Science.gov

Sample records for quantum recoil effects

  1. Polarization effects in recoil-induced resonances

    NASA Astrophysics Data System (ADS)

    Lazebnyi, D. B.; Brazhnikov, D. V.; Taichenachev, A. V.; Yudin, V. I.

    2017-01-01

    The effect of the field polarization on the amplitude of recoil-induced resonances (RIRs) is considered for laser-cooled free atoms and for atoms in a working magneto-optical trap (MOT). For all closed dipole transitions, explicit analytical expressions are obtained for the polarization dependence of the resonance amplitudes within a perturbation theory. Optimal polarization conditions are found for the observation of resonances.

  2. Dielectric barrier structure with hollow electrodes and its recoil effect

    SciTech Connect

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui; Wang, Kaile; Jiang, Zhe; Sun, Zhili; Zhang, Jue; Fang, Jing

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gas flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.

  3. The shape effect of space debris on recoil impulse by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Wang, Chenglin; Zhang, Yan; Wang, Kunpeng

    2016-10-01

    Removing space debris by high-energy pulsed laser may be the most effective way to mitigate the threat posed by the increasing space debris. Laser ablation of a thin surface layer causes recoil impulse, which will lower the orbit perigee of space debris and accelerate the atmospheric capture. When the laser beam vertically irradiates a flat debris, it requires a certain laser fluence to reach the optimal impulse coupling, and the recoil impulse is parallel to the laser beam. However, the incident laser fluence varies in different parts of a non-flat surface. We have taken the shape effect into account to propose a numerical method of calculating the recoil impulse. Taking cylinder debris as the target, we have compared the recoil impulse in different laser fluences through simulation experiments, which implies that a higher laser fluence than the optimal one is needed to obtain a larger recoil impulse for irregularly shaped space debris.

  4. On the Mössbauer Effect and the Rigid Recoil Question

    NASA Astrophysics Data System (ADS)

    Davidson, Mark

    2017-03-01

    The rigid recoil of a crystal is the accepted mechanism for the Mössbauer effect. It's at odds with the special theory of relativity which does not allow perfectly rigid bodies. The standard model of particle physics which includes QED should not allow any signals to be transmitted faster than the speed of light. If perturbation theory can be used, then the X-ray emitted in a Mössbauer decay must come from a single nuclear decay vertex at which the 4-momentum is exactly conserved in a Feynman diagram. Then the 4-momentum of the final state Mössbauer nucleus must be slightly off the mass shell. This off-shell behavior would be followed by subsequent diffusion of momentum throughout the crystal to bring the nucleus back onto the mass shell and the crystal to a final relaxed state in which it moves rigidly with the appropriate recoil velocity. This mechanism explains the Mössbauer effect at the microscopic level and reconciles it with relativity. Because off-mass-shell quantum mechanics is required, the on-mass-shell theories developed originally for the Mössbauer effect are inadequate. Another possibility is that that the recoil response involves a non-perturbative effect in the standard model which could allow for a non-local instantaneous momentum transfer between the crystal and the decay (or absorption), as proposed for example by Preparata and others in super-radiance theory. The recoil time of the crystal is probably not instantaneous, and if it could be measured, one could distinguish between various theories. An experiment is proposed in this paper to measure this time. The idea is to measure the total energy radiated due to bremsstrahlung from a charged Mössbauer crystal which has experienced a recoil. Using Larmor's formula, along with corrections to it, allows one to design an experiment. The favored idea is to use many small nano-spheres of Mössbauer-active metals, whose outer surfaces are charged. The energy radiated then varies as the charge

  5. EFFECT OF LASER LIGHT ON MATTER. LASER PLASMAS: Recoil momentum at a solid surface during developed laser ablation

    NASA Astrophysics Data System (ADS)

    Kuznetsov, L. I.

    1993-12-01

    The recoil momentum from a laser light pulse in the intensity range 105-107 W/cm2 is experimentally investigated for dielectric and metallic targets as a function of the pressure of the surrounding medium and angle of illumination. An equation with empirical coefficients is obtained for the recoil momentum of illuminated targets. Effects of the screening properties of the erosion jet and the back pressure on the recoil momentum are analyzed as the external pressure is varied.

  6. Discrimination of nuclear and electronic recoil events using plasma effect in germanium detectors

    NASA Astrophysics Data System (ADS)

    Wei, W.-Z.; Liu, J.; Mei, D.-M.

    2016-07-01

    We report a new method of using the plasma time difference, which results from the plasma effect, between the nuclear and electronic recoil events in high-purity germanium detectors to distinguish these two types of events in the search for rare physics processes. The physics mechanism of the plasma effect is discussed in detail. A numerical model is developed to calculate the plasma time for nuclear and electronic recoils at various energies in germanium detectors. It can be shown that under certain conditions the plasma time difference is large enough to be observable. The experimental aspects in realizing such a discrimination in germanium detectors is discussed.

  7. Quantum effects in electron beam pumped GaAs

    SciTech Connect

    Yahia, M. E.; Azzouz, I. M.; Moslem, W. M.

    2013-08-19

    Propagation of waves in nano-sized GaAs semiconductor induced by electron beam are investigated. A dispersion relation is derived by using quantum hydrodynamics equations including the electrons and holes quantum recoil effects, exchange-correlation potentials, and degenerate pressures. It is found that the propagating modes are instable and strongly depend on the electron beam parameters, as well as the quantum recoil effects and degenerate pressures. The instability region shrinks with the increase of the semiconductor number density. The instability arises because of the energetic electron beam produces electron-hole pairs, which do not keep in phase with the electrostatic potential arising from the pair plasma.

  8. Nuclear Recoil Effect in the Lamb Shift of Light Hydrogenlike Atoms.

    PubMed

    Yerokhin, V A; Shabaev, V M

    2015-12-04

    We report high-precision calculations of the nuclear recoil effect to the Lamb shift of hydrogenlike atoms to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter Zα. The results are in excellent agreement with the known terms of the Zα expansion and allow an accurate identification of the nonperturbative higher-order remainder. For hydrogen, the higher-order remainder was found to be much larger than anticipated. This result resolves the long-standing disagreement between the numerical all-order and analytical Zα-expansion approaches to the recoil effect and completely removes the second-largest theoretical uncertainty in the hydrogen Lamb shift of the 1S and 2S states.

  9. Nuclear Recoil Effect in the Lamb Shift of Light Hydrogenlike Atoms

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.; Shabaev, V. M.

    2015-12-01

    We report high-precision calculations of the nuclear recoil effect to the Lamb shift of hydrogenlike atoms to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter Z α . The results are in excellent agreement with the known terms of the Z α expansion and allow an accurate identification of the nonperturbative higher-order remainder. For hydrogen, the higher-order remainder was found to be much larger than anticipated. This result resolves the long-standing disagreement between the numerical all-order and analytical Z α -expansion approaches to the recoil effect and completely removes the second-largest theoretical uncertainty in the hydrogen Lamb shift of the 1 S and 2 S states.

  10. Black hole as a point radiator and recoil effect on the brane world.

    PubMed

    Frolov, Valeri; Stojković, Dejan

    2002-10-07

    A small black hole attached to a brane in a higher-dimensional space emitting quanta into the bulk may leave the brane as a result of a recoil. We construct a field theory model in which such a black hole is described as a massive scalar particle with internal degrees of freedom. In this model, the probability of transition between the different internal levels is identical to the probability of thermal emission calculated for the Schwarzschild black hole. The discussed recoil effect implies that the thermal emission of the black holes, which might be created by interaction of high energy particles in colliders, could be terminated and the energy nonconservation can be observed in the brane experiments.

  11. Exploring relativistic many-body recoil effects in highly charged ions.

    PubMed

    Orts, R Soria; Harman, Z; López-Urrutia, J R Crespo; Artemyev, A N; Bruhns, H; Martínez, A J González; Jentschura, U D; Keitel, C H; Lapierre, A; Mironov, V; Shabaev, V M; Tawara, H; Tupitsyn, I I; Ullrich, J; Volotka, A V

    2006-09-08

    The relativistic recoil effect has been the object of experimental investigations using highly charged ions at the Heidelberg electron beam ion trap. Its scaling with the nuclear charge Z boosts its contribution to a measurable level in the magnetic-dipole (M1) transitions of B- and Be-like Ar ions. The isotope shifts of 36Ar versus 40Ar have been detected with sub-ppm accuracy, and the recoil effect contribution was extracted from the 1s(2)2s(2)2p 2P(1/2) - 2P(3/2) transition in Ar13+ and the 1s(2)2s2p 3P1-3P2 transition in Ar14+. The experimental isotope shifts of 0.00123(6) nm (Ar13+) and 0.00120(10) nm (Ar14+) are in agreement with our present predictions of 0.00123(5) nm (Ar13+) and 0.00122(5) nm (Ar14+) based on the total relativistic recoil operator, confirming that a thorough understanding of correlated relativistic electron dynamics is necessary even in a region of intermediate nuclear charges.

  12. Recoil effects due to electron shake-off following the beta decay of 6 He

    NASA Astrophysics Data System (ADS)

    Drake, Gordon W. F.; Schulhoff, Eva

    2016-05-01

    There are currently several experiments in progress to search for new physics beyond the Standard Model by high precision studies of angular correlations in the β decay of the helium isotope 6He to form 6Li +e- +νe. After the β decay process, the atomic electrons of 6 Li+ adjust to the sudden change of nuclear charge from 2 to 3. We calculate the probabilities for electron shake-up and shake-off, including recoil effects, by the use of a Stieltjes imaging representation of the final states. A variety of sum rules provides tight consistency checks on the accuracy of the results. Results obtained previously indicate that there is a 7 σ disagreement between theory and experiment for the additional nuclear recoil induced by the emission of atomic shake-off electrons. This disagreement will be further studied, and the results extended to the 1 s 2 p3 P and metastable 1 s 2 s3 S states as initial states of 6 He before β-decay. Research supported by the Natural Sciences and Engineering Research Council of Canada.

  13. Jeans instability with exchange effects in quantum dusty magnetoplasmas

    SciTech Connect

    Jamil, M.; Rasheed, A.; Rozina, Ch.; Jung, Y.-D.; Salimullah, M.

    2015-08-15

    Jeans instability is examined in magnetized quantum dusty plasmas using the quantum hydrodynamic model. The quantum effects are considered via exchange-correlation potential, recoil effect, and Fermi degenerate pressure, in addition to thermal effects of plasma species. It is found that the electron exchange and correlation potential have significant effects over the threshold value of wave vector and Jeans instability. The presence of electron exchange and correlation effect shortens the time of dust sound that comparatively stabilizes the self gravitational collapse. The results at quantum scale are helpful in understanding the collapse of the self-gravitating dusty plasma systems.

  14. Quantum Radiation Reaction Effects in Multiphoton Compton Scattering

    SciTech Connect

    Di Piazza, A.; Hatsagortsyan, K. Z.; Keitel, C. H.

    2010-11-26

    Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

  15. Quantum radiation reaction effects in multiphoton Compton scattering.

    PubMed

    Di Piazza, A; Hatsagortsyan, K Z; Keitel, C H

    2010-11-26

    Radiation reaction effects in the interaction of an electron and a strong laser field are investigated in the realm of quantum electrodynamics. We identify the quantum radiation reaction with the multiple photon recoils experienced by the laser-driven electron due to consecutive incoherent photon emissions. After determining a quantum radiation dominated regime, we demonstrate how in this regime quantum signatures of the radiation reaction strongly affect multiphoton Compton scattering spectra and that they could be measurable in principle with presently available laser technology.

  16. Hadronic effects and observables in B →π ℓ+ℓ- decay at large recoil

    NASA Astrophysics Data System (ADS)

    Hambrock, Christian; Khodjamirian, Alexander; Rusov, Aleksey

    2015-10-01

    We calculate the amplitude of the rare flavor-changing neutral-current decay B →π ℓ+ℓ- at large recoil of the pion. The nonlocal contributions in which the weak effective operators are combined with the electromagnetic lepton-pair emission are systematically taken into account. These amplitudes are calculated at off-shell values of the lepton-pair mass squared, q2<0 , employing the operator-product expansion, QCD factorization and light-cone sum rules. The results are fitted to hadronic dispersion relations in q2, including the intermediate vector meson contributions. The dispersion relations are then used in the physical region q2>0 . Our main result is the process-dependent addition Δ C9(B π )(q2) to the Wilson coefficient C9 obtained at 4 mℓ2

  17. Temperature Dependence and Recoil-free Fraction Effects in Olivines Across the Mg-Fe Solid Solution

    NASA Technical Reports Server (NTRS)

    Sklute, E. C.; Rothstein, Y.; Dyar, M. D.; Schaefer, M. W.; Menzies, O. N.; Bland, P. A.; Berry, F. J.

    2005-01-01

    Olivine and pyroxene are the major ferromagnesian minerals in most meteorite types and in mafic igneous rocks that are dominant at the surface of the Earth. It is probable that they are the major mineralogical components at the surface of any planetary body that has undergone differentiation processes. In situ mineralogical studies of the rocks and soils on Mars suggest that olivine is a widespread mineral on that planet s surface (particularly at the Gusev site) and that it has been relatively unaffected by alteration. Thus an understanding of the characteristics of Mossbauer spectra of olivine is of great importance in interpreting MER results. However, variable temperature Mossbauer spectra of olivine, which are needed to quantify recoil-free fraction effects and to understand the temperature dependence of olivine spectra, are lacking in the literature. Thus, we present here a study of the temperature dependence and recoil-free fraction of a series of synthetic olivines.

  18. Molecular modeling of the effects of 40Ar recoil in illite particles on their K-Ar isotope dating

    NASA Astrophysics Data System (ADS)

    Szczerba, Marek; Derkowski, Arkadiusz; Kalinichev, Andrey G.; Środoń, Jan

    2015-06-01

    the TOT layer over geological time. Based on the results of MD simulations, the estimates of the potential effect of 40Ar recoil on the K-Ar dating of illite show that some of 40Ar is lost and the loss is substantially dependent on the crystallite dimensions. The 40Ar loss can vary from 10% for the finest crystallites (two 2:1 layers thickness and <0.02 μm in diameter) to close to zero for the thickest and largest (in the ab plane) ones. Because the decrease of the K-Ar estimated age is approximately proportional to the 40Ar loss, the finer crystallites show lower apparent age than the coarser ones, although the age of crystallization is assumed equal for all the crystallites. From the model it is also clear that the lack of K removal from illite fringes (potentially Ar-free) strongly increases the apparent age differences among crystallites of different size.

  19. Potential effects of alpha-recoil on uranium-series dating of calcrete

    USGS Publications Warehouse

    Neymark, L.A.

    2011-01-01

    Evaluation of paleosol ages in the vicinity of Yucca Mountain, Nevada, at the time the site of a proposed high-level nuclear waste repository, is important for fault-displacement hazard assessment. Uranium-series isotope data were obtained for surface and subsurface calcrete samples from trenches and boreholes in Midway Valley, Nevada, adjacent to Yucca Mountain. 230Th/U ages of 33 surface samples range from 1.3 to 423 thousand years (ka) and the back-calculated 234U/238U initial activity ratios (AR) are relatively constant with a mean value of 1.54 ± 0.15 (1σ), which is consistent with the closed-system behavior. Subsurface calcrete samples are too old to be dated by the 230Th/U method. U-Pb data for post-pedogenic botryoidal opal from a subsurface calcrete sample show that these subsurface calcrete samples are older than ~ 1.65 million years (Ma), old enough to have attained secular equilibrium had their U-Th systems remained closed. However, subsurface calcrete samples show U-series disequilibrium indicating open-system behavior of 238U daughter isotopes, in contrast with the surface calcrete, where open-system behavior is not evident. Data for 21 subsurface calcrete samples yielded calculable 234U/238U model ages ranging from 130 to 1875 ka (assuming an initial AR of 1.54 ± 0.15, the mean value calculated for the surface calcrete samples). A simple model describing continuous α-recoil loss predicts that the 234U/238U and 230Th/238U ARs reach steady-state values ~ 2 Ma after calcrete formation. Potential effects of open-system behavior on 230Th/U ages and initial 234U/238U ARs for younger surface calcrete were estimated using data for old subsurface calcrete samples with the 234U loss and assuming that the total time of water-rock interaction is the only difference between these soils. The difference between the conventional closed-system and open-system ages may exceed errors of the calculated conventional ages for samples older than ~ 250 ka, but is

  20. Recoil effects of a motional scatterer on single-photon scattering in one dimension

    PubMed Central

    Li, Qiong; Xu, D. Z.; Cai, C. Y.; Sun, C. P.

    2013-01-01

    The scattering of a single photon with sufficiently high energy can cause a recoil of a motional scatterer. We study its backaction on the photon's coherent transport in one dimension by modeling the motional scatterer as a two-level system, which is trapped in a harmonic potential. While the reflection spectrum is of a single peak in the Lamb-Dicke limit, multi-peaks due to phonon excitations can be observed in the reflection spectrum as the trap becomes looser or the mass of the two-level system becomes smaller. PMID:24220217

  1. Exclusive rare B→K*ℓ+ℓ- decays at low recoil: Controlling the long-distance effects

    NASA Astrophysics Data System (ADS)

    Grinstein, Benjamín; Pirjol, Dan

    2004-12-01

    We present a model-independent description of the exclusive rare decays B¯→K*e+e- in the low recoil region (large lepton invariant mass q2˜m2b). In this region the long-distance effects from quark loops can be computed with the help of an operator product expansion in 1/Q, with Q={mb,√(q2)}. Nonperturbative effects up to and including terms suppressed by Λ/Q and m2c/m2b relative to the short-distance amplitude can be included in a model-independent way. Based on these results, we propose an improved method for determining the Cabibbo-Kobayashi-Maskawa matrix element |Vub| from a combination of rare and semileptonic B and D decays near the zero recoil point. The residual theoretical uncertainty from long-distance effects in this |Vub| determination comes from terms in the operator product expansion of order αs(Q)Λ/mb, α2s(Q), m4c/m4b, and duality violations, and is estimated to be below 10%.

  2. Recoil Redsfhit with Coherence

    NASA Astrophysics Data System (ADS)

    Gallo, C. F.

    2009-05-01

    ``Recoil Redshift'' is due to the elastic interaction of photons/light with any individual electron, proton, ion, atom or molecule. This generalized Compton effect describes an individual photon-particle interaction where Energy, Linear Momentum and Angular Momentum are conserved, with NO change in the internal energy of the particle. Per Compton, the lost photon energy is zero in the forward photon propagation direction, and the energy loss increases with scattering angle. This is an INDIVIDUAL INcoherent process. To describe collective coherent effects, add/include Huygens forward reconstruction from multiple photon/particle redshifted scatterings. A coherent redshift will occur if the scattered photons' energies are WITHIN the initial linewidth. This yields an asymmetrically broadened redshifted line in the forward coherent direction with clear imaging properties. This is a coherent redshifted version of Rayleigh scattering which assumes identical non-redshifted photons. BUT the Compton Conservation energy-loss process must occur. The search for this small Recoil redshift is a good research project for ultra- precise ``frequency combs'' in gases (atomic and molecular), plasmas and combinations.

  3. Quantum Hall effect in quantum electrodynamics

    SciTech Connect

    Penin, Alexander A.

    2009-03-15

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted.

  4. Quantum Effects in Biology

    NASA Astrophysics Data System (ADS)

    Mohseni, Masoud; Omar, Yasser; Engel, Gregory S.; Plenio, Martin B.

    2014-08-01

    List of contributors; Preface; Part I. Introduction: 1. Quantum biology: introduction Graham R. Fleming and Gregory D. Scholes; 2. Open quantum system approaches to biological systems Alireza Shabani, Masoud Mohseni, Seogjoo Jang, Akihito Ishizaki, Martin Plenio, Patrick Rebentrost, Alàn Aspuru-Guzik, Jianshu Cao, Seth Lloyd and Robert Silbey; 3. Generalized Förster resonance energy transfer Seogjoo Jang, Hoda Hossein-Nejad and Gregory D. Scholes; 4. Multidimensional electronic spectroscopy Tomáš Mančal; Part II. Quantum Effects in Bacterial Photosynthetic Energy Transfer: 5. Structure, function, and quantum dynamics of pigment protein complexes Ioan Kosztin and Klaus Schulten; 6. Direct observation of quantum coherence Gregory S. Engel; 7. Environment-assisted quantum transport Masoud Mohseni, Alàn Aspuru-Guzik, Patrick Rebentrost, Alireza Shabani, Seth Lloyd, Susana F. Huelga and Martin B. Plenio; Part III. Quantum Effects in Higher Organisms and Applications: 8. Excitation energy transfer in higher plants Elisabet Romero, Vladimir I. Novoderezhkin and Rienk van Grondelle; 9. Electron transfer in proteins Spiros S. Skourtis; 10. A chemical compass for bird navigation Ilia A. Solov'yov, Thorsten Ritz, Klaus Schulten and Peter J. Hore; 11. Quantum biology of retinal Klaus Schulten and Shigehiko Hayashi; 12. Quantum vibrational effects on sense of smell A. M. Stoneham, L. Turin, J. C. Brookes and A. P. Horsfield; 13. A perspective on possible manifestations of entanglement in biological systems Hans J. Briegel and Sandu Popescu; 14. Design and applications of bio-inspired quantum materials Mohan Sarovar, Dörthe M. Eisele and K. Birgitta Whaley; 15. Coherent excitons in carbon nanotubes Leonas Valkunas and Darius Abramavicius; Glossary; References; Index.

  5. High acceptance recoil polarimeter

    SciTech Connect

    The HARP Collaboration

    1992-12-05

    In order to detect neutrons and protons in the 50 to 600 MeV energy range and measure their polarization, an efficient, low-noise, self-calibrating device is being designed. This detector, known as the High Acceptance Recoil Polarimeter (HARP), is based on the recoil principle of proton detection from np[r arrow]n[prime]p[prime] or pp[r arrow]p[prime]p[prime] scattering (detected particles are underlined) which intrinsically yields polarization information on the incoming particle. HARP will be commissioned to carry out experiments in 1994.

  6. Recoil effect on beta-decaying in vivo generators, interpreted for (103)Pd/(103m)Rh.

    PubMed

    Szucs, Zoltan; van Rooyen, Johann; Zeevaart, Jan Rijn

    2009-01-01

    The use of Auger emitters as potential radiopharmaceuticals is being increasingly investigated. One of the radionuclides of interest is (103m)Rh, which can be produced from (103)Ru or (103)Pd in an in vivo generator. A potential problem, however, is the recoil of the (103m)Rh out of the carrier molecule and even out of the target cell. In order to determine the likelihood of this happening in the (103)Pd/(103m)Rh, case calculations were made to prove that this does not happen. The equations were generalised for all radionuclides with an atomic mass of 10-240 as a tool for determining the recoil threshold of any beta-emitting radionuclide.

  7. Recoil polarization measurements

    NASA Astrophysics Data System (ADS)

    Brinkmann, Kai-Thomas

    2017-01-01

    Polarization observables in photon-induced meson production off nucleons have long been recognized to hold the promise of a detailed understanding of the excited states in the excitation spectrum of the nucleon. Photon beam and proton target polarization are routinely used at the ELSA facility in the Crystal Barrel/TAPS experiment and have yielded a wealth of data on contributing partial waves and nucleon resonances. A detector study on how to complement these ongoing studies by recoil polarization measurements that offer an orthogonal approach with otherwise unmeasurable observables in the field of non-strange meson photoproduction has been performed. Building on experience with silicon detectors operated in the photon beamline environment, first possible layouts of Si detector telescopes for recoil protons were developed. Various geometries, e.g. Archimedean spiral design of annular sensors, sector shapes and rectangular sensors were studied and have been used during test measurements. A prototype for the recoil polarimeter was built and subjected to performance tests in protonproton scattering at the COSY-accelerator in Jülich.

  8. Gaussian effective potential: Quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stevenson, P. M.

    1984-10-01

    We advertise the virtues of the Gaussian effective potential (GEP) as a guide to the behavior of quantum field theories. Much superior to the usual one-loop effective potential, the GEP is a natural extension of intuitive notions familiar from quantum mechanics. A variety of quantum-mechanical examples are studied here, with an eye to field-theoretic analogies. Quantum restoration of symmetry, dynamical mass generation, and "quantum-mechanical resuscitation" are among the phenomena discussed. We suggest how the GEP could become the basis of a systematic approximation procedure. A companion paper will deal with scalar field theory.

  9. Quantum Effects in Biological Systems

    NASA Astrophysics Data System (ADS)

    Roy, Sisir

    2014-07-01

    The debates about the trivial and non-trivial effects in biological systems have drawn much attention during the last decade or so. What might these non-trivial sorts of quantum effects be? There is no consensus so far among the physicists and biologists regarding the meaning of "non-trivial quantum effects". However, there is no doubt about the implications of the challenging research into quantum effects relevant to biology such as coherent excitations of biomolecules and photosynthesis, quantum tunneling of protons, van der Waals forces, ultrafast dynamics through conical intersections, and phonon-assisted electron tunneling as the basis for our sense of smell, environment assisted transport of ions and entanglement in ion channels, role of quantum vacuum in consciousness. Several authors have discussed the non-trivial quantum effects and classified them into four broad categories: (a) Quantum life principle; (b) Quantum computing in the brain; (c) Quantum computing in genetics; and (d) Quantum consciousness. First, I will review the above developments. I will then discuss in detail the ion transport in the ion channel and the relevance of quantum theory in brain function. The ion transport in the ion channel plays a key role in information processing by the brain.

  10. Site-specific recoil-induced effects on inner-shell photoionization of linear triatomic molecules: N 1 s photoelectron spectra of N2 O

    NASA Astrophysics Data System (ADS)

    Krivosenko, Yu. S.; Pavlychev, A. A.

    2016-11-01

    We investigate hard X-ray ionization of linear triatomic molecules accenting recoil-induced effects on the dynamics of molecular frame. This dynamics is studied within the two-springs and harmonic approximations. The mode-channel relationship connecting the excitations of vibrational, rotational and translational degrees of freedom with the Σ → Σ and Σ → Π photoionization channels is applied to compute the N 1s-1 photoelectron spectra of molecular N2 O for various photon energies. The distinct ionized-site- and molecular-orientation-specific changes in the vibration structure of the 1 s photoelectron lines of terminal and central nitrogen atoms are revealed and discussed.

  11. Large Quantum Gravity Effects

    NASA Astrophysics Data System (ADS)

    Angulo, María E.; Mena Marugán, Guillermo A.; Ashtekar, A.

    Linearly polarized cylindrical waves in four-dimensional vacuum gravity are mathematically equivalent to rotationally symmetric gravity coupled to a Maxwell (or Klein-Gordon) field in three dimensions. The quantization of this latter system was performed by Ashtekar and Pierri in a recent work. Employing that quantization, we obtain here a complete quantum theory which describes the four-dimensional geometry of the Einstein-Rosen waves. In particular, we construct regularized operators to represent the metric. It is shown that the results achieved by Ashtekar about the existence of important quantum gravity effects in the Einstein-Maxwell system at large distances from the symmetry axis continue to be valid from a four-dimensional point of view. The only significant difference is that, in order to admit an approximate classical description in the asymptotic region, states that are coherent in the Maxwell field need not contain a large number of photons anymore. We also analyze the metric fluctuations on the symmetry axis and argue that they are generally relevant for all of the coherent states.

  12. Modeling the Observability of Recoiling Black Holes as Offset Quasars

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Torrey, Paul; Vogelsberger, Mark; Genel, Shy; Springel, Volker; Sijacki, Debora; Snyder, Gregory; Bird, Simeon; Nelson, Dylan; Xu, Dandan; Hernquist, Lars

    The merger of two supermassive black holes (SMBHs) imparts a gravitational-wave (GW) recoil kick to the remnant SMBH, which can even eject the SMBH from its host galaxy. An actively-accreting, recoiling SMBH may be observable as an offset quasar. Prior to the advent of a space-based GW observatory, detections of these offset quasars may offer the best chance for identifying recent SMBH mergers. Indeed, observational searches for recoiling quasars have already identified several promising candidates. However, systematic searches for recoils are currently hampered by large uncertainties regarding how often offset quasars should be observable and where they are most likely to be found. Motivated by this, we have developed a model for recoiling quasars in a cosmological framework, utilizing information about the progenitor galaxies from the Illustris cosmological hydrodynamic simulations. For the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas-richness of host galaxies. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve offset AGN, making them promising targets for all-sky surveys. The rarity of large broad-line offsets among SDSS quasars is likely due in part to selection effects but suggests that spin alignment plays a role in suppressing recoils. Nonetheless, in our most physically motivated model where alignment occurs only in gas-rich mergers, hundreds of offset AGN should be found in all-sky surveys. Our findings strongly motivate a dedicated search for recoiling AGN.

  13. Effective equations for the quantum pendulum from momentous quantum mechanics

    SciTech Connect

    Hernandez, Hector H.; Chacon-Acosta, Guillermo

    2012-08-24

    In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.

  14. Interpreting Recoil for Undergraduate Students

    ERIC Educational Resources Information Center

    Elsayed, Tarek A.

    2012-01-01

    The phenomenon of recoil is usually explained to students in the context of Newton's third law. Typically, when a projectile is fired, the recoil of the launch mechanism is interpreted as a reaction to the ejection of the smaller projectile. The same phenomenon is also interpreted in the context of the conservation of linear momentum, which is…

  15. Quantum Effects in Cosmology

    NASA Astrophysics Data System (ADS)

    Saharian, A. A.

    2016-09-01

    We investigate the vacuum expectation value of the current density for a charged scalar field on a slice of anti-de Sitter (AdS) space with toroidally compact dimensions. Along the compact dimensions periodicity conditions are imposed on the field operator with general phases and the presence of a constant gauge field is assumed. The latter gives rise to Aharonov-Bohm-like effects on the vacuum currents. The current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It vanishes on the AdS boundary and, near the horizon, to the leading order, it is conformally related to the corresponding quantity in Minkowski bulk for a massless field. For large values of the length of the compact dimension compared with the AdS curvature radius, the vacuum current decays as power-law for both massless and massive fields. This behavior is essentially different from the corresponding one in Minkowski background, where the currents for a massive field are suppressed exponentially.

  16. Biological Effect of Lead-212 Localized in the Nucleus of Mammalian Cells: Role of Recoil Energy in the Radiotoxicity of Internal Alpha-Particle Emitters1

    PubMed Central

    Azure, Michael T.; Archer, Ronald D.; Sastry, Kandula S. R.; Rao, Dandamudi V.; Howell, Roger W.

    2012-01-01

    The radiochemical dipyrrolidinedithiocarbamato-212Pb(II) [212Pb(PDC)2] is synthesized and its effects on colony formation in cultured Chinese hamster V79 cells are investigated. The cellular uptake, biological retention, subcellular distribution and cytotoxicity of the radiocompound are determined. The 212Pb is taken up quickly by the cells, reaching saturation levels in 1.25 h. When the cells are washed, the intracellular activity is retained with a biological half-life of 11.6 h. Gamma-ray spectroscopy indicates that the 212Pb daughters (212Bi, 212Po and 208Tl) are in secular equilibrium within the cell. About 72% of the cellular activity localizes in the cell nucleus, of which 35% is bound specifically to nuclear DNA. The mean cellular uptake required to achieve 37% survival is 0.35 mBq of 212Pb per cell, which delivers a dose of 1.0 Gy to the cell nucleus when the recoil energy of 212Bi and 212Po decays is ignored and 1.7 Gy when recoil is included. The corresponding RBE values compared to acute external 137Cs γ rays at 37% survival are 4.0 and 2.3, respectively. The chemical Pb(PDC)2 is not chemotoxic at the concentrations used in this study. Because the β-particle emitter 212Pb decays to the α-particle-emitting daughters 212Bi and 212Po, these studies provide information on the biological effects of α-particle decays that occur in the cell nucleus. Our earlier studies with cells of the same cell line using 210Po (emits 5.3 MeV α particle) localized predominantly in the cytoplasm resulted in an RBE of 6. These earlier results for 210Po, along with the present results for 212Pb, suggest that the recoil energy associated with the 212Bi and 212Po daughter nuclei plays little or no role in imparting biological damage to critical targets in the cell nucleus. PMID:7938477

  17. Difference between a Photon's Momentum and an Atom's Recoil

    SciTech Connect

    Gibble, Kurt

    2006-08-18

    When an atom absorbs a photon from a laser beam that is not an infinite plane wave, the atom's recoil is less than ({Dirac_h}/2{pi})k in the propagation direction. We show that the recoils in the transverse directions produce a lensing of the atomic wave functions, which leads to a frequency shift that is not discrete but varies linearly with the field amplitude and strongly depends on the atomic state detection. The same lensing effect is also important for microwave atomic clocks. The frequency shifts are of the order of the naive recoil shift for the transverse wave vector of the photons.

  18. INTERACTION OF LASER RADIATION WITH MATTER: Effect of a target size on the recoil momentum upon laser irradiation of absorbing materials

    NASA Astrophysics Data System (ADS)

    Chumakou, A. N.; Petrenko, A. M.; Bosak, N. A.

    2004-10-01

    The dependence of a recoil momentum on the radius of a target irradiated by a single-pulse Nd3+:YAG laser (λ=1.064 μm, τ=20 ns, E<=300 mJ) in the air is studied. The recoil momentum decreases three-fold with increasing the relative target radius from 0.3 to 5 and tends to saturation for r>3. The calculation of the recoil momentum on the basis of the Euler and Navier—Stokes equations gave understated values for r>1, which lowered to negative values. The reasons for the qualitative discrepancy between the experimental and calculated data is discussed.

  19. Interface effect in coupled quantum wells

    SciTech Connect

    Hao, Ya-Fei

    2014-06-28

    This paper intends to theoretically investigate the effect of the interfaces on the Rashba spin splitting of two coupled quantum wells. The results show that the interface related Rashba spin splitting of the two coupled quantum wells is both smaller than that of a step quantum well which has the same structure with the step quantum well in the coupled quantum wells. And the influence of the cubic Dresselhaus spin-orbit interaction of the coupled quantum wells is larger than that of a step quantum well. It demonstrates that the spin relaxation time of the two coupled quantum wells will be shorter than that of a step quantum well. As for the application in the spintronic devices, a step quantum well may be better than the coupled quantum wells, which is mentioned in this paper.

  20. RECOILING SUPERMASSIVE BLACK HOLES IN SPIN-FLIP RADIO GALAXIES

    SciTech Connect

    Liu, F. K.; Wang Dong; Chen Xian

    2012-02-20

    Numerical relativity simulations predict that coalescence of supermassive black hole (SMBH) binaries leads not only to a spin flip but also to a recoiling of the merger remnant SMBHs. In the literature, X-shaped radio sources are popularly suggested to be candidates for SMBH mergers with spin flip of jet-ejecting SMBHs. Here we investigate the spectral and spatial observational signatures of the recoiling SMBHs in radio sources undergoing black hole spin flip. Our results show that SMBHs in most spin-flip radio sources have mass ratio q {approx}> 0.3 with a minimum possible value q{sub min} {approx_equal} 0.05. For major mergers, the remnant SMBHs can get a kick velocity as high as 2100 km s{sup -1} in the direction within an angle {approx}< 40 Degree-Sign relative to the spin axes of remnant SMBHs, implying that recoiling quasars are biased to be with high Doppler-shifted broad emission lines while recoiling radio galaxies are biased to large apparent spatial off-center displacements. We also calculate the distribution functions of line-of-sight velocity and apparent spatial off-center displacements for spin-flip radio sources with different apparent jet reorientation angles. Our results show that the larger the apparent jet reorientation angle is, the larger the Doppler-shifting recoiling velocity and apparent spatial off-center displacement will be. We investigate the effects of recoiling velocity on the dust torus in spin-flip radio sources and suggest that recoiling of SMBHs would lead to 'dust-poor' active galactic nuclei. Finally, we collect a sample of 19 X-shaped radio objects and for each object give the probability of detecting the predicted signatures of recoiling SMBH.

  1. Quantum effects in warp drives

    NASA Astrophysics Data System (ADS)

    Finazzi, Stefano

    2013-09-01

    Warp drives are interesting configurations that, at least theoretically, provide a way to travel at superluminal speed. Unfortunately, several issues seem to forbid their realization. First, a huge amount of exotic matter is required to build them. Second, the presence of quantum fields propagating in superluminal warp-drive geometries makes them semiclassically unstable. Indeed, a Hawking-like high-temperature flux of particles is generated inside the warp-drive bubble, which causes an exponential growth of the energy density measured at the front wall of the bubble by freely falling observers. Moreover, superluminal warp drives remain unstable even if the Lorentz symmetry is broken by the introduction of regulating higher order terms in the Lagrangian of the quantum field. If the dispersion relation of the quantum field is subluminal, a black-hole laser phenomenon yields an exponential amplification of the emitted flux. If it is superluminal, infrared effects cause a linear growth of this flux.

  2. Decoherence effects on the quantum spin channels

    SciTech Connect

    Cai Jianming; Zhou Zhengwei; Guo Guangcan

    2006-08-15

    An open ended spin chain can serve as a quantum data bus for the coherent transfer of quantum state information. In this paper, we investigate the efficiency of such quantum spin channels which work in a decoherence environment. Our results show that the decoherence will significantly reduce the fidelity of quantum communication through the spin channels. Generally speaking, as the distance increases, the decoherence effects become more serious, which will put some constraints on the spin chains for long distance quantum state transfer.

  3. Quantum channels and memory effects

    NASA Astrophysics Data System (ADS)

    Caruso, Filippo; Giovannetti, Vittorio; Lupo, Cosmo; Mancini, Stefano

    2014-10-01

    Any physical process can be represented as a quantum channel mapping an initial state to a final state. Hence it can be characterized from the point of view of communication theory, i.e., in terms of its ability to transfer information. Quantum information provides a theoretical framework and the proper mathematical tools to accomplish this. In this context the notion of codes and communication capacities have been introduced by generalizing them from the classical Shannon theory of information transmission and error correction. The underlying assumption of this approach is to consider the channel not as acting on a single system, but on sequences of systems, which, when properly initialized allow one to overcome the noisy effects induced by the physical process under consideration. While most of the work produced so far has been focused on the case in which a given channel transformation acts identically and independently on the various elements of the sequence (memoryless configuration in jargon), correlated error models appear to be a more realistic way to approach the problem. A slightly different, yet conceptually related, notion of correlated errors applies to a single quantum system which evolves continuously in time under the influence of an external disturbance which acts on it in a non-Markovian fashion. This leads to the study of memory effects in quantum channels: a fertile ground where interesting novel phenomena emerge at the intersection of quantum information theory and other branches of physics. A survey is taken of the field of quantum channels theory while also embracing these specific and complex settings.

  4. 3D quantum gravity and effective noncommutative quantum field theory.

    PubMed

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  5. Optimal Control of Active Recoil Mechanisms

    DTIC Science & Technology

    1977-02-01

    forces from 25 to 2.5% for lower zones and cavitation was avoided for zone 8. Tachometer feedback was shown to be effective for low zones. The...concept of feedback control system coupled with optimization procedure to design recoil mechanisms was demonstrated to be an efficient and very effective ...122o •nl260 .01300 .01340 .01380 • ouzo #01460 •01500 •01540 •01580 •0162" .0166 i 309o,6 504P.6 9964.5 10075,9 39121.5 75397.3

  6. Nuclear quantum effects in water.

    PubMed

    Morrone, Joseph A; Car, Roberto

    2008-07-04

    A path-integral Car-Parrinello molecular dynamics simulation of liquid water and ice is performed. It is found that the inclusion of nuclear quantum effects systematically improves the agreement of first-principles simulations of liquid water with experiment. In addition, the proton momentum distribution is computed utilizing a recently developed open path-integral molecular dynamics methodology. It is shown that these results are in good agreement with experimental data.

  7. Direct Measurement of Photon Recoil from a Levitated Nanoparticle

    NASA Astrophysics Data System (ADS)

    Jain, Vijay; Gieseler, Jan; Moritz, Clemens; Dellago, Christoph; Quidant, Romain; Novotny, Lukas

    2016-06-01

    The momentum transfer between a photon and an object defines a fundamental limit for the precision with which the object can be measured. If the object oscillates at a frequency Ω0 , this measurement backaction adds quanta ℏΩ0 to the oscillator's energy at a rate Γrecoil, a process called photon recoil heating, and sets bounds to coherence times in cavity optomechanical systems. Here, we use an optically levitated nanoparticle in ultrahigh vacuum to directly measure Γrecoil. By means of a phase-sensitive feedback scheme, we cool the harmonic motion of the nanoparticle from ambient to microkelvin temperatures and measure its reheating rate under the influence of the radiation field. The recoil heating rate is measured for different particle sizes and for different excitation powers, without the need for cavity optics or cryogenic environments. The measurements are in quantitative agreement with theoretical predictions and provide valuable guidance for the realization of quantum ground-state cooling protocols and the measurement of ultrasmall forces.

  8. Electron emission and recoil effects following the beta decay of He6

    NASA Astrophysics Data System (ADS)

    Schulhoff, Eva E.; Drake, G. W. F.

    2015-11-01

    Probabilities for atomic electron excitation (shake-up) and ionization (shake-off) are studied following the beta-decay process →Li+6He6+e-+ν¯e , and in particular, recoil-induced contributions to the shake-off probability are calculated within the nonrelativistic sudden approximation. A pseudostate expansion method together with Stieltjes imaging is used to represent the complete two-electron spectrum of final Li+6 ,Li26+, and Li36+ states. Results for the recoil correction show a 7 σ disagreement with the experiment of Carlson et al. [Phys. Rev. 129, 2220 (1963), 10.1103/PhysRev.129.2220]. A variety of sum rules, including a newly derived Thomas-Reich-Kuhn oscillator strength sum rule for dipole recoil terms, provides tight constraints on the accuracy of the results. Calculations are performed for the helium 1 s 2 s 3S metastable state, as well as for the 1 s21S ground state. Our results would reduce the recoil-induced correction to the measured electroneutrino coupling constant ae μ from the apparent 0.6% used in the experiments to 0.09%.

  9. Quantum coherence in the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Samos-Sáenz de Buruaga, D. N.; Sabín, Carlos

    2017-02-01

    We propose to use quantum coherence as the ultimate proof of the quantum nature of the radiation that appears by means of the dynamical Casimir effect in experiments with superconducting microwave waveguides. We show that, unlike previously considered measurements such as entanglement and discord, quantum coherence does not require a threshold value of the external pump amplitude and is highly robust to thermal noise.

  10. Quantum Zeno Effect in the Strong Measurement Regime of Circuit Quantum Electrodynamics

    DTIC Science & Technology

    2016-05-17

    New J. Phys. 18 (2016) 053031 doi:10.1088/1367-2630/18/5/053031 PAPER Quantum Zeno effect in the strongmeasurement regime of circuit quantum ...Keywords: quantumZeno effect, quantum jumps, superconducting qubit, circuit QED, random telegraph signals Abstract Weobserve the quantumZeno effect...where the act ofmeasurement slows the rate of quantum state transitions—in a superconducting qubit using linear circuit quantum electrodynamics readout

  11. Quantum-confined Stark effects in semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Wen, G. W.; Lin, J. Y.; Jiang, H. X.; Chen, Z.

    1995-08-01

    Quantum-confined Stark effects (QCSE) on excitons, i.e., the influence of a uniform electric field on the confined excitons in semiconductor quantum dots (QD's), have been studied by using a numerical matrix-diagonalization scheme. The energy levels and the wave functions of the ground and several excited states of excitons in CdS and CdS1-xSex quantum dots as functions of the size of the quantum dot and the applied electric field have been obtained. The electron and hole distributions and wave function overlap inside the QD's have also been calculated for different QD sizes and electric fields. It is found that the electron and hole wave function overlap decreases under an electric field, which implies an increased exciton recombination lifetime due to QCSE. The energy level redshift and the enhancement of the exciton recombination lifetime are due to the polarization of the electron-hole pair under the applied electric field.

  12. Quantum Zeno Effect in the Measurement Problem

    NASA Technical Reports Server (NTRS)

    Namiki, Mikio; Pasaczio, Saverio

    1996-01-01

    Critically analyzing the so-called quantum Zeno effect in the measurement problem, we show that observation of this effect does not necessarily mean experimental evidence for the naive notion of wave-function collapse by measurement (the simple projection rule). We also examine what kind of limitation the uncertainty relation and others impose on the observation of the quantum Zeno effect.

  13. Quantum effects in the understanding of consciousness.

    PubMed

    Hameroff, Stuart R; Craddock, Travis J A; Tuszynski, Jack A

    2014-06-01

    This paper presents a historical perspective on the development and application of quantum physics methodology beyond physics, especially in biology and in the area of consciousness studies. Quantum physics provides a conceptual framework for the structural aspects of biological systems and processes via quantum chemistry. In recent years individual biological phenomena such as photosynthesis and bird navigation have been experimentally and theoretically analyzed using quantum methods building conceptual foundations for quantum biology. Since consciousness is attributed to human (and possibly animal) mind, quantum underpinnings of cognitive processes are a logical extension. Several proposals, especially the Orch OR hypothesis, have been put forth in an effort to introduce a scientific basis to the theory of consciousness. At the center of these approaches are microtubules as the substrate on which conscious processes in terms of quantum coherence and entanglement can be built. Additionally, Quantum Metabolism, quantum processes in ion channels and quantum effects in sensory stimulation are discussed in this connection. We discuss the challenges and merits related to quantum consciousness approaches as well as their potential extensions.

  14. Nonlinear effects in quantum dissipation

    NASA Astrophysics Data System (ADS)

    Vitali, David; Grigolini, Paolo

    1990-12-01

    We study a two-level system linearly interacting with a set of quantum-mechanical oscillators, referred to as the ``bath.'' This system is formally equivalent to a magnetic dipole, with spin 1/2, precessing with the Larmor frequency ω0 around a fixed magnetic field along the z axis and undergoing the influence of a fluctuating field along the x axis. These bath fluctuations are not independent of the state of the spin, and the crucial problem to be studied in this paper is precisely how to take the reaction field, i.e., the influence of the bath on the system, into account. We find a general result based on neglecting a contribution to the reaction field proportional to σx(t)-<σx(t)>, where the angle brackets denote averaging on both the spin and the bath space, with a density matrix corresponding to the spin polarized along the x axis. We show that under the special condition that the spin does not significantly depart from its initial state, our general result turns out to coincide with the noninteracting-blip approximation (NBA) of Leggett and co-workers [Rev. Mod. Phys. 59, 1 (1987)]. When we make the assumption that both quantum and thermal fluctuations of the bath can be neglected and that the time scale of the bath is virtually zero (adiabatic assumption), our general result turns out to coincide with the prediction of the discrete nonlinear Schrödinger equation (DNSE) of Davydov and Kislukha [Phys. Status Solidi B 59, 465 (1973)] and Davydov $[-Biology and Quantum Mechanics (Pergamon, Oxford, 1982)] in the two-sites case. This means that the nonlinear effects proven by Kenkre and co-workers [Phys. Rev. B 34, 4959 (1986); 35, 1473 (1987)] to accompany a significant departure of the spin from the initial state are lost by the NBA. On the other hand, our approach provides a rigorous evaluation of the effects of the oscillator fluctuations on the predictions of the DNSE. It is shown that the quantum fluctuations might have a significant role also in the

  15. Four pi-recoil proportional counter used as neutron spectrometer

    NASA Technical Reports Server (NTRS)

    Bennett, E. F.

    1968-01-01

    Study considers problems encountered in using 4 pi-recoil counters for neutron spectra measurement. Emphasis is placed on calibration, shape discrimination, variation of W, the average energy loss per ion pair, and the effects of differentiation on the intrinsic counter resolution.

  16. Effect of Chaos on Relativistic Quantum Tunneling

    DTIC Science & Technology

    2012-06-01

    Effect of chaos on relativistic quantum tunneling This article has been downloaded from IOPscience. Please scroll down to see the full text article...of chaos on relativistic quantum tunneling 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...tunneling dynamics even in the relativistic quantum regime. Similar phenomena have been observed in graphene. A physical theory is developed to

  17. The quantum Hall effect helicity

    SciTech Connect

    Shrivastava, Keshav N.

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  18. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C.; Yonas, Gerold

    2017-01-03

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided by a cavitating venturi that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated.

  19. Effects of molecular rotation after ionization and prior to fragmentation on observed recoil-frame photoelectron angular distributions in the dissociative photoionization of nonlinear molecules

    NASA Astrophysics Data System (ADS)

    López-Domínguez, Jesús A.; Lucchese, Robert R.

    2016-03-01

    Experimental angle-resolved photoelectron-photoion coincidence experiments measure photoelectron angular distributions (PADs) in dissociative photoionization (DPI) in the reference frame provided by the momenta of the emitted heavy fragments. By extension of the nomenclature used with DPI of diatomic molecules, we refer to such a PAD as a recoil-frame PAD (RFPAD). When the dissociation is fast compared to molecular rotational and bending motions, the emission directions of the heavy fragments can be used to determine the orientation of the bonds that are broken in the DPI at the time of the ionization, which is known as the axial-recoil approximation (ARA). When the ARA is valid, the RFPADs correspond to molecular-frame photoelectron angular distributions (MFPADs) when the momenta of a sufficient number of the heavy fragments are determined. When only two fragments are formed, the experiment cannot measure the orientation of the fragments about the recoil axes so that the resulting measured PAD is an azimuthally averaged RFPAD (AA-RFPAD). In this study we consider how the breakdown of the ARA due to rotation will modify the observed RFPADs for DPI processes in nonlinear molecules for ionization by light of arbitrary polarization. This model is applied to the core C 1 s DPI of CH4, with the results compared to experimental measurements and previous theoretical calculations done within the ARA. The published results indicate that there is a breakdown in the ARA for two-fragment events where the heavy-fragment kinetic energy release was less than 9 eV. Including the breakdown of the ARA due to rotation in our calculations gives very good agreement with the experimental AA-RFPAD, leading to an estimate of upper bounds on the predissociative lifetimes as a function of the kinetic energy release of the intermediate ion states formed in the DPI process.

  20. Electron recombination in low-energy nuclear recoils tracks in liquid argon

    NASA Astrophysics Data System (ADS)

    Wojcik, M.

    2016-02-01

    This paper presents an analysis of electron-ion recombination processes in ionization tracks of recoiled atoms in liquid argon (LAr) detectors. The analysis is based on the results of computer simulations which use realistic models of electron transport and reactions. The calculations reproduce the recent experimental results of the ionization yield from 6.7 keV nuclear recoils in LAr. The statistical distribution of the number of electrons that escape recombination is found to deviate from the binomial distribution, and estimates of recombination fluctuations for nuclear recoils tracks are obtained. A study of the recombination kinetics shows that a significant part of electrons undergo very fast static recombination, an effect that may be responsible for the weak drift-field dependence of the ionization yield from nuclear recoils in some noble liquids. The obtained results can be useful in the search for hypothetical dark matter particles and in other studies that involve detection of recoiled nuclei.

  1. Nuclear recoil measurements with the ARIS experiment

    NASA Astrophysics Data System (ADS)

    Fan, Alden; ARIS Collaboration

    2017-01-01

    As direct dark matter searches become increasingly sensitive, it is important to fully characterize the target of the search. The goal of the Argon Recoil Ionization and Scintillation (ARIS) experiment is to quantify information related to the scintillation and ionization energy scale, quenching factor, ion recombination probability, and scintillation time response of nuclear recoils, as expected from WIMPs, in liquid argon. A time projection chamber with an active mass of 0.5 kg of liquid argon and capable of full 3D position reconstruction was exposed to an inverse kinematic neutron beam at the Institut de Physique Nucleaire d'Orsay in France. A scan of nuclear recoil energies was performed through coincidence with a set of neutron detectors to quantify properties of nuclear recoils in liquid argon at various electric fields. The difference in ionization and scintillation response with differing recoil track angle to the electric field was also studied. The preliminary results of the experiment will be presented.

  2. Epitaxial silicide formation on recoil-implanted substrates

    SciTech Connect

    Hashimoto, Shin; Egashira, Kyoko; Tanaka, Tomoya; Etoh, Ryuji; Hata, Yoshifumi; Tung, R. T.

    2005-01-15

    An epitaxy-on-recoil-implanted-substrate (ERIS) technique is presented. A disordered surface layer, generated by forward recoil implantation of {approx}0.7-3x10{sup 15} cm{sup -2} of oxygen during Ar plasma etching of surface oxide, is shown to facilitate the subsequent epitaxial growth of {approx}25-35-nm-thick CoSi{sub 2} layers on Si(100). The dependence of the epitaxial fraction of the silicide on the recoil-implantation parameters is studied in detail. A reduction in the silicide reaction rate due to recoil-implanted oxygen is shown to be responsible for the observed epitaxial formation, similar to mechanisms previously observed for interlayer-mediated growth techniques. Oxygen is found to remain inside the fully reacted CoSi{sub 2} layer, likely in the form of oxide precipitates. The presence of these oxide precipitates, with only a minor effect on the sheet resistance of the silicide layer, has a surprisingly beneficial effect on the thermal stability of the silicide layers. The agglomeration of ERIS-grown silicide layers on polycrystalline Si is significantly suppressed, likely from a reduced diffusivity due to oxygen in the grain boundaries. The implications of the present technique for the processing of deep submicron devices are discussed.

  3. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Fallows, Scott M.

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS~II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for "background-free'' operation of CDMS~II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space. These results, like any others, are subject to a variety of systematic effects that may alter their final interpretations. A primary focus of this dissertation will be difficulties in precisely calibrating the energy scale for nuclear recoil events like those from WIMPs. Nuclear recoils have suppressed ionization signals relative to electron recoils of the same recoil energy, so the response of the detectors is calibrated differently for each recoil type. The overall normalization and linearity of the energy scale for electron recoils in CDMS~II detectors is clearly established by peaks of known gamma energy in the ionization spectrum of calibration data from a 133Ba source. This electron-equivalent keVee) energy scale enables calibration of the total phonon signal (keVt) by enforcing unity

  4. Maxwell-Garnett effective medium theory: Quantum nonlocal effects

    SciTech Connect

    Moradi, Afshin

    2015-04-15

    We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.

  5. Effective scenario of loop quantum cosmology.

    PubMed

    Ding, You; Ma, Yongge; Yang, Jinsong

    2009-02-06

    Semiclassical states in isotropic loop quantum cosmology are employed to show that the improved dynamics has the correct classical limit. The effective Hamiltonian for the quantum cosmological model with a massless scalar field is thus obtained, which incorporates also the next to leading order quantum corrections. The possibility that the higher order correction terms may lead to significant departure from the leading order effective scenario is revealed. If the semiclassicality of the model is maintained in the large scale limit, there are great possibilities for a k=0 Friedmann expanding universe to undergo a collapse in the future due to the quantum gravity effect. Thus the quantum bounce and collapse may contribute a cyclic universe in the new scenario.

  6. Recoil Experiments Using a Compressed Air Cannon

    NASA Astrophysics Data System (ADS)

    Taylor, Brett

    2006-12-01

    Ping-Pong vacuum cannons, potato guns, and compressed air cannons are popular and dramatic demonstrations for lecture and lab.1-3 Students enjoy them for the spectacle, but they can also be used effectively to teach physics. Recently we have used a student-built compressed air cannon as a laboratory activity to investigate impulse, conservation of momentum, and kinematics. It is possible to use the cannon, along with the output from an electronic force plate, as the basis for many other experiments in the laboratory. In this paper, we will discuss the recoil experiment done by our students in the lab and also mention a few other possibilities that this apparatus could be used for.

  7. Recoil-decay tagging spectroscopy of 74162W88

    NASA Astrophysics Data System (ADS)

    Li, H. J.; Cederwall, B.; Bäck, T.; Qi, C.; Doncel, M.; Jakobsson, U.; Auranen, K.; Bönig, S.; Drummond, M. C.; Grahn, T.; Greenlees, P.; HerzáÅ, A.; Julin, R.; Juutinen, S.; Konki, J.; Kröll, T.; Leino, M.; McPeake, C.; O'Donnell, D.; Page, R. D.; Pakarinen, J.; Partanen, J.; Peura, P.; Rahkila, P.; Ruotsalainen, P.; Sandzelius, M.; Sarén, J.; Sayǧı, B.; Scholey, C.; Sorri, J.; Stolze, S.; Taylor, M. J.; Thornthwaite, A.; Uusitalo, J.; Xiao, Z. G.

    2015-07-01

    Excited states in the highly neutron-deficient nucleus 162W have been investigated via the 92Mo (78Kr,2α ) 162W reaction. Prompt γ rays were detected by the JUROGAM II high-purity germanium detector array and the recoiling fusion-evaporation products were separated by the recoil ion transport unit (RITU) gas-filled recoil separator and identified with the gamma recoil electron alpha tagging (GREAT) spectrometer at the focal plane of RITU. γ rays from 162W were identified uniquely using mother-daughter and mother-daughter-granddaughter α -decay correlations. The observation of a rotational-like ground-state band is interpreted within the framework of total Routhian surface (TRS) calculations, which suggest an axially symmetric ground-state shape with a γ -soft minimum at β2≈0.15 . Quasiparticle alignment effects are discussed based on cranked shell model calculations. New measurements of the 162W ground-state α -decay energy and half-life were also performed. The observed α -decay energy agrees with previous measurements. The half-life of 162W was determined to be t1 /2=990 (30 ) ms. This value deviates significantly from the currently adopted value of t1 /2=1360 (70 ) ms. In addition, the α -decay energy and half-life of 166Os were measured and found to agree with the adopted values.

  8. Fractional quantum Hall effect revisited

    NASA Astrophysics Data System (ADS)

    Jacak, J.; Łydżba, P.; Jacak, L.

    2015-10-01

    The topology-based explanation of the fractional quantum Hall effect (FQHE) is summarized. The cyclotron braid subgroups crucial for this approach are introduced in order to identify the origin of the Laughlin correlations in 2D (two-dimensional) Hall systems. Flux-tubes and vortices for composite fermions in their standard constructions are explained in terms of cyclotron braids. The derivation of the hierarchy of the FQHE is proposed by mapping onto the integer effect within the topology-based approach. The experimental observations of the FQHE supporting the cyclotron braid picture are reviewed with a special attention paid to recent experiments with a suspended graphene. The triggering role of a carrier mobility for organization of the fractional state in Hall configuration is emphasized. The prerequisites for the FQHE are indicated including topological conditions substantially increasing the previously accepted set of physical necessities. The explanation of numerical studies by exact diagonalizations of the fractional Chern insulator states is formulated in terms of the topology condition applied to the Berry field flux quantization. Some new ideas withz regard to the synthetic fractional states in the optical lattices are also formulated.

  9. The quantum Hall effects: Philosophical approach

    NASA Astrophysics Data System (ADS)

    Lederer, P.

    2015-05-01

    The Quantum Hall Effects offer a rich variety of theoretical and experimental advances. They provide interesting insights on such topics as gauge invariance, strong interactions in Condensed Matter physics, emergence of new paradigms. This paper focuses on some related philosophical questions. Various brands of positivism or agnosticism are confronted with the physics of the Quantum Hall Effects. Hacking's views on Scientific Realism, Chalmers' on Non-Figurative Realism are discussed. It is argued that the difficulties with those versions of realism may be resolved within a dialectical materialist approach. The latter is argued to provide a rational approach to the phenomena, theory and ontology of the Quantum Hall Effects.

  10. Quantum Hall effect in momentum space

    NASA Astrophysics Data System (ADS)

    Ozawa, Tomoki; Price, Hannah M.; Carusotto, Iacopo

    2016-05-01

    We theoretically discuss a momentum-space analog of the quantum Hall effect, which could be observed in topologically nontrivial lattice models subject to an external harmonic trapping potential. In our proposal, the Niu-Thouless-Wu formulation of the quantum Hall effect on a torus is realized in the toroidally shaped Brillouin zone. In this analogy, the position of the trap center in real space controls the magnetic fluxes that are inserted through the holes of the torus in momentum space. We illustrate the momentum-space quantum Hall effect with the noninteracting trapped Harper-Hofstadter model, for which we numerically demonstrate how this effect manifests itself in experimental observables. Extension to the interacting trapped Harper-Hofstadter model is also briefly considered. We finally discuss possible experimental platforms where our proposal for the momentum-space quantum Hall effect could be realized.

  11. Spin-orbit force, recoil corrections, and possible BB¯* and DD¯* molecular states

    NASA Astrophysics Data System (ADS)

    Zhao, Lu; Ma, Li; Zhu, Shi-Lin

    2014-05-01

    In the framework of the one-boson exchange model, we have calculated the effective potentials between two heavy mesons BB¯* and DD¯* from the t- and u-channel π-, η-, ρ-, ω-, and σ-meson exchanges with four kinds of quantum number: I=0, JPC=1++; I =0, JPC=1+-; I =1, JPC=1++; I =1, JPC=1+-. We keep the recoil corrections to the BB¯* and DD¯* systems up to O(1/M2). The spin-orbit force appears at O(/1M), which turns out to be important for the very loosely bound molecular states. Our numerical results show that the momentum-related corrections are unfavorable to the formation of the molecular states in the I =0, JPC=1++ and I =1, JPC=1+- channels in the DD¯* system.

  12. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C.; Yonas, Gerold

    2016-03-01

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  13. Gas powered fluid gun with recoil mitigation

    DOEpatents

    Grubelich, Mark C; Yonas, Gerold

    2013-11-12

    A gas powered fluid gun for propelling a stream or slug of a fluid at high velocity toward a target. Recoil mitigation is provided that reduces or eliminates the associated recoil forces, with minimal or no backwash. By launching a quantity of water in the opposite direction, net momentum forces are reduced or eliminated. Examples of recoil mitigation devices include a cone for making a conical fluid sheet, a device forming multiple impinging streams of fluid, a cavitating venturi, one or more spinning vanes, or an annular tangential entry/exit.

  14. Nuclear Recoil Identification in CDMS Experiment

    NASA Astrophysics Data System (ADS)

    Wang, Gensheng; Akerib, Dan

    2004-05-01

    The Cryogenic Dark Matter Search (CDMS) experiment achieves high sensitivity for WIMP dark matter particles recoiling from nuclei because of the rejection of predominant electromagnetic backgrounds. The measured charge energy and phonon energy ratio, or ionization yield, is a powerful tool for discrimination between nuclear recoil and electron recoil in CDMS experiment. However, since events occurring within a thin surface layer, notably low-energy background beta particles, suffer a loss in ionization charge collection, other method of surface--event rejection becomes important. I will describe the CDMS detector ionization measurement and ballistic phonon readout, with an emphasis on detector phenomenology. In particular, I will describe the primary CDMS detector quantities--ionization yield, phonon risetime, event location information and phonon energy partition distribution. The application of these parameters in nuclear recoil identification and in surface event rejection in CDMS experiment will be summarized.

  15. Fractional quantum Hall effect in HgTe quantum wells

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui

    2016-02-01

    We study the possibility of fractional quantum Hall effects in HgTe quantum wells using exact diagonalization. Our results show that Laughlin states, the Moore-Read state, and the Read-Rezayi Z3 state can all be supported. However, near the level crossing point (of the single-particle spectrum) the gap can be destroyed by Landau level mixing, and the Moore-Read state and the Read-Rezayi state dominate over their respective competing states only for wide wells. For smaller well widths the Moore-Read state crosses over to the composite fermion Fermi sea, while the Read-Rezayi state loses its dominance over the hierarchy state.

  16. Retention studies of recoiling daughter nuclides of 225Ac in polymer vesicles.

    PubMed

    Wang, G; de Kruijff, R M; Rol, A; Thijssen, L; Mendes, E; Morgenstern, A; Bruchertseifer, F; Stuart, M C A; Wolterbeek, H T; Denkova, A G

    2014-02-01

    Alpha radionuclide therapy is steadily gaining importance and a large number of pre-clinical and clinical studies have been carried out. However, due to the recoil effects the daughter recoil atoms, most of which are alpha emitters as well, receive energies that are much higher than the energies of chemical bonds resulting in decoupling of the radionuclide from common targeting agents. Here, we demonstrate that polymer vesicles (i.e. polymersomes) can retain recoiling daughter nuclei based on an experimental study examining the retention of (221)Fr and (213)Bi when encapsulating (225)Ac.

  17. Bose-Einstein condensates in an optical cavity with sub-recoil bandwidth

    NASA Astrophysics Data System (ADS)

    Klinder, J.; Keßler, H.; Georges, Ch.; Vargas, J.; Hemmerich, A.

    2016-12-01

    This article provides a brief synopsis of our recent work on the interaction of Bose-Einstein condensates with the light field inside an optical cavity exhibiting a bandwidth on the order of the recoil frequency. Three different coupling scenarios are discussed giving rise to different physical phenomena at the borderline between the fields of quantum optics and many-body physics. This includes sub-recoil opto-mechanical cooling, cavity-controlled matter wave superradiance and the emergence of a superradiant superfluid or a superradiant Mott insulating many-body phase in a self-organized intra-cavity optical lattice with retarded infinite range interactions.

  18. Algorithmic quantum simulation of memory effects

    NASA Astrophysics Data System (ADS)

    Alvarez-Rodriguez, U.; Di Candia, R.; Casanova, J.; Sanz, M.; Solano, E.

    2017-02-01

    We propose a method for the algorithmic quantum simulation of memory effects described by integrodifferential evolution equations. It consists in the systematic use of perturbation theory techniques and a Markovian quantum simulator. Our method aims to efficiently simulate both completely positive and nonpositive dynamics without the requirement of engineering non-Markovian environments. Finally, we find that small error bounds can be reached with polynomially scaling resources, evaluated as the time required for the simulation.

  19. A recoil resilient lumen support, design, fabrication and mechanical evaluation

    NASA Astrophysics Data System (ADS)

    Mehdizadeh, Arash; Ali, Mohamed Sultan Mohamed; Takahata, Kenichi; Al-Sarawi, Said; Abbott, Derek

    2013-06-01

    smaller than the recoil reported for commercial stents. These experimental results demonstrate the effectiveness of the device design for the targeted luminal support and stenting applications.

  20. Quantum gravity signatures in the Unruh effect

    NASA Astrophysics Data System (ADS)

    Alkofer, Natalia; D'Odorico, Giulio; Saueressig, Frank; Versteegen, Fleur

    2016-11-01

    We study quantum gravity signatures emerging from phenomenologically motivated multiscale models, spectral actions, and causal set theory within the detector approach to the Unruh effect. We show that while the Unruh temperature is unaffected, Lorentz-invariant corrections to the two-point function leave a characteristic fingerprint in the induced emission rate of the accelerated detector. Generically, quantum gravity models exhibiting dynamical dimensional reduction exhibit a suppression of the Unruh rate at high energy while the rate is enhanced in Kaluza-Klein theories with compact extra dimensions. We quantify this behavior by introducing the "Unruh dimension" as the effective spacetime dimension seen by the Unruh effect and show that it is related, though not identical, to the spectral dimension used to characterize spacetime in quantum gravity. We comment on the physical origins of these effects and their relevance for black hole evaporation.

  1. Quantum Hall effect in semiconductor systems with quantum dots and antidots

    SciTech Connect

    Beltukov, Ya. M.; Greshnov, A. A.

    2015-04-15

    The integer quantum Hall effect in systems of semiconductor quantum dots and antidots is studied theoretically as a factor of temperature. It is established that the conditions for carrier localization in quantum-dot systems favor the observation of the quantum Hall effect at higher temperatures than in quantum-well systems. The obtained numerical results show that the fundamental plateau corresponding to the transition between the ground and first excited Landau levels can be retained up to a temperature of T ∼ 50 K, which is an order of magnitude higher than in the case of quantum wells. Implementation of the quantum Hall effect at such temperatures requires quantum-dot systems with controllable characteristics, including the optimal size and concentration and moderate geometrical and composition fluctuations. In addition, ordered arrangement is desirable, hence quantum antidots are preferable.

  2. Recoil detection of the lightest neutralino in MSSM singlet extensions

    SciTech Connect

    Barger, Vernon; Lewis, Ian; McCaskey, Mat; Shaughnessy, Gabe; Yencho, Brian; Langacker, Paul

    2007-06-01

    We investigate the correlated predictions of singlet extended MSSM models for direct detection and the cosmological relic density of the lightest neutralino. To illustrate the general effects of the singlet, we take heavy sleptons and squarks. We apply CERN LEP (g-2){sub {mu}}, and perturbativity constraints. We find that the WMAP upper bound on the cold dark matter density limits much of the parameter space to regions where the lightest neutralino can be discovered in recoil experiments. The results for the next-to-minimal supersymmetric standard model and U(1){sup '}-extended minimal supersymmetric standard model are typically similar to the MSSM since their light neutralinos have similar compositions and masses. In the nearly minimal supersymmetric standard model the neutralino is often very light and its recoil detection is within the reach of the CDMS II experiment. In general, most points in the parameter spaces of the singlet models we consider are accessible to the WARP experiment.

  3. A Double Scattering Analytical Model For Elastic Recoil Detection Analysis

    SciTech Connect

    Barradas, N. P.; Lorenz, K.; Alves, E.; Darakchieva, V.

    2011-06-01

    We present an analytical model for calculation of double scattering in elastic recoil detection measurements. Only events involving the beam particle and the recoil are considered, i.e. 1) an ion scatters off a target element and then produces a recoil, and 2) an ion produces a recoil which then scatters off a target element. Events involving intermediate recoils are not considered, i.e. when the primary ion produces a recoil which then produces a second recoil. If the recoil element is also present in the stopping foil, recoil events in the stopping foil are also calculated. We included the model in the standard code for IBA data analysis NDF, and applied it to the measurement of hydrogen in Si.

  4. Toward simulating complex systems with quantum effects

    NASA Astrophysics Data System (ADS)

    Kenion-Hanrath, Rachel Lynn

    Quantum effects like tunneling, coherence, and zero point energy often play a significant role in phenomena on the scales of atoms and molecules. However, the exact quantum treatment of a system scales exponentially with dimensionality, making it impractical for characterizing reaction rates and mechanisms in complex systems. An ongoing effort in the field of theoretical chemistry and physics is extending scalable, classical trajectory-based simulation methods capable of capturing quantum effects to describe dynamic processes in many-body systems; in the work presented here we explore two such techniques. First, we detail an explicit electron, path integral (PI)-based simulation protocol for predicting the rate of electron transfer in condensed-phase transition metal complex systems. Using a PI representation of the transferring electron and a classical representation of the transition metal complex and solvent atoms, we compute the outer sphere free energy barrier and dynamical recrossing factor of the electron transfer rate while accounting for quantum tunneling and zero point energy effects. We are able to achieve this employing only a single set of force field parameters to describe the system rather than parameterizing along the reaction coordinate. Following our success in describing a simple model system, we discuss our next steps in extending our protocol to technologically relevant materials systems. The latter half focuses on the Mixed Quantum-Classical Initial Value Representation (MQC-IVR) of real-time correlation functions, a semiclassical method which has demonstrated its ability to "tune'' between quantum- and classical-limit correlation functions while maintaining dynamic consistency. Specifically, this is achieved through a parameter that determines the quantumness of individual degrees of freedom. Here, we derive a semiclassical correction term for the MQC-IVR to systematically characterize the error introduced by different choices of simulation

  5. Quantum metrology and estimation of Unruh effect.

    PubMed

    Wang, Jieci; Tian, Zehua; Jing, Jiliang; Fan, Heng

    2014-11-26

    We study the quantum metrology for a pair of entangled Unruh-Dewitt detectors when one of them is accelerated and coupled to a massless scalar field. Comparing with previous schemes, our model requires only local interaction and avoids the use of cavities in the probe state preparation process. We show that the probe state preparation and the interaction between the accelerated detector and the external field have significant effects on the value of quantum Fisher information, correspondingly pose variable ultimate limit of precision in the estimation of Unruh effect. We find that the precision of the estimation can be improved by a larger effective coupling strength and a longer interaction time. Alternatively, the energy gap of the detector has a range that can provide us a better precision. Thus we may adjust those parameters and attain a higher precision in the estimation. We also find that an extremely high acceleration is not required in the quantum metrology process.

  6. Recoiling from a Kick in the Head-On Case

    NASA Technical Reports Server (NTRS)

    Choi, Dae-Il; Kelly, Bernard J.; Boggs, William D.; Baker, John G.; Centrella, Joan; Van Meter, James

    2007-01-01

    Recoil "kicks" induced by gravitational radiation are expected in the inspiral and merger of black holes. Recently the numerical relativity community has begun to measure the significant kicks found when both unequal masses and spins are considered. Because understanding the cause and magnitude of each component of this kick may be complicated in inspiral simulations, we consider these effects in the context of a simple test problem. We study recoils from collisions of binaries with initially head-on trajectories, starting with the simplest case of equal masses with no spin; adding spin and varying the mass ratio, both separately and jointly. We find spin-induced recoils to be significant even in head-on configurations. Additionally, it appears that the scaling of transverse kicks with spins is consistent with post-Newtonian (PN) theory, even though the kick is generated in the nonlinear merger interaction, where PN theory should not apply. This suggests that a simple heuristic description might be effective in the estimation of spin-kicks.

  7. Anatomy of the Binary Black Hole Recoil: A Multipolar Analysis

    NASA Technical Reports Server (NTRS)

    Schnittman, Jeremy; Buonanno, Alessandra; vanMeter, James R.; Baker, John G.; Boggs, William D.; Centrella, Joan; Kelly, Bernard J.; McWilliams, Sean T.

    2007-01-01

    We present a multipolar analysis of the recoil velocity computed in recent numerical simulations of binary black hole coalescence, for both unequal masses and non-zero, non-precessing spins. We show that multipole moments up to and including 1 = 4 are sufficient to accurately reproduce the final recoil velocity (= 98%) and that only a few dominant modes contribute significantly to it (2 95%). We describe how the relative amplitude, and more importantly, the relative phase, of these few modes control the way in which the recoil builds up throughout the inspiral, merger, and ring-down phases. We also find that the numerical results can be reproduced, to a high level of accuracy, by an effective Newtonian formula for the multipole moments obtained by replacing in the Newtonian formula the radial separation with an effective radius computed from the numerical data. Beyond the merger, the numerical results are reproduced by a superposition of three Kerr quasi-normal modes. Analytic formulae, obtained by expressing the multipole moments in terms of the fundamental QNMs of a Kerr BH, are able to explain the onset and amount of '.anti-kick" for each of the simulations. Lastly, we apply this multipolar analysis to understand the remarkable difference between the amplitudes of planar and non-planar kicks for equal-mass spinning black holes.

  8. Berkeley Experiments on Superfluid Macroscopic Quantum Effects

    SciTech Connect

    Packard, Richard

    2006-09-07

    This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He.

  9. Quantum anomalous Hall effect in real materials

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Yang, Zhongqin

    2016-11-01

    Under a strong magnetic field, the quantum Hall (QH) effect can be observed in two-dimensional electronic gas systems. If the quantized Hall conductivity is acquired in a system without the need of an external magnetic field, then it will give rise to a new quantum state, the quantum anomalous Hall (QAH) state. The QAH state is a novel quantum state that is insulating in the bulk but exhibits unique conducting edge states topologically protected from backscattering and holds great potential for applications in low-power-consumption electronics. The realization of the QAH effect in real materials is of great significance. In this paper, we systematically review the theoretical proposals that have been brought forward to realize the QAH effect in various real material systems or structures, including magnetically doped topological insulators, graphene-based systems, silicene-based systems, two-dimensional organometallic frameworks, quantum wells, and functionalized Sb(111) monolayers, etc. Our paper can help our readers to quickly grasp the recent developments in this field. Project supported by the National Basic Research Program of China (Grant No. 2011CB921803), the National Natural Science Foundation of China (Grant No. 11574051), the Natural Science Foundation of Shanghai, China (Grant No. 14ZR1403400), and Fudan High-end Computing Center, China.

  10. The Compton effect: Transition to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Stuewer, R. H.

    2000-11-01

    The discovery of the Compton effect at the end of 1922 was a decisive event in the transition to the new quantum mechanics of 1925-1926 because it stimulated physicists to examine anew the fundamental problem of the interaction between radiation and matter. I first discuss Albert Einstein's light-quantum hypothesis of 1905 and why physicists greeted it with extreme skepticism, despite Robert A. Millikan's confirmation of Einstein's equation of the photoelectric effect in 1915. I then follow in some detail the experimental and theoretical research program that Arthur Holly Compton pursued between 1916 and 1922 at the University of Minnesota, the Westinghouse Lamp Company, the Cavendish Laboratory, and Washington University that culminated in his discovery of the Compton effect. Surprisingly, Compton was not influenced directly by Einstein's light-quantum hypothesis, in contrast to Peter Debye and H.A. Kramers, who discovered the quantum theory of scattering independently. I close by discussing the most significant response to that discovery, the Bohr-Kramers-Slater theory of 1924, its experimental refutation, and its influence on the emerging new quantum mechanics.

  11. Spectral effects in quantum teleportation

    SciTech Connect

    Humble, Travis S.; Grice, Warren P.

    2007-02-15

    We use a multimode description of polarization-encoded qubits to analyze the quantum teleportation protocol. Specifically, we investigate how the teleportation fidelity depends on the spectral correlations inherent to polarization-entangled photons generated by type-II spontaneous parametric down conversion. We find that the maximal obtainable fidelity depends on the spectral entanglement carried by the joint probability amplitude, a result which we quantify for the case of a joint spectrum approximated by a correlated Gaussian function. We contrast these results with a similar analysis of the visibility obtained in a polarization-correlation experiment.

  12. Spectral Effects in Quantum Teleportation

    SciTech Connect

    Humble, Travis S; Grice, Warren P

    2007-01-01

    We use a multimode description of polarization-encoded qubits to analyze the quantum teleportation protocol. Specifically, we investigate how the teleportation fidelity depends on the spectral correlations inherent to polarization-entangled photons generated by type-II spontaneous parametric down conversion. We find that the maximal obtainable fidelity depends on the spectral entanglement carried by the joint probability amplitude, a result which we quantify for the case of a joint spectrum approximated by a correlated Gaussian function. We contrast these results with a similar analysis of the visibility obtained in a polarization-correlation experiment.

  13. Quantum Plasma Effects in the Classical Regime

    SciTech Connect

    Brodin, G.; Marklund, M.; Manfredi, G.

    2008-05-02

    For quantum effects to be significant in plasmas it is often assumed that the temperature over density ratio must be small. In this paper we challenge this assumption by considering the contribution to the dynamics from the electron spin properties. As a starting point we consider a multicomponent plasma model, where electrons with spin-up and spin-down are regarded as different fluids. By studying the propagation of Alfven wave solitons we demonstrate that quantum effects can survive in a relatively high-temperature plasma. The consequences of our results are discussed.

  14. The effects of nonextensivity on quantum dissipation

    PubMed Central

    Choi, Jeong Ryeol

    2014-01-01

    Nonextensive dynamics for a quantum dissipative system described by a Caldirola-Kanai (CK) Hamiltonian is investigated in SU(1,1) coherent states. To see the effects of nonextensivity, the system is generalized through a modification fulfilled by replacing the ordinary exponential function in the standard CK Hamiltonian with the q-exponential function. We confirmed that the time behavior of the system is somewhat different depending on the value of q which is the degree of nonextensivity. The effects of q on quantum energy dissipation and other parameters are illustrated and discussed in detail. PMID:24468727

  15. Investigation on modeling and controability of a magnetorheological gun recoil damper

    NASA Astrophysics Data System (ADS)

    Hu, Hongsheng; Wang, Juan; Wang, Jiong; Qian, Suxiang; Li, Yancheng

    2009-07-01

    Magnetorheological (MR) fluid as a new smart material has done well in the vibration and impact control engineering fields because of its good electromechanical coupling characteristics, preferable dynamic performance and higher sensitivity. And success of MRF has been apparent in many engineering applied fields, such as semi-active suspension, civil engineering, etc. So far, little research has been done about MR damper applied into the weapon system. Its primary purpose of this study is to identify its dynamic performance and controability of the artillery recoil mechanism equipped with MR damper. Firstly, based on the traditional artillery recoil mechanism, a recoil dynamic model is developed in order to obtain an ideal rule between recoil force and its stroke. Then, its effects of recoil resistance on the stability and firing accuracy of artillery are explored. Because MR gun recoil damper under high impact load shows a typical nonlinear character and there exists a shear-thinning phenomenon, to establish an accurate dynamic model has been a seeking aim of its design and application for MR damper under high impact load. Secondly, in this paper, considering its actual bearing load, an inertia factor was introduced to Herschel-Bulkley model, and some factor's effect on damping force are simulated and analyzed by using numerical simulation, including its dynamic performance under different flow coefficients and input currents. Finally, both of tests with the fixed current and different On-Off control algorithms have been done to confirm its controability of MR gun recoil damper under high impact load. Experimental results show its dynamic performances of the large-scale single-ended MR gun recoil damper can be changed by altering the applied currents and it has a good controllability.

  16. Developments in the quantum Hall effect.

    PubMed

    von Klitzing, Klaus

    2005-09-15

    The most important applications of the quantum Hall effect (QHE) are in the field of metrology. The observed quantization of the resistance is primarily used for the reproduction of the SI unit ohm, but is also important for high precision measurements of both the fine structure constant and the Planck constant. Some current QHE research areas include the analysis of new electron-electron correlation phenomena and the development of a more complete microscopic picture of this quantum effect. Recently, scanning force microscopy (SFM) of the potential distribution in QHE devices has been used to enhance the microscopic understanding of current flow in quantum Hall systems. This confirms the importance of the theoretically predicted stripes of compressible and incompressible electronic states close to the boundary of the QHE devices.

  17. Electron-exchange and quantum screening effects on the collisional entanglement fidelity in degenerate quantum plasmas

    NASA Astrophysics Data System (ADS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-06-01

    The influence of electron-exchange and quantum screening on the collisional entanglement fidelity for the elastic electron-ion collision is investigated in degenerate quantum plasmas. The effective Shukla-Eliasson potential and the partial wave method are used to obtain the collisional entanglement fidelity in quantum plasmas as a function of the electron-exchange parameter, Fermi energy, plasmon energy and collision energy. The results show that the quantum screening effect enhances the entanglement fidelity in quantum plasmas. However, it is found that the electron-exchange effect strongly suppresses the collisional entanglement fidelity. Hence, we have found that the influence of the electron-exchange reduces the transmission of quantum information in quantum plasmas. In addition, it is found that, although the entanglement fidelity decreases with an increase of the Fermi energy, it increases with increasing plasmon energy in degenerate quantum plasmas.

  18. A programmable quantum current standard from the Josephson and the quantum Hall effects

    SciTech Connect

    Poirier, W. Lafont, F.; Djordjevic, S.; Schopfer, F.; Devoille, L.

    2014-01-28

    We propose a way to realize a programmable quantum current standard (PQCS) from the Josephson voltage standard and the quantum Hall resistance standard (QHR) exploiting the multiple connection technique provided by the quantum Hall effect (QHE) and the exactness of the cryogenic current comparator. The PQCS could lead to breakthroughs in electrical metrology like the realization of a programmable quantum current source, a quantum ampere-meter, and a simplified closure of the quantum metrological triangle. Moreover, very accurate universality tests of the QHE could be performed by comparing PQCS based on different QHRs.

  19. Nonlinear peltier effect in quantum point contacts

    NASA Astrophysics Data System (ADS)

    Bogachek, E. N.; Scherbakov, A. G.; Landman, Uzi

    1998-11-01

    A theoretical analysis of the Peltier effect in two-dimensional quantum point contacts, in field-free conditions and under the influence of applied magnetic fields, is presented. It is shown that in the nonlinear regime (finite applied voltage) new peaks in the Peltier coefficient appear leading to violation of Onsager's relation. Oscillations of the Peltier coefficient in a magnetic field are demonstrated.

  20. Atypical quantum confinement effect in silicon nanowires.

    PubMed

    Sorokin, Pavel B; Avramov, Pavel V; Chernozatonskii, Leonid A; Fedorov, Dmitri G; Ovchinnikov, Sergey G

    2008-10-09

    The quantum confinement effect (QCE) of linear junctions of silicon icosahedral quantum dots (IQD) and pentagonal nanowires (PNW) was studied using DFT and semiempirical AM1 methods. The formation of complex IQD/PNW structures leads to the localization of the HOMO and LUMO on different parts of the system and to a pronounced blue shift of the band gap; the typical QCE with a monotonic decrease of the band gap upon the system size breaks down. A simple one-electron one-dimensional Schrodinger equation model is proposed for the description and explanation of the unconventional quantum confinement behavior of silicon IQD/PNW systems. On the basis of the theoretical models, the experimentally discovered deviations from the typical QCE for nanocrystalline silicon are explained.

  1. Quantum effects in homogeneous multidimensional cosmologies

    SciTech Connect

    Szydlowski, M.; Szczesny, J.

    1988-12-15

    In the present paper we determine quantum distribution functions for a wide class of multidimensional cosmological models. The exact formulas for quantum distribution functions are given and their universal character at high and low temperatures shown. The obtained formulas provide us with the possibility to investigate the metric back reaction and to discuss the dimensional reduction problem. The assumption of the low-temperature approximation gives us the possibility to discuss the dynamics by using the methods of dynamical systems. Stable solutions, within the class FRW x S/sup 3/ x S/sup 3/ models, where FRW denotes Friedmann, Robertson and Walker, are discussed, and it is shown that only a zero-measure set of trajectories in the phase space leads to a solution with a static microspace. This analysis shows that, insofar as quantum effects lead to solutions with a static microspace, these solutions are unstable.

  2. Significant Quantum Effects in Hydrogen Activation

    SciTech Connect

    Kyriakou, Georgios; Davidson, Erlend R.; Peng, Guowen; Roling, Luke T.; Singh, Suyash; Boucher, Matthew B.; Marcinkowski, Matthew D.; Mavrikakis, Manos; Michaelides, Angelos; Sykes, E. Charles H.

    2014-03-31

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to 190 K and for D2 up to 140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation.

  3. Significant Quantum Effects in Hydrogen Activation

    PubMed Central

    2014-01-01

    Dissociation of molecular hydrogen is an important step in a wide variety of chemical, biological, and physical processes. Due to the light mass of hydrogen, it is recognized that quantum effects are often important to its reactivity. However, understanding how quantum effects impact the reactivity of hydrogen is still in its infancy. Here, we examine this issue using a well-defined Pd/Cu(111) alloy that allows the activation of hydrogen and deuterium molecules to be examined at individual Pd atom surface sites over a wide range of temperatures. Experiments comparing the uptake of hydrogen and deuterium as a function of temperature reveal completely different behavior of the two species. The rate of hydrogen activation increases at lower sample temperature, whereas deuterium activation slows as the temperature is lowered. Density functional theory simulations in which quantum nuclear effects are accounted for reveal that tunneling through the dissociation barrier is prevalent for H2 up to ∼190 K and for D2 up to ∼140 K. Kinetic Monte Carlo simulations indicate that the effective barrier to H2 dissociation is so low that hydrogen uptake on the surface is limited merely by thermodynamics, whereas the D2 dissociation process is controlled by kinetics. These data illustrate the complexity and inherent quantum nature of this ubiquitous and seemingly simple chemical process. Examining these effects in other systems with a similar range of approaches may uncover temperature regimes where quantum effects can be harnessed, yielding greater control of bond-breaking processes at surfaces and uncovering useful chemistries such as selective bond activation or isotope separation. PMID:24684530

  4. Stochasticity effects in quantum radiation reaction.

    PubMed

    Neitz, N; Di Piazza, A

    2013-08-02

    When an ultrarelativistic electron beam collides with a sufficiently intense laser pulse, radiation-reaction effects can strongly alter the beam dynamics. In the realm of classical electrodynamics, radiation reaction has a beneficial effect on the electron beam as it tends to reduce its energy spread. Here we show that when quantum effects become important, radiation reaction induces the opposite effect; i.e., the energy distribution of the electron beam spreads out after interacting with the laser pulse. We identify the physical origin of this opposite tendency in the intrinsic stochasticity of photon emission, which becomes substantial in the quantum regime. Our numerical simulations indicate that the predicted effects of the stochasticity can be measured already with presently available lasers and electron accelerators.

  5. Quantum confined Stark effect in Gaussian quantum wells: A tight-binding study

    SciTech Connect

    Ramírez-Morales, A.; Martínez-Orozco, J. C.; Rodríguez-Vargas, I.

    2014-05-15

    The main characteristics of the quantum confined Stark effect (QCSE) are studied theoretically in quantum wells of Gaussian profile. The semi-empirical tight-binding model and the Green function formalism are applied in the numerical calculations. A comparison of the QCSE in quantum wells with different kinds of confining potential is presented.

  6. Proton recoil scintillator neutron rem meter

    DOEpatents

    Olsher, Richard H.; Seagraves, David T.

    2003-01-01

    A neutron rem meter utilizing proton recoil and thermal neutron scintillators to provide neutron detection and dose measurement. In using both fast scintillators and a thermal neutron scintillator the meter provides a wide range of sensitivity, uniform directional response, and uniform dose response. The scintillators output light to a photomultiplier tube that produces an electrical signal to an external neutron counter.

  7. Electrostatic Surface Waves on Semi-Bounded Quantum Electron-Hole Semiconductor Plasmas

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2017-03-01

    The electrostatic surface waves on semi-bounded quantum electron-hole semiconductor plasmas are studied within the framework of the quantum hydrodynamic model, including the electrons and holes quantum recoil effects, quantum statistical pressures of the plasma species, as well as exchange and correlation effects. The dispersion characteristics of surface electrostatic oscillations are investigated by using the typical values of GaAs, GaSb and GaN semiconductors. Numerical results show the existence of one low-frequency branch due to the mass difference between the electrons and holes in addition to one high-frequency branch due to charge-separation effects.

  8. Optical recoil of asymmetric nano-optical antenna.

    PubMed

    Song, Jung-Hwan; Shin, Jonghwa; Lim, Hee-Jin; Lee, Yong-Hee

    2011-08-01

    We propose nano-optical antennas with asymmetric radiation patterns as light-driven mechanical recoil force generators. Directional antennas are found to generate recoil force efficiently when driven in the spectral proximity of their resonances. It is also shown that the recoil force is equivalent to the Poynting vector integrated over a closed sphere containing the antenna structures.

  9. Synchronization effect for uncertain quantum networks

    NASA Astrophysics Data System (ADS)

    Li, Wenlin; Gebremariam, Tesfay; Li, Chong; Song, Heshan

    2017-01-01

    We propose a novel technique for investigating the synchronization effect for uncertain networks with quantum chaotic behaviors in this paper. Through designing a special function to construct Lyapunov function of network and the adaptive laws of uncertain parameters, the synchronization between the uncertain network and the synchronization target can be realized, and the uncertain parameters in state equations of the network nodes are perfectly identified. All the theoretical results are verified by numerical simulations to demonstrate the effectiveness of the proposed synchronization technique.

  10. Spatially dependent Kondo effect in Quantum Corrals

    NASA Astrophysics Data System (ADS)

    Rossi, Enrico; Morr, Dirk K.

    2007-03-01

    We study the Kondo screening of a single magnetic impurity placed inside a quantum corral consisting of non-magnetic impurities on the surface of a metallic host system. We show that the spatial structure of the corral's eigenmodes leads to a spatially dependent Kondo effect whose signatures are experimentally measurable spatial variations of the Kondo temperature, TK, and of the critical Kondo coupling, Jcr. Moreover we find that the screening of the magnetic impurity is accompanied by the formation of multiple Kondo resonances with characteristic spatial patterns that provide further experimental signatures of the spatially dependent Kondo effect. Our results demonstrate that quantum corrals provide new possibilities to manipulate and explore the Kondo effect.

  11. Recoil-proton polarization in high-energy deuteron photodisintegration with circularly plarized photons.

    SciTech Connect

    Jiang, X.; Arrington, J.; Benmokhtar, F.; Camsonne, A.; Chen, J. P.; Holt, R. J.; Qattan, I. A.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Physics; Rutgers Univ.; Univ. Blaise Pascal; Thomas Jefferson National Accelerator Facility

    2007-05-01

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  12. Recoil-Proton Polarization in High-Energy Deuteron Photodisintegration with Circularly Polarized Photons

    SciTech Connect

    Jiang, X.; Benmokhtar, F.; Glashauser, C.; McCormick, K.; Ransome, R. D.; Arrington, J.; Holt, R. J.; Reimer, P. E.; Schulte, E. C.; Wijesooriya, K.; Camsonne, A.

    2007-05-04

    We measured the angular dependence of the three recoil-proton polarization components in two-body photodisintegration of the deuteron at a photon energy of 2 GeV. These new data provide a benchmark for calculations based on quantum chromodynamics. Two of the five existing models have made predictions of polarization observables. Both explain the longitudinal polarization transfer satisfactorily. Transverse polarizations are not well described, but suggest isovector dominance.

  13. Effective loop quantum geometry of Schwarzschild interior

    NASA Astrophysics Data System (ADS)

    Cortez, Jerónimo; Cuervo, William; Morales-Técotl, Hugo A.; Ruelas, Juan C.

    2017-03-01

    The success of loop quantum cosmology to resolve classical singularities of homogeneous models has led to its application to the classical Schwarszchild black hole interior, which takes the form of a homogeneous Kantowski-Sachs model. The first steps of this were done in pure quantum mechanical terms, hinting at the traversable character of the would-be classical singularity, and then others were performed using effective heuristic models capturing quantum effects that allowed a geometrical description closer to the classical one but avoided its singularity. However, the problem of establishing the link between the quantum and effective descriptions was left open. In this work, we propose to fill in this gap by considering the path-integral approach to the loop quantization of the Kantowski-Sachs model corresponding to the Schwarzschild black hole interior. We show that the transition amplitude can be expressed as a path integration over the imaginary exponential of an effective action which just coincides, under some simplifying assumptions, with the heuristic one. Additionally, we further explore the consequences of the effective dynamics. We prove first that such dynamics imply some rather simple bounds for phase-space variables, and in turn—remarkably, in an analytical way—they imply that various phase-space functions that were singular in the classical model are now well behaved. In particular, the expansion rate, its time derivative, and the shear become bounded, and hence the Raychaudhuri equation is finite term by term, thus resolving the singularities of classical geodesic congruences. Moreover, all effective scalar polynomial invariants turn out to be bounded.

  14. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  15. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    SciTech Connect

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Tseng, Jeff; Rizvi, Eram

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.

  16. Current Distributions in Quantum Hall Effect Devices

    PubMed Central

    Cage, M. E.

    1997-01-01

    This paper addresses the question of how current is distributed within quantum Hall effect devices. Three types of flow patterns most often mentioned in the literature are considered. They are: (1) skipping orbits along the device periphery (which arise from elastic collisions off hard-walled potentials); (2) narrow conducting channels along the device sides (which are presumed to be generated from confining potentials); and (3) currents distributed throughout the device (which are assumed to arise from a combination of confining and charge-redistribution potentials). The major conclusions are that skipping orbits do not occur in quantum Hall effect devices, and that nearly all of the externally applied current is located within the device interior rather than along the device edges. PMID:27805115

  17. Angular momentum projection with quantum effects

    NASA Astrophysics Data System (ADS)

    Ren, Ching-Yun; Banerjee, M. K.

    1991-04-01

    We have improved a simple and rapid method of calculating expectation values of operators in states of good angular momentum projected from a hedgehog baryon state introduced by Birse et al. We have included the contributions of quantum mesons, while in the original method only classical meson fields were included. The method has been applied to models where the mean-field approximation does not include loop terms. Hence, for reasons of consistency, contributions of quantum loops to the matrix elements have been dropped. The symmetry of the hedgehog state under grand reversal (the combined operation of time reversal and eiπI^2, where I^ is the isospin operator) introduces remarkable simplification in the calculation of matrix elements of operators which do not contain time derivatives of meson fields. The quantum meson contributions turn out to be 3/2/ times the classical meson-field contributions, with ||B> being the hedgehog state. Such operators are encountered in the calculation of nucleon magnetic moments, gA(0) and gπNN(0)/2M. Calculation of charge radii involves operators containing time derivatives of meson fields and requires the knowledge of wave functions of quantum mesons. Proper nonperturbative treatment, even though at the tree level, requires that these wave functions describe the motion of the mesons in the potential generated by the baryon. Fortunately, because of the neglect of the loop terms, one needs only the even-parity, grand-spin-1 states which are purely pionic. The Goldberger-Treiman relations, an exact result for the model, serves as a partial test of the method of calculation discussed here. This has been used to demonstrate the remarkable improvement in the results produced by the inclusion of quantum effects of the mesons.

  18. Effective Particles in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Głazek, Stanisław D.; Trawiński, Arkadiusz P.

    2017-03-01

    The concept of effective particles is introduced in the Minkowski space-time Hamiltonians in quantum field theory using a new kind of the relativistic renormalization group procedure that does not integrate out high-energy modes but instead integrates out the large changes of invariant mass. The new procedure is explained using examples of known interactions. Some applications in phenomenology, including processes measurable in colliders, are briefly presented.

  19. Quantum gravity effects around Sagittarius A*

    NASA Astrophysics Data System (ADS)

    Haggard, Hal M.; Rovelli, Carlo

    2016-09-01

    Recent VLBI observations have resolved Sagittarius A* at horizon scales. The event horizon telescope is expected to provide increasingly good images of the region around the Schwarzschild radius rS of Sgr A* soon. A number of authors have recently pointed out the possibility that nonperturbative quantum gravitational phenomena could affect the space surrounding a black hole. Here, we point out that the existence of a region around 7 6rS, where these effects should be maximal.

  20. Quantum nonlocal effects on optical properties of spherical nanoparticles

    SciTech Connect

    Moradi, Afshin

    2015-02-15

    To study the scattering of electromagnetic radiation by a spherical metallic nanoparticle with quantum spatial dispersion, we develop the standard nonlocal Mie theory by allowing for the excitation of the quantum longitudinal plasmon modes. To describe the quantum nonlocal effects, we use the quantum longitudinal dielectric function of the system. As in the standard Mie theory, the electromagnetic fields are expanded in terms of spherical vector wavefunctions. Then, the usual Maxwell boundary conditions are imposed plus the appropriate additional boundary conditions. Examples of calculated extinction spectra are presented, and it is found that the frequencies of the subsidiary peaks, due to quantum bulk plasmon excitations exhibit strong dependence on the quantum spatial dispersion.

  1. H + D2 Reaction Dynamics in the Limit of Low Product Recoil Energy.

    PubMed

    Aldegunde, J; Herráez-Aguilar, D; Jambrina, P G; Aoiz, F J; Jankunas, J; Zare, R N

    2012-10-18

    Both experiment and theory recently showed that the H + D2(v = 0, j = 0) → HD(v' = 4, j') + D reactions at a collision energy of 1.97 eV display a seemingly anomalous HD product angular distribution that moves in the backward direction as the value of j' increases and the corresponding energy available for product recoil decreases. This behavior was attributed to the presence of a centrifugal barrier along the reaction path. Here, we show, using fully quantum mechanical calculations, that for low recoil energies, the collision mechanism is nearly independent of the HD internal state and the HD product becomes aligned, with its rotational angular momentum j' pointing perpendicular to the recoil momentum k'. As the kinetic energy to overcome this barrier becomes limited, the three atoms adopt a nearly collinear configuration in the transition-state region to permit reaction, which strongly polarizes the resulting HD product. These results are expected to be general for any chemical reaction in the low recoil energy limit.

  2. Gravitational Effects of a Crystalline Quantum Foam

    NASA Astrophysics Data System (ADS)

    Crouse, David

    2017-01-01

    In this work, concepts in quantum mechanics and general relativity are used to derive the quantums of space and time. After showing that space and time, at the Planck scale, must be discrete and not continuous, various anomalous gravitational effects are described. It is discussed how discrete space necessarily imposes order upon Wheeler's quantum foam, changing the foam into a crystal. The forces in this crystal are gravitational forces due to the ordered array of electrically neutral Planck masses, and with a lattice constant on the order of the Planck length. Thus the crystal is a gravity crystal rather than the more common crystals (e.g., silicon) that rely on electromagnetic forces. It is shown that similar solid-state physics techniques can be applied to this universe-wide gravity crystal to calculate particles' dispersion curves. It is shown that the crystal produces typical crystalline effects, namely bandgaps, Brillouin zones, and effective inertial masses that may differ from the gravitational masses with possible values even being near zero or negative. It is shown that the gravity crystal can affect the motion of black holes in dramatic ways, imbuing them with a negative inertial mass such that they are pushed by the pull of gravity.

  3. Topological effects in quantum mechanics

    SciTech Connect

    Peshkin, M.; Lipkin, H.J. |

    1995-08-01

    We completed our analysis of experiments, some completed, some planned, and some only conceptual at present, that purport to demonstrate new kinds of non-local and topological effects in the interaction of a neutron with an external electromagnetic field. In the Aharonov-Casher effect (AC), the neutron interacts with an electric field and in the Scalar Aharonov-Bohm effect (SAB) the neutron interacts with a magnetic field. In both cases, the geometry can be arranged so that there is no force on the neutron but an interference experiment nevertheless finds a phase shift proportional to the applied field and to the neutron`s magnetic moment. Previously, we showed that the accepted interpretation of these phenomena as topological effects due to a non-local interaction between the neutron and the electromagnetic field is incorrect. Both AC and SAB follow from local torques on the neutron whose expectation values vanish at every instant but which have non-vanishing effect on the measurable spin-correlation variables S(t) = (1/2) [{sigma}{sub x}{sigma}{sub x}(t) + {sigma}{sub y}(0){sigma}{sub y}(t) + h.c.] and V(t) = [{sigma}{sub x}(0){sigma}{sub y}(t) - {sigma}{sub y}(0){sigma}{sub x}(t) + h.c.]. We have now completed this work by observing that a criterion often used for identifying a topological effect, energy independence of the phase shift between two arms of an interferometer, is only a necessary condition, and by describing a phase shifter which obeys the energy-independence condition but whose interaction with the neutron is neither topological nor even non-local.

  4. Cavity cooling below the recoil limit.

    PubMed

    Wolke, Matthias; Klinner, Julian; Keßler, Hans; Hemmerich, Andreas

    2012-07-06

    Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling.

  5. Nontrivial quantum and quantum-like effects in biosystems: Unsolved questions and paradoxes.

    PubMed

    Melkikh, Alexey V; Khrennikov, Andrei

    2015-11-01

    Non-trivial quantum effects in biological systems are analyzed. Some unresolved issues and paradoxes related to quantum effects (Levinthal's paradox, the paradox of speed, and mechanisms of evolution) are addressed. It is concluded that the existence of non-trivial quantum effects is necessary for the functioning of living systems. In particular, it is demonstrated that classical mechanics cannot explain the stable work of the cell and any over-cell structures. The need for quantum effects is generated also by combinatorial problems of evolution. Their solution requires a priori information about the states of the evolving system, but within the framework of the classical theory it is not possible to explain mechanisms of its storage consistently. We also present essentials of so called quantum-like paradigm: sufficiently complex bio-systems process information by violating the laws of classical probability and information theory. Therefore the mathematical apparatus of quantum theory may have fruitful applications to describe behavior of bio-systems: from cells to brains, ecosystems and social systems. In quantum-like information biology it is not presumed that quantum information bio-processing is resulted from quantum physical processes in living organisms. Special experiments to test the role of quantum mechanics in living systems are suggested. This requires a detailed study of living systems on the level of individual atoms and molecules. Such monitoring of living systems in vivo can allow the identification of the real potentials of interaction between biologically important molecules.

  6. Casimir effect, quantum fluctuations and related topics

    NASA Astrophysics Data System (ADS)

    Hushwater, Velvel Shaia

    Casimir forces are the very long-range (retarded) forces between electrically neutral systems. Such forces may be thought of as arising from the quantum fluctuations of the electromagnetic field. Contrary to popular opinion such forces need not be attractive. After giving a foundation of the method of the change in the 'zero-point energy' we show how other methods to compute Casimir forces follow from it. We consider the repulsion between electric and magnetic dipoles induced by vacuum fluctuations of electromagnetic field. The calculation are made by the use of the Heisenberg picture operators and by the stochastic electrodynamics approach. We present a purely geometrical proof of the image method, and use it to discuss the Casimir interaction between an atom and a plate. We study the Casimir repulsion between a perfectly conducting and an infinitely permeable plate with the radiation pressure approach. This example illustrates how a repulsive force arises as a consequence of the redistribution of vacuum-field modes corresponding to specific boundary conditions. We show that result is independent of a cutoff function. Discussing the connection with perturbation theory, we prove the negativity of the leading order shift in the ground state. The Casimir effect supports the reality of the 'zero- point energy.' To clarify this we present a novel approach to quantum theory, based on the principle of the quantization of the ensemble-averaged action variable. This quantization leads to the probabilistic description of coordinates and momentum as random variables, which satisfy the uncertainty relation. Using such variables we show that the 'quantum momentum function' must satisfy the Riccati differential equation, which can be converted to the Schrodinger equation for the Ψ function. We derive also the form of basic operators and the rule for probabilities in quantum mechanics. We show that the approach leads to a simple interpretation of gauge invariance, and discuss

  7. Integer quantum Hall effect in graphene

    NASA Astrophysics Data System (ADS)

    Jellal, Ahmed

    2016-04-01

    We study the quantum Hall effect in a monolayer graphene by using an approach based on thermodynamical properties. This can be done by considering a system of Dirac particles in an electromagnetic field and taking into account of the edges effect as a pseudo-potential varying continuously along the x direction. At low temperature and in the weak electric field limit, we explicitly determine the thermodynamical potential. With this, we derive the particle numbers in terms of the quantized flux and therefore the Hall conductivity immediately follows.

  8. Excitons in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-09-01

    Quasiparticles of charge 1/m in the Fractional Quantum Hall Effect form excitons, which are collective excitations physically similar to the transverse magnetoplasma oscillations of a Wigner crystal. A variational exciton wavefunction which shows explicitly that the magnetic length is effectively longer for quasiparticles than for electrons is proposed. This wavefunction is used to estimate the dispersion relation of these excitons and the matrix elements to generate them optically out of the ground state. These quantities are then used to describe a type of nonlinear conductivity which may occur in these systems when they are relatively clean.

  9. Possible Quantum Absorber Effects in Cortical Synchronization

    NASA Astrophysics Data System (ADS)

    Kämpf, Uwe

    The Wheeler-Feynman transactional "absorber" approach was proposed originally to account for anomalous resonance coupling between spatio-temporally distant measurement partners in entangled quantum states of so-called Einstein-Podolsky-Rosen paradoxes, e.g. of spatio-temporal non-locality, quantum teleportation, etc. Applied to quantum brain dynamics, however, this view provides an anticipative resonance coupling model for aspects of cortical synchronization and recurrent visual action control. It is proposed to consider the registered activation patterns of neuronal loops in so-called synfire chains not as a result of retarded brain communication processes, but rather as surface effects of a system of standing waves generated in the depth of visual processing. According to this view, they arise from a counterbalance between the actual input's delayed bottom-up data streams and top-down recurrent information-processing of advanced anticipative signals in a Wheeler-Feynman-type absorber mode. In the framework of a "time-loop" model, findings about mirror neurons in the brain cortex are suggested to be at least partially associated with temporal rather than spatial mirror functions of visual processing, similar to phase conjugate adaptive resonance-coupling in nonlinear optics.

  10. Measurement of Low Energy Electronic Recoil Response and Electronic/Nuclear Recoils Discrimination in XENON100

    NASA Astrophysics Data System (ADS)

    Ye, Jingqiang; Xenon Collaboration

    2017-01-01

    The XENON100 detector uses liquid xenon time projection chamber to search for nuclear recoils(NR) caused by hypothetical Weakly Interacting Massive Particles (WIMPs). The backgrounds are mostly electronic recoils(ER), thus it's crucial to distinguish NR from ER. Using high statistical calibration data from tritiated methane, AmBe and other sources in XENON100, the ER/NR discrimination under different electric fields are measured. The Photon yield and recombination fluctuation of low energy electronic recoils under different fields will also be presented and compared to results from NEST and other experiments, which is crucial to understanding the response of liquid xenon detectors in the energy regime of searching dark matter.

  11. Scintillation efficiency for low energy nuclear recoils in liquid xenon dark matter detectors

    NASA Astrophysics Data System (ADS)

    Mu, Wei; Xiong, Xiaonu; Ji, Xiangdong

    2015-02-01

    We perform a theoretical study of the scintillation efficiency of the low energy region crucial for liquid xenon dark matter detectors. We develop a computer program to simulate the cascading process of the recoiling xenon nucleus in liquid xenon and calculate the nuclear quenching effect due to atomic collisions. We use the electronic stopping power extrapolated from experimental data to the low energy region, and take into account the effects of electron escape from electron-ion pair recombination using the generalized Thomas-Imel model fitted to scintillation data. Our result agrees well with the experiments from neutron scattering and vanishes rapidly as the recoil energy drops below 3 keV.

  12. Medium modifications with recoil polarization

    SciTech Connect

    Brand, J.F.J. van den; Ent, R.

    1994-04-01

    The authors show that the virtual Compton scattering process allows for a precise study of the off-shell electron-nucleon vertex. In a separable model, they show the sensitivity to new unconstrained structure functions of the nucleon, beyond the usual Dirac and Pauli form factors. In addition, they show the sensitivity to bound nucleon form factors using the reaction 4He({rvec e},e{prime},{rvec p}){sup 3}H. A nucleon embedded in a nucleus represents a complex system. Firstly, the bound nucleon is necessarily off-shell and in principle a complete understanding of the dynamical structure of the nucleon is required in order to calculate its off-shell electromagnetic interaction. Secondly, one faces the possibility of genuine medium effects, such as for example quark-exchange contributions. Furthermore, the electromagnetic coupling to the bound nucleon is dependent on the nuclear dynamics through the self-energy of the nucleon in the nuclear medium.

  13. In-plane magnetization-induced quantum anomalous Hall effect.

    PubMed

    Liu, Xin; Hsu, Hsiu-Chuan; Liu, Chao-Xing

    2013-08-23

    The quantum Hall effect can only be induced by an out-of-plane magnetic field for two-dimensional electron gases, and similarly, the quantum anomalous Hall effect has also usually been considered for systems with only out-of-plane magnetization. In the present work, we predict that the quantum anomalous Hall effect can be induced by in-plane magnetization that is not accompanied by any out-of-plane magnetic field. Two realistic two-dimensional systems, Bi2Te3 thin film with magnetic doping and HgMnTe quantum wells with shear strains, are presented and the general condition for the in-plane magnetization-induced quantum anomalous Hall effect is discussed based on the symmetry analysis. Nonetheless, an experimental setup is proposed to confirm this effect, the observation of which will pave the way to search for the quantum anomalous Hall effect in a wider range of materials.

  14. Contribution of recoil atoms to irradiation damage in absorber materials

    NASA Astrophysics Data System (ADS)

    Simeone, D.; Hablot, O.; Micalet, V.; Bellon, P.; Serruys, Y.

    1997-08-01

    Absorbing materials are used to control the reactivity of nuclear reactors by taking advantage of nuclear reactions (e.g., 10B(n,α) 7Li) where neutrons are absorbed. During such reactions, energetic recoils are produced. As a result, radiation damage in absorbing materials originates both from these nuclear reactions and from elastic collisions between neutrons and atoms. This damage eventually leads to a partial destruction of the materials, and this is the main limitation on their lifetime in nuclear reactors. Using a formalism developed to calculate displacements per atoms (dpa) in a multi atomic target, we have calculated damages in terms of displacements per atom in a (n,α) absorbing material taking into account geometrical effects of 10 boron self shielding and transmutation reactions induced by neutrons inside the absorber. Radiation damage is calculated for boron carbide and hafnium diboride ceramics in a Pressurized Water Reactor environment. It is shown that recoils produced by nuclear reactions account for the main part of the radiation damage created in these ceramics. Damages are calculated as a function of the distance from the center of an absorber pellet. Due to the self-shielding effect, these damage curves exhibit sharp maxima, the position of which changes in time.

  15. Integer Quantum Hall Effect in Trilayer Graphene

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Escoffier, W.; Poumirol, J. M.; Faugeras, C.; Arovas, D. P.; Fogler, M. M.; Guinea, F.; Roche, S.; Goiran, M.; Raquet, B.

    2011-09-01

    By using high-magnetic fields (up to 60 T), we observe compelling evidence of the integer quantum Hall effect in trilayer graphene. The magnetotransport fingerprints are similar to those of the graphene monolayer, except for the absence of a plateau at a filling factor of ν=2. At a very low filling factor, the Hall resistance vanishes due to the presence of mixed electron and hole carriers induced by disorder. The measured Hall resistivity plateaus are well reproduced theoretically, using a self-consistent Hartree calculations of the Landau levels and assuming an ABC stacking order of the three layers.

  16. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    PubMed Central

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-01-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions. PMID:27185665

  17. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Valentí, Roser

    2016-05-01

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  18. Prospect of quantum anomalous Hall and quantum spin Hall effect in doped kagome lattice Mott insulators.

    PubMed

    Guterding, Daniel; Jeschke, Harald O; Valentí, Roser

    2016-05-17

    Electronic states with non-trivial topology host a number of novel phenomena with potential for revolutionizing information technology. The quantum anomalous Hall effect provides spin-polarized dissipation-free transport of electrons, while the quantum spin Hall effect in combination with superconductivity has been proposed as the basis for realizing decoherence-free quantum computing. We introduce a new strategy for realizing these effects, namely by hole and electron doping kagome lattice Mott insulators through, for instance, chemical substitution. As an example, we apply this new approach to the natural mineral herbertsmithite. We prove the feasibility of the proposed modifications by performing ab-initio density functional theory calculations and demonstrate the occurrence of the predicted effects using realistic models. Our results herald a new family of quantum anomalous Hall and quantum spin Hall insulators at affordable energy/temperature scales based on kagome lattices of transition metal ions.

  19. Quantum spring from the Casimir effect

    NASA Astrophysics Data System (ADS)

    Feng, Chao-Jun; Li, Xin-Zhou

    2010-07-01

    The Casimir effect arises not only in the presence of material boundaries but also in space with nontrivial topology. In this Letter, we choose a topology of the flat (D + 1)-dimensional spacetime, which causes the helix boundary condition for a Hermitian massless scalar field. Especially, Casimir effect for a massless scalar field on the helix boundary condition is investigated in two and three dimensions by using the zeta function techniques. The Casimir force parallel to the axis of the helix behaves very much like the force on a spring that obeys the Hooke's law when the ratio r of the pitch to the circumference of the helix is small, but in this case, the force comes from a quantum effect, so we would like to call it quantum spring. When r is large, this force behaves like the Newton's law of universal gravitation in the leading order. On the other hand, the force perpendicular to the axis decreases monotonously with the increasing of the ratio r. Both forces are attractive and their behaviors are the same in two and three dimensions.

  20. A quantum probability account of order effects in inference.

    PubMed

    Trueblood, Jennifer S; Busemeyer, Jerome R

    2011-01-01

    Order of information plays a crucial role in the process of updating beliefs across time. In fact, the presence of order effects makes a classical or Bayesian approach to inference difficult. As a result, the existing models of inference, such as the belief-adjustment model, merely provide an ad hoc explanation for these effects. We postulate a quantum inference model for order effects based on the axiomatic principles of quantum probability theory. The quantum inference model explains order effects by transforming a state vector with different sequences of operators for different orderings of information. We demonstrate this process by fitting the quantum model to data collected in a medical diagnostic task and a jury decision-making task. To further test the quantum inference model, a new jury decision-making experiment is developed. Using the results of this experiment, we compare the quantum inference model with two versions of the belief-adjustment model, the adding model and the averaging model. We show that both the quantum model and the adding model provide good fits to the data. To distinguish the quantum model from the adding model, we develop a new experiment involving extreme evidence. The results from this new experiment suggest that the adding model faces limitations when accounting for tasks involving extreme evidence, whereas the quantum inference model does not. Ultimately, we argue that the quantum model provides a more coherent account for order effects that was not possible before.

  1. Technique for measuring atomic recoil frequency using coherence functions

    NASA Astrophysics Data System (ADS)

    Beattie, S.; Barrett, B.; Chan, I.; Mok, C.; Yavin, I.; Kumarakrishnan, A.

    2009-02-01

    We have developed a technique for measuring the atomic recoil frequency using a single-state echo-type atom interferometer that manipulates laser-cooled atoms in the ground state. The interferometer relies on momentum-state interference due to two standing-wave pulses that produce density gratings. The interference is modified by applying a third standing-wave pulse during the interferometer pulse sequence. As a result, the grating contrast exhibits periodic revivals at the atomic recoil frequency ωr as a function of the time at which the third pulse is applied, allowing ωr to be measured easily and precisely. The contrast is accurately described by a coherence function, which is the Fourier transform of the momentum distribution, produced by the third pulse and by the theory of echo formation. If the third pulse is a traveling wave, loss of grating contrast is observed, an effect also described by a coherence function. The decay of the grating contrast as a function of continuous-wave light intensity is used to infer the cross section for photon absorption.

  2. Recoiling black holes: prospects for detection and implications of spin alignment

    NASA Astrophysics Data System (ADS)

    Blecha, Laura; Sijacki, Debora; Kelley, Luke Zoltan; Torrey, Paul; Vogelsberger, Mark; Nelson, Dylan; Springel, Volker; Snyder, Gregory; Hernquist, Lars

    2016-02-01

    Supermassive black hole (BH) mergers produce powerful gravitational wave emission. Asymmetry in this emission imparts a recoil kick to the merged BH, which can eject the BH from its host galaxy altogether. Recoiling BHs could be observed as offset active galactic nuclei (AGN). Several candidates have been identified, but systematic searches have been hampered by large uncertainties regarding their observability. By extracting merging BHs and host galaxy properties from the Illustris cosmological simulations, we have developed a comprehensive model for recoiling AGN. Here, for the first time, we model the effects of BH spin alignment and recoil dynamics based on the gas richness of host galaxies. We predict that if BH spins are not highly aligned, seeing-limited observations could resolve offset AGN, making them promising targets for all-sky surveys. For randomly oriented spins, ≲ 10 spatially offset AGN may be detectable in Hubble Space Telescope-Cosmological Evolution Survey, and >103 could be found with the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS), the Large Synoptic Survey Telescope (LSST), Euclid, and the Wide-Field Infrared Survey Telescope (WFIRST). Nearly a thousand velocity offset AGN are predicted within the Sloan Digital Sky Survey (SDSS) footprint; the rarity of large broad-line offsets among SDSS quasars is likely due in part to selection effects but suggests that spin alignment plays a role in suppressing recoils. None the less, in our most physically motivated model where alignment occurs only in gas-rich mergers, hundreds of offset AGN should be found in all-sky surveys. Our findings strongly motivate a dedicated search for recoiling AGN.

  3. Recoil Considerations for Shoulder-Fired Weapons

    DTIC Science & Technology

    2012-05-01

    2012) Steyr 15.2 mm 35 g 1450 m/s 39.6 lb 11.4 Burns (2012) Type 97 (Japanese) 20 mm 162 g 790 m/s 130 lb 28.7 Burns (2012) 12HB00 ( Remington ...shotgun 0.727 in 807 gr (12 × 00) 1225 ft/s 7.0 lb 4.37 Remington (2011) Remington Express 12B0 shotgun 0.727 in 580 gr (12 × 0) 1275 ft/s...7.0 lb 3.28 Remington 5 Table 3. Recoil-related characteristics of selected shoulder-fired weapons cited in table 1. Nomenclature

  4. Neutron electric form factor via recoil polarimetry

    SciTech Connect

    Madey, Richard; Semenov, Andrei; Taylor, Simon; Aghalaryan, Aram; Crouse, Erick; MacLachlan, Glen; Plaster, Bradley; Tajima, Shigeyuki; Tireman, William; Yan, Chenyu; Ahmidouch, Abdellah; Anderson, Brian; Asaturyan, Razmik; Baker, O; Baldwin, Alan; Breuer, Herbert; Carlini, Roger; Christy, Michael; Churchwell, Steve; Cole, Leon; Danagoulian, Samuel; Day, Donal; Elaasar, Mostafa; Ent, Rolf; Farkhondeh, Manouchehr; Fenker, Howard; Finn, John; Gan, Liping; Garrow, Kenneth; Gueye, Paul; Howell, Calvin; Hu, Bitao; Jones, Mark; Kelly, James; Keppel, Cynthia; Khandaker, Mahbubul; Kim, Wooyoung; Kowalski, Stanley; Lung, Allison; Mack, David; Manley, D; Markowitz, Pete; Mitchell, Joseph; Mkrtchyan, Hamlet; Opper, Allena; Perdrisat, Charles; Punjabi, Vina; Raue, Brian; Reichelt, Tilmann; Reinhold, Joerg; Roche, Julie; Sato, Yoshinori; Seo, Wonick; Simicevic, Neven; Smith, Gregory; Stepanyan, Samuel; Tadevosyan, Vardan; Tang, Liguang; Ulmer, Paul; Vulcan, William; Watson, John; Wells, Steven; Wesselmann, Frank; Wood, Stephen; Yan, Chen; Yang, Seunghoon; Yuan, Lulin; Zhang, Wei-Ming; Zhu, Hong Guo; Zhu, Xiaofeng

    2003-05-01

    The ratio of the electric to the magnetic form factor of the neutron, G_En/G_Mn, was measured via recoil polarimetry from the quasielastic d({pol-e},e'{pol-n)p reaction at three values of Q^2 [viz., 0.45, 1.15 and 1.47 (GeV/c)^2] in Hall C of the Thomas Jefferson National Accelerator Facility. Preliminary data indicate that G_En follows the Galster parameterization up to Q^2 = 1.15 (GeV/c)^2 and appears to rise above the Galster parameterization at Q^2 = 1.47 (GeV/c)^2.

  5. On the Effect of Quantum Noise in a Quantum-Relativistic Prisoner's Dilemma Cellular Automaton

    NASA Astrophysics Data System (ADS)

    Alonso-Sanz, Ramón; Situ, Haozhen

    2016-12-01

    The disrupting effect of quantum noise on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game with variable entangling is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.

  6. GENERAL: Preservation of quantum states via a super-Zeno effect on ensemble quantum computers

    NASA Astrophysics Data System (ADS)

    Ren, Ting-Ting; Luo, Jun; Sun, Xian-Ping; Zhan, Ming-Sheng

    2009-11-01

    Following a recent proposal by Dhar et al (2006 Phys. Rev. Lett. 96 100405), we demonstrate experimentally the preservation of quantum states in a two-qubit system based on a super-Zeno effect using liquid-state nuclear magnetic resonance techniques. Using inverting radiofrequency pulses and delicately selecting time intervals between two pulses, we suppress the effect of decoherence of quantum states. We observe that preservation of the quantum state |11rangle with the super-Zeno effect is three times more efficient than the ordinary one with the standard Zeno effect.

  7. Guiding effect of quantum wells in semiconductor lasers

    SciTech Connect

    Aleshkin, V Ya; Dikareva, Natalia V; Dubinov, A A; Zvonkov, B N; Karzanova, Maria V; Kudryavtsev, K E; Nekorkin, S M; Yablonskii, A N

    2013-05-31

    The guiding effect of InGaAs quantum wells in GaAs- and InP-based semiconductor lasers has been studied theoretically and experimentally. The results demonstrate that such waveguides can be effectively used in laser structures with a large refractive index difference between the quantum well material and semiconductor matrix and a large number of quantum wells (e.g. in InP-based structures). (semiconductor lasers. physics and technology)

  8. Covariant effective action for loop quantum cosmology a la Palatini

    SciTech Connect

    Olmo, Gonzalo J.; Singh, Parampreet E-mail: psingh@perimeterinstitute.ca

    2009-01-15

    In loop quantum cosmology, non-perturbative quantum gravity effects lead to the resolution of the big bang singularity by a quantum bounce without introducing any new degrees of freedom. Though fundamentally discrete, the theory admits a continuum description in terms of an effective Hamiltonian. Here we provide an algorithm to obtain the corresponding effective action, establishing in this way the covariance of the theory for the first time. This result provides new insights on the continuum properties of the discrete structure of quantum geometry and opens new avenues to extract physical predictions such as those related to gauge invariant cosmological perturbations.

  9. Quantum anomalous Hall effect in magnetically doped InAs/GaSb quantum wells.

    PubMed

    Wang, Qing-Ze; Liu, Xin; Zhang, Hai-Jun; Samarth, Nitin; Zhang, Shou-Cheng; Liu, Chao-Xing

    2014-10-03

    The quantum anomalous Hall effect has recently been observed experimentally in thin films of Cr-doped (Bi,Sb)(2)Te(3) at a low temperature (∼ 30 mK). In this work, we propose realizing the quantum anomalous Hall effect in more conventional diluted magnetic semiconductors with magnetically doped InAs/GaSb type-II quantum wells. Based on a four-band model, we find an enhancement of the Curie temperature of ferromagnetism due to band edge singularities in the inverted regime of InAs/GaSb quantum wells. Below the Curie temperature, the quantum anomalous Hall effect is confirmed by the direct calculation of Hall conductance. The parameter regime for the quantum anomalous Hall phase is identified based on the eight-band Kane model. The high sample quality and strong exchange coupling make magnetically doped InAs/GaSb quantum wells good candidates for realizing the quantum anomalous Hall insulator at a high temperature.

  10. Photonic versus electronic quantum anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Bleu, O.; Solnyshkov, D. D.; Malpuech, G.

    2017-03-01

    We derive the diagram of the topological phases accessible within a generic Hamiltonian describing quantum anomalous Hall effect for photons and electrons in honeycomb lattices in the presence of a Zeeman field and spin-orbit coupling (SOC). The two cases differ crucially by the winding number of their SOC, which is 1 for the Rashba SOC of electrons, and 2 for the photon SOC induced by the energy splitting between the TE and TM modes. As a consequence, the two models exhibit opposite Chern numbers ±2 at low field. Moreover, the photonic system shows a topological transition absent in the electronic case. If the photonic states are mixed with excitonic resonances to form interacting exciton-polaritons, the effective Zeeman field can be induced and controlled by a circularly polarized pump. This new feature allows an all-optical control of the topological phase transitions.

  11. Universality in the Fractional Quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Fradkin, Eduardo; Lopez, Ana

    1993-11-01

    In this lectures we review the fermion field theoretic approach to the Fractional Quantum Hall Effect and use it to discuss the origin of its remarkable universality. We discuss the semiclassical expansion around the average field approximation (AFA). We reexamine the AFA and the role of fluctuations. We argue that, order-by-order in the semiclassical expansion, the response functions obey the correct symmetry properties required by Galilean and Gauge Invariance and by the incompressibility of the fluid. In particular, we find that the low-momentum limit of the semiclassical approximation to the response functions is exact and that it saturates the f-sum rule. We discuss the nature of the spectrum of collective excitations of FQHE systems in the low-momentum limit. We applied these results to the problem of the screening of external charges and fluxes by the electron fluid, and obtained asymptotic expressions of the charge and current density profiles, for different types of interactions. The universality of the FQHE is demonstrated by deriving the form of the wave function of the ground state at long distances. We show that the wave functions of the fluid ground states of Fractional Quantum Hall systems, in the thermodynamic limit, are universal at long distances and that they have a generalized Laughlin form. This universality is a consequence of the analytic properties of the equal-time density correlation functions at long distances.

  12. Quantum Hall Effect and Quillen Metric

    NASA Astrophysics Data System (ADS)

    Klevtsov, Semyon; Ma, Xiaonan; Marinescu, George; Wiegmann, Paul

    2017-02-01

    We study the generating functional, the adiabatic curvature and the adiabatic phase for the integer quantum Hall effect (QHE) on a compact Riemann surface. For the generating functional we derive its asymptotic expansion for the large flux of the magnetic field, i.e., for the large degree k of the positive Hermitian line bundle L k . The expansion consists of the anomalous and exact terms. The anomalous terms are the leading terms of the expansion. This part is responsible for the quantization of the adiabatic transport coefficients in QHE. We then identify the non-local (anomalous) part of the expansion with the Quillen metric on the determinant line bundle, and the subleading exact part with the asymptotics of the regularized spectral determinant of the Laplacian for the line bundle L k , at large k. Finally, we show how the generating functional of the integer QHE is related to the gauge and gravitational (2+1)d Chern-Simons functionals. We observe the relation between the Bismut-Gillet-Soulé curvature formula for the Quillen metric and the adiabatic curvature for the electromagnetic and geometric adiabatic transport of the integer Quantum Hall state. We then obtain the geometric part of the adiabatic phase in QHE, given by the Chern-Simons functional.

  13. Microwave quantum refrigeration based on the Josephson effect

    NASA Astrophysics Data System (ADS)

    Solinas, Paolo; Bosisio, Riccardo; Giazotto, Francesco

    2016-06-01

    We present a microwave quantum refrigeration principle based on the Josephson effect. When a superconducting quantum interference device (SQUID) is pierced by a time-dependent magnetic flux, it induces changes in the macroscopic quantum phase and an effective finite bias voltage appears across the SQUID. This voltage can be used to actively cool, well below the lattice temperature, one of the superconducting electrodes forming the interferometer. The achievable cooling performance combined with the simplicity and scalability intrinsic to the structure pave the way to a number of applications in quantum technology.

  14. Destruction of the Fractional Quantum Hall Effect by Disorder

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1985-07-01

    It is suggested that Hall steps in the fractional quantum Hall effect are physically similar to those in the ordinary quantum Hall effect. This proposition leads to a simple scaling diagram containing a new type of fixed point, which is identified with the destruction of the fractional states by disorder. 15 refs., 3 figs.

  15. Quantum statistical effects on fusion dynamics of heavy ions

    SciTech Connect

    Ayik, S.; Yilmaz, B.; Gokalp, A.; Yilmaz, O.; Takigawa, N.

    2005-05-01

    To describe the fusion of two very heavy nuclei at near barrier energies, a generalized Langevin approach is proposed. The approach incorporates the quantum statistical fluctuations in accordance with the fluctuation and dissipation theorem. It is illustrated that the quantum statistical effects introduce an enhancement of the formation of a compound nucleus, though the quantum enhancement is somewhat less pronounced as indicated in the previous calculations.

  16. Quantum Walks with Neutral Atoms: Quantum Interference Effects of One and Two Particles

    NASA Astrophysics Data System (ADS)

    Robens, Carsten; Brakhane, Stefan; Meschede, Dieter; Alberti, A.

    We report on the state of the art of quantum walk experiments with neutral atoms in state-dependent optical lattices. We demonstrate a novel state-dependent transport technique enabling the control of two spin-selective sublattices in a fully independent fashion. This transport technique allowed us to carry out a test of single-particle quantum interference based on the violation of the Leggett-Garg inequality and, more recently, to probe two-particle quantum interference effects with neutral atoms cooled into the motional ground state. These experiments lay the groundwork for the study of discrete-time quantum walks of strongly interacting, indistinguishable particles to demonstrate quantum cellular automata of neutral atoms.

  17. Heavy ion recoil spectrometry of barium strontium titanate films

    NASA Astrophysics Data System (ADS)

    Stannard, W. B.; Johnston, P. N.; Walker, S. R.; Bubb, I. F.; Scott, J. F.; Cohen, D. D.; Dytlewski, N.; Martin, J. W.

    1995-05-01

    Thin films of barium strontium titanate have been analysed using heavy ion recoil spectrometry with 77 and 98 MeV 127I ions at the new heavy ion recoil facility at ANSTO, Lucas Heights. New calibration procedures have been developed for quantitative analysis. Energy spectra for each of the elements present reveal interdiffusion that was not previously known.

  18. Peltier effect in strongly driven quantum wires

    NASA Astrophysics Data System (ADS)

    Mierzejewski, M.; Crivelli, D.; Prelovšek, P.

    2014-08-01

    We study a microscopic model of a thermocouple device with two connected correlated quantum wires driven by a constant electric field. In such a closed system we follow the time and position dependence of the entropy density using the concept of the reduced density matrix. At weak driving, the initial changes of the entropy at the junctions can be described by the linear Peltier response. At longer times the quasiequilibrium situation is reached with well defined local temperatures which increase due to an overall Joule heating. On the other hand, a strong electric field induces a nontrivial nonlinear thermoelectric response, e.g., the Bloch oscillations of the energy current. Moreover, we show for the doped Mott insulators that strong driving can reverse the Peltier effect.

  19. Single electron effects in silicon quantum devices

    NASA Astrophysics Data System (ADS)

    Prati, Enrico

    2013-05-01

    The integration of atomic physics with quantum device technology contributed to the exploration of the field of single electron nanoelectronics originally developed in single electron quantum dots. Here the basic concepts of single electron nanoelectronics, including key aspects of architectures, quantum transport in silicon devices, single electron transistors, few atom devices, single charge/spin dynamics, and the role of valleys and bands are reviewed. Future applications in fundamental physics and classical and quantum information technologies are discussed, by highlighting the critical aspects which currently impose limits to the most advanced developments at the 10-nm node.

  20. The effective field theory treatment of quantum gravity

    SciTech Connect

    Donoghue, John F.

    2012-09-24

    This is a pedagogical introduction to the treatment of quantum general relativity as an effective field theory. It starts with an overview of the methods of effective field theory and includes an explicit example. Quantum general relativity matches this framework and I discuss gravitational examples as well as the limits of the effective field theory. I also discuss the insights from effective field theory on the gravitational effects on running couplings in the perturbative regime.

  1. Noise effects on conflicting interest quantum games with incomplete information

    NASA Astrophysics Data System (ADS)

    Situ, Haozhen; Huang, Zhiming; Zhang, Cai

    2016-09-01

    Noise effects can be harmful to quantum information systems. In the present paper, we study noise effects in the context of quantum games with incomplete information, which have more complicated structure than quantum games with complete information. The effects of several paradigmatic noises on three newly proposed conflicting interest quantum games with incomplete information are studied using numerical optimization method. Intuitively noises will bring down the payoffs. However, we find that in some situations the outcome of the games under the influence of noise effects are counter-intuitive. Sometimes stronger noise may lead to higher payoffs. Some properties of the game, like quantum advantage, fairness and equilibrium, are invulnerable to some kinds of noises.

  2. Few-body, hyperspherical treatment of the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Wooten, R. E.; Daily, K. M.; Greene, Chris H.

    2016-03-01

    The quantum Hall effect arises from the quantum behavior of two-dimensional, strongly-interacting electrons exposed to a strong, perpendicular magnetic field [1, 2]. Conventionally treated from a many-body perspective, we instead treat the system from the few-body perspective using collective coordinates and the hyperspherical adiabatic technique developed originally for atomic systems [3]. The grand angular momentum K from K-harmonic few-body theory, is shown to be an approximate good collective quantum number in this system, and is shown to correlate with known fractional quantum Hall (FQH) states at experimentally observed filling factors.

  3. Quantum teleportation of nonclassical wave packets: An effective multimode theory

    SciTech Connect

    Benichi, Hugo; Takeda, Shuntaro; Lee, Noriyuki; Furusawa, Akira

    2011-07-15

    We develop a simple and efficient theoretical model to understand the quantum properties of broadband continuous variable quantum teleportation. We show that, if stated properly, the problem of multimode teleportation can be simplified to teleportation of a single effective mode that describes the input state temporal characteristic. Using that model, we show how the finite bandwidth of squeezing and external noise in the classical channel affect the output teleported quantum field. We choose an approach that is especially relevant for the case of non-Gaussian nonclassical quantum states and we finally back-test our model with recent experimental results.

  4. Interfacial stability and self-similar rupture of evaporating liquid layers under vapor recoil

    NASA Astrophysics Data System (ADS)

    Wei, Tao; Duan, Fei

    2016-12-01

    We investigate interfacial stability of an evaporating viscous liquid layer above/below a horizontal heated substrate in the framework of a long-wave model that accounts for surface tension, positive/negative gravity, and evaporation effects of mass loss and vapor recoil. With the time-dependent linear stability analysis, it is found that the interface instability is enhanced by vapor recoil with time using an effective growth rate. The destabilizing mechanism of vapor thrust competes with the stabilizing surface tension, and the effects of the latter are not asymptotically negligible near rupture, reflected by a rescaled effective interfacial pressure. A two-dimensional nonlinear evolution is investigated for the quasi-equilibrium evaporating layers with different evaporative conditions for Rayleigh-Taylor unstable and sessile layers. For weak mass loss and strong vapor recoil, the well-defined capillary ridges emerge around a deepening narrow valley with increasing wavelength under a positive gravity, while, on the basis of initial condition, main and secondary droplets are either coalesced partially or separated by a sharp dry-out point under a negative gravity. The rupture location depends strongly on the characteristics of a given initial condition, except for the random perturbation. For both the cases, an increase in the modified evaporation number tends to reduce the rupture time tr and droplet thickness remarkably. Similarity analysis along with numerical strategy is presented for the final stage of touch-down dynamics, determined by a physical balance between the vapor recoil and capillary force. The evaporation-driven rupture with a significant vapor recoil and negligible mass loss is shown to contain a countably infinite number of similarity solutions whose horizontal and vertical length scales behave as (tr - t)1/2 and (tr - t)1/3. The first similarity solution represents a stable single-point rupture.

  5. Kicked waveforms: prospects for direct detection of black hole recoils

    NASA Astrophysics Data System (ADS)

    Gerosa, Davide; Moore, Christopher

    2017-01-01

    Generic black hole binaries radiate gravitational waves anisotropically, imparting a recoil, or kick, velocity to the merger remnant. If a component of the kick along the line of sight is present, gravitational waves emitted during the final orbits and merger will be gradually Doppler shifted as the kick builds up. We develop a simple prescription to capture this effect in existing waveform models, showing that future gravitational wave experiments will be able to perform direct measurements, not only of the black hole kick velocity, but also of its accumulation profile. In particular, the eLISA space mission will measure supermassive black hole kick velocities as low as 500 km/s, which are expected to be a common outcome of black hole binary coalescence following galaxy mergers. Black hole kicks thus constitute a promising new observable in the growing field of gravitational wave astronomy. Einstein Fellow.

  6. Quantum superchemistry: dynamical quantum effects in coupled atomic and molecular Bose-Einstein condensates.

    PubMed

    Hope, J J; Olsen, M K

    2001-04-09

    We show that in certain parameter regimes there is a macroscopic dynamical breakdown of the Gross-Pitaevskii equation. Stochastic field equations for coupled atomic and molecular condensates are derived using the functional positive- P representation. These equations describe the full quantum state of the coupled condensates and include the commonly used Gross-Pitaevskii equation as the noiseless limit. The full quantum theory includes the spontaneous processes which will become significant when the atomic population is low. The experimental signature of the quantum effects will be the time scale of the revival of the atomic population after a near total conversion to the molecular condensate.

  7. From quantum confinement to quantum Hall effect in graphene nanostructures

    NASA Astrophysics Data System (ADS)

    Guimarães, M. H. D.; Shevtsov, O.; Waintal, X.; van Wees, B. J.

    2012-02-01

    We study the evolution of the two-terminal conductance plateaus with a magnetic field for armchair graphene nanoribbons (GNRs) and graphene nanoconstrictions (GNCs). For GNRs, the conductance plateaus of (2e2)/(h) at zero magnetic field evolve smoothly to the quantum Hall regime, where the plateaus in conductance at even multiples of (2e2)/(h) disappear. It is shown that the relation between the energy and magnetic field does not follow the same behavior as in “bulk” graphene, reflecting the different electronic structure of a GNR. For the nanoconstrictions we show that the conductance plateaus do not have the same sharp behavior in zero magnetic field as in a GNR, which reflects the presence of backscattering in such structures. Our results show good agreement with recent experiments on high-quality graphene nanoconstrictions. The behavior with the magnetic field for a GNC shows some resemblance to the one for a GNR but now depends also on the length of the constriction. By analyzing the evolution of the conductance plateaus in the presence of the magnetic field we can obtain the width of the structures studied and show that this is a powerful experimental technique in the study of the electronic and structural properties of narrow structures.

  8. Quantum mechanical effects in plasmonic structures with subnanometre gaps

    PubMed Central

    Zhu, Wenqi; Esteban, Ruben; Borisov, Andrei G.; Baumberg, Jeremy J.; Nordlander, Peter; Lezec, Henri J.; Aizpurua, Javier; Crozier, Kenneth B.

    2016-01-01

    Metallic structures with nanogap features have proven highly effective as building blocks for plasmonic systems, as they can provide a wide tuning range of operating frequencies and large near-field enhancements. Recent work has shown that quantum mechanical effects such as electron tunnelling and nonlocal screening become important as the gap distances approach the subnanometre length-scale. Such quantum effects challenge the classical picture of nanogap plasmons and have stimulated a number of theoretical and experimental studies. This review outlines the findings of many groups into quantum mechanical effects in nanogap plasmons, and discusses outstanding challenges and future directions. PMID:27255556

  9. Controllability analysis and testing of a novel magnetorheological absorber for field gun recoil mitigation

    NASA Astrophysics Data System (ADS)

    Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong

    2016-11-01

    This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.

  10. Computational approach for calculating bound states in quantum field theory

    NASA Astrophysics Data System (ADS)

    Lv, Q. Z.; Norris, S.; Brennan, R.; Stefanovich, E.; Su, Q.; Grobe, R.

    2016-09-01

    We propose a nonperturbative approach to calculate bound-state energies and wave functions for quantum field theoretical models. It is based on the direct diagonalization of the corresponding quantum field theoretical Hamiltonian in an effectively discretized and truncated Hilbert space. We illustrate this approach for a Yukawa-like interaction between fermions and bosons in one spatial dimension and show where it agrees with the traditional method based on the potential picture and where it deviates due to recoil and radiative corrections. This method permits us also to obtain some insight into the spatial characteristics of the distribution of the fermions in the ground state, such as the bremsstrahlung-induced widening.

  11. Monte Carlo simulation of quantum Zeno effect in the brain

    NASA Astrophysics Data System (ADS)

    Georgiev, Danko

    2015-12-01

    Environmental decoherence appears to be the biggest obstacle for successful construction of quantum mind theories. Nevertheless, the quantum physicist Henry Stapp promoted the view that the mind could utilize quantum Zeno effect to influence brain dynamics and that the efficacy of such mental efforts would not be undermined by environmental decoherence of the brain. To address the physical plausibility of Stapp's claim, we modeled the brain using quantum tunneling of an electron in a multiple-well structure such as the voltage sensor in neuronal ion channels and performed Monte Carlo simulations of quantum Zeno effect exerted by the mind upon the brain in the presence or absence of environmental decoherence. The simulations unambiguously showed that the quantum Zeno effect breaks down for timescales greater than the brain decoherence time. To generalize the Monte Carlo simulation results for any n-level quantum system, we further analyzed the change of brain entropy due to the mind probing actions and proved a theorem according to which local projections cannot decrease the von Neumann entropy of the unconditional brain density matrix. The latter theorem establishes that Stapp's model is physically implausible but leaves a door open for future development of quantum mind theories provided the brain has a decoherence-free subspace.

  12. Graphene/Si-quantum-dot heterojunction diodes showing high photosensitivity compatible with quantum confinement effect.

    PubMed

    Shin, Dong Hee; Kim, Sung; Kim, Jong Min; Jang, Chan Wook; Kim, Ju Hwan; Lee, Kyeong Won; Kim, Jungkil; Oh, Si Duck; Lee, Dae Hun; Kang, Soo Seok; Kim, Chang Oh; Choi, Suk-Ho; Kim, Kyung Joong

    2015-04-24

    Graphene/Si quantum dot (QD) heterojunction diodes are reported for the first time. The photoresponse, very sensitive to variations in the size of the QDs as well as in the doping concentration of graphene and consistent with the quantum-confinement effect, is remarkably enhanced in the near-ultraviolet range compared to commercially available bulk-Si photodetectors. The photoresponse proves to be dominated by the carriertunneling mechanism.

  13. Effects of the generalised uncertainty principle on quantum tunnelling

    NASA Astrophysics Data System (ADS)

    Blado, Gardo; Prescott, Trevor; Jennings, James; Ceyanes, Joshuah; Sepulveda, Rafael

    2016-03-01

    In a previous paper (Blado et al 2014 Eur. J. Phys. 35 065011), we showed that quantum gravity effects can be discussed with only a background in non-relativistic quantum mechanics at the undergraduate level by looking at the effect of the generalised uncertainty principle (GUP) on the finite and infinite square wells. In this paper, we derive the GUP corrections to the tunnelling probability of simple quantum mechanical systems which are accessible to undergraduates (alpha decay, simple models of quantum cosmogenesis and gravitational tunnelling radiation) and which employ the WKB approximation, a topic discussed in undergraduate quantum mechanics classes. It is shown that the GUP correction increases the tunnelling probability in each of the examples discussed.

  14. A gun recoil system employing a magnetorheological fluid damper

    NASA Astrophysics Data System (ADS)

    Li, Z. C.; Wang, J.

    2012-10-01

    This research aims to design and control a full scale gun recoil buffering system which works under real firing impact loading conditions. A conventional gun recoil absorber is replaced with a controllable magnetorheological (MR) fluid damper. Through dynamic analysis of the gun recoil system, a theoretical model for optimal design and control of the MR fluid damper for impact loadings is derived. The optimal displacement, velocity and optimal design rules are obtained. By applying the optimal design theory to protect against impact loadings, an MR fluid damper for a full scale gun recoil system is designed and manufactured. An experimental study is carried out on a firing test rig which consists of a 30 mm caliber, multi-action automatic gun with an MR damper mounted to the fixed base through a sliding guide. Experimental buffering results under passive control and optimal control are obtained. By comparison, optimal control is better than passive control, because it produces smaller variation in the recoil force while achieving less displacement of the recoil body. The optimal control strategy presented in this paper is open-loop with no feedback system needed. This means that the control process is sensor-free. This is a great benefit for a buffering system under impact loading, especially for a gun recoil system which usually works in a harsh environment.

  15. Observing quantum trajectories: From Mott's problem to quantum Zeno effect and back

    NASA Astrophysics Data System (ADS)

    de Gosson, Maurice; Hiley, Basil; Cohen, Eliahu

    2016-11-01

    The experimental results of Kocsis et al., Mahler et al. and the proposed experiments of Morley et al. show that it is possible to construct "trajectories" in interference regions in a two-slit interferometer. These results call for a theoretical re-appraisal of the notion of a "quantum trajectory" first introduced by Dirac and in the present paper we re-examine this notion from the Bohm perspective based on Hamiltonian flows. In particular, we examine the short-time propagator and the role that the quantum potential plays in determining the form of these trajectories. These trajectories differ from those produced in a typical particle tracker and the key to this difference lies in the active suppression of the quantum potential necessary to produce Mott-type trajectories. We show, using a rigorous mathematical argument, how the active suppression of this potential arises. Finally we discuss in detail how this suppression also accounts for the quantum Zeno effect.

  16. Complex scattering dynamics and the quantum Hall effects

    SciTech Connect

    Trugman, S.A.

    1994-12-16

    We review both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the quantum Hall effect. Classical scattering is complex, due to the approach of scattering states to an infinite number of dynamically bound states. Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances in place of the classical bound states. Extended scatterers provide a quantitative explanation for the breakdown of the QHE at a comparatively small Hall voltage as seen by Kawaji et al., and possibly for noise effects.

  17. Plasmon modes of metallic nanowires including quantum nonlocal effects

    SciTech Connect

    Moradi, Afshin

    2015-03-15

    The properties of electrostatic surface and bulk plasmon modes of cylindrical metallic nanowires are investigated, using the quantum hydrodynamic theory of plasmon excitation which allows an analytical study of quantum tunneling effects through the Bohm potential term. New dispersion relations are obtained for each type of mode and their differences with previous treatments based on the standard hydrodynamic model are analyzed in detail. Numerical results show by considering the quantum effects, as the value of wave number increases, the surface modes are slightly red-shifted first and then blue-shifted while the bulk modes are blue-shifted.

  18. Quantum effects for particles channeling in a bent crystal

    NASA Astrophysics Data System (ADS)

    Feranchuk, Ilya; San, Nguyen Quang

    2016-09-01

    Quantum mechanical theory for channeling of the relativistic charged particles in the bent crystals is considered in the paper. Quantum effects of under-barrier tunneling are essential when the radius of the curvature is closed to its critical value. In this case the wave functions of the quasi-stationary states corresponding to the particles captured in a channel are presented in the analytical form. The efficiency of channeling of the particles and their angular distribution at the exit crystal surface are calculated. Characteristic experimental parameters for observation the quantum effects are estimated.

  19. Electronic Aharonov-Bohm effect induced by quantum vibrations.

    PubMed

    Shekhter, R I; Gorelik, L Y; Glazman, L I; Jonson, M

    2006-10-13

    Mechanical displacements of a nanoelectromechanical system shift the electron trajectories and hence perturb phase coherent charge transport through the device. We show theoretically that in the presence of a magnetic field such quantum-coherent displacements may give rise to an Aharonov-Bohm-type of effect. In particular, we demonstrate that quantum vibrations of a suspended carbon nanotube result in a positive nanotube magnetoresistance, which decreases slowly with the increase of temperature. This effect may enable one to detect quantum displacement fluctuations of a nanomechanical device.

  20. Fractional quantum Hall effect in the absence of Landau levels.

    PubMed

    Sheng, D N; Gu, Zheng-Cheng; Sun, Kai; Sheng, L

    2011-07-12

    It is well known that the topological phenomena with fractional excitations, the fractional quantum Hall effect, will emerge when electrons move in Landau levels. Here we show the theoretical discovery of the fractional quantum Hall effect in the absence of Landau levels in an interacting fermion model. The non-interacting part of our Hamiltonian is the recently proposed topologically non-trivial flat-band model on a checkerboard lattice. In the presence of nearest-neighbouring repulsion, we find that at 1/3 filling, the Fermi-liquid state is unstable towards the fractional quantum Hall effect. At 1/5 filling, however, a next-nearest-neighbouring repulsion is needed for the occurrence of the 1/5 fractional quantum Hall effect when nearest-neighbouring repulsion is not too strong. We demonstrate the characteristic features of these novel states and determine the corresponding phase diagram.

  1. Photogalvanic Effects in HgTe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Wittmann, B.; Danilov, S. N.; Kwon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.; Ravash, R.; Prettl, W.; Ganichev, S. D.

    We report on the observation of the terahertz radiation induced circular (CPGE) and linear (LPGE) photogalvanic effects in HgTe quantum wells. The current response is well described by the phenomenological theory of CPGE and LPGE.

  2. Density effects on bremsstrahlung radiation in quantum plasmas

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.; Jung, Young-Dae

    2014-01-01

    In this paper, we investigate the effects of plasma number-density and quantum shielding of ions by degenerate electrons on the free-free and electron-atom bremsstrahlung radiation spectra in dense quantum plasmas for a wide range of plasma number-density and atomic-number of the constituent ions. We use previously reported results from the extended Shukla-Eliasson quantum-dressed ionic potential, which takes into account the relativistic degeneracy effect, the quantum statistical pressure, the electron-exchange correlations, the Wigner-Seitz cell interaction feature, as well as the important collective quantum diffraction of electrons. It is observed that the electron number-density has fundamental effect on the free-free and bound-bound bremsstrahlung radiation spectra over the whole frequency range of radiation. By comparing the radiation spectra for the quantum plasmas with ions of bare Coulomb, Thomas-Fermi, and extended quantum potentials, many important features of the bremsstrahlung radiation is highlighted. Current investigation can provide important information on plasma diagnostics for atomic processes in dense plasmas, such as the inertial-confinement fusion, warm dense matter, and the planetary cores. The results can also help in better understanding of the cooling processes in completely degenerate hot compact stellar objects such as white dwarfs.

  3. Anomaly-free cosmological perturbations in effective canonical quantum gravity

    SciTech Connect

    Barrau, Aurelien; Calcagni, Gianluca; Grain, Julien E-mail: bojowald@gravity.psu.edu E-mail: julien.grain@ias.u-psud.fr

    2015-05-01

    This article lays out a complete framework for an effective theory of cosmological perturbations with corrections from canonical quantum gravity. Since several examples exist for quantum-gravity effects that change the structure of space-time, the classical perturbative treatment must be rethought carefully. The present discussion provides a unified picture of several previous works, together with new treatments of higher-order perturbations and the specification of initial states.

  4. Influence of excitonic effects on luminescence quantum yield in silicon

    NASA Astrophysics Data System (ADS)

    Sachenko, A. V.; Kostylyov, V. P.; Vlasiuk, V. M.; Sokolovskyi, I. O.; Evstigneev, M.

    2017-03-01

    Nonradiative exciton lifetime in silicon is determined by comparison of the experimental and theoretical curves of bulk minority charge carriers lifetime on doping and excitation levels. This value is used to analyze the influence of excitonic effects on internal luminescence quantum yield at room temperature, taking into account both nonradiative and radiative exciton lifetimes. A range of Shockley-Hall-Reed lifetimes is found, where excitonic effects lead to an increase of internal luminescence quantum yield.

  5. A Proton Recoil Telescope for Neutron Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cinausero, M.; Barbui, M.; Prete, G.; Rizzi, V.; Andrighetto, A.; Pesente, S.; Fabris, D.; Lunardon, M.; Nebbia, G.; Viesti, G.; Moretto, S.; Morando, M.; Zenoni, A.; Bocci, F.; Donzella, A.; Bonomi, G.; Fontana, A.

    2006-05-01

    The N2P research program funded by the INFN committee for Experimental Nuclear Physics (CSNIII) has among his goals the construction of a Proton Recoil Telescope (PRT), a detector to measure neutron energy spectra. The interest in such a detector is primarily related to the SPES project for rare beams production at the Laboratori Nazionali di Legnaro. For the SPES project it is, in fact, of fundamental importance to have reliable information about energy spectra and yield for neutrons produced by d or p projectiles on thick light targets to model the ''conversion target'' in which the p or d are converted in neutrons. These neutrons, in a second stage, will induce the Uranium fission in the ''production target''. The fission products are subsequently extracted, selected and re-accelerated to produce the exotic beam. The neutron spectra and angular distribution are important parameters to define the final production of fission fragments. In addition, this detector can be used to measure neutron spectra in the field of cancer therapy (this topic is nowadays of particular interest to INFN, for the National Centre for Hadron therapy (CNAO) in Pavia) and space applications.

  6. Binary Black Hole Mergers and Recoil Kicks

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Baker, J.; Choi, D.; Koppitz, M.; vanMeter, J.; Miller, C.

    2006-01-01

    Recent developments in numerical relativity have made it possible to follow reliably the coalescence of two black holes from near the innermost stable circular orbit to final ringdown. This opens up a wide variety of exciting astrophysical applications of these simulations. Chief among these is the net kick received when two unequal mass or spinning black holes merge. The magnitude of this kick has bearing on the production and growth of supermassive black holes during the epoch of structure formation, and on the retention of black holes in stellar clusters. Here we report the first accurate numerical calculation of this kick, for two nonspinning black holes in a 1.5:1 mass ratio, which is expected based on analytic considerations to give a significant fraction of the maximum possible recoil. We have performed multiple runs with different initial separations, orbital angular momenta, resolutions, extraction radii, and gauges. The full range of our kick speeds is 86-116 kilometers per second, and the most reliable runs give kicks between 86 and 97 kilometers per second. This is intermediate between the estimates from two recent post-Newtonian analyses and suggests that at redshifts z greater than 10, halos with masses less than 10(exp 9) M(sub SUN) will have difficulty retaining coalesced black holes after major mergers.

  7. An Experimental Study of Electromagnetic Lorentz Force and Rail Recoil

    DTIC Science & Technology

    2009-12-01

    MOTIVATION For over 200 years, electromagnetic forces have been extensively researched. During 1802 , Gian Domenico Romagnosi noticed that a magnetic...C. Woods, “Comment: Origin, location, magnitude and consequences of recoil in the plasma armature railgun,” Inst. Elect. Eng. Proc. Sci. Meas...22, pp. 849-850, 1989. [26] A. E. Witalis, “Origin, location, magnitude and consequences of recoil in the plasma armature railgun,” Inst. Elect

  8. Quantum optical effective-medium theory and transformation quantum optics for metamaterials

    NASA Astrophysics Data System (ADS)

    Wubs, Martijn; Amooghorban, Ehsan; Zhang, Jingjing; Mortensen, N. Asger

    2016-09-01

    While typically designed to manipulate classical light, metamaterials have many potential applications for quantum optics as well. We argue why a quantum optical effective-medium theory is needed. We present such a theory for layered metamaterials that is valid for light propagation in all spatial directions, thereby generalizing earlier work for one-dimensional propagation. In contrast to classical effective-medium theory there is an additional effective parameter that describes quantum noise. Our results for metamaterials are based on a rather general Lagrangian theory for the quantum electrodynamics of media with both loss and gain. In the second part of this paper, we present a new application of transformation optics whereby local spontaneous-emission rates of quantum emitters can be designed. This follows from an analysis how electromagnetic Green functions trans- form under coordinate transformations. Spontaneous-emission rates can be either enhanced or suppressed using invisibility cloaks or gradient index lenses. Furthermore, the anisotropic material profile of the cloak enables the directional control of spontaneous emission.

  9. Topological Effects on Quantum Phase Slips in Superfluid Spin Transport.

    PubMed

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2016-03-25

    We theoretically investigate effects of quantum fluctuations on superfluid spin transport through easy-plane quantum antiferromagnetic spin chains in the large-spin limit. Quantum fluctuations result in the decaying spin supercurrent by unwinding the magnetic order parameter within the easy plane, which is referred to as phase slips. We show that the topological term in the nonlinear sigma model for the spin chains qualitatively differentiates the decaying rate of the spin supercurrent between the integer versus half-odd-integer spin chains. An experimental setup for a magnetoelectric circuit is proposed, in which the dependence of the decaying rate on constituent spins can be verified by measuring the nonlocal magnetoresistance.

  10. General relativistic effects in quantum interference of “clocks”

    NASA Astrophysics Data System (ADS)

    Zych, M.; Pikovski, I.; Costa, F.; Brukner, Č.

    2016-06-01

    Quantum mechanics and general relativity have been each successfully tested in numerous experiments. However, the regime where both theories are jointly required to explain physical phenomena remains untested by laboratory experiments, and is also not fully understood by theory. This contribution reviews recent ideas for a new type of experiments: quantum interference of “clocks”, which aim to test novel quantum effects that arise from time dilation. “Clock” interference experiments could be realised with atoms or photons in near future laboratory experiments.

  11. Thermal effects on photon-induced quantum transport in a single quantum dot.

    PubMed

    Assunção, M O; de Oliveira, E J R; Villas-Bôas, J M; Souza, F M

    2013-04-03

    We theoretically investigate laser induced quantum transport in a single quantum dot attached to electrical contacts. Our approach, based on a nonequilibrium Green function technique, allows us to include thermal effects on the photon-induced quantum transport and excitonic dynamics, enabling the study of non-Markovian effects. By solving a set of coupled integrodifferential equations, involving correlation and propagator functions, we obtain the photocurrent and the dot occupation as a function of time. Two distinct sources of decoherence, namely, incoherent tunneling and thermal fluctuations, are observed in the Rabi oscillations. As temperature increases, a thermally activated Pauli blockade results in a suppression of these oscillations. Additionally, the interplay between photon and thermally induced electron populations results in a switch of the current sign as time evolves and its stationary value can be maximized by tuning the laser intensity.

  12. Hall effect in quantum critical charge-cluster glass.

    PubMed

    Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan

    2016-04-19

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.

  13. Dissipative quantum transport in macromolecules: Effective field theory approach

    NASA Astrophysics Data System (ADS)

    Schneider, E.; a Beccara, S.; Faccioli, P.

    2013-08-01

    We introduce an atomistic approach to the dissipative quantum dynamics of charged or neutral excitations propagating through macromolecular systems. Using the Feynman-Vernon path integral formalism, we analytically trace out from the density matrix the atomic coordinates and the heat bath degrees of freedom. This way we obtain an effective field theory which describes the real-time evolution of the quantum excitation and is fully consistent with the fluctuation-dissipation relation. The main advantage of the field-theoretic approach is that it allows us to avoid using the Keldysh contour formulation. This simplification makes it straightforward to derive Feynman diagrams to analytically compute the effects of the interaction of the propagating quantum excitation with the heat bath and with the molecular atomic vibrations. For illustration purposes, we apply this formalism to investigate the loss of quantum coherence of holes propagating through a poly(3-alkylthiophene) polymer.

  14. Piezo-Phototronic Effect in a Quantum Well Structure.

    PubMed

    Huang, Xin; Du, Chunhua; Zhou, Yongli; Jiang, Chunyan; Pu, Xiong; Liu, Wei; Hu, Weiguo; Chen, Hong; Wang, Zhong Lin

    2016-05-24

    With enhancements in the performance of optoelectronic devices, the field of piezo-phototronics has attracted much attention, and several theoretical works have been reported based on semiclassical models. At present, the feature size of optoelectronic devices are rapidly shrinking toward several tens of nanometers, which results in the quantum confinement effect. Starting from the basic piezoelectricity equation, Schrödinger equation, Poisson equation, and Fermi's golden rule, a self-consistent theoretical model is proposed to study the piezo-phototronic effect in the framework of perturbation theory in quantum mechanics. The validity and universality of this model are well-proven with photoluminescence measurements in a single GaN/InGaN quantum well and multiple GaN/InGaN quantum wells. This study provides important insight into the working principle of nanoscale piezo-phototronic devices as well as guidance for the future device design.

  15. Hall effect in quantum critical charge-cluster glass

    PubMed Central

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie; Božović, Ivan

    2016-01-01

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ∼ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state. PMID:27044081

  16. Simulations of the nuclear recoil head-tail signature in gases relevant to directional dark matter searches

    NASA Astrophysics Data System (ADS)

    Spooner, N. J. C.; Majewski, P.; Muna, D.; Snowden-Ifft, D. P.

    2010-12-01

    We present the first detailed simulations of the so-called head-tail effect of nuclear recoils in gas, the presence of which is vital to directional WIMP dark matter searches. We include comparison simulations of the range and straggling of carbon, sulphur and fluorine recoils in low pressure gas. However, the prime focus is a detailed investigation of carbon and sulphur recoils in 40 Torr negative ion carbon disulfide, a gas proposed for use in large scale directional detectors. The focus is to determine whether the location of the majority of the ionization charge released and observed from a recoil track in carbon disulfide is at the beginning (tail) of the track, at the end (head) or evenly distributed. We used the SRIM simulation program, together with a purpose-written Monte Carlo generator to model production of ionizing pairs, diffusion and basic readout geometries relevant to potential real detector scenarios, such as under development for the DRIFT experiment. The results indicate the likely existence of a head-tail track asymmetry but with a magnitude critically influenced by several competing factors, notably the W-value assumed, the drift distance and diffusion, and the recoil energy.

  17. Investigation of Quantum Effects in Heterostructures

    DTIC Science & Technology

    1993-08-20

    Mendez and C. Tejedor (Plenum, New York, 1991), p. 1. "* Resonant Magnetotunneling in Type-Il Heterostructures, in Resonant Tunneling in Semiconductors...Physics and Applications, ed. by L. L. Chang, E. E. Mendez and C. Tejedor (Plenum, New York, 1991), p. 51. "* The Evolution of Semiconductor Quantum

  18. Effective quantum dynamics of interacting systems with inhomogeneous coupling

    SciTech Connect

    Lopez, C. E.; Retamal, J. C.; Christ, H.; Solano, E.

    2007-03-15

    We study the quantum dynamics of a single mode (particle) interacting inhomogeneously with a large number of particles and introduce an effective approach to find the accessible Hilbert space, where the dynamics takes place. Two relevant examples are given: the inhomogeneous Tavis-Cummings model (e.g., N atomic qubits coupled to a single cavity mode, or to a motional mode in trapped ions) and the inhomogeneous coupling of an electron spin to N nuclear spins in a quantum dot.

  19. Quantum Electrodynamics Effects in Heavy Ions and Atoms

    SciTech Connect

    Shabaev, V. M.; Andreev, O. V.; Bondarev, A. I.; Glazov, D. A.; Kozhedub, Y. S.; Maiorova, A. V.; Tupitsyn, I. I.; Plunien, G.; Volotka, A. V.

    2011-05-11

    Quantum electrodynamics theory of heavy ions and atoms is considered. The current status of calculations of the binding energies, the hyperfine splitting and g factor values in heavy few-electron ions is reviewed. The theoretical predictions are compared with available experimental data. A special attention is focused on tests of quantum electrodynamics in strong electromagnetic fields and on determination of the fundamental constants. Recent progress in calculations of the parity nonconservation effects with heavy atoms and ions is also reported.

  20. Recoil-α-fission and recoil-α-α-fission events observed in the reaction 48Ca + 243Am

    NASA Astrophysics Data System (ADS)

    Forsberg, U.; Rudolph, D.; Andersson, L.-L.; Di Nitto, A.; Düllmann, Ch. E.; Fahlander, C.; Gates, J. M.; Golubev, P.; Gregorich, K. E.; Gross, C. J.; Herzberg, R.-D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Sarmiento, L. G.; Schädel, M.; Yakushev, A.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Dobaczewski, J.; Eberhardt, K.; Even, J.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nazarewicz, W.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Shi, Yue; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2016-09-01

    Products of the fusion-evaporation reaction 48Ca + 243Am were studied with the TASISpec set-up at the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany. Amongst the detected thirty correlated α-decay chains associated with the production of element Z = 115, two recoil-α-fission and five recoil- α- α-fission events were observed. The latter five chains are similar to four such events reported from experiments performed at the Dubna gas-filled separator, and three such events reported from an experiment at the Berkeley gas-filled separator. The four chains observed at the Dubna gas-filled separator were assigned to start from the 2n-evaporation channel 289115 due to the fact that these recoil- α- α-fission events were observed only at low excitation energies. Contrary to this interpretation, we suggest that some of these recoil- α- α-fission decay chains, as well as some of the recoil- α- α-fission and recoil-α-fission decay chains reported from Berkeley and in this article, start from the 3n-evaporation channel 288115.

  1. Nuclear recoil corrections to the Lamb shift of hydrogen and light hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Yerokhin, V. A.; Shabaev, V. M.

    2016-06-01

    Accurate calculations of the nuclear recoil effect on the Lamb shift of hydrogenlike atoms are presented. Numerical results are reported for the n s states with n ≤5 and for the 2 p1 /2 and 2 p3 /2 states. The calculations are performed to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter Z α (where Z is the nuclear charge number and α is the fine structure constant). The obtained results provide accurate predictions for the higher-order remainder beyond the known Z α -expansion terms. In the case of hydrogen, the remainder was found to be much larger than anticipated. This result resolves the previously reported disagreement between the numerical all-order and the analytical Z α -expansion approaches for the nuclear recoil effect on the hydrogen Lamb shift.

  2. Observation of the fractional quantum Hall effect in an oxide

    NASA Astrophysics Data System (ADS)

    Tsukazaki, A.; Akasaka, S.; Nakahara, K.; Ohno, Y.; Ohno, H.; Maryenko, D.; Ohtomo, A.; Kawasaki, M.

    2010-11-01

    The quantum Hall effect arises from the cyclotron motion of charge carriers in two-dimensional systems. However, the ground states related to the integer and fractional quantum Hall effect, respectively, are of entirely different origin. The former can be explained within a single-particle picture; the latter arises from electron correlation effects governed by Coulomb interaction. The prerequisite for the observation of these effects is extremely smooth interfaces of the thin film layers to which the charge carriers are confined. So far, experimental observations of such quantum transport phenomena have been limited to a few material systems based on silicon, III-V compounds and graphene. In ionic materials, the correlation between electrons is expected to be more pronounced than in the conventional heterostructures, owing to a large effective mass of charge carriers. Here we report the observation of the fractional quantum Hall effect in MgZnO/ZnO heterostructures grown by molecular-beam epitaxy, in which the electron mobility exceeds 180,000cm2V-1s-1. Fractional states such as ν=4/3, 5/3 and 8/3 clearly emerge, and the appearance of the ν=2/5 state is indicated. The present study represents a technological advance in oxide electronics that provides opportunities to explore strongly correlated phenomena in quantum transport of dilute carriers.

  3. What Can We Learn From Proton Recoils about Heavy-Ion SEE Sensitivity?

    NASA Technical Reports Server (NTRS)

    Ladbury, Raymond L.

    2016-01-01

    The fact that protons cause single-event effects (SEE) in most devices through production of light-ion recoils has led to attempts to bound heavy-ion SEE susceptibility through use of proton data. Although this may be a viable strategy for some devices and technologies, the data must be analyzed carefully and conservatively to avoid over-optimistic estimates of SEE performance. We examine the constraints that proton test data can impose on heavy-ion SEE susceptibility.

  4. Quantum Effects at a Proton Relaxation at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Kalytka, V. A.; Korovkin, M. V.

    2016-11-01

    Quantum effects during migratory polarization in multi-well crystals (including multi-well silicates and crystalline hydrates) are investigated in a variable electric field at low temperatures by direct quantum-mechanical calculations. Based on analytical solution of the quantum Liouville kinetic equation in the linear approximation for the polarizing field, the non-stationary density matrix is calculated for an ensemble of non-interacting protons moving in the field of one-dimensional multi-well crystal potential relief of rectangular shape. An expression for the complex dielectric constant convenient for a comparison with experiment and calculation of relaxer parameters is derived using the nonequilibrium polarization density matrix. The density matrix apparatus can be used for analytical investigation of the quantum mechanism of spontaneous polarization of a ferroelectric material (KDP and DKDP).

  5. Unconventional quantum Hall effect in Floquet topological insulators.

    PubMed

    Tahir, M; Vasilopoulos, P; Schwingenschlögl, U

    2016-09-28

    We study an unconventional quantum Hall effect for the surface states of ultrathin Floquet topological insulators in a perpendicular magnetic field. The resulting band structure is modified by photon dressing and the topological property is governed by the low-energy dynamics of a single surface. An exchange of symmetric and antisymmetric surface states occurs by reversing the light's polarization. We find a novel quantum Hall state in which the zeroth Landau level undergoes a phase transition from a trivial insulator state, with Hall conductivity [Formula: see text] at zero Fermi energy, to a Hall insulator state with [Formula: see text]. These findings open new possibilities for experimentally realizing nontrivial quantum states and unusual quantum Hall plateaus at [Formula: see text].

  6. Scintillation efficiency measurement of Na recoils in NaI(Tl) below the DAMA/LIBRA energy threshold

    NASA Astrophysics Data System (ADS)

    Xu, Jingke; Shields, Emily; Calaprice, Frank; Westerdale, Shawn; Froborg, Francis; Suerfu, Burkhant; Alexander, Thomas; Aprahamian, Ani; Back, Henning O.; Casarella, Clark; Fang, Xiao; Gupta, Yogesh K.; Ianni, Aldo; Lamere, Edward; Lippincott, W. Hugh; Liu, Qian; Lyons, Stephanie; Siegl, Kevin; Smith, Mallory; Tan, Wanpeng; Kolk, Bryant Vande

    2015-07-01

    The dark matter interpretation of the DAMA modulation signal depends on the NaI(Tl) scintillation efficiency of nuclear recoils. Previous measurements for Na recoils have large discrepancies, especially in the DAMA/LIBRA modulation energy region. We report a quenching effect measurement of Na recoils in NaI(Tl) from 3 to 52 keVnr, covering the whole DAMA/LIBRA energy region for dark matter-Na scattering interpretations. By using a low-energy, pulsed neutron beam, a double time-of-flight technique, and pulse-shape discrimination methods, we obtained the most accurate measurement of this kind for NaI(Tl) to date. The results differ significantly from the DAMA reported values at low energies but fall between the other previous measurements. We present the implications of the new quenching results for the dark matter interpretation of the DAMA modulation signal.

  7. 8 π -periodic dissipationless ac Josephson effect on a quantum spin Hall edge via a quantum magnetic impurity

    NASA Astrophysics Data System (ADS)

    Hui, Hoi-Yin; Sau, Jay D.

    2017-01-01

    Time-reversal invariance places strong constraints on the properties of the quantum spin Hall edge. One such restriction is the inevitability of dissipation in a Josephson junction between two superconductors formed on such an edge without the presence of interaction. Interactions and spin-conservation breaking are key ingredients for the realization of the dissipationless ac Josephson effect on such quantum spin Hall edges. We present a simple quantum impurity model that allows us to create a dissipationless fractional Josephson effect on a quantum spin Hall edge. We then use this model to substantiate a general argument that shows that any such nondissipative Josephson effect must necessarily be 8 π periodic.

  8. A predictive theory for elastic scattering and recoil of protons from 4He

    DOE PAGES

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles ofmore » either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.« less

  9. A predictive theory for elastic scattering and recoil of protons from 4He

    SciTech Connect

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles of either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.

  10. A coherent understanding of low-energy nuclear recoils in liquid xenon

    SciTech Connect

    Sorensen, Peter

    2010-09-01

    Liquid xenon detectors such as XENON10 and XENON100 obtain a significant fraction of their sensitivity to light (∼<10 GeV) particle dark matter by looking for nuclear recoils of only a few keV, just above the detector threshold. Yet in this energy regime a correct treatment of the detector threshold and resolution remains unclear. The energy dependence of the scintillation yield of liquid xenon for nuclear recoils also bears heavily on detector sensitivity, yet numerous measurements have not succeeded in obtaining concordant results. In this article we show that the ratio of detected ionization to scintillation can be leveraged to constrain the scintillation yield. We also present a rigorous treatment of liquid xenon detector threshold and energy resolution. Notably, the effective energy resolution differs significantly from a simple Poisson distribution. We conclude with a calculation of dark matter exclusion limits, and show that existing data from liquid xenon detectors strongly constrain recent interpretations of light dark matter.

  11. Nitrogen depth profiling using recoil-nucleus time-of-flight spectrometry

    SciTech Connect

    Welsh, J.F. Jr.; Schweikert, E.A.

    1994-12-31

    Neutron depth profiling (NDP) has been shown to be an effective research tool for the profiling of light elements. Significant increases in sensitivity like those realized at the cold neutron NDP facility at the National Institute of Standards and Technology (NIST) reactor continue to advance the technique. Previous work has also shown that the depth resolution of NDP could be improved by measuring (via time of flight) the kinetic energies of recoil nuclei emitted during (n,p) and (n, {alpha}) reactions. The purpose of this work was to extend the technique of recoil-nucleus time-of-flight (TOF) NDP (RN-TOF-NDP) to the profiling of nitrogen in silicon nitride using the {sup 14}N(n,p) {sup 14}C reaction.

  12. Nuclear quantum effects and hydrogen bonding in liquids.

    PubMed

    Raugei, Simone; Klein, Michael L

    2003-07-30

    We have employed ab initio path integral molecular dynamics simulations to investigate the role of nuclear quantum effects on the strength of hydrogen bonds in liquid hydrogen fluoride. Nuclear quantum effects are shown to be responsible for a stronger hydrogen bond and an enhanced dipole-dipole interaction, which lead, in turn, to a shortening of the H...F intrachain distance. The simulation results are analyzed in terms of the electronic density shifts with respect to a purely classical treatment of the nuclei. The observed enhanced hydrogen-bond interaction, which arises from a coupling of intra- and intermolecular effects, should be a general phenomenon occurring in all hydrogen-bonded systems.

  13. Quantum effects in graphene monolayers: Path-integral simulations.

    PubMed

    Herrero, Carlos P; Ramírez, Rafael

    2016-12-14

    Path-integral molecular dynamics (PIMD) simulations have been carried out to study the influence of quantum dynamics of carbon atoms on the properties of a single graphene layer. Finite-temperature properties were analyzed in the range from 12 to 2000 K, by using the LCBOPII effective potential. To assess the magnitude of quantum effects in structural and thermodynamic properties of graphene, classical molecular dynamics simulations have been also performed. Particular emphasis has been laid on the atomic vibrations along the out-of-plane direction. Even though quantum effects are present in these vibrational modes, we show that at any finite temperature classical-like motion dominates over quantum delocalization, provided that the system size is large enough. Vibrational modes display an appreciable anharmonicity, as derived from a comparison between kinetic and potential energies of the carbon atoms. Nuclear quantum effects are found to be appreciable in the interatomic distance and layer area at finite temperatures. The thermal expansion coefficient resulting from PIMD simulations vanishes in the zero-temperature limit, in agreement with the third law of thermodynamics.

  14. Quantum effects in graphene monolayers: Path-integral simulations

    NASA Astrophysics Data System (ADS)

    Herrero, Carlos P.; Ramírez, Rafael

    2016-12-01

    Path-integral molecular dynamics (PIMD) simulations have been carried out to study the influence of quantum dynamics of carbon atoms on the properties of a single graphene layer. Finite-temperature properties were analyzed in the range from 12 to 2000 K, by using the LCBOPII effective potential. To assess the magnitude of quantum effects in structural and thermodynamic properties of graphene, classical molecular dynamics simulations have been also performed. Particular emphasis has been laid on the atomic vibrations along the out-of-plane direction. Even though quantum effects are present in these vibrational modes, we show that at any finite temperature classical-like motion dominates over quantum delocalization, provided that the system size is large enough. Vibrational modes display an appreciable anharmonicity, as derived from a comparison between kinetic and potential energies of the carbon atoms. Nuclear quantum effects are found to be appreciable in the interatomic distance and layer area at finite temperatures. The thermal expansion coefficient resulting from PIMD simulations vanishes in the zero-temperature limit, in agreement with the third law of thermodynamics.

  15. Fano-Andreev effect in Quantum Dots in Kondo regime

    NASA Astrophysics Data System (ADS)

    Orellana, Pedro; Calle, Ana Maria; Pacheco, Monica; Apel, Victor

    In the present work, we investigate the transport through a T-shaped double quantum dot system coupled to two normal leads and to a superconducting lead. We study the role of the superconducting lead in the quantum interferometric features of the double quantum dot and by means of a slave boson mean field approximation at low temperature regime. We inquire into the influence of intradot interactions in the electronic properties of the system as well. Our results show that Fano resonances due to Andreev bound states are exhibited in the transmission from normal to normal lead as a consequence of quantum interference and proximity effect. This Fano effect produced by Andreev bound states in a side quantum dot was called Fano-Andreev effect, which remains valid even if the electron-electron interaction are taken into account, that is, the Fano-Andreev effect is robust against e-e interactions even in Kondo regime. We acknowledge the financial support from FONDECYT program Grants No. 3140053 and 11400571.

  16. Calculation of recoil implantation profiles using known range statistics

    NASA Technical Reports Server (NTRS)

    Fung, C. D.; Avila, R. E.

    1985-01-01

    A method has been developed to calculate the depth distribution of recoil atoms that result from ion implantation onto a substrate covered with a thin surface layer. The calculation includes first order recoils considering projected range straggles, and lateral straggles of recoils but neglecting lateral straggles of projectiles. Projectile range distributions at intermediate energies in the surface layer are deduced from look-up tables of known range statistics. A great saving of computing time and human effort is thus attained in comparison with existing procedures. The method is used to calculate recoil profiles of oxygen from implantation of arsenic through SiO2 and of nitrogen from implantation of phosphorus through Si3N4 films on silicon. The calculated recoil profiles are in good agreement with results obtained by other investigators using the Boltzmann transport equation and they also compare very well with available experimental results in the literature. The deviation between calculated and experimental results is discussed in relation to lateral straggles. From this discussion, a range of surface layer thickness for which the method applies is recommended.

  17. Energy acceptance of the St. George recoil separator

    NASA Astrophysics Data System (ADS)

    Meisel, Z.; Moran, M. T.; Gilardy, G.; Schmitt, J.; Seymour, C.; Couder, M.

    2017-04-01

    Radiative alpha-capture, (α , γ) , reactions play a critical role in nucleosynthesis and nuclear energy generation in a variety of astrophysical environments. The St. George recoil separator at the University of Notre Dame's Nuclear Science Laboratory was developed to measure (α , γ) reactions in inverse kinematics via recoil detection in order to obtain nuclear reaction cross sections at the low energies of astrophysical interest, while avoiding the γ-background that plagues traditional measurement techniques. Due to the γ ray produced by the nuclear reaction at the target location, recoil nuclei are produced with a variety of energies and angles, all of which must be accepted by St. George in order to accurately determine the reaction cross section. We demonstrate the energy acceptance of the St. George recoil separator using primary beams of helium, hydrogen, neon, and oxygen, spanning the magnetic and electric rigidity phase space populated by recoils of anticipated (α , γ) reaction measurements. We find the performance of St. George meets the design specifications, demonstrating its suitability for (α , γ) reaction measurements of astrophysical interest.

  18. Submillisecond Elastic Recoil Reveals Molecular Origins of Fibrin Fiber Mechanics

    PubMed Central

    Hudson, Nathan E.; Ding, Feng; Bucay, Igal; O’Brien, E. Timothy; Gorkun, Oleg V.; Superfine, Richard; Lord, Susan T.; Dokholyan, Nikolay V.; Falvo, Michael R.

    2013-01-01

    Fibrin fibers form the structural scaffold of blood clots. Thus, their mechanical properties are of central importance to understanding hemostasis and thrombotic disease. Recent studies have revealed that fibrin fibers are elastomeric despite their high degree of molecular ordering. These results have inspired a variety of molecular models for fibrin’s elasticity, ranging from reversible protein unfolding to rubber-like elasticity. An important property that has not been explored is the timescale of elastic recoil, a parameter that is critical for fibrin’s mechanical function and places a temporal constraint on molecular models of fiber elasticity. Using high-frame-rate imaging and atomic force microscopy-based nanomanipulation, we measured the recoil dynamics of individual fibrin fibers and found that the recoil was orders of magnitude faster than anticipated from models involving protein refolding. We also performed steered discrete molecular-dynamics simulations to investigate the molecular origins of the observed recoil. Our results point to the unstructured αC regions of the otherwise structured fibrin molecule as being responsible for the elastic recoil of the fibers. PMID:23790375

  19. Quantum Effects on the Capacitance of Graphene-Based Electrodes

    DOE PAGES

    Zhan, Cheng; Neal, Justin; Wu, Jianzhong; ...

    2015-09-08

    We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphenemore » both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.« less

  20. Quantum Effects on the Capacitance of Graphene-Based Electrodes

    SciTech Connect

    Zhan, Cheng; Neal, Justin; Wu, Jianzhong; Jiang, De-en

    2015-09-08

    We recently measured quantum capacitance for electric double layers (EDL) at electrolyte/graphene interfaces. However, the importance of quantum capacitance in realistic carbon electrodes is not clear. Toward understanding that from a theoretical perspective, here we studied the quantum capacitance and total capacitance of graphene electrodes as a function of the number of graphene layers. The quantum capacitance was obtained from electronic density functional theory based on fixed band approximation with an implicit solvation model, while the EDL capacitances were from classical density functional theory. We found that quantum capacitance plays a dominant role in total capacitance of the single-layer graphene both in aqueous and ionic-liquid electrolytes but the contribution decreases as the number of graphene layers increases. Moreover, the total integral capacitance roughly levels off and is dominated by the EDL capacitance beyond about four graphene layers. Finally, because many porous carbons have nanopores with stacked graphene layers at the surface, this research provides a good estimate of the effect of quantum capacitance on their electrochemical performance.

  1. General relativistic effects in quantum interference of photons

    NASA Astrophysics Data System (ADS)

    Zych, Magdalena; Costa, Fabio; Pikovski, Igor; Ralph, Timothy C.; Brukner, Časlav

    2012-11-01

    Quantum mechanics and general relativity have been extensively and independently confirmed in many experiments. However, the interplay of the two theories has never been tested: all experiments that measured the influence of gravity on quantum systems are consistent with non-relativistic, Newtonian gravity. On the other hand, all tests of general relativity can be described within the framework of classical physics. Here we discuss a quantum interference experiment with single photons that can probe quantum mechanics in curved space-time. We consider a single photon traveling in superposition along two paths in an interferometer, with each arm experiencing a different gravitational time dilation. If the difference in the time dilations is comparable with the photon’s coherence time, the visibility of the quantum interference is predicted to drop, while for shorter time dilations the effect of gravity will result only in a relative phase shift between the two arms. We discuss what aspects of the interplay between quantum mechanics and general relativity are probed in such experiments and analyze the experimental feasibility.

  2. Focus on quantum effects and noise in biomolecules

    NASA Astrophysics Data System (ADS)

    Fleming, G. R.; Huelga, S. F.; Plenio, M. B.

    2011-11-01

    The role of quantum mechanics in biological organisms has been a fundamental question of twentieth-century biology. It is only now, however, with modern experimental techniques, that it is possible to observe quantum mechanical effects in bio-molecular complexes directly. Indeed, recent experiments have provided evidence that quantum effects such as wave-like motion of excitonic energy flow, delocalization and entanglement can be seen even in complex and noisy biological environments (Engel et al 2007 Nature 446 782; Collini et al 2010 Nature 463 644; Panitchayangkoon et al 2010 Proc. Natl Acad. Sci. USA 107 12766). Motivated by these observations, theoretical work has highlighted the importance of an interplay between environmental noise and quantum coherence in such systems (Mohseni et al 2008 J. Chem. Phys. 129 174106; Plenio and Huelga 2008 New J. Phys. 10 113019; Olaya-Castro et al 2008 Phys. Rev. B 78 085115; Rebentrost et al 2009 New J. Phys. 11 033003; Caruso et al 2009 J. Chem. Phys. 131 105106; Ishizaki and Fleming 2009 J. Chem. Phys. 130 234111). All of this has led to a surge of interest in the exploration of quantum effects in biological systems in order to understand the possible relevance of non-trivial quantum features and to establish a potential link between quantum coherence and biological function. These studies include not only exciton transfer across light harvesting complexes, but also the avian compass (Ritz et al 2000 Biophys. J. 78 707), and the olfactory system (Turin 1996 Chem. Sens. 21 773; Chin et al 2010 New J. Phys. 12 065002). These examples show that the full understanding of the dynamics at bio-molecular length (10 Å) and timescales (sub picosecond) in noisy biological systems can uncover novel phenomena and concepts and hence present a fertile ground for truly multidisciplinary research.

  3. Effect of quantum tunneling on spin Hall magnetoresistance.

    PubMed

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-22

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  4. Effect of quantum tunneling on spin Hall magnetoresistance

    NASA Astrophysics Data System (ADS)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-01

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  5. Quantum effects in unimolecular reaction dynamics

    SciTech Connect

    Gezelter, Joshua Daniel

    1995-12-01

    This work is primarily concerned with the development of models for the quantum dynamics of unimolecular isomerization and photodissociation reactions. We apply the rigorous quantum methodology of a Discrete Variable Representation (DVR) with Absorbing Boundary Conditions (ABC) to these models in an attempt to explain some very surprising results from a series of experiments on vibrationally excited ketene. Within the framework of these models, we are able to identify the experimental signatures of tunneling and dynamical resonances in the energy dependence of the rate of ketene isomerization. Additionally, we investigate the step-like features in the energy dependence of the rate of dissociation of triplet ketene to form 3B1 CH2 + 1σ+ CO that have been observed experimentally. These calculations provide a link between ab initio calculations of the potential energy surfaces and the experimentally observed dynamics on these surfaces. Additionally, we develop an approximate model for the partitioning of energy in the products of photodissociation reactions of large molecules with appreciable barriers to recombination. In simple bond cleavage reactions like CH3COCl → CH3CO + Cl, the model does considerably better than other impulsive and statistical models in predicting the energy distribution in the products. We also investigate ways of correcting classical mechanics to include the important quantum mechanical aspects of zero-point energy. The method we investigate is found to introduce a number of undesirable dynamical artifacts including a reduction in the above-threshold rates for simple reactions, and a strong mixing of the chaotic and regular energy domains for some model problems. We conclude by discussing some of the directions for future research in the field of theoretical chemical dynamics.

  6. Dynamical quantum Hall effect in the parameter space.

    PubMed

    Gritsev, V; Polkovnikov, A

    2012-04-24

    Geometric phases in quantum mechanics play an extraordinary role in broadening our understanding of fundamental significance of geometry in nature. One of the best known examples is the Berry phase [M.V. Berry (1984), Proc. Royal. Soc. London A, 392:45], which naturally emerges in quantum adiabatic evolution. So far the applicability and measurements of the Berry phase were mostly limited to systems of weakly interacting quasi-particles, where interference experiments are feasible. Here we show how one can go beyond this limitation and observe the Berry curvature, and hence the Berry phase, in generic systems as a nonadiabatic response of physical observables to the rate of change of an external parameter. These results can be interpreted as a dynamical quantum Hall effect in a parameter space. The conventional quantum Hall effect is a particular example of the general relation if one views the electric field as a rate of change of the vector potential. We illustrate our findings by analyzing the response of interacting spin chains to a rotating magnetic field. We observe the quantization of this response, which we term the rotational quantum Hall effect.

  7. Quantum dust magnetosonic waves with spin and exchange correlation effects

    SciTech Connect

    Maroof, R.; Qamar, A.; Mushtaq, A.

    2016-01-15

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.)

  8. Quantum coherence effects in a Raman amplifier

    NASA Astrophysics Data System (ADS)

    Ooi, C. H. Raymond; Harun, S. W.; Ahmad, H.

    2011-01-01

    We have studied optical pulse propagation in a Raman fiber amplifier doped with a three-level medium and driven by a control laser pulse. We analyze the spatial-temporal dynamics of pulse propagation for different atomic initial conditions. The propagation of an optical pulse through the amplifier can be sustained by a control laser that induces transparency via quantum coherence, which is useful for extending the distance between optical repeaters. Under certain conditions, amplification is achieved without population inversion. The results could be useful for laser control of optical pulses in amplifiers and waveguides.

  9. The width of the plateaus of the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Groshev, Atanas; Scho¨n, Gerd

    1994-02-01

    We suggest that in high quality samples in the quantum Hall regime the interaction between localized states dominates over disorder effects. It leads to the formation of a Wigner crystal, which melts at a critical value ν c≈0.2 of the filling factor of the localized states. This leads to a finite width of the plateaus of the integer quantum Hall effect Δν=2ν c. This result describes well recent experimental data on single AlGaAs/GaAs heterojunctions (electron and hole gases) and double 2DEG systems.

  10. Proton Conductivity in Phosphoric Acid: The Role of Quantum Effects

    NASA Astrophysics Data System (ADS)

    Heres, M.; Wang, Y.; Griffin, P. J.; Gainaru, C.; Sokolov, A. P.

    2016-10-01

    Phosphoric acid has one of the highest intrinsic proton conductivities of any known liquids, and the mechanism of this exceptional conductivity remains a puzzle. Our detailed experimental studies discovered a strong isotope effect in the conductivity of phosphoric acids caused by (i) a strong isotope shift of the glass transition temperature and (ii) a significant reduction of the energy barrier by zero-point quantum fluctuations. These results suggest that the high conductivity in phosphoric acids is caused by a very efficient proton transfer mechanism, which is strongly assisted by quantum effects.

  11. Proton Conductivity in Phosphoric Acid: The Role of Quantum Effects

    DOE PAGES

    Heres, M.; Wang, Y.; Griffin, P. J.; ...

    2016-10-07

    Phosphoric acid has one of the highest intrinsic proton conductivities of any known liquids, and the mechanism of this exceptional conductivity remains a puzzle. In our detailed experimental studies we discovered a strong isotope effect in the conductivity of phosphoric acids caused by (i) a strong isotope shift of the glass transition temperature and (ii) a significant reduction of the energy barrier by zero-point quantum fluctuations. Our results suggest that the high conductivity in phosphoric acids is caused by a very efficient proton transfer mechanism, which is strongly assisted by quantum effects.

  12. Oscillatory quantum interference effects in narrow-gap semiconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Lillianfeld, R. B.; Kallaher, R. L.; Heremans, J. J.; Chen, Hong; Goel, N.; Chung, S. J.; Santos, M. B.; Van Roy, W.; Borghs, G.

    2010-01-01

    We investigate quantum interference phenomena in narrow bandgap semiconductors under strong spin-orbit interaction, by measuring the magnetoresistance across mesoscopic closed-path structures fabricated in two-dimensional electron systems. We discuss our results in terms of four quantum interference effects brought about by geometric phases acquired by the electron wave functions: the Aharonov-Bohm phase, the Altshuler-Aronov-Spivak effect, the Berry's phase due to the evolution of the spin degree of freedom, and the Aharonov-Casher phase.

  13. Nuclear Recoil Calibration of DarkSide-50

    NASA Astrophysics Data System (ADS)

    Edkins, Erin; DarkSide Collaboration

    2016-03-01

    DarkSide-50 dark matter experiment is a liquid argon time projection chamber (TPC) surrounded by a liquid scintillator active neutron veto, designed for the direct detection of Weakly Interacting Massive Particles (WIMPs). The success of such an experiment is dependent upon a detailed understanding of both the expected signal and backgrounds, achieved using radioactive calibration sources of known energies. Nuclear recoils provide a measurement of both the expected signal and the most dangerous background, as nuclear recoils from neutrons cannot be distinguished from a dark matter signal on an event-by-event basis in the TPC. In this talk, I will present the DS-50 calibration system, and analysis of the results of the calibration of DarkSide-50 to nuclear recoils using radioactive neutron sources. See also the DS-50 presentations by X. Xiang and G. Koh.

  14. Low momentum recoil detectors in CLAS12 at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Charles, Gabriel; CLAS Collaboration Collaboration

    2017-01-01

    Part of the experimental program in Hall B of the Jefferson Lab is dedicated to studying nucleon structure using DIS on nuclei and detecting low-momentum recoil particles in coincidence with the scattered electron. For this purpose, specially designed central detectors are required in place of the inner tracker of CLAS12 to detect particles with momenta below 100 MeV/c. We will present the status of the BONuS12 RTPC detector that will take data within the next 2 years. We will detail the main improvements made from the previous BONuS RTPC. In a second part, we will discuss another recoil experiment, called ALERT, that has been proposed to run in Hall B. The constraints being different, the recoil detector is based on a drift chamber and an array of scintillators. We will present the main differences between the two detectors and summarize the R&D performed to develop the ALERT detector.

  15. Analysis of the quantum Zeno effect for quantum control and computation

    NASA Astrophysics Data System (ADS)

    Dominy, Jason M.; Paz-Silva, Gerardo A.; Rezakhani, A. T.; Lidar, D. A.

    2013-02-01

    Within quantum information, many methods have been proposed to avoid or correct the deleterious effects of the environment on a system of interest. In this work, expanding on our earlier paper (Paz-Silva et al 2012 Phys. Rev. Lett. 108 080501), we evaluate the applicability of the quantum Zeno effect as one such method. Using the algebraic structure of stabilizer quantum error correction codes as a unifying framework, two open-loop protocols are described which involve frequent non-projective (i.e. weak) measurement of either the full stabilizer group or a minimal generating set thereof. The effectiveness of the protocols is measured by the distance between the final state under the protocol and the final state of an idealized evolution in which system and environment do not interact. Rigorous bounds on this metric are derived which demonstrate that, under certain assumptions, a Zeno effect may be realized with arbitrarily weak measurements, and that this effect can protect an arbitrary, unknown encoded state against the environment arbitrarily well.

  16. Loss of coherence and memory effects in quantum dynamics Loss of coherence and memory effects in quantum dynamics

    NASA Astrophysics Data System (ADS)

    Benatti, Fabio; Floreanini, Roberto; Scholes, Greg

    2012-08-01

    The last years have witnessed fast growing developments in the use of quantum mechanics in technology-oriented and information-related fields, especially in metrology, in the developments of nano-devices and in understanding highly efficient transport processes. The consequent theoretical and experimental outcomes are now driving new experimental tests of quantum mechanical effects with unprecedented accuracies that carry with themselves the concrete possibility of novel technological spin-offs. Indeed, the manifold advances in quantum optics, atom and ion manipulations, spintronics and nano-technologies are allowing direct experimental verifications of new ideas and their applications to a large variety of fields. All of these activities have revitalized interest in quantum mechanics and created a unique framework in which theoretical and experimental physics have become fruitfully tangled with information theory, computer, material and life sciences. This special issue aims to provide an overview of what is currently being pursued in the field and of what kind of theoretical reference frame is being developed together with the experimental and theoretical results. It consists of three sections: 1. Memory effects in quantum dynamics and quantum channels 2. Driven open quantum systems 3. Experiments concerning quantum coherence and/or decoherence The first two sections are theoretical and concerned with open quantum systems. In all of the above mentioned topics, the presence of an external environment needs to be taken into account, possibly in the presence of external controls and/or forcing, leading to driven open quantum systems. The open system paradigm has proven to be central in the analysis and understanding of many basic issues of quantum mechanics, such as the measurement problem, quantum communication and coherence, as well as for an ever growing number of applications. The theory is, however, well-settled only when the so-called Markovian or memoryless

  17. Recoil polarization observables in the electroproduction of K mesons and Λ's from the proton

    NASA Astrophysics Data System (ADS)

    Maxwell, Oren V.

    2014-09-01

    A model developed previously to investigate the electromagnetic production of strangeness from the proton is used to investigate single and double recoil polarization observables in the reaction ep →e'K+Λ in the relativistic impulse approximation. The formalism is based on a tree-level, effective Lagrangian model, which incorporates a variety of baryon resonances with spins up to 5/2 and the two kaon resonances, K(892) and K1(1270). The parameters of the model were fit to a large pool of photoproduction data from the CLAS, GRAAL, SAPHIR, and LEPS collaborations and to CLAS data for the virtual photoproduction structure functions σU,σT,σL,σTT,σLT, and σLT'. Using two different versions of this model, results are presented for three recoil polarization asymmetries that have been measured recently at CLAS. A new fit is then presented which incorporates the new polarization data in the fitted data set. Results obtained with this new fit are presented for six recoil polarization asymmetries and compared with results from one of the previous fits.

  18. Modeling nuclear and electronic recoils in noble gas detectors with NEST

    NASA Astrophysics Data System (ADS)

    Mock, Jeremy; NEST Collaboration

    2015-10-01

    Noble gases such as xenon and argon are used as targets in single and dual phased rare event detectors like those used in the search for dark matter. Such experiments require an understanding of the behavior of the target material in the presence of low-energy ionizing radiation. This understanding allows an exploration of detector effects such as threshold, energy and position reconstruction, and pulse shape discrimination. The Noble Element Simulation Technique (NEST) package is a comprehensive code base that models the scintillation and ionization yields from liquid and gaseous xenon and argon in the energy regimes of interest to many types of experiments, like dark matter and neutrino detectors. NEST is built on multiple physics models, which are constrained by available data for both electronic and nuclear recoils. A substantial body of data exists in the literature, and we are reaching an era in which sub-keV yields can be explored experimentally. Here we present a new global analysis of all available nuclear recoil data, and the latest updates to the electronic recoil model, in light of recent low-energy measurements and an improved understanding of detector systematics.

  19. Quantum gravity effects in Myers-Perry space-times

    NASA Astrophysics Data System (ADS)

    Litim, Daniel F.; Nikolakopoulos, Konstantinos

    2014-04-01

    We study quantum gravity effects for Myers-Perry black holes assuming that the leading contributions arise from the renormalization group evolution of Newton's coupling. Provided that gravity weakens following the asymptotic safety conjecture, we find that quantum effects lift a degeneracy of higher-dimensional black holes, and dominate over kinematical ones induced by rotation, particularly for small black hole mass, large angular momentum, and higher space-time dimensionality. Quantum-corrected space-times display inner and outer horizons, and show the existence of a black hole of smallest mass in any dimension. Ultra-spinning solutions no longer persist. Thermodynamic properties including temperature, specific heat, the Komar integrals, and aspects of black hole mechanics are studied as well. Observing a softening of the ring singularity, we also discuss the validity of classical energy conditions.

  20. Effects of reservoir squeezing on quantum systems and work extraction

    NASA Astrophysics Data System (ADS)

    Huang, X. L.; Wang, Tao; Yi, X. X.

    2012-11-01

    We establish a quantum Otto engine cycle in which the working substance contacts with squeezed reservoirs during the two quantum isochoric processes. We consider two working substances: (1) a qubit and (2) two coupled qubits. Due to the effects of squeezing, the working substance can be heated to a higher effective temperature, which leads to many interesting features different from the ordinary ones, such as (1) for the qubit as working substance, if we choose the squeezed parameters properly, the positive work can be exported even when THquantum fuel is more efficient than the classical one.

  1. Effects of reservoir squeezing on quantum systems and work extraction.

    PubMed

    Huang, X L; Wang, Tao; Yi, X X

    2012-11-01

    We establish a quantum Otto engine cycle in which the working substance contacts with squeezed reservoirs during the two quantum isochoric processes. We consider two working substances: (1) a qubit and (2) two coupled qubits. Due to the effects of squeezing, the working substance can be heated to a higher effective temperature, which leads to many interesting features different from the ordinary ones, such as (1) for the qubit as working substance, if we choose the squeezed parameters properly, the positive work can be exported even when T(H) quantum fuel is more efficient than the classical one.

  2. Arrest of Langmuir wave collapse by quantum effects

    NASA Astrophysics Data System (ADS)

    Simpson, G.; Sulem, C.; Sulem, P. L.

    2009-11-01

    The arrest of Langmuir wave collapse by quantum effects, first addressed by Haas and Shukla [Phys. Rev. E 79, 066402 (2009)] using a Rayleigh-Ritz trial function method is revisited, using rigorous estimates and systematic asymptotic expansions. The absence of blow up for the so-called quantum Zakharov equations is proved in two and three dimensions, whatever the strength of the quantum effects. The time-periodic behavior of the solution for initial conditions slightly in excess of the singularity threshold for the classical problem is established for various settings in two space dimensions. The difficulty of developing a consistent perturbative approach in three dimensions is also discussed and a semiphenomenological model is suggested for this case.

  3. High-temperature quantum kinetic effect in silicon nanosandwiches

    NASA Astrophysics Data System (ADS)

    Bagraev, N. T.; Grigoryev, V. Yu.; Klyachkin, L. E.; Malyarenko, A. M.; Mashkov, V. A.; Romanov, V. V.; Rul, N. I.

    2017-01-01

    The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport, with the reduction of the electron-electron interaction. The aforesaid promotes also the creation of composite bosons and fermions by the capture of single magnetic flux quanta on the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of the quantum kinetic phenomena in weak magnetic fields at high-temperatures up to the room temperature. As a certain version noted above we present the first findings of the high temperature de Haas-van Alphen, 300 K, quantum Hall, 77 K, effects as well as quantum conductance staircase in the silicon sandwich structure that represents the ultra-narrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface.

  4. Effective computation of quantum discord in a multiqubit spin chain

    NASA Astrophysics Data System (ADS)

    Chernyavskiy, A.

    2016-12-01

    Quantum discord is a non-classical correlation beyond quantum entanglement, which is a possible resource for quantum information technologies. The computation of quantum discord is a difficult problem due to the necessity of global optimization. We present the original semi-algebraic method for the effective computation of discord in the multi-qubit spin chain interacting with the impurity spin. We use the random mutations algorithm in a non-standard way: not for the minimization, but for the verification of inequalities. More specifically, we use it to check the constancy condition of the minimum of conditional entropy. After that, the discord can be calculated effectively by the algebraic procedures, and we construct the discord surface for different values of the structural parameter of the model. The considered approach for the verification of inequalities by global optimization algorithms can be used in a wide variety of applications, especially, in the theory of quantum correlations, which contains a lot of definitions based on minimums and maximums.

  5. The spin Hall effect in a quantum gas.

    PubMed

    Beeler, M C; Williams, R A; Jiménez-García, K; LeBlanc, L J; Perry, A R; Spielman, I B

    2013-06-13

    Electronic properties such as current flow are generally independent of the electron's spin angular momentum, an internal degree of freedom possessed by quantum particles. The spin Hall effect, first proposed 40 years ago, is an unusual class of phenomena in which flowing particles experience orthogonally directed, spin-dependent forces--analogous to the conventional Lorentz force that gives the Hall effect, but opposite in sign for two spin states. Spin Hall effects have been observed for electrons flowing in spin-orbit-coupled materials such as GaAs and InGaAs (refs 2, 3) and for laser light traversing dielectric junctions. Here we observe the spin Hall effect in a quantum-degenerate Bose gas, and use the resulting spin-dependent Lorentz forces to realize a cold-atom spin transistor. By engineering a spatially inhomogeneous spin-orbit coupling field for our quantum gas, we explicitly introduce and measure the requisite spin-dependent Lorentz forces, finding them to be in excellent agreement with our calculations. This 'atomtronic' transistor behaves as a type of velocity-insensitive adiabatic spin selector, with potential application in devices such as magnetic or inertial sensors. In addition, such techniques for creating and measuring the spin Hall effect are clear prerequisites for engineering topological insulators and detecting their associated quantized spin Hall effects in quantum gases. As implemented, our system realizes a laser-actuated analogue to the archetypal semiconductor spintronic device, the Datta-Das spin transistor.

  6. Photodissociation of laboratory oriented molecules: Revealing molecular frame properties of nonaxial recoil

    SciTech Connect

    Brom, Alrik J. van den; Rakitzis, T. Peter; Janssen, Maurice H.M.

    2004-12-15

    We report the photodissociation of laboratory oriented OCS molecules. A molecular beam of OCS molecules is hexapole state-selected and spatially oriented in the electric field of a velocity map imaging lens. The oriented OCS molecules are dissociated at 230 nm with the linear polarization set at 45 deg. to the orientation direction of the OCS molecules. The CO({nu}=0,J) photofragments are quantum state-selectively ionized by the same 230 nm pulse and the angular distribution is measured using the velocity map imaging technique. The observed CO({nu}=0,J) images are strongly asymmetric and the degree of asymmetry varies with the CO rotational state J. From the observed asymmetry in the laboratory frame we can directly extract the molecular frame angles between the final photofragment recoil velocity and the permanent dipole moment and the transition dipole moment. The data for CO fragments with high rotational excitation reveal that the dissociation dynamics is highly nonaxial, even though conventional wisdom suggests that the nearly limiting {beta} parameter results from fast axial recoil dynamics. From our data we can extract the relative contribution of parallel and perpendicular transitions at 230 nm excitation.

  7. Stopping Power of Au for Ti Using Elastic Recoil Technique

    SciTech Connect

    Linares, R.; Freire, J. A.; Ribas, R. V.; Medina, N. H.; Oliveira, J. R. B.; Seale, W. A.; Cybulska, E. W.; Wiedemann, K. T.; Allegro, P. R.; Toufen, D. L.

    2009-06-03

    The slowing down of heavy ions in matter is still not well understood especially at low energies (<0.5 MeV/u). In this contribution we present new experimental data for the stopping power of Au for Ti ions using an elastic recoil technique where a heavy-ion beam at low energies is produced by elastic scattering of an energetic primary beam imping on a thin target. Atoms from the target recoil at low energies. We compare our experimental data with previous data and with semi-empirical and theoretical models.

  8. Computing at the Dubna gas-filled recoil separator

    NASA Astrophysics Data System (ADS)

    Tsyganov, Yuri S.; Polyakov, Alexandr N.

    2006-03-01

    Simulation codes for the spectra of heavy implanted nuclei, applications for online data visualization and real time PC-based algorithms are considered. Special attention is paid to the application of real time techniques for radical suppression of background products in heavy-ion-induced nuclear reactions at the U-400 cyclotron of the Flerov Laboratory of Nuclear Reactions. The detection system of the Dubna gas-filled recoil separator (DGFRS) is also briefly described. Calculated heavy recoil spectra are compared with those measured in heavy-ion-induced nuclear reactions.

  9. Quantum Mechanical Aspects of Free Electron Lasers.

    NASA Astrophysics Data System (ADS)

    Saritepe, Selcuk

    Scope of study. A 2-D quantum theory of the Free Electron Laser (FEL) has been developed based on the solutions of Dirac equation for the motion of electrons moving in various wiggler geometries, uniform, tapered and enhanced by an axial guide field. It is shown that these solutions can be written in terms of Mathieu functions of fractional order. Using these solutions a perturbational analysis is carried out to calculate the frequencies and the gain of the FEL in each magnet configuration. Finally, an optical model for the FEL interaction is developed to explain the saturation behaviour and the short-pulse effects such as Laser Lethargy. Findings and conclusions. It is found that the quantum mechanical effects due to transverse momentum correction were gamma (Lorentz factor) times larger than the quantum recoil and spin effects and therefore important for the short wavelength FELs. These quantum mechanical effects cause a broadening in the spontaneous emission lineshape, a decrease in gain and an increase in the rate of harmonic frequency generation. In the presence of an axial field, gain is increased, harmonic frequency rate is reduced and Dirac solutions exhibit instability. The optical model developed in this thesis correctly predicts the oscillator rise time and uses a simpler algorithm to calculate the nonlinear saturation behaviour. Optical model also incorporates inhomogeneous broadening and quantum mechanical effects and explains the Laser Lethargy effect as an optical pulse compression phenomenon.

  10. The Quantum Spin Hall Effect: Theory and Experiment

    SciTech Connect

    Konig, Markus; Buhmann, Hartmut; Molenkamp, Laurens W.; Hughes, Taylor L.; Liu, Chao-Xing; Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-19

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Recently, a new class of topological insulators has been proposed. These topological insulators have an insulating gap in the bulk, but have topologically protected edge states due to the time reversal symmetry. In two dimensions the helical edge states give rise to the quantum spin Hall (QSH) effect, in the absence of any external magnetic field. Here we review a recent theory which predicts that the QSH state can be realized in HgTe/CdTe semiconductor quantum wells. By varying the thickness of the quantum well, the band structure changes from a normal to an 'inverted' type at a critical thickness d{sub c}. We present an analytical solution of the helical edge states and explicitly demonstrate their topological stability. We also review the recent experimental observation of the QSH state in HgTe/(Hg,Cd)Te quantum wells. We review both the fabrication of the sample and the experimental setup. For thin quantum wells with well width d{sub QW} < 6.3 nm, the insulating regime shows the conventional behavior of vanishingly small conductance at low temperature. However, for thicker quantum wells (d{sub QW} > 6.3 nm), the nominally insulating regime shows a plateau of residual conductance close to 2e{sup 2}/h. The residual conductance is independent of the sample width, indicating that it is caused by edge states. Furthermore, the residual conductance is destroyed by a small external magnetic field. The quantum phase transition at the critical thickness, d{sub c} = 6.3 nm, is also independently determined from the occurrence of a magnetic field induced insulator to metal transition.

  11. Anisotropic intrinsic spin Hall effect in quantum wires.

    PubMed

    Cummings, A W; Akis, R; Ferry, D K

    2011-11-23

    We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [N110] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications.

  12. Quantum Einstein-de Haas effect

    PubMed Central

    Ganzhorn, Marc; Klyatskaya, Svetlana; Ruben, Mario; Wernsdorfer, Wolfgang

    2016-01-01

    The classical Einstein-de Haas experiment demonstrates that a change of magnetization in a macroscopic magnetic object results in a mechanical rotation of this magnet. This experiment can therefore be considered as a macroscopic manifestation of the conservation of total angular momentum and energy of electronic spins. Since the conservation of angular momentum is a consequence of a system's rotational invariance, it is valid for an ensemble of spins in a macroscopic ferromaget as well as for single spins. Here we propose an experimental realization of an Einstein-de Haas experiment at the single-spin level based on a single-molecule magnet coupled to a nanomechanical resonator. We demonstrate that the spin associated with the single-molecule magnet is then subject to conservation of total angular momentum and energy, which results in a total suppression of the molecule's quantum tunnelling of magnetization. PMID:27126449

  13. Investigation of Quantum Effects in Heterostructures.

    DTIC Science & Technology

    2014-09-26

    identlty by block number) .j --) InAs/GaSb and GaSb/AlSb superlattices, GaSb/InAs/GaSb quantum wells and GaAs / GaA #As heterojunctions were prepared by MBE...MBE technique. Two MBE systems were available: Riber 1000 for InAs/GaSb/ASb; and Varian GEN-I for GaAs /GaAlAs. The figure shown below (taken frurn VG...studies are GaAs , GaAIAs, InAs, GaSb, AISb, Si and Ge. 3.0- Uase AlP CS0.5 2.0 ,. •b Eg CdTe (ZLm) -Si 1 -Oi 1.00 In~s kSb S 0F I I I I I I I I I I I T e

  14. The quantum pinch effect in semiconducting quantum wires: A bird’s-eye view

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-01-01

    Those who measure success with culmination do not seem to be aware that life is a journey not a destination. This spirit is best reflected in the unceasing failures in efforts for solving the problem of controlled thermonuclear fusion for even the simplest pinches for over decades; and the nature keeps us challenging with examples. However, these efforts have permitted researchers the obtention of a dense plasma with a lifetime that, albeit short, is sufficient to study the physics of the pinch effect, to create methods of plasma diagnostics, and to develop a modern theory of plasma processes. Most importantly, they have impregnated the solid state plasmas, particularly the electron-hole plasmas in semiconductors, which do not suffer from the issues related with the confinement and which have demonstrated their potential not only for the fundamental physics but also for the device physics. Here, we report on a two-component, cylindrical, quasi-one-dimensional quantum plasma subjected to a radial confining harmonic potential and an applied magnetic field in the symmetric gauge. It is demonstrated that such a system, as can be realized in semiconducting quantum wires, offers an excellent medium for observing the quantum pinch effect at low temperatures. An exact analytical solution of the problem allows us to make significant observations: Surprisingly, in contrast to the classical pinch effect, the particle density as well as the current density display a determinable maximum before attaining a minimum at the surface of the quantum wire. The effect will persist as long as the equilibrium pair density is sustained. Therefore, the technological promise that emerges is the route to the precise electronic devices that will control the particle beams at the nanoscale.

  15. Effect of structural disorder on quantum oscillations in graphite

    SciTech Connect

    Camargo, B. C. Kopelevich, Y.; Usher, A.; Hubbard, S. B.

    2016-01-18

    We have studied the effect of structural disorder on the de Haas van Alphen and Shubnikov de Haas quantum oscillations measured in natural, Kish, and highly oriented pyrolytic graphite samples at temperatures down to 30 mK and at magnetic fields up to 14 T. The measurements were performed on different samples characterized by means of x-ray diffractometry, transmission electron microscopy, and atomic-force microscopy techniques. Our results reveal a correlation between the amplitude of quantum oscillations and the sample surface roughness.

  16. Analog model for quantum gravity effects: phonons in random fluids.

    PubMed

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.

  17. Quantum effects in the dynamics of deeply supercooled water

    SciTech Connect

    Agapov, Alexander L.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; Richert, Ranko; Sokolov, Alexei P

    2015-02-26

    In spite of its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature Tg~136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. In conclusion, these results have significant implications for our understanding of water dynamics.

  18. Quantum effects in the dynamics of deeply supercooled water

    DOE PAGES

    Agapov, Alexander L.; Kolesnikov, Alexander I.; Novikov, Vladimir N.; ...

    2015-02-26

    In spite of its simple chemical structure, water remains one of the most puzzling liquids with many anomalies at low temperatures. Combining neutron scattering and dielectric relaxation spectroscopy, we show that quantum fluctuations are not negligible in deeply supercooled water. Our dielectric measurements reveal the anomalously weak temperature dependence of structural relaxation in vapor-deposited water close to the glass transition temperature Tg~136K. We demonstrate that this anomalous behavior can be explained well by quantum effects. In conclusion, these results have significant implications for our understanding of water dynamics.

  19. Quantum anomalous Hall effect in magnetic insulator heterostructure.

    PubMed

    Xu, Gang; Wang, Jing; Felser, Claudia; Qi, Xiao-Liang; Zhang, Shou-Cheng

    2015-03-11

    On the basis of ab initio calculations, we predict that a monolayer of Cr-doped (Bi,Sb)2Te3 and GdI2 heterostructure is a quantum anomalous Hall insulator with a nontrivial band gap up to 38 meV. The principle behind our prediction is that the band inversion between two topologically trivial ferromagnetic insulators can result in a nonzero Chern number, which offers a better way to realize the quantum anomalous Hall state without random magnetic doping. In addition, a simple effective model is presented to describe the basic mechanism of spin polarized band inversion in this system. Moreover, we predict that 3D quantum anomalous Hall insulator could be realized in (Bi2/3Cr1/3)2Te3 /GdI2 superlattice.

  20. On the Convergence in Effective Loop Quantum Cosmology

    SciTech Connect

    Corichi, Alejandro; Vukasinac, Tatjana; Zapata, Jose Antonio

    2010-07-12

    In Loop Quantum Cosmology (LQC) there is a discreteness parameter {lambda}, that has been heuristically associated to a fundamental granularity of quantum geometry. It is also possible to consider {lambda} as a regulator in the same spirit as that used in lattice field theory, where it specifies a regular lattice in the real line. A particular quantization of the k = 0 FLRW loop cosmological model yields a completely solvable model, known as solvable loop quantum cosmology(sLQC). In this contribution, we consider effective classical theories motivated by sLQC and study their {lambda}-dependence, with a special interest on the limit {lambda}{yields}0 and the role of the evolution parameter in the convergence of such limit.

  1. Quantum coherence rather than quantum correlations reflect the effects of a reservoir on a system's work capability.

    PubMed

    Li, Hai; Zou, Jian; Yu, Wen-Li; Xu, Bao-Ming; Li, Jun-Gang; Shao, Bin

    2014-05-01

    We consider a model of an optical cavity with a nonequilibrium reservoir consisting of a beam of identical two-level atom pairs (TLAPs) in the general X state. We find that coherence of multiparticle nonequilibrium reservoir plays a central role on the potential work capability of the cavity. We show that no matter whether there are quantum correlations in each TLAP (including quantum entanglement and quantum discord) or not, the coherence of the TLAPs has an effect on the work capability of the cavity. Additionally, constructive and destructive interferences could be induced to influence the work capability of the cavity by adjusting only the relative phase, with which quantum correlations have nothing to do. In this paper, the coherence of the reservoir, rather than the quantum correlations, effectively reflecting the effects of the reservoir on the system's work capability is demonstrated clearly.

  2. On the consistent effect histories approach to quantum mechanics

    NASA Astrophysics Data System (ADS)

    Rudolph, Oliver

    1996-11-01

    A formulation of the consistent histories approach to quantum mechanics in terms of generalized observables (POV measures) and effect operators is provided. The usual notion of ``history'' is generalized to the notion of ``effect history.'' The space of effect histories carries the structure of a D-poset. Recent results of J. D. Maitland Wright imply that every decoherence functional defined for ordinary histories can be uniquely extended to a bi-additive decoherence functional on the space of effect histories. Omnès' logical interpretation is generalized to the present context. The result of this work considerably generalizes and simplifies the earlier formulation of the consistent effect histories approach to quantum mechanics communicated in a previous work of this author.

  3. Accelerating quantum instanton calculations of the kinetic isotope effects

    SciTech Connect

    Karandashev, Konstantin; Vaníček, Jiří

    2015-11-21

    Path integral implementation of the quantum instanton approximation currently belongs among the most accurate methods for computing quantum rate constants and kinetic isotope effects, but its use has been limited due to the rather high computational cost. Here, we demonstrate that the efficiency of quantum instanton calculations of the kinetic isotope effects can be increased by orders of magnitude by combining two approaches: The convergence to the quantum limit is accelerated by employing high-order path integral factorizations of the Boltzmann operator, while the statistical convergence is improved by implementing virial estimators for relevant quantities. After deriving several new virial estimators for the high-order factorization and evaluating the resulting increase in efficiency, using ⋅H{sub α} + H{sub β}H{sub γ} → H{sub α}H{sub β} + ⋅ H{sub γ} reaction as an example, we apply the proposed method to obtain several kinetic isotope effects on CH{sub 4} + ⋅ H ⇌ ⋅ CH{sub 3} + H{sub 2} forward and backward reactions.

  4. X-ray spectroscopy of a recoiling SMBH candidate

    NASA Astrophysics Data System (ADS)

    Predehl, Peter

    2008-09-01

    Recent numerical relativity simulations of coalescencing supermassive black hole (SMBH) binaries predict that SMBHs can receive kicks with velocities up to several thousand km/s due to anisotropic emission of gravitational waves. We have recently found the best candidate todate for such a recoiling SMBH (Komossa et al. 2008). We apply for a 25 ks ACIS-S exposure of this exceptional source.

  5. Photodynamic antibacterial effect of graphene quantum dots.

    PubMed

    Ristic, Biljana Z; Milenkovic, Marina M; Dakic, Ivana R; Todorovic-Markovic, Biljana M; Milosavljevic, Momir S; Budimir, Milica D; Paunovic, Verica G; Dramicanin, Miroslav D; Markovic, Zoran M; Trajkovic, Vladimir S

    2014-05-01

    Synthesis of new antibacterial agents is becoming increasingly important in light of the emerging antibiotic resistance. In the present study we report that electrochemically produced graphene quantum dots (GQD), a new class of carbon nanoparticles, generate reactive oxygen species when photoexcited (470 nm, 1 W), and kill two strains of pathogenic bacteria, methicillin-resistant Staphylococcus aureus and Escherichia coli. Bacterial killing was demonstrated by the reduction in number of bacterial colonies in a standard plate count method, the increase in propidium iodide uptake confirming the cell membrane damage, as well as by morphological defects visualized by atomic force microscopy. The induction of oxidative stress in bacteria exposed to photoexcited GQD was confirmed by staining with a redox-sensitive fluorochrome dihydrorhodamine 123. Neither GQD nor light exposure alone were able to cause oxidative stress and reduce the viability of bacteria. Importantly, mouse spleen cells were markedly less sensitive in the same experimental conditions, thus indicating a fairly selective antibacterial photodynamic action of GQD.

  6. Quantum interference effects in molecular spin hybrids

    NASA Astrophysics Data System (ADS)

    Esat, Taner; Friedrich, Rico; Matthes, Frank; Caciuc, Vasile; Atodiresei, Nicolae; Blügel, Stefan; Bürgler, Daniel E.; Tautz, F. Stefan; Schneider, Claus M.

    2017-03-01

    We have studied by means of low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) single molecular spin hybrids formed upon chemisorbing a polycyclic aromatic, threefold symmetric hydrocarbon molecule on Co(111) nanoislands. The spin-dependent hybridization between the Co d states and the π orbitals of the molecule leads to a spin-imbalanced electronic structure of the chemisorbed organic molecule. Spin-sensitive measurements reveal that the spin polarization shows intramolecular variations among the different aromatic rings in spite of the highly symmetric adsorption geometry promoted by symmetry matching of the threefold symmetric molecule and the sixfold symmetric Co(111) lattice. Hence the varying degree of spin polarization on the organic molecule does not stem from a different hybridization of the aromatic rings with the Co atoms, but is proposed to be a consequence of the superposition of the spin polarization of the molecule and the spatially modulated spin polarization of the spin-dependent quantum interference pattern of the Co(111) surface state.

  7. The mechanics of elastic loading and recoil in anuran jumping.

    PubMed

    Astley, Henry C; Roberts, Thomas J

    2014-12-15

    Many animals use catapult mechanisms to produce extremely rapid movements for escape or prey capture, resulting in power outputs far beyond the limits of muscle. In these catapults, muscle contraction loads elastic structures, which then recoil to release the stored energy extremely rapidly. Many arthropods employ anatomical 'catch mechanisms' to lock the joint in place during the loading period, which can then be released to allow joint motion via elastic recoil. Jumping vertebrates lack a clear anatomical catch, yet face the same requirement to load the elastic structure prior to movement. There are several potential mechanisms to allow loading of vertebrate elastic structures, including the gravitational load of the body, a variable mechanical advantage, and moments generated by the musculature of proximal joints. To test these hypothesized mechanisms, we collected simultaneous 3D kinematics via X-ray Reconstruction of Moving Morphology (XROMM) and single-foot forces during the jumps of three Rana pipiens. We calculated joint mechanical advantage, moment and power using inverse dynamics at the ankle, knee, hip and ilio-sacral joints. We found that the increasing proximal joint moments early in the jump allowed for high ankle muscle forces and elastic pre-loading, and the subsequent reduction in these moments allowed the ankle to extend using elastic recoil. Mechanical advantage also changed throughout the jump, with the muscle contracting against a poor mechanical advantage early in the jump during loading and a higher mechanical advantage late in the jump during recoil. These 'dynamic catch mechanisms' serve to resist joint motion during elastic loading, then allow it during elastic recoil, functioning as a catch mechanism based on the balance and orientation of forces throughout the limb rather than an anatomical catch.

  8. Vortices in superconducting films: Statistics and fractional quantum Hall effect

    SciTech Connect

    Dziarmaga, J.

    1996-03-01

    We present a derivation of the Berry phase picked up during exchange of parallel vortices. This derivation is based on the Bogolubov{endash}de Gennes formalism. The origin of the Magnus force is also critically reanalyzed. The Magnus force can be interpreted as an interaction with the effective magnetic field. The effective magnetic field may be even of the order 10{sup 6}{ital T}/A. We discuss a possibility of the fractional quantum Hall effect (FQHE) in vortex systems. As the real magnetic field is varied to drive changes in vortex density, the vortex density will prefer to stay at some quantized values. The mere existence of the FQHE does not depend on vortex quantum statistics, although the pattern of the plateaux does. We also discuss how the density of anyonic vortices can lower the effective strengh of the Magnus force, what might be observable in measurements of Hall resistivity. {copyright} {ital 1996 The American Physical Society.}

  9. Quantum mechanical effects of topological origin

    NASA Technical Reports Server (NTRS)

    Duru, I. H.

    1993-01-01

    Following a brief review of the original Casimir and Aharonov-Bohm effects, some other effects of similar natures are mentioned. A Casimir interaction between AB fluxes is presented. Possible realizations of the Casimir effects for massive charged fields in solid state structures and a new AB effect for photons are suggested.

  10. Quantum Interference, Geometric-phase Effects, and Semiclassical Transport in Quantum Hall Systems at Low Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Feng; Tsai, I.-H.

    It is well-established how the quantum interference induces strong localization leading to quantum Hall effect at high enough magnetic fields. Decreasing the magnetic fields, however, the localization strength can be reduced and the semiclassical magneto-oscillations following Shubnikov-de Haas formula appear in most quantum Hall systems. To understand the transport properties as the localization strength becomes weak, our team has investigated the magneto-resistance in some quantum Hall systems at low magnetic fields. Under the semiclassical transport, the crossing points in Hall plateaus showed Landau-band quantization and microwave-induced heating demonstrated the band-edge equivalence important to Landau-level addition transformation. We note that such equivalence is consistent with the edge universality based on the random matrices of Wigner type, and the Landau-band quantization can be explained by considering geometric phase effects. From our study, some quantum Hall features can survive as the semiclassical transport reveals the insufficient localization.

  11. Quantum spin Hall effect in nanostructures based on cadmium fluoride

    SciTech Connect

    Bagraev, N. T.; Guimbitskaya, O. N.; Klyachkin, L. E.; Koudryavtsev, A. A.; Malyarenko, A. M.; Romanov, V. V.; Ryskin, A. I.; Shcheulin, A. S.

    2010-10-15

    Tunneling current-voltage (I-V) characteristics and temperature dependences of static magnetic susceptibility and specific heat of the CdB{sub x}F{sub 2-x}/p-CdF{sub 2}-QW/CdB{sub x}F{sub 2-x} planar sandwich structures formed on the surface of an n-CdF{sub 2} crystal have been studied in order to identify superconducting properties of the CdB{sub x}F{sub 2-x} {delta} barriers confining the p-type CdF{sub 2} ultranarrow quantum well. Comparative analysis of current-voltage (I-V) characteristics and conductance-voltage dependences (measured at the temperatures, respectively, below and above the critical temperature of superconducting transition) indicates that there is an interrelation between quantization of supercurrent and dimensional quantization of holes in the p-CdF{sub 2} ultranarrow quantum well. It is noteworthy that detection of the Josephson peak of current in each hole subband is accompanied by the appearance of the spectrum of the multiple Andreev reflection (MAR). A high degree of spin polarization of holes in the edge channels along the perimeter of the p-CdF{sub 2} ultranarrow quantum well appears as a result of MAR and makes it possible to identify the quantum spin Hall effect I-V characteristics; this effect becomes pronounced in the case of detection of nonzero conductance at the zero voltage applied to the vertical gate in the Hall geometry of the experiment. Within the energy range of superconducting gap, the I-V characteristics of the spin transistor and quantum spin Hall effect are controlled by the MAR spectrum appearing as the voltage applied to the vertical gate is varied. Beyond the range of the superconducting gap, the observed I-V characteristic of the quantum spin Hall effect is represented by a quantum conductance staircase with a height of the steps equal to e{sub 2}/h; this height is interrelated with the Aharonov-Casher oscillations of longitudinal and depends on the voltage applied to the vertical gate.

  12. Quantum Hall effect in graphene decorated with disordered multilayer patches

    SciTech Connect

    Nam, Youngwoo; Sun, Jie Lindvall, Niclas; Kireev, Dmitry; Yurgens, August; Jae Yang, Seung; Rae Park, Chong; Woo Park, Yung

    2013-12-02

    Quantum Hall effect (QHE) is observed in graphene grown by chemical vapour deposition using platinum catalyst. The QHE is even seen in samples which are irregularly decorated with disordered multilayer graphene patches and have very low mobility (<500 cm{sup 2}V{sup −1}s{sup −1}). The effect does not seem to depend on electronic mobility and uniformity of the resulting material, which indicates the robustness of QHE in graphene.

  13. Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.

    2016-08-01

    In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.

  14. Super quantum measures on effect algebras with the Riesz decomposition properties

    SciTech Connect

    Xie, Yongjian Ren, Fang; Yang, Aili

    2015-10-15

    We give one basis of the space of super quantum measures on finite effect algebras with the Riesz decomposition properties (RDP for short). Then we prove that the super quantum measures and quantum interference functions on finite effect algebras with the RDP are determined each other. At last, we investigate the relationships between the super quantum measures and the diagonally positive signed measures on finite effect algebras with the RDP in detail.

  15. Effects of anisotropy and Coulomb interactions on quantum transport in a quadruple quantum-dot structure

    NASA Astrophysics Data System (ADS)

    Kagan, M. Yu.; Val'kov, V. V.; Aksenov, S. V.

    2017-01-01

    We present an analytical and numerical investigation of the spectral and transport properties of a quadruple quantum-dot (QQD) structure which is one of the popular low-dimensional systems in the context of fundamental quantum physics study, future electronic applications, and quantum calculations. The density of states, occupation numbers, and conductance of the structure were analyzed using the nonequilibrium Green's functions in the tight-binding approach and the equation-of-motion method. In particular the anisotropy of hopping integrals and on-site electron energies as well as the effects of the finite intra- and interdot Coulomb interactions were investigated. It was found out that the anisotropy of the kinetic processes in the system leads to the Fano-Feshbach asymmetrical peak. We demonstrated that the conductance of the QQD device has a wide insulating band with steep edges separating triple-peak structures if the intradot Coulomb interactions are taken into account. The interdot Coulomb correlations between the central QDs result in the broadening of this band and the occurrence of an additional band with low conductance due to the Fano antiresonances. It was shown that in this case the conductance of the anisotropic QQD device can be dramatically changed by tuning the anisotropy of on-site electron energies.

  16. Effective time-independent analysis for quantum kicked systems

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Jayendra N.; Guha Sarkar, Tapomoy

    2015-03-01

    We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.

  17. Effective time-independent analysis for quantum kicked systems.

    PubMed

    Bandyopadhyay, Jayendra N; Guha Sarkar, Tapomoy

    2015-03-01

    We present a mapping of potentially chaotic time-dependent quantum kicked systems to an equivalent approximate effective time-independent scenario, whereby the system is rendered integrable. The time evolution is factorized into an initial kick, followed by an evolution dictated by a time-independent Hamiltonian and a final kick. This method is applied to the kicked top model. The effective time-independent Hamiltonian thus obtained does not suffer from spurious divergences encountered if the traditional Baker-Cambell-Hausdorff treatment is used. The quasienergy spectrum of the Floquet operator is found to be in excellent agreement with the energy levels of the effective Hamiltonian for a wide range of system parameters. The density of states for the effective system exhibits sharp peaklike features, pointing towards quantum criticality. The dynamics in the classical limit of the integrable effective Hamiltonian shows remarkable agreement with the nonintegrable map corresponding to the actual time-dependent system in the nonchaotic regime. This suggests that the effective Hamiltonian serves as a substitute for the actual system in the nonchaotic regime at both the quantum and classical level.

  18. Aharonov-Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap.

    PubMed

    Noguchi, Atsushi; Shikano, Yutaka; Toyoda, Kenji; Urabe, Shinji

    2014-05-13

    Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov-Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ0 through the rotor [(0.99 ± 0.07) × φ0].

  19. Effects of Number Scaling on Entangled States in Quantum Mechanics

    SciTech Connect

    Benioff, Paul

    2016-05-19

    A summary of number structure scaling is followed by a description of the effects of number scaling in nonrelativistic quantum mechanics. The description extends earlier work to include the effects on the states of two or more interacting particles. Emphasis is placed on the effects on entangled states. The resulting scaling field is generalized to describe the effects on these states. It is also seen that one can use fiber bundles with fibers associated with single locations of the underlying space to describe the effects of scaling on arbitrary numbers of particles.

  20. Quantum gravity effects on charged microblack holes thermodynamics

    NASA Astrophysics Data System (ADS)

    Abbasvandi, Niloofar; Soleimani, M. J.; Radiman, Shahidan; Wan Abdullah, W. A. T.

    2016-08-01

    The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum and maximal momentum as GUP type II on thermo dynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.

  1. Evanescent radiation, quantum mechanics and the Casimir effect

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  2. Memory effects in attenuation and amplification quantum processes

    NASA Astrophysics Data System (ADS)

    Lupo, Cosmo; Giovannetti, Vittorio; Mancini, Stefano

    2010-09-01

    With increasing communication rates via quantum channels, memory effects become unavoidable whenever the use rate of the channel is comparable to the typical relaxation time of the channel environment. We introduce a model of a bosonic memory channel, describing correlated noise effects in quantum-optical processes via attenuating or amplifying media. To study such a channel model, we make use of a proper set of collective field variables, which allows us to unravel the memory effects, mapping the n-fold concatenation of the memory channel to a unitarily equivalent, direct product of n single-mode bosonic channels. We hence estimate the channel capacities by relying on known results for the memoryless setting. Our findings show that the model is characterized by two different regimes, in which the cross correlations induced by the noise among different channel uses are either exponentially enhanced or exponentially reduced.

  3. Lifetime measurement of the 41+ state of 58Ni with the recoil distance method

    NASA Astrophysics Data System (ADS)

    Loelius, C.; Iwasaki, H.; Brown, B. A.; Honma, M.; Bader, V. M.; Baugher, T.; Bazin, D.; Berryman, J. S.; Braunroth, T.; Campbell, C. M.; Dewald, A.; Gade, A.; Kobayashi, N.; Langer, C.; Lee, I. Y.; Lemasson, A.; Lunderberg, E.; Morse, C.; Recchia, F.; Smalley, D.; Stroberg, S. R.; Wadsworth, R.; Walz, C.; Weisshaar, D.; Westerberg, A.; Whitmore, K.; Wimmer, K.

    2016-08-01

    The quadrupole transition rate for the 41+→21+ transition of 58Ni was determined from an application of the recoil distance method with the Gamma-Ray Energy Tracking In-beam Nuclear Array (GRETINA). The present result of the B (E 2 ;41+→21+) was found to be 50-6+11e2fm4 , which is about three times smaller than the literature value, indicating substantially less collectivity than previously believed. Shell model calculations performed with the GXPF1A effective interaction agree with the present data and the validity of the standard effective charges in understanding collectivity in the nickel isotopes is discussed.

  4. Loop quantum cosmology of Bianchi IX: effective dynamics

    NASA Astrophysics Data System (ADS)

    Corichi, Alejandro; Montoya, Edison

    2017-03-01

    We study solutions to the effective equations for the Bianchi IX class of spacetimes within loop quantum cosmology (LQC). We consider Bianchi IX models whose matter content is a massless scalar field, by numerically solving the loop quantum cosmology effective equations, with and without inverse triad corrections. The solutions are classified using certain geometrically motivated classical observables. We show that both effective theories—with lapse N  =  V and N  =  1—resolve the big bang singularity and reproduce the classical dynamics far from the bounce. Moreover, due to the positive spatial curvature, there is an infinite number of bounces and recollapses. We study the limit of large field momentum and show that both effective theories reproduce the same dynamics, thus recovering general relativity. We implement a procedure to identify amongst the Bianchi IX solutions, those that behave like k  =  0,1 FLRW as well as Bianchi I, II, and VII0 models. The effective solutions exhibit Bianchi I phases with Bianchi II transitions and also Bianchi VII0 phases, which had not been studied before. We comment on the possible implications of these results for a quantum modification to the classical BKL behaviour.

  5. Casimir effects for classical and quantum liquids in slab geometry: A brief review

    NASA Astrophysics Data System (ADS)

    Biswas, Shyamal

    2015-05-01

    We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over 4He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.

  6. Electromagnetically induced classical and quantum Lau effect

    NASA Astrophysics Data System (ADS)

    Qiu, Tianhui; Yang, Guojian; Xiong, Jun; Xu, Deqin

    2016-07-01

    We present two schemes of Lau effect for an object, an electromagnetically induced grating generated based on the electromagnetically induced effect. The Lau interference pattern is detected either directly in the way of the traditional Lau effect measurement with a classical thermal light being the imaging light, or indirectly and nonlocally in the way of two-photon coincidence measurement with a pair of entangled photons being the imaging light.

  7. Heat capacity of water: A signature of nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Vega, C.; Conde, M. M.; McBride, C.; Abascal, J. L. F.; Noya, E. G.; Ramirez, R.; Sesé, L. M.

    2010-01-01

    In this note we present results for the heat capacity at constant pressure for the TIP4PQ/2005 model, as obtained from path-integral simulations. The model does a rather good job of describing both the heat capacity of ice Ih and of liquid water. Classical simulations using the TIP4P/2005, TIP3P, TIP4P, TIP4P-Ew, simple point charge/extended, and TIP5P models are unable to reproduce the heat capacity of water. Given that classical simulations do not satisfy the third law of thermodynamics, one would expect such a failure at low temperatures. However, it seems that for water, nuclear quantum effects influence the heat capacities all the way up to room temperature. The failure of classical simulations to reproduce Cp points to the necessity of incorporating nuclear quantum effects to describe this property accurately.

  8. Deformed Calogero-Sutherland model and fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Atai, Farrokh; Langmann, Edwin

    2017-01-01

    The deformed Calogero-Sutherland (CS) model is a quantum integrable system with arbitrary numbers of two types of particles and reducing to the standard CS model in special cases. We show that a known collective field description of the CS model, which is based on conformal field theory (CFT), is actually a collective field description of the deformed CS model. This provides a natural application of the deformed CS model in Wen's effective field theory of the fractional quantum Hall effect (FQHE), with the two kinds of particles corresponding to electrons and quasi-hole excitations. In particular, we use known mathematical results about super-Jack polynomials to obtain simple explicit formulas for the orthonormal CFT basis proposed by van Elburg and Schoutens in the context of the FQHE.

  9. Quasiparticle Aggregation in the Fractional Quantum Hall Effect

    DOE R&D Accomplishments Database

    Laughlin, R. B.

    1984-10-10

    Quasiparticles in the Fractional Quantum Hall Effect behave qualitatively like electrons confined to the lowest landau level, and can do everything electrons can do, including condense into second generation Fractional Quantum Hall ground states. I review in this paper the reasoning leading to variational wavefunctions for ground state and quasiparticles in the 1/3 effect. I then show how two-quasiparticle eigenstates are uniquely determined from symmetry, and how this leads in a natural way to variational wavefunctions for composite states which have the correct densities (2/5, 2/7, ...). I show in the process that the boson, anyon and fermion representations for the quasiparticles used by Haldane, Halperin, and me are all equivalent. I demonstrate a simple way to derive Halperin`s multiple-valued quasiparticle wavefunction from the correct single-valued electron wavefunction. (auth)

  10. Higher-Dimensional Quantum Hall Effect in String Theory

    SciTech Connect

    Fabinger, Michal

    2002-08-08

    We construct a string theory realization of the 4+1d quantum Hall effect recently discovered by Zhang and Hu. The string theory picture contains coincident D4-branes forming an S{sup 4} and having D0-branes (i.e. instantons) in their world-volume. The charged particles are modeled as string ends. Their configuration space approaches in the large n limit a CP{sup 3}, which is an S{sup 2} fibration over S{sup 4}, the extra S{sup 2} being made out of the Chan-Paton degrees of freedom. An alternative matrix theory description involves the fuzzy S{sup 4}. We also find that there is a hierarchy of quantum Hall effects in odd-dimensional spacetimes, generalizing the known cases in 2 + 1d and 4 + 1d.

  11. Elastic Recoil after Balloon Angioplasty in Hemodialysis Accesses: Does It Actually Occur and Is It Clinically Relevant?

    PubMed

    Rajan, Dheeraj K; Sidhu, Arshdeep; Noel-Lamy, Maxime; Mahajan, Ashish; Simons, Martin E; Sniderman, Kenneth W; Jaskolka, Jeffrey; Tan, Kong Teng

    2016-06-01

    Purpose To qualify and quantify elastic recoil and determine its effect on access patency. Materials and Methods Research ethics board approval was obtained and all patients signed an informed consent form. This was a prospective, nonrandomized study of mature accesses that underwent balloon percutaneous transluminal angioplasty (PTA) between January 2009 and December 2012. After PTA, completion fistulography was performed at 0-, 5-, 10-, and 15-minute intervals. From Digital Imaging and Communications in Medicine images, percentage of lesion stenosis before and after PTA was measured at each time point. A total of 76 patients (44 men, 32 women; mean age, 59.6 years) were enrolled and underwent 154 PTAs in 56 grafts and 98 fistulas. Venous elastic recoil was defined as recurrent luminal narrowing greater than 50% within 15 minutes after full effacement of the stenosis by the angioplasty balloon. Data collected included sex, age, access type and location, lesion location, length, and time to next intervention. Access patency was estimated by using Kaplan-Meier survival method, association of variables with the risk of loss of patency was assessed by using a Cox proportional hazards model, and a multiple variable model was examined by considering all variables. Results Technical success of PTA with less than 30% residual stenosis was 78%. By 15 minutes, 15.6% (24 of 154) of treated lesions recurrently narrowed by more than 50%, with a majority observed at 5 minutes (15 of 24). Technical failure of PTA was predictive of elastic recoil (P < .001), as was cephalic arch stenosis in fistulas (P = .047) and autogenous fistulas (P = .04). Elastic recoil, when it did occur, did not influence patency. Six-month primary patency was 34.8% in grafts and 47.1% in fistulas. Conclusion Venous elastic recoil after PTA of stenoses in hemodialysis access circuits is common, but its occurrence does not influence access primary patency after PTA. (©) RSNA, 2015.

  12. Noise spectrum of quantum transport through double quantum dots: Renormalization and non-Markovian effects

    NASA Astrophysics Data System (ADS)

    Shi, Pengqin; Hu, Menghan; Ying, Yaofeng; Jin, Jinshuang

    2016-09-01

    Based on the time-nonlocal particle number-resolved master equation, we investigate the sequential electron transport through the interacting double quantum dots. Our calculations show that there exists the effect of energy renormalization in the dispersion of the bath interaction spectrum and it is sensitive to the the bandwidth of the bath. This effect would strongly affect the stationary current and its zero-frequency shot noise for weak inter-dot coherent coupling strength, but for strong inter-dot coupling regime, it is negligible due to the strong intrinsic Rabi coherent dynamics. Moreover, the possible observable effects of the energy renormalization in the noise spectrum are also investigated through the Rabi coherence signal. Finally, the non-Markovian effect is manifested in the finite-frequency noise spectrum with the appearance of quasisteps, and the magnitude of these quasisteps are modified by the dispersion function.

  13. Magnetotransport in Dirac metals: Chiral magnetic effect and quantum oscillations

    DOE PAGES

    Monteiro, Gustavo M.; Abanov, Alexander G.; Kharzeev, Dmitri E.

    2015-10-08

    Dirac metals are characterized by the linear dispersion of fermionic quasiparticles, with the Dirac point hidden inside a Fermi surface. We study the magnetotransport in these materials using chiral kinetic theory to describe within the same framework both the negative magnetoresistance caused by the chiral magnetic effect and quantum oscillations in the magnetoresistance due to the existence of the Fermi surface. Lastly, we discuss the relevance of obtained results to recent measurements on Cd3As2.

  14. Magnetotransport in Dirac metals: Chiral magnetic effect and quantum oscillations

    SciTech Connect

    Monteiro, Gustavo M.; Abanov, Alexander G.; Kharzeev, Dmitri E.

    2015-10-08

    Dirac metals are characterized by the linear dispersion of fermionic quasiparticles, with the Dirac point hidden inside a Fermi surface. We study the magnetotransport in these materials using chiral kinetic theory to describe within the same framework both the negative magnetoresistance caused by the chiral magnetic effect and quantum oscillations in the magnetoresistance due to the existence of the Fermi surface. Lastly, we discuss the relevance of obtained results to recent measurements on Cd3As2.

  15. Effect of carrier dynamics and temperature on two-state lasing in semiconductor quantum dot lasers

    SciTech Connect

    Korenev, V. V. Savelyev, A. V.; Zhukov, A. E.; Omelchenko, A. V.; Maximov, M. V.

    2013-10-15

    It is analytically shown that the both the charge carrier dynamics in quantum dots and their capture into the quantum dots from the matrix material have a significant effect on two-state lasing phenomenon in quantum dot lasers. In particular, the consideration of desynchronization in electron and hole capture into quantum dots allows one to describe the quenching of ground-state lasing observed at high injection currents both qualitatevely and quantitatively. At the same time, an analysis of the charge carrier dynamics in a single quantum dot allowed us to describe the temperature dependences of the emission power via the ground- and excited-state optical transitions of quantum dots.

  16. Effective localization potential of quantum states in disordered media

    NASA Astrophysics Data System (ADS)

    Marcel, Filoche; Arnold, Douglas N.; David, Guy; Jerison, David; Mayboroda, Svitlana

    The amplitude of localized quantum states in random or disordered media may exhibit long range exponential decay. We present here a theory that unveils the existence of a localization landscape that controls the amplitude of the eigenstates in any quantum system. For second order operators such as the Schrödinger operator, this localization landscape is simply the solution of a Dirichlet problem with uniform right-hand side. Moreover, we show that the reciprocal of this landscape plays the role of an effective potential which finely governs the confinement of the quantum states. In this picture, the boundaries of the localization subregions for low energy eigenfunctions correspond to the barriers of this effective potential, and the long range exponential decay characteristic of Anderson localization is explained as the consequence of multiple tunneling in the dense network of barriers created by this effective potential. Finally, we show that the Weyl's formula based on this potential turns out to be a remarkable approximation of the density of states for a large variety of systems, periodic or random, 1D, 2D, or 3D. NSF Grant DMS-1418805, ANR Grant GEOMETRYA ANR-12-BS01-0014, NSF Grant DMS-1069225, NSF CAREER Award DMS-1056004, NSF INSPIRE Grant.

  17. Effects of a scalar scaling field on quantum mechanics

    SciTech Connect

    Benioff, Paul

    2016-04-18

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at each location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.

  18. Quantum-instanton evaluation of the kinetic isotope effects.

    PubMed

    Vanícek, Jirí; Miller, William H; Castillo, Jesús F; Aoiz, F Javier

    2005-08-01

    A general quantum-mechanical method for computing kinetic isotope effects is presented. The method is based on the quantum-instanton approximation for the rate constant and on the path-integral Metropolis-Monte Carlo evaluation of the Boltzmann operator matrix elements. It computes the kinetic isotope effect directly, using a thermodynamic integration with respect to the mass of the isotope, thus avoiding the more computationally expensive process of computing the individual rate constants. The method should be more accurate than variational transition-state theories or the semiclassical instanton method since it does not assume a single tunneling path and does not use a semiclassical approximation of the Boltzmann operator. While the general Monte Carlo implementation makes the method accessible to systems with a large number of atoms, we present numerical results for the Eckart barrier and for the collinear and full three-dimensional isotope variants of the hydrogen exchange reaction H + H2 --> H2 + H. In all seven test cases, for temperatures between 250 and 600 K, the error of the quantum instanton approximation for the kinetic isotope effects is less than approximately 10%.

  19. Quantum instanton evaluation of the kinetic isotope effects

    SciTech Connect

    Vanicek, Jiri; Miller, William H.; Castillo, Jesus F.; Aoiz, F.Javier

    2005-04-19

    A general quantum-mechanical method for computing kinetic isotope effects is presented. The method is based on the quantum instanton approximation for the rate constant and on the path integral Metropolis Monte-Carlo evaluation of the Boltzmann operator matrix elements. It computes the kinetic isotope effect directly, using a thermodynamic integration with respect to the mass of the isotope, thus avoiding the more computationally expensive process of computing the individual rate constants. The method is more accurate than variational transition-state theories or the semiclassical instanton method since it does not assume a single reaction path and does not use a semiclassical approximation of the Boltzmann operator. While the general Monte-Carlo implementation makes the method accessible to systems with a large number of atoms, we present numerical results for the Eckart barrier and for the collinear and full three-dimensional isotope variants of the hydrogen exchange reaction H+H{sub 2} {yields} H{sub 2}+H. In all seven test cases, for temperatures between 250 K and 600 K, the error of the quantum instanton approximation for the kinetic isotope effects is less than {approx}10%.

  20. Effects of a scalar scaling field on quantum mechanics

    DOE PAGES

    Benioff, Paul

    2016-04-18

    This paper describes the effects of a complex scalar scaling field on quantum mechanics. The field origin is an extension of the gauge freedom for basis choice in gauge theories to the underlying scalar field. The extension is based on the idea that the value of a number at one space time point does not determine the value at another point. This, combined with the description of mathematical systems as structures of different types, results in the presence of separate number fields and vector spaces as structures, at different space time locations. Complex number structures and vector spaces at eachmore » location are scaled by a complex space time dependent scaling factor. The effect of this scaling factor on several physical and geometric quantities has been described in other work. Here the emphasis is on quantum mechanics of one and two particles, their states and properties. Multiparticle states are also briefly described. The effect shows as a complex, nonunitary, scalar field connection on a fiber bundle description of nonrelativistic quantum mechanics. Here, the lack of physical evidence for the presence of this field so far means that the coupling constant of this field to fermions is very small. It also means that the gradient of the field must be very small in a local region of cosmological space and time. Outside this region, there are no restrictions on the field gradient.« less

  1. Quantum effects in the hot electron microbolometer

    SciTech Connect

    Tang, A.; Richards, P.L.

    1994-10-01

    The theory of the hot electron microbolometer proposed by Nahum et al. assumed that the photon energy is thermalized in the electrons in the Cu absorber before relaxing to the lattice. Since the photons initially excite individual electrons to K{omega}>>k{sub B}T, however, direct relaxation of these hot electrons to phonons must also be considered. Theoretical estimates suggest that this extra relaxation channel increases the effective thermal conductance for K{omega}>>k{sub B}T and influences bolometer noise. Calculations of these effects are presented which predict very useful performance both for ground-based and spacebased astronomical photometry at millimeter and submillimeter wavelengths.

  2. Recoil polarization measurements of the proton electromagnetic form factor ratio at high momentum transfer

    SciTech Connect

    Andrew Puckett

    2009-12-01

    Electromagnetic form factors are fundamental properties of the nucleon that describe the effect of its internal quark structure on the cross section and spin observables in elastic lepton-nucleon scattering. Double-polarization experiments have become the preferred technique to measure the proton and neutron electric form factors at high momentum transfers. The recently completed GEp-III experiment at the Thomas Jefferson National Accelerator Facility used the recoil polarization method to extend the knowledge of the proton electromagnetic form factor ratio GpE/GpM to Q2 = 8.5 GeV2. In this paper we present the preliminary results of the experiment.

  3. The new vacuum-mode recoil separator MARA at JYFL

    NASA Astrophysics Data System (ADS)

    Sarén, J.; Uusitalo, J.; Leino, M.; Greenlees, P. T.; Jakobsson, U.; Jones, P.; Julin, R.; Juutinen, S.; Ketelhut, S.; Nyman, M.; Peura, P.; Rahkila, P.; Scholey, C.; Sorri, J.

    2008-10-01

    A new vacuum-mode recoil separator MARA (Mass Analysing Recoil Apparatus) is under design and construction at the Department of Physics in the University of Jyväskylä. The separator is intended to separate reaction products from the primary beam in mass region below A = 150 . The ion-optical configuration of the separator will be QQQDEDM, where a magnetic quadrupole (Q) triplet is followed by an electrostatic deflector (DE) and a magnetic dipole (DM). The total length of MARA will be less than 7.0 m and the first order resolving power more than 250 for a beam spot size of 2 mm. In this contribution the main properties of MARA are given and results from simulations are shown.

  4. Direct recoil oxygen ion fractions resulting from Ar + collisions

    NASA Astrophysics Data System (ADS)

    Chen, Jie-Nan; Rabalais, J. Wayne

    1986-03-01

    Direct recoil of oxygen from oxidized and hydroxylated magnesium surfaces as a result of 6 keV Ar + collisions produces O -, O +, and O species. The total ion fraction at a recoil angle of 22° is ~33.5%, of which O - is 23.7% and O + is 9.8% for the oxidized surface. The O -/O + intensity ratio is extremely sensitive to the amount of hydrogen present, with the O + yield dropping to ~1% on the hydroxylated surface. These results are considered within a model for electronic transitions in ion/surface collisions which considers Auger and resonant transitions along the ion trajectory and electron promotions in the quasi-diatomic molecule of the close encounter.

  5. Quantum wavepacket ab initio molecular dynamics: an approach for computing dynamically averaged vibrational spectra including critical nuclear quantum effects.

    PubMed

    Sumner, Isaiah; Iyengar, Srinivasan S

    2007-10-18

    We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.

  6. Gravitational-wave probe of effective quantum gravity

    SciTech Connect

    Alexander, Stephon; Finn, Lee Samuel; Yunes, Nicolas

    2008-09-15

    All modern routes leading to a quantum theory of gravity - i.e., perturbative quantum gravitational one-loop exact correction to the global chiral current in the standard model, string theory, and loop quantum gravity - require modification of the classical Einstein-Hilbert action for the spacetime metric by the addition of a parity-violating Chern-Simons term. The introduction of such a term leads to spacetimes that manifest an amplitude birefringence in the propagation of gravitational waves. While the degree of birefringence may be intrinsically small, its effects on a gravitational wave accumulate as the wave propagates. Observation of gravitational waves that have propagated over cosmological distances may allow the measurement of even a small birefringence, providing evidence of quantum gravitational effects. The proposed Laser Interferometer Space Antenna (LISA) will be sensitive enough to observe the gravitational waves from sources at cosmological distances great enough that interesting bounds on the Chern-Simons coupling may be found. Here we evaluate the effect of a Chern-Simons induced spacetime birefringence to the propagation of gravitational waves from such systems. Focusing attention on the gravitational waves from coalescing binary black holes systems, which LISA will be capable of observing at redshifts approaching 30, we find that the signature of Chern-Simons gravity is a time-dependent change in the apparent orientation of the binary's orbital angular momentum with respect to the observer line-of-sight, with the magnitude of change reflecting the integrated history of the Chern-Simons coupling over the worldline of the radiation wave front. While spin-orbit coupling in the binary system will also lead to an evolution of the system's orbital angular momentum, the time dependence and other details of this real effect are different than the apparent effect produced by Chern-Simons birefringence, allowing the two effects to be separately identified

  7. Thermopower enhancement in quantum wells with the Rashba effect

    SciTech Connect

    Wu, Lihua; Yang, Jiong; Wang, Shanyu; Wei, Ping; Yang, Jihui E-mail: wqzhang@mail.sic.ac.cn; Zhang, Wenqing E-mail: wqzhang@mail.sic.ac.cn; Chen, Lidong

    2014-11-17

    We theoretically demonstrate that the thermopower in two-dimensional quantum wells (QWs) can be significantly enhanced by its Rashba spin-splitting effect, governed by the one-dimensional density of states in the low Fermi energy region. The thermopower enhancement is due to the lower Fermi level for a given carrier concentration in Rashba QWs, as compared with that in normal two-dimensional systems without the spin-splitting effect. The degenerate approximation directly shows that larger strength of Rashba effect leads to higher thermopower and consequently better thermoelectric performance in QWs.

  8. Quantum anomalous Hall effect in stable dumbbell stanene

    NASA Astrophysics Data System (ADS)

    Zhang, Huisheng; Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Yang, Zhongqin

    2016-02-01

    Topological property of the dumbbell (DB) stanene, more stable than the stanene with a honeycomb lattice, is investigated by using ab initio methods. The magnetic DB stanene demonstrates an exotic quantum anomalous Hall (QAH) effect due to inversion of the Sn spin-up px,y and spin-down pz states. The QAH gap is found to be opened at Γ point rather than the usual K and K' points, beneficial to observe the effect in experiments. When a 3% tensile strain is applied, a large nontrivial gap (˜50 meV) is achieved. Our results provide another lighthouse for realizing QAH effects in two-dimensional systems.

  9. Quantum δ-kicked rotor: the effect of amplitude noise on the quantum resonances

    NASA Astrophysics Data System (ADS)

    Brouard, S.; Plata, J.

    2003-04-01

    We study analytically the effect of amplitude noise on the quantum resonances of an atom optics realization of the delta-kicked rotor. Noise is shown to add a time growth to the 'deterministic' energy and to induce a time increasing spreading in the momentum distribution; exact results are given for both effects. The ballistic peaks characteristic of the noiseless distribution for particular initial conditions broaden and eventually vanish, whereas the associated quadratic growth of energy persists; at large times, the survival probability decays as t-1. Moreover, the nonexponential 'localization' linked to different initial conditions is gradually destroyed. Features specific to Gaussian noise, white and coloured, are analysed. The feasibility of experimental tests of these effects is discussed.

  10. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Lamich, George J.

    1994-01-01

    A time of flight direct recoil and ion scattering spectrometer beam line (10). The beam line (10) includes an ion source (12) which injects ions into pulse deflection regions (14) and (16) separated by a drift space (18). A final optics stage includes an ion lens and deflection plate assembly (22). The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions (14) and (16).

  11. Recoiling Supermassive Black Holes: a search in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Lena, Davide; Robinson, Andrew; Marconi, Alessandro; Axon, David; Capetti, Alessandro; Merritt, David; Batcheldor, Daniel

    2015-01-01

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed HST archival images of 14 nearby core ellipticals, finding evidence for small (<=10 pc) displacements between the AGN (locating the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. 2010. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few Gyr. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kpc-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  12. Recoiling Supermassive Black Holes: A Search in the Nearby Universe

    NASA Astrophysics Data System (ADS)

    Lena, D.; Robinson, A.; Marconi, A.; Axon, D. J.; Capetti, A.; Merritt, D.; Batcheldor, D.

    2014-11-01

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (lsim 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  13. Time-of-flight direct recoil ion scattering spectrometer

    DOEpatents

    Krauss, A.R.; Gruen, D.M.; Lamich, G.J.

    1994-09-13

    A time-of-flight direct recoil and ion scattering spectrometer beam line is disclosed. The beam line includes an ion source which injects ions into pulse deflection regions and separated by a drift space. A final optics stage includes an ion lens and deflection plate assembly. The ion pulse length and pulse interval are determined by computerized adjustment of the timing between the voltage pulses applied to the pulsed deflection regions. 23 figs.

  14. Recoiling supermassive black holes: a search in the nearby universe

    SciTech Connect

    Lena, D.; Robinson, A.; Axon, D. J.; Merritt, D.; Marconi, A.; Capetti, A.; Batcheldor, D.

    2014-11-10

    The coalescence of a binary black hole can be accompanied by a large gravitational recoil due to anisotropic emission of gravitational waves. A recoiling supermassive black hole (SBH) can subsequently undergo long-lived oscillations in the potential well of its host galaxy, suggesting that offset SBHs may be common in the cores of massive ellipticals. We have analyzed Hubble Space Telescope archival images of 14 nearby core ellipticals, finding evidence for small (≲ 10 pc) displacements between the active galactic nucleus (AGN; the location of the SBH) and the center of the galaxy (the mean photocenter) in 10 of them. Excluding objects that may be affected by large-scale isophotal asymmetries, we consider six galaxies to have detected displacements, including M87, where a displacement was previously reported by Batcheldor et al. In individual objects, these displacements can be attributed to residual gravitational recoil oscillations following a major or minor merger within the last few gigayears. For plausible merger rates, however, there is a high probability of larger displacements than those observed, if SBH coalescence took place in these galaxies. Remarkably, the AGN-photocenter displacements are approximately aligned with the radio source axis in four of the six galaxies with displacements, including three of the four having relatively powerful kiloparsec-scale jets. This suggests intrinsic asymmetries in radio jet power as a possible displacement mechanism, although approximate alignments are also expected for gravitational recoil. Orbital motion in SBH binaries and interactions with massive perturbers can produce the observed displacement amplitudes but do not offer a ready explanation for the alignments.

  15. Quantum amplification effect in a horizon fluctuation

    SciTech Connect

    Ansari, Mohammad H.

    2010-05-15

    The appearance of a few unevenly spaced bright flashes of light on top of Hawking radiation is the sign of the amplification effect in black hole horizon fluctuations. Previous studies on this problem suffer from the lack of considering all emitted photons in the theoretical spectroscopy of these fluctuations. In this paper, we include all of the physical transition weights and present a consistent intensity formula. This modifies a black hole radiation pattern.

  16. Negative muon chemistry: the quantum muon effect and the finite nuclear mass effect.

    PubMed

    Posada, Edwin; Moncada, Félix; Reyes, Andrés

    2014-10-09

    The any-particle molecular orbital method at the full configuration interaction level has been employed to study atoms in which one electron has been replaced by a negative muon. In this approach electrons and muons are described as quantum waves. A scheme has been proposed to discriminate nuclear mass and quantum muon effects on chemical properties of muonic and regular atoms. This study reveals that the differences in the ionization potentials of isoelectronic muonic atoms and regular atoms are of the order of millielectronvolts. For the valence ionizations of muonic helium and muonic lithium the nuclear mass effects are more important. On the other hand, for 1s ionizations of muonic atoms heavier than beryllium, the quantum muon effects are more important. In addition, this study presents an assessment of the nuclear mass and quantum muon effects on the barrier of Heμ + H2 reaction.

  17. Recoil-induced Resonances as All-optical Switches

    NASA Astrophysics Data System (ADS)

    Narducci, F. A.; Desavage, S. A.; Gordon, K. H.; Duncan, D. L.; Welch, G. R.; Davis, J. P.

    2010-03-01

    We have measured recoil-induced resonances (RIR) [1,2] in our system of laser-cooled 85Rb atoms. Although this technique has been demonstrated to be useful for the purpose of extracting the cloud temperature [3], our aim was to demonstrate an all optical switch based on recoil-induced resonances. In addition to a very narrow ``free-space'' recoil-induced resonance of approximately 15 kHz, we also discovered a much broader resonance (˜30 MHz), caused by standing waves established by our trapping fields. We compare and contrast the switching dynamics of these two resonances and demonstrate optical switching using both resonances. Finally, we consider the applicability of the narrow, free-space resonance to the slowing of a weak probe field. [1] J. Guo, P.R. Berman, B. Dubetsky and G. Grynberg PRA, 46, 1426 (1992). [2] (a) P. Verkerk, B. Loumis, C. Salomon, C. Cohen-Tannoudji, J. Courtois PRL, 68, 3861 (1992). (b) G. Grynberg, J-Y Courtois, B. Lounis, P. Verkerk PRL, 72, 3017 (1994). [3] (a) T. Brzozowski, M. Brzozowska, J. Zachorowski, M. Zawada, W. Gawlik PRA, 71, 013401 (2005). (b) M. Brzozowska, T. Brzozowski J. Zachorowski, W. Gawlik PRA, 72, 061401(R), (2005).

  18. The recoil proton polarization in. pi. p elastic scattering

    SciTech Connect

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for ..pi../sup +/p and ..pi../sup -/p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P/sup 3/ East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10/sup 7/ ..pi../sup -/'s/sec and from 3.0 to 10.0 x 10/sup 7/ ..pi../sup +/'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs.

  19. Kok Effect and the Quantum Yield of Photosynthesis 1

    PubMed Central

    Sharp, Robert E.; Matthews, Mark A.; Boyer, John S.

    1984-01-01

    The linear response of photosynthesis to light at low photon flux densities is known to change abruptly in the vicinity of the light compensation point so that the quantum yield seems to decrease as radiation increases. We studied this `Kok effect' in attached sunflower (Helianthus annuus L. cv IS894) leaves using gas exchange techniques. The effect was present even though respiration was constant in the dark. It was observed at a similar photon flux density (7 to 11 micromole photons per square meter per second absorbed photosynthetically active radiation) despite a wide range of light compensation points as well as rates of photosynthesis. The effect was not apparent when photorespiration was inhibited at low pO2 (1 kilopascal), but this result was complicated because dark respiration was quite O2-sensitive and was partially suppressed under these conditions. The Kok effect was observed at saturating pCO2 and, therefore, could not be explained by a change in photorespiration. Instead, the magnitude of the effect varied as dark respiration varied in a single leaf, and was minimized when dark respiration was minimized, indicating that a partial suppression of dark respiration by light is responsible. Quantum yields measured at photon flux densities between 0 and 7 to 11 micromole photons per square meter per second, therefore, represent the combined yields of photosynthesis and of the suppression of a component of dark respiration by light. This leads to an overestimate of the quantum yield of photosynthesis. In view of these results, quantum yields of photosynthesis must be measured (a) when respiration is constant in the dark, and (b) when dark respiration has been inhibited either at low pO2 to eliminate most of the light-induced suppression of dark respiration or at photon flux densities above that required to saturate the light-induced suppression of dark respiration. Significant errors in quantum yields of photosynthesis can result in leaves exhibiting this

  20. The local nature of incompressibility of quantum Hall effect.

    PubMed

    Kendirlik, E M; Sirt, S; Kalkan, S B; Ofek, N; Umansky, V; Siddiki, A

    2017-01-10

    Since the experimental realization of the integer quantum Hall effect in a two-dimensional electron system, the interrelation between the conductance quantization and the topological properties of the system has been investigated. Assuming that the two-dimensional electron system is described by a Bloch Hamiltonian, system is insulating in the bulk of sample throughout the quantum Hall plateau due to a magnetic field induced energy gap. Meanwhile, the system is conducting at the edges resembling a 2+1 dimensional topological insulator without time-reversal symmetry. Here, by our magneto-transport measurements performed on GaAs/AlGaAs high purity Hall bars with two inner contacts we show that incompressible strips formed at the edges result in Hall quantization, even if the bulk is compressible. Consequently, the relationship between the quantum Hall effect and topological bulk insulator breaks for specific field intervals within the plateaus. The measurement of conducting bulk, strongly challenges all existing single-particle theories.

  1. An effective Hamiltonian approach to quantum random walk

    NASA Astrophysics Data System (ADS)

    Sarkar, Debajyoti; Paul, Niladri; Bhattacharya, Kaushik; Ghosh, Tarun Kanti

    2017-03-01

    In this article we present an effective Hamiltonian approach for discrete time quantum random walk. A form of the Hamiltonian for one-dimensional quantum walk has been prescribed, utilizing the fact that Hamiltonians are generators of time translations. Then an attempt has been made to generalize the techniques to higher dimensions. We find that the Hamiltonian can be written as the sum of a Weyl Hamiltonian and a Dirac comb potential. The time evolution operator obtained from this prescribed Hamiltonian is in complete agreement with that of the standard approach. But in higher dimension we find that the time evolution operator is additive, instead of being multiplicative (see Chandrashekar, Sci. Rep. 3, 2829 (18)). We showed that in the case of two-step walk, the time evolution operator effectively can have multiplicative form. In the case of a square lattice, quantum walk has been studied computationally for different coins and the results for both the additive and the multiplicative approaches have been compared. Using the graphene Hamiltonian, the walk has been studied on a graphene lattice and we conclude the preference of additive approach over the multiplicative one.

  2. Cancer proliferation and therapy: the Warburg effect and quantum metabolism

    PubMed Central

    2010-01-01

    Background Most cancer cells, in contrast to normal differentiated cells, rely on aerobic glycolysis instead of oxidative phosphorylation to generate metabolic energy, a phenomenon called the Warburg effect. Model Quantum metabolism is an analytic theory of metabolic regulation which exploits the methodology of quantum mechanics to derive allometric rules relating cellular metabolic rate and cell size. This theory explains differences in the metabolic rates of cells utilizing OxPhos and cells utilizing glycolysis. This article appeals to an analytic relation between metabolic rate and evolutionary entropy - a demographic measure of Darwinian fitness - to: (a) provide an evolutionary rationale for the Warburg effect, and (b) propose methods based on entropic principles of natural selection for regulating the incidence of OxPhos and glycolysis in cancer cells. Conclusion The regulatory interventions proposed on the basis of quantum metabolism have applications in therapeutic strategies to combat cancer. These procedures, based on metabolic regulation, are non-invasive, and complement the standard therapeutic methods involving radiation and chemotherapy PMID:20085650

  3. The local nature of incompressibility of quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Kendirlik, E. M.; Sirt, S.; Kalkan, S. B.; Ofek, N.; Umansky, V.; Siddiki, A.

    2017-01-01

    Since the experimental realization of the integer quantum Hall effect in a two-dimensional electron system, the interrelation between the conductance quantization and the topological properties of the system has been investigated. Assuming that the two-dimensional electron system is described by a Bloch Hamiltonian, system is insulating in the bulk of sample throughout the quantum Hall plateau due to a magnetic field induced energy gap. Meanwhile, the system is conducting at the edges resembling a 2+1 dimensional topological insulator without time-reversal symmetry. Here, by our magneto-transport measurements performed on GaAs/AlGaAs high purity Hall bars with two inner contacts we show that incompressible strips formed at the edges result in Hall quantization, even if the bulk is compressible. Consequently, the relationship between the quantum Hall effect and topological bulk insulator breaks for specific field intervals within the plateaus. The measurement of conducting bulk, strongly challenges all existing single-particle theories.

  4. The local nature of incompressibility of quantum Hall effect

    PubMed Central

    Kendirlik, E. M.; Sirt, S.; Kalkan, S. B.; Ofek, N.; Umansky, V.; Siddiki, A.

    2017-01-01

    Since the experimental realization of the integer quantum Hall effect in a two-dimensional electron system, the interrelation between the conductance quantization and the topological properties of the system has been investigated. Assuming that the two-dimensional electron system is described by a Bloch Hamiltonian, system is insulating in the bulk of sample throughout the quantum Hall plateau due to a magnetic field induced energy gap. Meanwhile, the system is conducting at the edges resembling a 2+1 dimensional topological insulator without time-reversal symmetry. Here, by our magneto-transport measurements performed on GaAs/AlGaAs high purity Hall bars with two inner contacts we show that incompressible strips formed at the edges result in Hall quantization, even if the bulk is compressible. Consequently, the relationship between the quantum Hall effect and topological bulk insulator breaks for specific field intervals within the plateaus. The measurement of conducting bulk, strongly challenges all existing single-particle theories. PMID:28071652

  5. Quantum Hall effect in epitaxial graphene with permanent magnets

    PubMed Central

    Parmentier, F. D.; Cazimajou, T.; Sekine, Y.; Hibino, H.; Irie, H.; Glattli, D. C.; Kumada, N.; Roulleau, P.

    2016-01-01

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications. PMID:27922114

  6. Quantum Hall effect in epitaxial graphene with permanent magnets.

    PubMed

    Parmentier, F D; Cazimajou, T; Sekine, Y; Hibino, H; Irie, H; Glattli, D C; Kumada, N; Roulleau, P

    2016-12-06

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  7. Understanding boundary effects in quantum state tomography - One qubit case

    NASA Astrophysics Data System (ADS)

    Sugiyama, Takanori; Turner, Peter S.; Murao, Mio

    2014-12-01

    For classical and quantum estimation with finite data sets, the estimation error can deviate significantly from its asymptotic (large data set) behavior. In quantum state tomography, a major reason for this is the existence of a boundary in the parameter space imposed by constraints, such as the positive semidefiniteness of density matrices. Intuitively, we should be able to reduce the estimation error by using our knowledge of these constraints. This intuition is correct for maximumlikelihood estimators, but the size of the reduction has not been evaluated quantitatively. In this proceeding, we evaluate the improvement in one qubit state tomography by using mathematical tools in classical statistical estimation theory. In particular, we show that the effect of the reduction decreases exponentially with respect to the number of data sets when the true state is mixed, and it remains at arbitrarily large data set when the true state is pure.

  8. Quantum Hall effect in epitaxial graphene with permanent magnets

    NASA Astrophysics Data System (ADS)

    Parmentier, F. D.; Cazimajou, T.; Sekine, Y.; Hibino, H.; Irie, H.; Glattli, D. C.; Kumada, N.; Roulleau, P.

    2016-12-01

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  9. Fractionally charged skyrmions in fractional quantum Hall effect.

    PubMed

    Balram, Ajit C; Wurstbauer, U; Wójs, A; Pinczuk, A; Jain, J K

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  10. Effects of quantum fluctuations of metric on the universe

    NASA Astrophysics Data System (ADS)

    Yang, Rongjia

    2016-09-01

    We consider a model of modified gravity from the nonperturbative quantization of a metric. We obtain the modified gravitational field equations and the modified conservational equations. We apply it to the FLRW spacetime and find that due to the quantum fluctuations a bounce universe can be obtained and a decelerated expansion can also possibly be obtained in a dark energy dominated epoch. We also discuss the effects of quantum fluctuations on inflation parameters (such as slow-roll parameters, spectral index, and the spectrum of the primordial curvature perturbation) and find values of parameters in the comparing the predictions of inflation can also work to drive the current epoch of acceleration. We obtain the constraints on the parameter of the theory from the observation of the big bang nucleosynthesis.

  11. Fractionally charged skyrmions in fractional quantum Hall effect

    SciTech Connect

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  12. Nuclear quantum effects and hydrogen bond fluctuations in water.

    PubMed

    Ceriotti, Michele; Cuny, Jérôme; Parrinello, Michele; Manolopoulos, David E

    2013-09-24

    The hydrogen bond (HB) is central to our understanding of the properties of water. However, despite intense theoretical and experimental study, it continues to hold some surprises. Here, we show from an analysis of ab initio simulations that take proper account of nuclear quantum effects that the hydrogen-bonded protons in liquid water experience significant excursions in the direction of the acceptor oxygen atoms. This generates a small but nonnegligible fraction of transient autoprotolysis events that are not seen in simulations with classical nuclei. These events are associated with major rearrangements of the electronic density, as revealed by an analysis of the computed Wannier centers and (1)H chemical shifts. We also show that the quantum fluctuations exhibit significant correlations across neighboring HBs, consistent with an ephemeral shuttling of protons along water wires. We end by suggesting possible implications for our understanding of how perturbations (solvated ions, interfaces, and confinement) might affect the HB network in water.

  13. Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics.

    PubMed

    Yamaguchi, Makoto; Asano, Takashi; Noda, Susumu

    2008-10-27

    Solid-state cavity quantum-electrodynamics (QED) has great potential owing to advances such as coupled systems combining a nanocavity and a quantum dot (QD). These systems involve two photon-emission mechanisms: the Purcell effect in the weak coupling regime and vacuum Rabi-splitting in the strong coupling regime. In this paper, we describe a third emission mechanism based on the quantum anti-Zeno effect (AZE) induced by the pure-dephasing in a QD. This is significantly enhanced by the inherent characteristics of the nanocavity. This mechanism explains the origin of strong photon emission at a cavity mode largely detuned from a QD, previously considered a counterintuitive, prima facie non-energy-conserving, light-emission phenomenon. These findings could help in controlling the decay and emission characteristics of solid-state cavity QED, and developing solid-state quantum devices.

  14. Effective fermion kinematics from modified quantum gravity

    NASA Astrophysics Data System (ADS)

    Alexandre, J.; Leite, J.

    2016-10-01

    We consider a classical fermion and a classical scalar, propagating on two different kinds of four-dimensional diffeomorphism breaking gravity backgrounds, and we derive the one-loop effective dispersion relation for matter, after integrating out gravitons. One gravity model involves quadratic divergences at one-loop, as in Einstein gravity, and the other model is the z = 3 non-projectable Horava-Lifshitz gravity, which involves logarithmic divergences only. Although these two models behave differently in the ultraviolet, the IR phenomenology for matter fields is comparable: (i) for generic values for the parameters, both models identify 1010 GeV as the characteristic scale above which they are not consistent with current upper bounds on Lorentz symmetry violation; (ii) for both models, there is always a fine-tuning of parameters which allows the cancellation of the indicator for Lorentz symmetry violation.

  15. Recoil Experiments Using a Compressed Air Cannon

    ERIC Educational Resources Information Center

    Taylor, Brett

    2006-01-01

    Ping-Pong vacuum cannons, potato guns, and compressed air cannons are popular and dramatic demonstrations for lecture and lab. Students enjoy them for the spectacle, but they can also be used effectively to teach physics. Recently we have used a student-built compressed air cannon as a laboratory activity to investigate impulse, conservation of…

  16. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers

    SciTech Connect

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tiam Tan, Swee; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Wei Sun, Xiao E-mail: volkan@stanfordalumni.org; Volkan Demir, Hilmi E-mail: volkan@stanfordalumni.org

    2014-06-16

    InGaN/GaN light-emitting diodes (LEDs) grown along the polar orientations significantly suffer from the quantum confined Stark effect (QCSE) caused by the strong polarization induced electric field in the quantum wells, which is a fundamental problem intrinsic to the III-nitrides. Here, we show that the QCSE is self-screened by the polarization induced bulk charges enabled by designing quantum barriers. The InN composition of the InGaN quantum barrier graded along the growth orientation opportunely generates the polarization induced bulk charges in the quantum barrier, which well compensate the polarization induced interface charges, thus avoiding the electric field in the quantum wells. Consequently, the optical output power and the external quantum efficiency are substantially improved for the LEDs. The ability to self-screen the QCSE using polarization induced bulk charges opens up new possibilities for device engineering of III-nitrides not only in LEDs but also in other optoelectronic devices.

  17. The role of quantum effects in proton transfer reactions in enzymes: quantum tunneling in a noisy environment?

    NASA Astrophysics Data System (ADS)

    Bothma, Jacques P.; Gilmore, Joel B.; McKenzie, Ross H.

    2010-05-01

    We consider the role of quantum effects in the transfer of hydrogen-like species in enzyme-catalyzed reactions. This review is stimulated by claims that the observed magnitude and temperature dependence of kinetic isotope effects (KIEs) implies that quantum tunneling below the energy barrier associated with the transition state significantly enhances the reaction rate in many enzymes. We review the path integral approach and the Caldeira-Leggett model, which provides a general framework to describe and understand tunneling in a quantum system that interacts with a noisy environment at nonzero temperature. Here the quantum system is the active site of the enzyme, and the environment is the surrounding protein and water. Tunneling well below the barrier only occurs for temperatures less than a temperature T0, which is determined by the curvature of the potential energy surface near the top of the barrier. We argue that for most enzymes this temperature is less than room temperature. We review typical values for the parameters in the Caldeira-Leggett Hamiltonian, including the frequency-dependent friction and noise due to the environment. For physically reasonable parameters, we show that quantum transition state theory gives a quantitative description of the temperature dependence and magnitude of KIEs for two classes of enzymes that have been claimed to exhibit signatures of quantum tunneling. The only quantum effects are those associated with the transition state, both reflection at the barrier top and tunneling just below the barrier. We establish that the friction and noise due to the environment are weak and only slightly modify the reaction rate. Furthermore, at room temperature and for typical energy barriers environmental fluctuations with frequencies much less than 1000 cm-1 do not have a significant effect on quantum corrections to the reaction rate. This is essentially because the time scales associated with the dynamics of proton transfer are faster than

  18. Effective production of orbital quantum entanglement in chaotic quantum dots with nonideal contacts

    NASA Astrophysics Data System (ADS)

    Santos, E. H.; Almeida, F. A. G.

    2016-09-01

    We study orbital entanglement production in a chaotic quantum dot with two-channel leads by varying the opacity of the contacts in the unitary and orthogonal Wigner-Dyson ensembles. We computed the occurrence probability of entangled states (squared norm) and its concurrence (entanglement level). We also define an entanglement production factor to properly evaluate the entanglement behavior in the system considering effective aspects. The results are numerically obtained through (i) integrations over random matrix ensembles (exact results) for the scenario of one contact ideally fixed and (ii) random matrix simulations for arbitrary contact opacities (sampling). Those outcomes are in mutual agreement and indicate that the optimum effective production of orbital entanglement is achieved when both contacts are ideal and the time-reversal symmetry is broken.

  19. Inelastic frontier: Discovering dark matter at high recoil energy

    SciTech Connect

    Bramante, Joseph; Fox, Patrick J.; Kribs, Graham D.; Martin, Adam

    2016-12-27

    There exist well-motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the dark matter to upscatter in terrestrial experiments into an excited state up to 550 keV heavier than the dark matter itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. In this paper, we extend previous studies of inelastic dark matter to determine the present bounds on the scattering cross section and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino supersymmetric dark matter, magnetic inelastic dark matter, and inelastic models with dark photon exchange. We determine the elastic scattering rate (through loop diagrams involving the heavy state) as well as verify that exothermic transitions are negligible (in the parameter space we consider). Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (when the mass splitting δ≲160 keV), iodine at PICO (when 160≲δ≲300 keV), and tungsten at CRESST (when δ≳300 keV). Amusingly, once δ≳200 keV, weak scale (and larger) dark matter–nucleon scattering cross sections are allowed. The relative competitiveness of these diverse experiments is governed by the upper bound on the recoil energies employed by each experiment, as well as strong sensitivity to the mass of the heaviest element in the detector. Several implications, including sizable recoil energy-dependent annual modulation and improvements for future experiments, are discussed. We show that the xenon experiments can improve on the PICO results, if they were to analyze their existing data over a larger range of recoil energies, i.e., 20–500 keV Intriguingly, CRESST has reported several events in the recoil energy range 45–100 keV that, if interpreted as dark matter scattering, is compatible with δ~200 keV and an

  20. Inelastic frontier: Discovering dark matter at high recoil energy

    DOE PAGES

    Bramante, Joseph; Fox, Patrick J.; Kribs, Graham D.; ...

    2016-12-27

    There exist well-motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the dark matter to upscatter in terrestrial experiments into an excited state up to 550 keV heavier than the dark matter itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. In this paper, we extend previous studies of inelastic dark matter to determine the present bounds on the scattering cross section and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino supersymmetric dark matter, magnetic inelasticmore » dark matter, and inelastic models with dark photon exchange. We determine the elastic scattering rate (through loop diagrams involving the heavy state) as well as verify that exothermic transitions are negligible (in the parameter space we consider). Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (when the mass splitting δ≲160 keV), iodine at PICO (when 160≲δ≲300 keV), and tungsten at CRESST (when δ≳300 keV). Amusingly, once δ≳200 keV, weak scale (and larger) dark matter–nucleon scattering cross sections are allowed. The relative competitiveness of these diverse experiments is governed by the upper bound on the recoil energies employed by each experiment, as well as strong sensitivity to the mass of the heaviest element in the detector. Several implications, including sizable recoil energy-dependent annual modulation and improvements for future experiments, are discussed. We show that the xenon experiments can improve on the PICO results, if they were to analyze their existing data over a larger range of recoil energies, i.e., 20–500 keV Intriguingly, CRESST has reported several events in the recoil energy range 45–100 keV that, if interpreted as dark matter scattering, is compatible with δ~200 keV and an

  1. Inelastic frontier: Discovering dark matter at high recoil energy

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph; Fox, Patrick J.; Kribs, Graham D.; Martin, Adam

    2016-12-01

    There exist well-motivated models of particle dark matter which predominantly scatter inelastically off nuclei in direct detection experiments. This inelastic transition causes the dark matter to upscatter in terrestrial experiments into an excited state up to 550 keV heavier than the dark matter itself. An inelastic transition of this size is highly suppressed by both kinematics and nuclear form factors. In this paper, we extend previous studies of inelastic dark matter to determine the present bounds on the scattering cross section and the prospects for improvements in sensitivity. Three scenarios provide illustrative examples: nearly pure Higgsino supersymmetric dark matter, magnetic inelastic dark matter, and inelastic models with dark photon exchange. We determine the elastic scattering rate (through loop diagrams involving the heavy state) as well as verify that exothermic transitions are negligible (in the parameter space we consider). Presently, the strongest bounds on the cross section are from xenon at LUX-PandaX (when the mass splitting δ ≲160 keV ), iodine at PICO (when 160 ≲δ ≲300 keV ), and tungsten at CRESST (when δ ≳300 keV ). Amusingly, once δ ≳200 keV , weak scale (and larger) dark matter-nucleon scattering cross sections are allowed. The relative competitiveness of these diverse experiments is governed by the upper bound on the recoil energies employed by each experiment, as well as strong sensitivity to the mass of the heaviest element in the detector. Several implications, including sizable recoil energy-dependent annual modulation and improvements for future experiments, are discussed. We show that the xenon experiments can improve on the PICO results, if they were to analyze their existing data over a larger range of recoil energies, i.e., 20-500 keV Intriguingly, CRESST has reported several events in the recoil energy range 45-100 keV that, if interpreted as dark matter scattering, is compatible with δ ˜200 keV and an

  2. A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors

    SciTech Connect

    Westerdale, Shawn S.

    2016-01-01

    Despite the great success of the Standard Model of particle physics, a preponderance of astrophysical evidence suggests that it cannot explain most of the matter in the universe. This so-called dark matter has eluded direct detection, though many theoretical extensions to the Standard Model predict the existence of particles with a mass on the $1-1000$ GeV scale that interact only via the weak nuclear force. Particles in this class are referred to as Weakly Interacting Massive Particles (WIMPs), and their high masses and low scattering cross sections make them viable dark matter candidates. The rarity of WIMP-nucleus interactions makes them challenging to detect: any background can mask the signal they produce. Background rejection is therefore a major problem in dark matter detection. Many experiments greatly reduce their backgrounds by employing techniques to reject electron recoils. However, nuclear recoil backgrounds, which produce signals similar to what we expect from WIMPs, remain problematic. There are two primary sources of such backgrounds: surface backgrounds and neutron recoils. Surface backgrounds result from radioactivity on the inner surfaces of the detector sending recoiling nuclei into the detector. These backgrounds can be removed with fiducial cuts, at some cost to the experiment's exposure. In this dissertation we briefly discuss a novel technique for rejecting these events based on signals they make in the wavelength shifter coating on the inner surfaces of some detectors. Neutron recoils result from neutrons scattering from nuclei in the detector. These backgrounds may produce a signal identical to what we expect from WIMPs and are extensively discussed here. We additionally present a new tool for calculating ($\\alpha$, n)yields in various materials. We introduce the concept of a neutron veto system designed to shield against, measure, and provide an anti-coincidence veto signal for background neutrons. We discuss the research and development

  3. Quantum Hall effect in a quantum point contact at Landau filling fraction ν=52

    NASA Astrophysics Data System (ADS)

    Miller, Jeffrey; Radu, Iuliana; Zumbühl, Dominik; Levenson-Falk, Eli; Kastner, Marc; Marcus, Charles; Pfeiffer, Loren; West, Ken

    2007-03-01

    We study the transport properties of quantum point contacts (QPC) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits excellent bulk fractional quantum Hall effect, including a strong plateau in the Hall resistance at Landau level filling fraction ν= 52. We find that the ν=52 plateau is identifiable in point contacts with lithographic separations as small as 0.8 microns, but is not present in a 0.5 micron QPC. We study the temperature and dc-current-bias dependence of the ν=52 plateau---as well as neighboring fractional and integer plateaus---in the QPC. We also discuss our method to study the QPC at one filling fraction while the bulk remains at a higher filling fraction. Research supported in part by Microsoft Corporation, Project Q, and HCRP at Harvard University, and ARO (W911NF-05-1-0062), the NSEC program of the NSF (PHY-0117795) and NSF (DMR-0353209) at MIT.

  4. Quantum Phase Transition Effect on Dynamical Decoupling: a Case Study

    NASA Astrophysics Data System (ADS)

    Cui, H. T.; Yang, G.; Tian, J. L.

    2017-04-01

    The effect of quantum phase transition (QPT) on the coherence retrieval by dynamical decoupling is discussed explicitly by exemplifications. Two different cases can be identified; For QPT without variant of topology, dynamical decoupling can work better than that without QPT. Whereas the systems have nontrivial topology, it displays limited improvement of retrieval of qubit coherent. This feature can be understood by the fact that dynamical decoupling is physically to average out the effect of harmful local couplings. When nontrivial topology is involved, the local operation becomes invalid. Hence one has to find more efficient way to recover qubit coherence.

  5. Quantum Corrections and Effective Action in Field Theory

    NASA Astrophysics Data System (ADS)

    Dalvit, Diego A. R.

    1998-07-01

    In this Thesis we study quantum corrections to the classical dynamics for mean values in field theory. To that end we make use of the formalism of the closed time path effective action to get real and causal equations of motion. We introduce a coarse grained effective action, which is useful in the study of phase transitions in field theory. We derive an exact renormalization group equation that describes how this action varies with the coarse graining scale. We develop different approximation methods to solve that equation, and we obtain non perturbative improvements to the effective potential for a self interacting scalar field theory. We also discuss the stochastic aspects contained in this action. On the other hand, using the effective action, we find low energy and large distance quantum corrections for the gravitational potential, treating relativity as an effective low energy theory. We include the effect of scalar fields, fermions and gravitons. The inclusion of metric fluctuations causes Einstein semiclassical equations to depend on the gauge fixing parameters, and they are therefore non physical. We solve this problem identifying as a physical observable the trayectory of a test particle. We explicitly show that the geodesic equation for such particle is independent of the arbitrary parameters of the gauge fixing.

  6. Possible astrophysical observables of quantum gravity effects near black holes

    NASA Astrophysics Data System (ADS)

    Pen, Ue-Li; Broderick, Avery E.

    2014-12-01

    Recent implications of results from quantum information theory applied to black holes have led to the confusing conclusions that require either abandoning the equivalence principle (e.g. the firewall picture), or locality, or even more unpalatable options. The recent discovery of a pulsar orbiting a black hole opens up new possibilities for tests of theories of gravity. We examine possible observational effects of semiclassical quantum gravity in the vicinity of black holes, as probed by pulsars and event horizon telescope imaging of flares. In some cases, pulsar radiation may be observable at wavelengths only two orders of magnitude shorter than the Hawking radiation, so precision interferometry of lensed pulsar images may shed light on the quantum gravitational processes and interaction of Hawking radiation with the space-time near the black hole. This paper discusses the impact on the pulsar radiation interference pattern, which is observable through the modulation index in the foreseeable future, and discusses a possible classical limit of non-locality.

  7. Quantum anomalous Hall effect in magnetic topological insulators

    SciTech Connect

    Wang, Jing; Lian, Biao; Zhang, Shou -Cheng

    2015-08-25

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We present the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. Furthermore, we discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.

  8. Quantum anomalous Hall effect in magnetic topological insulators

    DOE PAGES

    Wang, Jing; Lian, Biao; Zhang, Shou -Cheng

    2015-08-25

    The search for topologically non-trivial states of matter has become an important goal for condensed matter physics. Here, we give a theoretical introduction to the quantum anomalous Hall (QAH) effect based on magnetic topological insulators in two-dimensions (2D) and three-dimensions (3D). In 2D topological insulators, magnetic order breaks the symmetry between the counter-propagating helical edge states, and as a result, the quantum spin Hall effect can evolve into the QAH effect. In 3D, magnetic order opens up a gap for the topological surface states, and chiral edge state has been predicted to exist on the magnetic domain walls. We presentmore » the phase diagram in thin films of a magnetic topological insulator and review the basic mechanism of ferromagnetic order in magnetically doped topological insulators. We also review the recent experimental observation of the QAH effect. Furthermore, we discuss more recent theoretical work on the coexistence of the helical and chiral edge states, multi-channel chiral edge states, the theory of the plateau transition, and the thickness dependence in the QAH effect.« less

  9. Quantum effect on parametric dispersion in presence of nonuniform size colloids in semiconductors

    NASA Astrophysics Data System (ADS)

    Vanshpal, R.; Dubey, S.; Ghosh, S.

    2012-05-01

    Quantum effect on parametric dispersion characteristics in ion implanted semiconductors in presence of nonuniform size colloids is analytically investigated in the present report. Nonuniform size colloids are managed through polynomial distribution function in the analysis. Here the used quantum hydrodynamic model is described by a set of hydrodynamic equations (typically continuity and momentum transfer) that include quantum effects via Bohm potential. Bohm potential modified second order optical susceptibility is obtained through nonlinear induced current density in presence of electrons and negatively charged nonuniform size colloids. It is found that parametric dispersion characteristics are greatly influenced by the quantum modifications. The parametric dispersion of the generated signal mode reduces due to the presence of Bohm potential. The required pump intensity at which one achieves maximum dispersion shifts towards higher value in presence of quantum term. Moreover present study also establishes that quantum effect on colloids is inversely proportional to their size; smaller colloids induce more quantum modifications.

  10. Edge states and integer quantum Hall effect in topological insulator thin films.

    PubMed

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-08-25

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  11. External-field effect on quantum features of radiation emitted by a quantum well in a microcavity

    SciTech Connect

    Sete, Eyob A.; Das, Sumanta; Eleuch, H.

    2011-02-15

    We consider a semiconductor quantum well in a microcavity driven by coherent light and coupled to a squeezed vacuum reservoir. By systematically solving the pertinent quantum Langevin equations in the strong-coupling and low-excitation regimes, we study the effect of exciton-photon detuning, external coherent light, and the squeezed vacuum reservoir on vacuum Rabi splitting and on quantum statistical properties of the light emitted by the quantum well. We show that the exciton-photon detuning leads to a shift in polariton resonance frequencies and a decrease in fluorescence intensity. We also show that the fluorescent light exhibits quadrature squeezing, which predominately depends on the exciton-photon detuning and the degree of the squeezing of the input field.

  12. Analytic calculation of radiative-recoil corrections to muonium hyperfine splitting: Electron-line contribution

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A. )

    1991-02-01

    The detailed account of analytic calculation of radiative-recoil correction to muonium hyperfine splitting, induced by electron-line radiative insertions, is presented. The consideration is performed in the framework of the effective two-particle formalism. A good deal of attention is paid to the problem of the divergence cancellation and the selection of graphs, relevant to radiative-recoil corrections. The analysis is greatly facilitated by use of the Fried-Yennie gauge for radiative photons. The obtained set of graphs turns out to be gauge-invariant and actual calculations are performed in the Feynman gauge. The main technical tricks, with the help of which we have effectively utilized the existence in the problem of the small parameter-mass ratio and managed to perform all calculations in the analytic form are described. The main intermediate results, as well as the final answer, {delta}E{sub rr} = ({alpha}({Zeta}{alpha})/{pi}{sup 2})(m/M)E{sub F}(6{zeta}(3) + 3{pi}{sup 2} In 2 + {pi}{sup 2}/2 + 17/8), are also presented.

  13. Quantum effects on compressional Alfven waves in compensated semiconductors

    SciTech Connect

    Amin, M. R.

    2015-03-15

    Amplitude modulation of a compressional Alfven wave in compensated electron-hole semiconductor plasmas is considered in the quantum magnetohydrodynamic regime in this paper. The important ingredients of this study are the inclusion of the particle degeneracy pressure, exchange-correlation potential, and the quantum diffraction effects via the Bohm potential in the momentum balance equations of the charge carriers. A modified nonlinear Schrödinger equation is derived for the evolution of the slowly varying amplitude of the compressional Alfven wave by employing the standard reductive perturbation technique. Typical values of the parameters for GaAs, GaSb, and GaN semiconductors are considered in analyzing the linear and nonlinear dispersions of the compressional Alfven wave. Detailed analysis of the modulation instability in the long-wavelength regime is presented. For typical parameter ranges of the semiconductor plasmas and at the long-wavelength regime, it is found that the wave is modulationally unstable above a certain critical wavenumber. Effects of the exchange-correlation potential and the Bohm potential in the wave dynamics are also studied. It is found that the effect of the Bohm potential may be neglected in comparison with the effect of the exchange-correlation potential in the linear and nonlinear dispersions of the compressional Alfven wave.

  14. The Electron Recoil Response of the XENON1T Dark Matter Experiment

    NASA Astrophysics Data System (ADS)

    Shockley, Evan; Xenon1T Collaboration

    2017-01-01

    XENON1T employs a two-phase xenon TPC to search for dark matter by detecting scintillation light produced by nuclear recoils in a 2 ton active volume of liquid xenon. However, nuclear recoils are not the only recoils that can occur since radiogenic electronic recoils are possible. Our only way of differentiating nuclear and electronic recoils is by comparing the relative fraction of scintillation (S1) and ionization (S2) signals. For the first Science Run of XENON1T, we must understand the response of our detector to S1 and S2 signals at the low keV energies where dark matter will present itself. Therefore, I will be discussing the current understanding of our signal and detection mechanisms at these energies. This work includes work using sources such as the Rn220 technique developed by XENON collaborators for understanding our rejection of electronic recoils.

  15. Quantum anomalous Hall effect in topological insulator memory

    SciTech Connect

    Jalil, Mansoor B. A.; Tan, S. G.; Siu, Z. B.

    2015-05-07

    We theoretically investigate the quantum anomalous Hall effect (QAHE) in a magnetically coupled three-dimensional-topological insulator (3D-TI) system. We apply the generalized spin-orbit coupling Hamiltonian to obtain the Hall conductivity σ{sup xy} of the system. The underlying topology of the QAHE phenomenon is then analyzed to show the quantization of σ{sup xy} and its relation to the Berry phase of the system. Finally, we analyze the feasibility of utilizing σ{sup xy} as a memory read-out in a 3D-TI based memory at finite temperatures, with comparison to known magnetically doped 3D-TIs.

  16. 25 Years quantum Hall effect: how it all came about

    NASA Astrophysics Data System (ADS)

    Landwehr, G.

    2003-12-01

    The quantum Hall effect (QHE) was discovered by Klaus von Klitzing in the spring of 1980. However, the plateaus in the Hall resistance of silicon metal oxide semiconductor devices which can be observed in high magnetic fields at low temperatures showed up several years earlier. The world wide research, which eventually culminated in the discovery, is briefly reviewed. The QHE was not predicted by theory, there were only approximate indications of quantization of the Hall resistance in whole fractions of h/ e2. The exceptional precision of the resistance values of the Hall plateau led very soon to a new resistance standard.

  17. Unconventional fractional quantum Hall effect in monolayer and bilayer graphene

    PubMed Central

    Jacak, Janusz; Jacak, Lucjan

    2016-01-01

    The commensurability condition is applied to determine the hierarchy of fractional fillings of Landau levels in monolayer and in bilayer graphene. The filling rates for fractional quantum Hall effect (FQHE) in graphene are found in the first three Landau levels in one-to-one agreement with the experimental data. The presence of even denominator filling fractions in the hierarchy for FQHE in bilayer graphene is explained. Experimentally observed hierarchy of FQHE in the first and second Landau levels in monolayer graphene and in the zeroth Landau level in bilayer graphene is beyond the conventional composite fermion interpretation but fits to the presented nonlocal topology commensurability condition. PMID:27877866

  18. Effects of dissipation on a quantum critical point with disorder.

    PubMed

    Hoyos, José A; Kotabage, Chetan; Vojta, Thomas

    2007-12-07

    We study the effects of dissipation on a disordered quantum phase transition with O(N) order-parameter symmetry by applying a strong-disorder renormalization group to the Landau-Ginzburg-Wilson field theory of the problem. We find that Ohmic dissipation results in a nonperturbative infinite-randomness critical point with unconventional activated dynamical scaling while super-Ohmic damping leads to conventional behavior. We discuss applications to the superconductor-metal transition in nanowires and to the Hertz theory of the itinerant antiferromagnetic transition.

  19. Quantum Effects in Nanoscale MOSFET Devices at Low Temperature

    NASA Astrophysics Data System (ADS)

    Day, Alexandra

    2014-03-01

    MOSFET transistors are a key component of virtually all modern electronic devices. Today's most advanced MOSFETs are small enough that quantum mechanical effects become relevant when considering their function and use. This project, completed at the National Institute of Standards and Technology as part of a Society of Physics Students internship, presents a first step in describing the theoretical behavior of nanoscale MOSFETs at low temperature. I acknowledge generous support from the Society of Physics Students and the National Institute of Standards and Technology.

  20. Role of Quantum Effects in the GlassTransition.

    SciTech Connect

    Novikov, Vladimir; Sokolov, Alexei P

    2013-01-01

    It is shown that quantum effects lead to a significant decrease of the glass transition temperature Tg with respect to the melting temperature Tm, so that the ratio Tg=Tm can be much smaller than the typical value of 2=3 in materials where Tg is near or below 60 K. Furthermore, it is demonstrated that the viscosity or structural relaxation time in such low temperature glass formers should exhibit highly unusual temperature dependence, namely a decrease of the apparent activation energy upon approaching Tg (instead of traditional increase).

  1. Time-reversal-breaking induced quantum spin Hall effect

    PubMed Central

    Luo, Wei; Shao, D. X.; Deng, Ming-Xun; Deng, W. Y.; Sheng, L.

    2017-01-01

    We show that quantum spin Hall (QSH) effect does not occur in a square lattice model due to cancellation of the intrinsic spin-orbit coupling coming from different hopping paths. However, we show that QSH effect can be induced by the presence of staggered magnetic fluxes alternating directions square by square. When the resulting Peierls phase takes a special value , the system has a composite symmetry ΘΡ− with Θ the time-reversal operator and Ρ− transforming the Peierls phase from γ to γ − , which protects the gapless edge states. Once the phase deviates from , the edge states open a gap, as the composite symmetry is broken. We further investigate the effect of a Zeeman field on the QSH state, and find that the edge states remain gapless for . This indicates that the QSH effect is immune to the magnetic perturbation. PMID:28220858

  2. Effective interaction and condensation of dipolaritons in coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Byrnes, Tim; Kolmakov, German V.; Kezerashvili, Roman Ya.; Yamamoto, Yoshihisa

    2014-09-01

    Dipolaritons are a three-way superposition of a photon, a direct exciton, and an indirect exciton that are formed in coupled quantum well microcavities. As is the case with exciton-polaritons, dipolaritons have a self-interaction due to direct and exchange effects of the underlying electrons and holes. Here we present a theoretical description of dipolaritons and derive simple formulas for their basic parameters. In particular, we derive the effective dipolariton-dipolariton interaction taking into account exchange effects between the excitons. We obtain a simple relation to describe the effective interaction at low densities. We find that dipolaritons should condense under suitable conditions, described by a dissipative Gross-Pitaevskii equation. While the parameters for condensation are promising, we find that the level of tunability of the interactions is limited.

  3. Time-reversal-breaking induced quantum spin Hall effect

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Shao, D. X.; Deng, Ming-Xun; Deng, W. Y.; Sheng, L.

    2017-02-01

    We show that quantum spin Hall (QSH) effect does not occur in a square lattice model due to cancellation of the intrinsic spin-orbit coupling coming from different hopping paths. However, we show that QSH effect can be induced by the presence of staggered magnetic fluxes alternating directions square by square. When the resulting Peierls phase takes a special value , the system has a composite symmetry ΘΡ‑ with Θ the time-reversal operator and Ρ‑ transforming the Peierls phase from γ to γ ‑ , which protects the gapless edge states. Once the phase deviates from , the edge states open a gap, as the composite symmetry is broken. We further investigate the effect of a Zeeman field on the QSH state, and find that the edge states remain gapless for . This indicates that the QSH effect is immune to the magnetic perturbation.

  4. Time-reversal-breaking induced quantum spin Hall effect.

    PubMed

    Luo, Wei; Shao, D X; Deng, Ming-Xun; Deng, W Y; Sheng, L

    2017-02-21

    We show that quantum spin Hall (QSH) effect does not occur in a square lattice model due to cancellation of the intrinsic spin-orbit coupling coming from different hopping paths. However, we show that QSH effect can be induced by the presence of staggered magnetic fluxes alternating directions square by square. When the resulting Peierls phase takes a special value , the system has a composite symmetry ΘΡ- with Θ the time-reversal operator and Ρ- transforming the Peierls phase from γ to γ - , which protects the gapless edge states. Once the phase deviates from , the edge states open a gap, as the composite symmetry is broken. We further investigate the effect of a Zeeman field on the QSH state, and find that the edge states remain gapless for . This indicates that the QSH effect is immune to the magnetic perturbation.

  5. Quantum coherence effects in hybrid nanoparticle molecules in the presence of ultra-short dephasing times

    NASA Astrophysics Data System (ADS)

    Sadeghi, S. M.

    2012-11-01

    We study quantum coherence effects in single nanoparticle systems consisting of a semiconductor quantum dot and a metallic nanoparticle in the presence of the ultra-short dephasing times of the quantum dots. The results suggest that coherent exciton-plasmon coupling can sustain the collective molecular resonances (plasmonic meta-resonances) of these systems at about room temperature. We investigate quantum optical properties of the quantum dots under this condition, demonstrating formation of ultranarrow gain and absorption spectral lines. These results are discussed in terms of plasmonic normalization of coherent population oscillation and the collective states of the nanoparticle systems.

  6. Effects of Shannon entropy and electric field on polaron in RbCl triangular quantum dot

    NASA Astrophysics Data System (ADS)

    M, Tiotsop; A, J. Fotue; S, C. Kenfack; N, Issofa; H, Fotsin; L, C. Fai

    2016-04-01

    In this paper, the time evolution of the quantum mechanical state of a polaron is examined using the Pekar type variational method on the condition of the electric-LO-phonon strong-coupling and polar angle in RbCl triangular quantum dot. We obtain the eigenenergies, and the eigenfunctions of the ground state, and the first excited state respectively. This system in a quantum dot can be treated as a two-level quantum system qubit and the numerical calculations are performed. The effects of Shannon entropy and electric field on the polaron in the RbCl triangular quantum dot are also studied.

  7. Bohm potential effect on the propagation of electrostatic surface wave in semi-bounded quantum plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-02-01

    High frequency electrostatic wave propagation in a dense and semi-bounded electron quantum plasma is investigated with consideration of the Bohm potential. The dispersion relation for the surface mode of quantum plasma is derived and numerically analyzed. We found that the quantum effect enhances the frequency of the wave especially in the high wave number regime. However, the frequency of surface wave is found to be always lower than that of the bulk wave for the same quantum wave number. The group velocity of the surface wave for various quantum wave number is also obtained.

  8. Configuration interaction matrix elements for the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Wooten, Rachel; Macek, Joseph

    2015-03-01

    In the spherical model of the quantum Hall system, the two-body matrix elements and pseudopotentials can be found analytically in terms of a general scalar pair interaction potential by expressing the pair interaction as a weighted sum over Legendre polynomials. For non-infinite systems, only a finite set of terms in the potential expansion contribute to the interactions; the contributing terms define an effective spatial potential for the system. The connection between the effective spatial potential and the pseudopotential is one-to-one for finite systems, and any completely defined model pseudopotential can be analytically inverted to give a unique corresponding spatial potential. This technique of inverting the pseudopotential to derive effective spatial potentials may be of use for developing accurate model spatial potentials for quantum Monte Carlo simulations. We demonstrate the technique and the corresponding spatial potentials for a few example model pseudopotentials. Supported by Office of Basic Energy Sciences, U.S. DOE, Grant DE-FG02-02ER15283 to the University of Tennessee.

  9. Nuclear quantum effects in high-pressure ice

    NASA Astrophysics Data System (ADS)

    Bronstein, Yael; Depondt, Philippe; Finocchi, Fabio

    Because of their mass, hydrogen nuclei are subjected to nuclear quantum effects (NQE), mainly tunneling and zero-point energy. They can be crucial to describe correctly the properties of H-containing systems, even at room temperature. A prototypical example of the importance of NQE is the transition from asymmetric H-bonds in phase VII to symmetric bonds in phase X of high-pressure ice, in which NQE drastically reduce the transition pressure. However, natural ice is rarely pure and even small concentrations of salt (LiCl or NaCl) in ice have a strong effect on the phase diagram: the VII to X transition is shifted to higher pressures, questioning the resilience of NQE in the presence of ionic impurities. We investigate these questions using the Quantum Thermal Bath, a semi-classical Langevin dynamics, taking into account both NQE and thermal effects in pure and salty ices. We show why NQE can be sensitive to the presence of impurities and that non-trivial phenomena could result, such as the spectacular upshift of the transition pressure and the peculiar motion of ions.

  10. Nuclear Quantum Effects on Aqueous Electron Attachment and Redox Properties.

    PubMed

    Rybkin, Vladimir V; VandeVondele, Joost

    2017-04-06

    Nuclear quantum effects (NQEs) on the reduction and oxidation properties of small aqueous species (CO2, HO2, and O2) are quantified and rationalized by first-principles molecular dynamics and thermodynamic integration. Vertical electron attachment, or electron affinity, and detachment energies (VEA and VDE) are strongly affected by NQEs, decreasing in absolute value by 0.3 eV going from a classical to a quantum description of the nuclei. The effect is attributed to NQEs that lessen the solvent response upon oxidation/reduction. The reduction of solvent reorganization energy is expected to be general for small solutes in water. In the thermodynamic integral that yields the free energy of oxidation/reduction, these large changes enter with opposite sign, and only a small net effect (0.1 eV) remains. This is not obvious for CO2, where the integrand is strongly influenced by NQEs due to the onset of interaction of the reduced orbital with the conduction band of the liquid during thermodynamic integration. We conclude that NQEs might not have to be included in the computation of redox potentials, unless high accuracy is needed, but are important for VEA and VDE calculations.

  11. Recoil ion charge state distribution following the beta(sup +) decay of {sup 21}Na

    SciTech Connect

    Scielzo, Nicholas D.; Freedman, Stuart J.; Fujikawa, Brian K.; Vetter, Paul A.

    2003-01-03

    The charge state distribution following the positron decay of 21Na has been measured, with a larger than expected fraction of the daughter 21Ne in positive charge states. No dependence on either the positron or recoil nucleus energy is observed. The data is compared to a simple model based on the sudden approximation. Calculations suggest a small but important contribution from recoil ionization has important consequences for precision beta decay correlation experiments detecting recoil ions.

  12. Delayed autoionization of recoil ions by the decay of high-spin isomeric states

    NASA Astrophysics Data System (ADS)

    Maidikov, V. Z.

    1985-12-01

    The time dependence of the ionization for isotopically different heavy ion fusion recoil ions has been observed. Delayed nuclear-induced autoionization of recoil ions caused by the decay of high-spin nuclear isomeric states by internal conversion was established. Internal conversion in isolated recoil atoms results in a drastic rearrangement in the atomic cloud with a loss of a great number of orbital electrons. Possibilities for the use of the observed phenomena in atomic and nuclear physics are discussed.

  13. Revealing compressed stops using high-momentum recoils

    NASA Astrophysics Data System (ADS)

    Macaluso, Sebastian; Park, Michael; Shih, David; Tweedie, Brock

    2016-03-01

    Searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP/neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ˜ 1 and significances often well beyond 5 σ. The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a [InlineMediaObject not available: see fulltext.] signature, but also leads to a distinctive anti-correlation between the [InlineMediaObject not available: see fulltext.] and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in [InlineMediaObject not available: see fulltext.] measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of fb-1. By 300 fb-1, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the "stealth" point at {m}_{overline{t}}={m}_t and potentially overlapping with limits from toverline{t} cross section and spin correlation measurements.

  14. Revealing compressed stops using high-momentum recoils

    SciTech Connect

    Macaluso, Sebastian; Park, Michael; Shih, David; Tweedie, Brock

    2016-03-22

    In this study, searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP/neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ~ 1 and significances often well beyond 5σ. The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a ET, but also leads to a distinctive anti-correlation between the ET and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in ET measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of fb–1. By 300 fb–1, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the “stealth” point at m = mt and potentially overlapping with limits from tt¯ cross section and spin correlation measurements.

  15. Revealing compressed stops using high-momentum recoils

    DOE PAGES

    Macaluso, Sebastian; Park, Michael; Shih, David; ...

    2016-03-22

    In this study, searches for supersymmetric top quarks at the LHC have been making great progress in pushing sensitivity out to higher mass, but are famously plagued by gaps in coverage around lower-mass regions where the decay phase space is closing off. Within the common stop-NLSP/neutralino-LSP simplified model, the line in the mass plane where there is just enough phase space to produce an on-shell top quark remains almost completely unconstrained. Here, we show that is possible to define searches capable of probing a large patch of this difficult region, with S/B ~ 1 and significances often well beyond 5σ.more » The basic strategy is to leverage the large energy gain of LHC Run 2, leading to a sizable population of stop pair events recoiling against a hard jet. The recoil not only re-establishes a ET, but also leads to a distinctive anti-correlation between the ET and the recoil jet transverse vectors when the stops decay all-hadronically. Accounting for jet combinatorics, backgrounds, and imperfections in ET measurements, we estimate that Run 2 will already start to close the gap in exclusion sensitivity with the first few 10s of fb–1. By 300 fb–1, exclusion sensitivity may extend from stop masses of 550 GeV on the high side down to below 200 GeV on the low side, approaching the “stealth” point at mt¯ = mt and potentially overlapping with limits from tt¯ cross section and spin correlation measurements.« less

  16. Projectile paths corrected for recoil and air resistance

    NASA Astrophysics Data System (ADS)

    Kemp, H. R.

    1986-01-01

    The angle of projection of a bullet is not the same as the angle of the bore of the firearm just before firing. This is because recoil alters the direction of the barrel as the bullet moves along the barrel. Neither is the angle of projection of an arrow the same as the direction of the arrow just before it is projected. The difficulty in obtaining the angle of projection limits the value of the standard equation for trajectories relative to a horizontal plane. Furthermore, air resistance makes this equation unrealistic for all but short ranges.

  17. Quantum confinement in Si and Ge nanostructures: effect of crystallinity

    NASA Astrophysics Data System (ADS)

    Barbagiovanni, Eric G.; Lockwood, David J.; Costa Filho, Raimundo N.; Goncharova, Lyudmila V.; Simpson, Peter J.

    2013-10-01

    We look at the relationship between the preparation method of Si and Ge nanostructures (NSs) and the structural, electronic, and optical properties in terms of quantum confinement (QC). QC in NSs causes a blue shift of the gap energy with decreasing NS dimension. Directly measuring the effect of QC is complicated by additional parameters, such as stress, interface and defect states. In addition, differences in NS preparation lead to differences in the relevant parameter set. A relatively simple model of QC, using a `particle-in-a-box'-type perturbation to the effective mass theory, was applied to Si and Ge quantum wells, wires and dots across a variety of preparation methods. The choice of the model was made in order to distinguish contributions that are solely due to the effects of QC, where the only varied experimental parameter was the crystallinity. It was found that the hole becomes de-localized in the case of amorphous materials, which leads to stronger confinement effects. The origin of this result was partly attributed to differences in the effective mass between the amorphous and crystalline NS as well as between the electron and hole. Corrections to our QC model take into account a position dependent effective mass. This term includes an inverse length scale dependent on the displacement from the origin. Thus, when the deBroglie wavelength or the Bohr radius of the carriers is on the order of the dimension of the NS the carriers `feel' the confinement potential altering their effective mass. Furthermore, it was found that certain interface states (Si-O-Si) act to pin the hole state, thus reducing the oscillator strength.

  18. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Ancona, Mario G.; Rafferty, Conor S.; Yu, Zhiping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction ot the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion of quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  19. Exact modeling of finite temperature and quantum delocalization effects on reliability of quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Tiihonen, Juha; Schramm, Andreas; Kylänpää, Ilkka; Rantala, Tapio T.

    2016-02-01

    A thorough simulation study is carried out on thermal and quantum delocalization effects on the feasibility of a quantum-dot cellular automata (QCA) cell. The occupation correlation of two electrons is modeled with a simple four-site array of harmonic quantum dots (QD). QD sizes range from 20 nm to 40 nm with site separations from 20 nm to 100 nm, relevant for state-of-the-art GaAs/InAs semiconductor technology. The choice of parameters introduces QD overlap, which is only simulated properly with exact treatment of strong Coulombic correlation and thermal equilibrium quantum statistics. These are taken into account with path integral Monte Carlo approach. Thus, we demonstrate novel joint effects of quantum delocalization and decoherence in QCA, but also highly sophisticated quantitative evidence supporting the traditional relations in pragmatic QCA design. Moreover, we show the effects of dimensionality and spin state, and point out the parameter space conditions, where the ‘classical’ treatment becomes invalid.

  20. Quantum-electrodynamics corrections in pionic hydrogen

    SciTech Connect

    Schlesser, S.; Le Bigot, E.-O.; Indelicato, P.; Pachucki, K.

    2011-07-15

    We investigate all pure quantum-electrodynamics corrections to the np{yields}1s, n=2-4 transition energies of pionic hydrogen larger than 1 meV, which requires an accurate evaluation of all relevant contributions up to order {alpha}{sup 5}. These values are needed to extract an accurate strong interaction shift from experiment. Many small effects, such as second-order and double vacuum polarization contribution, proton and pion self-energies, finite size and recoil effects are included with exact mass dependence. Our final value differs from previous calculations by up to {approx_equal}11 ppm for the 1s state, while a recent experiment aims at a 4 ppm accuracy.

  1. 2. QUANTUM HALL EFFECT: The problem of Coulomb interactions in the theory of the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Baranov, M. A.; Pruisken, A. M. M.; Škoric, B.

    2001-10-01

    We summarize the main ingredients of a unifying theory for abelian quantum Hall states. This theory combines the Finkel'stein approach to localization and interaction effects with the topological concept of an instanton vacuum as well as Chern-Simons gauge theory. We elaborate on the meaning of a new symmetry (Script F invariance) for systems with an infinitely ranged interaction potential. We address the renormalization of the theory and present the main results in terms of a scaling diagram of the conductances.

  2. Temperature dependence of isotopic quantum effects in water.

    PubMed

    Hart, R T; Benmore, C J; Neuefeind, J; Kohara, S; Tomberli, B; Egelstaff, P A

    2005-02-04

    The technique of high energy x-ray diffraction has been used to measure the temperature variation of hydrogen versus deuterium isotopic quantum effects on the structure of water. The magnitude of the effect is found to be inversely proportional to the temperature, varying by a factor of 2.5 over the range 6 to 45 degrees C. In addition, the H216O versus H218O effect has been measured at 26 degrees C and the structural difference shown to be restricted to the nearest neighbor molecular interactions. The results are compared to recent simulations and previously measured isochoric temperature differentials; additionally, implications for H/D substitution experiments are considered.

  3. Pseudo Magnetic Faraday and Quantum Hall Effect In Oscillating Graphene

    NASA Astrophysics Data System (ADS)

    Bhagat, Anita; Mullen, Kieran

    When a graphene layer is stressed, the strain changes the phase between sites in a tight binding model of the system. This phase can be viewed as a pseudo-magnetic vector potential. The corresponding pseudo-magnetic field has been experimentally verified in static cases. We examine the case of oscillating graphene ribbons and explore two new effects. The first is to investigate an oscillating pseudo-magnetic field that produces a quantum Hall effect: we calculate the I-V characteristic of an oscillating graphene nanoribbon as a function of frequency, and amplitude in both the oscillations and the applied driving voltage. Second, the time dependent pseudo-magnetic field should produce a pseudo-Faraday effect driving electrons in different valleys in opposite directions. In both cases, we make explicit calculations for experiment. This project was supported in part by the US National Science Foundation under Grant DMR-1310407.

  4. Semianalytical quantum model for graphene field-effect transistors

    SciTech Connect

    Pugnaghi, Claudio; Grassi, Roberto Gnudi, Antonio; Di Lecce, Valerio; Gnani, Elena; Reggiani, Susanna; Baccarani, Giorgio

    2014-09-21

    We develop a semianalytical model for monolayer graphene field-effect transistors in the ballistic limit. Two types of devices are considered: in the first device, the source and drain regions are doped by charge transfer with Schottky contacts, while, in the second device, the source and drain regions are doped electrostatically by a back gate. The model captures two important effects that influence the operation of both devices: (i) the finite density of states in the source and drain regions, which limits the number of states available for transport and can be responsible for negative output differential resistance effects, and (ii) quantum tunneling across the potential steps at the source-channel and drain-channel interfaces. By comparison with a self-consistent non-equilibrium Green's function solver, we show that our model provides very accurate results for both types of devices, in the bias region of quasi-saturation as well as in that of negative differential resistance.

  5. Confined monopoles induced by quantum effects in dense QCD

    NASA Astrophysics Data System (ADS)

    Eto, Minoru; Nitta, Muneto; Yamamoto, Naoki

    2011-04-01

    We analytically show that mesonic bound states of confined monopoles appear inside a non-Abelian vortex string in massless three-flavor QCD at large quark chemical potential μ. The orientational modes CP2 in the internal space of a vortex is described by the low-energy effective world-sheet theory. Mesons of confined monopoles are dynamically generated as bound states of kinks by the quantum effects in the effective theory. The mass of monopoles is shown to be an exponentially soft scale M˜Δexp⁡[-c(μ/Δ)2], with the color superconducting gap Δ and some constant c. A possible quark-monopole duality between the hadron phase and the color superconducting phase is also discussed.

  6. Mixing effects in the crystallization of supercooled quantum binary liquids

    NASA Astrophysics Data System (ADS)

    Kühnel, M.; Fernández, J. M.; Tramonto, F.; Tejeda, G.; Moreno, E.; Kalinin, A.; Nava, M.; Galli, D. E.; Montero, S.; Grisenti, R. E.

    2015-08-01

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH2) or orthodeuterium (oD2) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH2 and oD2 crystal growth rates, similarly to what found in our previous work on supercooled pH2-oD2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  7. Dynamical gauge effects in an open quantum network

    NASA Astrophysics Data System (ADS)

    Zhao, Jianshi; Price, Craig; Liu, Qi; Gemelke, Nathan

    2016-05-01

    We describe new experimental techniques for simulation of high-energy field theories based on an analogy between open thermodynamic systems and effective dynamical gauge-fields following SU(2) × U(1) Yang-Mills models. By coupling near-resonant laser-modes to atoms moving in a disordered optical environment, we create an open system which exhibits a non-equilibrium phase transition between two steady-state behaviors, exhibiting scale-invariant behavior near the transition. By measuring transport of atoms through the disordered network, we observe two distinct scaling behaviors, corresponding to the classical and quantum limits for the dynamical gauge field. This behavior is loosely analogous to dynamical gauge effects in quantum chromodynamics, and can mapped onto generalized open problems in theoretical understanding of quantized non-Abelian gauge theories. Additional, the scaling behavior can be understood from the geometric structure of the gauge potential and linked to the measure of information in the local disordered potential, reflecting an underlying holographic principle. We acknowledge support from NSF Award No.1068570, and the Charles E. Kaufman Foundation.

  8. Mixing effects in the crystallization of supercooled quantum binary liquids

    SciTech Connect

    Kühnel, M.; Kalinin, A.; Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S.; Tramonto, F.; Galli, D. E.; Nava, M.; Grisenti, R. E.

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  9. Casimir effects for classical and quantum liquids in slab geometry: A brief review

    SciTech Connect

    Biswas, Shyamal

    2015-05-15

    We analytically explore Casimir effects for confinement of classical and quantum fluctuations in slab (film) geometry (i) for classical (critical) fluctuations over {sup 4}He liquid around the λ point, and (ii) for quantum (phonon) fluctuations of Bogoliubov excitations over an interacting Bose-Einstein condensate. We also briefly review Casimir effects for confinement of quantum vacuum fluctuations confined to two plates of different geometries.

  10. Quantum Computer Games: Quantum Minesweeper

    ERIC Educational Resources Information Center

    Gordon, Michal; Gordon, Goren

    2010-01-01

    The computer game of quantum minesweeper is introduced as a quantum extension of the well-known classical minesweeper. Its main objective is to teach the unique concepts of quantum mechanics in a fun way. Quantum minesweeper demonstrates the effects of superposition, entanglement and their non-local characteristics. While in the classical…

  11. Waves in a bounded quantum plasma with electron exchange-correlation effects

    SciTech Connect

    Ma Yutng; Mao Shenghng; Xue Juji

    2011-10-15

    Within a quantum hydrodynamic model, the collective excitations of the quantum plasma with electron exchange-correlation effects in a nano-cylindrical wave guide are studied both analytically and numerically. The influences of the electron exchange-correlation potential, the radius of the wave guide, and the quantum effect on the dispersion properties of the bounded quantum plasma are discussed. Significant frequency-shift induced by the electron exchange-correlation effect, the radius of the wave guide and the quantum correction are observed. It is found that the influence of the electron exchange-correlation, the radius of the wave guide and the quantum correction on the wave modes in a bounded nano-waveguide are strongly coupled.

  12. Computerized measurement of pulmonary conductance and elastic recoil.

    PubMed

    Colebatch, H J; Nail, B S; Ng, C K

    1978-04-01

    A system devloped for on-line measurement of transpulmonary pressure, gas flow at the mouth, change in expired volume and plethysmograph volume uses a minicomputer to control a multiplexed analog to digital converter. The computer identified samples as static or dynamic values by monitoring a voltage activating a solenoid valve, used to close the airway. Analysis of these samples by other task-specific programs yielded the static deflation pressure-volume (PV) curve, the conductance-recoil pressure, GL-Pst(L), relationship and the maximum expiratory flow-volume (MEFV) curve; the MEF-Pst(L) curve and conductance upstream from the equal pressure point were derived. The PV relationship was represented by a fourth-order polynomial and the GL-Pst(L) relationship by linear regression. In 11 subjects the results obtained using on-line data collection, compared with manual analysis of oscillograph recordings, showed small differences in static compliance and in the maximum Pst(L); but overall the two methods showed excellent agreement. Besides advantages of speed and objectivity, this system facilitates a more rigorous analytical treatment of elastic recoil and conductance.

  13. Improvements of the DRAGON recoil separator at ISAC

    NASA Astrophysics Data System (ADS)

    Vockenhuber, C.; Buchmann, L.; Caggiano, J.; Chen, A. A.; D'Auria, J. M.; Davis, C. A.; Greife, U.; Hussein, A.; Hutcheon, D. A.; Ottewell, D.; Ouellet, C. O.; Parikh, A.; Pearson, J.; Ruiz, C.; Ruprecht, G.; Trinczek, M.; Zylberberg, J.

    2008-10-01

    The DRAGON (Detector of Recoils And Gammas Of Nuclear reactions) is used to measure radiative proton and alpha capture reaction rates involving both stable and radioactive, heavy-ion reactants at the TRIUMF-ISAC high intensity radioactive beam facility. Completed in 2001 it has been used for several challenging studies for nuclear astrophysics, e.g. 12C(α, γ)16O, 21Na(p, γ)22Mg, 26gAl(p, γ)27Si and 40Ca(α, γ)44Ti. Since initial operation, a number of improvements have been incorporated which are described here. These include a beam centering monitor based on a CCD camera, a mechanical iris to skim of beam halo, a solid state stripper acting as a charge state booster for beams with A ≳ 30, beta and gamma detectors to monitor beam intensity and to determine beam contamination in experiments with radioactive beam and the ionization chamber for both recoil identification and isobar separation.

  14. A Measurement of the Recoil Polarization of Electroproduced Λ(1116)

    SciTech Connect

    McAleer, Simeon B.

    2002-01-01

    The CEBAF Large Acceptance Spectrometer at the Thomas Jefferson National Laboratory was used to study the reaction e + p → e' + K+ + Λ(1116) for events where Λ(1116) subsequently decayed via the channel Λ(1116) → p + π-. Data were taken at incident electron beam energies of 2.5, 4.0, and 4.2 GeV during the 1999 E1C run period. They hyperon production spectra span the Q2 range from 0.5 to 2.8 GeV2 and nearly the entire range in the center of mass angles. The proton angular distribution in the Λ(1116) rest frame is used to deduce the recoil polarization of the hyperon, and the W and cos θ$K+\\atop{cm}$ dependence of the recoil polarization will be presented. The data show sizeable negative polarizations for the Λ(1116) as a function of both cos θ$K+\\atop{cm}$ and W.

  15. Magnonic quantum Hall effect and Wiedemann-Franz law

    NASA Astrophysics Data System (ADS)

    Nakata, Kouki; Klinovaja, Jelena; Loss, Daniel

    2017-03-01

    We present a quantum Hall effect of magnons in two-dimensional clean insulating magnets at finite temperature. Through the Aharonov-Casher effect, a magnon moving in an electric field acquires a geometric phase and forms Landau levels in an electric field gradient of sawtooth form. At low temperatures, the lowest energy band being almost flat carries a Chern number associated with a Berry curvature. Appropriately defining the thermal conductance for bosons, we find that the magnon Hall conductances get quantized and show a universal thermomagnetic behavior, i.e., are independent of materials, and obey a Wiedemann-Franz law for magnon transport. We consider magnons with quadratic and linear (Dirac-like) dispersions. Finally, we show that our predictions are within experimental reach for ferromagnets and skyrmion lattices with current device and measurement techniques.

  16. Thermoelectric effects in quantum Hall systems beyond linear response

    NASA Astrophysics Data System (ADS)

    López, Rosa; Hwang, Sun-Yong; Sánchez, David

    2014-12-01

    We consider a quantum Hall system with an antidot acting as a energy dependent scatterer. In the purely charge case, we find deviations from the Wiedemann-Franz law that take place in the nonlinear regime of transport. We also discuss Peltier effects beyond linear response and describe both effects using magnetic-field asymmetric transport coefficients. For the spin case such as that arising along the helical edge states of a two-dimensional topological insulator, we investigate the generation of spin currents as a result of applied voltage and temperature differences in samples attached to ferromagnetic leads. We find that in the parallel configuration the spin current can be tuned with the leads' polarization even in the linear regime of transport. In contrast, for antiparallel magnetizations the spin currents has a strict nonlinear dependence on the the applied fields.

  17. Investigating dissipation in the quantum anomalous Hall effect

    NASA Astrophysics Data System (ADS)

    Fox, Eli; Bestwick, Andrew; Goldhaber-Gordon, David; Feng, Yang; Ou, Yunbo; He, Ke; Wang, Yayu; Xue, Qi-Kun; Kou, Xufeng; Pan, Lei; Wang, Kang

    In the quantum anomalous Hall effect, a magnetic exchange gap in a 3D topological insulator gives rise to dissipationless chiral edge states. Though the effect has recently been realized in a family of ferromagnetically-doped (Bi,Sb)2Te3 topological insulator thin films, experiments to date have found non-vanishing longitudinal resistance, contrary to initial theoretical expectations. Proposed sources of this dissipation include extra gapless or activated quasi-helical edge states, thermally activated 2D conduction, and variable-range hopping. Here, we discuss transport measurements of Corbino disk and non-local geometries to identify the mechanism of non-ideal behavior. This work supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. 19-7503.

  18. Quantum Electrodynamics Effects in Rovibrational Spectra of Molecular Hydrogen.

    PubMed

    Komasa, Jacek; Piszczatowski, Konrad; Łach, Grzegorz; Przybytek, Michał; Jeziorski, Bogumił; Pachucki, Krzysztof

    2011-10-11

    The dissociation energies from all rovibrational levels of H2 and D2 in the ground electronic state are calculated with high accuracy by including relativistic and quantum electrodynamics (QED) effects in the nonadiabatic treatment of the nuclear motion. For D2, the obtained energies have theoretical uncertainties of 0.001 cm(-1). For H2, similar uncertainties are for the lowest levels, while for the higher ones the uncertainty increases to 0.005 cm(-1). Very good agreement with recent high-resolution measurements of the rotational v = 0 levels of H2, including states with large angular momentum J, is achieved. This agreement would not have been possible without accurate evaluation of the relativistic and QED contributions and may be viewed as the first observation of the QED effects, mainly the electron self-energy, in a molecular spectrum. For several electric quadrupole transitions, we still observe certain disagreement with experimental results, which remains to be explained.

  19. Band Collapse and the Quantum Hall Effect in Graphene

    SciTech Connect

    Bernevig, B.Andrei; Hughes, Taylor L.; Zhang, Shou-Cheng; Chen, Han-Dong; Wu, Congjun; /Santa Barbara, KITP

    2010-03-16

    The recent Quantum Hall experiments in graphene have confirmed the theoretically well-understood picture of the quantum Hall (QH) conductance in fermion systems with continuum Dirac spectrum. In this paper we take into account the lattice, and perform an exact diagonalization of the Landau problem on the hexagonal lattice. At very large magnetic fields the Dirac argument fails completely and the Hall conductance, given by the number of edge states present in the gaps of the spectrum, is dominated by lattice effects. As the field is lowered, the experimentally observed situation is recovered through a phenomenon which we call band collapse. As a corollary, for low magnetic field, graphene will exhibit two qualitatively different QHE's: at low filling, the QHE will be dominated by the 'relativistic' Dirac spectrum and the Hall conductance will be odd-integer; above a certain filling, the QHE will be dominated by a non-relativistic spectrum, and the Hall conductance will span all integers, even and odd.

  20. Quantum effects in a simple ring with hydrogen bonds.

    PubMed

    Kariev, Alisher M; Green, Michael E

    2015-05-14

    Complexes containing multiple arginines are common in proteins. The arginines are typically salt-bridged or hydrogen-bonded, so that their charges do not repel. Here we present a quantum calculation of a ring in which the components of a salt bridge composed of a guanidinium, the arginine side chain, and a carboxylic acid are separated by water molecules. When one water molecule is displaced from the ring, atomic charges of the other water molecule, as well as other properties, are significantly affected. The exchange and correlation energy differences between optimized and displaced rings are larger than thermal energy at room temperature, and larger than the sum of other energy differences. This suggests that calculations on proteins and other systems where such a ring may occur must take quantum effects into account; charges on certain atoms shift as substituents are added to the system: another water molecule, an -OH, or -CN bonded to either moiety. Also, charge shifts accompany proton shifts from the acid to guanidinium to ionize the salt bridge. The consequences of moving one water out of the ring give evidence for electron delocalization. Bond order and atomic charges are determined using natural bond orbital calculations. The geometry of the complex changes with ionization as well as the -OH and -CN additions but not in a simple manner. These results help in understanding the role of groups of arginines in salt-bridged clusters in proteins.

  1. Hall effect of triplons in a dimerized quantum magnet

    NASA Astrophysics Data System (ADS)

    Romhányi, Judit; Penc, Karlo; Ganesh, R.

    2015-04-01

    SrCu2(BO3)2 is the archetypal quantum magnet with a gapped dimer-singlet ground state and triplon excitations. It serves as an excellent realization of the Shastry-Sutherland model, up to small anisotropies arising from Dzyaloshinskii-Moriya interactions. Here we demonstrate that these anisotropies, in fact, give rise to topological character in the triplon band structure. The triplons form a new kind of Dirac cone with three bands touching at a single point, a spin-1 generalization of graphene. An applied magnetic field opens band gaps resulting in topological bands with Chern numbers +/-2. SrCu2(BO3)2 thus provides a magnetic analogue of the integer quantum Hall effect and supports topologically protected edge modes. At a threshold value of the magnetic field set by the Dzyaloshinskii-Moriya interactions, the three triplon bands touch once again in a spin-1 Dirac cone, and lose their topological character. We predict a strong thermal Hall signature in the topological regime.

  2. Hall effect of triplons in a dimerized quantum magnet

    NASA Astrophysics Data System (ADS)

    Romhanyi, Judit; Penc, Karlo; Ganesh, Ramachandran

    2015-03-01

    SrCu2(BO3)2 is the archetypal quantum magnet with a gapped dimer-singlet ground state and triplon excitations. It serves as a realization of the Shastry Sutherland model, up to small anisotropies arising from Dzyaloshinskii-Moriya (DM) interactions. We demonstrate that the DM couplings give rise to topological character in the triplon band structure. The triplons form a new kind of a Dirac cone with three bands touching at a single point, a spin-1 generalization of graphene. An applied magnetic field opens band gaps and as a result topological bands with Chern numbers +/- 2 develop. Thus SrCu2(BO3)2 is a magnetic analogue of the integer quantum Hall effect and supports topologically protected edge modes. At a critical value of the magnetic field set by the strength of DM interactions, the three triplon bands touch again in a spin-1 Dirac cone, and lose their topological character. We predict thermal Hall signature in the topological regime.

  3. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE PAGES

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; ...

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  4. The exchange-correlation effects on surface plasmon oscillations in semi-bounded quantum plasma

    SciTech Connect

    Shahmansouri, Mehran

    2015-09-15

    We studied the surface plasmon waves in a quantum plasma half-space by considering the effects of exchange and correlation for the electrons. We used a quantum hydrodynamic approach, including the full set of Maxwell equations and considering two new quantities (measuring the exchange and correlation effects) in addition to the Fermi electron temperature and the quantum Bohm potential, to derive the dispersion relation for the surface plasmon waves. It was found that the exchange-correlation effects significantly modified the behavior of surface plasmon waves. We showed that the frequency of surface plasmon wave was down-shifted by the exchange-correlation effects. On the other hand, the quantum effects (including of the exchange-correlation effects and the quantum Bohm potential) was seen to cause an increase in the phase speed of surface plasmon waves. Our results can help to understand the propagation properties of surface waves in intense laser produced solid density plasmas and metallic plasmas.

  5. Disorder effects in the quantum Hall effect of graphene p-n junctions

    NASA Astrophysics Data System (ADS)

    Li, Jian; Shen, Shun-Qing

    2008-11-01

    The quantum Hall effect in graphene p-n junctions is studied numerically with emphasis on the effect of disorder at the interface of two adjacent regions. Conductance plateaus are found to be attached to the intensity of the disorder and are accompanied by universal conductance fluctuations in the bipolar regime, which is in good agreement with theoretical predictions of the random matrix theory on quantum chaotic cavities. The calculated Fano factors can be used in an experimental identification of the underlying transport character.

  6. Quantum Transfer Energy and Nonlocal Correlation in a Dimer with Time-Dependent Coupling Effect

    NASA Astrophysics Data System (ADS)

    El-Shishtawy, Reda M.; Berrada, K.; Haddon, Robert C.; Al-Hadeethi, Yas F.; Al-Heniti, Saleh H.; Raffah, Bahaaudin M.

    2017-02-01

    The presence of coherence phenomenon due to the interference of probability amplitude terms, is one of the most important features of quantum mechanics theory. Recent experiments show the presence of quantum processes whose coherence provided over suddenly large interval-time. In particular, photosynthetic mechanisms in light-harvesting complexes provide oscillatory behaviors in quantum mechanics due to quantum coherence. In this work, we investigate the coherent quantum transfer energy for a single-excitation and nonlocal correlation in a dimer system modelled by a two-level atom system with and without time-dependent coupling effect. We analyze and explore the required conditions that are feasible with real experimental realization for optimal transfer of quantum energy and generation of nonlocal quantum correlation. We show that the enhancement of the probability for a single-excitation transfer energy is greatly benefits from the combination of the energy detuning and time-dependent coupling effect. We investigate the presence of quantum correlations in the dimer using the entanglement of formation. We also find that the entanglement between the donor and acceptor is very sensitive to the physical parameters and it can be generated during the coherent energy transfer. On the other hand, we study the dynamical behavior of the quantum variance when performing a measurement on an observable of the density matrix operator. Finally, an interesting relationship between the transfer probability, entanglement and quantum variance is explored during the time evolution in terms of the physical parameters.

  7. Decoherence Effect on Quantum Correlation and Entanglement in a Two-qubit Spin Chain

    NASA Astrophysics Data System (ADS)

    Pourkarimi, Mohammad Reza; Rahnama, Majid; Rooholamini, Hossein

    2015-04-01

    Assuming a two-qubit system in Werner state which evolves in Heisenberg XY model with Dzyaloshinskii-Moriya (DM) interaction under the effect of different environments. We evaluate and compare quantum entanglement, quantum and classical correlation measures. It is shown that in the absence of decoherence effects, there is a critical value of DM interaction for which entanglement may vanish while quantum and classical correlations do not. In the presence of environment the behavior of correlations depends on the kind of system-environment interaction. Correlations can be sustained by manipulating Hamiltonian anisotropic-parameter in a dissipative environment. Quantum and classical correlations are more stable than entanglement generally.

  8. Controllable effects of quantum fluctuations on spin free-induction decay at room temperature.

    PubMed

    Liu, Gang-Qin; Pan, Xin-Yu; Jiang, Zhan-Feng; Zhao, Nan; Liu, Ren-Bao

    2012-01-01

    Fluctuations of local fields cause decoherence of quantum objects. Usually at high temperatures, thermal noises are much stronger than quantum fluctuations unless the thermal effects are suppressed by certain techniques such as spin echo. Here we report the discovery of strong quantum-fluctuation effects of nuclear spin baths on free-induction decay of single electron spins in solids at room temperature. We find that the competition between the quantum and thermal fluctuations is controllable by an external magnetic field. These findings are based on Ramsey interference measurement of single nitrogen-vacancy center spins in diamond and numerical simulation of the decoherence, which are in excellent agreement.

  9. Quantum anomalous Hall effect in stanene on a nonmagnetic substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Huisheng; Zhou, Tong; Zhang, Jiayong; Zhao, Bao; Yao, Yugui; Yang, Zhongqin

    2016-12-01

    Since the quantum anomalous Hall (QAH) effect was realized in magnetic topological insulators, research on the effect has become a hot topic. The very harsh realizing requirements of the effect in experiments, however, hinder its practical applications. Based on ab initio methods, we find that nonmagnetic Pb I2 films are ideal substrates for the two-dimensional honeycomb stanene. The QAH effect with a pretty large band gap (up to 90 meV) can be achieved in the functionalized stanene /Pb I2 heterostructure. Despite van der Waals interactions in the heterostructure, band inversions are found to be happening between Sn (s and px ,y ) and Pb (px ,y) orbitals, playing a key role in determining the nontrivial topology and the large band gap of the system. Having no magnetic atoms is imperative to triggering the QAH effect. A very stable rudimentary device having QAH effects is proposed based on the Sn /Pb I2 heterostructure. Our results demonstrate that QAH effects can be easily realized in the Sn /Pb I2 heterostructures in experiments.

  10. Radiation Effects in Nanostructures: Comparison of Proton Irradiation Induced Changes on Quantum Dots and Quantum Wells

    NASA Technical Reports Server (NTRS)

    Leon, R.; Swift, G.; Magness, B.; Taylor, W.; Tang, Y.; Wang, K.; Dowd, P.; Zhang, Y.

    2000-01-01

    Successful implementation of technology using self-forming semiconductor Quantum Dots (QDs) has already demonstrated that temperature independent Dirac-delta density of states can be exploited in low current threshold QD lasers and QD infrared photodetectors.

  11. Thickness Dependence of the Quantum Anomalous Hall Effect in Magnetic Topological Insulator Films.

    PubMed

    Feng, Xiao; Feng, Yang; Wang, Jing; Ou, Yunbo; Hao, Zhenqi; Liu, Chang; Zhang, Zuocheng; Zhang, Liguo; Lin, Chaojing; Liao, Jian; Li, Yongqing; Wang, Li-Li; Ji, Shuai-Hua; Chen, Xi; Ma, Xucun; Zhang, Shou-Cheng; Wang, Yayu; He, Ke; Xue, Qi-Kun

    2016-08-01

    The evolution of the quantum anomalous Hall effect with the thickness of Cr-doped (Bi,Sb)2 Te3 magnetic topological insulator films is studied, revealing how the effect is caused by the interplay of the surface states, band-bending, and ferromagnetic exchange energy. Homogeneity in ferromagnetism is found to be the key to high-temperature quantum anomalous Hall material.

  12. Quantum Dynamics and Spectroscopy of Ab Initio Liquid Water: The Interplay of Nuclear and Electronic Quantum Effects.

    PubMed

    Marsalek, Ondrej; Markland, Thomas E

    2017-04-06

    Understanding the reactivity and spectroscopy of aqueous solutions at the atomistic level is crucial for the elucidation and design of chemical processes. However, the simulation of these systems requires addressing the formidable challenges of treating the quantum nature of both the electrons and nuclei. Exploiting our recently developed methods that provide acceleration by up to 2 orders of magnitude, we combine path integral simulations with on-the-fly evaluation of the electronic structure at the hybrid density functional theory level to capture the interplay between nuclear quantum effects and the electronic surface. Here we show that this combination provides accurate structure and dynamics, including the full infrared and Raman spectra of liquid water. This allows us to demonstrate and explain the failings of lower-level density functionals for dynamics and vibrational spectroscopy when the nuclei are treated quantum mechanically. These insights thus provide a foundation for the reliable investigation of spectroscopy and reactivity in aqueous environments.

  13. Non-abelian fractional quantum hall effect for fault-resistant topological quantum computation.

    SciTech Connect

    Pan, Wei; Thalakulam, Madhu; Shi, Xiaoyan; Crawford, Matthew; Nielsen, Erik; Cederberg, Jeffrey George

    2013-10-01

    Topological quantum computation (TQC) has emerged as one of the most promising approaches to quantum computation. Under this approach, the topological properties of a non-Abelian quantum system, which are insensitive to local perturbations, are utilized to process and transport quantum information. The encoded information can be protected and rendered immune from nearly all environmental decoherence processes without additional error-correction. It is believed that the low energy excitations of the so-called =5/2 fractional quantum Hall (FQH) state may obey non-Abelian statistics. Our goal is to explore this novel FQH state and to understand and create a scientific foundation of this quantum matter state for the emerging TQC technology. We present in this report the results from a coherent study that focused on obtaining a knowledge base of the physics that underpins TQC. We first present the results of bulk transport properties, including the nature of disorder on the 5/2 state and spin transitions in the second Landau level. We then describe the development and application of edge tunneling techniques to quantify and understand the quasiparticle physics of the 5/2 state.

  14. Beam suppression of the DRAGON recoil separator for 3He(α,γ)7Be

    NASA Astrophysics Data System (ADS)

    Sjue, S. K. L.; Nara Singh, B. S.; Adsley, P.; Buchmann, L.; Carmona-Gallardo, M.; Davids, B.; Fallis, J.; Fulton, B. R.; Galinski, N.; Hager, U.; Hass, M.; Howell, D.; Hutcheon, D. A.; Laird, A. M.; Martin, L.; Ottewell, D.; Reeve, S.; Ruiz, C.; Ruprecht, G.; Triambak, S.

    2013-02-01

    Preliminary studies in preparation for an absolute cross-section measurement of the radiative capture reaction 3He(α,γ)7Be with the DRAGON recoil separator have demonstrated beam suppression >1014 at the 90% confidence level. A measurement of this cross section by observation of 7Be recoils at the focal plane of the separator should be virtually background free.

  15. Analytical calculation of radiative-recoil corrections to muonium hyperfine splitting: Muon-line contribution

    SciTech Connect

    Eides, M.I.; Karshenboim, S.G.; Shelyuto, V.A. )

    1991-02-01

    Analytic expression for radiative-recoil corrections to muonium ground-state hyperfine splitting induced by muon-line radiative insertions is obtained. This result completes the program of analytic calculation of all radiative-recoil corrections. The perspectives of further muonium hyperfine splitting investigations are also discussed.

  16. Exact calculations of nuclear-recoil energies from prompt gamma decays resulting from neutron capture

    SciTech Connect

    Kinney, J.H.

    1981-07-20

    The results of an accurate determination of the recoil spectrum from (n, ..gamma..) reactions in molybdenum are presented. The recoil spectrum has been calculated from nuclear level structure data and measured branching ratios. Angular correlations between successive gammas have been accounted for using the standard theoretical techniques of Racah algebra and the density matrix formalism.

  17. Optimal control of gun recoil in direct fire using magnetorheological absorbers

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Wereley, Norman M.

    2014-05-01

    Optimal control of a gun recoil absorber is investigated for minimizing recoil loads and maximizing rate of fire. A multi-objective optimization problem was formulated by considering the mechanical model of the recoil absorber employing a spring and a magnetorheological (MR) damper. The damper forces are predicted by evaluating pressure drops using a nonlinear Bingham-plastic model. The optimization methodology provides multiple optimal design configurations with a trade-off between recoil load minimization and increased rate of fire. The configurations with low or high recoil loads imply low or high rate of fire, respectively. The gun recoil absorber performance is also analyzed for perturbations in the firing forces. The adaptive control of the MR damper for varying gun firing forces provides a smooth operation by returning the recoil mass to its battery position (ready to reload and fire) without incurring an end-stop impact. Furthermore, constant load transmissions are observed with respect to the recoil stroke by implementing optimal control during the simulated firing events.

  18. Efficient Multi-Dimensional Simulation of Quantum Confinement Effects in Advanced MOS Devices

    NASA Technical Reports Server (NTRS)

    Biegel, Bryan A.; Rafferty, Conor S.; Ancona, Mario G.; Yu, Zhi-Ping

    2000-01-01

    We investigate the density-gradient (DG) transport model for efficient multi-dimensional simulation of quantum confinement effects in advanced MOS devices. The formulation of the DG model is described as a quantum correction to the classical drift-diffusion model. Quantum confinement effects are shown to be significant in sub-100nm MOSFETs. In thin-oxide MOS capacitors, quantum effects may reduce gate capacitance by 25% or more. As a result, the inclusion or quantum effects in simulations dramatically improves the match between C-V simulations and measurements for oxide thickness down to 2 nm. Significant quantum corrections also occur in the I-V characteristics of short-channel (30 to 100 nm) n-MOSFETs, with current drive reduced by up to 70%. This effect is shown to result from reduced inversion charge due to quantum confinement of electrons in the channel. Also, subthreshold slope is degraded by 15 to 20 mV/decade with the inclusion of quantum effects via the density-gradient model, and short channel effects (in particular, drain-induced barrier lowering) are noticeably increased.

  19. Memory effect in the upper bound of the heat flux induced by quantum fluctuations

    NASA Astrophysics Data System (ADS)

    Koide, T.

    2016-10-01

    Thermodynamic behaviors in a quantum Brownian motion coupled to a classical heat bath is studied. We then define a heat operator by generalizing the stochastic energetics and show the energy balance (first law) and the upper bound of the expectation value of the heat operator (second law). We further find that this upper bound depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can be qualitatively modified in quantum thermodynamics.

  20. Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects for Optical Amplification

    DTIC Science & Technology

    2016-01-26

    AFRL-RV-PS- AFRL-RV-PS- TR-2016-0003 TR-2016-0003 EXPERIMENTAL STUDY OF ELECTRONIC QUANTUM INTERFERENCE, PHOTONIC CRYSTAL CAVITY, PHOTONIC BAND...2014 – 11 Jan 2016 4. TITLE AND SUBTITLE Experimental Study of Electronic Quantum Interference, Photonic Crystal Cavity, Photonic Band Edge Effects...tailoring of dispersion and the photonic band gap. The band gap frequency can be matched to tailor the emission from active medium such as quantum

  1. Gate-induced carrier delocalization in quantum dot field effect transistors.

    PubMed

    Turk, Michael E; Choi, Ji-Hyuk; Oh, Soong Ju; Fafarman, Aaron T; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R; Kikkawa, James M

    2014-10-08

    We study gate-controlled, low-temperature resistance and magnetotransport in indium-doped CdSe quantum dot field effect transistors. We show that using the gate to accumulate electrons in the quantum dot channel increases the "localization product" (localization length times dielectric constant) describing transport at the Fermi level, as expected for Fermi level changes near a mobility edge. Our measurements suggest that the localization length increases to significantly greater than the quantum dot diameter.

  2. Memory effect in the upper bound of the heat flux induced by quantum fluctuations.

    PubMed

    Koide, T

    2016-10-01

    Thermodynamic behaviors in a quantum Brownian motion coupled to a classical heat bath is studied. We then define a heat operator by generalizing the stochastic energetics and show the energy balance (first law) and the upper bound of the expectation value of the heat operator (second law). We further find that this upper bound depends on the memory effect induced by quantum fluctuations and hence the maximum extractable work can be qualitatively modified in quantum thermodynamics.

  3. Giant gap quantum spin Hall effect and valley-polarized quantum anomalous Hall effect in cyanided bismuth bilayers

    NASA Astrophysics Data System (ADS)

    Ji, Wei-xiao; Zhang, Chang-wen; Ding, Meng; Zhang, Bao-min; Li, Ping; Li, Feng; Ren, Miao-juan; Wang, Pei-ji; Zhang, Run-wu; Hu, Shu-jun; Yan, Shi-shen

    2016-08-01

    Bismuth (Bi) has attracted a great deal of attention for its strongest spin-orbit coupling (SOC) strength among main group elements. Although quantum anomalous Hall (QAH) state is predicted in half-hydrogenated Bi honeycomb monolayers Bi2H, the experimental results are still missing. Halogen atoms (X = F, Cl and Br) were also frequently used as modifications, but Bi2X films show a frustrating metallic character that masks the QAH effects. Here, first-principle calculations are performed to predict the full-cyanided bismuthene (Bi2(CN)2) as 2D topological insulator supporting quantum spin Hall state with a record large gap up to 1.10 eV, and more importantly, half-cyanogen saturated bismuthene (Bi2(CN)) as a Chern insulator supporting a valley-polarized QAH state, with a Curie temperature to be 164 K, as well as a large gap reaching 0.348 eV which could be further tuned by bi-axial strain and SOC strength. Our findings provide an appropriate and flexible material family candidate for spintronic and valleytronic devices.

  4. Universality and phase diagram in the quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Wong, Lauren Wai-Wing

    We have designed and conducted detailed experiments to explore the following critical, unsolved issues in regarding to the global behavior of the two-dimensional electron gas (2DEG) in the presence of disorder and many-body interaction in the quantum Hall effect (QHE) regime: (1) nature of the quantum Hall liquid-Hall insulator (QHL-HI) phase transition induced by disorder, (2) topological phase diagram and possible existence of a thermodynamically stable "metallic phase" around filling factor nu =1/2, and (3) whether the termination of spin-resolved Landau levels in general a phase transition. First, I present our studies of the disorder-tuned QHL-HI phase transition in both the integer and fractional QHE regimes. We found that the longitudinal resistivity near the critical points shows reflection symmetry and good scaling behavior over a wide range of densities and temperature with the same critical exponent. This supports the notion that quantum phase transitions in the QHE belong to same universality class. Furthermore, the critical conductivities are universal at the transitions. Our approach to investigate the second issue is to map out the phase boundaries corresponding to different QHLs around nu =1/2. We identified a line on which the value of the Hall conductivity equals to 1/2(esp2/h) in the phase diagram; and an another line on which the value of the Hall resistivity equals to 2(h/esp2). We interpreted the later is a result predicted by the composite-fermion theory. The phase boundaries between the HI and the principal QHLs at nu =1 and 1/3 show levitation of the delocalized states of the first Landau levels for electrons and Composite fermions. Our data suggest that there is no true metallic state around nu =1/2. Finally, I present our magnetotransport studies of the spin-resolved integer QHE by changing disorder. For a given Landau level, the difference in filling factors of a pair of spin-split resistivity peaks changes rapidly from one to zero near

  5. Aharonov-Casher effect in quantum ring ensembles

    NASA Astrophysics Data System (ADS)

    Joibari, Fateme K.; Blanter, Ya. M.; Bauer, Gerrit E. W.

    2013-09-01

    We study the transport of electrons through a single-mode quantum ring with electric-field induced Rashba spin-orbit interaction that is subject to an in-plane magnetic field and weakly coupled to electron reservoirs. Modeling a ring array by ensemble averaging over a Gaussian distribution of energy-level positions, we predict slow conductance oscillations as a function of the Rashba interaction and electron density due to spin-orbit interaction induced beating of the spacings between the levels crossed by the Fermi energy. Our results agree with experiments by Nitta c.s. [J. Nitta, J. Takagi, F. Nagasawa, and M. Kohda, J. Phys.: Conference Series1742-659610.1088/1742-6596/302/1/012002 302, 012002 (2011) and Nagasawa (unpublished)], thereby providing an interpretation that differs from the ordinary Aharonov-Casher effect in a single ring.

  6. Isotope quantum effects in water around the freezing point.

    PubMed

    Hart, R T; Mei, Q; Benmore, C J; Neuefeind, J C; Turner, J F C; Dolgos, M; Tomberli, B; Egelstaff, P A

    2006-04-07

    We have measured the difference in electronic structure factors between liquid H(2)O and D(2)O at temperatures of 268 and 273 K with high energy x-ray diffraction. These are compared to our previously published data measured from 279 to 318 K. We find that the total structural isotope effect increases by a factor of 3.5 over the entire range, as the temperature is decreased. Structural isochoric temperature differential and isothermal density differential functions have been used to compare these data to a thermodynamic model based upon a simple offset in the state function. The model works well in describing the magnitude of the structural differences above approximately 310 K, but fails at lower temperatures. The experimental results are discussed in light of several quantum molecular dynamics simulations and are in good qualitative agreement with recent temperature dependent, rotationally quantized rigid molecule simulations.

  7. Topological insulator in junction with ferromagnets: Quantum Hall effects

    NASA Astrophysics Data System (ADS)

    Chudnovskiy, A. L.; Kagalovsky, V.

    2015-06-01

    The ferromagnet-topological insulator-ferromagnet (FM-TI-FM) junction exhibits thermal and electrical quantum Hall effects. The generated Hall voltage and transverse temperature gradient can be controlled by the directions of magnetizations in the FM leads, which inspires the use of FM-TI-FM junctions as electrical and as heat switches in spintronic devices. Thermal and electrical Hall coefficients are calculated as functions of the magnetization directions in ferromagnets and the spin-relaxation time in TI. Both the Hall voltage and the transverse temperature gradient decrease but are not completely suppressed even at very short spin-relaxation times. The Hall coefficients turn out to be independent of the spin-relaxation time for symmetric configuration of FM leads.

  8. The origins of cosmic rays and quantum effects on gravity

    NASA Technical Reports Server (NTRS)

    Tomozawa, Y.

    1985-01-01

    The energy spectrum of primary cosmic rays is explained by particles emitted during a thermal expansion of explosive objects inside and near the galaxy, remnants of which may be supernova and/or active talaxies, or even stars or galaxies that disappeared from our sight after the explosion. A power law energy spectrum for cosmic rays, E to the (-alpha -1, is obtained from an expansion rate T is proportional to R to the alpha. Using the solution of the Einstein equation, we obtain a spectrum which agrees very well with experimental data. The implication of an inflationary early universe on the cosmic ray spectrum is also discussed. It is also suggested that the conflict between this model and the singularity theorem in classical general relativity may be eliminated by quantum effects.

  9. Magnetoelectric transport and quantum interference effect in ultrathin manganite films

    SciTech Connect

    Wang, Cong; Jin, Kui-juan Gu, Lin; Lu, Hui-bin; Li, Shan-ming; Zhou, Wen-jia; Zhao, Rui-qiang; Guo, Hai-zhong; He, Meng; Yang, Guo-zhen

    2014-04-21

    The magnetoelectric transport behavior with respect to the thicknesses of ultrathin La{sub 0.9}Sr{sub 0.1}MnO{sub 3} films is investigated in detail. The metal-insulator phase transition, which has never been observed in bulk La{sub 0.9}Sr{sub 0.1}MnO{sub 3}, is found in ultrathin films with thicknesses larger than 6 unit cells. Low-temperature resistivity minima appeared in films with thicknesses less than 10 unit cells. This is attributed to the presence of quantum interference effects. These data suggest that the influence of the weak localization becomes much pronounced as the film thickness decreases from 16 to 8 unit cells.

  10. Quantum Monte Carlo calculations with chiral effective field theory interactions.

    PubMed

    Gezerlis, A; Tews, I; Epelbaum, E; Gandolfi, S; Hebeler, K; Nogga, A; Schwenk, A

    2013-07-19

    We present the first quantum Monte Carlo (QMC) calculations with chiral effective field theory (EFT) interactions. To achieve this, we remove all sources of nonlocality, which hamper the inclusion in QMC calculations, in nuclear forces to next-to-next-to-leading order. We perform auxiliary-field diffusion Monte Carlo (AFDMC) calculations for the neutron matter energy up to saturation density based on local leading-order, next-to-leading order, and next-to-next-to-leading order nucleon-nucleon interactions. Our results exhibit a systematic order-by-order convergence in chiral EFT and provide nonperturbative benchmarks with theoretical uncertainties. For the softer interactions, perturbative calculations are in excellent agreement with the AFDMC results. This work paves the way for QMC calculations with systematic chiral EFT interactions for nuclei and nuclear matter, for testing the perturbativeness of different orders, and allows for matching to lattice QCD results by varying the pion mass.

  11. Level broadening and quantum interference effects in insulators

    NASA Astrophysics Data System (ADS)

    Medina, Ernesto; Pastawski, Horacio

    2000-03-01

    We study quantum interference effects in the context of the Nguyen-Spivak-Shklovskii (NSS) model including level broadening due to inelastic events. Improving on a recent mean-field approach, we incorporate path correlations and study both the log-conductance and its fluctuations. In contrast with mean field, we find that all changes in the conductance, due to broadening, imply corrections to the localization length. Furthermore, the change in the magnetoconductance sign, predicted by mean field, is not borne out by direct solution of the NSS model within reasonable broadening parameters. We compute a phase diagram for the magnetoconductance in the broadening parameter space and propose a replica theory for weak inelastic events.

  12. Integer quantum Hall effect of interacting electrons in graphene

    NASA Astrophysics Data System (ADS)

    Yan, Xin-Zhong; Ting, C. S.

    2017-02-01

    By taking into account the charge and spin orderings and the exchange interactions between all the Landau levels, we investigate the integer quantum Hall effect of electrons in graphene using the mean-field theory. We find that the fourfold degeneracy of the Landau levels cannot be completely lifted by the Coulomb interactions. In particular, at fillings ν =4 n +2 with n =0 ,1 ,... , there is no splitting between the fourfold degenerated Landau levels. We show that with doping the degenerated lowest empty level can be sequentially filled one by one; the filled level is lower than the empty ones because of the Coulomb-exchange interactions. This result explains the step Δ ν =1 in the quantized Hall conductivity. We present a highly efficient method for dealing with a huge number of the Coulomb couplings between all the Landau levels of the Dirac fermions.

  13. Magnetic quantum coherence effect in Ni4 molecular transistors.

    PubMed

    González, Gabriel; Leuenberger, Michael N

    2014-07-09

    We present a theoretical study of electron transport in Ni4 molecular transistors in the presence of Zeeman spin splitting and magnetic quantum coherence (MQC). The Zeeman interaction is extended along the leads which produces gaps in the energy spectrum which allow electron transport with spin polarized along a certain direction. We show that the coherent states in resonance with the spin up or down states in the leads induces an effective coupling between localized spin states and continuum spin states in the single molecule magnet and leads, respectively. We investigate the conductance at zero temperature as a function of the applied bias and magnetic field by means of the Landauer formula, and show that the MQC is responsible for the appearence of resonances. Accordingly, we name them MQC resonances.

  14. Effect of Poisson noise on adiabatic quantum control

    NASA Astrophysics Data System (ADS)

    Kiely, A.; Muga, J. G.; Ruschhaupt, A.

    2017-01-01

    We present a detailed derivation of the master equation describing a general time-dependent quantum system with classical Poisson white noise and outline its various properties. We discuss the limiting cases of Poisson white noise and provide approximations for the different noise strength regimes. We show that using the eigenstates of the noise superoperator as a basis can be a useful way of expressing the master equation. Using this, we simulate various settings to illustrate different effects of Poisson noise. In particular, we show a dip in the fidelity as a function of noise strength where high fidelity can occur in the strong-noise regime for some cases. We also investigate recent claims [J. Jing et al., Phys. Rev. A 89, 032110 (2014), 10.1103/PhysRevA.89.032110] that this type of noise may improve rather than destroy adiabaticity.

  15. Numerical simulations of a loop quantum cosmos: robustness of the quantum bounce and the validity of effective dynamics

    NASA Astrophysics Data System (ADS)

    Diener, Peter; Gupt, Brajesh; Singh, Parampreet

    2014-05-01

    A key result of isotropic loop quantum cosmology is the existence of a quantum bounce which occurs when the energy density of the matter field approaches a universal maximum close to the Planck density. Though the bounce has been exhibited in various matter models, due to severe computational challenges, some important questions have so far remained unaddressed. These include the demonstration of the bounce for widely spread states, its detailed properties for the states when matter field probes regions close to the Planck volume and the reliability of the continuum effective spacetime description in general. In this manuscript we rigorously answer these questions using the Chimera numerical scheme for the isotropic spatially flat model sourced with a massless scalar field. We show that, as expected from an exactly solvable model, the quantum bounce is a generic feature of states even with a very wide spread, and for those which bounce much closer to the Planck volume. We perform a detailed analysis of the departures from the effective description and find some expected, and some surprising results. At a coarse level of description, the effective dynamics can be regarded as a good approximation to the underlying quantum dynamics unless the states correspond to small scalar field momenta, in which case they bounce closer to the Planck volume or are very widely spread. Quantifying the amount of discrepancy between the quantum and the effective dynamics, we find that the departure between them depends in a subtle and non-monotonic way on the field momentum and different fluctuations. Interestingly, the departures are generically found to be such that the effective dynamics overestimates the spacetime curvature, and underestimates the volume at the bounce.

  16. Suggestions for revised definitions of noise quantities, including quantum effects

    NASA Astrophysics Data System (ADS)

    Kerr, A. R.

    1999-03-01

    Recent advances in millimeter- and submillimeter-wavelength receivers and the development of low-noise optical amplifiers focus attention on inconsistencies and ambiguities in the standard definitions of noise quantities and the procedures for measuring them. The difficulty is caused by the zero-point (quantum) noise hf/2 W/Hz, which is present even at absolute zero temperature, and also by the nonlinear dependence at low temperature of the thermal noise power of a resistor on its physical temperature, as given by the Planck law. Until recently, these effects were insignificant in all but the most exotic experiments, and the familiar Rayleigh-Jeans noise formula P=kT W/Hz could safely be used in most situations, Now, particularly in low-noise millimeter-wave and photonic devices, the quantum noise is prominent and the nonlinearity of the Planck law can no longer be neglected. The IEEE Standard Dictionary of Electrical and Electronics Terms gives several definitions of the noise temperature of a resistor or a port, which include: 1) the physical temperature of the resistor and 2) its available noise power density divided by Boltzmann's constant-definitions which are incompatible because of the nature of the Planck radiation law. In addition, there is no indication of whether the zero-point noise should be included as part of the noise temperature. Revised definitions of the common noise quantities are suggested, which resolve the shortcomings of the present definitions. The revised definitions have only a small effect on most RF and microwave measurements, but they provide a common consistent noise terminology from dc to light frequencies.

  17. COSY Simulations to Guide Commissioning of the St. George Recoil Mass Separator

    NASA Astrophysics Data System (ADS)

    Schmitt, Jaclyn; Moran, Michael; Seymour, Christopher; Gilardy, Gwenaelle; Meisel, Zach; Couder, Manoel

    2015-10-01

    The goal of St. George (STrong Gradient Electromagnetic Online Recoil separator for capture Gamma ray Experiments) is to measure (α, γ) cross sections relevant to stellar helium burning. Recoil separators such as St. George are able to more closely approach the low astrophysical energies of interest because they collect reaction recoils rather than γ-rays, and thus are not limited by room background. In order to obtain an accurate cross section measurement, a recoil separator must be able to collect all recoils over their full range of expected energy and angular spread. The energy acceptance of St. George is currently being measured, and the angular acceptance will be measured soon. Here we present the results of COSY ion optics simulations and magnetic field analyses which were performed to help guide the commissioning measurements and diagnostic upgrades required to complete those measurements. National Science Foundation Research Experiences for Undergraduates program.

  18. Dynamical Lamb effect versus dissipation in superconducting quantum circuits

    NASA Astrophysics Data System (ADS)

    Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.

    2016-06-01

    Superconducting circuits provide a new platform for study of nonstationary cavity QED phenomena. An example of such a phenomenon is the dynamical Lamb effect, which is the parametric excitation of an atom due to nonadiabatic modulation of its Lamb shift. This effect was initially introduced for a natural atom in a varying cavity, while we suggest its realization in a superconducting qubit-cavity system with dynamically tunable coupling. In the present paper, we study the interplay between the dynamical Lamb effect and the energy dissipation, which is unavoidable in realistic systems. We find that despite naive expectations, this interplay can lead to unexpected dynamical regimes. One of the most striking results is that photon generation from vacuum can be strongly enhanced due to qubit relaxation, which opens another channel for such a process. We also show that dissipation in the cavity can increase the qubit excited-state population. Our results can be used for experimental observation and investigation of the dynamical Lamb effect and accompanying quantum effects.

  19. Clutter attenuation using the Doppler effect in standoff electromagnetic quantum sensing

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas, Salvador

    2016-05-01

    In the context of traditional radar systems, the Doppler effect is crucial to detect and track moving targets in the presence of clutter. In the quantum radar context, however, most theoretical performance analyses to date have assumed static targets. In this paper we consider the Doppler effect at the single photon level. In particular, we describe how the Doppler effect produced by clutter and moving targets modifies the quantum distinguishability and the quantum radar error detection probability equations. Furthermore, we show that Doppler-based delayline cancelers can reduce the effects of clutter in the context of quantum radar, but only in the low-brightness regime. Thus, quantum radar may prove to be an important technology if the electronic battlefield requires stealthy tracking and detection of moving targets in the presence of clutter.

  20. Alpha decay studies of {sup 189}Bi{sup m}, {sup 190}Po and {sup 180 }Pb using a rapidly rotating recoil catcher wheel system

    SciTech Connect

    Batchelder, J.C.; Toth, K.S.; Moltz, D.M.

    1996-09-01

    The {alpha} decays of very neutron deficient nuclei near the Z = 82 closed proton shell are of interest because they provide us with structure information that is relevant with regard to the shell model. We used a rapidly rotating recoil catcher wheel system to study the {alpha} decays of {sup 189}Bi{sup {ital m}}, {sup 190}Po, and {sup 180}Pb. The system works as follows. Recoils from the back of the target, after passing through an Al degrader placed behind the target, are stopped in 300-{mu}g/cm{sup 2} Al catcher foils fixed at the edges of the wheel. These are inclined at an angle of 20 degrees with respect to the beam to maximize the catcher efficiency while keeping the thickness that {alpha} particles must travel in order to emerge of the Al foil to a minimum. This arrangement results in an effective thickness of {approx} 900 {mu}g/cm{sup 2} for recoils, but only 150 {mu}g/cm{sup 2} for the emitted {alpha} particles. Stopped recoils are then rotated between an array of 6 Si detectors in series (solid angle of 8% of 4{pi}). Half-life information can be obtained by determining the difference in counts between the detectors. This instrument has proven to be an effective tool for the study of nuclei far from stability with half-lives in the range of 1-50 ms.

  1. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    SciTech Connect

    Bolivar, A.O.

    2011-05-15

    Highlights: > Classical Brownian motion described by a non-Markovian Fokker-Planck equation. > Quantization process. > Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. > A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  2. Rejection of Electronic Recoils with the DMTPC Dark Matter Search

    NASA Astrophysics Data System (ADS)

    Lopez, J. P.; Ahlen, S.; Battat, J.; Caldwell, T.; Chernicoff, M.; Deaconu, C.; Dujmic, D.; Dushkin, A.; Fedus, W.; Fisher, P.; Golub, F.; Henderson, S.; Inglis, A.; Kaboth, A.; Kohse, G.; Kirsch, L.; Lanza, R.; Lee, A.; Monroe, J.; Ouyang, H.; Sahin, T.; Sciolla, G.; Skvorodnev, N.; Tomita, H.; Wellenstein, H.; Wolfe, I.; Yamamoto, R.; Yegoryan, H.

    The Dark Matter Time Projection Chamber (DMTPC) collaboration is developing a low-pressure gas TPC for detecting WIMP-nucleon interactions. DMTPC detectors use optical readout with CCD cameras to search for the daily modulation of the directional signal of the dark matter wind. An analysis of several charge readout channels has been developed to obtain additional information about ionization events in the detector. In order to reach sensitivities required for the WIMP detection, the detector needs to minimize backgrounds from electron recoils. This article shows that by using the readout of charge signals in addition to CCD readout, a preliminary statistics-limited 90% C.L. upper limit on the γ and e- rejection factor of 5.6 × 10-6 is obtained for energies between 40 keVee and 200 keVee.

  3. Molecular Dynamics Simulation of Energetic Uranium Recoil Damage in Zircon

    SciTech Connect

    Devanathan, Ram; Corrales, Louis R.; Weber, William J.; Chartier, Alain; Meis, Constantin

    2006-10-11

    Defect production and amorphization due to energetic uranium recoils in zircon (ZrSiO4), which is a promising ceramic nuclear waste form, is studied using molecular dynamics simulations with a partial charge model. An algorithm that distinguishes between undamaged crystal, crystalline defects and amorphous regions is used to develop a fundamental understanding of the primary damage state. The amorphous cascade core is separated from the surrounding crystal by a defect-rich region. Small, chemically inhomogeneous amorphous clusters are also produced around the core. The amorphous regions consist of under-coordinated Zr and polymerized Si leading to amorphization and phase separation on a nanometer scale into Zr- and Si-rich regions. This separation could play an important role in the experimentally observed formation of nanoscale ZrO2 in ZrSiO4 irradiated at elevated temperatures.

  4. Elastic recoil detection analysis on the ANSTO heavy ion microprobe

    NASA Astrophysics Data System (ADS)

    Siegele, R.; Orlic, I.; Cohen, David D.

    2002-05-01

    The heavy ion microprobe at the Australian Nuclear Science and Technology Organisation is capable of focussing heavy ions with an ME/ q2 of up to 100 amu MeV. This makes the microprobe ideally suited for heavy ion elastic recoil detection analysis (ERDA). However, beam currents on a microprobe are usually very small, which requires a detection system with a large solid angle. We apply microbeam heavy ion ERDA using a large solid angle ΔE- E telescope with a gas ΔE detector to layered structures. We demonstrate the capability to measure oxygen and carbon with a lateral resolution of 20 μm, together with determination of the depth of the contamination in thin deposited layers.

  5. Study of nuclear recoils in liquid argon with monoenergetic neutrons

    NASA Astrophysics Data System (ADS)

    Regenfus, C.; Allkofer, Y.; Amsler, C.; Creus, W.; Ferella, A.; Rochet, J.; Walter, M.

    2012-07-01

    In the framework of developments for liquid argon dark matter detectors we assembled a laboratory setup to scatter neutrons on a small liquid argon target. The neutrons are produced mono-energetically (Ekin = 2.45 MeV) by nuclear fusion in a deuterium plasma and are collimated onto a 3" liquid argon cell operating in single-phase mode (zero electric field). Organic liquid scintillators are used to tag scattered neutrons and to provide a time-of-flight measurement. The setup is designed to study light pulse shapes and scintillation yields from nuclear and electronic recoils as well as from alpha particles at working points relevant for dark matter searches. Liquid argon offers the possibility to scrutinise scintillation yields in noble liquids with respect to the population strength of the two fundamental excimer states. Here we present experimental methods and first results from recent data towards such studies.

  6. Recoil Polarization for Delta Excitation in Pion Electroproduction

    SciTech Connect

    J. J. Kelly; R. E. Roche; Z. Chai; M. K. Jones; O. Gayou; A. J. Sarty; S. Frullani; K. Aniol; E. J. Beise; F. Benmokhtar; W. Bertozzi; W. U. Boeglin; T. Botto; E. J. Brash; H. Breuer; E. Brown; E. Burtin; J. R. Calarco; C. Cavata; C. C. Chang; N. S. Chant; J.-P. Chen; M. Coman; D. Crovelli; R. De Leo; S. Dieterich; S. Escoffier; K. G. Fissum; V. Garde; F. Garibaldi; S. Georgakopoulus; S. Gilad; R. Gilman; C. Glashausser; J.-O. Hansen; D. W. Higinbotham; A. Hotta; G. M. Huber; H. Ibrahim; M. Iodice; C. W. de Jager; X. Jiang; A. Klimenko; A. Kozlov; G. Kumbartzki; M. Kuss; L. Lagamba; G. Laveissiere; J. J. LeRose; R. A. Lindgren; N. Liyanage; G. J. Lolos; R. W. Lourie; D. J. Margaziotis; F. Marie; P. Markowitz; S. McAleer; D. Meekins; R. Michaels; B. D. Milbrath; J. Mitchell; J. Nappa; D. Neyret; C. F. Perdrisat; M. Potokar; V. A. Punjabi; T. Pussieux; R. D. Ransome; P. G. Roos; M. Rvachev; A. Saha; S. Sirca; R. Suleiman; S. Strauch; J. A. Templon; L. Todor; P. E. Ulmer; G. M. Urciuoli; L. B. Weinstein; K. Wijesooriya; B. Wojtsekhowski; X. Zheng; and L. Zhu

    2005-08-01

    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q{sup 2}=1.0 (GeV/c){sup 2}, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and sp truncation.

  7. Calibration of a compact magnetic proton recoil neutron spectrometer

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfu; Ouyang, Xiaoping; Zhang, Xianpeng; Ruan, Jinlu; Zhang, Guoguang; Zhang, Xiaodong; Qiu, Suizheng; Chen, Liang; Liu, Jinliang; Song, Jiwen; Liu, Linyue; Yang, Shaohua

    2016-04-01

    Magnetic proton recoil (MPR) neutron spectrometer is considered as a powerful instrument to measure deuterium-tritium (DT) neutron spectrum, as it is currently used in inertial confinement fusion facilities and large Tokamak devices. The energy resolution (ER) and neutron detection efficiency (NDE) are the two most important parameters to characterize a neutron spectrometer. In this work, the ER calibration for the MPR spectrometer was performed by using the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), and the NDE calibration was performed by using the neutron generator at CIAE. The specific calibration techniques used in this work and the associated accuracies were discussed in details in this paper. The calibration results were presented along with Monte Carlo simulation results.

  8. Quantum random walks on congested lattices and the effect of dephasing

    PubMed Central

    Motes, Keith R.; Gilchrist, Alexei; Rohde, Peter P.

    2016-01-01

    We consider quantum random walks on congested lattices and contrast them to classical random walks. Congestion is modelled on lattices that contain static defects which reverse the walker’s direction. We implement a dephasing process after each step which allows us to smoothly interpolate between classical and quantum random walks as well as study the effect of dephasing on the quantum walk. Our key results show that a quantum walker escapes a finite boundary dramatically faster than a classical walker and that this advantage remains in the presence of heavily congested lattices. PMID:26812924

  9. Piezoelectric effect in InAs/InP quantum rod nanowires grown on silicon substrate

    SciTech Connect

    Anufriev, Roman; Chauvin, Nicolas Bru-Chevallier, Catherine; Khmissi, Hammadi; Naji, Khalid; Gendry, Michel; Patriarche, Gilles

    2014-05-05

    We report on the evidence of a strain-induced piezoelectric field in wurtzite InAs/InP quantum rod nanowires. This electric field, caused by the lattice mismatch between InAs and InP, results in the quantum confined Stark effect and, as a consequence, affects the optical properties of the nanowire heterostructure. It is shown that the piezoelectric field can be screened by photogenerated carriers or removed by increasing temperature. Moreover, a dependence of the piezoelectric field on the quantum rod diameter is observed in agreement with simulations of wurtzite InAs/InP quantum rod nanowire heterostructures.

  10. A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter

    SciTech Connect

    Cao, Huajie

    2014-11-01

    Robust results of WIMP direct detection experiments depend on rm understandings of nuclear recoils in the detector media. This thesis documents the most comprehensive study to date on nuclear recoils in liquid argon - a strong candidate for the next generation multi-ton scale WIMP detectors. This study investigates both the energy partition from nuclear recoil energy to secondary modes (scintillation and ionization) and the pulse shape characteristics of scintillation from nuclear recoils.

  11. Metallic clusters on a model surface: Quantum versus geometric effects

    NASA Astrophysics Data System (ADS)

    Blundell, S. A.; Haldar, Soumyajyoti; Kanhere, D. G.

    2011-08-01

    We determine the structure and melting behavior of supported metallic clusters using an ab initio density-functional-based treatment of intracluster interactions and an approximate treatment of the surface as an idealized smooth plane yielding an effective Lennard-Jones interaction with the ions of the cluster. We apply this model to determine the structure of sodium clusters containing from 4 to 22 atoms, treating the cluster-surface interaction strength as a variable parameter. For a strong cluster-surface interaction, the clusters form two-dimensional (2D) monolayer structures; comparisons with calculations of structure and dissociation energy performed with a classical Gupta interatomic potential show clearly the role of quantum shell effects in the metallic binding in this case, and evidence is presented that these shell effects correspond to those for a confined 2D electron gas. The thermodynamics and melting behavior of a supported Na20 cluster is considered in detail using the model for several cluster-surface interaction strengths. We find quantitative differences in the melting temperatures and caloric curve from density-functional and Gupta treatments of the valence electrons. A clear dimensional effect on the melting behavior is also demonstrated, with 2D structures showing melting temperatures above those of the bulk or (at very strong cluster-surface interactions) no clear meltinglike transition.

  12. Spin-valley Kondo effect in silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Shiau, Shiue Yuan

    Recent progress in the fabrication of silicon-based quantum dots opens the prospect of observing the Kondo effect associated with the valley degree of freedom. We compute the dot density of states using an Anderson impurity model, whose structure mimics the nonlinear conductance through a dot. The density of states is obtained as a function of temperature and applied magnetic field in the Kondo regime using an equation-of-motion approach. We show that there is a very complex peak structure near the Fermi energy in the N =1,2,3 Coulomb blockade regimes, but not in the N =4, with several signatures that distinguish this spin-valley Kondo effect from the usual spin Kondo effect seen in GaAs dots. We also show that the valley index is generally not conserved when electrons tunnel into a silicon dot, though the extent of this non-conservation is expected to be sample-dependent. This valley index non-conservation can be detected in principle from the valley Kondo effect. We identify features of the conductance that should enable experimenters to understand the interplay of Zeeman splitting and valley splitting, as well as the dependence of tunneling on the valley degree of freedom.

  13. Sub-barrier reactions measured using a recoil mass separator

    SciTech Connect

    Betts, R.R.

    1988-01-01

    Few data exist in the sub-barrier region for reaction channels other than fusion. In particular, our experimental knowledge of quasi-elastic transfer reactions is sparse, despite the belief that this particular channel may be dominant in determining some features of the sub-barrier fusion enhancement. Transfer reactions are governed primarily by the closet approach of the colliding nuclei which, at low energies, results in a strong backward peaking of the angular distribution in the center-of-mass frame. For situations where the projectile has a significant fraction of the target mass, as is so in most cases of interest, the backscattered projectile-like fragment has such low energy that the usual techniques of measurement and identification become invalid. Here, we report on a solution to this problem which allows a systematic study of many aspects of transfer reactions in the energy regime of interest. We exploit the fact that associated with the low-energy backscattered projectile-like fragment is a complementary target-like fragment which recoils to forward angles with a large fraction of the incident beam energy. These target-like fragments were detected and identified using the Daresbury Recoil Mass Separator thus allowing the measurement of quasi-elastic transfer over hitherto inaccessible energy range from the vicinity of the barrier to several tens of MeV below. The experiments described here used VYNi beams of energies ranging from 180 to 260 MeV provided by the Daresbury Laboratory Nuclear Structure Facility tandem accelerator. Data on sub-barrier transfer for targets of /sup 116,118,120,122,124/Sn and /sup 144,148,150,152,154/Sm were obtained. 16 refs., 10 figs., 2 tabs.

  14. Magnetic Topological Insulators and Quantum Anomalous Hall Effect

    NASA Astrophysics Data System (ADS)

    Kou, Xufeng

    The engineering of topological surface states is a key to realize applicable devices based on topological insulators (TIs). Among various proposals, introducing magnetic impurities into TIs has been proven to be an effective way to open a surface gap and integrate additional ferromagnetism with the original topological order. In this Dissertation, we study both the intrinsic electrical and magnetic properties of the magnetic TI thin films grown by molecular beam epitaxy. By doping transition element Cr into the host tetradymite-type V-VI semiconductors, we achieve robust ferromagnetic order with a strong perpendicular magnetic anisotropy. With additional top-gating capability, we realize the electric-field-controlled ferromagnetism in the magnetic TI systems, and demonstrate such magneto-electric effects can be effectively manipulated, depending on the interplays between the band topology, magnetic exchange coupling, and structural engineering. Most significantly, we report the observation of quantum anomalous Hall effect (QAHE) in the Cr-doped (BiSb)2Te3 samples where dissipationless chiral edge conduction is realized in the macroscopic millimeter-size devices without the presence of any external magnetic field, and the stability of the quantized Hall conductance of e2/h is well-maintained as the film thickness varies across the 2D hybridization limit. With additional quantum confinement, we discover the metal-to-insulator switching between two opposite QAHE states, and reveal the universal QAHE phase diagram in the thin magnetic TI samples. In addition to the uniform magnetic TIs, we further investigate the TI/Cr-doped TI bilayer structures prepared by the modulation-doped growth method. By controlling the magnetic interaction profile, we observe the Dirac hole-mediated ferromagnetism and develop an effective way to manipulate its strength. Besides, the giant spin-orbit torque in such magnetic TI-based heterostructures enables us to demonstrate the current

  15. A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?

    SciTech Connect

    Civano, F.; Elvis, M.; Lanzuisi, G.; Hao, H.; Aldcroft, T.; Jahnke, K.; Zamorani, G.; Comastri, A.; Bolzonella, M.; Blecha, L.; Loeb, A.; Bongiorno, A.; Brusa, M.; Leauthaud, A.; Mainieri, V.; Piconcelli, E.; Salvato, M.; Scoville, N.; Trump, J.; Vignali, C.

    2010-07-01

    We present a detailed study of a peculiar source detected in the COSMOS survey at z = 0.359. Source CXOC J100043.1+020637, also known as CID-42, has two compact optical sources embedded in the same galaxy. The distance between the two, measured in the HST/ACS image, is 0.''495 {+-} 0.''005 that, at the redshift of the source, corresponds to a projected separation of 2.46 {+-} 0.02 kpc. A large ({approx}1200 km s{sup -1}) velocity offset between the narrow and broad components of H{beta} has been measured in three different optical spectra from the VLT/VIMOS and Magellan/IMACS instruments. CID-42 is also the only X-ray source in COSMOS, having in its X-ray spectra a strong redshifted broad absorption iron line and an iron emission line, drawing an inverted P-Cygni profile. The Chandra and XMM-Newton data show that the absorption line is variable in energy by {Delta}E = 500 eV over four years and that the absorber has to be highly ionized in order not to leave a signature in the soft X-ray spectrum. That these features-the morphology, the velocity offset, and the inverted P-Cygni profile-occur in the same source is unlikely to be a coincidence. We envisage two possible explanations, both exceptional, for this system: (1) a gravitational wave (GW) recoiling black hole (BH), caught 1-10 Myr after merging; or (2) a Type 1/Type 2 system in the same galaxy where the Type 1 is recoiling due to the slingshot effect produced by a triple BH system. The first possibility gives us a candidate GW recoiling BH with both spectroscopic and imaging signatures. In the second case, the X-ray absorption line can be explained as a BAL-like outflow from the foreground nucleus (a Type 2 AGN) at the rearer one (a Type 1 AGN), which illuminates the otherwise undetectable wind, giving us the first opportunity to show that fast winds are present in obscured active galactic nuclei (AGNs), and possibly universal in AGNs.

  16. Elementary framework for cold field emission: Incorporation of quantum-confinement effects

    SciTech Connect

    Patterson, A. A. Akinwande, A. I.

    2013-12-21

    Although the Fowler-Nordheim (FN) equation serves as the foundation of cold field emission theory, it may not be suitable for predicting the emitted current density (ECD) from emitters with a quantum-confined electron supply. This work presents an analytical framework for treating cold field emission from metals that includes the effects of a quantum-confined electron supply. Within the framework, quantum confinement in emitters is classified into transverse and normal quantum confinement based on the orientation of the confinement relative to the emission direction. The framework is used to generate equations predicting the ECD from rectangular and cylindrical emitter geometries comprised of electron supplies of reduced dimensionality. Transverse quantum confinement of the electron supply leads to a reduction in the total ECD as transverse emitter dimensions decrease and normal quantum confinement results in an oscillatory ECD as a function of the normal quantum well width. Incorporating a geometry-dependent field enhancement factor into the model reveals an optimal transverse well width for which quantum confinement of the electron supply and field enhancement equally affect the ECD and a maximum total ECD for the emitter geometry at a given applied field is obtained. As a result, the FN equation over-predicts the ECD from emitters with transverse dimensions under approximately 5 nm, and in those cases, geometry-specific ECD equations incorporating quantum-confinement effects should be employed instead.

  17. Screening effects and Friedel oscillations in quantum-well nanostructures

    SciTech Connect

    Kovalev, V. M.; Chaplik, A. V.

    2008-11-15

    The screening of the Coulomb interaction is studied with regard to Friedel oscillations in multicomponent electron plasma structure. A double quantum well (QW) and a superlattice are considered. The groundstate energy of a donor (exciton) in a double quantum well is calculated by a variational method as a function of the population of subbands.

  18. Calendar effects in quantum mechanics in view of interactive holography

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon

    2013-04-01

    Quantum mechanics in terms of interactive holography appears as `normal' science [1]. With the holography quantum behavior is determined by the interplay of material formations and their conjugate images. To begin with, this effortlessly elucidates the nonlocality in quantum entanglements. Then, it has been shown that Schr"odinger's dynamics for a single particle arises from Bi-Fragmental random walks of the particle itself and its holographic image. For many particles this picture blurs with fragments merging as bosons or fermions. In biomolecules, swapping of particles and their holographic placeholders leads to self-replication of the living matter. Because of broad interpretations of quantum formalism direct experiments attributing it to holography may not be very compelling. The holographic mechanism better reveals as an absolute frame of reference. A number of physical and biological events exhibit annual variations when Earth orbital position changes with respect to the universal holographic mechanism. The well established calendar variations of heart attacks can be regarded as a positive outcome of a generalization of the Michelson experiment, where holography is interferometry and ailing hearts are detectors of pathologically replicated proteins. Also, there have been already observed calendar changes in radioactive decay rates. The same could be expected for various fine quantum experiences, like, e.g., Josephson tunneling. In other words, Quantum Mechanics (February) Quantum Mechanics (August). [1] S. Berkovich, ``A comprehensive explanation of quantum mechanics,'' www.cs.gwu.edu/research/technical-report/170 .

  19. The surface termination effect on the quantum confinement and electron affinities of 3C-SiC quantum dots: a first-principles study.

    PubMed

    Zhang, Zhenkui; Dai, Ying; Yu, Lin; Guo, Meng; Huang, Baibiao; Whangbo, Myung-Hwan

    2012-03-07

    In light of the established differences between the quantum confinement effect and the electron affinities between hydrogen-passivated C and Si quantum dots, we carried out theoretical investigations on SiC quantum dots, with surfaces uniformly terminated by C-H or Si-H bonds, to explore the role of surface terminations on these two aspects. Surprisingly, it was found that the quantum confinement effect is present (or absent) in the highest occupied (or lowest unoccupied) molecular orbital of the SiC quantum dots regardless of their surface terminations. Thus, the quantum confinement effect related to the energy gap observed experimentally (Phys. Rev. Lett., 2005, 94, 026102) is contributed to by the size-dependence of the highest occupied states; the absence of quantum confinement in the lowest unoccupied states is in contrary to the usual belief based on hydrogen-passivated C quantum dots. However, the cause of the absence of the quantum confinement in C nanodots is not transferable to SiC. We propose a model that provides a clear explanation for all findings on the basis of the nearest-neighbor and next-nearest-neighbor interactions between the valence atomic p-orbital in the frontier occupied/unoccupied states. We also found that the electron affinities of the SiC quantum dots, which closely depend on the surface environments, are negative for the C-H termination and positive for the Si-H termination. The prediction of negative electron affinities in SiC quantum dots by simple C-H termination indicates a promising application for these materials in electron-emitter devices. Our model predicts that GeC quantum dots with hydrogen passivation exhibit similar features to SiC quantum dots and our study confirms the crucial role that the surface environment plays in these nanoscale systems.

  20. Form effect on the Diamagnetic Susceptibility of a magneto-donor in Quantum Dot

    NASA Astrophysics Data System (ADS)

    Janati Edrissi, S.; M’Zred, S.; Chrafih, Y.; Rahmani, K.; Zorkani, I.; Mmadi, A.; Jorio, A.

    2017-03-01

    The diamagnetic susceptibility of a shallow donor confined to move in Quantum Dots ‘QD’ in the presence of a magnetic field is theoretically investigated. The numerical calculations are performed in the effective mass approximation, using a variational method. We describe the effect of the quantum confinement by an infinite deep potential. The form effect is studied for the Spherical Quantum Dot ‘SQD’ and Cylindrical Quantum Dot ‘CQD’. The results for these two forms of structures show that the diamagnetic susceptibility and the binding energy increase with the magnetic field. There are more pronounced for larger dot. We remark that for a zero magnetic field, the binding energy and the diamagnetic susceptibility are decreasing functions of the quantum dot radius.

  1. Quantum fluctuations and isotope effects in ab initio descriptions of water

    SciTech Connect

    Wang, Lu; Markland, Thomas E.; Ceriotti, Michele

    2014-09-14

    Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.

  2. Quantum fluctuations and isotope effects in ab initio descriptions of water.

    PubMed

    Wang, Lu; Ceriotti, Michele; Markland, Thomas E

    2014-09-14

    Isotope substitution is extensively used to investigate the microscopic behavior of hydrogen bonded systems such as liquid water. The changes in structure and stability of these systems upon isotope substitution arise entirely from the quantum mechanical nature of the nuclei. Here, we provide a fully ab initio determination of the isotope exchange free energy and fractionation ratio of hydrogen and deuterium in water treating exactly nuclear quantum effects and explicitly modeling the quantum nature of the electrons. This allows us to assess how quantum effects in water manifest as isotope effects, and unravel how the interplay between electronic exchange and correlation and nuclear quantum fluctuations determine the structure of the hydrogen bond in water.

  3. Acceleration of positrons by a relativistic electron beam in the presence of quantum effects

    SciTech Connect

    Niknam, A. R.; Aki, H.; Khorashadizadeh, S. M.

    2013-09-15

    Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.

  4. Effects of Landau level mixing on the fractional quantum Hall effect in monolayer graphene.

    PubMed

    Peterson, Michael R; Nayak, Chetan

    2014-08-22

    We report results of exact diagonalization studies of the spin- and valley-polarized fractional quantum Hall effect in the N = 0 and N = 1 Landau levels in graphene. We use an effective model that incorporates Landau level mixing to lowest order in the parameter κ = ((e(2)/εℓ)/(ħv(F)/ℓ)) = (e(2)/εv(F)ħ), which is magnetic field independent and can only be varied through the choice of substrate. We find Landau level mixing effects are negligible in the N = 0 Landau level for κ ≲ 2. In fact, the lowest Landau level projected Coulomb Hamiltonian is a better approximation to the real Hamiltonian for graphene than it is for semiconductor based quantum wells. Consequently, the principal fractional quantum Hall states are expected in the N = 0 Landau level over this range of κ. In the N = 1 Landau level, fractional quantum Hall states are expected for a smaller range of κ and Landau level mixing strongly breaks particle-hole symmetry, producing qualitatively different results compared to the N = 0 Landau level. At half filling of the N = 1 Landau level, we predict the anti-Pfaffian state will occur for κ ∼ 0.25-0.75.

  5. Motion and gravity effects in the precision of quantum clocks

    PubMed Central

    Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette

    2015-01-01

    We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions. PMID:25988238

  6. Motion and gravity effects in the precision of quantum clocks.

    PubMed

    Lindkvist, Joel; Sabín, Carlos; Johansson, Göran; Fuentes, Ivette

    2015-05-19

    We show that motion and gravity affect the precision of quantum clocks. We consider a localised quantum field as a fundamental model of a quantum clock moving in spacetime and show that its state is modified due to changes in acceleration. By computing the quantum Fisher information we determine how relativistic motion modifies the ultimate bound in the precision of the measurement of time. While in the absence of motion the squeezed vacuum is the ideal state for time estimation, we find that it is highly sensitive to the motion-induced degradation of the quantum Fisher information. We show that coherent states are generally more resilient to this degradation and that in the case of very low initial number of photons, the optimal precision can be even increased by motion. These results can be tested with current technology by using superconducting resonators with tunable boundary conditions.

  7. Temperature scaling in the quantum-Hall-effect regime in a HgTe quantum well with an inverted energy spectrum

    SciTech Connect

    Arapov, Yu. G.; Gudina, S. V.; Neverov, V. N.; Podgornykh, S. M.; Popov, M. R. Harus, G. I.; Shelushinina, N. G.; Yakunin, M. V.; Mikhailov, N. N.; Dvoretsky, S. A.

    2015-12-15

    The longitudinal and Hall magnetoresistances of HgTe/HgCdTe heterostructures with an inverted energy spectrum (the HgTe quantum well width is d = 20.3 nm) are measured in the quantum-Hall-effect regime at T = 2–50 K in magnetic fields up to B = 9 T. Analysis of the temperature dependences of conductivity in the transition region between the first and second plateaus of the quantum Hall effect shows the feasibility of the scaling regime for a plateau–plateau quantum phase transition in 2D-structures on the basis of mercury telluride.

  8. The trouble with orbits: The Stark effect in the old and the new quantum theory

    NASA Astrophysics Data System (ADS)

    Duncan, Anthony; Janssen, Michel

    2014-11-01

    The old quantum theory and Schrödinger's wave mechanics (and other forms of quantum mechanics) give the same results for the line splittings in the first-order Stark effect in hydrogen, the leading terms in the splitting of the spectral lines emitted by a hydrogen atom in an external electric field. We examine the account of the effect in the old quantum theory, which was hailed as a major success of that theory, from the point of view of wave mechanics. First, we show how the new quantum mechanics solves a fundamental problem that one runs into in the old quantum theory with the Stark effect. It turns out that, even without an external field, it depends on the coordinates in which the quantum conditions are imposed which electron orbits are allowed in a hydrogen atom. The allowed energy levels and hence the line splittings are independent of the coordinates used but the size and eccentricity of the orbits are not. In the new quantum theory, this worrisome non-uniqueness of orbits turns into the perfectly innocuous non-uniqueness of bases in Hilbert space. Second, we review how the so-called WKB (Wentzel-Kramers-Brillouin) approximation method for solving the Schrödinger equation reproduces the quantum conditions of the old quantum theory amended by some additional half-integer terms. These extra terms remove the need for some arbitrary extra restrictions on the allowed orbits that the old quantum theory required over and above the basic quantum conditions.

  9. Quantum memristors

    SciTech Connect

    Pfeiffer, P.; Sanz, M.

    2016-07-06

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. As a result, the proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems.

  10. Quantum memristors

    PubMed Central

    Pfeiffer, P.; Egusquiza, I. L.; Di Ventra, M.; Sanz, M.; Solano, E.

    2016-01-01

    Technology based on memristors, resistors with memory whose resistance depends on the history of the crossing charges, has lately enhanced the classical paradigm of computation with neuromorphic architectures. However, in contrast to the known quantized models of passive circuit elements, such as inductors, capacitors or resistors, the design and realization of a quantum memristor is still missing. Here, we introduce the concept of a quantum memristor as a quantum dissipative device, whose decoherence mechanism is controlled by a continuous-measurement feedback scheme, which accounts for the memory. Indeed, we provide numerical simulations showing that memory effects actually persist in the quantum regime. Our quantization method, specifically designed for superconducting circuits, may be extended to other quantum platforms, allowing for memristor-type constructions in different quantum technologies. The proposed quantum memristor is then a building block for neuromorphic quantum computation and quantum simulations of non-Markovian systems. PMID:27381511

  11. 2. QUANTUM HALL EFFECT: Hidden SU(4) symmetry in bilayer quantum well at integer filling factors

    NASA Astrophysics Data System (ADS)

    Fal'ko, V. I.; Iordanskii, S. V.; Kashuba, A. B.

    2001-10-01

    Phase diagram of a bilayer quantum well at integer filling factors is established using the hidden symmetry method. Three phases: ferromagnetic, canted antiferromagnetic (CAP) and spin-singlet, have been found. We confirm early results of Das Sarma et al. Each phase violates the SU(4) hidden symmetry and is stabilized by the anisotropy interactions.

  12. Therapeutic Effects of Oligonol, Acupuncture, and Quantum Light Therapy in Chronic Nonbacterial Prostatitis

    PubMed Central

    Öztekin, İlhan; Akdere, Hakan; Can, Nuray; Aktoz, Tevfik; Turan, Fatma Nesrin

    2015-01-01

    This research aimed to compare anti-inflammatory effects of oligonol, acupuncture, and quantum light therapy in rat models of estrogen-induced prostatitis. Adult male Wistar albino rats were grouped as follows: Group I, control (n = 10); Group II, chronic prostatitis (n = 10); Group III, oligonol (n = 10); Group IV, acupuncture (n = 10); Group V, quantum (n = 10); Group VI, oligonol plus quantum (n = 10); Group VII, acupuncture plus oligonol (n = 10); Group VIII, quantum plus acupuncture (n = 10); and Group IX, acupuncture plus quantum plus oligonol (n = 10). Chronic prostatitis (CP) was induced by the administration of 17-beta-estradiol (E2) and dihydrotestosterone (DHT). Oligonol was given for 6 weeks at a dose of 60 mg/day. Acupuncture needles were inserted at CV 3/4 and bilaterally B 32/35 points with 1-hour manual stimulation. Quantum therapy was administered in 5-minute sessions three times weekly for 6 weeks. Lateral lobes of prostates were dissected for histopathologic evaluation. Although all of the treatment modalities tested in this study showed anti-inflammatory effects in the treatment of CP in male rats, a synergistic effect was observed for oligonol plus quantum light combination. Monotherapy with oligonol showed a superior anti-inflammatory efficacy as compared to quantum light and acupuncture monotherapies. PMID:26064171

  13. A Novel method for modeling the recoil in W boson events at hadron collider

    SciTech Connect

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Abolins, Maris A.; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Aguilo, Ernest; Ahsan, Mahsana; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    We present a new method for modeling the hadronic recoil in W {yields} {ell}{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z {yields} {ell}{ell} data events and overlaid on a simulated W {yields} {ell}{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

  14. Plasma Time in Discriminating Nuclear Recoils in Germanium Detector for Dark Matter Searches

    NASA Astrophysics Data System (ADS)

    Mei, Dongming; Barker, D'ann

    2012-10-01

    In the detection of WIMP-induced nuclear recoils with high-purity germanium detectors, CDMS-type bolometers are often used in measuring the ionization yield. For this technology, the detector is operated in the milli-Kelvin temperature range, which requires high priced detectors. Alternative electron/nuclear recoil discrimination using pulse shape has been widely utilized in the energy range of MeV in neutrinoless double-beta decay experiments with germanium detectors. However, the nuclear recoils induced by WIMPs are in the energy range of keV, and their pulse shape difference with electronic recoils in the same energy range has not proven to be visible in a commercially available germanium detector. This paper presents a new idea of using plasma time difference in pulse shape to discriminate nuclear recoils from electronic recoils. We show the plasma time difference as a function of nuclear recoil energy. The technique using plasma time will be discussed with a generic germanium detector.

  15. Effective Floquet-Gibbs states for dissipative quantum systems

    NASA Astrophysics Data System (ADS)

    Shirai, Tatsuhiko; Thingna, Juzar; Mori, Takashi; Denisov, Sergey; Hänggi, Peter; Miyashita, Seiji

    2016-05-01

    A periodically driven quantum system, when coupled to a heat bath, relaxes to a non-equilibrium asymptotic state. In the general situation, the retrieval of this asymptotic state presents a rather non-trivial task. It was recently shown that in the limit of an infinitesimal coupling, using the so-called rotating wave approximation (RWA), and under strict conditions imposed on the time-dependent system Hamiltonian, the asymptotic state can attain the Gibbs form. A Floquet-Gibbs state is characterized by a density matrix which is diagonal in the Floquet basis of the system Hamiltonian with the diagonal elements obeying a Gibbs distribution, being parametrized by the corresponding Floquet quasi-energies. Addressing the non-adiabatic driving regime, upon using the Magnus expansion, we employ the concept of a corresponding effective Floquet Hamiltonian. In doing so we go beyond the conventionally used RWA and demonstrate that the idea of Floquet-Gibbs states can be extended to the realistic case of a weak, although finite system-bath coupling, herein termed effective Floquet-Gibbs states.

  16. Many-Body Effects in Quantum-Well Intersubband Transitions

    NASA Technical Reports Server (NTRS)

    Li, Jian-Zhong; Ning, Cun-Zheng

    2003-01-01

    Intersubband polarization couples to collective excitations of the interacting electron gas confined in a semiconductor quantum well (Qw) structure. Such excitations include correlated pair excitations (repellons) and intersubband plasmons (ISPs). The oscillator strength of intersubband transitions (ISBTs) strongly varies with QW parameters and electron density because of this coupling. We have developed a set of kinetic equations, termed the intersubband semiconductor Bloch equations (ISBEs), from density matrix theory with the Hartree-Fock approximation, that enables a consistent description of these many-body effects. Using the ISBEs for a two-conduction-subband model, various many-body effects in intersubband transitions are studied in this work. We find interesting spectral changes of intersubband absorption coefficient due to interplay of the Fermi-edge singularity, subband renormalization, intersubband plasmon oscillation, and nonparabolicity of bandstructure. Our results uncover a new perspective for ISBTs and indicate the necessity of proper many-body theoretical treatment in order for modeling and prediction of ISBT line shape.

  17. Modeling of graphene nanoscroll conductance with quantum capacitance effect

    NASA Astrophysics Data System (ADS)

    Khaledian, Mohsen; Ismail, Razali

    2015-12-01

    Graphene nanoscrolls (GNSs) as a new category of quasi one dimensional belong to the carbon-based nanomaterials, which have recently captivated the attention of researchers. The latest discoveries of exceptional structural and electronic properties of GNSs like, high mobility, controllable band gap and tunable core size has become a new stimuli for nanotechnology researchers. Fundamental descriptions about structure and electronic properties of GNSs have been investigated in order to apply them in nanoelectronic applications like nanotransistors and nanosensors as a new semiconducting material. By utilizing a novel approach, the analytical conductance model (G) of GNSs with the effect of Hall quantum is derived. This letter introduces a geometrydependent model to analyze the conductance of GNSs. The conductance modeling of GNS in parabolic part of the band structure which displays minimum conductance near the charge neutrality point is calculated. Subsequently, the effect of temperature and physical parameters on GNS conductivity is studied. This study emphasized that the GNS is a promising candidate for new generation of nanoelectronic devices.

  18. Quantum anomalous Hall effect in ferromagnetic transition metal halides

    NASA Astrophysics Data System (ADS)

    Huang, Chengxi; Zhou, Jian; Wu, Haiping; Deng, Kaiming; Jena, Puru; Kan, Erjun

    2017-01-01

    The quantum anomalous Hall (QAH) effect is a novel topological spintronic phenomenon arising from inherent magnetization and spin-orbit coupling. Various theoretical and experimental efforts have been devoted in search of intrinsic QAH insulators. However, up to now, it has only been observed in Cr or V doped (Bi,Sb ) 2T e3 film in experiments with very low working temperature. Based on the successful synthesis of transition metal halides, we use first-principles calculations to predict that the Ru I3 monolayer is an intrinsic ferromagnetic QAH insulator with a topologically nontrivial global band gap of 11 meV. This topologically nontrivial band gap at the Fermi level is due to its crystal symmetry, thus the QAH effect is robust. Its Curie temperature, estimated to be ˜360 K using Monte Carlo simulation, is above room temperature and higher than most two-dimensional ferromagnetic thin films. The inclusion of Hubbard U in the Ru-d electrons does not affect this result. We also discuss the manipulation of its exchange energy and nontrivial band gap by applying in-plane strain. Our work adds an experimentally feasible member to the QAH insulator family, which is expected to have broad applications in nanoelectronics and spintronics.

  19. Effects of dissipation on an adiabatic quantum search algorithm

    NASA Astrophysics Data System (ADS)

    de Vega, Inés; Bañuls, Mari Carmen; Pérez, A.

    2010-12-01

    According to recent studies (Amin et al 2008 Phys. Rev. Lett. 100 060503), the effect of a thermal bath may improve the performance of a quantum adiabatic search algorithm. In this paper, we compare the effects of such a thermal environment on the algorithm performance with those of a structured environment similar to the one encountered in systems coupled to an electromagnetic field that exists within a photonic crystal. Whereas for all the parameter regimes explored here, the algorithm performance is worsened by contact with a thermal environment, the picture appears to be different when one considers a structured environment. In this case we show that by tuning the environment parameters to certain regimes, the algorithm performance can actually be improved with respect to the closed system case. Additionally, the relevance of considering the dissipation rates as complex quantities is discussed in both cases. More specifically, we find that the imaginary part of the rates cannot be neglected with the usual argument that it simply amounts to an energy shift and in fact influences crucially the system dynamics.

  20. Spin-current Seebeck effect in quantum dot systems.

    PubMed

    Yang, Zhi-Cheng; Sun, Qing-Feng; Xie, X C

    2014-01-29

    We first bring up the concept of the spin-current Seebeck effect based on a recent experiment (Vera-Marun et al 2012 Nature Phys. 8 313), and investigate the spin-current Seebeck effect in quantum dot (QD) systems. Our results show that the spin-current Seebeck coefficient S is sensitive to different polarization states of the QD, and therefore can be used to detect the polarization state of the QD and monitor the transitions between different polarization states of the QD. The intradot Coulomb interaction can greatly enhance S due to the stronger polarization of the QD. By using the parameters for a typical QD whose intradot Coulomb interaction U is one order of magnitude larger than the linewidth Γ, we demonstrate that the maximum value of S can be enhanced by a factor of 80. On the other hand, for a QD whose Coulomb interaction is negligible, we show that one can still obtain a large S by applying an external magnetic field.

  1. Electrostatically Shielded Quantum Confined Stark Effect Inside Polar Nanostructures

    PubMed Central

    2009-01-01

    The effect of electrostatic shielding of the polarization fields in nanostructures at high carrier densities is studied. A simplified analytical model, employing screened, exponentially decaying polarization potentials, localized at the edges of a QW, is introduced for the ES-shielded quantum confined Stark effect (QCSE). Wave function trapping within the Debye-length edge-potential causes blue shifting of energy levels and gradual elimination of the QCSE red-shifting with increasing carrier density. The increase in the e−h wave function overlap and the decrease of the radiative emission time are, however, delayed until the “edge-localization” energy exceeds the peak-voltage of the charged layer. Then the wave function center shifts to the middle of the QW, and behavior becomes similar to that of an unbiased square QW. Our theoretical estimates of the radiative emission time show a complete elimination of the QCSE at doping densities ≥1020 cm−3, in quantitative agreement with experimental measurements. PMID:20596407

  2. Quantum Interference and Surface States Effects in Bismuth Nanowires

    NASA Astrophysics Data System (ADS)

    Konopko, L.; Huber, T.; Nikolaeva, A.

    2010-02-01

    We report the observation of Aharonov-Bohm (AB) oscillations for single Bi nanowires with diameter d< 80 nm. The single nanowire samples with glass coating were prepared by the Ulitovsky technique; they were cylindrical single crystals with (10 bar{1} 1) orientation along the wire axis. The surface of Bi nanowire supports surface states which give rise to a significant population of charge carriers with high effective mass that form a highly conducting tube around the nanowire. The oscillations of longitudinal magnetoresistance (MR) of Bi nanowires with two periods Δ B 1 and Δ B 2 proportional to Φ0 and Φ0/2 were observed, where Φ0= h/ e is the flux quantum. From B˜ 8 T down to B = 0 the extremums of Φ0/2 oscillations are shifted up to 3 π at B = 0 which is the manifestation of Berry phase shift due to electron moving in a nonuniform magnetic field. A derivative of MR was measured at various inclined angles. The observed angle variation of the periods is not in agreement with the theoretical dependence Δ( α)=Δ(0)/cos α of the size effect oscillations of the “flux quantization” type. Moreover, the equidistant oscillations of MR exist in transverse magnetic fields under certain rotation angles. An interpretation of the MR oscillations is presented.

  3. Polaron effects in asymmetric semiconductor quantum-well structures

    NASA Astrophysics Data System (ADS)

    Shi, Jun-Jie; Zhu, Xiu-Qin; Liu, Zi-Xin; Pan, Shao-Hua; Li, Xing-Yi

    1997-02-01

    In this paper, polaron effects in asymmetric quantum-well structures (QW's) are investigated by using second-order perturbation theory and the modified Lee-Low-Pines (LLP) variational method. By applying the Green"s-function method, explicit analytical expressions for the electron extended-state wave functions and the density of states in a general step QW's are given. Within the framework of second-order perturbation theory, the ground-state polaron binding energy and effective mass in step and asymmetric single QW"s are studied as due to the interface optical phonons, confined bulklike LO and half-space LO phonons. The full energy spectrum is included in our calculations. The effects of the finite electronic confinement potential and the subband nonparabolicity are also considered. The relative importance of the different phonon modes is analyzed. By means of the modified LLP variational method, the binding energy of a polaron confined to asymmetric single QW's is also investigated. Our results show that in ordinary asymmetric QW"s, the asymmetry of the QW's has a significant influence on the polaron effect, which has a close relationship to the interface phonon dispersion. When the well width and one side barrier height of asymmetric single QW"s are fixed and identical with those of symmetric QW's, the polaron binding energy in asymmetric QW"s is always smaller than that in symmetric QW's. We have also found that it is necessary to include the continuum energy spectrum as intermediate states in the perturbation calculations in order to obtain the correct results; the subband nonparabolicity has a small influence on the polaron effect. Comparing our results obtained by using two different methods, good agreement is found.

  4. Giant Kerr response of ultrathin gold films from quantum size effect

    PubMed Central

    Qian, Haoliang; Xiao, Yuzhe; Liu, Zhaowei

    2016-01-01

    With the size of plasmonic devices entering into the nanoscale region, the impact of quantum physics needs to be considered. In the past, the quantum size effect on linear material properties has been studied extensively. However, the nonlinear aspects have not been explored much so far. On the other hand, much effort has been put into the field of integrated nonlinear optics and a medium with large nonlinearity is desirable. Here we study the optical nonlinear properties of a nanometre scale gold quantum well by using the z-scan method and nonlinear spectrum broadening technique. The quantum size effect results in a giant optical Kerr susceptibility, which is four orders of magnitude higher than the intrinsic value of bulk gold and several orders larger than traditional nonlinear media. Such high nonlinearity enables efficient nonlinear interaction within a microscopic footprint, making quantum metallic films a promising candidate for integrated nonlinear optical applications. PMID:27721498

  5. Terahertz quantum Hall effect for spin-split heavy-hole gases in strained Ge quantum wells

    NASA Astrophysics Data System (ADS)

    Failla, M.; Keller, J.; Scalari, G.; Maissen, C.; Faist, J.; Reichl, C.; Wegscheider, W.; Newell, O. J.; Leadley, D. R.; Myronov, M.; Lloyd-Hughes, J.

    2016-11-01

    Spin-split heavy-hole gases in strained germanium quantum wells were characterized by polarisation-resolved terahertz time-domain spectroscopy. Effective masses, carrier densities, g-factors, transport lifetimes, mobilities and Rashba spin-splitting energies were evaluated, giving quantitative insights into the influence of strain. The Rashba coefficient was found to lower for samples with higher biaxial compressive strain, while heavy-hole mobilities were enhanced to over 1.5× {10}6 cm2 V-1 s-1 at 3 K. This high mobility enabled the observation of the optical quantum Hall effect at terahertz frequencies for spin-split two-dimensional heavy-holes, evidenced as plateaux in the transverse magnetoconductivity at even and odd filling factors.

  6. Quantum-gravity effects on a Higgs-Yukawa model

    NASA Astrophysics Data System (ADS)

    Eichhorn, Astrid; Held, Aaron; Pawlowski, Jan M.

    2016-11-01

    A phenomenologically viable theory of quantum gravity must accommodate all observed matter degrees of freedom and their properties. Here, we explore whether a toy model of the Higgs-Yukawa sector of the Standard Model is compatible with asymptotically safe quantum gravity. We discuss the phenomenological implications of our result in the context of the Standard Model. We analyze the quantum scaling dimension of the system and find an irrelevant Yukawa coupling at a joint gravity-matter fixed point. Further, we explore the impact of gravity-induced couplings between scalars and fermions, which are nonvanishing in asymptotically safe gravity.

  7. Quantum confinement effect in 6H-SiC quantum dots observed via plasmon-exciton coupling-induced defect-luminescence quenching

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxiao; Zhang, Yumeng; Fan, Baolu; Fan, Jiyang

    2017-03-01

    The quantum confinement effect is one of the crucial physical effects that discriminate a quantum material from its bulk material. It remains a mystery why the 6H-SiC quantum dots (QDs) do not exhibit an obvious quantum confinement effect. We study the photoluminescence of the coupled colloidal system of SiC QDs and Ag nanoparticles. The experimental result in conjunction with the theoretical calculation reveals that there is strong coupling between the localized electron-hole pair in the SiC QD and the localized surface plasmon in the Ag nanoparticle. It results in resonance energy transfer between them and resultant quenching of the blue surface-defect luminescence of the SiC QDs, leading to uncovering of a hidden near-UV emission band. This study shows that this emission band originates from the interband transition of the 6H-SiC QDs and it exhibits a remarkable quantum confinement effect.

  8. Investigation of complete and incomplete fusion in 20Ne + 51V system using recoil range measurement

    NASA Astrophysics Data System (ADS)

    Ali, Sabir; Ahmad, Tauseeef; Kumar, Kamal; Rizvi, I. A.; Agarwal, Avinash; Ghugre, S. S.; Sinha, A. K.; Chaubey, A. K.

    2015-01-01

    Recoil range distributions of evaporation residues, populated in 20Ne + 51V reaction at Elab ≈ 145 MeV, have been studied to determine the degree of momentum transferred through the complete and incomplete fusion reactions. Evaporation residues (ERs) populated through the complete and incomplete fusion reactions have been identified on the basis of their recoil range in the Al catcher medium. Measured recoil range of evaporation residues have been compared with the theoretical value calculated using the code SRIM. Range integrated cross section of observed ERs have been compared with the value predicted by statistical model code PACE4.

  9. Nuclear recoil energy scale in liquid xenon with application to the direct detection of dark matter

    SciTech Connect

    Sorensen, P; Dahl, C E

    2011-02-14

    We show for the first time that the quenching of electronic excitation from nuclear recoils in liquid xenon is well-described by Lindhard theory, if the nuclear recoil energy is reconstructed using the combined (scintillation and ionization) energy scale proposed by Shutt et al.. We argue for the adoption of this perspective in favor of the existing preference for reconstructing nuclear recoil energy solely from primary scintillation. We show that signal partitioning into scintillation and ionization is well-described by the Thomas-Imel box model. We discuss the implications for liquid xenon detectors aimed at the direct detection of dark matter.

  10. Framing anomaly in the effective theory of the fractional quantum Hall effect.

    PubMed

    Gromov, Andrey; Cho, Gil Young; You, Yizhi; Abanov, Alexander G; Fradkin, Eduardo

    2015-01-09

    We consider the geometric part of the effective action for the fractional quantum Hall effect (FQHE). It is shown that accounting for the framing anomaly of the quantum Chern-Simons theory is essential to obtain the correct gravitational linear response functions. In the lowest order in gradients, the linear response generating functional includes Chern-Simons, Wen-Zee, and gravitational Chern-Simons terms. The latter term has a contribution from the framing anomaly which fixes the value of thermal Hall conductivity and contributes to the Hall viscosity of the FQH states on a sphere. We also discuss the effects of the framing anomaly on linear responses for non-Abelian FQH states.

  11. Effects of the primary recoil spectrum on microstructural evolution

    SciTech Connect

    Wiedersich, H.

    1989-11-01

    For quantitative predictions and comparisons of microstructures that evolve during exposure to different radiation environments at elevated temperature one needs to develop methods that go beyond those based on the number of displacements per atom. The number of freely migrating defects that contribute to the microstructural development is far less than the total number of defects produced, as has been recognized for some time from measurements of radiation-induced segregation and of radiation-enhanced diffusion. One major reason for the small amount of defects available for long range migration is the high concentration and close spatial correlation of vacancies and, to a somewhat lesser degree, of interstitials in cascades produced by high energy knock-ons. As a consequence, many defects either recombine or form immobile defect clusters during the defect formation and cooling phases of the cascades. After doses exceeding a few tenths of a displacement per atom, the residue of small clusters and dislocation loops of vacancy type remaining in the central portions of energetic cascades and subscascades, is the second major reason for the reduction of the mean free path of defects between creation and annihilation. Defect production in various neutron and ion irradiation environments is discussed in light of these facts. A method to calculate the fraction of freely migrating defects from the cluster size distribution of defects produced in cascades is suggested. The results are in good agreement with available data. 22 refs., 5 figs.

  12. Effect of multimode entanglement on lossy optical quantum metrology

    NASA Astrophysics Data System (ADS)

    Knott, P. A.; Proctor, T. J.; Nemoto, Kae; Dunningham, J. A.; Munro, W. J.

    2014-09-01

    In optical interferometry multimode entanglement is often assumed to be the driving force behind quantum enhanced measurements. Recent work has shown this assumption to be false: single-mode quantum states perform just as well as their multimode entangled counterparts. We go beyond this to show that when photon losses occur, an inevitability in any realistic system, multimode entanglement is actually detrimental to obtaining quantum enhanced measurements. We specifically apply this idea to a superposition of coherent states, demonstrating that these states show a robustness to loss that allows them to significantly outperform their competitors in realistic systems. A practically viable measurement scheme is then presented that allows measurements close to the theoretical bound, even with loss. These results promote an alternate way of approaching optical quantum metrology using single-mode states that we expect to have great implications for the future.

  13. Magnetoconductance of a hybrid quantum ring: Effects of antidot potentials

    NASA Astrophysics Data System (ADS)

    Kim, Nammee; Park, Dae-Han; Kim, Heesang

    2016-05-01

    The electronic structures and two-terminal magnetoconductance of a hybrid quantum ring are studied. The backscattering due to energy-resonance is considered in the conductance calculation. The hybrid magnetic-electric quantum ring is fabricated by applying an antidot electrostatic potential in the middle of a magnetic quantum dot. Electrons are both magnetically and electrically confined in the plane. The antidot potential repelling electrons from the center of the dot plays a critical role in the energy spectra and magnetoconductance. The angular momentum transition in the energy dispersion and the magnetoconductance behavior are investigated in consideration of the antidot potential variation. Results are shown using a comparison of the results of the conventional magnetic quantum dot.

  14. Effect of Multiple Scattering in a Quantum Well

    NASA Astrophysics Data System (ADS)

    Sheng, Hanyu; Chua, Soo-Jin; Sinkkonen, Juha

    This paper gives a potentially useful application to quantum well of the theory of scattering in the Born approximation. The simple formulae for multiple scattering in a quantum well of double barrier structure are derived. The multiple scattering parameter is the complex mean free path. We show that the amplitude of the coherent wave will be exponentially attenuated and the phase of the wave will be delayed because of the scattering.

  15. Effect of relativistic motion on witnessing nonclassicality of quantum states

    NASA Astrophysics Data System (ADS)

    Checińska, Agata; Lorek, Krzysztof; Dragan, Andrzej

    2017-01-01

    We show that the operational definition of nonclassicality of a quantum state depends on the motion of the observer. We use the relativistic Unruh-DeWitt detector model to witness nonclassicality of the probed field state. It turns out that the witness based on the properties of the P representation of the quantum state depends on the trajectory of the detector. Inertial and noninertial motion of the device have qualitatively different impact on the performance of the witness.

  16. The transport mechanism of the integer quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Hui, Tan; LiMing, W.; Liang, Shi-Dong

    2016-11-01

    The integer quantum Hall effect (IQHE) is analysed using a mechanism of the electron transport in the form of semi-classic wave packages in this paper. Due to the confinement of the edges of a slab the Landau levels of electrons in a strong magnetic field go up at large wave-vectors to form energy bands. The slopes of the energy bands give the group velocities of electron wave packages and thus contribute to the current. Certain magnetic fields separate the electron transport in the slab into two branches with opposite and large wave vectors, which are localized at the two edges of the slab, respectively. In this case back scattering of electrons is prohibited due to the localization of these two branches. Thus the slab exhibits zero longitudinal resistance and plateaus of Hall resistance. When the Fermi level is sweeping over a Landau level at some magnetic fields, however, the electron waves locate around the central axis of the slab and overlap each other thus back scattering of electrons takes place frequently. Then longitudinal resistance appears and the Hall resistance goes up from one plateau to a new one. This transport mechanism is much clearer and more intuitive than the conventional explanations to the IQHE.

  17. Interaction effects and quantum phase transitions in topological insulators

    SciTech Connect

    Varney, Christopher N.; Sun Kai; Galitski, Victor; Rigol, Marcos

    2010-09-15

    We study strong correlation effects in topological insulators via the Lanczos algorithm, which we utilize to calculate the exact many-particle ground-state wave function and its topological properties. We analyze the simple, noninteracting Haldane model on a honeycomb lattice with known topological properties and demonstrate that these properties are already evident in small clusters. Next, we consider interacting fermions by introducing repulsive nearest-neighbor interactions. A first-order quantum phase transition was discovered at finite interaction strength between the topological band insulator and a topologically trivial Mott insulating phase by use of the fidelity metric and the charge-density-wave structure factor. We construct the phase diagram at T=0 as a function of the interaction strength and the complex phase for the next-nearest-neighbor hoppings. Finally, we consider the Haldane model with interacting hard-core bosons, where no evidence for a topological phase is observed. An important general conclusion of our work is that despite the intrinsic nonlocality of topological phases their key topological properties manifest themselves already in small systems and therefore can be studied numerically via exact diagonalization and observed experimentally, e.g., with trapped ions and cold atoms in optical lattices.

  18. Quantum tunneling observed without its characteristic large kinetic isotope effects

    PubMed Central

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-01-01

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle’s ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1–1.5) despite the large intrinsic H/D KIE of tunneling (≳100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system. PMID:26034285

  19. Tunable many-body effects in triple quantum dots

    NASA Astrophysics Data System (ADS)

    Kim, Jihan; Melnikov, Dmitriy V.; Leburton, Jean-Pierre

    2009-07-01

    Exchange energies and charge densities for a few electrons in electrically tunable triangular and collinear triple quantum dot (TQD) systems are investigated by using the variational Monte Carlo method in the presence of magnetic fields. For N=2 electrons we observe a discontinuity in the J derivative with detuning voltage (dJ/dVT) in triangular triple QDs at B=0T as crossing of the eigenenergy levels leads to abrupt spatial symmetry change in the singlet and the triplet densities (density rotation) and relocalization. For B≠0T , the angular momentum provided to the electrons quenches this effect. The density rotation is absent in the collinear TQD for all magnetic fields as the lowest excited state remains the px state and as such, no change in symmetry is possible. By varying the triangular TQD configuration, we show the discontinuity in dJ/dVT persists for the top angle comprised between ˜20° and ˜70° . For three electrons in the symmetric triangular TQD, the monotonicity of the quadruplet-doublet energy difference from B=0 to 4 T remains intact for decoupled QDs but not for coupled QDs. Finally, addition energy for the triangular TQD system is computed for up to N=3 electrons.

  20. Emergence and mechanism in the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Bain, Jonathan

    2016-11-01

    For some authors, an adequate notion of emergence must include an account of a mechanism by means of which emergent behavior is realized. This appeal to mechanism is problematic in the case of the fractional quantum Hall effect (FQHE). There is a consensus among physicists that the FQHE exhibits emergent phenomena, but there are at least four alternative explanations of the latter that, arguably, appeal to ontologically distinct mechanisms, both at the microphysics level and at the level of general organizing principles. In light of this underdetermination of mechanism, one is faced with the following options: (I) deny that emergence is present in the FQHE; (II) argue for the priority of one mechanistic explanation over the others; or (III) temper the desire for a mechanism-centric account of emergence. I will argue that there are good reasons to reject (I) and (II) and accept (III). In particular, I will suggest that a law-centric account of emergence does just fine in explaining the emergent phenomena associated with the FQHE.