodological quality and overall effect size. Results showed effects conforming to chance expectation in control conditions and unequivocal non-chance effects in experimental conditions. This quantitative literature review agrees with the findings of two earlier reviews, suggesting the existence of some form of consciousness-related anomaly in random physical systems.
NASA Astrophysics Data System (ADS)
Baily, Charles Raymond
A common learning goal for modern physics instructors is for students to recognize a difference between the experimental uncertainty of classical physics and the fundamental uncertainty of quantum mechanics. Our studies suggest this notoriously difficult task may be frustrated by the intuitively realist perspectives of introductory students, and a lack of ontological flexibility in their conceptions of light and matter. We have developed a framework for understanding and characterizing student perspectives on the physical interpretation of quantum mechanics, and demonstrate the differential impact on student thinking of the myriad ways instructors approach interpretive themes in their introductory courses. Like expert physicists, students interpret quantum phenomena differently, and these interpretations are significantly influenced by their overall stances on questions central to the so-called measurement problem: Is the wave function physically real, or simply a mathematical tool? Is the collapse of the wave function an ad hoc rule, or a physical transition not described by any equation? Does an electron, being a form of matter, exist as a localized particle at all times? These questions, which are of personal and academic interest to our students, are largely only superficially addressed in our introductory courses, often for fear of opening a Pandora's Box of student questions, none of which have easy answers. We show how a transformed modern physics curriculum (recently implemented at the University of Colorado) may positively impact student perspectives on indeterminacy and wave-particle duality, by making questions of classical and quantum reality a central theme of our course, but also by making the beliefs of our students, and not just those of scientists, an explicit topic of discussion.
Designing learning environments to teach interactive Quantum Physics
NASA Astrophysics Data System (ADS)
Gómez Puente, Sonia M.; Swagten, Henk J. M.
2012-10-01
This study aims at describing and analysing systematically an interactive learning environment designed to teach Quantum Physics, a second-year physics course. The instructional design of Quantum Physics is a combination of interactive lectures (using audience response systems), tutorials and self-study in unit blocks, carried out with small groups. Individual formative feedback was introduced as a rapid assessment tool to provide an overview on progress and identify gaps by means of questioning students at three levels: conceptual; prior knowledge; homework exercises. The setup of Quantum Physics has been developed as a result of several loops of adjustments and improvements from a traditional-like type of teaching to an interactive classroom. Results of this particular instructional arrangement indicate significant gains in students' achievements in comparison with the traditional structure of this course, after recent optimisation steps such as the implementation of an individual feedback system.
NASA Astrophysics Data System (ADS)
Fraser, Gordon
2006-04-01
Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.
NASA Astrophysics Data System (ADS)
Fraser, Gordon
2009-08-01
Introduction Gordon Fraser; Part I. Matter and the Universe: 1. Cosmology Wendy Freedman and Rocky Kolb; 2. Gravity Ronald Adler; 3. Astrophysics Arnon Dar; 4. Particles and the standard model Chris Quigg; 5. Superstrings Michael Green; Part II. Quantum Matter: 6. Atoms and photons Claude Cohen-Tannoudji and Jean Dalibard; 7. The quantum world of ultra-cold atoms Christopher Foot and William Phillips; 8. Superfluidity Henry Hall; 9. Quantum phase transitions Subir Sachdev; Part III. Quanta in Action: 10. Quantum entanglement Anton Zeilinger; 11. Quanta, ciphers and computers Artur Ekert; 12. Small-scale structure and nanoscience Yoseph Imry; Part IV. Calculation and Computation: 13. Nonlinearity Henry Abarbanel; 14. Complexity Antonio Politi; 15. Collaborative physics, e-science and the grid Tony Hey and Anne Trefethen; Part V. Science in Action: 16. Biophysics Cyrus Safinya; 17. Medical physics Nicolaj Pavel; 18. Physics and materials Robert Cahn; 19. Physics and society Ugo Amaldi.
Quantum tomography for collider physics: illustrations with lepton-pair production
NASA Astrophysics Data System (ADS)
Martens, John C.; Ralston, John P.; Takaki, J. D. Tapia
2018-01-01
Quantum tomography is a method to experimentally extract all that is observable about a quantum mechanical system. We introduce quantum tomography to collider physics with the illustration of the angular distribution of lepton pairs. The tomographic method bypasses much of the field-theoretic formalism to concentrate on what can be observed with experimental data. We provide a practical, experimentally driven guide to model-independent analysis using density matrices at every step. Comparison with traditional methods of analyzing angular correlations of inclusive reactions finds many advantages in the tomographic method, which include manifest Lorentz covariance, direct incorporation of positivity constraints, exhaustively complete polarization information, and new invariants free from frame conventions. For example, experimental data can determine the entanglement entropy of the production process. We give reproducible numerical examples and provide a supplemental standalone computer code that implements the procedure. We also highlight a property of complex positivity that guarantees in a least-squares type fit that a local minimum of a χ 2 statistic will be a global minimum: There are no isolated local minima. This property with an automated implementation of positivity promises to mitigate issues relating to multiple minima and convention dependence that have been problematic in previous work on angular distributions.
The Current State of Physics in Cuba: A Personal Perspective
NASA Astrophysics Data System (ADS)
Alonso, Marcelo
After 40 years of absence I returned twice to Cuba, in January and December of 2000, to participate as a guest lecturer in two international scientific meetings. The first dealt with physics education, and the second with current issues related to quantum mechanics. In addition to a few participants from Europe, the US and Latin America, the two meetings were well attended by Cuban physicists.
[Physical essence of erythrocytic sedimentation rate in the gravitation field of the earth].
Cherniĭ, A N
2009-01-01
The erythrocytic sedimentation rate method has been long known in medicine and extensively used in laboratory practice in tuberculosis facilities. However, many authors note that the erythrocytic sedimentation rate phenomenon has not clearly understood. By applying the total theory of relativity and quantum mechanics, the author discloses the physical essence of erythrocytic sedimentation in the gravitation field of the Earth.
EDITORIAL The 17th Central European Workshop on Quantum Optics
NASA Astrophysics Data System (ADS)
Man'ko, Margarita A.
2011-02-01
Although the origin of quantum optics can be traced back to the beginning of the 20th century, when the fundamental ideas about the quantum nature of the interaction between light and matter were put forward, the splendid blossoming of this part of physics began half a century later, after the invention of masers and lasers. It is remarkable that after another half a century the tree of quantum optics is not only very strong and spreading, but all its branches continue to grow, showing new beautiful blossoms and giving very useful fruits. A reflection of this progress has been the origin and development of the series of annual events called the Central European Workshops on Quantum Optics (CEWQO). They started at the beginning of the 1990s as rather small meetings of physicists from a few countries in central-eastern Europe, but in less than two decades they have transformed into important events, gathering 100 to 200 participants from practically all European countries. Moreover, many specialists from other continents like to attend these meetings, since they provide an excellent chance to hear about the latest results and new directions of research. Regarding this, it seems worth mentioning at least some of the most interesting and important areas of quantum optics that have attracted the attention of researchers for the past two decades. One of these areas is quantum information, which over the course of time has become an almost independent area of quantum physics. But it still maintains very close ties with quantum optics. The specific parts of this area are, in particular, quantum computing, quantum communication and quantum cryptography, and the problem of quantitative description of such genuine quantum phenomena as entanglement is one of the central items in the current stream of publications. Theory and experiment related to quantum tomography have also become important to contemporary quantum optics. They are closely related to the subject of so-called quantum-state engineering. Different schemes proposed within the framework of this new area enabled the creation in laboratories of various superpositions of quantum states which had previously existed only as beautiful mathematical constructions by theoreticians. Connected to this, recent experiments related to such old problems as decoherence and quantum-classical transition are quite impressive. The same can be said about the interrelations between quantum optics and physics of ultracold atoms and Bose-Einstein condensates. Great progress has been made in cavity quantum electrodynamics, and the past decade gave rise to the new area of circuit quantum electrodynamics. Nowadays, we are very close to the observation of the quantum behavior of macroscopic bodies (mirrors), and the methods used in quantum optics help to achieve this goal. Quantum optics over the past two decades has resulted in such impressive discoveries as the slowing down of light to extremely low velocities and the creation of photonic crystals. The new methods of achieving very strong coupling coefficients between quantized field modes and atomic degrees of freedom open new possibilities for storing and retrieving quantum information transmitted by light. New areas of terahertz, femto- and atto-second optics were born or were significantly developed during the past two decades. In addition, the tomographic-probability representation of photon-quantum states has created new possibilities both in theoretical and experimental aspects of quantum optics. Traditionally, measured optical tomograms of photon states were considered as a technical tool for reconstructing the Wigner functions of quantum states. It became clear that these measured tomograms are primary objects; one does not need to reconstruct the Wigner function to extract information on physical properties of the state, for example, on the state purity. Purity is experimentally obtained directly from measured optical tomograms of photon states. The uncertainty relations for photon quadratures were also checked for the thermal photon state using experimental values of optical tomograms and avoiding the reconstruction procedure of the Wigner function and its associated precision constrains. In the tomographic-probability representation of quantum mechanics and quantum optics, tomograms are used for the description of quantum states as an alternative to the wave function and density matrix. The purity, fidelity, entropy and photon temperature associated with quantum states are expressed in terms of tomograms. This provides the possibility of measuring these characteristics directly by taking optical tomograms and checking basic inequalities like entropic uncertainty relations, temperature-dependent quadrature uncertainty relations, etc. The better understanding that quantum states can be identified with measurable probability distributions like optical tomograms opens new prospects in quantum optics, for example, to check experimentally the uncertainty relations for higher quadrature momenta and to control the precision with which the fundamental inequalities of quantum mechanics are experimentally confirmed. This Topical Issue is a collection of papers presented at the 17th Central European Workshops on Quantum Optics (CEWQO10) held at the University of St Andrews, Scotland, UK, 6-11 June 2010. The other collaborators from different scientific centers who could not, due to different reasons, come to St Andrews but participated in the previous CEWQOs and plan to participate in future CEWQOs also contributed to this issue. The paper by Ulf Leonhardt and Natalia Korolkova, the CEWQO10 Organizers, opens this issue. The order of the following papers corresponds to the alphabetical order of the first author of the paper. The history of CEWQOs can be found in the Preface to the Proceedings of the 15th CEWQO (2009 Phys. Scr. T135 011005). The Proceedings of the 16th Central European Workshop on Quantum Optics (CEWQO09), held at the University of Turku, are also available (2010 Phys. Scr. T140). The 18th Central European Workshop on Quantum Optics (CEWQO11) will be held in Madrid, Spain on 30 May--3 June 2011. It will be chaired by Professor Luis Lorenzo Sanchez Soto from the Complutense University of Madrid. List of Papers The 17th Central European Workshop on Quantum Optics in St Andrews, Scotland Ulf Leonhardt and Natalia Korolkova Double self-Kerr scheme for optical Schrödinger-cat state preparation P Adam, Z Darázs, T Kiss and M Mechler Relations between scaling transformed Husimi functions, Wigner functions and symplectic tomograms describing corresponding physical states V A Andreev, D M Davidović, L D Davidović and M D Davidović Entanglement dynamics of two independent cavity-embedded quantum dots B Bellomo, G Compagno, R Lo Franco, A Ridolfo and S Savasta Dynamical stabilization of spin systems in time-dependent magnetic fields Yu V Bezvershenko, P I Holod and A Messina Entanglement dynamics of a bipartite system in squeezed vacuum reservoirs Smail Bougouffa and Awatif Hindi On Wheeler's delayed-choice Gedankenexperiment and its laboratory realization M Božić, L Vušković, M Davidović and Á S Sanz A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms Graham D Bruce, James Mayoh, Giuseppe Smirne, Lara Torralbo-Campo and Donatella Cassettari Parametric amplification of the classical field in cavities with photoexcited semiconductors V V Dodonov Mutually unbiased bases: tomography of spin states and the star-product scheme S N Filippov and V I Man'ko Quantum trajectory model for photon detectors and optoelectronic devices Teppo Häyrynen, Jani Oksanen and Jukka Tulkki Entanglement in two-mode continuous variable open quantum systems Aurelian Isar A classical field comeback? The classical field viewpoint on triparticle entanglement Andrei Khrennikov Experimental investigation of the enhancement factor and the cross-correlation function for graphs with and without time-reversal symmetry: the open system case Michał Ławniczak, Szymon Bauch, Oleh Hul and Leszek Sirko Independent nonclassical tests for states and measurements in the same experiment Alfredo Luis and Ángel Rivas On the classical capacity of quantum Gaussian channels Cosmo Lupo, Stefano Pirandola, Paolo Aniello and Stefano Mancini Entropic inequalities for center-of-mass tomograms Margarita A Man'ko Semiclassical dynamics for an ion confined within a nonlinear electromagnetic trap Bogdan M Mihalcea Zeno-like phenomena in STIRAP processes B Militello, M Scala, A Messina and N V Vitanov A beam splitter with second-order nonlinearity modeled as a nonlinear coupler V Peřinová, A Lukš and J Křepelka Energy-level shifts of a uniformly accelerated atom between two reflecting plates L Rizzuto and S Spagnolo Cross-Kerr nonlinearities in an optically dressed periodic medium K Słowik, A Raczyński, J Zaremba, S Zielińska-Kaniasty, M Artoni and G C La Rocca An approximate effective beamsplitter interaction between light and atomic ensembles Richard Tatham, David Menzies and Natalia Korolkova Stochastic simulation of long-time nonadiabatic dynamics Daniel A Uken, Alessandro Sergi and Francesco Petruccione
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Michael A.; School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland 4072; Dawson, Christopher M.
The one-way quantum computing model introduced by Raussendorf and Briegel [Phys. Rev. Lett. 86, 5188 (2001)] shows that it is possible to quantum compute using only a fixed entangled resource known as a cluster state, and adaptive single-qubit measurements. This model is the basis for several practical proposals for quantum computation, including a promising proposal for optical quantum computation based on cluster states [M. A. Nielsen, Phys. Rev. Lett. (to be published), quant-ph/0402005]. A significant open question is whether such proposals are scalable in the presence of physically realistic noise. In this paper we prove two threshold theorems which showmore » that scalable fault-tolerant quantum computation may be achieved in implementations based on cluster states, provided the noise in the implementations is below some constant threshold value. Our first threshold theorem applies to a class of implementations in which entangling gates are applied deterministically, but with a small amount of noise. We expect this threshold to be applicable in a wide variety of physical systems. Our second threshold theorem is specifically adapted to proposals such as the optical cluster-state proposal, in which nondeterministic entangling gates are used. A critical technical component of our proofs is two powerful theorems which relate the properties of noisy unitary operations restricted to act on a subspace of state space to extensions of those operations acting on the entire state space. We expect these theorems to have a variety of applications in other areas of quantum-information science.« less