Sample records for quantum spin correlations

  1. Quantum Correlation Properties in Composite Parity-Conserved Matrix Product States

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min

    2016-09-01

    We give a new thought for constructing long-range quantum correlation in quantum many-body systems. Our proposed composite parity-conserved matrix product state has long-range quantum correlation only for two spin blocks where their spin-block length larger than 1 compared to any subsystem only having short-range quantum correlation, and we investigate quantum correlation properties of two spin blocks varying with environment parameter and spacing spin number. We also find that the geometry quantum discords of two nearest-neighbor spin blocks and two next-nearest-neighbor spin blocks become smaller and for other conditions the geometry quantum discord becomes larger than that in any subcomponent, i.e., the increase or the production of the long-range quantum correlation is at the cost of reducing the short-range quantum correlation compared to the corresponding classical correlation and total correlation having no any characteristic of regulation. For nearest-neighbor and next-nearest-neighbor all the correlations take their maximal values at the same points, while for other conditions no whether for spacing same spin number or for different spacing spin numbers all the correlations taking their maximal values are respectively at different points which are very close. We believe that our work is helpful to comprehensively and deeply understand the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems; and further helpful for the classification, the depiction and the measure of quantum correlation of quantum many-body systems.

  2. Identifying a correlated spin fluctuation in an entangled spin chain subject to a quantum phase transition.

    PubMed

    Shimizu, Kaoru; Tokura, Yasuhiro

    2015-12-01

    This paper presents a theoretical framework for analyzing the quantum fluctuation properties of a quantum spin chain subject to a quantum phase transition. We can quantify the fluctuation properties by examining the correlation between the fluctuations of two neighboring spins subject to the quantum uncertainty. To do this, we first compute the reduced density matrix ρ of the spin pair from the ground state |Ψ⟩ of a spin chain, and then identify the quantum correlation part ρ(q) embedded in ρ. If the spin chain is translationally symmetric and characterized by a nearest-neighbor two-body spin interaction, we can determine uniquely the form of ρ(q) as W|Φ〉〈Φ| with the weight W ≤1, and quantify the fluctuation properties using the two-spin entangled state |Φ〉. We demonstrate the framework for a transverse-field quantum Ising spin chain and indicate its validity for more general spin chain models.

  3. Quantum correlation properties in Matrix Product States of finite-number spin rings

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min; He, Qi-Kai

    2018-02-01

    The organization and structure of quantum correlation (QC) of quantum spin-chains are very rich and complex. Hence the depiction and measures about the QC of finite-number spin rings deserved to be investigated intensively by using Matrix Product States(MPSs) in addition to the case with infinite-number. Here the dependencies of the geometric quantum discord(GQD) of two spin blocks on the total spin number, the spacing spin number and the environment parameter are presented in detail. We also compare the GQD with the total correlation(TC) and the classical correlation(CC) and illustrate its characteristics. Predictably, our findings may provide the potential of designing the optimal QC experimental detection proposals and pave the way for the designation of optimal quantum information processing schemes.

  4. Quantum dust magnetosonic waves with spin and exchange correlation effects

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Mushtaq, A.; Qamar, A.

    2016-01-01

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).

  5. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain.

    PubMed

    Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-01-01

    Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.

  6. Macrorealism from entropic Leggett-Garg inequalities

    NASA Astrophysics Data System (ADS)

    Devi, A. R. Usha; Karthik, H. S.; Sudha; Rajagopal, A. K.

    2013-05-01

    We formulate entropic Leggett-Garg inequalities, which place constraints on the statistical outcomes of temporal correlations of observables. The information theoretic inequalities are satisfied if macrorealism holds. We show that the quantum statistics underlying correlations between time-separated spin component of a quantum rotor mimics that of spin correlations in two spatially separated spin-s particles sharing a state of zero total spin. This brings forth the violation of the entropic Leggett-Garg inequality by a rotating quantum spin-s system in a similar manner as does the entropic Bell inequality [S. L. Braunstein and C. M. Caves, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.61.662 61, 662 (1988)] by a pair of spin-s particles forming a composite spin singlet state.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafuente-Sampietro, A.; CNRS, Institut Néel, F-38000 Grenoble; Institute of Materials Science, University of Tsukuba, 305-8573 Tsukuba

    We studied the spin dynamics of a Cr atom incorporated in a II-VI semiconductor quantum dot using photon correlation techniques. We used recently developed singly Cr-doped CdTe/ZnTe quantum dots to access the spin of an individual magnetic atom. Auto-correlation of the photons emitted by the quantum dot under continuous wave optical excitation reveals fluctuations of the localized spin with a timescale in the 10 ns range. Cross-correlation gives quantitative transfer time between Cr spin states. A calculation of the time dependence of the spin levels population in Cr-doped quantum dots shows that the observed spin dynamics is dominated by the exciton-Crmore » interaction. These measurements also provide a lower bound in the 20 ns range for the intrinsic Cr spin relaxation time.« less

  8. Complex-network description of thermal quantum states in the Ising spin chain

    NASA Astrophysics Data System (ADS)

    Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.

    2018-05-01

    We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.

  9. Thermal Quantum Discord and Super Quantum Discord Teleportation Via a Two-Qubit Spin-Squeezing Model

    NASA Astrophysics Data System (ADS)

    Ahadpour, S.; Mirmasoudi, F.

    2018-04-01

    We study thermal quantum correlations (quantum discord and super quantum discord) in a two-spin model in an external magnetic field and obtain relations between them and entanglement. We study their dependence on the magnetic field, the strength of the spin squeezing, and the temperature in detail. One interesting result is that when the entanglement suddenly disappears, quantum correlations still survive. We study thermal quantum teleportation in the framework of this model. The main goal is investigating the possibility of increasing the thermal quantum correlations of a teleported state in the presence of a magnetic field, strength of the spin squeezing, and temperature. We note that teleportation of quantum discord and super quantum discord can be realized over a larger temperature range than teleportation of entanglement. Our results show that quantum discord and super quantum discord can be a suitable measure for controlling quantum teleportation with fidelity. Moreover, the presence of entangled states is unnecessary for the exchange of quantum information.

  10. One-norm geometric quantum discord and critical point estimation in the XY spin chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chang-Cheng; Wang, Yao; Guo, Jin-Liang, E-mail: guojinliang80@163.com

    2016-11-15

    In contrast with entanglement and quantum discord (QD), we investigate the thermal quantum correlation in terms of Schatten one-norm geometric quantum discord (GQD) in the XY spin chain, and analyze their capabilities in detecting the critical point of quantum phase transition. We show that the one-norm GQD can reveal more properties about quantum correlation between two spins, especially for the long-range quantum correlation at finite temperature. Under the influences of site distance, anisotropy and temperature, one-norm GQD and its first derivative make it possible to detect the critical point efficiently for a general XY spin chain. - Highlights: • Comparingmore » with entanglement and QD, one-norm GQD is more robust versus the temperature. • One-norm GQD is more efficient in characterization of long-range quantum correlation between two distant qubits. • One-norm GQD performs well in highlighting the critical point of QPT at zero or low finite temperature. • One-norm GQD has a number of advantages over QD in detecting the critical point of the spin chain.« less

  11. Fictitious spin-12 operators and correlations in quadrupole nuclear spin system

    NASA Astrophysics Data System (ADS)

    Furman, G. B.; Goren, S. D.; Meerovich, V. M.; Sokolovsky, V. L.

    The Hamiltonian and the spin operators for a spin 3/2 are represented in the basis formed by the Kronecker productions of the 2×2 Pauli matrices. This reformulation allows us to represent a spin 3/2 as a system of two coupled fictitious spins 1/2. Correlations between these fictitious spins are studied using well-developed methods. We investigate the temperature and field dependences of correlations, such as mutual information, classical correlations, entanglement, and geometric and quantum discords in the fictitious spin-1/2 system describing a nuclear spin 3/2 which is placed in magnetic and inhomogeneous electric fields. It is shown that the correlations between the fictitious spins demonstrate properties which differ from those of real two-spin systems. In contrast to real systems all the correlations between the fictitious spins do not vanish with increasing external magnetic field; at a high magnetic field the correlations tend to their limiting values. Classical correlations, quantum and geometric discords reveal a pronounced asymmetry relative to the measurements on subsystems (fictitious spins) even in a uniform magnetic field and at symmetrical EFG, η=0. The correlations depend also on the distribution of external charges, on the parameter of symmetry η. At η≠0 quantum and geometric discords have finite values in a zero magnetic field. The proposed approach may be useful in analysis of properties of particles with larger angular momentum, can provide the way to discover new physical phenomenon of quantum correlations, and can be a useful tool for similar definitions of other physical quantities of complex systems.

  12. Quantum Correlation in the XY Spin Model with Anisotropic Three-Site Interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Chai, Bing-Bing; Guo, Jin-Liang

    2018-05-01

    We investigate pairwise entanglement and quantum discord (QD) in the XY spin model with anisotropic three-site interaction at zero and finite temperatures. For both the nearest-neighbor spins and the next nearest-neighbor spins, special attention is paid to the dependence of entanglement and QD on the anisotropic parameter δ induced by the next nearest-neighbor spins. We show that the behavior of QD differs in many ways from entanglement under the influences of the anisotropic three-site interaction at finite temperatures. More important, comparing the effects of δ on the entanglement and QD, we find the anisotropic three-site interaction plays an important role in the quantum correlations at zero and finite temperatures. It is found that δ can strengthen the quantum correlation for both the nearest-neighbor spins and the next nearest-neighbor spins, especially for the nearest-neighbor spins at low temperature.

  13. Sudden transition and sudden change from open spin environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zheng-Da; School of Science, Jiangnan University, Wuxi 214122; Xu, Jing-Bo, E-mail: xujb@zju.edu.cn

    2014-11-15

    We investigate the necessary conditions for the existence of sudden transition or sudden change phenomenon for appropriate initial states under dephasing. As illustrative examples, we study the behaviors of quantum correlation dynamics of two noninteracting qubits in independent and common open spin environments, respectively. For the independent environments case, we find that the quantum correlation dynamics is closely related to the Loschmidt echo and the dynamics exhibits a sudden transition from classical to quantum correlation decay. It is also shown that the sudden change phenomenon may occur for the common environment case and stationary quantum discord is found at themore » high temperature region of the environment. Finally, we investigate the quantum criticality of the open spin environment by exploring the probability distribution of the Loschmidt echo and the scaling transformation behavior of quantum discord, respectively. - Highlights: • Sudden transition or sudden change from open spin baths are studied. • Quantum discord is related to the Loschmidt echo in independent open spin baths. • Steady quantum discord is found in a common open spin bath. • The probability distribution of the Loschmidt echo is analyzed. • The scaling transformation behavior of quantum discord is displayed.« less

  14. Quantum many-body theory for electron spin decoherence in nanoscale nuclear spin baths.

    PubMed

    Yang, Wen; Ma, Wen-Long; Liu, Ren-Bao

    2017-01-01

    Decoherence of electron spins in nanoscale systems is important to quantum technologies such as quantum information processing and magnetometry. It is also an ideal model problem for studying the crossover between quantum and classical phenomena. At low temperatures or in light-element materials where the spin-orbit coupling is weak, the phonon scattering in nanostructures is less important and the fluctuations of nuclear spins become the dominant decoherence mechanism for electron spins. Since the 1950s, semi-classical noise theories have been developed for understanding electron spin decoherence. In spin-based solid-state quantum technologies, the relevant systems are in the nanometer scale and nuclear spin baths are quantum objects which require a quantum description. Recently, quantum pictures have been established to understand the decoherence and quantum many-body theories have been developed to quantitatively describe this phenomenon. Anomalous quantum effects have been predicted and some have been experimentally confirmed. A systematically truncated cluster-correlation expansion theory has been developed to account for the many-body correlations in nanoscale nuclear spin baths that are built up during electron spin decoherence. The theory has successfully predicted and explained a number of experimental results in a wide range of physical systems. In this review, we will cover this recent progress. The limitations of the present quantum many-body theories and possible directions for future development will also be discussed.

  15. Spin correlations in quantum wires

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Pokrovsky, Valery L.

    2015-04-01

    We consider theoretically spin correlations in a one-dimensional quantum wire with Rashba-Dresselhaus spin-orbit interaction (RDI). The correlations of noninteracting electrons display electron spin resonance at a frequency proportional to the RDI coupling. Interacting electrons, upon varying the direction of the external magnetic field, transit from the state of Luttinger liquid (LL) to the spin-density wave (SDW) state. We show that the two-time total-spin correlations of these states are significantly different. In the LL, the projection of total spin to the direction of the RDI-induced field is conserved and the corresponding correlator is equal to zero. The correlators of two components perpendicular to the RDI field display a sharp electron-spin resonance driven by the RDI-induced intrinsic field. In contrast, in the SDW state, the longitudinal projection of spin dominates, whereas the transverse components are suppressed. This prediction indicates a simple way for an experimental diagnostic of the SDW in a quantum wire. We point out that the Luttinger model does not respect the spin conservation since it assumes the infinite Fermi sea. We propose a proper cutoff to correct this failure.

  16. Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators

    PubMed Central

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    2016-01-01

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity. Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. We discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries. PMID:27553516

  17. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    NASA Astrophysics Data System (ADS)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  18. Electron spin polarization by isospin ordering in correlated two-layer quantum Hall systems.

    PubMed

    Tiemann, L; Wegscheider, W; Hauser, M

    2015-05-01

    Enhancement of the electron spin polarization in a correlated two-layer, two-dimensional electron system at a total Landau level filling factor of 1 is reported. Using resistively detected nuclear magnetic resonance, we demonstrate that the electron spin polarization of two closely spaced two-dimensional electron systems becomes maximized when interlayer Coulomb correlations establish spontaneous isospin ferromagnetic order. This correlation-driven polarization dominates over the spin polarizations of competing single-layer fractional quantum Hall states under electron density imbalances.

  19. Designing Quantum Spin-Orbital Liquids in Artificial Mott Insulators

    DOE PAGES

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    2016-08-24

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less

  20. Non-classical Correlations and Quantum Coherence in Mixed Environments

    NASA Astrophysics Data System (ADS)

    Hu, Zheng-Da; Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; He, Qi-Liang

    2018-05-01

    We investigate non-classical correlations (entanglement and quantum discord) and quantum coherence for an open two-qubit system each independently coupled to a bosonic environment and a spin environment, respectively. The modulating effects of spin environment and bosonic environment are respectively explored. A relation among the quantum coherence, quantum discord and classical correlation is found during the sudden transition phenomenon. We also compare the case of mixed environments with that of the same environments, showing that the dynamics is dramatically changed.

  1. Capacity of a quantum memory channel correlated by matrix product states

    NASA Astrophysics Data System (ADS)

    Mulherkar, Jaideep; Sunitha, V.

    2018-04-01

    We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar-Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.

  2. Quantum approach of mesoscopic magnet dynamics with spin transfer torque

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Sham, L. J.

    2013-05-01

    We present a theory of magnetization dynamics driven by spin-polarized current in terms of the quantum master equation. In the spin coherent state representation, the master equation becomes a Fokker-Planck equation, which naturally includes the spin transfer and quantum fluctuation. The current electron scattering state is correlated to the magnet quantum states, giving rise to quantum correction to the electron transport properties in the usual semiclassical theory. In the large-spin limit, the magnetization dynamics is shown to obey the Hamilton-Jacobi equation or the Hamiltonian canonical equations.

  3. Robust thermal quantum correlation and quantum phase transition of spin system on fractal lattices

    NASA Astrophysics Data System (ADS)

    Xu, Yu-Liang; Zhang, Xin; Liu, Zhong-Qiang; Kong, Xiang-Mu; Ren, Ting-Qi

    2014-06-01

    We investigate the quantum correlation measured by quantum discord (QD) for thermalized ferromagnetic Heisenberg spin systems in one-dimensional chains and on fractal lattices using the decimation renormalization group approach. It is found that the QD between two non-nearest-neighbor end spins exhibits some interesting behaviors which depend on the anisotropic parameter Δ, the temperature T, and the size of system L. With increasing Δ continuously, the QD possesses a cuspate change at Δ = 0 which is a critical point of quantum phase transition (QPT). There presents the "regrowth" tendency of QD with increasing T at Δ < 0, in contrast to the "growth" of QD at Δ > 0. As the size of the system L becomes large, there still exists considerable thermal QD between long-distance end sites in spin chains and on the fractal lattices even at unentangled states, and the long-distance QD can spotlight the presence of QPT. The robustness of QD on the diamond-type hierarchical lattices is stronger than that in spin chains and Koch curves, which indicates that the fractal can affect the behaviors of quantum correlation.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Xu; Kotov, Valeri N.; Uchoa, Bruno

    Quantum spin-orbital liquids are elusive strongly correlated states of matter that emerge from quantum frustration between spin and orbital degrees of freedom. A promising route towards the observation of those states is the creation of artificial Mott insulators where antiferromagnetic correlations between spins and orbitals can be designed. We show that Coulomb impurity lattices on the surface of gapped honeycomb substrates, such as graphene on SiC, can be used to simulate SU(4) symmetric spin-orbital lattice models. We exploit the property that massive Dirac fermions form mid-gap bound states with spin and valley degeneracies in the vicinity of a Coulomb impurity.more » Due to electronic repulsion, the antiferromagnetic correlations of the impurity lattice are driven by a super-exchange interaction with SU(4) symmetry, which emerges from the bound states degeneracy at quarter filling. We propose that quantum spin-orbital liquids can be engineered in artificially designed solid-state systems at vastly higher temperatures than achievable in optical lattices with cold atoms. Lastly, we discuss the experimental setup and possible scenarios for candidate quantum spin-liquids in Coulomb impurity lattices of various geometries.« less

  5. Observation of spinon spin currents in one-dimensional spin liquid

    NASA Astrophysics Data System (ADS)

    Hirobe, Daichi; Sato, Masahiro; Kawamata, Takayuki; Shiomi, Yuki; Uchida, Ken-Ichi; Iguchi, Ryo; Koike, Yoji; Maekawa, Sadamichi; Saitoh, Eiji

    To date, two types of spin current have been explored experimentally: conduction-electron spin current and spin-wave spin current. Here, we newly present spinon spin current in quantum spin liquid. An archetype of quantum spin liquid is realized in one-dimensional spin-1/2 chains with the spins coupled via antiferromagnetic interaction. Elementary excitation in such a system is known as a spinon. Theories have predicted that the correlation of spinons reaches over a long distance. This suggests that spin current may propagate via one-dimensional spinons even in spin liquid states. In this talk, we report the experimental observation that a spin liquid in a spin-1/2 quantum chain generates and conveys spin current, which is attributed to spinon spin current. This is demonstrated by observing an anisotropic negative spin Seebeck effect along the spin chains in Sr2CuO3. The results show that spin current can flow via quantum fluctuation in spite of the absence of magnetic order, suggesting that a variety of quantum spin systems can be applied to spintronics. Spin Quantum Rectification Project, ERATO, JST, Japan; PRESTO, JST, Japan.

  6. Disentanglement versus decoherence of two qubits in thermal noise.

    PubMed

    Zampetaki, A V; Diakonos, F K

    2012-08-31

    We show that the influence of thermal noise, simulated by a 2D ferromagnetic Ising spin lattice on a pair of noninteracting, initially entangled qubits, represented by quantum spins, leads to unexpected evolution of quantum correlations. The high temperature noise leads to ultraslow decay of the quantum correlations. Decreasing the noise temperature we observe a decrease of the characteristic decay time scale. When the noise originates from a critical state, a revival of the quantum correlations is observed. This revival becomes oscillatory with a slowly decaying amplitude when the temperature is decreased below the critical region, leading to persistence of the quantum correlations.

  7. Signatures of bifurcation on quantum correlations: Case of the quantum kicked top

    NASA Astrophysics Data System (ADS)

    Bhosale, Udaysinh T.; Santhanam, M. S.

    2017-01-01

    Quantum correlations reflect the quantumness of a system and are useful resources for quantum information and computational processes. Measures of quantum correlations do not have a classical analog and yet are influenced by classical dynamics. In this work, by modeling the quantum kicked top as a multiqubit system, the effect of classical bifurcations on measures of quantum correlations such as the quantum discord, geometric discord, and Meyer and Wallach Q measure is studied. The quantum correlation measures change rapidly in the vicinity of a classical bifurcation point. If the classical system is largely chaotic, time averages of the correlation measures are in good agreement with the values obtained by considering the appropriate random matrix ensembles. The quantum correlations scale with the total spin of the system, representing its semiclassical limit. In the vicinity of trivial fixed points of the kicked top, the scaling function decays as a power law. In the chaotic limit, for large total spin, quantum correlations saturate to a constant, which we obtain analytically, based on random matrix theory, for the Q measure. We also suggest that it can have experimental consequences.

  8. Probing density and spin correlations in two-dimensional Hubbard model with ultracold fermions

    NASA Astrophysics Data System (ADS)

    Chan, Chun Fai; Drewes, Jan Henning; Gall, Marcell; Wurz, Nicola; Cocchi, Eugenio; Miller, Luke; Pertot, Daniel; Brennecke, Ferdinand; Koehl, Michael

    2017-04-01

    Quantum gases of interacting fermionic atoms in optical lattices is a promising candidate to study strongly correlated quantum phases of the Hubbard model such as the Mott-insulator, spin-ordered phases, or in particular d-wave superconductivity. We experimentally realise the two-dimensional Hubbard model by loading a quantum degenerate Fermi gas of 40 K atoms into a three-dimensional optical lattice geometry. High-resolution absorption imaging in combination with radiofrequency spectroscopy is applied to spatially resolve the atomic distribution in a single 2D layer. We investigate in local measurements of spatial correlations in both the density and spin sector as a function of filling, temperature and interaction strength. In the density sector, we compare the local density fluctuations and the global thermodynamic quantities, and in the spin sector, we observe the onset of non-local spin correlation, signalling the emergence of the anti-ferromagnetic phase. We would report our recent experimental endeavours to investigate further down in temperature in the spin sector.

  9. Anisotropic exchange interaction induced by a single photon in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Chiappe, G.; Fernández-Rossier, J.; Louis, E.; Anda, E. V.

    2005-12-01

    We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K : spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.

  10. Quantum correlation of high dimensional system in a dephasing environment

    NASA Astrophysics Data System (ADS)

    Ji, Yinghua; Ke, Qiang; Hu, Juju

    2018-05-01

    For a high dimensional spin-S system embedded in a dephasing environment, we theoretically analyze the time evolutions of quantum correlation and entanglement via Frobenius norm and negativity. The quantum correlation dynamics can be considered as a function of the decoherence parameters, including the ratio between the system oscillator frequency ω0 and the reservoir cutoff frequency ωc , and the different environment temperature. It is shown that the quantum correlation can not only measure nonclassical correlation of the considered system, but also perform a better robustness against the dissipation. In addition, the decoherence presents the non-Markovian features and the quantum correlation freeze phenomenon. The former is much weaker than that in the sub-Ohmic or Ohmic thermal reservoir environment.

  11. Quantum correlations and Bell’s inequality violation in a Heisenberg spin dimer via neutron scattering

    NASA Astrophysics Data System (ADS)

    Cruz, C.

    The characterization of quantum information quantifiers has attracted a considerable attention of the scientific community, since they are a useful tool to verify the presence of quantum correlations in a quantum system. In this context, in the present work we show a theoretical study of some quantifiers, such as entanglement witness, entanglement of formation, Bell’s inequality violation and geometric quantum discord as a function of the diffractive properties of neutron scattering. We provide one path toward identifying the presence of quantum correlations and quantum nonlocality in a molecular magnet as a Heisenberg spin-1/2 dimer, by diffractive properties typically obtained via neutron scattering experiments.

  12. Quantum Monte Carlo study of spin correlations in the one-dimensional Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandvik, A.W.; Scalapino, D.J.; Singh, C.

    1993-07-15

    The one-dimensional Hubbard model is studied at and close to half-filling using a generalization of Handscomb's quantum Monte Carlo method. Results for spin-correlation functions and susceptibilities are presented for systems of up to 128 sites. The spin-correlation function at low temperature is well described by a recently introduced formula relating the correlation function of a finite periodic system to the corresponding [ital T]=0 correlation function of the infinite system. For the [ital T][r arrow]0 divergence of the [ital q]=2[ital k][sub [ital F

  13. Spin-resolved electron waiting times in a quantum-dot spin valve

    NASA Astrophysics Data System (ADS)

    Tang, Gaomin; Xu, Fuming; Mi, Shuo; Wang, Jian

    2018-04-01

    We study the electronic waiting-time distributions (WTDs) in a noninteracting quantum-dot spin valve by varying spin polarization and the noncollinear angle between the magnetizations of the leads using the scattering matrix approach. Since the quantum-dot spin valve involves two channels (spin up and down) in both the incoming and outgoing channels, we study three different kinds of WTDs, which are two-channel WTD, spin-resolved single-channel WTD, and cross-channel WTD. We analyze the behaviors of WTDs in short times, correlated with the current behaviors for different spin polarizations and noncollinear angles. Cross-channel WTD reflects the correlation between two spin channels and can be used to characterize the spin-transfer torque process. We study the influence of the earlier detection on the subsequent detection from the perspective of cross-channel WTD, and define the influence degree quantity as the cumulative absolute difference between cross-channel WTDs and first-passage time distributions to quantitatively characterize the spin-flip process. We observe that influence degree versus spin-transfer torque for different noncollinear angles as well as different polarizations collapse into a single curve showing universal behaviors. This demonstrates that cross-channel WTDs can be a pathway to characterize spin correlation in spintronics system.

  14. Controlling the quantum dynamics of a mesoscopic spin bath in diamond

    PubMed Central

    de Lange, Gijs; van der Sar, Toeno; Blok, Machiel; Wang, Zhi-Hui; Dobrovitski, Viatcheslav; Hanson, Ronald

    2012-01-01

    Understanding and mitigating decoherence is a key challenge for quantum science and technology. The main source of decoherence for solid-state spin systems is the uncontrolled spin bath environment. Here, we demonstrate quantum control of a mesoscopic spin bath in diamond at room temperature that is composed of electron spins of substitutional nitrogen impurities. The resulting spin bath dynamics are probed using a single nitrogen-vacancy (NV) centre electron spin as a magnetic field sensor. We exploit the spin bath control to dynamically suppress dephasing of the NV spin by the spin bath. Furthermore, by combining spin bath control with dynamical decoupling, we directly measure the coherence and temporal correlations of different groups of bath spins. These results uncover a new arena for fundamental studies on decoherence and enable novel avenues for spin-based magnetometry and quantum information processing. PMID:22536480

  15. Spin-chain model of a many-body quantum battery

    NASA Astrophysics Data System (ADS)

    Le, Thao P.; Levinsen, Jesper; Modi, Kavan; Parish, Meera M.; Pollock, Felix A.

    2018-02-01

    Recently, it has been shown that energy can be deposited on a collection of quantum systems at a rate that scales superextensively. Some of these schemes for quantum batteries rely on the use of global many-body interactions that take the batteries through a correlated shortcut in state space. Here we extend the notion of a quantum battery from a collection of a priori isolated systems to a many-body quantum system with intrinsic interactions. Specifically, we consider a one-dimensional spin chain with physically realistic two-body interactions. We find that the spin-spin interactions can yield an advantage in charging power over the noninteracting case and we demonstrate that this advantage can grow superextensively when the interactions are long ranged. However, we show that, unlike in previous work, this advantage is a mean-field interaction effect that does not involve correlations and that relies on the interactions being intrinsic to the battery.

  16. Exploration of quantum phases transition in the XXZ model with Dzyaloshinskii-Moriya interaction using trance distance discord

    NASA Astrophysics Data System (ADS)

    Zhang, Ren-jie; Xu, Shuai; Shi, Jia-dong; Ma, Wen-chao; Ye, Liu

    2015-11-01

    In the paper, we researched the quantum phase transition (QPT) in the anisotropic spin XXZ model by exploiting the quantum renormalization group (QRG) method. The innovation point is that we adopt a new approach called trace distance discord to indicate the quantum correlation of the system. QPT after several iterations of renormalization in current system has been observed. Consequently, it opened the possibility of investigation of QPR in the geometric discord territory. While the anisotropy suppresses the correlation due to favoring of the alignment of spins, the DM interaction restores the spoiled correlation via creation of the quantum fluctuations. We also apply quantum renormalization group method to probe the thermodynamic limit of the model and emerging of nonanalytic behavior of the correlation.

  17. Dynamical pairwise entanglement and two-point correlations in the three-ligand spin-star structure

    NASA Astrophysics Data System (ADS)

    Motamedifar, M.

    2017-10-01

    We consider the three-ligand spin-star structure through homogeneous Heisenberg interactions (XXX-3LSSS) in the framework of dynamical pairwise entanglement. It is shown that the time evolution of the central qubit ;one-particle; state (COPS) brings about the generation of quantum W states at periodical time instants. On the contrary, W states cannot be generated from the time evolution of a ligand ;one-particle; state (LOPS). We also investigate the dynamical behavior of two-point quantum correlations as well as the expectation values of the different spin-components for each element in the XXX-3LSSS. It is found that when a W state is generated, the same value of the concurrence between any two arbitrary qubits arises from the xx and yy two-point quantum correlations. On the opposite, zz quantum correlation between any two qubits vanishes at these time instants.

  18. Dynamics of a quantum spin liquid beyond integrability: The Kitaev-Heisenberg-Γ model in an augmented parton mean-field theory

    NASA Astrophysics Data System (ADS)

    Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich

    2018-04-01

    We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.

  19. Spin-selective electronic reconstruction in quantum ferromagnets: A view from the spin-asymmetric Hubbard model

    NASA Astrophysics Data System (ADS)

    Faúndez, J.; Jorge, T. N.; Craco, L.

    2018-03-01

    Using the tight-binding treatment for the spin-asymmetric Hubbard model we explore the effect of electronic interactions in the ferromagnetic, partially filled Lieb lattice. As a key result we demonstrate the formation of correlation satellites in the minority spin channel. In addition, we consider the role played by transverse-field spin fluctuations in metallic ferromagnets. We quantify the degree of electronic demagnetization, showing that the half-metallic state is rather robust to local spin flips. Not being restricted to the case of a partially filled Lieb lattice, our findings are expected to advance the general understanding of spin-selective electronic reconstruction in strongly correlated quantum ferromagnets.

  20. Optical pumping of electron and nuclear spin in a negatively-charged quantum dot

    NASA Astrophysics Data System (ADS)

    Bracker, Allan; Gershoni, David; Korenev, Vladimir

    2005-03-01

    We report optical pumping of electron and nuclear spins in an individual negatively-charged quantum dot. With a bias-controlled heterostructure, we inject one electron into the quantum dot. Intense laser excitation produces negative photoluminescence polarization, which is easily erased by the Hanle effect, demonstrating optical pumping of a long-lived resident electron. The electron spin lifetime is consistent with the influence of nuclear spin fluctuations. Measuring the Overhauser effect in high magnetic fields, we observe a high degree of nuclear spin polarization, which is closely correlated to electron spin pumping.

  1. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time.

    PubMed

    Chow, Colin M; Ross, Aaron M; Kim, Danny; Gammon, Daniel; Bracker, Allan S; Sham, L J; Steel, Duncan G

    2016-08-12

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  2. Nonlocal Nuclear Spin Quieting in Quantum Dot Molecules: Optically Induced Extended Two-Electron Spin Coherence Time

    NASA Astrophysics Data System (ADS)

    Chow, Colin M.; Ross, Aaron M.; Kim, Danny; Gammon, Daniel; Bracker, Allan S.; Sham, L. J.; Steel, Duncan G.

    2016-08-01

    We demonstrate the extension of coherence between all four two-electron spin ground states of an InAs quantum dot molecule (QDM) via nonlocal suppression of nuclear spin fluctuations in two vertically stacked quantum dots (QDs), while optically addressing only the top QD transitions. Long coherence times are revealed through dark-state spectroscopy as resulting from nuclear spin locking mediated by the exchange interaction between the QDs. Line shape analysis provides the first measurement of the quieting of the Overhauser field distribution correlating with reduced nuclear spin fluctuations.

  3. Investigations of quantum pendulum dynamics in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We investigate the quantum spin dynamics of a spin-1 BEC initialized to an unstable critical point of the dynamical phase space. The subsequent evolution of the collective states of the system is analogous to an inverted simple pendulum in the quantum limit and yields non-classical states with quantum correlations. For short evolution times in the low depletion limit, we observe squeezed states and for longer times beyond the low depletion limit we observe highly non-Gaussian distributions. C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Bookjans, and M.S. Chapman, ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  4. Non-Markovian spin-resolved counting statistics and an anomalous relation between autocorrelations and cross correlations in a three-terminal quantum dot

    NASA Astrophysics Data System (ADS)

    Luo, JunYan; Yan, Yiying; Huang, Yixiao; Yu, Li; He, Xiao-Ling; Jiao, HuJun

    2017-01-01

    We investigate the noise correlations of spin and charge currents through an electron spin resonance (ESR)-pumped quantum dot, which is tunnel coupled to three electrodes maintained at an equivalent chemical potential. A recursive scheme is employed with inclusion of the spin degrees of freedom to account for the spin-resolved counting statistics in the presence of non-Markovian effects due to coupling with a dissipative heat bath. For symmetric spin-up and spin-down tunneling rates, an ESR-induced spin flip mechanism generates a pure spin current without an accompanying net charge current. The stochastic tunneling of spin carriers, however, produces universal shot noises of both charge and spin currents, revealing the effective charge and spin units of quasiparticles in transport. In the case of very asymmetric tunneling rates for opposite spins, an anomalous relationship between noise autocorrelations and cross correlations is revealed, where super-Poissonian autocorrelation is observed in spite of a negative cross correlation. Remarkably, with strong dissipation strength, non-Markovian memory effects give rise to a positive cross correlation of the charge current in the absence of a super-Poissonian autocorrelation. These unique noise features may offer essential methods for exploiting internal spin dynamics and various quasiparticle tunneling processes in mesoscopic transport.

  5. Matrix product states for su(2) invariant quantum spin chains

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Fledderjohann, Andreas; Klümper, Andreas

    2016-08-01

    A systematic and compact treatment of arbitrary su(2) invariant spin-s quantum chains with nearest-neighbour interactions is presented. The ground-state is derived in terms of matrix product states (MPS). The fundamental MPS calculations consist of taking products of basic tensors of rank 3 and contractions thereof. The algebraic su(2) calculations are carried out completely by making use of Wigner calculus. As an example of application, the spin-1 bilinear-biquadratic quantum chain is investigated. Various physical quantities are calculated with high numerical accuracy of up to 8 digits. We obtain explicit results for the ground-state energy, entanglement entropy, singlet operator correlations and the string order parameter. We find an interesting crossover phenomenon in the correlation lengths.

  6. Universal Behavior of Quantum Spin Liquid and Optical Conductivity in the Insulator Herbertsmithite

    NASA Astrophysics Data System (ADS)

    Shaginyan, V. R.; Msezane, A. Z.; Stephanovich, V. A.; Popov, K. G.; Japaridze, G. S.

    2018-04-01

    We analyze optical conductivity with the goal to demonstrate experimental manifestation of a new state of matter, the so-called fermion condensate. Fermion condensates are realized in quantum spin liquids, exhibiting typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite provide important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to expose the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field. We consider an experimental manifestation (optical conductivity) of a new state of matter (so-called fermion condensate) realized in quantum spin liquids, for, in many ways, they exhibit typical behavior of heavy-fermion metals. Measurements of the low-frequency optical conductivity collected on the geometrically frustrated insulator herbertsmithite produce important experimental evidence of the nature of its quantum spin liquid composed of spinons. To analyze recent measurements of the herbertsmithite optical conductivity at different temperatures, we employ a model of a strongly correlated quantum spin liquid located near the fermion condensation phase transition. Our theoretical analysis of the optical conductivity allows us to reveal the physical mechanism of its temperature dependence. We also predict a dependence of the optical conductivity on a magnetic field.

  7. Exotic quantum order in low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Girvin, S. M.

    1998-08-01

    Strongly correlated quantum systems in low dimensions often exhibit novel quantum ordering. This ordering is sometimes hidden and can be revealed only by examining new "dual" types of correlations. Such ordering leads to novel collection modes and fractional quantum numbers. Examples will be presented from quantum spin chains and the quantum Hall effect.

  8. Physics of the Kitaev Model: Fractionalization, Dynamic Correlations, and Material Connections

    NASA Astrophysics Data System (ADS)

    Hermanns, M.; Kimchi, I.; Knolle, J.

    2018-03-01

    Quantum spin liquids have fascinated condensed matter physicists for decades because of their unusual properties such as spin fractionalization and long-range entanglement. Unlike conventional symmetry breaking, the topological order underlying quantum spin liquids is hard to detect experimentally. Even theoretical models are scarce for which the ground state is established to be a quantum spin liquid. The Kitaev honeycomb model and its generalizations to other tricoordinated lattices are chief counterexamples - they are exactly solvable, harbor a variety of quantum spin liquid phases, and are also relevant for certain transition metal compounds including the polymorphs of (Na,Li)2IrO3 iridates and RuCl3. In this review, we give an overview of the rich physics of the Kitaev model, including two-dimensional and three-dimensional fractionalization as well as dynamic correlations and behavior at finite temperatures. We discuss the different materials and argue how the Kitaev model physics can be relevant even though most materials show magnetic ordering at low temperatures.

  9. Quantum Phase Transitions in Conventional Matrix Product Systems

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min; Huang, Fei; Chang, Yan

    2017-02-01

    For matrix product states(MPSs) of one-dimensional spin-1/2 chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.

  10. Multipartite quantum correlations in the extended J1-J2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Batle, J.; Tarawneh, O.; Nagata, Koji; Nakamura, Tadao; Abdalla, S.; Farouk, Ahmed

    2017-11-01

    Multipartite entanglement and the maximum violation of Bell inequalities are studied in finite clusters of spins in an extended J1-J2 Heisenberg model at zero temperature. The ensuing highly frustrated states will unveil a rich structure for different values of the corresponding spin-spin interaction strengths. The interplay between nearest-neighbors, next-nearest neighbors and further couplings will be explored using multipartite correlations. The model is relevant to certain quantum annealing computation architectures where an all-to-all connectivity is considered.

  11. A T-shaped double quantum dot system as a Fano interferometer: Interplay of coherence and correlation upon spin currents

    NASA Astrophysics Data System (ADS)

    Fernandes, I. L.; Cabrera, G. G.

    2018-05-01

    Based on Keldysh non-equilibrium Green function method, we have investigated spin current production in a hybrid T-shaped device, consisting of a central quantum dot connected to the leads and a side dot which only couples to the central dot. The topology of this structure allows for quantum interference of the different paths that go across the device, yielding Fano resonances in the spin dependent transport properties. Correlation effects are taken into account at the central dot and handled within a mean field approximation. Its interplay with the Fano effect is analyzed in the strong coupling regime. Non-vanishing spin currents are only obtained when the leads are ferromagnetic, the current being strongly dependent on the relative orientation of the lead polarizations. We calculate the conductance (spin and charge) by numerically differentiating the current, and a rich structure is obtained as a manifestation of quantum coherence and correlation effects. Increase of the Coulomb interaction produces localization of states at the side dot, largely suppressing Fano resonances. The interaction is also responsible for the negative values of the spin conductance in some regions of the voltage near resonances, effect which is the spin analog of the Esaki tunnel diode. We also analyze control of the currents via gate voltages applied to the dots, possibility which is interesting for practical operations.

  12. Quantum-memory-assisted entropic uncertainty in spin models with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Huang, Zhiming

    2018-02-01

    In this article, we investigate the dynamics and correlations of quantum-memory-assisted entropic uncertainty, the tightness of the uncertainty, entanglement, quantum correlation and mixedness for various spin chain models with Dzyaloshinskii-Moriya (DM) interaction, including the XXZ model with DM interaction, the XY model with DM interaction and the Ising model with DM interaction. We find that the uncertainty grows to a stable value with growing temperature but reduces as the coupling coefficient, anisotropy parameter and DM values increase. It is found that the entropic uncertainty is closely correlated with the mixedness of the system. The increasing quantum correlation can result in a decrease in the uncertainty, and the robustness of quantum correlation is better than entanglement since entanglement means sudden birth and death. The tightness of the uncertainty drops to zero, apart from slight volatility as various parameters increase. Furthermore, we propose an effective approach to steering the uncertainty by weak measurement reversal.

  13. Manifestations of classical physics in the quantum evolution of correlated spin states in pulsed NMR experiments.

    PubMed

    Ligare, Martin

    2016-05-01

    Multiple-pulse NMR experiments are a powerful tool for the investigation of molecules with coupled nuclear spins. The product operator formalism provides a way to understand the quantum evolution of an ensemble of weakly coupled spins in such experiments using some of the more intuitive concepts of classical physics and semi-classical vector representations. In this paper I present a new way in which to interpret the quantum evolution of an ensemble of spins. I recast the quantum problem in terms of mixtures of pure states of two spins whose expectation values evolve identically to those of classical moments. Pictorial representations of these classically evolving states provide a way to calculate the time evolution of ensembles of weakly coupled spins without the full machinery of quantum mechanics, offering insight to anyone who understands precession of magnetic moments in magnetic fields.

  14. Aging dynamics of quantum spin glasses of rotors

    NASA Astrophysics Data System (ADS)

    Kennett, Malcolm P.; Chamon, Claudio; Ye, Jinwu

    2001-12-01

    We study the long time dynamics of quantum spin glasses of rotors using the nonequilibrium Schwinger-Keldysh formalism. These models are known to have a quantum phase transition from a paramagnetic to a spin-glass phase, which we approach by looking at the divergence of the spin-relaxation rate at the transition point. In the aging regime, we determine the dynamical equations governing the time evolution of the spin response and correlation functions, and show that all terms in the equations that arise solely from quantum effects are irrelevant at long times under time reparametrization group (RPG) transformations. At long times, quantum effects enter only through the renormalization of the parameters in the dynamical equations for the classical counterpart of the rotor model. Consequently, quantum effects only modify the out-of-equilibrium fluctuation-dissipation relation (OEFDR), i.e. the ratio X between the temperature and the effective temperature, but not the form of the classical OEFDR.

  15. Heralded entanglement between solid-state qubits separated by three metres.

    PubMed

    Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R

    2013-05-02

    Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.

  16. Double-quantum homonuclear correlations of spin I=5/2 nuclei.

    PubMed

    Iuga, Dinu

    2011-02-01

    The challenges associated with acquiring double-quantum homonuclear Nuclear Magnetic Resonance correlation spectra of half-integer quadrupolar nuclei are described. In these experiments the radio-frequency irradiation amplitude is necessarily weak in order to selectively excite the central transition. In this limit only one out of the 25 double-quantum coherences possible for two coupled spin I=5/2 nuclei is excited. An investigation of all the 25 two spins double quantum transitions reveals interesting effects such as a compensation of the first-order quadrupolar interaction between the two single quantum transitions involved in the double quantum coherence. In this paper a full numerical study of a hypothetical two spin I=5/2 system is used to show what happens when the RF amplitude during recoupling is increased. In principle this is advantageous, since the required double quantum coherence should build up faster, but in practice it also induces adiabatic passage transfer of population and coherence which impedes any build up. Finally an optimized rotary resonance recoupling (oR(3)) sequence is introduced in order to decrease these transfers. This sequence consists of a spin locking irradiation whose amplitude is reduced four times during one rotor period, and allows higher RF powers to be used during recoupling. The sequence is used to measure (27)Al DQ dipolar correlation spectra of Y(3)Al(5)O(12) (YAG) and gamma alumina (γAl(2)O(3)). The results prove that aluminium vacancies in gamma alumina mainly occur in the tetrahedral sites. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Quantum magnetism in different AMO systems.

    NASA Astrophysics Data System (ADS)

    Rey, Ana Maria

    One of the most important goals of modern quantum sciences is to learn how to control and entangle many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, since performing full state tomography does not scale favorably with the number of particles, as the size of quantum systems grow, it becomes extremely challenging to identify, and quantify the buildup of quantum correlations and coherence. In this talk I will report on a protocol that we have developed and experimentally demonstrated in a trapped ion quantum magnet in a Penning trap, which can perform quantum simulations of Ising spin models. In those experiments strong spin-spin interactions can be engineered through optical dipole forces that excite phonons of the crystals. The number of ions can be varied from tens to hundreds with high fidelity control. The protocol uses time reversal of the many-body dynamics, to measure out-of-time-order correlation functions (OTOCs). By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the build-up of up to 8-body correlations. We also use the protocol and comparisons to a full solution of the master equation to investigate the impact of spin-motion entanglement and decoherence in the quantum dynamics. Future applications of this protocol could enable studies of manybody localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems. Supported by NSF-PHY-1521080, JILA-NSF PFC-1125844, ARO and AFOSR-MURI.

  18. Discovery of Emergent Photon and Monopoles in a Quantum Spin Liquid

    NASA Astrophysics Data System (ADS)

    Tokiwa, Yoshifumi; Yamashita, Takuya; Terazawa, Daiki; Kimura, Kenta; Kasahara, Yuichi; Onishi, Takafumi; Kato, Yasuyuki; Halim, Mario; Gegenwart, Philipp; Shibauchi, Takasada; Nakatsuji, Satoru; Moon, Eun-Gook; Matsuda, Yuji

    2018-06-01

    Quantum spin liquid (QSL) is an exotic quantum phase of matter whose ground state is quantum-mechanically entangled without any magnetic ordering. A central issue concerns emergent excitations that characterize QSLs, which are hypothetically associated with quasiparticle fractionalization and topological order. Here we report highly unusual heat conduction generated by the spin degrees of freedom in a QSL state of the pyrochlore magnet Pr2Zr2O7, which hosts spin-ice correlations with strong quantum fluctuations. The thermal conductivity in high temperature regime exhibits a two-gap behavior, which is consistent with the gapped excitations of magnetic (M-) and electric monopoles (E-particles). At very low temperatures below 200 mK, the thermal conductivity unexpectedly shows a dramatic enhancement, which well exceeds purely phononic conductivity, demonstrating the presence of highly mobile spin excitations. This new type of excitations can be attributed to emergent photons (ν-particle), coherent gapless spin excitations in a spin-ice manifold.

  19. Zero Quantum Coherence in a Series of Covalent Spin-Correlated Radical Pairs.

    PubMed

    Nelson, Jordan N; Krzyaniak, Matthew D; Horwitz, Noah E; Rugg, Brandon K; Phelan, Brian T; Wasielewski, Michael R

    2017-03-23

    Photoinitiated subnanosecond electron transfer within covalently linked electron donor-acceptor molecules can result in the formation of a spin-correlated radical pair (SCRP) with a well-defined initial singlet spin configuration. Subsequent coherent mixing between the SCRP singlet and triplet m s = 0 spin states, the so-called zero quantum coherence (ZQC), is of potential interest in quantum information processing applications because the ZQC can be probed using pulse electron paramagnetic resonance (pulse-EPR) techniques. Here, pulse-EPR spectroscopy is utilized to examine the ZQC oscillation frequencies and ZQC dephasing in three structurally well-defined D-A systems. While transitions between the singlet and triplet m s = 0 spin states are formally forbidden (Δm s = 0), they can be addressed using specific microwave pulse turning angles to map information from the ZQC onto observable single quantum coherences. In addition, by using structural variations to tune the singlet-triplet energy gap, the ZQC frequencies determined for this series of molecules indicate a stronger dependence on the electronic g-factor than on electron-nuclear hyperfine interactions.

  20. Schemes of detecting nuclear spin correlations by dynamical decoupling based quantum sensing

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long Ma; Liu, Ren-Bao

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical decoupling (DD) enhanced diamond quantum sensing has enabled NMR of single nuclear spins and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the frequency fingerprints of target nuclear spins. Such schemes, however, cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear spin clusters. Here we show that the first limitation can be overcome by using wavefunction fingerprints of target nuclear spins, which is much more sensitive than the ''frequency fingerprints'' to weak hyperfine interaction between the targets and a sensor, while the second one can be overcome by a new design of two-dimensional DD sequences composed of two sets of periodic DD sequences with different periods, which can be independently set to match two different transition frequencies. Our schemes not only offer an approach to breaking the resolution limit set by ''frequency gradients'' in conventional MRI, but also provide a standard approach to correlation spectroscopy for single-molecule NMR.

  1. Boosting spin-caloritronic effects by attractive correlations in molecular junctions.

    PubMed

    Weymann, Ireneusz

    2016-01-25

    In nanoscopic systems quantum confinement and interference can lead to an enhancement of thermoelectric properties as compared to conventional bulk materials. For nanostructures, such as molecules or quantum dots coupled to external leads, the thermoelectric figure of merit can reach or even exceed unity. Moreover, in the presence of external magnetic field or when the leads are ferromagnetic, an applied temperature gradient can generate a spin voltage and an associated spin current flow in the system, which makes such nanostructures particularly interesting for future thermoelectric applications. In this study, by using the numerical renormalization group method, we examine the spin-dependent thermoelectric transport properties of a molecular junction involving an orbital level with attractive Coulomb correlations coupled to ferromagnetic leads. We analyze how attractive correlations affect the spin-resolved transport properties of the system and find a nontrivial dependence of the conductance and tunnel magnetoresistance on the strength and sign of those correlations. We also demonstrate that attractive correlations can lead to an enhancement of the spin thermopower and the figure of merit, which can be controlled by a gate voltage.

  2. Observation of quantum entanglement between a photon and a single electron spin confined to an InAs quantum dot

    NASA Astrophysics Data System (ADS)

    Schaibley, John; Burgers, Alex; McCracken, Greg; Duan, Luming; Berman, Paul; Steel, Duncan; Bracker, Allan; Gammon, Daniel; Sham, Lu

    2013-03-01

    A single electron spin confined to a single InAs quantum dot (QD) can serve as a qubit for quantum information processing. By utilizing the QD's optically excited trion states in the presence of an externally applied magnetic field, the QD spin can be rapidly initialized, manipulated and read out. A key resource for quantum information is the ability to entangle distinct QD spins. One approach relies on intermediate spin-photon entanglement to mediate the entanglement between distant QD spin qubits. We report a demonstration of quantum entanglement between a photon's polarization state and the spin state of a single electron confined to a single QD. Here, the photon is spontaneously emitted from one of the QD's trion states. The emitted photon's polarization along the detection axis is entangled with the resulting spin state of the QD. By performing projective measurements on the photon's polarization state and correlating these measurements with the state of the QD spin in two different bases, we obtain a lower bound on the entanglement fidelity of 0.59 (after background correction). The fidelity bound is limited almost entirely by the timing resolution of our single photon detector. The spin-photon entanglement generation rate is 3 ×103 s-1. Supported by: NSF, MURI, AFOSR, DARPA, ARO.

  3. Operating Spin Echo in the Quantum Regime for an Atomic-Ensemble Quantum Memory

    NASA Astrophysics Data System (ADS)

    Rui, Jun; Jiang, Yan; Yang, Sheng-Jun; Zhao, Bo; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-09-01

    Spin echo is a powerful technique to extend atomic or nuclear coherence times by overcoming the dephasing due to inhomogeneous broadenings. However, there are disputes about the feasibility of applying this technique to an ensemble-based quantum memory at the single-quanta level. In this experimental study, we find that noise due to imperfections of the rephasing pulses has both intense superradiant and weak isotropic parts. By properly arranging the beam directions and optimizing the pulse fidelities, we successfully manage to operate the spin echo technique in the quantum regime by observing nonclassical photon-photon correlations as well as the quantum behavior of retrieved photons. Our work for the first time demonstrates the feasibility of harnessing the spin echo method to extend the lifetime of ensemble-based quantum memories at the single-quanta level.

  4. Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions

    NASA Astrophysics Data System (ADS)

    Werth, A.; Kopietz, P.; Tsyplyatyev, O.

    2018-05-01

    We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.

  5. Suppression of spin and optical gaps in phosphorene quantum dots

    NASA Astrophysics Data System (ADS)

    Zhang, Yingjie; Sheng, Weidong

    2018-05-01

    Electronic structure and optical properties of triangular phosphorene quantum dots have been investigated theoretically. Based on systematic configuration interaction calculations, the ground and excited states of the interacting many-electron system together with its optical absorption spectrum are obtained. For the nanodot with 60 phosphorus atoms in various dielectric environments, it is found that the spin gap of the correlated system surprisingly overlaps its optical gap over a large range of the effective dielectric constant. The overlapping of the spin and optical gaps can be attributed to the fact that the extra correlation energy in the spin singlet almost compensates the exchange energy in the spin triplet in the presence of strong long-range electron-electron interactions. Moreover, both the spin and optical gaps are shown to be greatly suppressed as the screening effect becomes strong. When the dielectric constant decreases below 2.65, it is seen that the spin gap becomes negative and the quantum dot undergoes a phase transition from nonmagnetic to ferromagnetic. Our results are compared with the previous experimental and theoretical works.

  6. Informational correlation between two parties of a quantum system: spin-1/2 chains

    NASA Astrophysics Data System (ADS)

    Zenchuk, A. I.

    2014-12-01

    We introduce the informational correlation between two interacting quantum subsystems and of a quantum system as the number of arbitrary parameters of a unitary transformation (locally performed on the subsystem ) which may be detected in the subsystem by the local measurements. This quantity indicates whether the state of the subsystem may be effected by means of the unitary transformation applied to the subsystem . Emphasize that in general. The informational correlations in systems with tensor product initial states are studied in more details. In particular, it is shown that the informational correlation may be changed by the local unitary transformations of the subsystem . However, there is some non-reducible part of which may not be decreased by any unitary transformation of the subsystem at a fixed time instant . Two examples of the informational correlations between two parties of the four-node spin-1/2 chain with mixed initial states are studied. The long chains with a single initially excited spin (the pure initial state) are considered as well.

  7. Thermal quantum coherence and correlation in the extended XY spin chain

    NASA Astrophysics Data System (ADS)

    Sha, Ya-Ting; Wang, Yue; Sun, Zheng-Hang; Hou, Xi-Wen

    2018-05-01

    Quantum coherence and correlation of thermal states in the extended XY spin chain are studied in terms of the recently proposed l1 norm, skew information, and Bures distance of geometry discord (BGD), respectively. The entanglement measured via concurrence is calculated for reference. A two-dimensional susceptibility is introduced to explore their capability in highlighting the critical lines associated with quantum phase transitions in the model. It is shown that the susceptibility of the skew information and BGD is a genuine indicator of quantum phase transitions, and characterizes the factorization. However, the l1 norm is trivial for the factorization. An explicit scaling law of BGD is captured at low temperature in the XY model. In contrast to the entanglement, quantum coherence reveals a kind of long-range nonclassical correlation. Moreover, the obvious relation among model parameters is extracted for the factorized line in the extended model. Those are instructive for the understanding of quantum coherence and correlation in the theory of quantum information, and quantum phase transitions and factorization in condensed-matter physics.

  8. Spin-dependent Otto quantum heat engine based on a molecular substance

    NASA Astrophysics Data System (ADS)

    Hübner, W.; Lefkidis, G.; Dong, C. D.; Chaudhuri, D.; Chotorlishvili, L.; Berakdar, J.

    2014-07-01

    We explore the potential of single molecules for thermodynamic cycles. To this end we propose two molecular heat engines based on the Ni2 dimer in the presence of a static magnetic field: (a) a quantum Otto engine and (b) a modified quantum Otto engine for which optical excitations induced by a laser pulse substitute for one of the heat-exchange points. For reliable predictions and to inspect the role of spin and electronic correlations we perform fully correlated ab initio calculations of the molecular electronic structure including spin-orbital effects. We analyze the efficiency of the engines in dependence of the electronic level scheme and the entanglement and find a significant possible enhancement connected to the quantum nature and the heat capacity of the dimer, as well as to the zero-field triplet states splitting.

  9. Entropic uncertainty for spin-1/2 XXX chains in the presence of inhomogeneous magnetic fields and its steering via weak measurement reversals

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ming, Fei; Huang, Ai-Jun; Sun, Wen-Yang; Ye, Liu

    2017-09-01

    The uncertainty principle configures a low bound to the measuring precision for a pair of non-commuting observables, and hence is considerably nontrivial to quantum precision measurement in the field of quantum information theory. In this letter, we consider the entropic uncertainty relation (EUR) in the context of quantum memory in a two-qubit isotropic Heisenberg spin chain. Specifically, we explore the dynamics of EUR in a practical scenario, where two associated nodes of a one-dimensional XXX-spin chain, under an inhomogeneous magnetic field, are connected to a thermal entanglement. We show that the temperature and magnetic field effect can lead to the inflation of the measuring uncertainty, stemming from the reduction of systematic quantum correlation. Notably, we reveal that, firstly, the uncertainty is not fully dependent on the observed quantum correlation of the system; secondly, the dynamical behaviors of the measuring uncertainty are relatively distinct with respect to ferromagnetism and antiferromagnetism chains. Meanwhile, we deduce that the measuring uncertainty is dramatically correlated with the mixedness of the system, implying that smaller mixedness tends to reduce the uncertainty. Furthermore, we propose an effective strategy to control the uncertainty of interest by means of quantum weak measurement reversal. Therefore, our work may shed light on the dynamics of the measuring uncertainty in the Heisenberg spin chain, and thus be important to quantum precision measurement in various solid-state systems.

  10. High-fidelity projective read-out of a solid-state spin quantum register.

    PubMed

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  11. Superconductivity from a non-Fermi-liquid metal: Kondo fluctuation mechanism in slave-fermion theory

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Seok

    2010-03-01

    We propose Kondo fluctuation mechanism of superconductivity, differentiated from the spin-fluctuation theory as the standard model for unconventional superconductivity in the weak-coupling approach. Based on the U(1) slave-fermion representation of an effective Anderson lattice model, where localized spins are described by the Schwinger boson theory and hybridization or Kondo fluctuations weaken antiferromagnetic correlations of localized spins, we found an antiferromagnetic quantum critical point from an antiferromagnetic metal to a heavy-fermion metal in our recent study. The Kondo-induced antiferromagnetic quantum critical point was shown to be described by both conduction electrons and fermionic holons interacting with critical spin fluctuations given by deconfined bosonic spinons with a spin quantum number 1/2. Surprisingly, such critical modes turned out to be described by the dynamical exponent z=3 , giving rise to the well-known non-Fermi-liquid physics such as the divergent Grüneisen ratio with an exponent 2/3 and temperature-linear resistivity in three dimensions. We find that the z=3 antiferromagnetic quantum critical point becomes unstable against superconductivity, where critical spinon excitations give rise to pairing correlations between conduction electrons and between fermionic holons, respectively, via hybridization fluctuations. Such two kinds of pairing correlations result in multigap unconventional superconductivity around the antiferromagnetic quantum critical point of the slave-fermion theory, where s -wave pairing is not favored generically due to strong correlations. We show that the ratio between each superconducting gap for conduction electrons Δc and holons Δf and the transition temperature Tc is 2Δc/Tc˜9 and 2Δf/Tc˜O(10-1) , remarkably consistent with CeCoIn5 . A fingerprint of the Kondo mechanism is emergence of two kinds of resonance modes in not only spin but also charge fluctuations, where the charge resonance mode at an antiferromagnetic wave vector originates from d -wave pairing of spinless holons. We discuss how the Kondo fluctuation theory differs from the spin-fluctuation approach.

  12. Quantum simulation of interacting spin models with trapped ions

    NASA Astrophysics Data System (ADS)

    Islam, Kazi Rajibul

    The quantum simulation of complex many body systems holds promise for understanding the origin of emergent properties of strongly correlated systems, such as high-Tc superconductors and spin liquids. Cold atomic systems provide an almost ideal platform for quantum simulation due to their excellent quantum coherence, initialization and readout properties, and their ability to support several forms of interactions. In this thesis, I present experiments on the quantum simulation of long range Ising models in the presence of transverse magnetic fields with a chain of up to sixteen ultracold 171Yb+ ions trapped in a linear radio frequency Paul trap. Two hyperfine levels in each of the 171Yb+ ions serve as the spin-1/2 systems. We detect the spin states of the individual ions by observing state-dependent fluorescence with single site resolution, and can directly measure any possible spin correlation function. The spin-spin interactions are engineered by applying dipole forces from precisely tuned lasers whose beatnotes induce stimulated Raman transitions that couple virtually to collective phonon modes of the ion motion. The Ising couplings are controlled, both in sign and strength with respect to the effective transverse field, and adiabatically manipulated to study various aspects of this spin model, such as the emergence of a quantum phase transition in the ground state and spin frustration due to competing antiferromagnetic interactions. Spin frustration often gives rise to a massive degeneracy in the ground state, which can lead to entanglement in the spin system. We detect and characterize this frustration induced entanglement in a system of three spins, demonstrating the first direct experimental connection between frustration and entanglement. With larger numbers of spins we also vary the range of the antiferromagnetic couplings through appropriate laser tunings and observe that longer range interactions reduce the excitation energy and thereby frustrate the ground state order. This system can potentially be scaled up to study a wide range of fully connected spin networks with a few dozens of spins, where the underlying theory becomes intractable on a classical computer.

  13. Theoretical investigations of quantum correlations in NMR multiple-pulse spin-locking experiments

    NASA Astrophysics Data System (ADS)

    Gerasev, S. A.; Fedorova, A. V.; Fel'dman, E. B.; Kuznetsova, E. I.

    2018-04-01

    Quantum correlations are investigated theoretically in a two-spin system with the dipole-dipole interactions in the NMR multiple-pulse spin-locking experiments. We consider two schemes of the multiple-pulse spin-locking. The first scheme consists of π /2-pulses only and the delays between the pulses can differ. The second scheme contains φ-pulses (0<φ <π ) and has equal delays between them. We calculate entanglement for both schemes for an initial separable state. We show that entanglement is absent for the first scheme at equal delays between π /2-pulses at arbitrary temperatures. Entanglement emerges after several periods of the pulse sequence in the second scheme at φ =π /4 at milliKelvin temperatures. The necessary number of the periods increases with increasing temperature. We demonstrate the dependence of entanglement on the number of the periods of the multiple-pulse sequence. Quantum discord is obtained for the first scheme of the multiple-pulse spin-locking experiment at different temperatures.

  14. Unconventional quantum antiferromagnetism with a fourfold symmetry breaking in a spin-1/2 Ising-Heisenberg pentagonal chain

    NASA Astrophysics Data System (ADS)

    Karľová, Katarína; Strečka, Jozef; Lyra, Marcelo L.

    2018-03-01

    The spin-1/2 Ising-Heisenberg pentagonal chain is investigated with use of the star-triangle transformation, which establishes a rigorous mapping equivalence with the effective spin-1/2 Ising zigzag ladder. The investigated model has a rich ground-state phase diagram including two spectacular quantum antiferromagnetic ground states with a fourfold broken symmetry. It is demonstrated that these long-period quantum ground states arise due to a competition between the effective next-nearest-neighbor and nearest-neighbor interactions of the corresponding spin-1/2 Ising zigzag ladder. The concurrence is used to quantify the bipartite entanglement between the nearest-neighbor Heisenberg spin pairs, which are quantum-mechanically entangled in two quantum ground states with or without spontaneously broken symmetry. The pair correlation functions between the nearest-neighbor Heisenberg spins as well as the next-nearest-neighbor and nearest-neighbor Ising spins were investigated with the aim to bring insight into how a relevant short-range order manifests itself at low enough temperatures. It is shown that the specific heat displays temperature dependencies with either one or two separate round maxima.

  15. Generation of heralded entanglement between distant quantum dot hole spins

    NASA Astrophysics Data System (ADS)

    Delteil, Aymeric

    Entanglement plays a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, some of the major challenges are the efficient generation of entanglement between stationary (spin) and propagating (photon) qubits, the transfer of information from flying to stationary qubits, and the efficient generation of entanglement between distant stationary (spin) qubits. In this talk, I will present such experimental implementations achieved in our team with semiconductor self-assembled quantum dots.Not only are self-assembled quantum dots good single-photon emitters, but they can host an electron or a hole whose spin serves as a quantum memory, and then present spin-dependent optical selection rules leading to an efficient spin-photon quantum interface. Moreover InGaAs quantum dots grown on GaAs substrate can profit from the maturity of III-V semiconductor technology and can be embedded in semiconductor structures like photonic cavities and Schottky diodes.I will report on the realization of heralded quantum entanglement between two semiconductor quantum dot hole spins separated by more than five meters. The entanglement generation scheme relies on single photon interference of Raman scattered light from both dots. A single photon detection projects the system into a maximally entangled state. We developed a delayed two-photon interference scheme that allows for efficient verification of quantum correlations. Moreover the efficient spin-photon interface provided by self-assembled quantum dots allows us to reach an unprecedented rate of 2300 entangled spin pairs per second, which represents an improvement of four orders of magnitude as compared to prior experiments carried out in other systems.Our results extend previous demonstrations in single trapped ions or neutral atoms, in atom ensembles and nitrogen vacancy centers to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. This work lays the groundwork for the realization of quantum repeaters and quantum networks on a chip.

  16. Quantum-state transfer through long-range correlated disordered channels

    NASA Astrophysics Data System (ADS)

    Almeida, Guilherme M. A.; de Moura, Francisco A. B. F.; Lyra, Marcelo L.

    2018-05-01

    We study quantum-state transfer in XX spin-1/2 chains where both communicating spins are weakly coupled to a channel featuring disordered on-site magnetic fields. Fluctuations are modeled by long-range correlated sequences with self-similar profile obeying a power-law spectrum. We show that the channel is able to perform almost perfect quantum-state transmissions even in the presence of significant amounts of disorder provided the degree of those correlations is strong enough, with the cost of having long transfer times and unavoidable timing errors. Still, we show that the lack of mirror symmetry in the channel does not affect much the likelihood of having high-quality outcomes. Our results suggest that coexistence between localized and delocalized states can diminish effects of static perturbations in solid-state devices for quantum communication.

  17. Far-from-Equilibrium Field Theory of Many-Body Quantum Spin Systems: Prethermalization and Relaxation of Spin Spiral States in Three Dimensions

    NASA Astrophysics Data System (ADS)

    Babadi, Mehrtash; Demler, Eugene; Knap, Michael

    2015-10-01

    We study theoretically the far-from-equilibrium relaxation dynamics of spin spiral states in the three-dimensional isotropic Heisenberg model. The investigated problem serves as an archetype for understanding quantum dynamics of isolated many-body systems in the vicinity of a spontaneously broken continuous symmetry. We present a field-theoretical formalism that systematically improves on the mean field for describing the real-time quantum dynamics of generic spin-1 /2 systems. This is achieved by mapping spins to Majorana fermions followed by a 1 /N expansion of the resulting two-particle-irreducible effective action. Our analysis reveals rich fluctuation-induced relaxation dynamics in the unitary evolution of spin spiral states. In particular, we find the sudden appearance of long-lived prethermalized plateaus with diverging lifetimes as the spiral winding is tuned toward the thermodynamically stable ferro- or antiferromagnetic phases. The emerging prethermalized states are characterized by different bosonic modes being thermally populated at different effective temperatures and by a hierarchical relaxation process reminiscent of glassy systems. Spin-spin correlators found by solving the nonequilibrium Bethe-Salpeter equation provide further insight into the dynamic formation of correlations, the fate of unstable collective modes, and the emergence of fluctuation-dissipation relations. Our predictions can be verified experimentally using recent realizations of spin spiral states with ultracold atoms in a quantum gas microscope [S. Hild et al., Phys. Rev. Lett. 113, 147205 (2014), 10.1103/PhysRevLett.113.147205].

  18. Spin and charge controlled by antisymmetric spin-orbit coupling in a triangular-triple-quantum-dot Kondo system

    NASA Astrophysics Data System (ADS)

    Koga, M.; Matsumoto, M.; Kusunose, H.

    2018-05-01

    We study a local antisymmetric spin-orbit (ASO) coupling effect on a triangular-triple-quantum-dot (TTQD) system as a theoretical proposal for a new application of the Kondo physics to nanoscale devices. The electric polarization induced by the Kondo effect is strongly correlated with the spin configurations and molecular orbital degrees of freedom in the TTQD. In particular, an abrupt sign reversal of the emergent electric polarization is associated with a quantum critical point in a magnetic field, which can also be controlled by the ASO coupling that changes the mixing weight of different orbital components in the TTQD ground state.

  19. Spin-dependent transport through an interacting quantum dot.

    PubMed

    Zhang, Ping; Xue, Qi-Kun; Wang, Yupeng; Xie, X C

    2002-12-31

    We study the nonequilibrium spin transport through a quantum dot coupled to the magnetic electrodes. A formula for the spin-dependent current is obtained and is applied to discuss the linear conductance and magnetoresistance in the interacting regime. We show that the Kondo resonance and the correlation-induced spin splitting of the dot levels may be systematically controlled by internal magnetization in the electrodes. As a result, when the electrodes are in parallel magnetic configuration, the linear conductance is characterized by two spin-resolved peaks. Furthermore, the presence of the spin-flip process in the dot splits the Kondo resonance into three peaks.

  20. Evolution of multiple quantum coherences with scaled dipolar Hamiltonian

    NASA Astrophysics Data System (ADS)

    Sánchez, Claudia M.; Buljubasich, Lisandro; Pastawski, Horacio M.; Chattah, Ana K.

    2017-08-01

    In this article, we introduce a pulse sequence which allows the monitoring of multiple quantum coherences distribution of correlated spin states developed with scaled dipolar Hamiltonian. The pulse sequence is a modification of our previous Proportionally Refocused Loschmidt echo (PRL echo) with phase increment, in order to verify the accuracy of the weighted coherent quantum dynamics. The experiments were carried out with different scaling factors to analyze the evolution of the total magnetization, the time dependence of the multiple quantum coherence orders, and the development of correlated spins clusters. In all cases, a strong dependence between the evolution rate and the weighting factor is observed. Remarkably, all the curves appeared overlapped in a single trend when plotted against the self-time, a new time scale that includes the scaling factor into the evolution time. In other words, the spin system displayed always the same quantum evolution, slowed down as the scaling factor decreases, confirming the high performance of the new pulse sequence.

  1. Quantum correlations in chiral graphene nanoribbons.

    PubMed

    Tan, Xiao-Dong; Koop, Cornelie; Liao, Xiao-Ping; Sun, Litao

    2016-11-02

    We compute the entanglement and the quantum discord (QD) between two edge spins in chiral graphene nanoribbons (CGNRs) thermalized with a reservoir at temperature T (canonical ensemble). We show that the entanglement only exists in inter-edge coupled spin pairs, and there is no entanglement between any two spins at the same ribbon edge. By contrast, almost all edge spin pairs can hold non-zero QD, which strongly depends on the ribbon width and the Coulomb repulsion among electrons. More intriguingly, the dominant entanglement always occurs in the pair of nearest abreast spins across the ribbon, and even at room temperature this type of entanglement is still very robust, especially for narrow CGNRs with the weak Coulomb repulsion. These remarkable properties make CGNRs very promising for possible applications in spin-quantum devices.

  2. Disorder and Quantum Spin Ice

    NASA Astrophysics Data System (ADS)

    Martin, N.; Bonville, P.; Lhotel, E.; Guitteny, S.; Wildes, A.; Decorse, C.; Ciomaga Hatnean, M.; Balakrishnan, G.; Mirebeau, I.; Petit, S.

    2017-10-01

    We report on diffuse neutron scattering experiments providing evidence for the presence of random strains in the quantum spin-ice candidate Pr2Zr2O7 . Since Pr3 + is a non-Kramers ion, the strain deeply modifies the picture of Ising magnetic moments governing the low-temperature properties of this material. It is shown that the derived strain distribution accounts for the temperature dependence of the specific heat and of the spin-excitation spectra. Taking advantage of mean-field and spin-dynamics simulations, we argue that the randomness in Pr2Zr2O7 promotes a new state of matter, which is disordered yet characterized by short-range antiferroquadrupolar correlations, and from which emerge spin-ice-like excitations. Thus, this study gives an original research route in the field of quantum spin ice.

  3. 3D Double-Quantum/Double-Quantum Exchange Spectroscopy of Protons under 100 kHz Magic Angle Spinning.

    PubMed

    Zhang, Rongchun; Duong, Nghia Tuan; Nishiyama, Yusuke; Ramamoorthy, Ayyalusamy

    2017-06-22

    Solid-state 1 H NMR spectroscopy has attracted much attention in the recent years due to the remarkable spectral resolution improvement by ultrafast magic-angle-spinning (MAS) as well as due to the sensitivity enhancement rendered by proton detection. Although these developments have enabled the investigation of a variety of challenging chemical and biological solids, the proton spectral resolution is still poor for many rigid solid systems owing to the presence of conformational heterogeneity and the unsuppressed residual proton-proton dipolar couplings even with the use of the highest currently feasible sample spinning speed of ∼130 kHz. Although a further increase in the spinning speed of the sample could be beneficial to some extent, there is a need for alternate approaches to enhance the spectral resolution. Herein, by fully utilizing the benefits of double-quantum (DQ) coherences, we propose a single radio frequency channel proton-based 3D pulse sequence that correlates double-quantum (DQ), DQ, and single-quantum (SQ) chemical shifts of protons. In addition to the two-spin homonuclear proximity information, the proposed 3D DQ/DQ/SQ experiment also enables the extraction of three-spin and four-spin proximities, which could be beneficial for revealing the dipolar coupled proton network in the solid state. Besides, the 2D DQ/DQ spectrum sliced at different isotropic SQ chemical shift values of the 3D DQ/DQ/SQ spectrum will also facilitate the identification of DQ correlation peaks and improve the spectral resolution, as it only provides the local homonuclear correlation information associated with the specific protons selected by the SQ chemical shift frequency. The 3D pulse sequence and its efficiency are demonstrated experimentally on small molecular compounds in the solid state. We expect that this approach would create avenues for further developments by suitably combining the benefits of partial deuteration of samples, selective excitation/decoupling pulses, heteronuclear spins for spectral editing, and nonuniform sampling.

  4. EDITORIAL: Focus on Quantum Dissipation in Unconventional Environments FOCUS ON QUANTUM DISSIPATION IN UNCONVENTIONAL ENVIRONMENTS

    NASA Astrophysics Data System (ADS)

    Grifoni, Milena; Paladino, Elisabetta

    2008-11-01

    Quantum dissipation has been the object of study within the physics and chemistry communities for many years. Despite this, the field is in constant evolution, largely due to the fact that novel systems where the understanding of dissipation and dephasing processes is of crucial importance have become experimentally accessible in recent years. Among the ongoing research themes, we mention the defeat of decoherence in solid state-based quantum bits (qubits) (e.g. superconducting qubits or quantum dot based qubits), or dissipation due to non-equilibrium Fermi reservoirs, as is the case for quantum transport through meso- and nanoscale structures. A close inspection of dissipation in such systems reveals that one has to deal with 'unconventional' environments, where common assumptions of, for example, linearity of the bath and/or equilibrium reservoir have to be abandoned. Even for linear baths at equilibrium it might occur that the bath presents some internal structure, due, for example, to the presence of localized bath modes. A large part of this focus issue is devoted to topics related to the rapidly developing fields of quantum computation and information with solid state nanodevices. In these implementations, single and two-qubit gates as well as quantum information transmission takes place in the presence of broadband noise that is typically non-Markovian and nonlinear. On both the experimental and theory side, understanding and defeating such noise sources has become a crucial step towards the implementation of efficient nanodevices. On a more fundamental level, electron and spin transport through quantum dot nanostructures may suffer from 'unconventional' dissipation mechanisms such as the simultaneous presence of spin relaxation and fermionic dissipation, or may represent themselves out of equilibrium baths for nearby mesoscopic systems. Finally, although not expected from the outset, the present collection of articles has revealed that different 'unconventional' questions were still open on the standard harmonic oscillator and spin baths. This includes both fundamental issues, such as the possibility of estimating the specific heat for a free particle in the presence of dissipation, and the development of methods suitable to dealing with long range correlations at zero temperature and with quantum chaotic environments. We believe that the present focus issue on Quantum Dissipation in Unconventional Environments, although certainly not exhaustive, provides an important open-access resource that presents the latest state of the art of research in this field along its different lines. Focus on Quantum Dissipation in Unconventional Environments Contents Dephasing by electron-electron interactions in a ballistic Mach-Zehnder interferometer Clemens Neuenhahn and Florian Marquardt Quantum frustration of dissipation by a spin bath D D Bhaktavatsala Rao, Heiner Kohler and Fernando Sols A random matrix theory of decoherence T Gorin, C Pineda, H Kohler and T H Seligman Dissipative dynamics of a biased qubit coupled to a harmonic oscillator: analytical results beyond the rotating wave approximation Johannes Hausinger and Milena Grifoni Dissipative dynamics of a two-level system resonantly coupled to a harmonic mode Frederico Brito and Amir O Caldeira Spin correlations in spin blockade Rafael Sánchez, Sigmund Kohler and Gloria Platero Landau-Zener tunnelling in dissipative circuit QED David Zueco, Peter Hänggi and Sigmund Kohler Quantum oscillations in the spin-boson model: reduced visibility from non-Markovian effects and initial entanglement F K Wilhelm Dynamics of dissipative coupled spins: decoherence, relaxation and effects of a spin-boson bath P Nägele, G Campagnano and U Weiss Spin chain model for correlated quantum channels Davide Rossini, Vittorio Giovannetti and Simone Montangero Finite quantum dissipation: the challenge of obtaining specific heat Peter Hänggi, Gert-Ludwig Ingold and Peter Talkner Dynamics of large anisotropic spin in a sub-ohmic dissipative environment close to a quantum-phase transition Frithjof B Anders Effects of low-frequency noise cross-correlations in coupled superconducting qubits A D'Arrigo, A Mastellone, E Paladino and G Falci From coherent motion to localization: dynamics of the spin-boson model at zero temperature Haobin Wang and Michael Thoss Phonon distributions of a single-bath mode coupled to a quantum dot F Cavaliere, G Piovano, E Paladino and M Sassetti

  5. Correlations and Werner states in finite spin linear arrays

    NASA Astrophysics Data System (ADS)

    Wells, P. R.; Chaves, C. M.; d'Albuquerque e Castro, J.; Koiller, Belita

    2013-10-01

    Pairwise quantum correlations in the ground state of an N-spins antiferromagnetic Heisenberg chain are investigated. By varying the exchange coupling between two neighboring sites, it is possible to reversibly drive spins from entangled to disentangled states. For even N, the two-spin density matrix is written in the form of a Werner state, allowing identification of its single parameter with the usual spin-spin correlation function. The N = 4 chain is identified as a promising system for practical demonstrations of non-classical correlations and the realization of Werner states in familiar condensed matter systems. Fabrication and measurement ingredients are within current capabilities.

  6. Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    NASA Astrophysics Data System (ADS)

    Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper

    2017-12-01

    Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.

  7. Quantum spin chains with multiple dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Fradkin, Eduardo; Witczak-Krempa, William

    2017-11-01

    Many-body systems with multiple emergent time scales arise in various contexts, including classical critical systems, correlated quantum materials, and ultracold atoms. We investigate such nontrivial quantum dynamics in a different setting: a spin-1 bilinear-biquadratic chain. It has a solvable entangled ground state, but a gapless excitation spectrum that is poorly understood. By using large-scale density matrix renormalization group simulations, we find that the lowest excitations have a dynamical exponent z that varies from 2 to 3.2 as we vary a coupling in the Hamiltonian. We find an additional gapless mode with a continuously varying exponent 2 ≤z <2.7 , which establishes the presence of multiple dynamics. In order to explain these striking properties, we construct a continuum wave function for the ground state, which correctly describes the correlations and entanglement properties. We also give a continuum parent Hamiltonian, but show that additional ingredients are needed to capture the excitations of the chain. By using an exact mapping to the nonequilibrium dynamics of a classical spin chain, we find that the large dynamical exponent is due to subdiffusive spin motion. Finally, we discuss the connections to other spin chains and to a family of quantum critical models in two dimensions.

  8. Spin resonance and spin fluctuations in a quantum wire

    NASA Astrophysics Data System (ADS)

    Pokrovsky, V. L.

    2017-02-01

    This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the measurement of spin correlations is a diagnostic tool to distinguish between the two states of electronic liquid in the quantum wire.

  9. Quantum Dynamics of Solitons in Strongly Interacting Systems on Optical Lattices

    NASA Astrophysics Data System (ADS)

    Rubbo, Chester; Balakrishnan, Radha; Reinhardt, William; Satija, Indubala; Rey, Ana; Manmana, Salvatore

    2012-06-01

    We present results of the quantum dynamics of solitons in XXZ spin-1/2 systems which in general can be derived from a system of spinless fermions or hard-core bosons (HCB) with nearest neighbor interaction on a lattice. A mean-field treatment using spin-coherent states revealed analytic solutions of both bright and dark solitons [1]. We take these solutions and apply a full quantum evolution using the adaptive time-dependent density matrix renormalization group method (adaptive t-DMRG), which takes into account the effect of strong correlations. We use local spin observables, correlations functions, and entanglement entropies as measures for the stability of these soliton solutions over the simulation times. [4pt] [1] R. Balakrishnan, I.I. Satija, and C.W. Clark, Phys. Rev. Lett. 103, 230403 (2009).

  10. Electrodynamics of quantum spin liquids

    NASA Astrophysics Data System (ADS)

    Dressel, Martin; Pustogow, Andrej

    2018-05-01

    Quantum spin liquids attract great interest due to their exceptional magnetic properties characterized by the absence of long-range order down to low temperatures despite the strong magnetic interaction. Commonly, these compounds are strongly correlated electron systems, and their electrodynamic response is governed by the Mott gap in the excitation spectrum. Here we summarize and discuss the optical properties of several two-dimensional quantum spin liquid candidates. First we consider the inorganic material herbertsmithite ZnCu3(OH)6Cl2 and related compounds, which crystallize in a kagome lattice. Then we turn to the organic compounds -EtMe3Sb[Pd(dmit)2]2, κ-(BEDT-TTF)2Ag2(CN)3 and κ-(BEDT-TTF)2Cu2(CN)3, where the spins are arranged in an almost perfect triangular lattice, leading to strong frustration. Due to differences in bandwidth, the effective correlation strength varies over a wide range, leading to a rather distinct behavior as far as the electrodynamic properties are concerned. We discuss the spinon contributions to the optical conductivity in comparison to metallic quantum fluctuations in the vicinity of the Mott transition.

  11. Local Field Response Method Phenomenologically Introducing Spin Correlations

    NASA Astrophysics Data System (ADS)

    Tomaru, Tatsuya

    2018-03-01

    The local field response (LFR) method is a way of searching for the ground state in a similar manner to quantum annealing. However, the LFR method operates on a classical machine, and quantum effects are introduced through a priori information and through phenomenological means reflecting the states during the computations. The LFR method has been treated with a one-body approximation, and therefore, the effect of entanglement has not been sufficiently taken into account. In this report, spin correlations are phenomenologically introduced as one of the effects of entanglement, by which multiple tunneling at anticrossing points is taken into account. As a result, the accuracy of solutions for a 128-bit system increases by 31% compared with that without spin correlations.

  12. Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder

    NASA Astrophysics Data System (ADS)

    Peschke, Matthias; Rausch, Roman; Potthoff, Michael

    2018-03-01

    The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.

  13. Decoherence Effect on Quantum Correlation and Entanglement in a Two-qubit Spin Chain

    NASA Astrophysics Data System (ADS)

    Pourkarimi, Mohammad Reza; Rahnama, Majid; Rooholamini, Hossein

    2015-04-01

    Assuming a two-qubit system in Werner state which evolves in Heisenberg XY model with Dzyaloshinskii-Moriya (DM) interaction under the effect of different environments. We evaluate and compare quantum entanglement, quantum and classical correlation measures. It is shown that in the absence of decoherence effects, there is a critical value of DM interaction for which entanglement may vanish while quantum and classical correlations do not. In the presence of environment the behavior of correlations depends on the kind of system-environment interaction. Correlations can be sustained by manipulating Hamiltonian anisotropic-parameter in a dissipative environment. Quantum and classical correlations are more stable than entanglement generally.

  14. Site-resolved multiple-quantum filtered correlations and distance measurements by magic-angle spinning NMR: Theory and applications to spins with weak to vanishing quadrupolar couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eliav, U., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il; Haimovich, A.; Goldbourt, A., E-mail: amirgo@tau.ac.il, E-mail: eliav@tau.ac.il

    2016-01-14

    We discuss and analyze four magic-angle spinning solid-state NMR methods that can be used to measure internuclear distances and to obtain correlation spectra between a spin I = 1/2 and a half-integer spin S > 1/2 having a small quadrupolar coupling constant. Three of the methods are based on the heteronuclear multiple-quantum and single-quantum correlation experiments, that is, high rank tensors that involve the half spin and the quadrupolar spin are generated. Here, both zero and single-quantum coherence of the half spins are allowed and various coherence orders of the quadrupolar spin are generated, and filtered, via active recoupling ofmore » the dipolar interaction. As a result of generating coherence orders larger than one, the spectral resolution for the quadrupolar nucleus increases linearly with the coherence order. Since the formation of high rank tensors is independent of the existence of a finite quadrupolar interaction, these experiments are also suitable to materials in which there is high symmetry around the quadrupolar spin. A fourth experiment is based on the initial quadrupolar-driven excitation of symmetric high order coherences (up to p = 2S, where S is the spin number) and subsequently generating by the heteronuclear dipolar interaction higher rank (l + 1 or higher) tensors that involve also the half spins. Due to the nature of this technique, it also provides information on the relative orientations of the quadrupolar and dipolar interaction tensors. For the ideal case in which the pulses are sufficiently strong with respect to other interactions, we derive analytical expressions for all experiments as well as for the transferred echo double resonance experiment involving a quadrupolar spin. We show by comparison of the fitting of simulations and the analytical expressions to experimental data that the analytical expressions are sufficiently accurate to provide experimental {sup 7}Li–{sup 13}C distances in a complex of lithium, glycine, and water. Discussion of the regime for which such an approach is valid is given.« less

  15. Magnetism and local symmetry breaking in a Mott insulator with strong spin orbit interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, L.; Song, M.; Liu, W.

    2017-02-09

    Study of the combined effects of strong electronic correlations with spin-orbit coupling (SOC) represents a central issue in quantum materials research. Predicting emergent properties represents a huge theoretical problem since the presence of SOC implies that the spin is not a good quantum number. Existing theories propose the emergence of a multitude of exotic quantum phases, distinguishable by either local point symmetry breaking or local spin expectation values, even in materials with simple cubic crystal structure such as Ba 2NaOsO 6. Experimental tests of these theories by local probes are highly sought for. Our local measurements designed to concurrently probemore » spin and orbital/lattice degrees of freedom of Ba 2NaOsO 6 provide such tests. As a result, we show that a canted ferromagnetic phase which is preceded by local point symmetry breaking is stabilized at low temperatures, as predicted by quantum theories involving multipolar spin interactions.« less

  16. Single-spin stochastic optical reconstruction microscopy

    PubMed Central

    Pfender, Matthias; Aslam, Nabeel; Waldherr, Gerald; Neumann, Philipp; Wrachtrup, Jörg

    2014-01-01

    We experimentally demonstrate precision addressing of single-quantum emitters by combined optical microscopy and spin resonance techniques. To this end, we use nitrogen vacancy (NV) color centers in diamond confined within a few ten nanometers as individually resolvable quantum systems. By developing a stochastic optical reconstruction microscopy (STORM) technique for NV centers, we are able to simultaneously perform sub–diffraction-limit imaging and optically detected spin resonance (ODMR) measurements on NV spins. This allows the assignment of spin resonance spectra to individual NV center locations with nanometer-scale resolution and thus further improves spatial discrimination. For example, we resolved formerly indistinguishable emitters by their spectra. Furthermore, ODMR spectra contain metrology information allowing for sub–diffraction-limit sensing of, for instance, magnetic or electric fields with inherently parallel data acquisition. As an example, we have detected nuclear spins with nanometer-scale precision. Finally, we give prospects of how this technique can evolve into a fully parallel quantum sensor for nanometer resolution imaging of delocalized quantum correlations. PMID:25267655

  17. Relations between quantum correlations, purity and teleportation fidelity for the two-qubit Heisenberg XYZ system

    NASA Astrophysics Data System (ADS)

    Qin, Meng; Li, Yan-Biao; Wu, Fang-Ping

    2014-07-01

    Quantifying and understanding quantum correlations may give a direct reply for many issues regarding the interesting behaviors of quantum system. To explore the quantum correlations in quantum teleportation, we have used a two-qubit Heisenberg XYZ system with spin-orbit interaction as a quantum channel to teleport an unknown state. By using different measures and standard teleportation protocols, we have derived the analytical expressions for quantum discord, entanglement of formation, purity, and maximal teleportation fidelity of the system. We compare their different characteristics and analyze the relationships between these quantities.

  18. Quantum coherence of planar spin models with Dzyaloshinsky-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Chandrashekar; Ermakov, Igor; Byrnes, Tim

    2017-07-01

    The quantum coherence of one-dimensional planar spin models with Dzyaloshinsky-Moriya interaction is investigated. The anisotropic XY model, the isotropic XX model, and the transverse field model are studied in the large N limit using two qubit reduced density matrices and two point correlation functions. From our investigations we find that the coherence as measured using Jensen-Shannon divergence can be used to detect quantum phase transitions and quantum critical points. The derivative of coherence shows nonanalytic behavior at critical points, leading to the conclusion that these transitions are of second order. Further, we show that the presence of Dzyaloshinsky-Moriya coupling suppresses the phase transition due to residual ferromagnetism, which is caused by spin canting.

  19. Continuous quantum measurement in spin environments

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Wang, An Min

    2015-08-01

    We derive a stochastic master equation (SME) which describes the decoherence dynamics of a system in spin environments conditioned on the measurement record. Markovian and non-Markovian nature of environment can be revealed by a spectroscopy method based on weak continuous quantum measurement. On account of that correlated environments can lead to a non-local open system which exhibits strong non-Markovian effects although the local dynamics are Markovian, the spectroscopy method can be used to demonstrate that there is correlation between two environments.

  20. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

    NASA Astrophysics Data System (ADS)

    Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa

    2015-11-01

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  1. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits.

    PubMed

    Yu, Leo; Natarajan, Chandra M; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S; Tanner, Michael G; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H; Fejer, Martin M; Yamamoto, Yoshihisa

    2015-11-24

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances.

  2. Quantum simulation of transverse Ising models with Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Schauss, Peter

    2018-04-01

    Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.

  3. Engineered long-range interactions on a 2D array of trapped ions

    NASA Astrophysics Data System (ADS)

    Britton, Joseph W.; Sawyer, Brian C.; Bollinger, John J.; Freericks, James K.

    2014-03-01

    Ising interactions are one paradigm used to model quantum magnetism in condensed matter systems. At NIST Boulder we confine and Doppler laser cool hundreds of 9Be+ ions in a Penning trap. The valence electron of each ion behaves as an ideal spin-1/2 particle and, in the limit of weak radial confinement relative to axial confinement, the ions naturally form a two-dimensional triangular lattice. A variable-range anti-ferromagnetic Ising interaction is engineered with a spin-dependent optical dipole force (ODF) through spin-dependent excitation of collective modes of ion motion. We have also exploited this spin-dependent force to perform spectroscopy and thermometry of the normal modes of the trapped ion crystal. The high spin-count and long-range spin-spin couplings achievable in the NIST Penning trap brings within reach simulation of computationally intractable problems in quantum magnetism. Examples include modeling quantum magnetic phase transitions and propagation of spin correlations resulting from a quantum quench. The Penning system may also be amenable to observation of spin-liquid behavior thought to arise in systems where the underlying lattice structure can frustrate long-range ordering. Supported by DARPA OLE and NIST.

  4. Experimental linear-optics simulation of ground-state of an Ising spin chain.

    PubMed

    Xue, Peng; Zhan, Xian; Bian, Zhihao

    2017-05-19

    We experimentally demonstrate a photonic quantum simulator: by using a two-spin Ising chain (an isolated dimer) as an example, we encode the wavefunction of the ground state with a pair of entangled photons. The effect of magnetic fields, leading to a critical modification of the correlation between two spins, can be simulated by just local operations. With the ratio of simulated magnetic fields and coupling strength increasing, the ground state of the system changes from a product state to an entangled state and back to another product state. The simulated ground states can be distinguished and the transformations between them can be observed by measuring correlations between photons. This simulation of the Ising model with linear quantum optics opens the door to the future studies which connect quantum information and condensed matter physics.

  5. Spin dynamics near a putative antiferromagnetic quantum critical point in Cu-substituted BaFe 2 As 2 and its relation to high-temperature superconductivity

    DOE PAGES

    Kim, M. G.; Wang, M.; Tucker, G. S.; ...

    2015-12-02

    We present the results of elastic and inelastic neutron scattering measurements on nonsuperconducting Ba(Fe 0.957Cu 0.043) 2As 2, a composition close to a quantum critical point between antiferromagnetic (AFM) ordered and paramagnetic phases. By comparing these results with the spin fluctuations in the low-Cu composition as well as the parent compound BaFe 2As 2 and superconducting Ba(Fe 1–xNi x) 2As 2 compounds, we demonstrate that paramagnon-like spin fluctuations are evident in the antiferromagnetically ordered state of Ba(Fe 0.957Cu 0.043) 2As 2, which is distinct from the AFM-like spin fluctuations in the superconducting compounds. Our observations suggest that Cu substitution decouplesmore » the interaction between quasiparticles and the spin fluctuations. In addition, we show that the spin-spin correlation length ξ(T) increases rapidly as the temperature is lowered and find ω/T scaling behavior, the hallmark of quantum criticality, at an antiferromagnetic quantum critical point.« less

  6. Optimal Correlations in Many-Body Quantum Systems

    NASA Astrophysics Data System (ADS)

    Amico, L.; Rossini, D.; Hamma, A.; Korepin, V. E.

    2012-06-01

    Information and correlations in a quantum system are closely related through the process of measurement. We explore such relation in a many-body quantum setting, effectively bridging between quantum metrology and condensed matter physics. To this aim we adopt the information-theory view of correlations and study the amount of correlations after certain classes of positive-operator-valued measurements are locally performed. As many-body systems, we consider a one-dimensional array of interacting two-level systems (a spin chain) at zero temperature, where quantum effects are most pronounced. We demonstrate how the optimal strategy to extract the correlations depends on the quantum phase through a subtle interplay between local interactions and coherence.

  7. Post-Markovian dynamics of quantum correlations: entanglement versus discord

    NASA Astrophysics Data System (ADS)

    Mohammadi, Hamidreza

    2017-02-01

    Dynamics of an open two-qubit system is investigated in the post-Markovian regime, where the environments have a short-term memory. Each qubit is coupled to separate environment which is held in its own temperature. The inter-qubit interaction is modeled by XY-Heisenberg model in the presence of spin-orbit interaction and inhomogeneous magnetic field. The dynamical behavior of entanglement and discord has been considered. The results show that quantum discord is more robust than quantum entanglement, during the evolution. Also the asymmetric feature of quantum discord can be monitored by introducing the asymmetries due to inhomogeneity of magnetic field and temperature difference between the reservoirs. By employing proper parameters of the model, it is possible to maintain nonvanishing quantum correlation at high degree of temperature. The results can provide a useful recipe for studying dynamical behavior of two-qubit systems such as trapped spin electrons in coupled quantum dots.

  8. Global Dirac bispinor entanglement under Lorentz boosts

    NASA Astrophysics Data System (ADS)

    Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo

    2018-03-01

    The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin-1/2 particles are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance properties, which can only be obtained through such a Lorentz covariant formulation of the problem.

  9. Microscopic Studies of Quantum Phase Transitions in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Bakr, Waseem S.

    2011-12-01

    In this thesis, I report on experiments that microscopically probe quantum phase transitions of ultracold atoms in optical lattices. We have developed a "quantum gas microscope" that allowed, for the first time, optical imaging and manipulation of single atoms in a quantum-degenerate gas on individual sites of an optical lattice. This system acts as a quantum simulator of strongly correlated materials, which are currently the subject of intense research because of the technological potential of high--T c superconductors and spintronic materials. We have used our microscope to study the superfluid to Mott insulator transition in bosons and a magnetic quantum phase transition in a spin system. In our microscopic study of the superfluid-insulator transition, we have characterized the on-site number statistics in a space- and time-resolved manner. We observed Mott insulators with fidelities as high as 99%, corresponding to entropies of 0.06kB per particle. We also measured local quantum dynamics and directly imaged the shell structure of the Mott insulator. I report on the first quantum magnetism experiments in optical lattices. We have realized a quantum Ising chain in a magnetic field, and observed a quantum phase transition between a paramagnet and antiferromagnet. We achieved strong spin interactions by encoding spins in excitations of a Mott insulator in a tilted lattice. We detected the transition by measuring the total magnetization of the system across the transition using in-situ measurements as well as the Neel ordering in the antiferromagnetic state using noise-correlation techniques. We characterized the dynamics of domain formation in the system. The spin mapping introduced opens up a new path to realizing more exotic states in optical lattices including spin liquids and quantum valence bond solids. As our system sizes become larger, simulating their physics on classical computers will require exponentially larger resources because of entanglement build-up near a quantum phase transition. We have demonstrated a quantum simulator in which all degrees of freedom can be read out microscopically, allowing the simulation of quantum many-body systems with manageable resources. More generally, the ability to image and manipulate individual atoms in optical lattices opens an avenue towards scalable quantum computation.

  10. Super-quantum correlation for SU(2) invariant state in 4⊗ 2 system

    NASA Astrophysics Data System (ADS)

    Li, Lin-Song; Tao, Yuan-Hong; Nan, Hua; Xu, Hui

    2018-04-01

    We analytically evaluate the weak one-way deficit and super-quantum discord for a system composed of spin-3/2 and spin-1/2 subsystems possessing SU(2) symmetry. We also make a comparative study of the relationships among the quantum discord, one-way deficit, weak one-way deficit, and super-quantum discord for the SU(2) invariant state. It is shown that super-quantum discord via weak measurement is greater than that via von Neumann measurement. But weak one-way deficit is less than the one-way deficit. As a result, weak measurement do not always reveal more quantumness.

  11. Thermodynamics of a dilute XX chain in a field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timonin, P. N., E-mail: pntim@live.ru

    Gapless phases in ground states of low-dimensional quantum spin systems are rather ubiquitous. Their peculiarity is a remarkable sensitivity to external perturbations due to permanent criticality of such phases manifested by a slow (power-low) decay of pair correlations and the divergence of the corresponding susceptibility. A strong influence of various defects on the properties of the system in such a phase can then be expected. Here, we consider the influence of vacancies on the thermodynamics of the simplest quantum model with a gapless phase, the isotropic spin-1/2 XX chain. The existence of the exact solution of this model gives amore » unique opportunity to describe in detail the dramatic effect of dilution on the gapless phase—the appearance of an infinite series of quantum phase transitions resulting from level crossing under the variation of a longitudinal magnetic field. We calculate the jumps in the field dependences of the ground-state longitudinal magnetization, susceptibility, entropy, and specific heat appearing at these transitions and show that they result in a highly nonlinear temperature dependence of these parameters at low T. Also, the effect of enhancement of the magnetization and longitudinal correlations in the dilute chain is established. The changes of the pair spin correlators under dilution are also analyzed. The universality of the mechanism of the quantum transition generation suggests that similar effects of dilution can also be expected in gapless phases of other low-dimensional quantum spin systems.« less

  12. Quantum Femtosecond Magnetism: Phase Transition in Step with Light in a Strongly Correlated Manganese Oxide

    NASA Astrophysics Data System (ADS)

    Wang, Jigang

    2014-03-01

    Research of non-equilibrium phase transitions of strongly correlated electrons is built around addressing an outstanding challenge: how to achieve ultrafast manipulation of competing magnetic/electronic phases and reveal thermodynamically hidden orders at highly non-thermal, femtosecond timescales? Recently we reveal a new paradigm called quantum femtosecond magnetism-photoinduced femtosecond magnetic phase transitions driven by quantum spin flip fluctuations correlated with laser-excited inter-atomic coherent bonding. We demonstrate an antiferromagnetic (AFM) to ferromagnetic (FM) switching during about 100 fs laser pulses in a colossal magneto-resistive manganese oxide. Our results show a huge photoinduced femtosecond spin generation, measured by magnetic circular dichroism, with photo-excitation threshold behavior absent in the picosecond dynamics. This reveals an initial quantum coherent regime of magnetism, while the optical polarization/coherence still interacts with the spins to initiate local FM correlations that compete with the surrounding AFM matrix. Our results thus provide a framework that explores quantum non-equilibrium kinetics to drive phase transitions between exotic ground states in strongly correlated elecrons, and raise fundamental questions regarding some accepted rules, such as free energy and adiabatic potential surface. This work is in collaboration with Tianqi Li, Aaron Patz, Leonidas Mouchliadis, Jiaqiang Yan, Thomas A. Lograsso, Ilias E. Perakis. This work was supported by the National Science Foundation (contract no. DMR-1055352). Material synthesis at the Ames Laboratory was supported by the US Department of Energy-Basic Energy Sciences (contract no. DE-AC02-7CH11358).

  13. Quantum simulation of the Hubbard model with dopant atoms in silicon

    PubMed Central

    Salfi, J.; Mol, J. A.; Rahman, R.; Klimeck, G.; Simmons, M. Y.; Hollenberg, L. C. L.; Rogge, S.

    2016-01-01

    In quantum simulation, many-body phenomena are probed in controllable quantum systems. Recently, simulation of Bose–Hubbard Hamiltonians using cold atoms revealed previously hidden local correlations. However, fermionic many-body Hubbard phenomena such as unconventional superconductivity and spin liquids are more difficult to simulate using cold atoms. To date the required single-site measurements and cooling remain problematic, while only ensemble measurements have been achieved. Here we simulate a two-site Hubbard Hamiltonian at low effective temperatures with single-site resolution using subsurface dopants in silicon. We measure quasi-particle tunnelling maps of spin-resolved states with atomic resolution, finding interference processes from which the entanglement entropy and Hubbard interactions are quantified. Entanglement, determined by spin and orbital degrees of freedom, increases with increasing valence bond length. We find separation-tunable Hubbard interaction strengths that are suitable for simulating strongly correlated phenomena in larger arrays of dopants, establishing dopants as a platform for quantum simulation of the Hubbard model. PMID:27094205

  14. General theory of feedback control of a nuclear spin ensemble in quantum dots

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Sham, L. J.

    2013-12-01

    We present a microscopic theory of the nonequilibrium nuclear spin dynamics driven by the electron and/or hole under continuous-wave pumping in a quantum dot. We show the correlated dynamics of the nuclear spin ensemble and the electron and/or hole under optical excitation as a quantum feedback loop and investigate the dynamics of the many nuclear spins as a nonlinear collective motion. This gives rise to three observable effects: (i) hysteresis, (ii) locking (avoidance) of the pump absorption strength to (from) the natural resonance, and (iii) suppression (amplification) of the fluctuation of weakly polarized nuclear spins, leading to prolonged (shortened) electron-spin coherence time. A single nonlinear feedback function is constructed which determines the different outcomes of the three effects listed above depending on the feedback being negative or positive. The general theory also helps to put in perspective the wide range of existing theories on the problem of a single electron spin in a nuclear spin bath.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xue-ke; Wu, Tao; Xu, Shuai

    In this paper, we have investigated the dynamical behaviors of the two important quantum correlation witnesses, i.e. geometric quantum discord (GQD) and Bell–CHSH inequality in the XXZ model with DM interaction by employing the quantum renormalization group (QRG) method. The results have shown that the anisotropy suppresses the quantum correlations while the DM interaction can enhance them. Meanwhile, using the QRG method we have studied the quantum phase transition of GQD and obtained two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. It is worth mentioning that the block–block correlation is not strongmore » enough to violate the Bell–CHSH inequality in the whole iteration steps. Moreover, the nonanalytic phenomenon and scaling behavior of Bell inequality are discussed in detail. As a byproduct, the conjecture that the exact lower and upper bounds of Bell inequality versus GQD can always be established for this spin system although the given density matrix is a general X state.« less

  16. Quantum phases of spinful Fermi gases in optical cavities

    NASA Astrophysics Data System (ADS)

    Colella, E.; Citro, R.; Barsanti, M.; Rossini, D.; Chiofalo, M.-L.

    2018-04-01

    We explore the quantum phases emerging from the interplay between spin and motional degrees of freedom of a one-dimensional quantum fluid of spinful fermionic atoms, effectively interacting via a photon-mediating mechanism with tunable sign and strength g , as it can be realized in present-day experiments with optical cavities. We find the emergence, in the very same system, of spin- and atomic-density wave ordering, accompanied by the occurrence of superfluidity for g >0 , while cavity photons are seen to drive strong correlations at all g values, with fermionic character for g >0 , and bosonic character for g <0 . Due to the long-range nature of interactions, to infer these results we combine mean-field and exact-diagonalization methods supported by bosonization analysis.

  17. Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence

    PubMed Central

    Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J.L.; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits. PMID:25205440

  18. Dynamics of correlations in long-range quantum systems follwing a quantum quench

    NASA Astrophysics Data System (ADS)

    Cevolani, Lorenzo; Carleo, Giuseppe; Sanchez-Palencia, Laurent

    We study how and how fast correlations can spread in a quantum system abruptly driven out of equilibrium by a quantum quench. This protocol can be experimentally realized and it allow to address fundamental questions concerning the quasi-locality principle in isolated quantum systems with both short- and long-range interactions. We focus on two different models describing, respectively, lattice bosons, and spins. Our study is based on a combined approach, based on one hand on accurate many-body numerical calculations and on the other hand on a quasi-particle microscopic theory. We find that, for sufficiently fast decaying interaction potential the propagation is ballistic and the Lieb-Robinson bounds for long-range interactions are never attained. When the interactions are really long-range, the scenario is completely different in the two cases. In the bosonic system the locality is preserved and a ballistic propagation is still present while in the spin system an instantaneous propagation of correlations completely destroys locality. Using the microscopic point of view we can quantitatively describe all the different regimes, from instantaneous to ballistic, found in the spin model and we explain how locality is protected in the bosonic model leading to a ballistic propagation. ERC (FP7/2007-2013 No. 256294), QUIC (H2020 No. 641122).

  19. Polarization effects in the reactions p + 3 He → π+ + 4 He, π+ + 4 He → p + 3 He and quantum character of spin correlations in the final (p, 3 He) system

    NASA Astrophysics Data System (ADS)

    Lyuboshitz, Valery V.; Lyuboshitz, Vladimir L.

    2017-12-01

    The general consequences of T invariance for the direct and inverse binary reactions a + b → c + d, c + d → a + b with spin-1/2 particles a, b and unpolarized particles c, d are considered. Using the formalism of helicity amplitudes, the polarization effects are studied in the reaction p + 3 He → π+ + 4 He and in the inverse process π+ + 4 He → p + 3 He. It is shown that in the reaction π + + 4 He → p + 3 He the spins of the final proton and 3 He nucleus are strongly correlated. A structural expression through helicity amplitudes, corresponding to arbitrary emission angles, is obtained for the correlation tensor. It is established that in the reaction π + + 4 He → p + 3 He one of the “classical” incoherence inequalities of the Bell type for diagonal components of the correlation tensor is necessarily violated and, thus, the spin correlations of the final particles have the strongly pronounced quantum character.

  20. Spin-Orbit Coupled Quantum Magnetism in the 3D-Honeycomb Iridates

    NASA Astrophysics Data System (ADS)

    Kimchi, Itamar

    In this doctoral dissertation, we consider the significance of spin-orbit coupling for the phases of matter which arise for strongly correlated electrons. We explore emergent behavior in quantum many-body systems, including symmetry-breaking orders, quantum spin liquids, and unconventional superconductivity. Our study is cemented by a particular class of Mott-insulating materials, centered around a family of two- and three-dimensional iridium oxides, whose honeycomb-like lattice structure admits peculiar magnetic interactions, the so-called Kitaev exchange. By analyzing recent experiments on these compounds, we show that this unconventional exchange is the key ingredient in describing their magnetism, and then use a combination of numerical and analytical techniques to investigate the implications for the phase diagram as well as the physics of the proximate three-dimensional quantum spin liquid phases. These long-ranged-entangled fractionalized phases should exhibit special features, including finite-temperature stability as well as unconventional high-Tc superconductivity upon charge-doping, which should aid future experimental searches for spin liquid physics. Our study explores the nature of frustration and fractionalization which can arise in quantum systems in the presence of strong spin-orbit coupling.

  1. Exact diagonalization library for quantum electron models

    NASA Astrophysics Data System (ADS)

    Iskakov, Sergei; Danilov, Michael

    2018-04-01

    We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.

  2. Relativistic Nonlocality and the EPR Paradox

    NASA Astrophysics Data System (ADS)

    Chamberlain, Thomas

    2014-03-01

    The exact violation of Bell's Inequalities is obtained with a local realistic model for spin. The model treats one particle that comprises a quantum ensemble and simulates the EPR data one coincidence at a time as a product state. Such a spin is represented by operators σx , iσy ,σz in its body frame rather than the usual set of σX ,σY ,σZ in the laboratory frame. This model, assumed valid in the absence of a measuring probe, contains both quantum polarizations and coherences. Each carries half the EPR correlation, but only half can be measured using coincidence techniques. The model further predicts the filter angles that maximize the spin correlation in EPR experiments.

  3. Tunneling measurement of quantum spin oscillations

    NASA Astrophysics Data System (ADS)

    Bulaevskii, L. N.; Hruška, M.; Ortiz, G.

    2003-09-01

    We consider the problem of tunneling between two leads via a localized spin 1/2 or any other microscopic system (e.g., a quantum dot) which can be modeled by a two-level Hamiltonian. We assume that a constant magnetic field B0 acts on the spin, that electrons in the leads are in a voltage driven thermal equilibrium, and that the tunneling electrons are coupled to the spin through exchange and spin-orbit interactions. Using the nonequilibrium Keldysh formalism we find the dependence of the spin-spin and current-current correlation functions on the applied voltage between leads V, temperature T, B0, and on the degree and orientation mα of spin polarization of the electrons in the right (α=R) and left (α=L) leads. We show the following (a) The spin-spin correlation function exhibits a peak at the Larmor frequency, ωL, corresponding to the effective magnetic field B acting upon the spin as determined by B0 and the exchange field induced by tunneling of spin-polarized electrons. (b) If the mα’s are not parallel to B the second-order derivative of the average tunneling current I(V) with respect to V is proportional to the spectral density of the spin-spin correlation function, i.e., exhibits a peak at the voltage V=ħωL/e. (c) In the same situation when V>B the current-current correlation function exhibits a peak at the same frequency. (d) The signal-to-noise (shot-noise) ratio R for this peak reaches a maximum value of order unity, R⩽4, at large V when the spin is decoupled from the environment and the electrons in both leads are fully polarized in the direction perpendicular to B. (e) R≪1 if the electrons are weakly polarized, or if they are polarized in a direction close to B0, or if the spin interacts with the environment stronger than with the tunneling electrons. Our results of a full quantum-mechanical treatment of the tunneling-via-spin model when V≫B are in agreement with those previously obtained in the quasiclassical approach. We discuss also the experimental results observed using scanning tunneling microscopy dynamic probes of the localized spin.

  4. Ground-state ordering of the J1-J2 model on the simple cubic and body-centered cubic lattices

    NASA Astrophysics Data System (ADS)

    Farnell, D. J. J.; Götze, O.; Richter, J.

    2016-06-01

    The J1-J2 Heisenberg model is a "canonical" model in the field of quantum magnetism in order to study the interplay between frustration and quantum fluctuations as well as quantum phase transitions driven by frustration. Here we apply the coupled cluster method (CCM) to study the spin-half J1-J2 model with antiferromagnetic nearest-neighbor bonds J1>0 and next-nearest-neighbor bonds J2>0 for the simple cubic (sc) and body-centered cubic (bcc) lattices. In particular, we wish to study the ground-state ordering of these systems as a function of the frustration parameter p =z2J2/z1J1 , where z1 (z2) is the number of nearest (next-nearest) neighbors. We wish to determine the positions of the phase transitions using the CCM and we aim to resolve the nature of the phase transition points. We consider the ground-state energy, order parameters, spin-spin correlation functions, as well as the spin stiffness in order to determine the ground-state phase diagrams of these models. We find a direct first-order phase transition at a value of p =0.528 from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the bcc lattice. For the sc lattice the situation is more subtle. CCM results for the energy, the order parameter, the spin-spin correlation functions, and the spin stiffness indicate that there is no direct first-order transition between ground-state phases with magnetic long-range order, rather it is more likely that two phases with antiferromagnetic long range are separated by a narrow region of a spin-liquid-like quantum phase around p =0.55 . Thus the strong frustration present in the J1-J2 Heisenberg model on the sc lattice may open a window for an unconventional quantum ground state in this three-dimensional spin model.

  5. Tunable Quantum Spin Liquidity in the 1 /6 th-Filled Breathing Kagome Lattice

    NASA Astrophysics Data System (ADS)

    Akbari-Sharbaf, A.; Sinclair, R.; Verrier, A.; Ziat, D.; Zhou, H. D.; Sun, X. F.; Quilliam, J. A.

    2018-06-01

    We present measurements on a series of materials, Li2 In1 -xScx Mo3 O8 , that can be described as a 1 /6 th-filled breathing kagome lattice. Substituting Sc for In generates chemical pressure which alters the breathing parameter nonmonotonically. Muon spin rotation experiments show that this chemical pressure tunes the system from antiferromagnetic long range order to a quantum spin liquid phase. A strong correlation with the breathing parameter implies that it is the dominant parameter controlling the level of magnetic frustration, with increased kagome symmetry generating the quantum spin liquid phase. Magnetic susceptibility measurements suggest that this is related to distinct types of charge order induced by changes in lattice symmetry, in line with the theory of Chen et al. [Phys. Rev. B 93, 245134 (2016), 10.1103/PhysRevB.93.245134]. The specific heat for samples at intermediate Sc concentration, which have the minimum breathing parameter, show consistency with the predicted U (1 ) quantum spin liquid.

  6. Dynamic spin injection into a quantum well coupled to a spin-split bound state

    NASA Astrophysics Data System (ADS)

    Maslova, N. S.; Rozhansky, I. V.; Mantsevich, V. N.; Arseyev, P. I.; Averkiev, N. S.; Lähderanta, E.

    2018-05-01

    We present a theoretical analysis of dynamic spin injection due to spin-dependent tunneling between a quantum well (QW) and a bound state split in spin projection due to an exchange interaction or external magnetic field. We focus on the impact of Coulomb correlations at the bound state on spin polarization and sheet density kinetics of the charge carriers in the QW. The theoretical approach is based on kinetic equations for the electron occupation numbers taking into account high order correlation functions for the bound state electrons. It is shown that the on-site Coulomb repulsion leads to an enhanced dynamic spin polarization of the electrons in the QW and a delay in the carriers tunneling into the bound state. The interplay of these two effects leads to nontrivial dependence of the spin polarization degree, which can be probed experimentally using time-resolved photoluminescence experiments. It is demonstrated that the influence of the Coulomb interactions can be controlled by adjusting the relaxation rates. These findings open a new way of studying the Hubbard-like electron interactions experimentally.

  7. Structural instability in polyacene: A projector quantum Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhargavi; Ramasesha, S.

    1998-04-01

    We have studied polyacene within the Hubbard model to explore the effect of electron correlations on the Peierls' instability in a system marginally away from one dimension. We employ the projector quantum Monte Carlo method to obtain ground-state estimates of the energy and various correlation functions. We find strong similarities between polyacene and polyacetylene which can be rationalized from the real-space valence-bond arguments of Mazumdar and Dixit. Electron correlations tend to enhance the Peierls' instability in polyacene. This enhancement appears to attain a maximum at U/t~3.0, and the maximum shifts to larger values when the alternation parameter is increased. The system shows no tendency to destroy the imposed bond-alternation pattern, as evidenced by the bond-bond correlations. The cis distortion is seen to be favored over the trans distortion. The spin-spin correlations show that undistorted polyacene is susceptible to a spin-density-wave distortion for large interaction strength. The charge-charge correlations indicate the absence of a charge-density-wave distortion for the parameters studied.

  8. Thermodynamic entanglement of magnonic condensates

    NASA Astrophysics Data System (ADS)

    Yuan, H. Y.; Yung, Man-Hong

    2018-02-01

    Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a central role in most of the quantum information processing tasks. Here we theoretically study the entanglement properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation for a future investigation of the magnon BEC in terms of quantum entanglement.

  9. Possible observation of highly itinerant quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7

    PubMed Central

    Tokiwa, Y.; Yamashita, T.; Udagawa, M.; Kittaka, S.; Sakakibara, T; Terazawa, D.; Shimoyama, Y.; Terashima, T.; Yasui, Y.; Shibauchi, T.; Matsuda, Y.

    2016-01-01

    The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids. PMID:26912080

  10. Possible observation of highly itinerant quantum magnetic monopoles in the frustrated pyrochlore Yb2Ti2O7.

    PubMed

    Tokiwa, Y; Yamashita, T; Udagawa, M; Kittaka, S; Sakakibara, T; Terazawa, D; Shimoyama, Y; Terashima, T; Yasui, Y; Shibauchi, T; Matsuda, Y

    2016-02-25

    The low-energy elementary excitations in frustrated quantum magnets have fascinated researchers for decades. In frustrated Ising magnets on a pyrochlore lattice possessing macroscopically degenerate spin-ice ground states, the excitations have been discussed in terms of classical magnetic monopoles, which do not contain quantum fluctuations. Here we report unusual behaviours of magneto-thermal conductivity in the disordered spin-liquid regime of pyrochlore Yb2Ti2O7, which hosts frustrated spin-ice correlations with large quantum fluctuations owing to pseudospin-1/2 of Yb ions. The analysis of the temperature and magnetic field dependencies shows the presence of gapped elementary excitations. We find that the gap energy is largely suppressed from that expected in classical monopoles. Moreover, these excitations propagate a long distance without being scattered, in contrast to the diffusive nature of classical monopoles. These results suggests the emergence of highly itinerant quantum magnetic monopole, which is a heavy quasiparticle that propagates coherently in three-dimensional spin liquids.

  11. Expanding the Bethe/Gauge dictionary

    NASA Astrophysics Data System (ADS)

    Bullimore, Mathew; Kim, Hee-Cheol; Lukowski, Tomasz

    2017-11-01

    We expand the Bethe/Gauge dictionary between the XXX Heisenberg spin chain and 2d N = (2, 2) supersymmetric gauge theories to include aspects of the algebraic Bethe ansatz. We construct the wave functions of off-shell Bethe states as orbifold defects in the A-twisted supersymmetric gauge theory and study their correlation functions. We also present an alternative description of off-shell Bethe states as boundary conditions in an effective N = 4 supersymmetric quantum mechanics. Finally, we interpret spin chain R-matrices as correlation functions of Janus interfaces for mass parameters in the supersymmetric quantum mechanics.

  12. Microscopic observation of magnon bound states and their dynamics.

    PubMed

    Fukuhara, Takeshi; Schauß, Peter; Endres, Manuel; Hild, Sebastian; Cheneau, Marc; Bloch, Immanuel; Gross, Christian

    2013-10-03

    The existence of bound states of elementary spin waves (magnons) in one-dimensional quantum magnets was predicted almost 80 years ago. Identifying signatures of magnon bound states has so far remained the subject of intense theoretical research, and their detection has proved challenging for experiments. Ultracold atoms offer an ideal setting in which to find such bound states by tracking the spin dynamics with single-spin and single-site resolution following a local excitation. Here we use in situ correlation measurements to observe two-magnon bound states directly in a one-dimensional Heisenberg spin chain comprising ultracold bosonic atoms in an optical lattice. We observe the quantum dynamics of free and bound magnon states through time-resolved measurements of two spin impurities. The increased effective mass of the compound magnon state results in slower spin dynamics as compared to single-magnon excitations. We also determine the decay time of bound magnons, which is probably limited by scattering on thermal fluctuations in the system. Our results provide a new way of studying fundamental properties of quantum magnets and, more generally, properties of interacting impurities in quantum many-body systems.

  13. Decoherence and fluctuation dynamics of the quantum dot nuclear spin bath probed by nuclear magnetic resonance

    NASA Astrophysics Data System (ADS)

    Chekhovich, Evgeny A.

    2017-06-01

    Dynamics of nuclear spin decoherence and nuclear spin flip-flops in self-assembled InGaAs/GaAs quantum dots are studied experimentally using optically detected nuclear magnetic resonance (NMR). Nuclear spin-echo decay times are found to be in the range 1-4 ms. This is a factor of ~3 longer than in strain-free GaAs/AlGaAs structures and is shown to result from strain-induced quadrupolar effects that suppress nuclear spin flip-flops. The correlation times of the flip-flops are examined using a novel frequency-comb NMR technique and are found to exceed 1 s, a factor of ~1000 longer than in strain-free structures. These findings complement recent studies of electron spin coherence and reveal the paradoxical dual role of the quadrupolar effects in self-assembled quantum dots: large increase of the nuclear spin bath coherence and at the same time significant reduction of the electron spin-qubit coherence. Approaches to increasing electron spin coherence are discussed. In particular the nanohole filled GaAs/AlGaAs quantum dots are an attractive option: while their optical quality matches the self-assembled dots the quadrupolar effects measured in NMR spectra are a factor of 1000 smaller.

  14. Spinon dynamics in quantum integrable antiferromagnets

    NASA Astrophysics Data System (ADS)

    Vlijm, R.; Caux, J.-S.

    2016-05-01

    The excitations of the Heisenberg antiferromagnetic spin chain in zero field are known as spinons. As pairwise-created fractionalized excitations, spinons are important in the understanding of inelastic neutron scattering experiments in (quasi-)one-dimensional materials. In the present paper, we consider the real space-time dynamics of spinons originating from a local spin flip on the antiferromagnetic ground state of the (an)isotropic Heisenberg spin-1/2 model and the Babujan-Takhtajan spin-1 model. By utilizing algebraic Bethe ansatz methods at finite system size to compute the expectation value of the local magnetization and spin-spin correlations, spinons are visualized as propagating domain walls in the antiferromagnetic spin ordering with anisotropy dependent behavior. The spin-spin correlation after the spin flip displays a light cone, satisfying the Lieb-Robinson bound for the propagation of correlations at the spinon velocity.

  15. Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits

    PubMed Central

    Yu, Leo; Natarajan, Chandra M.; Horikiri, Tomoyuki; Langrock, Carsten; Pelc, Jason S.; Tanner, Michael G.; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Höfling, Sven; Kamp, Martin; Hadfield, Robert H.; Fejer, Martin M.; Yamamoto, Yoshihisa

    2015-01-01

    Practical quantum communication between remote quantum memories rely on single photons at telecom wavelengths. Although spin-photon entanglement has been demonstrated in atomic and solid-state qubit systems, the produced single photons at short wavelengths and with polarization encoding are not suitable for long-distance communication, because they suffer from high propagation loss and depolarization in optical fibres. Establishing entanglement between remote quantum nodes would further require the photons generated from separate nodes to be indistinguishable. Here, we report the observation of correlations between a quantum-dot spin and a telecom single photon across a 2-km fibre channel based on time-bin encoding and background-free frequency downconversion. The downconverted photon at telecom wavelengths exhibits two-photon interference with another photon from an independent source, achieving a mean wavepacket overlap of greater than 0.89 despite their original wavelength mismatch (900 and 911 nm). The quantum-networking operations that we demonstrate will enable practical communication between solid-state spin qubits across long distances. PMID:26597223

  16. Quantum critical dynamics for a prototype class of insulating antiferromagnets

    NASA Astrophysics Data System (ADS)

    Wu, Jianda; Yang, Wang; Wu, Congjun; Si, Qimiao

    2018-06-01

    Quantum criticality is a fundamental organizing principle for studying strongly correlated systems. Nevertheless, understanding quantum critical dynamics at nonzero temperatures is a major challenge of condensed-matter physics due to the intricate interplay between quantum and thermal fluctuations. The recent experiments with the quantum spin dimer material TlCuCl3 provide an unprecedented opportunity to test the theories of quantum criticality. We investigate the nonzero-temperature quantum critical spin dynamics by employing an effective O (N ) field theory. The on-shell mass and the damping rate of quantum critical spin excitations as functions of temperature are calculated based on the renormalized coupling strength and are in excellent agreement with experiment observations. Their T lnT dependence is predicted to be dominant at very low temperatures, which will be tested in future experiments. Our work provides confidence that quantum criticality as a theoretical framework, which is being considered in so many different contexts of condensed-matter physics and beyond, is indeed grounded in materials and experiments accurately. It is also expected to motivate further experimental investigations on the applicability of the field theory to related quantum critical systems.

  17. Intra- and inter-shell Kondo effects in carbon nanotube quantum dots

    NASA Astrophysics Data System (ADS)

    Krychowski, Damian; Lipiński, Stanisław

    2018-01-01

    The linear response transport properties of carbon nanotube quantum dot in the strongly correlated regime are discussed. The finite-U mean field slave boson approach is used to study many-body effects. Magnetic field can rebuilt Kondo correlations, which are destroyed by the effect of spin-orbit interaction or valley mixing. Apart from the field induced revivals of SU(2) Kondo effects of different types: spin, valley or spin-valley, also more exotic phenomena appear, such as SU(3) Kondo effect. Threefold degeneracy occurs due to the effective intervalley exchange induced by short-range part of Coulomb interaction or due to the intershell mixing. In narrow gap nanotubes the full spin-orbital degeneracy might be recovered in the absence of magnetic field opening the condition for a formation of SU(4) Kondo resonance.

  18. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater than or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  19. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    NASA Astrophysics Data System (ADS)

    Norris, Leigh Morgan

    Large atomic ensembles interacting with light are one of the most promising platforms for quantum information processing. In the past decade, novel applications for these systems have emerged in quantum communication, quantum computing, and metrology. Essential to all of these applications is the controllability of the atomic ensemble, which is facilitated by a strong coupling between the atoms and light. Non-classical spin squeezed states are a crucial step in attaining greater ensemble control. The degree of entanglement present in these states, furthermore, serves as a benchmark for the strength of the atom-light interaction. Outside the broader context of quantum information processing with atomic ensembles, spin squeezed states have applications in metrology, where their quantum correlations can be harnessed to improve the precision of magnetometers and atomic clocks. This dissertation focuses upon the production of spin squeezed states in large ensembles of cold trapped alkali atoms interacting with optical fields. While most treatments of spin squeezing consider only the case in which the ensemble is composed of two level systems or qubits, we utilize the entire ground manifold of an alkali atom with hyperfine spin f greater or equal to 1/2, a qudit. Spin squeezing requires non-classical correlations between the constituent atomic spins, which are generated through the atoms' collective coupling to the light. Either through measurement or multiple interactions with the atoms, the light mediates an entangling interaction that produces quantum correlations. Because the spin squeezing treated in this dissertation ultimately originates from the coupling between the light and atoms, conventional approaches of improving this squeezing have focused on increasing the optical density of the ensemble. The greater number of internal degrees of freedom and the controllability of the spin-f ground hyperfine manifold enable novel methods of enhancing squeezing. In particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f >1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  20. Effective equations for the precession dynamics of electron spins and electron-impurity correlations in diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Cygorek, M.; Axt, V. M.

    2015-08-01

    Starting from a quantum kinetic theory for the spin dynamics in diluted magnetic semiconductors, we derive simplified equations that effectively describe the spin transfer between carriers and magnetic impurities for an arbitrary initial impurity magnetization. Taking the Markov limit of these effective equations, we obtain good quantitative agreement with the full quantum kinetic theory for the spin dynamics in bulk systems at high magnetic doping. In contrast, the standard rate description where the carrier-dopant interaction is treated according to Fermi’s golden rule, which involves the assumption of a short memory as well as a perturbative argument, has been shown previously to fail if the impurity magnetization is non-zero. The Markov limit of the effective equations is derived, assuming only a short memory, while higher order terms are still accounted for. These higher order terms represent the precession of the carrier-dopant correlations in the effective magnetic field due to the impurity spins. Numerical calculations show that the Markov limit of our effective equations reproduces the results of the full quantum kinetic theory very well. Furthermore, this limit allows for analytical solutions and for a physically transparent interpretation.

  1. Fisher metric, geometric entanglement, and spin networks

    NASA Astrophysics Data System (ADS)

    Chirco, Goffredo; Mele, Fabio M.; Oriti, Daniele; Vitale, Patrizia

    2018-02-01

    Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of nonlocal correlations between two nonadjacent regions of a generic spin network graph characterized by the bipartite unfolding of an intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and nonlocal level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.

  2. Strongly Interacting Fermi Gases In Two Dimensions

    DTIC Science & Technology

    2012-01-03

    Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas. Figure 2 Spin Transport in Spin-Imbalanced, strongly interacting...atoms becomes confined to a stack of two-dimensional layers formed by a one-dimensional optical lattice . Decreasing the dimensionality leads to the...opening of a gap in radiofrequency spectra, even on the BCS-side of a Feshbach resonance. With increasing lattice depth, the measured binding energy

  3. Microscopic theory of the nearest-neighbor valence bond sector of the spin-1/2 kagome antiferromagnet

    NASA Astrophysics Data System (ADS)

    Ralko, Arnaud; Mila, Frédéric; Rousochatzakis, Ioannis

    2018-03-01

    The spin-1/2 Heisenberg model on the kagome lattice, which is closely realized in layered Mott insulators such as ZnCu3(OH) 6Cl2 , is one of the oldest and most enigmatic spin-1/2 lattice models. While the numerical evidence has accumulated in favor of a quantum spin liquid, the debate is still open as to whether it is a Z2 spin liquid with very short-range correlations (some kind of resonating valence bond spin liquid), or an algebraic spin liquid with power-law correlations. To address this issue, we have pushed the program started by Rokhsar and Kivelson in their derivation of the effective quantum dimer model description of Heisenberg models to unprecedented accuracy for the spin-1/2 kagome, by including all the most important virtual singlet contributions on top of the orthogonalization of the nearest-neighbor valence bond singlet basis. Quite remarkably, the resulting picture is a competition between a Z2 spin liquid and a diamond valence bond crystal with a 12-site unit cell, as in the density-matrix renormalization group simulations of Yan et al. Furthermore, we found that, on cylinders of finite diameter d , there is a transition between the Z2 spin liquid at small d and the diamond valence bond crystal at large d , the prediction of the present microscopic description for the two-dimensional lattice. These results show that, if the ground state of the spin-1/2 kagome antiferromagnet can be described by nearest-neighbor singlet dimers, it is a diamond valence bond crystal, and, a contrario, that, if the system is a quantum spin liquid, it has to involve long-range singlets, consistent with the algebraic spin liquid scenario.

  4. A tensor product state approach to spin-1/2 square J1-J2 antiferromagnetic Heisenberg model: evidence for deconfined quantum criticality

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Gu, Zheng-Cheng; Verstraete, Frank; Wen, Xiang-Gang

    We study this model using the cluster update algorithm for tensor product states (TPSs). We find that the ground state energies at finite sizes and in the thermodynamic limit are in good agreement with the exact diagonalization study. At the largest bond dimension available D = 9 and through finite size scaling of the magnetization order near the transition point, we accurately determine the critical point J2c1 = 0 . 53 (1) J1 and the critical exponents β = 0 . 50 (4) . In the intermediate region we find a paramagnetic ground state without any static valence bond solid (VBS) order, supported by an exponentially decaying spin-spin correlation while a power law decaying dimer-dimer correlation. By fitting a universal scaling function for the spin-spin correlation we find the critical exponents ν = 0 . 68 (3) and ηs = 0 . 34 (6) , which is very close to the observed critical exponents for deconfined quantum critical point (DQCP) in other systems. Thus our numerical results strongly suggest a Landau forbidden phase transition from Neel order to VBS order at J2c1 = 0 . 53 (1) J1 . This project is supported by the EU Strep project QUEVADIS, the ERC Grant QUERG, and the FWF SFB Grants FoQuS and ViCoM; and the Institute for Quantum Information and Matter.

  5. Variational treatment of entanglement in the Dicke model

    NASA Astrophysics Data System (ADS)

    Bakemeier, L.; Alvermann, A.; Fehske, H.

    2015-10-01

    We introduce a variational ansatz for the Dicke model that extends mean-field theory through the inclusion of spin-oscillator correlations. The correlated variational state is obtained from the mean-field product state via a unitary transformation. The ansatz becomes correct in the limit of large oscillator frequency and in the limit of a large spin, for which it captures the leading quantum corrections to the classical limit exactly including the spin-oscillator entanglement entropy. We explain the origin of the unitary transformation before we show that the ansatz improves substantially upon mean-field theory, giving near exact results for the ground state energy and very good results for other observables. We then discuss why the ansatz still encounters problems in the transition regime at moderate spin lengths, where it fails to capture the precursors of the superradiant quantum phase transition faithfully. This observation illustrates the principal limits of semi-classical formulations, even after they are extended with correlations and entanglement.

  6. Resonantly enhanced spin-spin interaction of ultracold atoms in an optical lattice for quantum information and simulation

    NASA Astrophysics Data System (ADS)

    Inaba, Kensuke; Noda, Kazuto; Tokunaga, Yuuki; Tamaki, Kiyoshi; Igeta, Kazuhiro; Yamashita, Makoto

    2014-05-01

    Control of the spin-spin interactions between atoms in an optical lattice is a key ingredient for simulating quantum magnetism and also creating entanglement required for quantum computation. Here, we investigate the use of resonant enhancement of the perturbative spin interactions. First, we discuss entanglement generation with a tunable Ising interaction. Enhancing the interaction allows us to shorten operation time. However, it conflicts with the perturbative nature of the interaction and inevitably induces unwanted correlations that degrade fidelity. We propose a method for overcoming this difficulty. Next, we also discuss characteristic magnetism caused by the resonantly enhanced interaction. In the similar way to the above, the transition temperatures can be increased, which is limited by the breakdown of the perturbation. We will discuss the mechanism of the limitation. This work was partly supported by JST CREST.

  7. Interacting quantum dot coupled to a kondo spin: a universal Hamiltonian study.

    PubMed

    Rotter, Stefan; Türeci, Hakan E; Alhassid, Y; Stone, A Douglas

    2008-04-25

    We study a Kondo spin coupled to a mesoscopic interacting quantum dot that is described by the "universal Hamiltonian." The problem is solved numerically by diagonalizing the system Hamiltonian in a good-spin basis and analytically in the weak and strong Kondo coupling limits. The ferromagnetic exchange interaction within the dot leads to a stepwise increase of the ground-state spin (Stoner staircase), which is modified nontrivially by the Kondo interaction. We find that the spin-transition steps move to lower values of the exchange coupling for weak Kondo interaction, but shift back up for sufficiently strong Kondo coupling. The interplay between Kondo and ferromagnetic exchange correlations can be probed with experimentally tunable parameters.

  8. Quantum Monte Carlo analysis of a charge ordered insulating antiferromagnet: The Ti 4O 7 Magneli phase

    DOE PAGES

    Benali, Anouar; Shulenburger, Luke; Krogel, Jaron T.; ...

    2016-06-07

    The Magneli phase Ti 4O 7 is an important transition metal oxide with a wide range of applications because of its interplay between charge, spin, and lattice degrees of freedom. At low temperatures, it has non-trivial magnetic states very close in energy, driven by electronic exchange and correlation interactions. We have examined three low- lying states, one ferromagnetic and two antiferromagnetic, and calculated their energies as well as Ti spin moment distributions using highly accurate Quantum Monte Carlo methods. We compare our results to those obtained from density functional theory- based methods that include approximate corrections for exchange and correlation.more » Our results confirm the nature of the states and their ordering in energy, as compared with density-functional theory methods. However, the energy differences and spin distributions differ. Here, a detailed analysis suggests that non-local exchange-correlation functionals, in addition to other approximations such as LDA+U to account for correlations, are needed to simultaneously obtain better estimates for spin moments, distributions, energy differences and energy gaps.« less

  9. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for entanglement is also derived. Thus we show that spin squeezing becomes a rigorous test for entanglement in a system of massive bosons, when viewed as a test for entanglement between two modes. In addition, other previously proposed tests for entanglement involving spin operators are considered, including those based on the sum of the variances for two spin components. All of the tests are still valid when the present concept of entanglement based on the symmetrization and SSR criteria is applied. These tests also apply in cases of multi-mode entanglement, though with restrictions in the case of sub-systems each consisting of pairs of modes. Tests involving quantum correlation functions are also considered and for global SSR compliant states these are shown to be equivalent to tests involving spin operators. A new weak correlation test is derived for entanglement based on local SSR compliance for separable states, complementing the stronger correlation test obtained previously when this is ignored. The Bloch vector test is equivalent to one case of this weak correlation test. Quadrature squeezing for single modes is also examined but not found to yield a useful entanglement test, whereas two mode quadrature squeezing proves to be a valid entanglement test, though not as useful as the Bloch vector test. The various entanglement tests are considered for well-known entangled states, such as binomial states, relative phase eigenstates and NOON states—sometimes the new tests are satisfied while than those obtained in other papers are not. The present paper II then outlines the theory for a simple two mode interferometer showing that such an interferometer can be used to measure the mean values and covariance matrix for the spin operators involved in entanglement tests for the two mode bosonic system. The treatment is also generalized to cover multi-mode interferometry. The interferometer involves a pulsed classical field characterized by a phase variable and an area variable defined by the time integral of the field amplitude, and leads to a coupling between the two modes. For simplicity the center frequency was chosen to be resonant with the inter-mode transition frequency. Measuring the mean and variance of the population difference between the two modes for the output state of the interferometer for various choices of interferometer variables is shown to enable the mean values and covariance matrix for the spin operators for the input quantum state of the two mode system to be determined. The paper concludes with a discussion of several key experimental papers on spin squeezing.

  10. Static holes in the geometrically frustrated bow-tie ladder

    NASA Astrophysics Data System (ADS)

    Martins, George B.; Brenig, Wolfram

    2008-10-01

    We investigate the doping of a geometrically frustrated spin ladder with static holes by a complementary approach using exact diagonalization and quantum dimers. Results for thermodynamic properties, the singlet density of states, the hole-binding energy and the spin correlations will be presented. For the undoped systems the ground state is non-degenerate, with translationally invariant nearest-neighbor spin correlations. For the doped case, we find that static holes polarize their vicinity through a localization of singlets, reducing the frustration. This polarization induces short range repulsive forces between two holes and an oscillatory behavior of the long range two-hole energy. For most quantities investigated, we find very good agreement between the quantum dimer approach and the results from exact diagonalization.

  11. A Local Realistic Reconciliation of the EPR Paradox

    NASA Astrophysics Data System (ADS)

    Sanctuary, Bryan

    2014-03-01

    The exact violation of Bell's Inequalities is obtained with a local realistic model for spin. The model treats one particle that comprises a quantum ensemble and simulates the EPR data one coincidence at a time as a product state. Such a spin is represented by operators σx , iσy ,σz in its body frame rather than the usual set of σX ,σY ,σZ in the laboratory frame. This model, assumed valid in the absence of a measuring probe, contains both quantum polarizations and coherences. Each carries half the EPR correlation, but only half can be measured using coincidence techniques. The model further predicts the filter angles that maximize the spin correlation in EPR experiments.

  12. Quantum statistics for a two-mode magnon system with microwave pumping: application to coupled ferromagnetic nanowires.

    PubMed

    Haghshenasfard, Zahra; Cottam, M G

    2017-05-17

    A microscopic (Hamiltonian-based) method for the quantum statistics of bosonic excitations in a two-mode magnon system is developed. Both the exchange and the dipole-dipole interactions, as well as the Zeeman term for an external applied field, are included in the spin Hamiltonian, and the model also contains the nonlinear effects due to parallel pumping and four-magnon interactions. The quantization of spin operators is achieved through the Holstein-Primakoff formalism, and then a coherent magnon state representation is used to study the occupation magnon number and the quantum statistical behaviour of the system. Particular attention is given to the cross correlation between the two coupled magnon modes in a ferromagnetic nanowire geometry formed by two lines of spins. Manipulation of the collapse-and-revival phenomena for the temporal evolution of the magnon number as well as the control of the cross correlation between the two magnon modes is demonstrated by tuning the parallel pumping field amplitude. The role of the four-magnon interactions is particularly interesting and leads to anti-correlation in some cases with coherent states.

  13. Physical realization of a quantum spin liquid based on a complex frustration mechanism

    NASA Astrophysics Data System (ADS)

    Reuther, Johannes; Balz, Christian; Lake, Bella

    Unlike conventional magnets where the spins undergo magnetic long-range order in the ground state, in a quantum spin liquid they remain disordered down to the lowest temperatures without breaking local symmetries. Here, we investigate the novel, unexplored bilayer-kagome magnet Ca10Cr7O28, which has a complex Hamiltonian consisting of isotropic antiferromagnetic and ferromagnetic interactions where the ferromagnetic couplings are the dominant ones. We show both experimentally and theoretically that this compound displays all the features expected of a quantum spin liquid. In particular, experiments rule out static magnetic order down to 19mK and reveal a diffuse spinon-like excitation spectrum. Numerically simulating this material using the pseudo fermion functional renormalization group (PFFRG) method, we theoretically confirm the non-magnetic ground state of the system and qualitatively reproduce the measured spin correlation profile. By tuning the model parameters away from those realized in Ca10Cr7O28 we further show that the spin-liquid phase is of remarkable stability.

  14. Accessing the dark exciton spin in deterministic quantum-dot microlenses

    NASA Astrophysics Data System (ADS)

    Heindel, Tobias; Thoma, Alexander; Schwartz, Ido; Schmidgall, Emma R.; Gantz, Liron; Cogan, Dan; Strauß, Max; Schnauber, Peter; Gschrey, Manuel; Schulze, Jan-Hindrik; Strittmatter, Andre; Rodt, Sven; Gershoni, David; Reitzenstein, Stephan

    2017-12-01

    The dark exciton state in semiconductor quantum dots (QDs) constitutes a long-lived solid-state qubit which has the potential to play an important role in implementations of solid-state-based quantum information architectures. In this work, we exploit deterministically fabricated QD microlenses which promise enhanced photon extraction, to optically prepare and read out the dark exciton spin and observe its coherent precession. The optical access to the dark exciton is provided via spin-blockaded metastable biexciton states acting as heralding states, which are identified by deploying polarization-sensitive spectroscopy as well as time-resolved photon cross-correlation experiments. Our experiments reveal a spin-precession period of the dark exciton of (0.82 ± 0.01) ns corresponding to a fine-structure splitting of (5.0 ± 0.7) μeV between its eigenstates |↑ ⇑ ±↓ ⇓ ⟩. By exploiting microlenses deterministically fabricated above pre-selected QDs, our work demonstrates the possibility to scale up implementations of quantum information processing schemes using the QD-confined dark exciton spin qubit, such as the generation of photonic cluster states or the realization of a solid-state-based quantum memory.

  15. Quantum Critical Point revisited by the Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei

    Dynamical mean field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low energy kink and the high energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high energy antiferromagnetic paramagnons. We use the frequency dependent four-point correlation function of spin operators to calculate the momentum dependent correction to the electron self energy. Our results reveal a substantial difference with the calculations based on the Spin-Fermion model which indicates that the frequency dependence of the the quasiparitcle-paramagnon vertices is an important factor. The authors are supported by Center for Computational Design of Functional Strongly Correlated Materials and Theoretical Spectroscopy under DOE Grant DE-FOA-0001276.

  16. Tests of alternative quantum theories with neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sponar, S.; Durstberger-Rennhofer, K.; Badurek, G.

    2014-12-04

    According to Bell’s theorem, every theory based on local realism is at variance with certain predictions of quantum mechanics. A theory that maintains realism but abandons reliance on locality, which has been proposed by Leggett, is incompatible with experimentally observable quantum correlations. In our experiment correlation measurements of spin-energy entangled single-neutrons violate a Leggett-type inequality by more than 7.6 standard deviations. The experimental data falsify the contextual realistic model and are fully in favor of quantum mechanics.

  17. Correlated states in β-Li 2IrO 3 driven by applied magnetic fields

    DOE PAGES

    Ruiz, Alejandro; Frano, Alex; Breznay, Nicholas P.; ...

    2017-10-16

    Magnetic honeycomb iridates are thought to show strongly spin-anisotropic exchange interactions which, when highly frustrated, lead to an exotic state of matter known as the Kitaev quantum spin liquid. However, in all known examples these materials magnetically order at finite temperatures, the scale of which may imply weak frustration. Here we show that the application of a relatively small magnetic field drives the three-dimensional magnet β-Li 2IrO 3 from its incommensurate ground state into a quantum correlated paramagnet. Interestingly, this paramagnetic state admixes a zig-zag spin mode analogous to the zig-zag order seen in other Mott-Kitaev compounds. The rapid onsetmore » of the field-induced correlated state implies the exchange interactions are delicately balanced, leading to strong frustration and a near degeneracy of different ground states.« less

  18. Correlated spin currents generated by resonant-crossed Andreev reflections in topological superconductors

    PubMed Central

    He, James J.; Wu, Jiansheng; Choy, Ting-Pong; Liu, Xiong-Jun; Tanaka, Y.; Law, K. T.

    2014-01-01

    Topological superconductors, which support Majorana fermion excitations, have been the subject of intense studies due to their novel transport properties and their potential applications in fault-tolerant quantum computations. Here we propose a new type of topological superconductors that can be used as a novel source of correlated spin currents. We show that inducing superconductivity on a AIII class topological insulator wire, which respects a chiral symmetry and supports protected fermionic end states, will result in a topological superconductor. This topological superconductor supports two topological phases with one or two Majorana fermion end states, respectively. In the phase with two Majorana fermions, the superconductor can split Cooper pairs efficiently into electrons in two spatially separated leads due to Majorana-induced resonant-crossed Andreev reflections. The resulting currents in the leads are correlated and spin-polarized. Importantly, the proposed topological superconductors can be realized using quantum anomalous Hall insulators in proximity to superconductors. PMID:24492649

  19. Revealing hidden antiferromagnetic correlations in doped Hubbard chains via string correlators

    NASA Astrophysics Data System (ADS)

    Hilker, Timon A.; Salomon, Guillaume; Grusdt, Fabian; Omran, Ahmed; Boll, Martin; Demler, Eugene; Bloch, Immanuel; Gross, Christian

    2017-08-01

    Topological phases, like the Haldane phase in spin-1 chains, defy characterization through local order parameters. Instead, nonlocal string order parameters can be employed to reveal their hidden order. Similar diluted magnetic correlations appear in doped one-dimensional lattice systems owing to the phenomenon of spin-charge separation. Here we report on the direct observation of such hidden magnetic correlations via quantum gas microscopy of hole-doped ultracold Fermi-Hubbard chains. The measurement of nonlocal spin-density correlation functions reveals a hidden finite-range antiferromagnetic order, a direct consequence of spin-charge separation. Our technique, which measures nonlocal order directly, can be readily extended to higher dimensions to study the complex interplay between magnetic order and density fluctuations.

  20. Triplet p + ip pairing correlations in the doped Kane-Mele-Hubbard model: A quantum Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianxing; Lin, Hai-Qing; Gubernatis, James E.

    2015-09-01

    By using the constrained-phase quantum Monte Carlo method, we performed a systematic study of the pairing correlations in the ground state of the doped Kane-Mele-Hubbard model on a honeycomb lattice. We find that pairing correlations with d + id symmetry dominate close to half filling, but pairing correlations with p+ip symmetry dominate as hole doping moves the system below three-quarters filling. We correlate these behaviors of the pairing correlations with the topology of the Fermi surfaces of the non-interacting problem. We also find that the effective pairing correlation is enhanced greatly as the interaction increases, and these superconducting correlations aremore » robust against varying the spin-orbit coupling strength. Finally, our numerical results suggest a possible way to realize spin triplet superconductivity in doped honeycomb-like materials or ultracold atoms in optical traps.« less

  1. Control of electron spin decoherence in nuclear spin baths

    NASA Astrophysics Data System (ADS)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath. This work was supported by Hong Kong RGC/GRF CUHK402207, CUHK402209, and CUHK402410. The author acknowledges collaboration with Nan Zhao, Jian-Liang Hu, Sai Wah Ho, Jones T. K. Wan, and Jiangfeng Du.

  2. Systematic approaches to layered materials with strong electron correlations

    NASA Astrophysics Data System (ADS)

    Chung, Chung-Hou

    I present systematic large-N approaches to study the ground state magnetic orderings and charge transport of layered materials with strong electron correlations, including the organic material kappa-(BEDT-TTF)2X, and the antiferromagnetic insulators Cs2CuCl4 and SrCu2(BO3) 2. I model the electronic properties of the organic materials kappa-(BEDT-TTF) 2X with a fermionic SU(N) Hubbard-Heisenberg model on an anisotropic triangular lattice. The ground state phase diagram shows a metal-insulator transition and a depression of the density of states in the metallic phase which are consistent with the experiments. The magnetic properties of kappa-(BEDT-TTF) 2X are modeled by a bosonic Sp(N) quantum Heisenberg antiferromagnet on the same lattice. The phase diagram consists of five different phases as a function of the size of the spin and the degree of frustration: the Neel ordered phase, a (pi, pi) short-range-order (SRO) phase, an incommensurate (q, q) long-range-order (LRO) phase, a (q, q) SRO phase, and a decoupled chain phase. I apply the same Sp(N) approach on the same triangular lattice to model the magnetic properties of Cs2CuCl 4 both with and without a magnetic field. At zero field, I find the ground state either exhibits incommensurate spin order, or is in a quantum disordered phase with deconfined spin-1/2 excitations and topological order. The Sp(N) calculation of spin excitation spectrum shows a large upward quantum renormalization consistent with that seen in experiments. For fields perpendicular to the plane of spin rotation, I find that the spins form an incommensurate "cone" of polarization up to a saturation field where all spins are fully polarized. There is a large quantum renormalization of the zero-field incommensuration. The results are in apparent agreement with neutron scattering experiments. Finally, the magnetic properties of the insulator SrCu2(BO 3)2 is modeled by the Sp(N) quantum antiferromagnet on the Shastry-Sutherland lattice. In addition to the familiar Neel and dimer phases, I find a confining phase with plaquette order, and a topologically ordered phase with deconfined S = 1/2 spinons and helical spin correlations. The deconfined phase is contiguous to the dimer phase, and in a regime of couplings close to those appropriate for the material.

  3. Time-reversal-invariant spin-orbit-coupled bilayer Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Maisberger, Matthew; Wang, Lin-Cheng; Sun, Kuei; Xu, Yong; Zhang, Chuanwei

    2018-05-01

    Time-reversal invariance plays a crucial role for many exotic quantum phases, particularly for topologically nontrivial states, in spin-orbit coupled electronic systems. Recently realized spin-orbit coupled cold-atom systems, however, lack the time-reversal symmetry due to the inevitable presence of an effective transverse Zeeman field. We address this issue by analyzing a realistic scheme to preserve time-reversal symmetry in spin-orbit-coupled ultracold atoms, with the use of Hermite-Gaussian-laser-induced Raman transitions that preserve spin-layer time-reversal symmetry. We find that the system's quantum states form Kramers pairs, resulting in symmetry-protected gap closing of the lowest two bands at arbitrarily large Raman coupling. We also show that Bose gases in this setup exhibit interaction-induced layer-stripe and uniform phases as well as intriguing spin-layer symmetry and spin-layer correlation.

  4. A Probabilistic Model of Spin and Spin Measurements

    NASA Astrophysics Data System (ADS)

    Niehaus, Arend

    2016-01-01

    Several theoretical publications on the Dirac equation published during the last decades have shown that, an interpretation is possible, which ascribes the origin of electron spin and magnetic moment to an autonomous circular motion of the point-like charged particle around a fixed centre. In more recent publications an extension of the original so called "Zitterbewegung Interpretation" of quantum mechanics was suggested, in which the spin results from an average of instantaneous spin vectors over a Zitterbewegung period. We argue that, the corresponding autonomous motion of the electron should, if it is real, determine non-relativistic spin measurements. Such a direct connection with the established formal quantum mechanical description of spin measurements, into which spin is introduced as a "non-classical" quantity has, to our knowledge, not been reported. In the present work we show that, under certain "model assumptions" concerning the proposed autonomous motion, results of spin measurements, including measurements of angular correlations in singlet systems, can indeed be correctly described using classical probabilities. The success of the model is evidence for the "reality" of the assumed autonomous motion. The resulting model violates the Bell—inequalities to the same extent as quantum mechanics.

  5. Regression relation for pure quantum states and its implications for efficient computing.

    PubMed

    Elsayed, Tarek A; Fine, Boris V

    2013-02-15

    We obtain a modified version of the Onsager regression relation for the expectation values of quantum-mechanical operators in pure quantum states of isolated many-body quantum systems. We use the insights gained from this relation to show that high-temperature time correlation functions in many-body quantum systems can be controllably computed without complete diagonalization of the Hamiltonians, using instead the direct integration of the Schrödinger equation for randomly sampled pure states. This method is also applicable to quantum quenches and other situations describable by time-dependent many-body Hamiltonians. The method implies exponential reduction of the computer memory requirement in comparison with the complete diagonalization. We illustrate the method by numerically computing infinite-temperature correlation functions for translationally invariant Heisenberg chains of up to 29 spins 1/2. Thereby, we also test the spin diffusion hypothesis and find it in a satisfactory agreement with the numerical results. Both the derivation of the modified regression relation and the justification of the computational method are based on the notion of quantum typicality.

  6. Quantum Correlation Properties in Two Qubits One-axis Spin Squeezing Model

    NASA Astrophysics Data System (ADS)

    Guo-Hui, Yang

    2017-02-01

    Using the concurrence (C) and quantum discord (QD) criterions, the quantum correlation properties in two qubits one-axis spin squeezing model with an external magnetic field are investigated. It is found that one obvious difference in the limit case T → 0 (ground state) is the sudden disappearance phenomenon (SDP) occured in the behavior of C, while not in QD. In order to further explain the SDP, we obtain the analytic expressions of ground state C and QD which reveal that the SDP is not really "entanglement sudden disappeared", it is decayed to zero very quickly. Proper tuning the parameters μ(the spin squeezing interaction in x direction) and Ω(the external magnetic field in z direction) not only can obviously broaden the scope of ground state C exists but also can enhance the value of ground state QD. For the finite temperature case, one evident difference is that the sudden birth phenomenon (SBP) is appeared in the evolution of C, while not in QD, and decreasing the coupling parameters μ or Ω can obviously prolong the time interval before entanglement sudden birth. The value of C and QD are both enhanced by increasing the parameters μ or Ω in finite temperature case. In addition, through investigating the effects of temperature T on the quantum correlation properties with the variation of Ω and μ, one can find that the temperature scope of C and QD exists are broadened with increasing the parameters μ or Ω, and one can obtain the quantum correlation at higher temperature through changing these parameters.

  7. Statistical mechanics of the cluster Ising model

    NASA Astrophysics Data System (ADS)

    Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko

    2011-08-01

    We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.

  8. Quantum-memory-assisted entropic uncertainty relation in a Heisenberg XYZ chain with an inhomogeneous magnetic field

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Huang, Aijun; Ming, Fei; Sun, Wenyang; Lu, Heping; Liu, Chengcheng; Ye, Liu

    2017-06-01

    The uncertainty principle provides a nontrivial bound to expose the precision for the outcome of the measurement on a pair of incompatible observables in a quantum system. Therefore, it is of essential importance for quantum precision measurement in the area of quantum information processing. Herein, we investigate quantum-memory-assisted entropic uncertainty relation (QMA-EUR) in a two-qubit Heisenberg \\boldsymbol{X}\\boldsymbol{Y}\\boldsymbol{Z} spin chain. Specifically, we observe the dynamics of QMA-EUR in a realistic model there are two correlated sites linked by a thermal entanglement in the spin chain with an inhomogeneous magnetic field. It turns out that the temperature, the external inhomogeneous magnetic field and the field inhomogeneity can lift the uncertainty of the measurement due to the reduction of the thermal entanglement, and explicitly higher temperature, stronger magnetic field or larger inhomogeneity of the field can result in inflation of the uncertainty. Besides, it is found that there exists distinct dynamical behaviors of the uncertainty for ferromagnetism \\boldsymbol{}≤ft(\\boldsymbol{J}<\\boldsymbol{0}\\right) and antiferromagnetism \\boldsymbol{}≤ft(\\boldsymbol{J}>\\boldsymbol{0}\\right) chains. Moreover, we also verify that the measuring uncertainty is dramatically anti-correlated with the purity of the bipartite spin system, the greater purity can result in the reduction of the measuring uncertainty, vice versa. Therefore, our observations might provide a better understanding of the dynamics of the entropic uncertainty in the Heisenberg spin chain, and thus shed light on quantum precision measurement in the framework of versatile systems, particularly solid states.

  9. Emergence of nontrivial magnetic excitations in a spin-liquid state of kagomé volborthite

    PubMed Central

    Watanabe, Daiki; Sugii, Kaori; Shimozawa, Masaaki; Suzuki, Yoshitaka; Yajima, Takeshi; Ishikawa, Hajime; Hiroi, Zenji; Shibauchi, Takasada; Matsuda, Yuji; Yamashita, Minoru

    2016-01-01

    When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity κxy which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2⋅2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that κxy is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that κxy is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons. PMID:27439874

  10. Graphene based d-character Dirac Systems

    NASA Astrophysics Data System (ADS)

    Li, Yuanchang; Zhang, S. B.; Duan, Wenhui

    From graphene to topological insulators, Dirac material continues to be the hot topics in condensed matter physics. So far, almost all of the theoretically predicted or experimentally observed Dirac materials are composed of sp -electrons. By using first-principles calculations, we find the new Dirac system of transition-metal intercalated epitaxial graphene on SiC(0001). Intrinsically different from the conventional sp Dirac system, here the Dirac-fermions are dominantly contributed by the transition-metal d-electrons, which paves the way to incorporate correlation effect with Dirac-cone physics. Many intriguing quantum phenomena are proposed based on this system, including quantum spin Hall effect with large spin-orbital gap, quantum anomalous Hall effect, 100% spin-polarized Dirac fermions and ferromagnet-to-topological insulator transition.

  11. Correlations after quantum quenches in the XXZ spin chain: failure of the generalized Gibbs ensemble.

    PubMed

    Pozsgay, B; Mestyán, M; Werner, M A; Kormos, M; Zaránd, G; Takács, G

    2014-09-12

    We study the nonequilibrium time evolution of the spin-1/2 anisotropic Heisenberg (XXZ) spin chain, with a choice of dimer product and Néel states as initial states. We investigate numerically various short-ranged spin correlators in the long-time limit and find that they deviate significantly from predictions based on the generalized Gibbs ensemble (GGE) hypotheses. By computing the asymptotic spin correlators within the recently proposed quench-action formalism [Phys. Rev. Lett. 110, 257203 (2013)], however, we find excellent agreement with the numerical data. We, therefore, conclude that the GGE cannot give a complete description even of local observables, while the quench-action formalism correctly captures the steady state in this case.

  12. A unified stochastic formulation of dissipative quantum dynamics. I. Generalized hierarchical equations

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Cao, Jianshu

    2018-01-01

    We extend a standard stochastic theory to study open quantum systems coupled to a generic quantum environment. We exemplify the general framework by studying a two-level quantum system coupled bilinearly to the three fundamental classes of non-interacting particles: bosons, fermions, and spins. In this unified stochastic approach, the generalized stochastic Liouville equation (SLE) formally captures the exact quantum dissipations when noise variables with appropriate statistics for different bath models are applied. Anharmonic effects of a non-Gaussian bath are precisely encoded in the bath multi-time correlation functions that noise variables have to satisfy. Starting from the SLE, we devise a family of generalized hierarchical equations by averaging out the noise variables and expand bath multi-time correlation functions in a complete basis of orthonormal functions. The general hierarchical equations constitute systems of linear equations that provide numerically exact simulations of quantum dynamics. For bosonic bath models, our general hierarchical equation of motion reduces exactly to an extended version of hierarchical equation of motion which allows efficient simulation for arbitrary spectral densities and temperature regimes. Similar efficiency and flexibility can be achieved for the fermionic bath models within our formalism. The spin bath models can be simulated with two complementary approaches in the present formalism. (I) They can be viewed as an example of non-Gaussian bath models and be directly handled with the general hierarchical equation approach given their multi-time correlation functions. (II) Alternatively, each bath spin can be first mapped onto a pair of fermions and be treated as fermionic environments within the present formalism.

  13. Hidden Order and Symmetry Protected Topological States in Quantum Link Ladders

    NASA Astrophysics Data System (ADS)

    Cardarelli, L.; Greschner, S.; Santos, L.

    2017-11-01

    We show that, whereas spin-1 /2 one-dimensional U(1) quantum-link models (QLMs) are topologically trivial, when implemented in ladderlike lattices these models may present an intriguing ground-state phase diagram, which includes a symmetry protected topological (SPT) phase that may be readily revealed by analyzing long-range string spin correlations along the ladder legs. We propose a simple scheme for the realization of spin-1 /2 U(1) QLMs based on single-component fermions loaded in an optical lattice with s and p bands, showing that the SPT phase may be experimentally realized by adiabatic preparation.

  14. Dirac points, spinons and spin liquid in twisted bilayer graphene

    NASA Astrophysics Data System (ADS)

    Irkhin, V. Yu.; Skryabin, Yu. N.

    2018-05-01

    Twisted bilayer graphene is an excellent example of highly correlated system demonstrating a nearly flat electron band, the Mott transition and probably a spin liquid state. Besides the one-electron picture, analysis of Dirac points is performed in terms of spinon Fermi surface in the limit of strong correlations. Application of gauge field theory to describe deconfined spin liquid phase is treated. Topological quantum transitions, including those from small to large Fermi surface in the presence of van Hove singularities, are discussed.

  15. Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring.

    PubMed

    Orieux, Adeline; Boutari, Joelle; Barbieri, Marco; Paternostro, Mauro; Mataloni, Paolo

    2014-11-24

    Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring.

  16. Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring

    PubMed Central

    Orieux, Adeline; Boutari, Joelle; Barbieri, Marco; Paternostro, Mauro; Mataloni, Paolo

    2014-01-01

    Critical phenomena involve structural changes in the correlations of its constituents. Such changes can be reproduced and characterized in quantum simulators able to tackle medium-to-large-size systems. We demonstrate these concepts by engineering the ground state of a three-spin Ising ring by using a pair of entangled photons. The effect of a simulated magnetic field, leading to a critical modification of the correlations within the ring, is analysed by studying two- and three-spin entanglement. In particular, we connect the violation of a multipartite Bell inequality with the amount of tripartite entanglement in our ring. PMID:25418153

  17. Downconversion quantum interface for a single quantum dot spin and 1550-nm single-photon channel.

    PubMed

    Pelc, Jason S; Yu, Leo; De Greve, Kristiaan; McMahon, Peter L; Natarajan, Chandra M; Esfandyarpour, Vahid; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Yamamoto, Yoshihisa; Fejer, M M

    2012-12-03

    Long-distance quantum communication networks require appropriate interfaces between matter qubit-based nodes and low-loss photonic quantum channels. We implement a downconversion quantum interface, where the single photons emitted from a semiconductor quantum dot at 910 nm are downconverted to 1560 nm using a fiber-coupled periodically poled lithium niobate waveguide and a 2.2-μm pulsed pump laser. The single-photon character of the quantum dot emission is preserved during the downconversion process: we measure a cross-correlation g(2)(τ = 0) = 0.17 using resonant excitation of the quantum dot. We show that the downconversion interface is fully compatible with coherent optical control of the quantum dot electron spin through the observation of Rabi oscillations in the downconverted photon counts. These results represent a critical step towards a long-distance hybrid quantum network in which subsystems operating at different wavelengths are connected through quantum frequency conversion devices and 1.5-μm quantum channels.

  18. Isentropic calculation for thermodynamic properties of polarized liquid 3He by considering the effect of spin-dependent correlation function

    NASA Astrophysics Data System (ADS)

    Bordbar, G. H.; Hosseini, S.; Poostforush, A.

    2017-05-01

    Correlations in quantum fluids such as liquid 3He continue to be of high interest to scientists. Based on this prospect, the present work is devoted to study the effects of spin-spin correlation function on the thermodynamic properties of polarized liquid 3He such as pressure, velocity of sound, adiabatic index and adiabatic compressibility along different isentropic paths, using the Lennard-Jones potential and employing the variational approach based on cluster expansion of the energy functional. The inclusion of this correlation improves our previous calculations and leads to good agreements with experimental results.

  19. Quantum criticality in the spin-1/2 Heisenberg chain system copper pyrazine dinitrate

    PubMed Central

    Breunig, Oliver; Garst, Markus; Klümper, Andreas; Rohrkamp, Jens; Turnbull, Mark M.; Lorenz, Thomas

    2017-01-01

    Low-dimensional quantum magnets promote strong correlations between magnetic moments that lead to fascinating quantum phenomena. A particularly interesting system is the antiferromagnetic spin-1/2 Heisenberg chain because it is exactly solvable by the Bethe-Ansatz method. It is approximately realized in the magnetic insulator copper pyrazine dinitrate, providing a unique opportunity for a quantitative comparison between theory and experiment. We investigate its thermodynamic properties with a particular focus on the field-induced quantum phase transition. Thermal expansion, magnetostriction, specific heat, magnetization, and magnetocaloric measurements are found to be in excellent agreement with exact Bethe-Ansatz predictions. Close to the critical field, thermodynamics obeys the expected quantum critical scaling behavior, and in particular, the magnetocaloric effect and the Grüneisen parameters diverge in a characteristic manner. Beyond its importance for quantum magnetism, our study establishes a paradigm of a quantum phase transition, which illustrates fundamental principles of quantum critical thermodynamics. PMID:29282449

  20. Quantum quench of Kondo correlations in optical absorption.

    PubMed

    Latta, C; Haupt, F; Hanl, M; Weichselbaum, A; Claassen, M; Wuester, W; Fallahi, P; Faelt, S; Glazman, L; von Delft, J; Türeci, H E; Imamoglu, A

    2011-06-29

    The interaction between a single confined spin and the spins of an electron reservoir leads to one of the most remarkable phenomena of many-body physics--the Kondo effect. Electronic transport measurements on single artificial atoms, or quantum dots, have made it possible to study the effect in great detail. Here we report optical measurements on a single semiconductor quantum dot tunnel-coupled to a degenerate electron gas which show that absorption of a single photon leads to an abrupt change in the system Hamiltonian and a quantum quench of Kondo correlations. By inferring the characteristic power-law exponents from the experimental absorption line shapes, we find a unique signature of the quench in the form of an Anderson orthogonality catastrophe, induced by a vanishing overlap between the initial and final many-body wavefunctions. We show that the power-law exponent that determines the degree of orthogonality can be tuned using an external magnetic field, which unequivocally demonstrates that the observed absorption line shape originates from Kondo correlations. Our experiments demonstrate that optical measurements on single artificial atoms offer new perspectives on many-body phenomena previously studied using transport spectroscopy only.

  1. Ground-state phase diagram of an anisotropic spin-1/2 model on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Luo, Qiang; Hu, Shijie; Xi, Bin; Zhao, Jize; Wang, Xiaoqun

    2017-04-01

    Motivated by a recent experiment on the rare-earth material YbMgGaO4 [Y. Li et al., Phys. Rev. Lett. 115, 167203 (2015), 10.1103/PhysRevLett.115.167203], which found that the ground state of YbMgGaO4 is a quantum spin liquid, we study the ground-state phase diagram of an anisotropic spin-1 /2 model that was proposed to describe YbMgGaO4. Using the density matrix renormalization-group method in combination with the exact-diagonalization method, we calculate a variety of physical quantities, including the ground-state energy, the fidelity, the entanglement entropy and spin-spin correlation functions. Our studies show that in the quantum phase diagram, there is a 120∘ phase and two distinct stripe phases. The transitions from the two stripe phases to the 120∘ phase are of the first order. However, the transition between the two stripe phases is not of the first order, which is different from its classical counterpart. Additionally, we find no evidence for a quantum spin liquid in this model. Our results suggest that additional terms may also be important to model the material YbMgGaO4. These findings will stimulate further experimental and theoretical works in understanding the quantum spin-liquid ground state in YbMgGaO4.

  2. Static Holes in Geometrically Frustrated Bow Tie Ladder

    NASA Astrophysics Data System (ADS)

    Martins, George; Brenig, Wolfram

    2007-03-01

    Doping of the geometrically frustrated bow-tie spin ladder with static holes is investigated by a complementary approach using exact diagonalization and hard-core quantum dimers. Results for the thermodynamics in the undoped case, the singlet density of states, the hole-binding energy, and the spin correlations will be presented. We find that the static holes polarize their vicinity by a localization of singlets in order to reduce the frustration. As a consequence the singlet polarization cloud induces short range repulsive forces between the holes with oscillatory longer range behavior. For those systems we have studied, most results for the quantum dimer approach are found to be qualitatively if not quantitatively in agreement with exact diagonalization. The ground state of the undoped system is non-degenerate with translationally invariant nearest-neighbor spin correlations up to a few unit cells, which is consistent with a spin liquid state or a valence bond crystal with very large unit cell. C. Waldtmann, A. Kreutzmann, U. Schollwock, K. Maisinger, and H.-U. Everts, Phys. Rev. B 62, 9472 (2000).

  3. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp

    2018-04-01

    Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks.

  4. Absence of Jahn-Teller transition in the hexagonal Ba 3CuSb 2O 9 single crystal

    DOE PAGES

    Katayama, Naoyuki; Kimura, Kenta; Han, Yibo; ...

    2015-07-13

    With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state with zero entropy. Examples of such liquids include Bose-Einstein condensation of cold atoms, superconductivity, quantum Hall state of electron systems, and quantum spin liquid state in the frustrated magnets. Furthermore, recent studies have clarified the possibility of another exotic quantum liquid state based on the spin-orbital entanglement in FeSc2S4. To confirm this exotic ground state, experimentsmore » based on single-crystalline samples are essential. However, no such single-crystal study has been reported to date. Here, we report, to our knowledge, the first single-crystal study on the spin-orbital liquid candidate, 6H-Ba3CuSb2O9, and we have confirmed the absence of an orbital frozen state. In strongly correlated electron systems, orbital ordering usually appears at high temperatures in a process accompanied by a lattice deformation, called a static Jahn-Teller distortion. By combining synchrotron X-ray diffraction, electron spin resonance, Raman spectroscopy, and ultrasound measurements, we find that the static Jahn-Teller distortion is absent in the present material, which indicates that orbital ordering is suppressed down to the lowest temperatures measured. Lastly, we discuss how such an unusual feature is realized with the help of spin degree of freedom, leading to a spin-orbital entangled quantum liquid state.« less

  5. Spin Entanglement Witness for Quantum Gravity.

    PubMed

    Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W; Ulbricht, Hendrik; Toroš, Marko; Paternostro, Mauro; Geraci, Andrew A; Barker, Peter F; Kim, M S; Milburn, Gerard

    2017-12-15

    Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.

  6. Spin Entanglement Witness for Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W.; Ulbricht, Hendrik; Toroš, Marko; Paternostro, Mauro; Geraci, Andrew A.; Barker, Peter F.; Kim, M. S.; Milburn, Gerard

    2017-12-01

    Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.

  7. Static properties of ferromagnetic quantum chains: Numerical results and experimental data on two S=1/2 systems (invited)

    NASA Astrophysics Data System (ADS)

    Kopinga, K.; Delica, T.; Leschke, H.

    1990-05-01

    New results of a variant of the numerically exact quantum transfer matrix method have been compared with experimental data on the static properties of [C6H11NH3]CuBr3(CHAB), a ferromagnetic system with about 5% easy-plane anisotropy. Above T=3.5 K, the available data on the zero-field heat capacity, the excess heat capacity ΔC=C(B)-C(B=0), and the magnetization are described with an accuracy comparable to the experimental error. Calculations of the spin-spin correlation functions reveal that the good description of the experimental correlation length in CHAB by a classical spin model is largely accidental. The zero-field susceptibility, which can be deduced from these correlation functions, is in fair agreement with the reported experimental data between 4 and 100 K. The method also seems to yield accurate results for the chlorine isomorph, CHAC, a system with about 2% uniaxial anisotropy.

  8. Realization of a Cascaded Quantum System: Heralded Absorption of a Single Photon Qubit by a Single-Electron Charged Quantum Dot.

    PubMed

    Delteil, Aymeric; Sun, Zhe; Fält, Stefan; Imamoğlu, Atac

    2017-04-28

    Photonic losses pose a major limitation for the implementation of a quantum state transfer between nodes of a quantum network. A measurement that heralds a successful transfer without revealing any information about the qubit may alleviate this limitation. Here, we demonstrate the heralded absorption of a single photonic qubit, generated by a single neutral quantum dot, by a single-electron charged quantum dot that is located 5 m away. The transfer of quantum information to the spin degree of freedom takes place upon the emission of a photon; for a properly chosen or prepared quantum dot, the detection of this photon yields no information about the qubit. We show that this process can be combined with local operations optically performed on the destination node by measuring classical correlations between the absorbed photon color and the final state of the electron spin. Our work suggests alternative avenues for the realization of quantum information protocols based on cascaded quantum systems.

  9. Room-Temperature Operation of Index-Coupled Distributed-Feedback 4.75 Micron Quantum Cascade Lasers Fabricated Without Epitaxial Regrowth

    NASA Technical Reports Server (NTRS)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak

    2013-01-01

    The Mars Science Laboratory (MSL) was spin-stabilized during its cruise to Mars. We discuss the effects of spin on the radiometric data and how the orbit determination team dealt with them. Additionally, we will discuss the unplanned benefits of detailed spin modeling including attitude estimation and spacecraft clock correlation.

  10. Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.

    PubMed

    Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro

    2018-06-07

    Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.

  11. Nonperturbative stochastic method for driven spin-boson model

    NASA Astrophysics Data System (ADS)

    Orth, Peter P.; Imambekov, Adilet; Le Hur, Karyn

    2013-01-01

    We introduce and apply a numerically exact method for investigating the real-time dissipative dynamics of quantum impurities embedded in a macroscopic environment beyond the weak-coupling limit. We focus on the spin-boson Hamiltonian that describes a two-level system interacting with a bosonic bath of harmonic oscillators. This model is archetypal for investigating dissipation in quantum systems, and tunable experimental realizations exist in mesoscopic and cold-atom systems. It finds abundant applications in physics ranging from the study of decoherence in quantum computing and quantum optics to extended dynamical mean-field theory. Starting from the real-time Feynman-Vernon path integral, we derive an exact stochastic Schrödinger equation that allows us to compute the full spin density matrix and spin-spin correlation functions beyond weak coupling. We greatly extend our earlier work [P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.032118 82, 032118 (2010)] by fleshing out the core concepts of the method and by presenting a number of interesting applications. Methodologically, we present an analogy between the dissipative dynamics of a quantum spin and that of a classical spin in a random magnetic field. This analogy is used to recover the well-known noninteracting-blip approximation in the weak-coupling limit. We explain in detail how to compute spin-spin autocorrelation functions. As interesting applications of our method, we explore the non-Markovian effects of the initial spin-bath preparation on the dynamics of the coherence σx(t) and of σz(t) under a Landau-Zener sweep of the bias field. We also compute to a high precision the asymptotic long-time dynamics of σz(t) without bias and demonstrate the wide applicability of our approach by calculating the spin dynamics at nonzero bias and different temperatures.

  12. Quantum Spin Glasses, Annealing and Computation

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Bikas K.; Inoue, Jun-ichi; Tamura, Ryo; Tanaka, Shu

    2017-05-01

    List of tables; List of figures, Preface; 1. Introduction; Part I. Quantum Spin Glass, Annealing and Computation: 2. Classical spin models from ferromagnetic spin systems to spin glasses; 3. Simulated annealing; 4. Quantum spin glass; 5. Quantum dynamics; 6. Quantum annealing; Part II. Additional Notes: 7. Notes on adiabatic quantum computers; 8. Quantum information and quenching dynamics; 9. A brief historical note on the studies of quantum glass, annealing and computation.

  13. Structural Effects on the Spin Dynamics of Potential Molecular Qubits.

    PubMed

    Atzori, Matteo; Benci, Stefano; Morra, Elena; Tesi, Lorenzo; Chiesa, Mario; Torre, Renato; Sorace, Lorenzo; Sessoli, Roberta

    2018-01-16

    Control of spin-lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin-lattice relaxation time as a function of the magnetic field, for S = 1 / 2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0-6.0 μs in the 4-100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.

  14. Noisy Spins and the Richardson-Gaudin Model

    NASA Astrophysics Data System (ADS)

    Rowlands, Daniel A.; Lamacraft, Austen

    2018-03-01

    We study a system of spins (qubits) coupled to a common noisy environment, each precessing at its own frequency. The correlated noise experienced by the spins implies long-lived correlations that relax only due to the differing frequencies. We use a mapping to a non-Hermitian integrable Richardson-Gaudin model to find the exact spectrum of the quantum master equation in the high-temperature limit and, hence, determine the decay rate. Our solution can be used to evaluate the effect of inhomogeneous splittings on a system of qubits coupled to a common bath.

  15. Bold Diagrammatic Monte Carlo Method Applied to Fermionized Frustrated Spins

    NASA Astrophysics Data System (ADS)

    Kulagin, S. A.; Prokof'ev, N.; Starykh, O. A.; Svistunov, B.; Varney, C. N.

    2013-02-01

    We demonstrate, by considering the triangular lattice spin-1/2 Heisenberg model, that Monte Carlo sampling of skeleton Feynman diagrams within the fermionization framework offers a universal first-principles tool for strongly correlated lattice quantum systems. We observe the fermionic sign blessing—cancellation of higher order diagrams leading to a finite convergence radius of the series. We calculate the magnetic susceptibility of the triangular-lattice quantum antiferromagnet in the correlated paramagnet regime and reveal a surprisingly accurate microscopic correspondence with its classical counterpart at all accessible temperatures. The extrapolation of the observed relation to zero temperature suggests the absence of the magnetic order in the ground state. We critically examine the implications of this unusual scenario.

  16. Machine learning Z2 quantum spin liquids with quasiparticle statistics

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Melko, Roger G.; Kim, Eun-Ah

    2017-12-01

    After decades of progress and effort, obtaining a phase diagram for a strongly correlated topological system still remains a challenge. Although in principle one could turn to Wilson loops and long-range entanglement, evaluating these nonlocal observables at many points in phase space can be prohibitively costly. With growing excitement over topological quantum computation comes the need for an efficient approach for obtaining topological phase diagrams. Here we turn to machine learning using quantum loop topography (QLT), a notion we have recently introduced. Specifically, we propose a construction of QLT that is sensitive to quasiparticle statistics. We then use mutual statistics between the spinons and visons to detect a Z2 quantum spin liquid in a multiparameter phase space. We successfully obtain the quantum phase boundary between the topological and trivial phases using a simple feed-forward neural network. Furthermore, we demonstrate advantages of our approach for the evaluation of phase diagrams relating to speed and storage. Such statistics-based machine learning of topological phases opens new efficient routes to studying topological phase diagrams in strongly correlated systems.

  17. Mermin-Wagner physics, (H ,T ) phase diagram, and candidate quantum spin-liquid phase in the spin-1/2 triangular-lattice antiferromagnet Ba8CoNb6O24

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Dai, J.; Zhou, P.; Wang, P. S.; Li, T. R.; Song, W. H.; Wang, J. C.; Ma, L.; Zhang, Z.; Li, S. Y.; Luke, G. M.; Normand, B.; Xiang, T.; Yu, W.

    2018-04-01

    Ba8CoNb6O24 presents a system whose Co2 + ions have an effective spin 1/2 and construct a regular triangular-lattice antiferromagnet (TLAFM) with a very large interlayer spacing, ensuring purely two-dimensional character. We exploit this ideal realization to perform a detailed experimental analysis of the S =1 /2 TLAFM, which is one of the keystone models in frustrated quantum magnetism. We find strong low-energy spin fluctuations and no magnetic ordering, but a diverging correlation length down to 0.1 K, indicating a Mermin-Wagner trend toward zero-temperature order. Below 0.1 K, however, our low-field measurements show an unexpected magnetically disordered state, which is a candidate quantum spin liquid. We establish the (H ,T ) phase diagram, mapping in detail the quantum fluctuation corrections to the available theoretical analysis. These include a strong upshift in field of the maximum ordering temperature, qualitative changes to both low- and high-field phase boundaries, and an ordered regime apparently dominated by the collinear "up-up-down" state. Ba8CoNb6O24 , therefore, offers fresh input for the development of theoretical approaches to the field-induced quantum phase transitions of the S =1 /2 Heisenberg TLAFM.

  18. Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates

    DOE PAGES

    Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.; ...

    2017-08-01

    Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less

  19. A modified Stern-Gerlach experiment using a quantum two-state magnetic field

    NASA Astrophysics Data System (ADS)

    Daghigh, Ramin G.; Green, Michael D.; West, Christopher J.

    2018-06-01

    The Stern-Gerlach experiment has played an important role in our understanding of quantum behavior. We propose and analyze a modified version of this experiment where the magnetic field of the detector is in a quantum superposition, which may be experimentally realized using a superconducting flux qubit. We show that if incident spin-1/2 particles couple with the two-state magnetic field, a discrete target distribution results that resembles the distribution in the classical Stern-Gerlach experiment. As an application of the general result, we compute the distribution for a Gaussian waveform of the incident fermion. This analysis allows us to demonstrate theoretically: (1) the quantization of the intrinsic angular momentum of a spin-1/2 particle, and (2) a correlation between EPR pairs leading to nonlocality, without necessarily collapsing the particle's spin wavefunction.

  20. One-Way Deficit and Quantum Phase Transitions in XX Model

    NASA Astrophysics Data System (ADS)

    Wang, Yao-Kun; Zhang, Yu-Ran

    2018-02-01

    Quantum correlations including entanglement and quantum discord have drawn much attention in characterizing quantum phase transitions. Quantum deficit originates in questions regarding work extraction from quantum systems coupled to a heat bath (Oppenheim et al. Phys. Rev. Lett. 89, 180402, 2002). It links quantum thermodynamics with quantum correlations and provides a new standpoint for understanding quantum non-locality. In this paper, we evaluate the one-way deficit of two adjacent spins in the bulk for the XX model. In the thermodynamic limit, the XX model undergoes a first order transition from fully polarized to a critical phase with quasi-long-range order with decrease of quantum parameter. We find that the one-way deficit becomes nonzero after the critical point. Therefore, the one-way deficit characterizes the quantum phase transition in the XX model.

  1. Two-dimensional Fermi gas in spin-dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Anzai, Takaaki; Nishida, Yusuke

    Experimental techniques in ultracold atoms allow us to tune parameters of the system at will. In particular, synthetic magnetic fields have been created by using the atom-light coupling and, therefore, it is interesting to study what kinds of quantum phenomena appear in correlated ultracold atoms subjected to synthetic magnetic fields. In this work, we consider a two-dimensional Fermi gas with two spin states in spin-dependent magnetic fields which are assumed to be antiparallel for different spin states. By studying the ground-state phase diagram within the mean-field approximation, we find quantum spin Hall and superfluid phases separated by a second-order phase transition. We also show that there are regions where the superfluid gap parameter is proportional to the attractive coupling, which is in marked contrast to the usual exponential dependence. Moreover, we elucidate that the universality class of the phase transition belongs to that of the XY model at special points of the phase boundary, while it belongs to that of a dilute Bose gas anywhere else. International Research Center for Nanoscience and Quantum Physics, Tokyo Institute of Technology.

  2. Determination of dipole coupling constants using heteronuclear multiple quantum NMR

    NASA Astrophysics Data System (ADS)

    Weitekamp, D. P.; Garbow, J. R.; Pines, A.

    1982-09-01

    The problem of extracting dipole couplings from a system of N spins I = 1/2 and one spin S by NMR techniques is analyzed. The resolution attainable using a variety of single quantum methods is reviewed. The theory of heteronuclear multiple quantum (HMQ) NMR is developed, with particular emphasis being placed on the superior resolution available in HMQ spectra. Several novel pulse sequences are introduced, including a two-step method for the excitation of HMQ coherence. Experiments on partially oriented [1-13C] benzene demonstrate the excitation of the necessary HMQ coherence and illustrate the calculation of relative line intensities. Spectra of high order HMQ coherence under several different effective Hamiltonians achievable by multiple pulse sequences are discussed. A new effective Hamiltonian, scalar heteronuclear recoupled interactions by multiple pulse (SHRIMP), achieved by the simultaneous irradiation of both spin species with the same multiple pulse sequence, is introduced. Experiments are described which allow heteronuclear couplings to be correlated with an S-spin spreading parameter in spectra free of inhomogeneous broadening.

  3. Atomic "bomb testing": the Elitzur-Vaidman experiment violates the Leggett-Garg inequality

    NASA Astrophysics Data System (ADS)

    Robens, Carsten; Alt, Wolfgang; Emary, Clive; Meschede, Dieter; Alberti, Andrea

    2017-01-01

    Elitzur and Vaidman have proposed a measurement scheme that, based on the quantum superposition principle, allows one to detect the presence of an object—in a dramatic scenario, a bomb—without interacting with it. It was pointed out by Ghirardi that this interaction-free measurement scheme can be put in direct relation with falsification tests of the macro-realistic worldview. Here we have implemented the "bomb test" with a single atom trapped in a spin-dependent optical lattice to show explicitly a violation of the Leggett-Garg inequality—a quantitative criterion fulfilled by macro-realistic physical theories. To perform interaction-free measurements, we have implemented a novel measurement method that correlates spin and position of the atom. This method, which quantum mechanically entangles spin and position, finds general application for spin measurements, thereby avoiding the shortcomings inherent in the widely used push-out technique. Allowing decoherence to dominate the evolution of our system causes a transition from quantum to classical behavior in fulfillment of the Leggett-Garg inequality.

  4. Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions

    NASA Astrophysics Data System (ADS)

    Scazza, F.; Hofrichter, C.; Höfer, M.; de Groot, P. C.; Bloch, I.; Fölling, S.

    2014-10-01

    Spin-exchanging interactions govern the properties of strongly correlated electron systems such as many magnetic materials. When orbital degrees of freedom are present, spin exchange between different orbitals often dominates, leading to the Kondo effect, heavy fermion behaviour or magnetic ordering. Ultracold ytterbium or alkaline-earth ensembles have attracted much recent interest as model systems for these effects, with two (meta-) stable electronic configurations representing independent orbitals. We report the observation of spin-exchanging contact interactions in a two-orbital SU(N)-symmetric quantum gas realized with fermionic 173Yb. We find strong inter-orbital spin exchange by spectroscopic characterization of all interaction channels and demonstrate SU(N = 6) symmetry within our measurement precision. The spin-exchange process is also directly observed through the dynamic equilibration of spin imbalances between ensembles in separate orbitals. The realization of an SU(N)-symmetric two-orbital Hubbard Hamiltonian opens the route to quantum simulations with extended symmetries and with orbital magnetic interactions, such as the Kondo lattice model.

  5. SPIN CORRELATIONS OF THE FINAL LEPTONS IN THE TWO-PHOTON PROCESSES γγ → e+e-, μ+μ-, τ+τ-

    NASA Astrophysics Data System (ADS)

    Lyuboshitz, Valery V.; Lyuboshitz, Vladimir L.

    2014-12-01

    The spin structure of the process γγ → e+e- is theoretically investigated. It is shown that, if the primary photons are unpolarized, the final electron and positron are unpolarized as well but their spins are strongly correlated. For the final (e+e-) system, explicit expressions for the components of the correlation tensor are derived, and the relative fractions of singlet and triplet states are found. It is demonstrated that in the process γγ → e+e- one of the Bell-type incoherence inequalities for the correlation tensor components is always violated and, thus, spin correlations of the electron and positron in this process have the strongly pronounced quantum character. Analogous consideration can be wholly applied as well to the two-photon processes γγ → μ+μ- and γγ → τ+τ-, which become possible at considerably higher energies.

  6. Dissipative environment may improve the quantum annealing performances of the ferromagnetic p -spin model

    NASA Astrophysics Data System (ADS)

    Passarelli, G.; De Filippis, G.; Cataudella, V.; Lucignano, P.

    2018-02-01

    We investigate the quantum annealing of the ferromagnetic p -spin model in a dissipative environment (p =5 and p =7 ). This model, in the large-p limit, codifies Grover's algorithm for searching in an unsorted database [L. K. Grover, Proceedings of the 28th Annual ACM Symposium on Theory of Computing (ACM, New York, 1996), pp. 212-219]. The dissipative environment is described by a phonon bath in thermal equilibrium at finite temperature. The dynamics is studied in the framework of a Lindblad master equation for the reduced density matrix describing only the spins. Exploiting the symmetries of our model Hamiltonian, we can describe many spins and extrapolate expected trends for large N and p . While at weak system-bath coupling the dissipative environment has detrimental effects on the annealing results, we show that in the intermediate-coupling regime, the phonon bath seems to speed up the annealing at low temperatures. This improvement in the performance is likely not due to thermal fluctuation but rather arises from a correlated spin-bath state and persists even at zero temperature. This result may pave the way to a new scenario in which, by appropriately engineering the system-bath coupling, one may optimize quantum annealing performances below either the purely quantum or the classical limit.

  7. Entanglement of Electron Spins in Two Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Chen, Yuanzhen; Webb, Richard

    2004-03-01

    We study the entanglement of electron spins in a coupled quantum dots system at 70 mK. Two quantum dots are fabricated in a GaAs/AlGaAs heterostructure containing a high mobility 2-D electron gas. The two dots can be tuned independently and the electron spins in the dots are coupled through an exchange interaction between them. An exchange gate is used to vary the height and width of a potential barrier between the two dots, thus controlling the strength of the exchange interaction. Electrons are injected to the coupled dots by two independent DC currents and the output of the dots is incident on a beam splitter, which introduces quantum interferences. Cross-correlations of the shot noise of currents from the two output channels are measured and compared with theory (1). *Work supported by LPS and ARDA under MDA90401C0903 and NSF under DMR 0103223. (1) Burkard, Loss, & Sukhorukov, Phys. Rev. B61, R16303 (2000).

  8. Entanglement entropy and correlations in loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Feller, Alexandre; Livine, Etera R.

    2018-02-01

    Black hole entropy is one of the few windows into the quantum aspects of gravitation, and its study over the years has highlighted the holographic nature of gravity. At the non-perturbative level in quantum gravity, promising explanations are being explored in terms of the entanglement entropy between regions of space. In the context of loop quantum gravity, this translates into an analysis of the correlations between the regions of the spin network states defining the quantum state of the geometry of space. In this paper, we explore a class of states, motivated by results in condensed matter physics, satisfying an area law for entanglement entropy and having non-trivial correlations. We highlight that entanglement comes from holonomy operators acting on loops crossing the boundary of the region.

  9. Electronic structure and quantum spin fluctuations at the magnetic phase transition in MnSi

    NASA Astrophysics Data System (ADS)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-05-01

    The effect of spin fluctuations on the heat capacity and homogeneous magnetic susceptibility of the chiral magnetic MnSi in the vicinity of magnetic transition has been investigated by using the free energy functional of the coupled electron and spin subsystems and taking into account the Dzyaloshinsky-Moriya interaction. For helical ferromagnetic ordering, we found that zero-point fluctuations of the spin density are large and comparable with fluctuations of the non-uniform magnetization. The amplitude of zero-point spin fluctuations shows a sharp decrease in the region of the magnetic phase transition. It is shown that sharp decrease of the amplitude of the quantum spin fluctuations results in the lambda-like maxima of the heat capacity and the homogeneous magnetic susceptibility. Above the temperature of the lambda anomaly, the spin correlation radius becomes less than the period of the helical structure and chiral fluctuations of the local magnetization appear. It is shown that formation of a "shoulder" on the temperature dependence of the heat capacity is due to disappearance of the local magnetization. Our finding allows to explain the experimentally observed features of the magnetic phase transition of MnSi as a result of the crossover of quantum and thermodynamic phase transitions.

  10. Critical behavior of dissipative two-dimensional spin lattices

    NASA Astrophysics Data System (ADS)

    Rota, R.; Storme, F.; Bartolo, N.; Fazio, R.; Ciuti, C.

    2017-04-01

    We explore critical properties of two-dimensional lattices of spins interacting via an anisotropic Heisenberg Hamiltonian that are subject to incoherent spin flips. We determine the steady-state solution of the master equation for the density matrix via the corner-space renormalization method. We investigate the finite-size scaling and critical exponent of the magnetic linear susceptibility associated with a dissipative ferromagnetic transition. We show that the von Neumann entropy increases across the critical point, revealing a strongly mixed character of the ferromagnetic phase. Entanglement is witnessed by the quantum Fisher information, which exhibits a critical behavior at the transition point, showing that quantum correlations play a crucial role in the transition.

  11. Nonequilibrium Kondo effect by the equilibrium numerical renormalization group method: The hybrid Anderson model subject to a finite spin bias

    NASA Astrophysics Data System (ADS)

    Fang, Tie-Feng; Guo, Ai-Min; Sun, Qing-Feng

    2018-06-01

    We investigate Kondo correlations in a quantum dot with normal and superconducting electrodes, where a spin bias voltage is applied across the device and the local interaction U is either attractive or repulsive. When the spin current is blockaded in the large-gap regime, this nonequilibrium strongly correlated problem maps into an equilibrium model solvable by the numerical renormalization group method. The Kondo spectra with characteristic splitting due to the nonequilibrium spin accumulation are thus obtained at high precision. It is shown that while the bias-induced decoherence of the spin Kondo effect is partially compensated by the superconductivity, the charge Kondo effect is enhanced out of equilibrium and undergoes an additional splitting by the superconducting proximity effect, yielding four Kondo peaks in the local spectral density. In the charge Kondo regime, we find a universal scaling of charge conductance in this hybrid device under different spin biases. The universal conductance as a function of the coupling to the superconducting lead is peaked at and hence directly measures the Kondo temperature. Our results are of direct relevance to recent experiments realizing a negative-U charge Kondo effect in hybrid oxide quantum dots [Nat. Commun. 8, 395 (2017), 10.1038/s41467-017-00495-7].

  12. Anisotropic Invariance and the Distribution of Quantum Correlations.

    PubMed

    Cheng, Shuming; Hall, Michael J W

    2017-01-06

    We report the discovery of two new invariants for three-qubit states which, similarly to the three-tangle, are invariant under local unitary transformations and permutations of the parties. These quantities have a direct interpretation in terms of the anisotropy of pairwise spin correlations. Applications include a universal ordering of pairwise quantum correlation measures for pure three-qubit states; trade-off relations for anisotropy, three-tangle and Bell nonlocality; strong monogamy relations for Bell inequalities, Einstein-Podolsky-Rosen steering inequalities, geometric discord and fidelity of remote state preparation (including results for arbitrary three-party states); and a statistical and reference-frame-independent form of quantum secret sharing.

  13. Anisotropic Invariance and the Distribution of Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Cheng, Shuming; Hall, Michael J. W.

    2017-01-01

    We report the discovery of two new invariants for three-qubit states which, similarly to the three-tangle, are invariant under local unitary transformations and permutations of the parties. These quantities have a direct interpretation in terms of the anisotropy of pairwise spin correlations. Applications include a universal ordering of pairwise quantum correlation measures for pure three-qubit states; trade-off relations for anisotropy, three-tangle and Bell nonlocality; strong monogamy relations for Bell inequalities, Einstein-Podolsky-Rosen steering inequalities, geometric discord and fidelity of remote state preparation (including results for arbitrary three-party states); and a statistical and reference-frame-independent form of quantum secret sharing.

  14. Quantum phase transition and Coulomb blockade effect in triangular quantum dots with interdot capacitive and tunnel couplings

    NASA Astrophysics Data System (ADS)

    Xiong, Yong-Chen; Wang, Wei-Zhong; Yang, Jun-Tao; Huang, Hai-Ming

    2015-02-01

    The quantum phase transition and the electronic transport in a triangular quantum dot system are investigated using the numerical renormalization group method. We concentrate on the interplay between the interdot capacitive coupling V and the interdot tunnel coupling t. For small t, three dots form a local spin doublet. As t increases, due to the competition between V and t, there exist two first-order transitions with phase sequence spin-doublet-magnetic frustration phase-orbital spin singlet. When t is absent, the evolutions of the total charge on the dots and the linear conductance are of the typical Coulomb-blockade features with increasing gate voltage. While for sufficient t, the antiferromagnetic spin correlation between dots is enhanced, and the conductance is strongly suppressed for the bonding state is almost doubly occupied. Project supported by the National Natural Science Foundation of China (Grant Nos. 10874132 and 11174228) and the Doctoral Scientific Research Foundation of HUAT (Grant No. BK201407). One of the authors (Huang Hai-Ming) supported by the Scientific Research Items Foundation of Educational Committee of Hubei Province, China (Grant No. Q20131805).

  15. Controllable Quantum States Mesoscopic Superconductivity and Spintronics (MS+S2006)

    NASA Astrophysics Data System (ADS)

    Takayanagi, Hideaki; Nitta, Junsaku; Nakano, Hayato

    2008-10-01

    Mesoscopic effects in superconductors. Tunneling measurements of charge imbalance of non-equilibrium superconductors / R. Yagi. Influence of magnetic impurities on Josephson current in SNS junctions / T. Yokoyama. Nonlinear response and observable signatures of equilibrium entanglement / A. M. Zagoskin. Stimulated Raman adiabatic passage with a Cooper pair box / Giuseppe Falci. Crossed Andreev reflection-induced giant negative magnetoresistance / Francesco Giazotto -- Quantum modulation of superconducting junctions. Adiabatic pumping through a Josephson weak link / Fabio Taddei. Squeezing of superconducting qubits / Kazutomu Shiokawa. Detection of Berrys phases in flux qubits with coherent pulses / D. N. Zheng. Probing entanglement in the system of coupled Josephson qubits / A. S. Kiyko. Josephson junction with tunable damping using quasi-particle injection / Ryuta Yagi. Macroscopic quantum coherence in rf-SQUIDs / Alexey V. Ustinov. Bloch oscillations in a Josephson circuit / D. Esteve. Manipulation of magnetization in nonequilibrium superconducting nanostructures / F. Giazotto -- Superconducting qubits. Decoherence and Rabi oscillations in a qubit coupled to a quantum two-level system / Sahel Ashhab. Phase-coupled flux qubits: CNOT operation, controllable coupling and entanglement / Mun Dae Kim. Characteristics of a switchable superconducting flux transformer with a DC-SQUID / Yoshihiro Shimazu. Characterization of adiabatic noise in charge-based coherent nanodevices / E. Paladino -- Unconventional superconductors. Threshold temperatures of zero-bias conductance peak and zero-bias conductance dip in diffusive normal metal/superconductor junctions / Iduru Shigeta. Tunneling conductance in 2DEG/S junctions in the presence of Rashba spin-orbit coupling / T. Yokoyama. Theory of charge transport in diffusive ferromagnet/p-wave superconductor junctions / T. Yokoyama. Theory of enhanced proximity effect by the exchange field in FS bilayers / T. Yokoyama. Theory of Josephson effect in diffusive d-wave junctions / T. Yokoyama. Quantum dissipation due to the zero energy bound states in high-T[symbol] superconductor junctions / Shiro Kawabata. Spin-polarized heat transport in ferromagnet/unconventional superconductor junctions / T. Yokoyama. Little-Parks oscillations in chiral p-wave superconducting rings / Mitsuaki Takigawa. Theoretical study of synergy effect between proximity effect and Andreev interface resonant states in triplet p-wave superconductors / Yasunari Tanuma. Theory of proximity effect in unconventional superconductor junctions / Y. Tanaka -- Quantum information. Analyzing the effectiveness of the quantum repeater / Kenichiro Furuta. Architecture-dependent execution time of Shor's algorithm / Rodney Van Meter -- Quantum dots and Kondo effects. Coulomb blockade properties of 4-gated quantum dot / Shinichi Amaha. Order-N electronic structure calculation of n-type GaAs quantum dots / Shintaro Nomura. Transport through double-dots coupled to normal and superconducting leads / Yoichi Tanaka. A study of the quantum dot in application to terahertz single photon counting / Vladimir Antonov. Electron transport through laterally coupled double quantum dots / T. Kubo. Dephasing in Kondo systems: comparison between theory and experiment / F. Mallet. Kondo effect in quantum dots coupled with noncollinear ferromagnetic leads / Daisuke Matsubayashi. Non-crossing approximation study of multi-orbital Kondo effect in quantum dot systems / Tomoko Kita. Theoretical study of electronic states and spin operation in coupled quantum dots / Mikio Eto. Spin correlation in a double quantum dot-quantum wire coupled system / S. Sasaki. Kondo-assisted transport through a multiorbital quantum dot / Rui Sakano. Spin decay in a quantum dot coupled to a quantum point contact / Massoud Borhani -- Quantum wires, low-dimensional electrons. Control of the electron density and electric field with front and back gates / Masumi Yamaguchi. Effect of the array distance on the magnetization configuration of submicron-sized ferromagnetic rings / Tetsuya Miyawaki. A wide GaAs/GaAlAs quantum well simultaneously containing two dimensional electrons and holes / Ane Jensen. Simulation of the photon-spin quantum state transfer process / Yoshiaki Rikitake. Magnetotransport in two-dimensional electron gases on cylindrical surface / Friedland Klaus-Juergen. Full counting statistics for a single-electron transistor at intermediate conductance / Yasuhiro Utsumi. Creation of spin-polarized current using quantum point contacts and its detection / Mikio Eto. Density dependent electron effective mass in a back-gated quantum well / S. Nomura. The supersymmetric sigma formula and metal-insulator transition in diluted magnetic semiconductors / I. Kanazawa. Spin-photovoltaic effect in quantum wires / A. Fedorov -- Quantum interference. Nonequilibrium transport in Aharonov-Bohm interferometer with electron-phonon interaction / Akiko Ueda. Fano resonance and its breakdown in AB ring embedded with a molecule / Shigeo Fujimoto, Yuhei Natsume. Quantum resonance above a barrier in the presence of dissipation / Kohkichi Konno. Ensemble averaging in metallic quantum networks / F. Mallet -- Coherence and order in exotic materials. Progress towards an electronic array on liquid helium / David Rees. Measuring noise and cross correlations at high frequencies in nanophysics / T. Martin. Single wall carbon nanotube weak links / K. Grove-Rasmussen. Optical preparation of nuclear spins coupled to a localized electron spin / Guido Burkard. Topological effects in charge density wave dynamics / Toru Matsuura. Studies on nanoscale charge-density-wave systems: fabrication technique and transport phenomena / Katsuhiko Inagaki. Anisotropic behavior of hysteresis induced by the in-plane field in the v = 2/3 quantum Hall state / Kazuki Iwata. Phase diagram of the v = 2 bilayer quantum Hall state / Akira Fukuda -- Trapped ions (special talk). Quantum computation with trapped ions / Hartmut Häffner.

  16. Single-copy entanglement in critical quantum spin chains

    NASA Astrophysics Data System (ADS)

    Eisert, J.; Cramer, M.

    2005-10-01

    We consider the single-copy entanglement as a quantity to assess quantum correlations in the ground state in quantum many-body systems. We show for a large class of models that already on the level of single specimens of spin chains, criticality is accompanied with the possibility of distilling a maximally entangled state of arbitrary dimension from a sufficiently large block deterministically, with local operations and classical communication. These analytical results—which refine previous results on the divergence of block entropy as the rate at which maximally entangled pairs can be distilled from many identically prepared chains—are made quantitative for general isotropic translationally invariant spin chains that can be mapped onto a quasifree fermionic system, and for the anisotropic XY model. For the XX model, we provide the asymptotic scaling of ˜(1/6)log2(L) , and contrast it with the block entropy.

  17. The influence of further-neighbor spin-spin interaction on a ground state of 2D coupled spin-electron model in a magnetic field

    NASA Astrophysics Data System (ADS)

    Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália

    2018-05-01

    An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.

    Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less

  19. Relay entanglement and clusters of correlated spins

    NASA Astrophysics Data System (ADS)

    Doronin, S. I.; Zenchuk, A. I.

    2018-06-01

    Considering a spin-1/2 chain, we suppose that the entanglement passes from a given pair of particles to another one, thus establishing the relay transfer of entanglement along the chain. Therefore, we introduce the relay entanglement as a sum of all pairwise entanglements in a spin chain. For more detailed studying the effects of remote pairwise entanglements, we use the partial sums collecting entanglements between the spins separated by up to a certain number of nodes. The problem of entangled cluster formation is considered, and the geometric mean entanglement is introduced as a characteristic of quantum correlations in a cluster. Generally, the lifetime of a cluster decreases with an increase in its size.

  20. Resolution of the EPR Paradox for Fermion Spin Correlations

    NASA Astrophysics Data System (ADS)

    Close, Robert

    2011-10-01

    The EPR paradox addresses the question of whether a physical system can have a definite state independent of its measurement. Bell's Theorem places limits on correlations between local measurements of particles whose properties are established prior to measurement. Experimental violation of Bell's theorem has been regarded as evidence against the existence of a definite state prior to measurement. We model fermions as having a spatial distribution of spin values, so that a Stern-Gerlach device samples the spin distribution differently at different orientations. The computed correlations agree with quantum mechanical predictions and experimental observations. Bell's Theorem is not applicable because for any sampling of angles, different points on the sphere have different density of states.

  1. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy

    2015-10-01

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110-120 kHz), 1H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong 1H-1H homonuclear dipolar couplings and narrow 1H chemical shift (CS) ranges, which render it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) 1H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about 1H-1H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for a variety of solid systems that possess high proton density.

  2. Proton chemical shift tensors determined by 3D ultrafast MAS double-quantum NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rongchun; Mroue, Kamal H.; Ramamoorthy, Ayyalusamy, E-mail: ramamoor@umich.edu

    2015-10-14

    Proton NMR spectroscopy in the solid state has recently attracted much attention owing to the significant enhancement in spectral resolution afforded by the remarkable advances in ultrafast magic angle spinning (MAS) capabilities. In particular, proton chemical shift anisotropy (CSA) has become an important tool for obtaining specific insights into inter/intra-molecular hydrogen bonding. However, even at the highest currently feasible spinning frequencies (110–120 kHz), {sup 1}H MAS NMR spectra of rigid solids still suffer from poor resolution and severe peak overlap caused by the strong {sup 1}H–{sup 1}H homonuclear dipolar couplings and narrow {sup 1}H chemical shift (CS) ranges, which rendermore » it difficult to determine the CSA of specific proton sites in the standard CSA/single-quantum (SQ) chemical shift correlation experiment. Herein, we propose a three-dimensional (3D) {sup 1}H double-quantum (DQ) chemical shift/CSA/SQ chemical shift correlation experiment to extract the CS tensors of proton sites whose signals are not well resolved along the single-quantum chemical shift dimension. As extracted from the 3D spectrum, the F1/F3 (DQ/SQ) projection provides valuable information about {sup 1}H–{sup 1}H proximities, which might also reveal the hydrogen-bonding connectivities. In addition, the F2/F3 (CSA/SQ) correlation spectrum, which is similar to the regular 2D CSA/SQ correlation experiment, yields chemical shift anisotropic line shapes at different isotropic chemical shifts. More importantly, since the F2/F1 (CSA/DQ) spectrum correlates the CSA with the DQ signal induced by two neighboring proton sites, the CSA spectrum sliced at a specific DQ chemical shift position contains the CSA information of two neighboring spins indicated by the DQ chemical shift. If these two spins have different CS tensors, both tensors can be extracted by numerical fitting. We believe that this robust and elegant single-channel proton-based 3D experiment provides useful atomistic-level structural and dynamical information for a variety of solid systems that possess high proton density.« less

  3. Coherent electron-spin-resonance manipulation of three individual spins in a triple quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noiri, A.; Yoneda, J.; Nakajima, T.

    2016-04-11

    Quantum dot arrays provide a promising platform for quantum information processing. For universal quantum simulation and computation, one central issue is to demonstrate the exhaustive controllability of quantum states. Here, we report the addressable manipulation of three single electron spins in a triple quantum dot using a technique combining electron-spin-resonance and a micro-magnet. The micro-magnet makes the local Zeeman field difference between neighboring spins much larger than the nuclear field fluctuation, which ensures the addressable driving of electron-spin-resonance by shifting the resonance condition for each spin. We observe distinct coherent Rabi oscillations for three spins in a semiconductor triple quantummore » dot with up to 25 MHz spin rotation frequencies. This individual manipulation over three spins enables us to arbitrarily change the magnetic spin quantum number of the three spin system, and thus to operate a triple-dot device as a three-qubit system in combination with the existing technique of exchange operations among three spins.« less

  4. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate

    DOE PAGES

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; ...

    2016-12-05

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO 4 that reveal broad spin excitations coveringmore » a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO 4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.« less

  5. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet

    NASA Astrophysics Data System (ADS)

    Gärttner, Martin; Bohnet, Justin G.; Safavi-Naini, Arghavan; Wall, Michael L.; Bollinger, John J.; Rey, Ana Maria

    2017-08-01

    Controllable arrays of ions and ultracold atoms can simulate complex many-body phenomena and may provide insights into unsolved problems in modern science. To this end, experimentally feasible protocols for quantifying the buildup of quantum correlations and coherence are needed, as performing full state tomography does not scale favourably with the number of particles. Here we develop and experimentally demonstrate such a protocol, which uses time reversal of the many-body dynamics to measure out-of-time-order correlation functions (OTOCs) in a long-range Ising spin quantum simulator with more than 100 ions in a Penning trap. By measuring a family of OTOCs as a function of a tunable parameter we obtain fine-grained information about the state of the system encoded in the multiple quantum coherence spectrum, extract the quantum state purity, and demonstrate the buildup of up to 8-body correlations. Future applications of this protocol could enable studies of many-body localization, quantum phase transitions, and tests of the holographic duality between quantum and gravitational systems.

  6. Correlation distance dependence of the resonance frequency of intermolecular zero quantum coherences and its implication for MR thermometry.

    PubMed

    Zhang, Le; McCallister, Andrew; Koshlap, Karl M; Branca, Rosa Tamara

    2018-03-01

    Because the resonance frequency of water-fat intermolecular zero-quantum coherences (iZQCs) reflects the water-fat frequency separation at the microscopic scale, these frequencies have been proposed and used as a mean to obtain more accurate temperature information. The purpose of this work was to investigate the dependence of the water-fat iZQC resonance frequency on sample microstructure and on the specific choice of the correlation distance. The effect of water-fat susceptibility gradients on the water-methylene iZQC resonance frequency was first computed and then measured for different water-fat emulsions and for a mixture of porcine muscle and fat. Similar measurements were also performed for mixed heteronuclear spin systems. A strong dependence of the iZQC resonance frequency on the sample microstructure and on the specific choice of the correlation distance was found for spin systems like water and fat that do not mix, but not for spin systems that mix at the molecular level. Because water and fat spins do not mix at the molecular level, the water-fat iZQC resonance frequency and its temperature coefficient are not only affected by sample microstructure but also by the specific choice of the correlation distance. Magn Reson Med 79:1429-1438, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Entanglement and nonlocality in multi-particle systems

    NASA Astrophysics Data System (ADS)

    Reid, Margaret D.; He, Qiong-Yi; Drummond, Peter D.

    2012-02-01

    Entanglement, the Einstein-Podolsky-Rosen (EPR) paradox and Bell's failure of local-hiddenvariable (LHV) theories are three historically famous forms of "quantum nonlocality". We give experimental criteria for these three forms of nonlocality in multi-particle systems, with the aim of better understanding the transition from microscopic to macroscopic nonlocality. We examine the nonlocality of N separated spin J systems. First, we obtain multipartite Bell inequalities that address the correlation between spin values measured at each site, and then we review spin squeezing inequalities that address the degree of reduction in the variance of collective spins. The latter have been particularly useful as a tool for investigating entanglement in Bose-Einstein condensates (BEC). We present solutions for two topical quantum states: multi-qubit Greenberger-Horne-Zeilinger (GHZ) states, and the ground state of a two-well BEC.

  8. Quantum critical point revisited by dynamical mean-field theory

    NASA Astrophysics Data System (ADS)

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    2017-03-01

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. The QCP is characterized by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. We use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. By comparing with the calculations based on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.

  9. Quantum critical point revisited by dynamical mean-field theory

    DOE PAGES

    Xu, Wenhu; Kotliar, Gabriel; Tsvelik, Alexei M.

    2017-03-31

    Dynamical mean-field theory is used to study the quantum critical point (QCP) in the doped Hubbard model on a square lattice. We characterize the QCP by a universal scaling form of the self-energy and a spin density wave instability at an incommensurate wave vector. The scaling form unifies the low-energy kink and the high-energy waterfall feature in the spectral function, while the spin dynamics includes both the critical incommensurate and high-energy antiferromagnetic paramagnons. Here, we use the frequency-dependent four-point correlation function of spin operators to calculate the momentum-dependent correction to the electron self-energy. Furthermore, by comparing with the calculations basedmore » on the spin-fermion model, our results indicate the frequency dependence of the quasiparticle-paramagnon vertices is an important factor to capture the momentum dependence in quasiparticle scattering.« less

  10. A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume-Capel model in a transverse crystal field

    NASA Astrophysics Data System (ADS)

    Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.

    2018-02-01

    A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.

  11. Disordered Route to the Coulomb Quantum Spin Liquid: Random Transverse Fields on Spin Ice in Pr 2 Zr 2 O 7

    DOE PAGES

    Wen, J. -J.; Koohpayeh, S. M.; Ross, K. A.; ...

    2017-03-08

    Inelastic neutron scattering reveals a broad continuum of excitations in Pr 2 Zr 2 O 7 , the temperature and magnetic field dependence of which indicate a continuous distribution of quenched transverse fields ( Δ ) acting on the non-Kramers Pr 3 + crystal field ground state doublets. Spin-ice correlations are apparent within 0.2 meV of the Zeeman energy. In a random phase approximation an excellent account of the data is provided and contains a transverse field distribution ρ ( Δ ) ∝ ( Δ 2 + Γ 2 ) - 1 , where Γ = 0.27 ( 1 )more » meV . Established during high temperature synthesis due to an underlying structural instability, it appears disorder in Pr 2 Zr 2 O 7 actually induces a quantum spin liquid.« less

  12. Ultrafast optical control of individual quantum dot spin qubits.

    PubMed

    De Greve, Kristiaan; Press, David; McMahon, Peter L; Yamamoto, Yoshihisa

    2013-09-01

    Single spins in semiconductor quantum dots form a promising platform for solid-state quantum information processing. The spin-up and spin-down states of a single electron or hole, trapped inside a quantum dot, can represent a single qubit with a reasonably long decoherence time. The spin qubit can be optically coupled to excited (charged exciton) states that are also trapped in the quantum dot, which provides a mechanism to quickly initialize, manipulate and measure the spin state with optical pulses, and to interface between a stationary matter qubit and a 'flying' photonic qubit for quantum communication and distributed quantum information processing. The interaction of the spin qubit with light may be enhanced by placing the quantum dot inside a monolithic microcavity. An entire system, consisting of a two-dimensional array of quantum dots and a planar microcavity, may plausibly be constructed by modern semiconductor nano-fabrication technology and could offer a path toward chip-sized scalable quantum repeaters and quantum computers. This article reviews the recent experimental developments in optical control of single quantum dot spins for quantum information processing. We highlight demonstrations of a complete set of all-optical single-qubit operations on a single quantum dot spin: initialization, an arbitrary SU(2) gate, and measurement. We review the decoherence and dephasing mechanisms due to hyperfine interaction with the nuclear-spin bath, and show how the single-qubit operations can be combined to perform spin echo sequences that extend the qubit decoherence from a few nanoseconds to several microseconds, more than 5 orders of magnitude longer than the single-qubit gate time. Two-qubit coupling is discussed, both within a single chip by means of exchange coupling of nearby spins and optically induced geometric phases, as well as over longer-distances. Long-distance spin-spin entanglement can be generated if each spin can emit a photon that is entangled with the spin, and these photons are then interfered. We review recent work demonstrating entanglement between a stationary spin qubit and a flying photonic qubit. These experiments utilize the polarization- and frequency-dependent spontaneous emission from the lowest charged exciton state to single spin Zeeman sublevels.

  13. Memory-built-in quantum cloning in a hybrid solid-state spin register

    NASA Astrophysics Data System (ADS)

    Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.

    2015-07-01

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.

  14. Memory-built-in quantum cloning in a hybrid solid-state spin register.

    PubMed

    Wang, W-B; Zu, C; He, L; Zhang, W-G; Duan, L-M

    2015-07-16

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science.

  15. Tunnel magnetoresistance for coherent spin-flip processes on an interacting quantum dot.

    PubMed

    Rudziński, W

    2009-01-28

    Spin-polarized electronic tunneling through a quantum dot coupled to ferromagnetic electrodes is investigated within a nonequilibrium Green function approach. An interplay between coherent intradot spin-flip transitions, tunneling processes and Coulomb correlations on the dot is studied for current-voltage characteristics of the tunneling junction in parallel and antiparallel magnetic configurations of the leads. It is found that due to the spin-flip processes electric current in the antiparallel configuration tends to the current characteristics in the parallel configuration, thus giving rise to suppression of the tunnel magnetoresistance (TMR) between the threshold bias voltages at which the dot energy level becomes active in tunneling. Also, the effect of a negative differential conductance in symmetrical junctions, splitting of the conductance peaks, significant modulation of TMR peaks around the threshold bias voltages as well as suppression of the diode-like behavior in asymmetrical junctions is discussed in the context of coherent intradot spin-flip transitions. It is also shown that TMR may be inverted at selected gate voltages, which qualitatively reproduces the TMR behavior predicted recently for temperatures in the Kondo regime, and observed experimentally beyond the Kondo regime for a semiconductor InAs quantum dot coupled to nickel electrodes.

  16. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    NASA Astrophysics Data System (ADS)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  17. Quantum spin transistor with a Heisenberg spin chain

    PubMed Central

    Marchukov, O. V.; Volosniev, A. G.; Valiente, M.; Petrosyan, D.; Zinner, N. T.

    2016-01-01

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements. PMID:27721438

  18. Quantum spin transistor with a Heisenberg spin chain.

    PubMed

    Marchukov, O V; Volosniev, A G; Valiente, M; Petrosyan, D; Zinner, N T

    2016-10-10

    Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.

  19. Measuring correlations in non-separable vector beams using projective measurements

    NASA Astrophysics Data System (ADS)

    Subramanian, Keerthan; Viswanathan, Nirmal K.

    2017-09-01

    Doubts regarding the completeness of quantum mechanics as raised by Einstein, Podolsky and Rosen(EPR) have predominantly been resolved by resorting to a measurement of correlations between entangled photons which clearly demonstrate violation of Bell's inequality. This article is an attempt to reconcile incompatibility of hidden variable theories with reality by demonstrating experimentally a violation of Bell's inequality in locally correlated systems whose two degrees of freedom, the spin and orbital angular momentum, are maximally correlated. To this end we propose and demonstrate a linear, achromatic modified Sagnac interferometer to project orbital angular momentum states which we combine with spin projections to measure correlations.

  20. Electrical control of single hole spins in nanowire quantum dots.

    PubMed

    Pribiag, V S; Nadj-Perge, S; Frolov, S M; van den Berg, J W G; van Weperen, I; Plissard, S R; Bakkers, E P A M; Kouwenhoven, L P

    2013-03-01

    The development of viable quantum computation devices will require the ability to preserve the coherence of quantum bits (qubits). Single electron spins in semiconductor quantum dots are a versatile platform for quantum information processing, but controlling decoherence remains a considerable challenge. Hole spins in III-V semiconductors have unique properties, such as a strong spin-orbit interaction and weak coupling to nuclear spins, and therefore, have the potential for enhanced spin control and longer coherence times. A weaker hyperfine interaction has previously been reported in self-assembled quantum dots using quantum optics techniques, but the development of hole-spin-based electronic devices in conventional III-V heterostructures has been limited by fabrication challenges. Here, we show that gate-tunable hole quantum dots can be formed in InSb nanowires and used to demonstrate Pauli spin blockade and electrical control of single hole spins. The devices are fully tunable between hole and electron quantum dots, which allows the hyperfine interaction strengths, g-factors and spin blockade anisotropies to be compared directly in the two regimes.

  1. Optically programmable electron spin memory using semiconductor quantum dots.

    PubMed

    Kroutvar, Miro; Ducommun, Yann; Heiss, Dominik; Bichler, Max; Schuh, Dieter; Abstreiter, Gerhard; Finley, Jonathan J

    2004-11-04

    The spin of a single electron subject to a static magnetic field provides a natural two-level system that is suitable for use as a quantum bit, the fundamental logical unit in a quantum computer. Semiconductor quantum dots fabricated by strain driven self-assembly are particularly attractive for the realization of spin quantum bits, as they can be controllably positioned, electronically coupled and embedded into active devices. It has been predicted that the atomic-like electronic structure of such quantum dots suppresses coupling of the spin to the solid-state quantum dot environment, thus protecting the 'spin' quantum information against decoherence. Here we demonstrate a single electron spin memory device in which the electron spin can be programmed by frequency selective optical excitation. We use the device to prepare single electron spins in semiconductor quantum dots with a well defined orientation, and directly measure the intrinsic spin flip time and its dependence on magnetic field. A very long spin lifetime is obtained, with a lower limit of about 20 milliseconds at a magnetic field of 4 tesla and at 1 kelvin.

  2. Disordered wires and quantum chaos in a momentum-space lattice

    NASA Astrophysics Data System (ADS)

    Meier, Eric; An, Fangzhao; Angonga, Jackson; Gadway, Bryce

    2017-04-01

    We present two topics: topological wires subjected to disorder and quantum chaos in a spin-J model. These studies are experimentally realized through the use of a momentum-space lattice, in which the dynamics of 87Rb atoms are recorded. In topological wires, a transition to a trivial phase is seen when disorder is applied to either the tunneling strengths or site energies. This transition is detected using both charge-pumping and Hamiltonian-quenching techniques. In the spin-J study we observe the effects of both linear and non-linear spin operations by measuring the linear entropy of the system as well as the out-of-time order correlation function. We further probe the chaotic signatures of the paradigmatic kicked top model.

  3. Interaction quantum quenches in the one-dimensional Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Heidrich-Meisner, Fabian; Bauer, Andreas; Dorfner, Florian; Riegger, Luis; Orso, Giuliano

    2016-05-01

    We discuss the nonequilibrium dynamics in two interaction quantum quenches in the one-dimensional Fermi-Hubbard model. First, we study the decay of the Néel state as a function of interaction strength. We observe a fast charge dynamics over which double occupancies are built up, while the long-time decay of the staggered moment is controlled by spin excitations, corroborated by the analysis of the entanglement dynamics. Second, we investigate the formation of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations in a spin-imbalanced system in quenches from the noninteracting case to attractive interactions. Even though the quench puts the system at a finite energy density, peaks at the characteristic FFLO quasimomenta are visible in the quasi-momentum distribution function, albeit with an exponential decay of s-wave pairing correlations. We also discuss the imprinting of FFLO correlations onto repulsively bound pairs and their rapid decay in ramps. Supported by the DFG (Deutsche Forschungsgemeinschaft) via FOR 1807.

  4. Versatile microwave-driven trapped ion spin system for quantum information processing

    PubMed Central

    Piltz, Christian; Sriarunothai, Theeraphot; Ivanov, Svetoslav S.; Wölk, Sabine; Wunderlich, Christof

    2016-01-01

    Using trapped atomic ions, we demonstrate a tailored and versatile effective spin system suitable for quantum simulations and universal quantum computation. By simply applying microwave pulses, selected spins can be decoupled from the remaining system and, thus, can serve as a quantum memory, while simultaneously, other coupled spins perform conditional quantum dynamics. Also, microwave pulses can change the sign of spin-spin couplings, as well as their effective strength, even during the course of a quantum algorithm. Taking advantage of the simultaneous long-range coupling between three spins, a coherent quantum Fourier transform—an essential building block for many quantum algorithms—is efficiently realized. This approach, which is based on microwave-driven trapped ions and is complementary to laser-based methods, opens a new route to overcoming technical and physical challenges in the quest for a quantum simulator and a quantum computer. PMID:27419233

  5. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    NASA Astrophysics Data System (ADS)

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; Dagotto, Elbio

    2015-06-01

    Lattice spin-fermion models are important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the "spins," are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The "traveling cluster approximation" (TCA) is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 103 sites. In this publication, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. This allows us to solve generic spin-fermion models easily on 104 lattice sites and with some effort on 105 lattice sites, representing the record lattice sizes studied for this family of models.

  6. Bending strain engineering in quantum spin hall system for controlling spin currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less

  7. Bending strain engineering in quantum spin hall system for controlling spin currents

    DOE PAGES

    Huang, Bing; Jin, Kyung-Hwan; Cui, Bin; ...

    2017-06-16

    Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. The concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. Here, we show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Moreover, the curvedmore » quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.« less

  8. Quasi-Particle Relaxation and Quantum Femtosecond Magnetism in Non-Equilibrium Phases of Insulating Manganites

    NASA Astrophysics Data System (ADS)

    Perakis, Ilias; Kapetanakis, Myron; Lingos, Panagiotis; Barmparis, George; Patz, A.; Li, T.; Wang, Jigang

    We study the role of spin quantum fluctuations driven by photoelectrons during 100fs photo-excitation of colossal magneto-resistive manganites in anti-ferromagnetic (AFM) charge-ordered insulating states with Jahn-Teller distortions. Our mean-field calculation of composite fermion excitations demonstrates that spin fluctuations reduce the energy gap by quasi-instantaneously deforming the AFM background, thus opening a conductive electronic pathway via FM correlation. We obtain two quasi-particle bands with distinct spin-charge dynamics and dependence on lattice distortions. To connect with fs-resolved spectroscopy experiments, we note the emergence of fs magnetization in the low-temperature magneto-optical signal, with threshold dependence on laser intensity characteristic of a photo-induced phase transition. Simultaneously, the differential reflectivity shows bi-exponential relaxation, with fs component, small at low intensity, exceeding ps component above threshold for fs AFM-to-FM switching. This suggests the emergence of a non-equilibrium metallic FM phase prior to establishment of a new lattice structure, linked with quantum magnetism via spin/charge/lattice couplings for weak magnetic fields.

  9. Topological interface physics in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Borgh, Magnus; Ruostekoski, Janne

    2013-05-01

    We present an experimentally viable scheme whereby the physics of coherent interfaces between topologically distinct regions can be studied in an atomic quantum gas. The interface engineering is achieved using the internal spin structures of atoms together with local control over interaction strengths. We consider a coherent interface between polar and ferromagnetic regions of a spin-1 Bose-Einstein condensate and show that defects representing different topologies can connect continuously across the boundary. We show that energy minimization leads to nontrivial interface-crossing defect structures, demonstrating how the method can be used to study stability properties of field-theoretical solitons. We demonstrate, e.g., the formation of a half-quantum vortex arch, an Alice arch, on the interface, exhibiting the topological charge of a point defect. We also demonstrate an energetically stable connection of a coreless vortex to two half-quantum vortices. Our method can be extended to study interface physics in spin-2 and spin-3 BECs with richer phenomenology, or in strongly correlated optical-lattice systems. We acknowledge financial support from the Leverhulme Trust.

  10. Nonlinearities in reservoir engineering: Enhancing quantum correlations

    NASA Astrophysics Data System (ADS)

    Hu, Xiangming; Hu, Qingping; Li, Lingchao; Huang, Chen; Rao, Shi

    2017-12-01

    There are two decisive factors for quantum correlations in reservoir engineering, but they are strongly reversely dependent on the atom-field nonlinearities. One is the squeezing parameter for the Bogoliubov modes-mediated collective interactions, while the other is the dissipative rates for the engineered collective dissipations. Exemplifying two-level atomic ensembles, we show that the moderate nonlinearities can compromise these two factors and thus enhance remarkably two-mode squeezing and entanglement of different spin atomic ensembles or different optical fields. This suggests that the moderate nonlinearities of the two-level systems are more advantageous for applications in quantum networks associated with reservoir engineering.

  11. Memory-built-in quantum cloning in a hybrid solid-state spin register

    PubMed Central

    Wang, W.-B.; Zu, C.; He, L.; Zhang, W.-G.; Duan, L.-M.

    2015-01-01

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude. The realization of a cloning machine with built-in quantum memory provides a key step for application of quantum cloning in quantum information science. PMID:26178617

  12. Entanglement of 3000 atoms by detecting one photon

    NASA Astrophysics Data System (ADS)

    Vuletic, Vladan

    2016-05-01

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. In particular, entangled states of many particles can be used to overcome limits on measurements performed with ensembles of independent atoms (standard quantum limit). Metrologically useful entangled states of large atomic ensembles (spin squeezed states) have been experimentally realized. These states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. We report the generation of entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, and verify an entanglement depth (the minimum number of mutually entangled atoms) that comprises 90% of the atomic ensemble containing 3100 atoms. Further technical improvement should allow the generation of more complex Schrödinger cat states, and of states the overcome the standard quantum limit.

  13. A semiconductor photon-sorter

    NASA Astrophysics Data System (ADS)

    Bennett, A. J.; Lee, J. P.; Ellis, D. J. P.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2016-10-01

    Obtaining substantial nonlinear effects at the single-photon level is a considerable challenge that holds great potential for quantum optical measurements and information processing. Of the progress that has been made in recent years one of the most promising methods is to scatter coherent light from quantum emitters, imprinting quantum correlations onto the photons. We report effective interactions between photons, controlled by a single semiconductor quantum dot that is weakly coupled to a monolithic cavity. We show that the nonlinearity of a transition modifies the counting statistics of a Poissonian beam, sorting the photons in number. This is used to create strong correlations between detection events and to create polarization-correlated photons from an uncorrelated stream using a single spin. These results pave the way for semiconductor optical switches operated by single quanta of light.

  14. Entanglement, nonlocality and multi-particle quantum correlations

    NASA Astrophysics Data System (ADS)

    Reid, Margaret D.

    2018-04-01

    This paper contributes to the proceedings of the Latin-American School of Physics (ELAF-2017) on Quantum Correlations, and is a brief review of quantum entanglement and nonlocality. In such a brief review, only some topics can be covered. The emphasis is on those topics relevant that may be relevant to detecting multi-particle quantum correlations arising in atomic and Bose-Einstein condensate (BEC) experiments. The paper is divided into five sections. In the first section, the historical papers of Einstein-Podolsky-Rosen (EPR), Bell, Schrodinger and Greenberger-Zeilinger-Horne (GHZ) are described in a tutorial fashion. This is followed by an introduction to entanglement and density operators. A discussion of the classes of nonlocality is given in the third section, including the modern interpretation of the correlations of the EPR paradox experiments, known as EPR steering correlations. The fourth section covers the detection and generation of so-called continuous variable entanglement and EPR steering. Various known criteria are derived with the details of the proofs given for tutorial purposes. The final section focuses on the criteria and methods that have been useful to detect quantum correlation in BEC or atomic systems. Recent results relating spin squeezing with quantum correlations, including entanglement and EPR steering, are summarised.

  15. Oscillatory wake potential with exchange-correlation in plasmas

    NASA Astrophysics Data System (ADS)

    Khan, Arroj A.; Zeba, I.; Jamil, M.; Asif, M.

    2017-12-01

    The oscillatory wake potential of a moving test charge is studied in quantum dusty plasmas. The plasma system consisting of electrons, ions and negatively charged dust species is embedded in an ambient magnetic field. The modified equation of dispersion is derived using a Quantum Hydrodynamic Model for magnetized plasmas. The quantum effects are inculcated through Fermi degenerate pressure, the tunneling effect and exchange-correlation effects. The study of oscillatory wake is important to know the existence of silence zones in space and astrophysical objects as well as for crystal formation. The graphical description of the potential depicts the significance of the exchange and correlation effects arising through spin and other variables on the wake potential.

  16. Thermal emergence of laser-induced spin dynamics for a Ni4 cluster

    NASA Astrophysics Data System (ADS)

    Sold, S.; Lefkidis, G.; Kamble, B.; Berakdar, J.; Hübner, W.

    2018-05-01

    We investigate the thermodynamic behavior of laser-induced spin dynamics of a perfect and a distorted Ni4 square in combination with an external thermal bath, by using the Lindblad-superoperator formalism. The energies of the planar molecules are determined with highly correlated ab initio quantum-chemistry calculations. When the distorted structure couples to the thermal bath a unique spin dynamics, i.e., a spin flip, emerges, due to the interplay of optically and thermally induced electronic transitions. The charge and spin relaxation times in dependence on the coupling strength and the bath temperature are determined and compared.

  17. Neutron scattering in the proximate quantum spin liquid α-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A.; Stone, Matthew B.; Lumsden, Mark D.; Mandrus, David G.; Tennant, David A.; Moessner, Roderich; Nagler, Stephen E.

    2017-06-01

    The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.

  18. Variational model for one-dimensional quantum magnets

    NASA Astrophysics Data System (ADS)

    Kudasov, Yu. B.; Kozabaranov, R. V.

    2018-04-01

    A new variational technique for investigation of the ground state and correlation functions in 1D quantum magnets is proposed. A spin Hamiltonian is reduced to a fermionic representation by the Jordan-Wigner transformation. The ground state is described by a new non-local trial wave function, and the total energy is calculated in an analytic form as a function of two variational parameters. This approach is demonstrated with an example of the XXZ-chain of spin-1/2 under a staggered magnetic field. Generalizations and applications of the variational technique for low-dimensional magnetic systems are discussed.

  19. A review of the quantum Hall effects in MgZnO/ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Falson, Joseph; Kawasaki, Masashi

    2018-05-01

    This review visits recent experimental efforts on high mobility two-dimensional electron systems (2DES) hosted at the Mg x Zn1-x O/ZnO heterointerface. We begin with the growth of these samples, and highlight the key characteristics of ozone-assisted molecular beam epitaxy required for their production. The transport characteristics of these structures are found to rival that of traditional semiconductor material systems, as signified by the high electron mobility (μ > 1000 000 cm2 Vs‑1) and rich quantum Hall features. Owing to a large effective mass and small dielectric constant, interaction effects are an order of magnitude stronger in comparison with the well studied GaAs-based 2DES. The strong correlation physics results in robust Fermi-liquid renormalization of the effective mass and spin susceptibility of carriers, which in turn dictates the parameter space for the quantum Hall effect. Finally, we explore the quantum Hall effect with a particular emphasis on the spin degree of freedom of carriers, and how their large spin splitting allows control of the ground states encountered at ultra-low temperatures within the fractional quantum Hall regime. We discuss in detail the physics of even-denominator fractional quantum Hall states, whose observation and underlying character remain elusive and exotic.

  20. Real-space imaging of fractional quantum Hall liquids

    NASA Astrophysics Data System (ADS)

    Hayakawa, Junichiro; Muraki, Koji; Yusa, Go

    2013-01-01

    Electrons in semiconductors usually behave like a gas--as independent particles. However, when confined to two dimensions under a perpendicular magnetic field at low temperatures, they condense into an incompressible quantum liquid. This phenomenon, known as the fractional quantum Hall (FQH) effect, is a quantum-mechanical manifestation of the macroscopic behaviour of correlated electrons that arises when the Landau-level filling factor is a rational fraction. However, the diverse microscopic interactions responsible for its emergence have been hidden by its universality and macroscopic nature. Here, we report real-space imaging of FQH liquids, achieved with polarization-sensitive scanning optical microscopy using trions (charged excitons) as a local probe for electron spin polarization. When the FQH ground state is spin-polarized, the triplet/singlet intensity map exhibits a spatial pattern that mirrors the intrinsic disorder potential, which is interpreted as a mapping of compressible and incompressible electron liquids. In contrast, when FQH ground states with different spin polarization coexist, domain structures with spontaneous quasi-long-range order emerge, which can be reproduced remarkably well from the disorder patterns using a two-dimensional random-field Ising model. Our results constitute the first reported real-space observation of quantum liquids in a class of broken symmetry state known as the quantum Hall ferromagnet.

  1. ON THE SPIN CORRELATIONS OF MUONS AND TAU LEPTONS GENERATED IN THE ANNIHILATION PROCESSES e+e- → μ+μ-, e+e- → τ+τ-

    NASA Astrophysics Data System (ADS)

    Lyuboshitz, Valery V.; Lyuboshitz, Vladimir L.

    2014-12-01

    Using the technique of helicity amplitudes, the electromagnetic process e+e- → μ+μ-(τ+τ-) is theoretically studied in the one-photon approximation. The structure of the triplet states of the final (μ+μ-) system is analyzed. It is shown that in the case of unpolarized electron and positron the final muons are also unpolarized, but their spins are strongly correlated. Explicit expressions for the components of the correlation tensor of the (μ+μ-) system are derived. The formula for the angular correlation at the decays of final muons μ+ and μ- is obtained. It is demonstrated that spin correlations of muons in the considered process have the purely quantum character, since one of the Bell-type incoherence inequalities for the correlation tensor components is always violated.

  2. Adiabatic quantum computing with spin qubits hosted by molecules.

    PubMed

    Yamamoto, Satoru; Nakazawa, Shigeaki; Sugisaki, Kenji; Sato, Kazunobu; Toyota, Kazuo; Shiomi, Daisuke; Takui, Takeji

    2015-01-28

    A molecular spin quantum computer (MSQC) requires electron spin qubits, which pulse-based electron spin/magnetic resonance (ESR/MR) techniques can afford to manipulate for implementing quantum gate operations in open shell molecular entities. Importantly, nuclear spins, which are topologically connected, particularly in organic molecular spin systems, are client qubits, while electron spins play a role of bus qubits. Here, we introduce the implementation for an adiabatic quantum algorithm, suggesting the possible utilization of molecular spins with optimized spin structures for MSQCs. We exemplify the utilization of an adiabatic factorization problem of 21, compared with the corresponding nuclear magnetic resonance (NMR) case. Two molecular spins are selected: one is a molecular spin composed of three exchange-coupled electrons as electron-only qubits and the other an electron-bus qubit with two client nuclear spin qubits. Their electronic spin structures are well characterized in terms of the quantum mechanical behaviour in the spin Hamiltonian. The implementation of adiabatic quantum computing/computation (AQC) has, for the first time, been achieved by establishing ESR/MR pulse sequences for effective spin Hamiltonians in a fully controlled manner of spin manipulation. The conquered pulse sequences have been compared with the NMR experiments and shown much faster CPU times corresponding to the interaction strength between the spins. Significant differences are shown in rotational operations and pulse intervals for ESR/MR operations. As a result, we suggest the advantages and possible utilization of the time-evolution based AQC approach for molecular spin quantum computers and molecular spin quantum simulators underlain by sophisticated ESR/MR pulsed spin technology.

  3. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates.

    PubMed

    Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp

    2018-04-27

    Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  4. Pairing versus phase coherence of doped holes in distinct quantum spin backgrounds

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Sheng, D. N.; Weng, Zheng-Yu

    2018-03-01

    We examine the pairing structure of holes injected into two distinct spin backgrounds: a short-range antiferromagnetic phase versus a symmetry protected topological phase. Based on density matrix renormalization group (DMRG) simulation, we find that although there is a strong binding between two holes in both phases, phase fluctuations can significantly influence the pair-pair correlation depending on the spin-spin correlation in the background. Here the phase fluctuation is identified as an intrinsic string operator nonlocally controlled by the spins. We show that while the pairing amplitude is generally large, the coherent Cooper pairing can be substantially weakened by the phase fluctuation in the symmetry-protected topological phase, in contrast to the short-range antiferromagnetic phase. It provides an example of a non-BCS mechanism for pairing, in which the paring phase coherence is determined by the underlying spin state self-consistently, bearing an interesting resemblance to the pseudogap physics in the cuprate.

  5. Quantum phases of two-component bosons with spin-orbit coupling in optical lattices

    NASA Astrophysics Data System (ADS)

    Yamamoto, Daisuke; Spielman, I. B.; Sá de Melo, C. A. R.

    2017-12-01

    Ultracold bosons in optical lattices are one of the few systems where bosonic matter is known to exhibit strong correlations. Here we push the frontier of our understanding of interacting bosons in optical lattices by adding synthetic spin-orbit coupling, and show that new kinds of density and chiral orders develop. The competition between the optical lattice period and the spin-orbit coupling length—which can be made comparable in experiments—along with the spin hybridization induced by a transverse field (i.e., Rabi coupling) and interparticle interactions create a rich variety of quantum phases including uniform, nonuniform, and phase-separated superfluids, as well as Mott insulators. The spontaneous symmetry-breaking phenomena at the transitions between them are explained by a two-order-parameter Ginzburg-Landau model with multiparticle umklapp processes. Finally, in order to characterize each phase, we calculated their experimentally measurable crystal momentum distributions.

  6. Circuit quantum electrodynamics with a spin qubit.

    PubMed

    Petersson, K D; McFaul, L W; Schroer, M D; Jung, M; Taylor, J M; Houck, A A; Petta, J R

    2012-10-18

    Electron spins trapped in quantum dots have been proposed as basic building blocks of a future quantum processor. Although fast, 180-picosecond, two-quantum-bit (two-qubit) operations can be realized using nearest-neighbour exchange coupling, a scalable, spin-based quantum computing architecture will almost certainly require long-range qubit interactions. Circuit quantum electrodynamics (cQED) allows spatially separated superconducting qubits to interact via a superconducting microwave cavity that acts as a 'quantum bus', making possible two-qubit entanglement and the implementation of simple quantum algorithms. Here we combine the cQED architecture with spin qubits by coupling an indium arsenide nanowire double quantum dot to a superconducting cavity. The architecture allows us to achieve a charge-cavity coupling rate of about 30 megahertz, consistent with coupling rates obtained in gallium arsenide quantum dots. Furthermore, the strong spin-orbit interaction of indium arsenide allows us to drive spin rotations electrically with a local gate electrode, and the charge-cavity interaction provides a measurement of the resulting spin dynamics. Our results demonstrate how the cQED architecture can be used as a sensitive probe of single-spin physics and that a spin-cavity coupling rate of about one megahertz is feasible, presenting the possibility of long-range spin coupling via superconducting microwave cavities.

  7. Entropic uncertainty relation of a two-qutrit Heisenberg spin model in nonuniform magnetic fields and its dynamics under intrinsic decoherence

    NASA Astrophysics Data System (ADS)

    Zhang, Zuo-Yuan; Wei, DaXiu; Liu, Jin-Ming

    2018-06-01

    The precision of measurements for two incompatible observables in a physical system can be improved with the assistance of quantum memory. In this paper, we investigate the quantum-memory-assisted entropic uncertainty relation for a spin-1 Heisenberg model in the presence of external magnetic fields, the systemic quantum entanglement (characterized by the negativity) is analyzed as contrast. Our results show that for the XY spin chain in thermal equilibrium, the entropic uncertainty can be reduced by reinforcing the coupling between the two particles or decreasing the temperature of the environment. At zero-temperature, the strong magnetic field can result in the growth of the entropic uncertainty. Moreover, in the Ising case, the variation trends of the uncertainty are relied on the choices of anisotropic parameters. Taking the influence of intrinsic decoherence into account, we find that the strong coupling accelerates the inflation of the uncertainty over time, whereas the high magnetic field contributes to its reduction during the temporal evolution. Furthermore, we also verify that the evolution behavior of the entropic uncertainty is roughly anti-correlated with that of the entanglement in the whole dynamical process. Our results could offer new insights into quantum precision measurement for the high spin solid-state systems.

  8. Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas Focus on strongly correlated quantum fluids: from ultracold quantum gases to QCD plasmas

    NASA Astrophysics Data System (ADS)

    Adams, Allan; Carr, Lincoln D.; Schaefer, Thomas; Steinberg, Peter; Thomas, John E.

    2013-04-01

    The last few years have witnessed a dramatic convergence of three distinct lines of research concerned with different kinds of extreme quantum matter. Two of these involve new quantum fluids that can be studied in the laboratory, ultracold quantum gases and quantum chromodynamics (QCD) plasmas. Even though these systems involve vastly different energy scales, the physical properties of the two quantum fluids are remarkably similar. The third line of research is based on the discovery of a new theoretical tool for investigating the properties of extreme quantum matter, holographic dualties. The main goal of this focus issue is to foster communication and understanding between these three fields. We proceed to describe each in more detail. Ultracold quantum gases offer a new paradigm for the study of nonperturbative quantum many-body physics. With widely tunable interaction strength, spin composition, and temperature, using different hyperfine states one can model spin-1/2 fermions, spin-3/2 fermions, and many other spin structures of bosons, fermions, and mixtures thereof. Such systems have produced a revolution in the study of strongly interacting Fermi systems, for example in the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover region, where a close collaboration between experimentalists and theorists—typical in this field—enabled ground-breaking studies in an area spanning several decades. Half-way through this crossover, when the scattering length characterizing low-energy collisions diverges, one obtains a unitary quantum gas, which is universal and scale invariant. The unitary gas has close parallels in the hydrodynamics of QCD plasmas, where the ratio of viscosity to entropy density is extremely low and comparable to the minimum viscosity conjecture, an important prediction of AdS/CFT (see below). Exciting developments in the thermodynamic and transport properties of strongly interacting Fermi gases are of broad interdisciplinary appeal and include new studies of high temperature superfluidity, viscosity, spin-transport, spin-imbalanced mixtures, and three-component gases, this last having a close parallel to color superconductivity. Another system important for the field of strongly-interacting quantum fluids was revealed by analysis of data from the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. Despite naive expectations based on asymptotic freedom that the deconfinement of quarks and gluons at high temperatures would lead to a weakly-interacting quark gluon plasma (QGP), the system appeared to be quite strongly coupled. Subsequent estimates of the viscosity-to-entropy ratio suggest that the system is tantalizingly close to the postulated bound from AdS/CFT calculations. The field is quite dynamic at the moment; new measurements are expected from upgraded detectors at RHIC, and an entirely new energy regime is being opened up by heavy ion collisions at the Large Hadron Collider (LHC) at CERN. On the theoretical side, much work remains to be done to extract the precise values of the transport coefficients, and to characterize the nature of quasi-particle excitations in the plasma. Finally, holographic dualities such as anti-de Sitter/conformal field theory (AdS/CFT) have opened a new theoretical window on strongly correlated fluids. Holography relates strongly-interacting quantum many-body systems to weakly-coupled semi-classical gravitational systems, replacing quasiparticles with geometry and translating various difficult questions about quantum fluids into simple and calculable geometric exercises. Already, some of the earliest lessons of holography, such as the conjectural bound on the viscosity-to-entropy ratio, have had a considerable impact on the theoretical and experimental study of strongly correlated fluids, from RHIC to ultracold atoms. More recently, the study of holographic superconductors, non-Fermi liquids and unitary quantum gases has touched off a flurry of interest in holography as a toolkit for studying strongly-correlated many-body systems more generally. Holography also allows us to use results from quantum fluids to study classical and quantum gravity; for example, the phase structure of a quantum many-body system translates into a rich classification of black holes in the dual space-time. Given both the rapid progress in applied holography and the exciting developments in ultracold quantum gases and QCD plasmas discussed above, the time is ripe for new collaborations across traditional lines of specialization. This focus issue explores the convergence between three heretofore separate areas of physics. Over forty research groups have contributed original work, and there will be a review article which complements these advances, overviewing them and presenting them in the context of all three fields and their interconnections. The review concludes with a list of open questions. This sets the tone for the present focus issue; namely, interdisciplinary dialog, openness, innovation, and possibility, an emphasis for which New Journal of Physics, an open-access journal of the highest quality, is especially fitted.

  9. Engineering the Eigenstates of Coupled Spin-1/2 Atoms on a Surface.

    PubMed

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D; Willke, Philip; Lado, Jose L; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J; Lutz, Christopher P

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1/2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1/2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1/2 atoms on surfaces.

  10. Engineering the Eigenstates of Coupled Spin-1 /2 Atoms on a Surface

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Bae, Yujeong; Paul, William; Natterer, Fabian D.; Willke, Philip; Lado, Jose L.; Ferrón, Alejandro; Choi, Taeyoung; Fernández-Rossier, Joaquín; Heinrich, Andreas J.; Lutz, Christopher P.

    2017-12-01

    Quantum spin networks having engineered geometries and interactions are eagerly pursued for quantum simulation and access to emergent quantum phenomena such as spin liquids. Spin-1 /2 centers are particularly desirable, because they readily manifest coherent quantum fluctuations. Here we introduce a controllable spin-1 /2 architecture consisting of titanium atoms on a magnesium oxide surface. We tailor the spin interactions by atomic-precision positioning using a scanning tunneling microscope (STM) and subsequently perform electron spin resonance on individual atoms to drive transitions into and out of quantum eigenstates of the coupled-spin system. Interactions between the atoms are mapped over a range of distances extending from highly anisotropic dipole coupling to strong exchange coupling. The local magnetic field of the magnetic STM tip serves to precisely tune the superposition states of a pair of spins. The precise control of the spin-spin interactions and ability to probe the states of the coupled-spin network by addressing individual spins will enable the exploration of quantum many-body systems based on networks of spin-1 /2 atoms on surfaces.

  11. Dynamics of Topological Excitations in a Model Quantum Spin Ice

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Jiong; Deng, Youjin; Wan, Yuan; Meng, Zi Yang

    2018-04-01

    We study the quantum spin dynamics of a frustrated X X Z model on a pyrochlore lattice by using large-scale quantum Monte Carlo simulation and stochastic analytic continuation. In the low-temperature quantum spin ice regime, we observe signatures of coherent photon and spinon excitations in the dynamic spin structure factor. As the temperature rises to the classical spin ice regime, the photon disappears from the dynamic spin structure factor, whereas the dynamics of the spinon remain coherent in a broad temperature window. Our results provide experimentally relevant, quantitative information for the ongoing pursuit of quantum spin ice materials.

  12. The classical and quantum dynamics of molecular spins on graphene.

    PubMed

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  13. The classical and quantum dynamics of molecular spins on graphene

    NASA Astrophysics Data System (ADS)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  14. SCALAR MULTI-PASS ATOMIC MAGNETOMETER

    DTIC Science & Technology

    2017-08-01

    primarily by atomic shot noise. Furthermore, the spectrum of quantum spin noise provides information on the time correlation between the spins and...the resulting light to be shot -noise-limited both with and without the polarizer in place. Newer Vixar VCSELs with internal gratings on output...described on inside pages STINFO COPY AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320

  15. Higher-Order Statistical Correlations and Mutual Information Among Particles in a Quantum Well

    NASA Astrophysics Data System (ADS)

    Yépez, V. S.; Sagar, R. P.; Laguna, H. G.

    2017-12-01

    The influence of wave function symmetry on statistical correlation is studied for the case of three non-interacting spin-free quantum particles in a unidimensional box, in position and in momentum space. Higher-order statistical correlations occurring among the three particles in this quantum system is quantified via higher-order mutual information and compared to the correlation between pairs of variables in this model, and to the correlation in the two-particle system. The results for the higher-order mutual information show that there are states where the symmetric wave functions are more correlated than the antisymmetric ones with same quantum numbers. This holds in position as well as in momentum space. This behavior is opposite to that observed for the correlation between pairs of variables in this model, and the two-particle system, where the antisymmetric wave functions are in general more correlated. These results are also consistent with those observed in a system of three uncoupled oscillators. The use of higher-order mutual information as a correlation measure, is monitored and examined by considering a superposition of states or systems with two Slater determinants.

  16. Higher-order spin and charge dynamics in a quantum dot-lead hybrid system.

    PubMed

    Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R; Amaha, Shinichi; Yoneda, Jun; Takeda, Kenta; Allison, Giles; Stano, Peter; Noiri, Akito; Ito, Takumi; Loss, Daniel; Ludwig, Arne; Wieck, Andreas D; Tarucha, Seigo

    2017-09-22

    Understanding the dynamics of open quantum systems is important and challenging in basic physics and applications for quantum devices and quantum computing. Semiconductor quantum dots offer a good platform to explore the physics of open quantum systems because we can tune parameters including the coupling to the environment or leads. Here, we apply the fast single-shot measurement techniques from spin qubit experiments to explore the spin and charge dynamics due to tunnel coupling to a lead in a quantum dot-lead hybrid system. We experimentally observe both spin and charge time evolution via first- and second-order tunneling processes, and reveal the dynamics of the spin-flip through the intermediate state. These results enable and stimulate the exploration of spin dynamics in dot-lead hybrid systems, and may offer useful resources for spin manipulation and simulation of open quantum systems.

  17. Quantum spin liquids: a review.

    PubMed

    Savary, Lucile; Balents, Leon

    2017-01-01

    Quantum spin liquids may be considered 'quantum disordered' ground states of spin systems, in which zero-point fluctuations are so strong that they prevent conventional magnetic long-range order. More interestingly, quantum spin liquids are prototypical examples of ground states with massive many-body entanglement, which is of a degree sufficient to render these states distinct phases of matter. Their highly entangled nature imbues quantum spin liquids with unique physical aspects, such as non-local excitations, topological properties, and more. In this review, we discuss the nature of such phases and their properties based on paradigmatic models and general arguments, and introduce theoretical technology such as gauge theory and partons, which are conveniently used in the study of quantum spin liquids. An overview is given of the different types of quantum spin liquids and the models and theories used to describe them. We also provide a guide to the current status of experiments in relation to study quantum spin liquids, and to the diverse probes used therein.

  18. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models

    NASA Astrophysics Data System (ADS)

    Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine

    2016-06-01

    Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism.

  19. Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae.

    PubMed

    Jiang, L; Hodges, J S; Maze, J R; Maurer, P; Taylor, J M; Cory, D G; Hemmer, P R; Walsworth, R L; Yacoby, A; Zibrov, A S; Lukin, M D

    2009-10-09

    Robust measurement of single quantum bits plays a key role in the realization of quantum computation and communication as well as in quantum metrology and sensing. We have implemented a method for the improved readout of single electronic spin qubits in solid-state systems. The method makes use of quantum logic operations on a system consisting of a single electronic spin and several proximal nuclear spin ancillae in order to repetitively readout the state of the electronic spin. Using coherent manipulation of a single nitrogen vacancy center in room-temperature diamond, full quantum control of an electronic-nuclear system consisting of up to three spins was achieved. We took advantage of a single nuclear-spin memory in order to obtain a 10-fold enhancement in the signal amplitude of the electronic spin readout. We also present a two-level, concatenated procedure to improve the readout by use of a pair of nuclear spin ancillae, an important step toward the realization of robust quantum information processors using electronic- and nuclear-spin qubits. Our technique can be used to improve the sensitivity and speed of spin-based nanoscale diamond magnetometers.

  20. Experimental characterization of a quantum many-body system via higher-order correlations.

    PubMed

    Schweigler, Thomas; Kasper, Valentin; Erne, Sebastian; Mazets, Igor; Rauer, Bernhard; Cataldini, Federica; Langen, Tim; Gasenzer, Thomas; Berges, Jürgen; Schmiedmayer, Jörg

    2017-05-17

    Quantum systems can be characterized by their correlations. Higher-order (larger than second order) correlations, and the ways in which they can be decomposed into correlations of lower order, provide important information about the system, its structure, its interactions and its complexity. The measurement of such correlation functions is therefore an essential tool for reading, verifying and characterizing quantum simulations. Although higher-order correlation functions are frequently used in theoretical calculations, so far mainly correlations up to second order have been studied experimentally. Here we study a pair of tunnel-coupled one-dimensional atomic superfluids and characterize the corresponding quantum many-body problem by measuring correlation functions. We extract phase correlation functions up to tenth order from interference patterns and analyse whether, and under what conditions, these functions factorize into correlations of lower order. This analysis characterizes the essential features of our system, the relevant quasiparticles, their interactions and topologically distinct vacua. From our data we conclude that in thermal equilibrium our system can be seen as a quantum simulator of the sine-Gordon model, relevant for diverse disciplines ranging from particle physics to condensed matter. The measurement and evaluation of higher-order correlation functions can easily be generalized to other systems and to study correlations of any other observable such as density, spin and magnetization. It therefore represents a general method for analysing quantum many-body systems from experimental data.

  1. Helical Majorana fermions in d+id'-wave topological superconductivity of doped correlated quantum spin Hall insulators

    NASA Astrophysics Data System (ADS)

    Chung, Chung-Hou; Sun, Shih-Jye; Chang, Yung-Yeh; Tsai, Wei-Feng; Zhang, Fuchun

    Large Hubbard U limit of the Kane-Mele model on a zigzag ribbon of honeycomb lattice near half-filling is studied via a renormalized mean-field theory. The ground state exhibits time-reversal symmetry (TRS) breaking dx2 -y2 + idxy -wave superconductivity. At large spin-orbit coupling, the Z2 topological phase with non-trivial spin Chern number in the pure Kane-Mele model is persistent into the TRS broken state (called ``spin-Chern phase''), and has two pairs of counter-propagating helical Majorana modes at the edges. As the spin-orbit coupling is reduced, the system undergoes a topological quantum phase transition from the spin-Chern to chiral superconducting states. Possible relevance of our results to adatom-doped graphene and irridate compounds is discussed.Ref.:Shih-Jye Sun, Chung-Hou Chung, Yung-Yeh Chang, Wei-Feng Tsai, and Fu-Chun Zhang, arXiv:1506.02584. CHC acknowledges support from NSC Grant No. 98-2918-I-009-06, No. 98-2112-M-009-010-MY3, the NCTU-CTS, the MOE-ATU program, the NCTS of Taiwan, R.O.C.

  2. Selective Equilibration of Spin-Polarized Quantum Hall Edge States in Graphene

    NASA Astrophysics Data System (ADS)

    Amet, F.; Williams, J. R.; Watanabe, K.; Taniguchi, T.; Goldhaber-Gordon, D.

    2014-05-01

    We report on transport measurements of dual-gated, single-layer graphene devices in the quantum Hall regime, allowing for independent control of the filling factors in adjoining regions. Progress in device quality allows us to study scattering between edge states when the fourfold degeneracy of the Landau level is lifted by electron correlations, causing edge states to be spin and/or valley polarized. In this new regime, we observe a dramatic departure from the equilibration seen in more disordered devices: edge states with opposite spins propagate without mixing. As a result, the degree of equilibration inferred from transport can reveal the spin polarization of the ground state at each filling factor. In particular, the first Landau level is shown to be spin polarized at half filling, providing an independent confirmation of a conclusion of Young et al. [Nat. Phys. 8, 550 (2012)]. The conductance in the bipolar regime is strongly suppressed, indicating that copropagating edge states, even with the same spin, do not equilibrate along PN interfaces. We attribute this behavior to the formation of an insulating ν =0 stripe at the PN interface.

  3. Quantum computation on the edge of a symmetry-protected topological order.

    PubMed

    Miyake, Akimasa

    2010-07-23

    We elaborate the idea of quantum computation through measuring the correlation of a gapped ground state, while the bulk Hamiltonian is utilized to stabilize the resource. A simple computational primitive, by pulling out a single spin adiabatically from the bulk followed by its measurement, is shown to make any ground state of the one-dimensional isotropic Haldane phase useful ubiquitously as a quantum logical wire. The primitive is compatible with certain discrete symmetries that protect this topological order, and the antiferromagnetic Heisenberg spin-1 finite chain is practically available. Our approach manifests a holographic principle in that the logical information of a universal quantum computer can be written and processed perfectly on the edge state (i.e., boundary) of the system, supported by the persistent entanglement from the bulk even when the ground state and its evolution cannot be exactly analyzed.

  4. Storing quantum information in spins and high-sensitivity ESR

    NASA Astrophysics Data System (ADS)

    Morton, John J. L.; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.

  5. Storing quantum information in spins and high-sensitivity ESR.

    PubMed

    Morton, John J L; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.

  6. Evidence for broken Galilean invariance at the quantum spin Hall edge

    NASA Astrophysics Data System (ADS)

    Geissler, Florian; Crépin, François; Trauzettel, Björn

    2015-12-01

    We study transport properties of the helical edge channels of a quantum spin Hall insulator, in the presence of electron-electron interactions and weak, local Rashba spin-orbit coupling. The combination of the two allows for inelastic backscattering that does not break time-reversal symmetry, resulting in interaction-dependent power-law corrections to the conductance. Here, we use a nonequilibrium Keldysh formalism to describe the situation of a long, one-dimensional edge channel coupled to external reservoirs, where the applied bias is the leading energy scale. By calculating explicitly the corrections to the conductance up to fourth order of the impurity strength, we analyze correlated single- and two-particle backscattering processes on a microscopic level. Interestingly, we show that the modeling of the leads together with the breaking of Galilean invariance has important effects on the transport properties. Such breaking occurs because the Galilean invariance of the bulk spectrum transforms into an emergent Lorentz invariance of the edge spectrum. With this broken Galilean invariance at the quantum spin Hall edge, we find a contribution to single-particle backscattering with a very low power scaling, while in the presence of Galilean invariance the leading contribution will be due to correlated two-particle backscattering only. This difference is further reflected in the different values of the Fano factor of the shot noise, an experimentally observable quantity. The described behavior is specific to the Rashba scatterer and does not occur in the case of backscattering off a time-reversal-breaking, magnetic impurity.

  7. Complete quantum control of a single quantum dot spin using ultrafast optical pulses.

    PubMed

    Press, David; Ladd, Thaddeus D; Zhang, Bingyang; Yamamoto, Yoshihisa

    2008-11-13

    A basic requirement for quantum information processing systems is the ability to completely control the state of a single qubit. For qubits based on electron spin, a universal single-qubit gate is realized by a rotation of the spin by any angle about an arbitrary axis. Driven, coherent Rabi oscillations between two spin states can be used to demonstrate control of the rotation angle. Ramsey interference, produced by two coherent spin rotations separated by a variable time delay, demonstrates control over the axis of rotation. Full quantum control of an electron spin in a quantum dot has previously been demonstrated using resonant radio-frequency pulses that require many spin precession periods. However, optical manipulation of the spin allows quantum control on a picosecond or femtosecond timescale, permitting an arbitrary rotation to be completed within one spin precession period. Recent work in optical single-spin control has demonstrated the initialization of a spin state in a quantum dot, as well as the ultrafast manipulation of coherence in a largely unpolarized single-spin state. Here we demonstrate complete coherent control over an initialized electron spin state in a quantum dot using picosecond optical pulses. First we vary the intensity of a single optical pulse to observe over six Rabi oscillations between the two spin states; then we apply two sequential pulses to observe high-contrast Ramsey interference. Such a two-pulse sequence realizes an arbitrary single-qubit gate completed on a picosecond timescale. Along with the spin initialization and final projective measurement of the spin state, these results demonstrate a complete set of all-optical single-qubit operations.

  8. A quantum mechanical alternative to the Arrhenius equation in the interpretation of proton spin-lattice relaxation data for the methyl groups in solids.

    PubMed

    Bernatowicz, Piotr; Shkurenko, Aleksander; Osior, Agnieszka; Kamieński, Bohdan; Szymański, Sławomir

    2015-11-21

    The theory of nuclear spin-lattice relaxation in methyl groups in solids has been a recurring problem in nuclear magnetic resonance (NMR) spectroscopy. The current view is that, except for extreme cases of low torsional barriers where special quantum effects are at stake, the relaxation behaviour of the nuclear spins in methyl groups is controlled by thermally activated classical jumps of the methyl group between its three orientations. The temperature effects on the relaxation rates can be modelled by Arrhenius behaviour of the correlation time of the jump process. The entire variety of relaxation effects in protonated methyl groups have recently been given a consistent quantum mechanical explanation not invoking the jump model regardless of the temperature range. It exploits the damped quantum rotation (DQR) theory originally developed to describe NMR line shape effects for hindered methyl groups. In the DQR model, the incoherent dynamics of the methyl group include two quantum rate (i.e., coherence-damping) processes. For proton relaxation only one of these processes is relevant. In this paper, temperature-dependent proton spin-lattice relaxation data for the methyl groups in polycrystalline methyltriphenyl silane and methyltriphenyl germanium, both deuterated in aromatic positions, are reported and interpreted in terms of the DQR model. A comparison with the conventional approach exploiting the phenomenological Arrhenius equation is made. The present observations provide further indications that incoherent motions of molecular moieties in the condensed phase can retain quantum character over much broader temperature range than is commonly thought.

  9. Memory-built-in quantum cloning in a hybrid solid-state spin register

    NASA Astrophysics Data System (ADS)

    Wang, Weibin; Zu, Chong; He, Li; Zhang, Wengang; Duan, Luming

    2015-05-01

    As a way to circumvent the quantum no-cloning theorem, approximate quantum cloning protocols have received wide attention with remarkable applications. Copying of quantum states to memory qubits provides an important strategy for eavesdropping in quantum cryptography. We report an experiment that realizes cloning of quantum states from an electron spin to a nuclear spin in a hybrid solid-state spin register with near-optimal fidelity. The nuclear spin provides an ideal memory qubit at room temperature, which stores the cloned quantum states for a millisecond under ambient conditions, exceeding the lifetime of the original quantum state carried by the electron spin by orders of magnitude, and making it an ideal memory qubit. Our experiment is based on control of an individual nitrogen vacancy (NV) center in the diamond, which is a diamond defect that attracts strong interest in recent years with great potential for implementation of quantum information protocols.

  10. Dannie Heineman Prize for Mathematical Physics Prize Lecture: Correlation Functions in Integrable Models II: The Role of Quantum Affine Symmetry

    NASA Astrophysics Data System (ADS)

    Jimbo, Michio

    2013-03-01

    Since the beginning of 1980s, hidden infinite dimensional symmetries have emerged as the origin of integrability: first in soliton theory and then in conformal field theory. Quest for symmetries in quantum integrable models has led to the discovery of quantum groups. On one hand this opened up rapid mathematical developments in representation theory, combinatorics and other fields. On the other hand it has advanced understanding of correlation functions of lattice models, leading to multiple integral formulas in integrable spin chains. We shall review these developments which continue up to the present time.

  11. Long-time behavior of the momentum distribution during the sudden expansion of a spin-imbalanced Fermi gas in one dimension.

    PubMed

    Bolech, C J; Heidrich-Meisner, F; Langer, S; McCulloch, I P; Orso, G; Rigol, M

    2012-09-14

    We study the sudden expansion of spin-imbalanced ultracold lattice fermions with attractive interactions in one dimension after turning off the longitudinal confining potential. We show that the momentum distribution functions of majority and minority fermions quickly approach stationary values due to a quantum distillation mechanism that results in a spatial separation of pairs and majority fermions. As a consequence, Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) correlations are lost during the expansion. Furthermore, we argue that the shape of the stationary momentum distribution functions can be understood by relating them to the integrals of motion in this integrable quantum system. We discuss our results in the context of proposals to observe FFLO correlations, related to recent experiments by Liao et al., Nature (London) 467, 567 (2010).

  12. Spin filter for arbitrary spins by substrate engineering

    NASA Astrophysics Data System (ADS)

    Pal, Biplab; Römer, Rudolf A.; Chakrabarti, Arunava

    2016-08-01

    We design spin filters for particles with potentially arbitrary spin S≤ft(=1/2,1,3/2,\\ldots \\right) using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a ‘spin spiral’. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins—an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction.

  13. A theory of quantum dynamics of a nanomagnet under excitation

    NASA Astrophysics Data System (ADS)

    Sham, L. J.

    2013-09-01

    A quantum treatment of magnetization dynamics of a nanomagnet between a thousand and a million spins may be needed as the magnet interacts with quantum control. The advantage of the all-quantum approach over the classical treatment of magnetization is the accounting for the correlation between the magnet and the control agent and the first-principles source of noise. This supplement to the conference talk will concentrate on an overview of the theory with a presentation of the basic ideas which could have wide applications and illustrations with some results. Details of applications to specific models are or will be published elsewhere. A clear concept of the structure of the ground and excited macrospin states as magnetization rotation states and magnons in the Bloch/Dyson sense gives rise to a consistent theory of the magnetization dynamics of a ferromagnet modeled by the Heisenberg Hamiltonian. An example of quantum control is the spin torque transfer, treated here as a sequence of scatterings of each current electron with the localized electrons of the ferromagnet, yields in each encounter a probability distribution of the magnetization recoil state correlated with each outgoing state of the electron. This picture provides a natural Monte Carlo process for simulation of the dynamics in which the probability is determined by quantum mechanics. The computed results of mean motion, noise and damping of the magnetization will be discussed.

  14. Logical spin-filtering in a triangular network of quantum nanorings with a Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Dehghan, E.; Sanavi Khoshnoud, D.; Naeimi, A. S.

    2018-01-01

    The spin-resolved electron transport through a triangular network of quantum nanorings is studied in the presence of Rashba spin-orbit interaction (RSOI) and a magnetic flux using quantum waveguide theory. This study illustrates that, by tuning Rashba constant, magnetic flux and incoming electron energy, the triangular network of quantum rings can act as a perfect logical spin-filtering with high efficiency. By changing in the energy of incoming electron, at a proper value of the Rashba constant and magnetic flux, a reverse in the direction of spin can take place in the triangular network of quantum nanorings. Furthermore, the triangular network of quantum nanorings can be designed as a device and shows several simultaneous spintronic properties such as spin-splitter and spin-inverter. This spin-splitting is dependent on the energy of the incoming electron. Additionally, different polarizations can be achieved in the two outgoing leads from an originally incoming spin state that simulates a Stern-Gerlach apparatus.

  15. Electrical control of optical orientation of neutral and negatively charged excitons in an n -type semiconductor quantum well

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Korenev, V. L.; Lazarev, M. V.; Sapega, V. F.; Gammon, D.; Bracker, A. S.

    2007-01-01

    We report electric field induced increase of spin orientation of negatively charged excitons (trions) localized in n -type GaAs/AlGaAs quantum well. Under resonant excitation of free neutral heavy-hole excitons, the polarization of trions increases dramatically with electrical injection of electrons. The polarization enhancement correlates strongly with trion/exciton luminescence intensity ratio. This effect results from a very efficient trapping of free neutral excitons by the quantum well interfacial fluctuations (“natural” quantum dots) containing resident electrons.

  16. The classical and quantum dynamics of molecular spins on graphene

    PubMed Central

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2015-01-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic1 and quantum computing2 devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics3,4, and electrical spin-manipulation4-11. However, the influence of the graphene environment on the spin systems has yet to be unraveled12. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets13 on graphene. While the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly-developed model. Coupling to Dirac electrons introduces a dominant quantum-relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully-coherent, resonant spin tunneling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin-manipulation in graphene nanodevices. PMID:26641019

  17. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    DOE PAGES

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris; ...

    2015-06-08

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less

  18. Parallelized traveling cluster approximation to study numerically spin-fermion models on large lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, Anamitra; Patel, Niravkumar D.; Bishop, Chris

    Lattice spin-fermion models are quite important to study correlated systems where quantum dynamics allows for a separation between slow and fast degrees of freedom. The fast degrees of freedom are treated quantum mechanically while the slow variables, generically referred to as the “spins,” are treated classically. At present, exact diagonalization coupled with classical Monte Carlo (ED + MC) is extensively used to solve numerically a general class of lattice spin-fermion problems. In this common setup, the classical variables (spins) are treated via the standard MC method while the fermion problem is solved by exact diagonalization. The “traveling cluster approximation” (TCA)more » is a real space variant of the ED + MC method that allows to solve spin-fermion problems on lattice sizes with up to 10 3 sites. In this paper, we present a novel reorganization of the TCA algorithm in a manner that can be efficiently parallelized. Finally, this allows us to solve generic spin-fermion models easily on 10 4 lattice sites and with some effort on 10 5 lattice sites, representing the record lattice sizes studied for this family of models.« less

  19. A variational Monte Carlo study of different spin configurations of electron-hole bilayer

    NASA Astrophysics Data System (ADS)

    Sharma, Rajesh O.; Saini, L. K.; Bahuguna, Bhagwati Prasad

    2018-05-01

    We report quantum Monte Carlo results for mass-asymmetric electron-hole bilayer (EHBL) system with different-different spin configurations. Particularly, we apply a variational Monte Carlo method to estimate the ground-state energy, condensate fraction and pair-correlations function at fixed density rs = 5 and interlayer distance d = 1 a.u. We find that spin-configuration of EHBL system, which consists of only up-electrons in one layer and down-holes in other i.e. ferromagnetic arrangement within layers and anti-ferromagnetic across the layers, is more stable than the other spin-configurations considered in this study.

  20. Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory.

    PubMed

    Jobez, Pierre; Laplane, Cyril; Timoney, Nuala; Gisin, Nicolas; Ferrier, Alban; Goldner, Philippe; Afzelius, Mikael

    2015-06-12

    Long-lived quantum memories are essential components of a long-standing goal of remote distribution of entanglement in quantum networks. These can be realized by storing the quantum states of light as single-spin excitations in atomic ensembles. However, spin states are often subjected to different dephasing processes that limit the storage time, which in principle could be overcome using spin-echo techniques. Theoretical studies suggest this to be challenging due to unavoidable spontaneous emission noise in ensemble-based quantum memories. Here, we demonstrate spin-echo manipulation of a mean spin excitation of 1 in a large solid-state ensemble, generated through storage of a weak optical pulse. After a storage time of about 1 ms we optically read-out the spin excitation with a high signal-to-noise ratio. Our results pave the way for long-duration optical quantum storage using spin-echo techniques for any ensemble-based memory.

  1. EDITORIAL: Quantum science and technology at the nanoscale Quantum science and technology at the nanoscale

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-07-01

    The development of quantum theory was an archetypal scientific revolution in early twentieth-century physics. In many ways, the probabilities and uncertainties that replaced the ubiquitous application of classical mechanics may have seemed a violent assault on logic and reason. 'Something unknown is doing we don't know what-that is what our theory amounts to,' Sir Arthur Eddington famously remarked, adding, 'It does not sound a particularly illuminating theory. I have read something like it elsewhere: the slithy toves, did gyre and gimble in the wabe' [1]. Today, quantum mechanics no longer seems a dark art best confined to the boundaries of physics and philosophy. Scanning probe micrographs have captured actual images of quantum-mechanical interference patterns [2], and familiarity has made the claims of quantum theory more palatable. An understanding of quantum effects is essential for nanoscale science and technology research. This special issue on quantum science and technology at the nanoscale collates some of the latest research that is extending the boundaries of our knowledge and understanding in the field. Quantum phenomena have become particularly significant in attempts to further reduce the size of electronic devices, the trend widely referred to as Moore's law. In this issue, researchers in Switzerland report results from transport studies on graphene. The researchers investigate the conductance variance in systems with superconducting contacts [3]. Also in this issue, researchers in Germany calculate the effects of spin-orbit coupling in a molecular dimer and predict nonlinear transport. They also explain how ferromagnetic electrodes can be used to probe these interactions [4]. Our understanding of spin and the ability to manipulate it has advanced greatly since the notion of spin was first proposed. However, it remains the case that little is known about local coherent fluctuations of spin polarizations, the scale on which they occur, how they are correlated, and how they influence spin currents and their fluctuations, as well as the mechanisms behind current-induced spin polarizations in chaotic ballistic systems. In a theoretical report on current-induced spin polarization from the University of Arizona, progress is made in filling in some of these gaps, and a 'spin-probe' model is proposed [5]. Spin is also an important element in quantum information research. With electron spin coherence lifetimes exceeding 1 ms at room temperature, as well as the added benefit of being optically addressable, nitrogen-vacancy defects in diamond have been identified as having considerable potential for quantum information applications. Now researchers in the US describe the fabrication and low-temperature characterization of silica microdisk cavities coupled to diamond nanoparticles, and present theoretical and experimental studies of gallium phosphide structures coupled to nitrogen-vacancy centers in bulk diamond [6]. Double quantum dots have been considered as prospective candidates for charge qubits for quantum information processors. The application of a bias voltage can be used to control tunnelling between the double quantum dots, allowing the energy states to be tuned. Researchers in Switzerland investigate experimentally the effect of ohmic heating of the phonon bath on decoherence, and find that the system can be considered as a thermoelectric generator [7]. This progress has only been made possible by advances in our understanding of the fundamental science behind quantum mechanics, and work exploring this territory is still a hotbed of activity and progress. Increasingly sophisticated tools, both numerical and experimental, have facilitated engagement with quantum phenomena in nanoscale systems. Molecular spin clusters represent an ideal setting within solid-state systems to test concepts in quantum mechanics, as highlighted in this issue by researchers in Italy, who report their work on controlling entanglement between molecular spins [8]. Nanofabrication techniques have seen tremendous advances that have enabled scientists to realise new experimental electronics architectures. Using photolithography, chemical etching and electrodeposition, a collaboration of researchers in China, France and the US has fabricated mechanically controllable break junctions with finely adjustable nanogaps between two gold electrodes on solid state chips [9]. The structures can be used to characterize the electron transport properties of single molecules. In many ways, experimental realization of quantum phenomena has invigorated theoretical endeavours; experiments on the Kondo effect, for example, have renewed interest in finding new approximate solutions for the single impurity Anderson model. Researchers in Brazil present work on finding solutions to the Anderson Hamiltonian based on the atomic approach, which is simple to implement and has a low computational cost [10]. Theoretical descriptions have developed into powerful and sophisticated tools for explaining, understanding and even predicting the behaviour of quantum systems. Recent progress in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots, and quantum wires is provided in a topical review by researchers in Germany [11]. While a claim to a complete understanding of quantum phenomena may be premature, certainly vast progress has been made in learning how to navigate new territory in the quantum world. And what is more, in exploring novel systems and the continued efforts to develop devices with capabilities enhanced due to quantum effects, we are learning to exploit it. References [1] Eddington A S 1929 The Nature of the Physical World (New York: The University Press) [2] Crommie M F, Lutz C P and Eigler D M 1993 Science 262 218-20 [3] Trbovic J, Minder N, Freitag F and Schönenberger C 2010 Superconductivity-enhanced conductance fluctuations in few-layer graphene Nanotechnology 21 274005 [4] Herzog S and Wegewijs M R 2010 Dzyaloshinskii-Moriya interaction in transport through single-molecule transistors Nanotechnology 21 274010 [5] Jacquod Ph 2010 Scattering theory of current-induced spin polarization Nanotechnology 21 274006 [6] Santori C, Barclay P E, Fu K-M C, Beausoleil R G, Spillane S and Fisch M 2010 Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond Nanotechnology 21 274008 [7] Gasser U, Gustavsson S, Küng B, Ensslin K and Ihn T 2010 Phonon-mediated back-action of a charge readout on a double quantum dot Nanotechnology 21 274003 [8] Troiani F, Bellini V, Candini A, Lorusso G and Affronte M 2010 Spin entanglement in supramolecular structures Nanotechnology 21 274009 [9] Tian J-H et al 2010 The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules Nanotechnology 21 274012 [10] Tian J-H et al Lobo T, Figueira M S and Foglio M E 2010 The atomic approach of the Anderson model for the U finite case: application to a quantum dot Nanotechnology 21 274007 [11] Andergassen S, Meden V, Schoeller H, Splettstoesser J and Wegewijs M R 2010 Charge transport through single molecules, quantum dots and quantum wires Nanotechnology 21 272001

  2. Symmetry enriched U(1) quantum spin liquids

    NASA Astrophysics Data System (ADS)

    Zou, Liujun; Wang, Chong; Senthil, T.

    2018-05-01

    We classify and characterize three-dimensional U (1 ) quantum spin liquids [deconfined U (1 ) gauge theories] with global symmetries. These spin liquids have an emergent gapless photon and emergent electric/magnetic excitations (which we assume are gapped). We first discuss in great detail the case with time-reversal and SO(3 ) spin rotational symmetries. We find there are 15 distinct such quantum spin liquids based on the properties of bulk excitations. We show how to interpret them as gauged symmetry-protected topological states (SPTs). Some of these states possess fractional response to an external SO (3 ) gauge field, due to which we dub them "fractional topological paramagnets." We identify 11 other anomalous states that can be grouped into three anomaly classes. The classification is further refined by weakly coupling these quantum spin liquids to bosonic symmetry protected topological (SPT) phases with the same symmetry. This refinement does not modify the bulk excitation structure but modifies universal surface properties. Taking this refinement into account, we find there are 168 distinct such U (1 ) quantum spin liquids. After this warm-up, we provide a general framework to classify symmetry enriched U (1 ) quantum spin liquids for a large class of symmetries. As a more complex example, we discuss U (1 ) quantum spin liquids with time-reversal and Z2 symmetries in detail. Based on the properties of the bulk excitations, we find there are 38 distinct such spin liquids that are anomaly-free. There are also 37 anomalous U (1 ) quantum spin liquids with this symmetry. Finally, we briefly discuss the classification of U (1 ) quantum spin liquids enriched by some other symmetries.

  3. Optically Driven Spin Based Quantum Dots for Quantum Computing - Research Area 6 Physics 6.3.2

    DTIC Science & Technology

    2015-12-15

    quantum dots (SAQD) in Schottky diodes . Based on spins in these dots, a scalable architecture has been proposed [Adv. in Physics, 59, 703 (2010)] by us...housed in two coupled quantum dots with tunneling between them, as described above, may not be scalable but can serve as a node in a quantum network. The... tunneling -coupled two-electron spin ground states in the vertically coupled quantum dots for “universal computation” two spin qubits within the universe of

  4. Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator

    NASA Astrophysics Data System (ADS)

    Ovartchaiyapong, Preeti; Lee, Kenneth W.; Myers, Bryan A.; Jayich, Ania C. Bleszynski

    2014-07-01

    The development of hybrid quantum systems is central to the advancement of emerging quantum technologies, including quantum information science and quantum-assisted sensing. The recent demonstration of high-quality single-crystal diamond resonators has led to significant interest in a hybrid system consisting of nitrogen-vacancy centre spins that interact with the resonant phonon modes of a macroscopic mechanical resonator through crystal strain. However, the nitrogen-vacancy spin-strain interaction has not been well characterized. Here, we demonstrate dynamic, strain-mediated coupling of the mechanical motion of a diamond cantilever to the spin of an embedded nitrogen-vacancy centre. Via quantum control of the spin, we quantitatively characterize the axial and transverse strain sensitivities of the nitrogen-vacancy ground-state spin. The nitrogen-vacancy centre is an atomic scale sensor and we demonstrate spin-based strain imaging with a strain sensitivity of 3 × 10-6 strain Hz-1/2. Finally, we show how this spin-resonator system could enable coherent spin-phonon interactions in the quantum regime.

  5. The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads.

    PubMed

    Weymann, Ireneusz

    2010-01-13

    We analyze numerically the spin-dependent transport through coherent chains of three coupled quantum dots weakly connected to external magnetic leads. In particular, using the diagrammatic technique on the Keldysh contour, we calculate the conductance, shot noise and tunnel magnetoresistance (TMR) in the sequential and cotunneling regimes. We show that transport characteristics greatly depend on the strength of the interdot Coulomb correlations, which determines the spatial distribution of the electron wavefunction in the chain. When the correlations are relatively strong, depending on the transport regime, we find both negative TMR as well as TMR enhanced above the Julliere value, accompanied with negative differential conductance (NDC) and super-Poissonian shot noise. This nontrivial behavior of tunnel magnetoresistance is associated with selection rules that govern tunneling processes and various high-spin states of the chain that are relevant for transport. For weak interdot correlations, on the other hand, the TMR is always positive and not larger than the Julliere TMR, although super-Poissonian shot noise and NDC can still be observed.

  6. EDITORIAL: Focus on Quantum Information and Many-Body Theory

    NASA Astrophysics Data System (ADS)

    Eisert, Jens; Plenio, Martin B.

    2010-02-01

    Quantum many-body models describing natural systems or materials and physical systems assembled piece by piece in the laboratory for the purpose of realizing quantum information processing share an important feature: intricate correlations that originate from the coherent interaction between a large number of constituents. In recent years it has become manifest that the cross-fertilization between research devoted to quantum information science and to quantum many-body physics leads to new ideas, methods, tools, and insights in both fields. Issues of criticality, quantum phase transitions, quantum order and magnetism that play a role in one field find relations to the classical simulation of quantum systems, to error correction and fault tolerance thresholds, to channel capacities and to topological quantum computation, to name but a few. The structural similarities of typical problems in both fields and the potential for pooling of ideas then become manifest. Notably, methods and ideas from quantum information have provided fresh approaches to long-standing problems in strongly correlated systems in the condensed matter context, including both numerical methods and conceptual insights. Focus on quantum information and many-body theory Contents TENSOR NETWORKS Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems M Rizzi, S Montangero, P Silvi, V Giovannetti and Rosario Fazio Concatenated tensor network states R Hübener, V Nebendahl and W Dür Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms G Evenbly and G Vidal Finite-size geometric entanglement from tensor network algorithms Qian-Qian Shi, Román Orús, John Ove Fjærestad and Huan-Qiang Zhou Characterizing symmetries in a projected entangled pair state D Pérez-García, M Sanz, C E González-Guillén, M M Wolf and J I Cirac Matrix product operator representations B Pirvu, V Murg, J I Cirac and F Verstraete SIMULATION AND DYNAMICS A quantum differentiation of k-SAT instances B Tamir and G Ortiz Classical Ising model test for quantum circuits Joseph Geraci and Daniel A Lidar Exact matrix product solutions in the Heisenberg picture of an open quantum spin chain S R Clark, J Prior, M J Hartmann, D Jaksch and M B Plenio Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition Tomaž Prosen and Bojan Žunkovič Quantum kinetic Ising models R Augusiak, F M Cucchietti, F Haake and M Lewenstein ENTANGLEMENT AND SPECTRAL PROPERTIES Ground states of unfrustrated spin Hamiltonians satisfy an area law Niel de Beaudrap, Tobias J Osborne and Jens Eisert Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group W Münder, A Weichselbaum, A Holzner, Jan von Delft and C L Henley The invariant-comb approach and its relation to the balancedness of multipartite entangled states Andreas Osterloh and Jens Siewert Entanglement scaling of fractional quantum Hall states through geometric deformations Andreas M Läuchli, Emil J Bergholtz and Masudul Haque Entanglement versus gap for one-dimensional spin systems Daniel Gottesman and M B Hastings Entanglement spectra of critical and near-critical systems in one dimension F Pollmann and J E Moore Macroscopic bound entanglement in thermal graph states D Cavalcanti, L Aolita, A Ferraro, A García-Saez and A Acín Entanglement at the quantum phase transition in a harmonic lattice Elisabeth Rieper, Janet Anders and Vlatko Vedral Multipartite entanglement and frustration P Facchi, G Florio, U Marzolino, G Parisi and S Pascazio Entropic uncertainty relations—a survey Stephanie Wehner and Andreas Winter Entanglement in a spin system with inverse square statistical interaction D Giuliano, A Sindona, G Falcone, F Plastina and L Amico APPLICATIONS Time-dependent currents of one-dimensional bosons in an optical lattice J Schachenmayer, G Pupillo and A J Daley Implementing quantum gates using the ferromagnetic spin-J XXZ chain with kink boundary conditions Tom Michoel, Jaideep Mulherkar and Bruno Nachtergaele Long-distance entanglement in many-body atomic and optical systems Salvatore M Giampaolo and Fabrizio Illuminati QUANTUM MEMORIES AND TOPOLOGICAL ORDER Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes Stefano Chesi, Daniel Loss, Sergey Bravyi and Barbara M Terhal Topological color codes and two-body quantum lattice Hamiltonians M Kargarian, H Bombin and M A Martin-Delgado RENORMALIZATION Local renormalization method for random systems O Gittsovich, R Hübener, E Rico and H J Briegel

  7. Voltage-selective bidirectional polarization and coherent rotation of nuclear spins in quantum dots.

    PubMed

    Takahashi, R; Kono, K; Tarucha, S; Ono, K

    2011-07-08

    We propose and demonstrate that the nuclear spins of the host lattice in GaAs double quantum dots can be polarized in either of two opposite directions, parallel or antiparallel to an external magnetic field. The direction is selected by adjusting the dc voltage. This nuclear polarization manifests itself by repeated controlled electron-nuclear spin scattering in the Pauli spin-blockade state. Polarized nuclei are also controlled by means of nuclear magnetic resonance. This Letter confirms that the nuclear spins in quantum dots are long-lived quantum states with a coherence time of up to 1 ms, and may be a promising resource for quantum-information processing such as quantum memories for electron spin qubits.

  8. Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.

    PubMed

    De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2012-11-15

    Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.

  9. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  10. Nanosecond-timescale spin transfer using individual electrons in a quadruple-quantum-dot device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baart, T. A.; Jovanovic, N.; Vandersypen, L. M. K.

    2016-07-25

    The ability to coherently transport electron-spin states between different sites of gate-defined semiconductor quantum dots is an essential ingredient for a quantum-dot-based quantum computer. Previous shuttles using electrostatic gating were too slow to move an electron within the spin dephasing time across an array. Here, we report a nanosecond-timescale spin transfer of individual electrons across a quadruple-quantum-dot device. Utilizing enhanced relaxation rates at a so-called hot spot, we can upper bound the shuttle time to at most 150 ns. While actual shuttle times are likely shorter, 150 ns is already fast enough to preserve spin coherence in, e.g., silicon based quantum dots.more » This work therefore realizes an important prerequisite for coherent spin transfer in quantum dot arrays.« less

  11. Emergent functions of quantum materials

    NASA Astrophysics Data System (ADS)

    Tokura, Yoshinori; Kawasaki, Masashi; Nagaosa, Naoto

    2017-11-01

    Materials can harbour quantum many-body systems, most typically in the form of strongly correlated electrons in solids, that lead to novel and remarkable functions thanks to emergence--collective behaviours that arise from strong interactions among the elements. These include the Mott transition, high-temperature superconductivity, topological superconductivity, colossal magnetoresistance, giant magnetoelectric effect, and topological insulators. These phenomena will probably be crucial for developing the next-generation quantum technologies that will meet the urgent technological demands for achieving a sustainable and safe society. Dissipationless electronics using topological currents and quantum spins, energy harvesting such as photovoltaics and thermoelectrics, and secure quantum computing and communication are the three major fields of applications working towards this goal. Here, we review the basic principles and the current status of the emergent phenomena and functions in materials from the viewpoint of strong correlation and topology.

  12. Fine structure and optical pumping of spins in individual semiconductor quantum dots

    NASA Astrophysics Data System (ADS)

    Bracker, Allan S.; Gammon, Daniel; Korenev, Vladimir L.

    2008-11-01

    We review spin properties of semiconductor quantum dots and their effect on optical spectra. Photoluminescence and other types of spectroscopy are used to probe neutral and charged excitons in individual quantum dots with high spectral and spatial resolution. Spectral fine structure and polarization reveal how quantum dot spins interact with each other and with their environment. By taking advantage of the selectivity of optical selection rules and spin relaxation, optical spin pumping of the ground state electron and nuclear spins is achieved. Through such mechanisms, light can be used to process spins for use as a carrier of information.

  13. Spin-electron acoustic soliton and exchange interaction in separate spin evolution quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    Separate spin evolution quantum hydrodynamics is generalized to include the Coulomb exchange interaction, which is considered as interaction between the spin-down electrons being in quantum states occupied by one electron. The generalized model is applied to study the non-linear spin-electron acoustic waves. Existence of the spin-electron acoustic soliton is demonstrated. Contributions of concentration, spin polarization, and exchange interaction to the properties of the spin electron acoustic soliton are studied.

  14. Hybrid Circuit Quantum Electrodynamics: Coupling a Single Silicon Spin Qubit to a Photon

    DTIC Science & Technology

    2015-01-01

    HYBRID CIRCUIT QUANTUM ELECTRODYNAMICS: COUPLING A SINGLE SILICON SPIN QUBIT TO A PHOTON PRINCETON UNIVERSITY JANUARY 2015 FINAL...SILICON SPIN QUBIT TO A PHOTON 5a. CONTRACT NUMBER FA8750-12-2-0296 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Jason R. Petta...architectures. 15. SUBJECT TERMS Quantum Computing, Quantum Hybrid Circuits, Quantum Electrodynamics, Coupling a Single Silicon Spin Qubit to a Photon

  15. Persistent Spin Current in a Hard-Wall Confining Quantum Wire with Weak Dresselhaus Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Fu, Xi; Zhou, Guang-Hui

    2009-02-01

    We investigate theoretically the spin current in a quantum wire with weak Dresselhaus spin-orbit coupling connected to two normal conductors. Both the quantum wire and conductors are described by a hard-wall confining potential. Using the electron wave-functions in the quantum wire and a new definition of spin current, we have calculated the elements of linear spin current density js,xiT and js,yiT (i = x, y, z). We find that the elements jTs,xx and jTs,yy have a antisymmetrical relation and the element jTs,yz has the same amount level as js,xxT and js,yyT. We also find a net linear spin current density, which has peaks at the center of quantum wire. The net linear spin current can induce a linear electric field, which may imply a way of spin current detection.

  16. Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits

    DTIC Science & Technology

    2009-04-29

    bulk material and matches that in quantum wells. While these simple linear relationships hold for spin-polarized light-emitting diodes (spin-LEDs...temperature. The quantum efficiency and hence r| increases with decreasing temperature. The individual circuit elements, 33 therefore, exhibit the...Injection, Threshold Reduction and Output Circular Polarization Modulation in Quantum Well and Quantum Dot Semiconductor Spin Polarized Lasers working

  17. III-V semiconductor Quantum Well systems: Physics of Gallium Arsenide two-dimensional hole systems and engineering of mid-infrared Quantum Cascade lasers

    NASA Astrophysics Data System (ADS)

    Chiu, YenTing

    This dissertation examines two types of III-V semiconductor quantum well systems: two-dimensional holes in GaAs, and mid-infrared Quantum Cascade lasers. GaAs holes have a much reduced hyperfine interaction with the nuclei due to the p-like orbital, resulting in a longer hole spin coherence time comparing to the electron spin coherence time. Therefore, holes' spins are promising candidates for quantum computing qubits, but the effective mass and the Lande g-factor, whose product determines the spin-susceptibility of holes, are not well known. In this thesis, we measure the effective hole mass through analyzing the temperature dependence of Shubnikov-de Haas oscillations in a relatively strong interacting two-dimensional hole systems confined to a 20 nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly-degenerate spin subbands whose effective mass we measure to be ˜ 0.2 me. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and the spin susceptibility of the two-dimensional hole system is deduced from the depopulation field. We also confine holes in closely spaced bilayer GaAs quantum wells to study the interlayer tunneling spectrum as a function of interlayer bias and in-plane magnetic field, in hope of probing the hole's Fermi contour. Quantum Cascade lasers are one of the major mid-infrared light sources well suited for applications in health and environmental sensing. One of the important factors that affect Quantum Cascade laser performance is the quality of the interfaces between the epitaxial layers. What has long been neglected is that interface roughness causes intersubband scattering, and thus affecting the relation between the lifetimes of the upper and lower laser states, which determines if population inversion is possible. We first utilize strategically added interface roughness in the laser design to engineer the intersubband scattering lifetimes. We further experimentally prove the importance of interface roughness on intersubband scattering by measuring the electron transit time of different quantum cascade lasers and comparing them to the calculated upper laser level lifetimes with and without taking into account interface roughness induced intersubband scattering. A significantly better correlation is found between the experimental results and the calculation when the interface roughness scattering is included. Lastly, we study the effect of growth asymmetry on scattering mechanisms in mid-infrared Quantum Cascade lasers. Due to the dopant migration of around 10 nm along the growth direction of InGaAs/InAlAs Quantum Cascade laser structures, ionized impurity scattering is found to have a non-negligible influence on the lifetime of the upper laser level when the laser is biased in the polarity that electrons flow along the growth direction, in sharp contrast to the situation for the opposite polarity.

  18. Quantum Entanglement of Quantum Dot Spin Using Flying Qubits

    DTIC Science & Technology

    2015-05-01

    QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS UNIVERSITY OF MICHIGAN MAY 2015 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...To) SEP 2012 – DEC 2014 4. TITLE AND SUBTITLE QUANTUM ENTANGLEMENT OF QUANTUM DOT SPIN USING FLYING QUBITS 5a. CONTRACT NUMBER FA8750-12-2-0333...been to advance the frontier of quantum entangled semiconductor electrons using ultrafast optical techniques. The approach is based on

  19. Quantum memory operations in a flux qubit - spin ensemble hybrid system

    NASA Astrophysics Data System (ADS)

    Saito, S.; Zhu, X.; Amsuss, R.; Matsuzaki, Y.; Kakuyanagi, K.; Shimo-Oka, T.; Mizuochi, N.; Nemoto, K.; Munro, W. J.; Semba, K.

    2014-03-01

    Superconducting quantum bits (qubits) are one of the most promising candidates for a future large-scale quantum processor. However for larger scale realizations the currently reported coherence times of these macroscopic objects (superconducting qubits) has not yet reached those of microscopic systems (electron spins, nuclear spins, etc). In this context, a superconductor-spin ensemble hybrid system has attracted considerable attention. The spin ensemble could operate as a quantum memory for superconducting qubits. We have experimentally demonstrated quantum memory operations in a superconductor-diamond hybrid system. An excited state and a superposition state prepared in the flux qubit can be transferred to, stored in and retrieved from the NV spin ensemble in diamond. From these experiments, we have found the coherence time of the spin ensemble is limited by the inhomogeneous broadening of the electron spin (4.4 MHz) and by the hyperfine coupling to nitrogen nuclear spins (2.3 MHz). In the future, spin echo techniques could eliminate these effects and elongate the coherence time. Our results are a significant first step in utilizing the spin ensemble as long-lived quantum memory for superconducting flux qubits. This work was supported by the FIRST program and NICT.

  20. Rigorous decoupling between edge states in frustrated spin chains and ladders

    NASA Astrophysics Data System (ADS)

    Chepiga, Natalia; Mila, Frédéric

    2018-05-01

    We investigate the occurrence of exact zero modes in one-dimensional quantum magnets of finite length that possess edge states. Building on conclusions first reached in the context of the spin-1/2 X Y chain in a field and then for the spin-1 J1-J2 Heisenberg model, we show that the development of incommensurate correlations in the bulk invariably leads to oscillations in the sign of the coupling between edge states, and hence to exact zero energy modes at the crossing points where the coupling between the edge states rigorously vanishes. This is true regardless of the origin of the frustration (e.g., next-nearest-neighbor coupling or biquadratic coupling for the spin-1 chain), of the value of the bulk spin (we report on spin-1/2, spin-1, and spin-2 examples), and of the value of the edge-state emergent spin (spin-1/2 or spin-1).

  1. Neutron scattering in the proximate quantum spin liquid α-RuCl3.

    PubMed

    Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A; Stone, Matthew B; Lumsden, Mark D; Mandrus, David G; Tennant, David A; Moessner, Roderich; Nagler, Stephen E

    2017-06-09

    The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl 3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl 3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials. Copyright © 2017, American Association for the Advancement of Science.

  2. Single-valley quantum Hall ferromagnet in a dilute Mg xZn 1-xO/ZnO strongly correlated two-dimensional electron system

    DOE PAGES

    Kozuka, Y.; Tsukazaki, A.; Maryenko, D.; ...

    2012-02-03

    We investigate the spin susceptibility (g*m*) of dilute two-dimensional (2D) electrons confined at the Mg xZn 1-xO/ZnO heterointerface. Magnetotransport measurements show a four-fold enhancement of g*m*, dominated by the increase in the Landé g-factor. The g-factor enhancement leads to a ferromagnetic instability of the electron gas as evidenced by sharp resistance spikes. At high magnetic field, the large g*m* leads to full spin polarization, where we found sudden increase in resistance around the filling factors of half-integer, accompanied by complete disappearance of fractional quantum Hall (QH) states. Along with its large effective mass and the high electron mobility, our resultmore » indicates that the ZnO 2D system is ideal for investigating the effect of electron correlations in the QH regime.« less

  3. Protecting clean critical points by local disorder correlations

    NASA Astrophysics Data System (ADS)

    Hoyos, J. A.; Laflorencie, Nicolas; Vieira, André.; Vojta, Thomas

    2011-03-01

    We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order-parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics. Financial support: Fapesp, CNPq, NSF, and Research Corporation.

  4. Flocking from a quantum analogy: spin-orbit coupling in an active fluid

    NASA Astrophysics Data System (ADS)

    Loewe, Benjamin; Souslov, Anton; Goldbart, Paul M.

    2018-01-01

    Systems composed of strongly interacting self-propelled particles can form a spontaneously flowing polar active fluid. The study of the connection between the microscopic dynamics of a single such particle and the macroscopic dynamics of the fluid can yield insights into experimentally realizable active flows, but this connection is well understood in only a few select cases. We introduce a model of self-propelled particles based on an analogy with the motion of electrons that have strong spin-orbit coupling. We find that, within our model, self-propelled particles are subject to an analog of the Heisenberg uncertainty principle that relates translational and rotational noise. Furthermore, by coarse-graining this microscopic model, we establish expressions for the coefficients of the Toner-Tu equations—the hydrodynamic equations that describe an active fluid composed of these ‘active spins.’ The connection between stochastic self-propelled particles and quantum particles with spin may help realize exotic phases of matter using active fluids via analogies with systems composed of strongly correlated electrons.

  5. Effective spin physics in two-dimensional cavity QED arrays

    NASA Astrophysics Data System (ADS)

    Minář, Jiří; Güneş Söyler, Şebnem; Rotondo, Pietro; Lesanovsky, Igor

    2017-06-01

    We investigate a strongly correlated system of light and matter in two-dimensional cavity arrays. We formulate a multimode Tavis-Cummings (TC) Hamiltonian for two-level atoms coupled to cavity modes and driven by an external laser field which reduces to an effective spin Hamiltonian in the dispersive regime. In one-dimension we provide an exact analytical solution. In two-dimensions, we perform mean-field study and large scale quantum Monte Carlo simulations of both the TC and the effective spin models. We discuss the phase diagram and the parameter regime which gives rise to frustrated interactions between the spins. We provide a quantitative description of the phase transitions and correlation properties featured by the system and we discuss graph-theoretical properties of the ground states in terms of graph colourings using Pólya’s enumeration theorem.

  6. Entanglement entropy of the Q≥4 quantum Potts chain.

    PubMed

    Lajkó, Péter; Iglói, Ferenc

    2017-01-01

    The entanglement entropy S is an indicator of quantum correlations in the ground state of a many-body quantum system. At a second-order quantum phase-transition point in one dimension S generally has a logarithmic singularity. Here we consider quantum spin chains with a first-order quantum phase transition, the prototype being the Q-state quantum Potts chain for Q>4 and calculate S across the transition point. According to numerical, density matrix renormalization group results at the first-order quantum phase transition point S shows a jump, which is expected to vanish for Q→4^{+}. This jump is calculated in leading order as ΔS=lnQ[1-4/Q-2/(QlnQ)+O(1/Q^{2})].

  7. Equilibrium dynamics of the sub-Ohmic spin-boson model under bias

    NASA Astrophysics Data System (ADS)

    Zheng, Da-Chuan; Tong, Ning-Hua

    2017-06-01

    Using the bosonic numerical renormalization group method, we studied the equilibrium dynamical correlation function C(ω) of the spin operator σ z for the biased sub-Ohmic spin-boson model. The small-ω behavior C(ω )\\propto {ω }s is found to be universal and independent of the bias ɛ and the coupling strength α (except at the quantum critical point α ={α }{{c}} and ɛ = 0). Our NRG data also show C(ω )\\propto {χ }2{ω }s for a wide range of parameters, including the biased strong coupling regime (\\varepsilon \

  8. Charge and spin dynamics driven by ultrashort extreme broadband pulses: A theory perspective

    NASA Astrophysics Data System (ADS)

    Moskalenko, Andrey S.; Zhu, Zhen-Gang; Berakdar, Jamal

    2017-02-01

    This article gives an overview on recent theoretical progress in controlling the charge and spin dynamics in low-dimensional electronic systems by means of ultrashort and ultrabroadband electromagnetic pulses. A particular focus is put on sub-cycle and single-cycle pulses and their utilization for coherent control. The discussion is mostly limited to cases where the pulse duration is shorter than the characteristic time scales associated with the involved spectral features of the excitations. The relevant current theoretical knowledge is presented in a coherent, pedagogic manner. We work out that the pulse action amounts in essence to a quantum map between the quantum states of the system at an appropriately chosen time moment during the pulse. The influence of a particular pulse shape on the post-pulse dynamics is reduced to several integral parameters entering the expression for the quantum map. The validity range of this reduction scheme for different strengths of the driving fields is established and discussed for particular nanostructures. Acting with a periodic pulse sequence, it is shown how the system can be steered to and largely maintained in predefined states. The conditions for this nonequilibrium sustainability are worked out by means of geometric phases, which are identified as the appropriate quantities to indicate quasistationarity of periodically driven quantum systems. Demonstrations are presented for the control of the charge, spin, and valley degrees of freedom in nanostructures on picosecond and subpicosecond time scales. The theory is illustrated with several applications to one-dimensional semiconductor quantum wires and superlattices, double quantum dots, semiconductor and graphene quantum rings. In the case of a periodic pulsed driving the influence of the relaxation and decoherence processes is included by utilizing the density matrix approach. The integrated and time-dependent spectra of the light emitted from the driven system deliver information on its spin-dependent dynamics. We review examples of such spectra of photons emitted from pulse-driven nanostructures as well as a possibility to characterize and control the light polarization on an ultrafast time scale. Furthermore, we consider the response of strongly correlated systems to short broadband pulses and show that this case bears a great potential to unveil high order correlations while they build up upon excitations.

  9. Non-Abelian Geometric Phases Carried by the Quantum Noise Matrix

    NASA Astrophysics Data System (ADS)

    Bharath, H. M.; Boguslawski, Matthew; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    Topological phases of matter are characterized by topological order parameters that are built using Berry's geometric phase. Berry's phase is the geometric information stored in the overall phase of a quantum state. We show that geometric information is also stored in the second and higher order spin moments of a quantum spin system, captured by a non-abelian geometric phase. The quantum state of a spin-S system is uniquely characterized by its spin moments up to order 2S. The first-order spin moment is the spin vector, and the second-order spin moment represents the spin fluctuation tensor, i.e., the quantum noise matrix. When the spin vector is transported along a loop in the Bloch ball, we show that the quantum noise matrix picks up a geometric phase. Considering spin-1 systems, we formulate this geometric phase as an SO(3) operator. Geometric phases are usually interpreted in terms of the solid angle subtended by the loop at the center. However, solid angles are not well defined for loops that pass through the center. Here, we introduce a generalized solid angle which is well defined for all loops inside the Bloch ball, in terms of which, we interpret the SO(3) geometric phase. This geometric phase can be used to characterize topological spin textures in cold atomic clouds.

  10. Nuclear spin nanomagnet in an optically excited quantum dot.

    PubMed

    Korenev, V L

    2007-12-21

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.

  11. Waiting time distribution revealing the internal spin dynamics in a double quantum dot

    NASA Astrophysics Data System (ADS)

    Ptaszyński, Krzysztof

    2017-07-01

    Waiting time distribution and the zero-frequency full counting statistics of unidirectional electron transport through a double quantum dot molecule attached to spin-polarized leads are analyzed using the quantum master equation. The waiting time distribution exhibits a nontrivial dependence on the value of the exchange coupling between the dots and the gradient of the applied magnetic field, which reveals the oscillations between the spin states of the molecule. The zero-frequency full counting statistics, on the other hand, is independent of the aforementioned quantities, thus giving no insight into the internal dynamics. The fact that the waiting time distribution and the zero-frequency full counting statistics give a nonequivalent information is associated with two factors. Firstly, it can be explained by the sensitivity to different timescales of the dynamics of the system. Secondly, it is associated with the presence of the correlation between subsequent waiting times, which makes the renewal theory, relating the full counting statistics and the waiting time distribution, no longer applicable. The study highlights the particular usefulness of the waiting time distribution for the analysis of the internal dynamics of mesoscopic systems.

  12. Ab initio model potential calculations on the electronic spectrum of Ni2 + -doped MgO including correlation, spin-orbit and embedding effects

    NASA Astrophysics Data System (ADS)

    Llusar, Rosa; Casarrubios, Marcos; Barandiarán, Zoila; Seijo, Luis

    1996-10-01

    An ab initio theoretical study of the optical absorption spectrum of Ni2+-doped MgO has been conducted by means of calculations in a MgO-embedded (NiO6)10-cluster. The calculations include long- and short-range embedding effects of electrostatic and quantum nature brought about by the MgO crystalline lattice, as well as electron correlation and spin-orbit effects within the (NiO6)10- cluster. The spin-orbit calculations have been performed using the spin-orbit-CI WB-AIMP method [Chem. Phys. Lett. 147, 597 (1988); J. Chem. Phys. 102, 8078 (1995)] which has been recently proposed and is applied here for the first time to the field of impurities in crystals. The WB-AIMP method is extended in order to handle correlation effects which, being necessary to produce accurate energy differences between spin-free states, are not needed for the proper calculation of spin-orbit couplings. The extension of the WB-AIMP method, which is also aimed at keeping the size of the spin-orbit-CI within reasonable limits, is based on the use of spin-free-state shifting operators. It is shown that the unreasonable spin-orbit splittings obtained for MgO:Ni2+ in spin-orbit-CI calculations correlating only 8 electrons become correct when the proposed extension is applied, so that the same CI space is used but energy corrections due to correlating up to 26 electrons are included. The results of the ligand field spectrum of MgO:Ni2+ show good overall agreement with the experimental measurements and a reassignment of the observed Eg(b3T1g) excited state is proposed and discussed.

  13. Quantum information. Unconditional quantum teleportation between distant solid-state quantum bits.

    PubMed

    Pfaff, W; Hensen, B J; Bernien, H; van Dam, S B; Blok, M S; Taminiau, T H; Tiggelman, M J; Schouten, R N; Markham, M; Twitchen, D J; Hanson, R

    2014-08-01

    Realizing robust quantum information transfer between long-lived qubit registers is a key challenge for quantum information science and technology. Here we demonstrate unconditional teleportation of arbitrary quantum states between diamond spin qubits separated by 3 meters. We prepare the teleporter through photon-mediated heralded entanglement between two distant electron spins and subsequently encode the source qubit in a single nuclear spin. By realizing a fully deterministic Bell-state measurement combined with real-time feed-forward, quantum teleportation is achieved upon each attempt with an average state fidelity exceeding the classical limit. These results establish diamond spin qubits as a prime candidate for the realization of quantum networks for quantum communication and network-based quantum computing. Copyright © 2014, American Association for the Advancement of Science.

  14. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities

    NASA Astrophysics Data System (ADS)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-01

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  15. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  16. Demonstration of Quantum Entanglement between a Single Electron Spin Confined to an InAs Quantum Dot and a Photon

    NASA Astrophysics Data System (ADS)

    Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Duan, L.-M.; Berman, P. R.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2013-04-01

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot’s excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×103s-1. This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  17. Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon.

    PubMed

    Schaibley, J R; Burgers, A P; McCracken, G A; Duan, L-M; Berman, P R; Steel, D G; Bracker, A S; Gammon, D; Sham, L J

    2013-04-19

    The electron spin state of a singly charged semiconductor quantum dot has been shown to form a suitable single qubit for quantum computing architectures with fast gate times. A key challenge in realizing a useful quantum dot quantum computing architecture lies in demonstrating the ability to scale the system to many qubits. In this Letter, we report an all optical experimental demonstration of quantum entanglement between a single electron spin confined to a single charged semiconductor quantum dot and the polarization state of a photon spontaneously emitted from the quantum dot's excited state. We obtain a lower bound on the fidelity of entanglement of 0.59±0.04, which is 84% of the maximum achievable given the timing resolution of available single photon detectors. In future applications, such as measurement-based spin-spin entanglement which does not require sub-nanosecond timing resolution, we estimate that this system would enable near ideal performance. The inferred (usable) entanglement generation rate is 3×10(3) s(-1). This spin-photon entanglement is the first step to a scalable quantum dot quantum computing architecture relying on photon (flying) qubits to mediate entanglement between distant nodes of a quantum dot network.

  18. Chiral sp-orbital paired superfluid of fermionic atoms in a 2D spin-dependent optical lattice

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Wu, Biao; Liu, W. Vincent

    2014-03-01

    Recent progress in realizing synthetic quantum orbital materials in chequerboard and hexagonal optical lattices opens an avenue towards exploiting unconventional quantum states, advancing our understanding of correlated quantum matter. Here, we unveil a chiral sp -orbital paired superfluid state for an interacting two-component Fermi gas in a 2D spin-dependent optical lattice. Surprisingly, this novel state is found to exist in a wide regime of experimentally tunable interaction strengths. The coexistence of this chiral superfluid and the ferro-orbital order is reminiscent of that of magnetism and superconductivity which is a long-standing issue in condensed matter physics. The topological properties are demonstrated by the existence of gapless chiral fermions in the presence of domain wall defects, reminiscent of quantum Hall edge states. Such properties can be measured by radio frequency spectroscopy in cold atomic experiments. Work supported in part by U.S. ARO, AFOSR, and DARPA-OLE-ARO, Kaufman Foundation, and NSF of China.

  19. Dynamical potentials for nonequilibrium quantum many-body phases

    NASA Astrophysics Data System (ADS)

    Roy, Sthitadhi; Lazarides, Achilleas; Heyl, Markus; Moessner, Roderich

    2018-05-01

    Out of equilibrium phases of matter exhibiting order in individual eigenstates, such as many-body localized spin glasses and discrete time crystals, can be characterized by inherently dynamical quantities such as spatiotemporal correlation functions. In this paper, we introduce dynamical potentials which act as generating functions for such correlations and capture eigenstate phases and order. These potentials show formal similarities to their equilibrium counterparts, namely thermodynamic potentials. We provide three representative examples: a disordered XXZ chain showing many-body localization, a disordered Ising chain exhibiting spin-glass order, and its periodically-driven cousin exhibiting time-crystalline order.

  20. Petz recovery versus matrix reconstruction

    NASA Astrophysics Data System (ADS)

    Holzäpfel, Milan; Cramer, Marcus; Datta, Nilanjana; Plenio, Martin B.

    2018-04-01

    The reconstruction of the state of a multipartite quantum mechanical system represents a fundamental task in quantum information science. At its most basic, it concerns a state of a bipartite quantum system whose subsystems are subjected to local operations. We compare two different methods for obtaining the original state from the state resulting from the action of these operations. The first method involves quantum operations called Petz recovery maps, acting locally on the two subsystems. The second method is called matrix (or state) reconstruction and involves local, linear maps that are not necessarily completely positive. Moreover, we compare the quantities on which the maps employed in the two methods depend. We show that any state that admits Petz recovery also admits state reconstruction. However, the latter is successful for a strictly larger set of states. We also compare these methods in the context of a finite spin chain. Here, the state of a finite spin chain is reconstructed from the reduced states of a few neighbouring spins. In this setting, state reconstruction is the same as the matrix product operator reconstruction proposed by Baumgratz et al. [Phys. Rev. Lett. 111, 020401 (2013)]. Finally, we generalize both these methods so that they employ long-range measurements instead of relying solely on short-range correlations embodied in such local reduced states. Long-range measurements enable the reconstruction of states which cannot be reconstructed from measurements of local few-body observables alone and hereby we improve existing methods for quantum state tomography of quantum many-body systems.

  1. Cavity Exciton-Polariton mediated, Single-Shot Quantum Non-Demolition measurement of a Quantum Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter; Yamamoto, Yoshihisa

    2014-03-01

    The quantum non-demolition (QND) measurement of a single electron spin is of great importance in measurement-based quantum computing schemes. The current single-shot readout demonstrations exhibit substantial spin-flip backaction. We propose a QND readout scheme for quantum dot (QD) electron spins in Faraday geometry, which differs from previous proposals and implementations in that it relies on a novel physical mechanism: the spin-dependent Coulomb exchange interaction between a QD spin and optically-excited quantum well (QW) microcavity exciton-polaritons. The Coulomb exchange interaction causes a spin-dependent shift in the resonance energy of the polarized polaritons, thus causing the phase and intensity response of left circularly polarized light to be different to that of the right circularly polarized light. As a result the QD electron's spin can be inferred from the response to a linearly polarized probe. We show that by a careful design of the system, any spin-flip backaction can be eliminated and a QND measurement of the QD electron spin can be performed within a few 10's of nanoseconds with fidelity 99:95%. This improves upon current optical QD spin readout techniques across multiple metrics, including fidelity, speed and scalability. National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan.

  2. Feynman propagator for spin foam quantum gravity.

    PubMed

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  3. Toward Quantum Non-demolition of nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Hodges, Jonathan; Jiang, Liang; Maze, Jeronimo; Lukin, Mikhail

    2009-05-01

    The nitrogen-vacancy color center (NVC) in diamond, which possesses a long-lived electronic spin (S=1) ground state with optical addressability, is a promising platform for quantum networks, single-photon sources, and nanoscale magnetometers. Here, we make use of a nuclear spin based quantum memory to demonstrate quantum non-demolition measurement of a solid-state spin qubit. By entangling the electron spin with a polarized carbon-13 spin (I=1/2) in the lattice, we have repeated optical measurement of the electron spin for the polarization lifetime of the nuclear spin. We show relative improvements in signal-to-noise of greater than 300%. These techniques can be used to improve the sensitivity of NVC magnetometers.

  4. Correlation Effects and Hidden Spin-Orbit Entangled Electronic Order in Parent and Electron-Doped Iridates Sr2 IrO4

    NASA Astrophysics Data System (ADS)

    Zhou, Sen; Jiang, Kun; Chen, Hua; Wang, Ziqiang

    2017-10-01

    Analogs of the high-Tc cuprates have been long sought after in transition metal oxides. Because of the strong spin-orbit coupling, the 5 d perovskite iridates Sr2 IrO4 exhibit a low-energy electronic structure remarkably similar to the cuprates. Whether a superconducting state exists as in the cuprates requires understanding the correlated spin-orbit entangled electronic states. Recent experiments discovered hidden order in the parent and electron-doped iridates, some with striking analogies to the cuprates, including Fermi surface pockets, Fermi arcs, and pseudogap. Here, we study the correlation and disorder effects in a five-orbital model derived from the band theory. We find that the experimental observations are consistent with a d -wave spin-orbit density wave order that breaks the symmetry of a joint twofold spin-orbital rotation followed by a lattice translation. There is a Berry phase and a plaquette spin flux due to spin procession as electrons hop between Ir atoms, akin to the intersite spin-orbit coupling in quantum spin Hall insulators. The associated staggered circulating Jeff=1 /2 spin current can be probed by advanced techniques of spin-current detection in spintronics. This electronic order can emerge spontaneously from the intersite Coulomb interactions between the spatially extended iridium 5 d orbitals, turning the metallic state into an electron-doped quasi-2D Dirac semimetal with important implications on the possible superconducting state suggested by recent experiments.

  5. Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.

    PubMed

    Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir

    2015-07-17

    The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.

  6. Reassessment of the nonlocality of correlation boxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, A.P.; Parisio, Fernando, E-mail: parisio@df.ufpe.br

    Correlation boxes are hypothetical systems usually designed to produce the maximal algebraic violation of a Bell inequality, beyond the quantum bound and without superluminal signalling. The fact that these systems show stronger correlations than those presented by maximally entangled quantum states, as the spin singlet, has been regarded as a demonstration that the former are more nonlocal than the latter. By applying an alternative, consistent measure of nonlocality to a family of correlation boxes, we show that this conclusion is not necessarily true. Complementarily, we define a class of systems displaying subquantum correlations which, nevertheless, are more nonlocal than themore » singlet state, showing that the extent of the numeric violation of an inequality may have little to do with the degree of nonlocality, especially in the case of correlation boxes.« less

  7. Will spin-relaxation times in molecular magnets permit quantum information processing?

    NASA Astrophysics Data System (ADS)

    Ardavan, Arzhang

    2007-03-01

    Certain computational tasks can be efficiently implemented using quantum logic, in which the information-carrying elements are permitted to exist in quantum superpositions. To achieve this in practice, a physical system that is suitable for embodying quantum bits (qubits) must be identified. Some proposed scenarios employ electron spins in the solid state, for example phosphorous donors in silicon, quantum dots, heterostructures and endohedral fullerenes, motivated by the long electron-spin relaxation times exhibited by these systems. An alternative electron-spin based proposal exploits the large number of quantum states and the non-degenerate transitions available in high spin molecular magnets. Although these advantages have stimulated vigorous research in molecular magnets, the key question of whether the intrinsic spin relaxation times are long enough has hitherto remained unaddressed. Using X-band pulsed electron spin resonance, we measure the intrinsic spin-lattice (T1) and phase coherence (T2) relaxation times in molecular nanomagnets for the first time. In Cr7M heterometallic wheels, with M = Ni and Mn, phase coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2 reaches 3 μs at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications.

  8. High-fidelity spin entanglement using optimal control.

    PubMed

    Dolde, Florian; Bergholm, Ville; Wang, Ya; Jakobi, Ingmar; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Neumann, Philipp; Schulte-Herbrüggen, Thomas; Biamonte, Jacob; Wrachtrup, Jörg

    2014-02-28

    Precise control of quantum systems is of fundamental importance in quantum information processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum registers, several challenges arise: individual addressing of qubits while suppressing cross-talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally demonstrate optimal control of a prototype spin qubit system consisting of two proximal nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate single electron spin operations with a fidelity F≈0.99. With additional dynamical decoupling techniques, we further realize high-quality, on-demand entangled states between two electron spins with F>0.82, mostly limited by the coherence time and imperfect initialization. Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously eliminated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.

  9. Spin relaxation in semiconductor quantum rings and dots--a comparative study.

    PubMed

    Zipper, Elżbieta; Kurpas, Marcin; Sadowski, Janusz; Maśka, Maciej M

    2011-03-23

    We calculate spin relaxation times due to spin-orbit-mediated electron-phonon interactions for experimentally accessible semiconductor quantum ring and dot architectures. We elucidate the differences between the two systems due to different confinement. The estimated relaxation times (at B = 1 T) are in the range between a few milliseconds to a few seconds. This high stability of spin in a quantum ring allows us to test it as a spin qubit. A brief discussion of quantum state manipulations with such a qubit is presented.

  10. π-electron S = ½ quantum spin-liquid state in an ionic polyaromatic hydrocarbon

    NASA Astrophysics Data System (ADS)

    Takabayashi, Yasuhiro; Menelaou, Melita; Tamura, Hiroyuki; Takemori, Nayuta; Koretsune, Takashi; Štefančič, Aleš; Klupp, Gyöngyi; Buurma, A. Johan C.; Nomura, Yusuke; Arita, Ryotaro; Arčon, Denis; Rosseinsky, Matthew J.; Prassides, Kosmas

    2017-07-01

    Molecular solids with cooperative electronic properties based purely on π electrons from carbon atoms offer a fertile ground in the search for exotic states of matter, including unconventional superconductivity and quantum magnetism. The field was ignited by reports of high-temperature superconductivity in materials obtained by the reaction of alkali metals with polyaromatic hydrocarbons, such as phenanthrene and picene, but the composition and structure of any compound in this family remained unknown. Here we isolate the binary caesium salts of phenanthrene, Cs(C14H10) and Cs2(C14H10), to show that they are multiorbital strongly correlated Mott insulators. Whereas Cs2(C14H10) is diamagnetic because of orbital polarization, Cs(C14H10) is a Heisenberg antiferromagnet with a gapped spin-liquid state that emerges from the coupled highly frustrated Δ-chain magnetic topology of the alternating-exchange spiral tubes of S = ½ (C14H10)•- radical anions. The absence of long-range magnetic order down to 1.8 K (T/J ≈ 0.02 J is the dominant exchange constant) renders the compound an excellent candidate for a spin-½ quantum-spin liquid (QSL) that arises purely from carbon π electrons.

  11. Double Quantum Dots in Carbon Nanotubes

    DTIC Science & Technology

    2010-06-02

    occupation of one dot is favored by increasing the detuning between the dots, the Coulomb interaction causes strong correlation effects realized by...al- low the measurement and manipulation of the spin de - gree of freedom of the confined electrons1. Such con- trol is at the heart of semiconductor...of an additional val- ley degree of freedom, the two-electron eigenstates can be separated in an orbital part and a spin-valley part that are, to a

  12. Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet

    DOE PAGES

    Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale; ...

    2016-10-03

    The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less

  13. Gate fidelity and coherence of an electron spin in an Si/SiGe quantum dot with micromagnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawakami, Erika; Jullien, Thibaut; Scarlino, Pasquale

    The gate fidelity and the coherence time of a quantum bit (qubit) are important benchmarks for quantum computation. We construct a qubit using a single electron spin in an Si/SiGe quantum dot and control it electrically via an artificial spin-orbit field from a micromagnet. We measure an average single-qubit gate fidelity of ~99% using randomized benchmarking, which is consistent with dephasing from the slowly evolving nuclear spins in the substrate. The coherence time measured using dynamical decoupling extends up to ~400 μs for 128 decoupling pulses, with no sign of saturation. We find evidence that the coherence time is limitedmore » by noise in the 10-kHz to 1-MHz range, possibly because charge noise affects the spin via the micromagnet gradient. Furthermore, this work shows that an electron spin in an Si/SiGe quantum dot is a good candidate for quantum information processing as well as for a quantum memory, even without isotopic purification.« less

  14. Bias voltage dependence of the electron spin depolarization in quantum wires in the quantum Hall regime detected by the resistively detected NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chida, K.; Yamauchi, Y.; Arakawa, T.

    2013-12-04

    We performed the resistively-detected nuclear magnetic resonance (RDNMR) to study the electron spin polarization in the non-equilibrium quantum Hall regime. By measuring the Knight shift, we derive source-drain bias voltage dependence of the electron spin polarization in quantum wires. The electron spin polarization shows minimum value around the threshold voltage of the dynamic nuclear polarization.

  15. Non-Markovian dynamics in chiral quantum networks with spins and photons

    NASA Astrophysics Data System (ADS)

    Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter

    2016-06-01

    We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.

  16. Fast Single-Shot Hold Spin Readout in Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Bogan, Alexander; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Gaudreau, Louis; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry

    Solid state spin qubits in quantum dots hold promise as scalable, high-density qubits in quantum information processing architectures. While much of the experimental investigation of these devices and their physics has focused on confined electron spins, hole spins in III-V semiconductors are attractive alternatives to electrons due to the reduced hyperfine coupling between the spin and the incoherent nuclear environment. In this talk, we will discuss a measurement protocol of the hole spin relaxation time T1 in a gated lateral GaAs double quantum dot tuned to the one and two-hole regimes, as well as a new technique for single-shot projective measurement of a single spin in tens of nanoseconds or less. The technique makes use of fast non-spin-conserving inter-dot transitions permitted by strong spin-orbit interactions for holes, as well as the latching of the charge state of the second quantum dot for enhanced sensitivity. This technique allows a direct measurement of the single spin relaxation time on time-scales set by physical device rather than by limitations of the measurement circuit.

  17. Optical Control of a Nuclear Spin in Diamond

    NASA Astrophysics Data System (ADS)

    Levonian, David; Goldman, Michael; Degreve, Kristiaan; Choi, Soonwon; Markham, Matthew; Twitchen, Daniel; Lukin, Mikhail

    2017-04-01

    The nitrogen-vacancy (NV) center in diamond has emerged as a promising candidate for quantum information and quantum communication applications. The NV center's potential as a quantum register is due to the long coherence time of its spin-triplet electronic ground state, the optical addressability of its electronic transitions, and the presence of nearby ancillary nuclear spins. The NV center's electronic spin and nearby nuclear spins are most commonly manipulated using applied microwave and RF fields, but this approach would be difficult to scale up for use with an array of NV-based quantum registers. In this context, all-optical manipulation would be more scalable, technically simpler, and potentially faster. Although all-optical control of the electronic spin has been demonstrated, it is an outstanding problem for the nuclear spins. Here, we use an optical Raman scheme to implement nuclear spin-specific control of the electronic spin and coherent control of the 14N nuclear spin.

  18. Spin-locking of half-integer quadrupolar nuclei in nuclear magnetic resonance of solids: second-order quadrupolar and resonance offset effects.

    PubMed

    Ashbrook, Sharon E; Wimperis, Stephen

    2009-11-21

    Spin-locking of spin I=3/2 and I=5/2 nuclei in the presence of small resonance offset and second-order quadrupolar interactions has been investigated using both exact and approximate theoretical and experimental nuclear magnetic resonance (NMR) approaches. In the presence of second-order quadrupolar interactions, we show that the initial rapid dephasing that arises from the noncommutation of the state prepared by the first pulse and the spin-locking Hamiltonian gives rise to tensor components of the spin density matrix that are antisymmetric with respect to inversion, in addition to those symmetric with respect to inversion that are found when only a first-order quadrupolar interaction is considered. We also find that spin-locking of multiple-quantum coherence in a static solid is much more sensitive to resonance offset than that of single-quantum coherence and show that good spin-locking of multiple-quantum coherence can still be achieved if the resonance offset matches the second-order shift of the multiple-quantum coherence in the appropriate reference frame. Under magic angle spinning (MAS) conditions, and in the "adiabatic" limit, we demonstrate that rotor-driven interconversion of central-transition single- and three-quantum coherences for a spin I=3/2 nucleus can be best achieved by performing the spin-locking on resonance with the three-quantum coherence in the three-quantum frame. Finally, in the "sudden" MAS limit, we show that spin I=3/2 spin-locking behavior is generally similar to that found in static solids, except when the central-transition nutation rate matches a multiple of the MAS rate and a variety of rotary resonance phenomena are observed depending on the internal spin interactions present. This investigation should aid in the application of spin-locking techniques to multiple-quantum NMR of quadrupolar nuclei and of cross-polarization and homonuclear dipolar recoupling experiments to quadrupolar nuclei such as (7)Li, (11)B, (17)O, (23)Na, and (27)Al.

  19. Electrically tunable spin filtering for electron tunneling between spin-resolved quantum Hall edge states and a quantum dot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiyama, H., E-mail: kiyama@meso.t.u-tokyo.ac.jp; Fujita, T.; Teraoka, S.

    2014-06-30

    Spin filtering with electrically tunable efficiency is achieved for electron tunneling between a quantum dot and spin-resolved quantum Hall edge states by locally gating the two-dimensional electron gas (2DEG) leads near the tunnel junction to the dot. The local gating can change the potential gradient in the 2DEG and consequently the edge state separation. We use this technique to electrically control the ratio of the dot–edge state tunnel coupling between opposite spins and finally increase spin filtering efficiency up to 91%, the highest ever reported, by optimizing the local gating.

  20. Spin-dependent tunneling recombination in heterostructures with a magnetic layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denisov, K. S., E-mail: denisokonstantin@gmail.com; Rozhansky, I. V.; Averkiev, N. S.

    We propose a mechanism for the generation of spin polarization in semiconductor heterostructures with a quantum well and a magnetic impurity layer spatially separated from it. The spin polarization of carriers in a quantum well originates from spin-dependent tunneling recombination at impurity states in the magnetic layer, which is accompanied by a fast linear increase in the degree of circular polarization of photoluminescence from the quantum well. Two situations are theoretically considered. In the first case, resonant tunneling to the spin-split sublevels of the impurity center occurs and spin polarization is caused by different populations of resonance levels in themore » quantum well for opposite spin projections. In the second, nonresonant case, the spin-split impurity level lies above the occupied states of electrons in the quantum well and plays the role of an intermediate state in the two-stage coherent spin-dependent recombination of an electron from the quantum well and a hole in the impurity layer. The developed theory allows us to explain both qualitatively and quantitatively the kinetics of photoexcited electrons in experiments with photoluminescence with time resolution in Mn-doped InGaAs heterostructures.« less

  1. Entanglement in a solid-state spin ensemble.

    PubMed

    Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L

    2011-02-03

    Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.

  2. Topologically non-trivial electronic and magnetic states in doped copper Kagome lattices

    NASA Astrophysics Data System (ADS)

    Guterding, Daniel; Jeschke, Harald O.; Valenti, Roser

    We present a theoretical investigation of doped copper kagome materials based on natural minerals Herbertsmithite [ZnCu3(OH)6Cl2] and Barlowite[Cu4(OH)6FBr]. Using ab-initio density functional theory calculations we estimate the stability of the hypothetical compounds against structural distortions and analyze their electronic and magnetic properties. We find that materials based on Herbertsmithite present an ideal playground for investigating the interplay of non-trivial band-topology and strong electronic correlation effects. In particular, we propose candidates for the Quantum Spin Hall effect at filling 4/3 and the Quantum Anomalous Hall effect at filling 2/3. For the Barlowite system we point out a route to realize a Quantum Spin Liquid. This work was supported by Deutsche Forschungsgemeinschaft under Grant No. SFB/TR 49 and the National Science Foundation under Grant No. PHY11-25915.

  3. On the Origin of Charge Order in RuCl3

    NASA Astrophysics Data System (ADS)

    Berlijn, Tom

    RuCl3 has been proposed to be a spin-orbit assisted Mott insulator close to the Kitaev-spin-liquid ground state, an exotic state of matter that could protect information in quantum computers. Recent STM experiments [M. Ziatdinov et al, Nature Communications (in press)] however, show the presence of a puzzling short-range charge order in this quasi two dimensional material. Understanding the nature of this charge order may provide a pathway towards tuning RuCl3 into the Kitaev-spin-liquid ground state. Based on first principles calculations I investigate the possibility that the observed charge order is caused by a combination of short-range magnetic correlations and strong spin-orbit coupling. From a general perspective such a mechanism could offer the exciting possibility of probing local magnetic correlations with standard STM. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  4. Heralded entanglement of two remote atoms

    NASA Astrophysics Data System (ADS)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru; Kuz’menkov, L.S., E-mail: lsk@phys.msu.ru

    We consider quantum plasmas of electrons and motionless ions. We describe separate evolution of spin-up and spin-down electrons. We present corresponding set of quantum hydrodynamic equations. We assume that plasmas are placed in an uniform external magnetic field. We account different occupation of spin-up and spin-down quantum states in equilibrium degenerate plasmas. This effect is included via equations of state for pressure of each species of electrons. We study oblique propagation of longitudinal waves. We show that instead of two well-known waves (the Langmuir wave and the Trivelpiece–Gould wave), plasmas reveal four wave solutions. New solutions exist due to bothmore » the separate consideration of spin-up and spin-down electrons and different occupation of spin-up and spin-down quantum states in equilibrium state of degenerate plasmas.« less

  6. Quantum entanglement and spin control in silicon nanocrystal.

    PubMed

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.

  7. Four-electron model for singlet and triplet excitation energy transfers with inclusion of coherence memory, inelastic tunneling and nuclear quantum effects

    NASA Astrophysics Data System (ADS)

    Suzuki, Yosuke; Ebina, Kuniyoshi; Tanaka, Shigenori

    2016-08-01

    A computational scheme to describe the coherent dynamics of excitation energy transfer (EET) in molecular systems is proposed on the basis of generalized master equations with memory kernels. This formalism takes into account those physical effects in electron-bath coupling system such as the spin symmetry of excitons, the inelastic electron tunneling and the quantum features of nuclear motions, thus providing a theoretical framework to perform an ab initio description of EET through molecular simulations for evaluating the spectral density and the temporal correlation function of electronic coupling. Some test calculations have then been carried out to investigate the dependence of exciton population dynamics on coherence memory, inelastic tunneling correlation time, magnitude of electronic coupling, quantum correction to temporal correlation function, reorganization energy and energy gap.

  8. Direct measurement of discrete valley and orbital quantum numbers in bilayer graphene.

    PubMed

    Hunt, B M; Li, J I A; Zibrov, A A; Wang, L; Taniguchi, T; Watanabe, K; Hone, J; Dean, C R; Zaletel, M; Ashoori, R C; Young, A F

    2017-10-16

    The high magnetic field electronic structure of bilayer graphene is enhanced by the spin, valley isospin, and an accidental orbital degeneracy, leading to a complex phase diagram of broken symmetry states. Here, we present a technique for measuring the layer-resolved charge density, from which we directly determine the valley and orbital polarization within the zero energy Landau level. Layer polarization evolves in discrete steps across 32 electric field-tuned phase transitions between states of different valley, spin, and orbital order, including previously unobserved orbitally polarized states stabilized by skew interlayer hopping. We fit our data to a model that captures both single-particle and interaction-induced anisotropies, providing a complete picture of this correlated electron system. The resulting roadmap to symmetry breaking paves the way for deterministic engineering of fractional quantum Hall states, while our layer-resolved technique is readily extendable to other two-dimensional materials where layer polarization maps to the valley or spin quantum numbers.The phase diagram of bilayer graphene at high magnetic fields has been an outstanding question, with orders possibly between multiple internal quantum degrees of freedom. Here, Hunt et al. report the measurement of the valley and orbital order, allowing them to directly reconstruct the phase diagram.

  9. Coherent spin control of a nanocavity-enhanced qubit in diamond

    DOE PAGES

    Li, Luozhou; Lu, Ming; Schroder, Tim; ...

    2015-01-28

    A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy nanocavity systems in strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 µs using a silicon hard-mask fabrication process. This spin-photon interfacemore » is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.« less

  10. Towards quantum networks of single spins: analysis of a quantum memory with an optical interface in diamond.

    PubMed

    Blok, M S; Kalb, N; Reiserer, A; Taminiau, T H; Hanson, R

    2015-01-01

    Single defect centers in diamond have emerged as a powerful platform for quantum optics experiments and quantum information processing tasks. Connecting spatially separated nodes via optical photons into a quantum network will enable distributed quantum computing and long-range quantum communication. Initial experiments on trapped atoms and ions as well as defects in diamond have demonstrated entanglement between two nodes over several meters. To realize multi-node networks, additional quantum bit systems that store quantum states while new entanglement links are established are highly desirable. Such memories allow for entanglement distillation, purification and quantum repeater protocols that extend the size, speed and distance of the network. However, to be effective, the memory must be robust against the entanglement generation protocol, which typically must be repeated many times. Here we evaluate the prospects of using carbon nuclear spins in diamond as quantum memories that are compatible with quantum networks based on single nitrogen vacancy (NV) defects in diamond. We present a theoretical framework to describe the dephasing of the nuclear spins under repeated generation of NV spin-photon entanglement and show that quantum states can be stored during hundreds of repetitions using typical experimental coupling parameters. This result demonstrates that nuclear spins with weak hyperfine couplings are promising quantum memories for quantum networks.

  11. Observation of entanglement between a quantum dot spin and a single photon.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Miguel-Sanchez, J; Imamoglu, A

    2012-11-15

    Entanglement has a central role in fundamental tests of quantum mechanics as well as in the burgeoning field of quantum information processing. Particularly in the context of quantum networks and communication, a main challenge is the efficient generation of entanglement between stationary (spin) and propagating (photon) quantum bits. Here we report the observation of quantum entanglement between a semiconductor quantum dot spin and the colour of a propagating optical photon. The demonstration of entanglement relies on the use of fast, single-photon detection, which allows us to project the photon into a superposition of red and blue frequency components. Our results extend the previous demonstrations of single-spin/single-photon entanglement in trapped ions, neutral atoms and nitrogen-vacancy centres to the domain of artificial atoms in semiconductor nanostructures that allow for on-chip integration of electronic and photonic elements. As a result of its fast optical transitions and favourable selection rules, the scheme we implement could in principle generate nearly deterministic entangled spin-photon pairs at a rate determined ultimately by the high spontaneous emission rate. Our observation constitutes a first step towards implementation of a quantum network with nodes consisting of semiconductor spin quantum bits.

  12. Thermodynamics of quantum information scrambling

    NASA Astrophysics Data System (ADS)

    Campisi, Michele; Goold, John

    2017-06-01

    Scrambling of quantum information can conveniently be quantified by so-called out-of-time-order correlators (OTOCs), i.e., correlators of the type <[Wτ,V ] †[Wτ,V ] > , whose measurements present a formidable experimental challenge. Here we report on a method for the measurement of OTOCs based on the so-called two-point measurement scheme developed in the field of nonequilibrium quantum thermodynamics. The scheme is of broader applicability than methods employed in current experiments and provides a clear-cut interpretation of quantum information scrambling in terms of nonequilibrium fluctuations of thermodynamic quantities, such as work and heat. Furthermore, we provide a numerical example on a spin chain which highlights the utility of our thermodynamic approach when understanding the differences between integrable and ergodic behaviors. We also discuss how the method can be used to extend the reach of current experiments.

  13. New Spin Foam Models of Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Miković, A.

    We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.

  14. Realizing Controllable Quantum States

    NASA Astrophysics Data System (ADS)

    Takayanagi, Hideaki; Nitta, Junsaku

    1. Entanglement in solid states. Orbital entanglement and violation of bell inequalities in mesoscopic conductors / M. Büttiker, P. Samuelsson and E. V. Sukhoruk. Teleportation of electron spins with normal and superconducting dots / O. Sauret, D. Feinberg and T. Martin. Entangled state analysis for one-dimensional quantum spin system: singularity at critical point / A. Kawaguchi and K. Shimizu. Detecting crossed Andreev reflection by cross-current correlations / G. Bignon et al. Current correlations and transmission probabilities for a Y-shaped diffusive conductor / S. K. Yip -- 2. Mesoscopic electronics. Quantum bistability, structural transformation, and spontaneous persistent currents in mesoscopic Aharonov-Bohm loops / I. O. Kulik. Many-body effects on tunneling of electrons in magnetic-field-induced quasi one-dimensional systems in quantum wells / T. Kubo and Y. Tokura. Electron transport in 2DEG narrow channel under gradient magnetic field / M. Hara et al. Transport properties of a quantum wire with a side-coupled quantum dot / M. Yamaguchi et al. Photoconductivity- and magneto-transport studies of single InAs quantum wires / A. Wirthmann et al. Thermoelectric transports in charge-density-wave systems / H. Yoshimoto and S. Kurihara -- 3. Mesoscopic superconductivity. Parity-restricted persistent currents in SNS nanorings / A. D. Zaikin and S. V. Sharov. Large energy dependence of current noise in superconductingh/normal metal junctions / F. Pistolesi and M. Houzet. Generation of photon number states and their superpositions using a superconducting qubit in a microcavity / Yu-Xi Liu, L. F. Wei and F. Nori. Andreev interferometry for pumped currents / F. Taddei, M. Governale and R. Fazio. Suppression of Cooper-pair breaking against high magnetic fields in carbon nanotubes / J. Haruyama et al. Impact of the transport supercurrent on the Josephson effect / S. N. Shevchenko. Josephson current through spin-polarized Luttinger liquid / N. Yokoshi and S. Kurihara -- 4. Mesoscopic superconductivity with unconventional superconductor or ferromagnet. Ultraefficient microrefrigerators realized with ferromagnet-superconductor junctions / F. Giazotto et al. Anomalous charge transport in triplet superconductor junctions by the synergy effect of the proximity effect and the mid gap Andreev resonant states / Y. Tanaka and S. Kashiwaya. Paramagnetic and glass states in superconductive YBa[symbol]Cu[symbol]O[symbol] ceramics of sub-micron scale grains / H. Deguchi et al. Quantum properties of single-domain triplet superconductors / A. M. Gulian and K. S. Wood. A numerical study of Josephson current in p wave superconducting junctions / Y. Asano et al. Tilted bi-crystal sapphire substrates improve properties of grain boundary YBa[symbol]Cu[symbol]O[symbol] junctions and extend their Josephson response to THZ frequencies / E. Stepantsov et al. Circuit theory analysis of AB-plane tunnel junctions of unconventional superconductor Bi[symbol]Sr[symbol]Ca[symbol]Cu[symbol]O[symbol] / I. Shigeta et al. Transport properties of normal metal/anisotropic superconductor junctions in the eutectic system Sr[symbol]RuO[symbol]Ru / M. Kawamura et al. Macroscopic quantum tunneling in d-wave superconductor Josephson / S. Kawabata et al. Quasiparticle states of high-T[symbol] oxides observed by a Zeeman magnetic field response / S. Kashiwaya et al. Experimentally realizable devices for controlling the motion of magnetic flux quanta in anisotropic superconductors: vortex lenses, vortex diodes and vortex pumps / S. Savel'ev and F. Nori. Stability of vortex-antivortex "molecules" in mesoscopic superconducting triangles / V. R. Misko et al. Superconducting network with magnetic decoration - Hofstadter butterfly in spatially modulated magnetic field / Y. Iye et al. Observation of paramagnetic supercurrent in mesoscopic superconducting rings and disks using multiple-small-tunnel-junction method / A. Kanda et al. Guidance of vortices in high-T[stmbol] superconducting thin films with special arrangements of antidots / R. Wöerdenweber, P. Dymashevski and V. R. Misko. Quantum tunneling of relativistic fluxons / K. Konno et al. -- 6. Quantum information processing in solid states. Qubit decoherence by low-frequency noise / K. Rabenstein, V. A. Sverdlov and D. V. Averin. A critique of two-level approximation / K. Savran and T. Hakioǧlu. Josephson arrays as quantum channels / A. Romito, C. Bruder and R. Fazio. Fighting decoherence in a Josephson qubit circuit / E. Collin et al. Fast switching current detection at low critical currents / J. Walter, S. Corlevi and D. Haviland. Asymmetric flux bias for coupled qubits to observe entangled states / Y. Shimazu. Interaction of Josephson qubits with strong QED cavity modes: dynamical entanglement transfer and navigation / G. Falci et al. Controlling decoherence of transported quantum spin information in semiconductor spintronics / B. Nikolic and S. Souma. Decoherence due to telegraph and 1/f noise in Josephson qubits / E. Paladino et al. Detection of entanglement in NMR quantum information processing / R. Rahimi, K. Takeda and M. Kitagawa. Multiphoton absorption and SQUID switching current behaviors in superconducting flux-qubit experiments / H. Takayanagi et al. -- 7. Quantum information theory. Quantum query complexities / K. Iwama. A construction for non-stabilizer Clifford codes / M. Hagiwara and H. Imai. Quantum pushdown automata that can deterministically solve a certain problem / Y. Murakami et al. Trading classical for quantum computation using indirection / R. van Meter. Intractability of the initial arrangement of input data on qubits / Y. Kawano et al. Reversibility of modular squaring / N. Kunihiro, Y. Takahashi and Y. Kawano. Study of proximity effect at D-wave superconductors in quasiclassical methods / Y. Tanuma, Y. Tanaka and S. Kashiwaya -- 8. Spintronics in band electrons. Triplet superconductors: exploitable basis for scalable quantum computing / K. S. Wood et al. Spin excitations in low-dimensional electron gases studied by far-infrared photoconductivity spectroscopy / C.-M. Hu. Control of photogenerated carriers and spins using surface acoustic waves / P. V. Santos, J. A. H. Stotz and R. Hey. PbTe nanostructures for spin filtering and detecting / G. Grabecki. G-factor control in an Ids-inserted InGaAs/InAlAs heterostructure / J. Nitta et al. Spin hall effect in p-type semiconductors / S. Murakami. Spin diffusion in mesoscopic superconducting A1 wires / Y.-S. Shin. H.-J. Lee and H.-W. Lee. Magnetization processes revealed by in-plane DC magnetoresistance measurements on manganite bicrystal thin film devices / R. Gunnarsson. M. Hanson and T. Claeson. Giant magnetoconductance at interface between a two-dimensional hole system and a magnetic semiconductor (Ga, Mn)As / Y. Hashimoto, S. Katsumoto and Y. Iye. Diffusion modes of the transport in diluted magnetic semiconductors / I. Kanazawa. Effect of an invasive voltage probe on the spin polarized current / J. Ohe and T. Ohtsuki -- 9. Spintronics in quantum dots. Tunable exchange interaction and Kondo screening in quantum dot devices / H. Tamura et al. Kondo effect in quantum dots in presence of itinerant-electron magnetism / J. Martinek et al. Optical band edge of II-VI and III-V based diluted magnetic semiconductors / M. Takahashi. Spin-polarized transport properties through double quantum dots / Y. Tanaka and N. Kawakami. RKKY interaction between two quantum dots embedded in an Aharonov-Bohm ring / Y. Utsumi et al. Fabrication and characterization of quantum dot single electron spin resonance devices / T. Kodera et al. Kondo effect in quantum dots with two orbitals and spin 1/2 - crossover from SU (4) to SU (2) symmetry / M. Eto. Detecting spin polarization of electrons in quantum dot edge channels by photoluminescence / S. Nomura. Manipulation of exchange interaction in a double quantum dot / M. Stopa, S. Tarucha and T. Hatano. Electron-density dependence of photoluminescence from Be-[symbol]-doped GaAs quantum wells with a back gate / M. Yamaguchi et al. Direct observation of [symbol]Si nuclear-spin decoherence process / S. Sasaki and S. Watanabe.

  15. Single-shot quantum nondemolition measurement of a quantum-dot electron spin using cavity exciton-polaritons

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; McMahon, Peter L.; Yamamoto, Yoshihisa

    2014-10-01

    We propose a scheme to perform single-shot quantum nondemolition (QND) readout of the spin of an electron trapped in a semiconductor quantum dot (QD). Our proposal relies on the interaction of the QD electron spin with optically excited, quantum well (QW) microcavity exciton-polaritons. The spin-dependent Coulomb exchange interaction between the QD electron and cavity polaritons causes the phase and intensity response of left circularly polarized light to be different than that of right circularly polarized light, in such a way that the QD electron's spin can be inferred from the response to a linearly polarized probe reflected or transmitted from the cavity. We show that with careful device design it is possible to essentially eliminate spin-flip Raman transitions. Thus a QND measurement of the QD electron spin can be performed within a few tens of nanoseconds with fidelity ˜99.95%. This improves upon current optical QD spin readout techniques across multiple metrics, including speed and scalability.

  16. Quantum teleportation from a propagating photon to a solid-state spin qubit

    NASA Astrophysics Data System (ADS)

    Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.

    2013-11-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  17. Quantum teleportation from a propagating photon to a solid-state spin qubit.

    PubMed

    Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A

    2013-01-01

    A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.

  18. Spin Lifetimes in III-V Semiconductor Heterostructures Originating from Zincblende Symmetry

    NASA Astrophysics Data System (ADS)

    Lau, Wayne; Olesberg, Jon; Flatté, Michael

    2000-03-01

    Electron spin relaxation in zincblende type semiconductors at room temperature is dominated by the D'yakonov-Perel' mechanism (DP), which is a direct result of the spin splitting of the conduction band due to the bulk inversion asymmetry (BIA) of zincblende materials. To accurately describe the DP spin relaxation mechanism in quantum wells we employ a heterostructure model based on a fourteen bulk band basis, which accounts for the zincblende symmetry of the heterostructure constituents. Electron spin lifetimes are calculated for 75Å n-doped GaAs/Al_0.4Ga_0.6As quantum wells at room temperature. Excellent agreement between theory and experiments is found. In contrast, the calculated spin lifetimes based on the D'yakonov-Kachorovskii theory are an order magnitude shorter than the experimental values. The spin splitting and spin lifetime in no common atom In_0.53Ga_0.47As/InP quantum wells are also investigated. The contribution to the conduction subband spin splitting is dominated by the native interface asymmetry (NIA) mechanism for thin quantum wells; while the spin splitting is governed by the BIA mechanism for thick quantum wells. We find that BIA provides a satisfactory explanation for the spin lifetime measured in an In_0.53Ga_0.47As/InP quantum well with a 97Å barrier and a 70Å well at room temperature.

  19. Coherent spin-exchange via a quantum mediator.

    PubMed

    Baart, Timothy Alexander; Fujita, Takafumi; Reichl, Christian; Wegscheider, Werner; Vandersypen, Lieven Mark Koenraad

    2017-01-01

    Coherent interactions at a distance provide a powerful tool for quantum simulation and computation. The most common approach to realize an effective long-distance coupling 'on-chip' is to use a quantum mediator, as has been demonstrated for superconducting qubits and trapped ions. For quantum dot arrays, which combine a high degree of tunability with extremely long coherence times, the experimental demonstration of the time evolution of coherent spin-spin coupling via an intermediary system remains an important outstanding goal. Here, we use a linear triple-quantum-dot array to demonstrate a coherent time evolution of two interacting distant spins via a quantum mediator. The two outer dots are occupied with a single electron spin each, and the spins experience a superexchange interaction through the empty middle dot, which acts as mediator. Using single-shot spin readout, we measure the coherent time evolution of the spin states on the outer dots and observe a characteristic dependence of the exchange frequency as a function of the detuning between the middle and outer dots. This approach may provide a new route for scaling up spin qubit circuits using quantum dots, and aid in the simulation of materials and molecules with non-nearest-neighbour couplings such as MnO (ref. 27), high-temperature superconductors and DNA. The same superexchange concept can also be applied in cold atom experiments.

  20. Loop-gap microwave resonator for hybrid quantum systems

    NASA Astrophysics Data System (ADS)

    Ball, Jason R.; Yamashiro, Yu; Sumiya, Hitoshi; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Konstantinov, Denis; Kubo, Yuimaru

    2018-05-01

    We designed a loop-gap microwave resonator for applications of spin-based hybrid quantum systems and tested it with impurity spins in diamond. Strong coupling with ensembles of nitrogen-vacancy (NV) centers and substitutional nitrogen (P1) centers was observed. These results show that loop-gap resonators are viable in the prospect of spin-based hybrid quantum systems, especially for an ensemble quantum memory or a quantum transducer.

  1. Classification and properties of quantum spin liquids on the hyperhoneycomb lattice

    NASA Astrophysics Data System (ADS)

    Huang, Biao; Choi, Wonjune; Kim, Yong Baek; Lu, Yuan-Ming

    2018-05-01

    The family of "Kitaev materials" provides an ideal platform to study quantum spin liquids and their neighboring magnetic orders. Motivated by the possibility of a quantum spin liquid ground state in pressurized hyperhoneycomb iridate β -Li2IrO3 , we systematically classify and study symmetric quantum spin liquids on the hyperhoneycomb lattice, using the Abrikosov-fermion representation. Among the 176 symmetric U (1 ) spin liquids (and 160 Z2 spin liquids), we identify eight "root" U (1 ) spin liquids in proximity to the ground state of the solvable Kitave model on the hyperhonecyomb lattice. These eight states are promising candidates for possible U (1 ) spin liquid ground states in pressurized β -Li2IrO3 . We further discuss physical properties of these eight U (1 ) spin liquid candidates, and show that they all support nodal-line-shaped spinon Fermi surfaces.

  2. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    PubMed

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  3. Effect of quantum tunneling on spin Hall magnetoresistance

    NASA Astrophysics Data System (ADS)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-01

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y3Fe5O12) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  4. Crossover to the anomalous quantum regime in the extrinsic spin Hall effect of graphene

    NASA Astrophysics Data System (ADS)

    Ferreira, Aires; Milletari, Mirco

    Recent reports of spin-orbit coupling enhancement in chemically modified graphene have opened doors to studies of the spin Hall effect with massless chiral fermions. Here, we theoretically investigate the interaction and impurity density dependence of the extrinsic spin Hall effect in spin-orbit coupled graphene. We present a nonperturbative quantum diagrammatic calculation of the spin Hall response function in the strong-coupling regime that incorporates skew scattering and anomalous impurity density-independent contributions on equal footing. The spin Hall conductivity dependence on Fermi energy and electron-impurity interaction strength reveals the existence of experimentally accessible regions where anomalous quantum processes dominate. Our findings suggest that spin-orbit-coupled graphene is an ideal model system for probing the competition between semiclassical and bona fide quantum scattering mechanisms underlying the spin Hall effect. A.F. gratefully acknowledges the financial support of the Royal Society (U.K.).

  5. Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2007-12-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.

  6. Role of Orbital Dynamics in Spin Relaxation and Weak Antilocalization in Quantum Dots

    NASA Astrophysics Data System (ADS)

    Zaitsev, Oleg; Frustaglia, Diego; Richter, Klaus

    2005-01-01

    We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.

  7. Magnetic field-temperature phase diagram of multiferroic [(CH3)2NH2] Mn (HCOO) 3

    NASA Astrophysics Data System (ADS)

    Clune, A. J.; Hughey, K. D.; Lee, C.; Abhyankar, N.; Ding, X.; Dalal, N. S.; Whangbo, M.-H.; Singleton, J.; Musfeldt, J. L.

    2017-09-01

    We combined pulsed field magnetization and first-principles spin-density calculations to reveal the magnetic field-temperature phase diagram and spin state character in multiferroic [(CH3)2NH2] Mn (HCOO) 3 . Despite similarities with the rare earth manganites, the phase diagram is analogous to other Mn-based quantum magnets with a 0.31 T spin flop, a 15.3 T transition to the fully polarized state, and short-range correlations that persist above the ordering temperature. The experimentally accessible saturation field opens the door to exploration of the high-field phase.

  8. Quantum State Transfer from a Single Photon to a Distant Quantum-Dot Electron Spin

    NASA Astrophysics Data System (ADS)

    He, Yu; He, Yu-Ming; Wei, Yu-Jia; Jiang, Xiao; Chen, Kai; Lu, Chao-Yang; Pan, Jian-Wei; Schneider, Christian; Kamp, Martin; Höfling, Sven

    2017-08-01

    Quantum state transfer from flying photons to stationary matter qubits is an important element in the realization of quantum networks. Self-assembled semiconductor quantum dots provide a promising solid-state platform hosting both single photon and spin, with an inherent light-matter interface. Here, we develop a method to coherently and actively control the single-photon frequency bins in superposition using electro-optic modulators, and measure the spin-photon entanglement with a fidelity of 0.796 ±0.020 . Further, by Greenberger-Horne-Zeilinger-type state projection on the frequency, path, and polarization degrees of freedom of a single photon, we demonstrate quantum state transfer from a single photon to a single electron spin confined in an InGaAs quantum dot, separated by 5 m. The quantum state mapping from the photon's polarization to the electron's spin is demonstrated along three different axes on the Bloch sphere, with an average fidelity of 78.5%.

  9. A 2D Array of 100's of Ions for Quantum Simulation and Many-Body Physics in a Penning Trap

    NASA Astrophysics Data System (ADS)

    Bohnet, Justin; Sawyer, Brian; Britton, Joseph; Bollinger, John

    2015-05-01

    Quantum simulations promise to reveal new materials and phenomena for experimental study, but few systems have demonstrated the capability to control ensembles in which quantum effects cannot be directly computed. One possible platform for intractable quantum simulations may be a system of 100's of 9Be+ ions in a Penning trap, where the valence electron spins are coupled with an effective Ising interaction in a 2D geometry. Here we report on results from a new Penning trap designed for 2D quantum simulations. We characterize the ion crystal stability and describe progress towards bench-marking quantum effects of the spin-spin coupling using a spin-squeezing witness. We also report on the successful photodissociation of BeH+ contaminant molecular ions that impede the use of such crystals for quantum simulation. This work lays the foundation for future experiments such as the observation of spin dynamics under the quantum Ising Hamiltonian with a transverse field. Supported by a NIST-NRC Research Associateship.

  10. Scheme for Quantum Computing Immune to Decoherence

    NASA Technical Reports Server (NTRS)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report that the derivation provides explicit constructions for finding the exchange couplings in the physical basis needed to implement any arbitrary 1-qubit gate. These constructions lead to spintronic encodings of quantum logic that are more efficient than those of a previously published scheme that utilizes a universal but fixed set of gates.

  11. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds

    NASA Astrophysics Data System (ADS)

    Kunkel, Philipp; Prüfer, Maximilian; Strobel, Helmut; Linnemann, Daniel; Frölian, Anika; Gasenzer, Thomas; Gärttner, Martin; Oberthaler, Markus K.

    2018-04-01

    A key resource for distributed quantum-enhanced protocols is entanglement between spatially separated modes. However, the robust generation and detection of entanglement between spatially separated regions of an ultracold atomic system remain a challenge. We used spin mixing in a tightly confined Bose-Einstein condensate to generate an entangled state of indistinguishable particles in a single spatial mode. We show experimentally that this entanglement can be spatially distributed by self-similar expansion of the atomic cloud. We used spatially resolved spin read-out to reveal a particularly strong form of quantum correlations known as Einstein-Podolsky-Rosen (EPR) steering between distinct parts of the expanded cloud. Based on the strength of EPR steering, we constructed a witness, which confirmed genuine 5-partite entanglement.

  12. Spin-based quantum computation in multielectron quantum dots

    NASA Astrophysics Data System (ADS)

    Hu, Xuedong; Das Sarma, S.

    2001-10-01

    In a quantum computer the hardware and software are intrinsically connected because the quantum Hamiltonian (or more precisely its time development) is the code that runs the computer. We demonstrate this subtle and crucial relationship by considering the example of electron-spin-based solid-state quantum computer in semiconductor quantum dots. We show that multielectron quantum dots with one valence electron in the outermost shell do not behave simply as an effective single-spin system unless special conditions are satisfied. Our work compellingly demonstrates that a delicate synergy between theory and experiment (between software and hardware) is essential for constructing a quantum computer.

  13. Influence of the dark exciton state on the optical and quantum optical properties of single quantum dots.

    PubMed

    Reischle, M; Beirne, G J; Rossbach, R; Jetter, M; Michler, P

    2008-10-03

    The dark exciton state strongly affects the optical and quantum optical properties of flat InP/GaInP quantum dots. The exciton intensity drops sharply compared to the biexciton with rising pulsed laser excitation power while the opposite is true with temperature. Also, the decay rate is faster for the exciton than the biexciton and the dark-to-bright state spin flip is enhanced with temperature. Furthermore, long-lived dark state related memory effects are observed in second-order cross-correlation measurements between the exciton and biexciton and have been simulated using a rate-equation model.

  14. Spin fine structure of optically excited quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Scheibner, M.; Doty, M. F.; Ponomarev, I. V.; Bracker, A. S.; Stinaff, E. A.; Korenev, V. L.; Reinecke, T. L.; Gammon, D.

    2007-06-01

    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin-exchange interactions, Pauli exclusion, and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals but also spins.

  15. Storage and retrieval of quantum information with a hybrid optomechanics-spin system

    NASA Astrophysics Data System (ADS)

    Feng, Zhi-Bo; Zhang, Jian-Qi; Yang, Wan-Li; Feng, Mang

    2016-08-01

    We explore an efficient scheme for transferring the quantum state between an optomechanical cavity and an electron spin of diamond nitrogen-vacancy center. Assisted by a mechanical resonator, quantum information can be controllably stored (retrieved) into (from) the electron spin by adjusting the external field-induced detuning or coupling. Our scheme connects effectively the cavity photon and the electron spin and transfers quantum states between two regimes with large frequency difference. The experimental feasibility of our protocol is justified with accessible laboratory parameters.

  16. Electronic Phenomena in Two-Dimensional Topological Insulators

    NASA Astrophysics Data System (ADS)

    Hart, Sean

    In recent years, two-dimensional electron systems have played an integral role at the forefront of discoveries in condensed matter physics. These include the integer and fractional quantum Hall effects, massless electron physics in graphene, the quantum spin and quantum anomalous Hall effects, and many more. Investigation of these fascinating states of matter brings with it surprising new results, challenges us to understand new physical phenomena, and pushes us toward new technological capabilities. In this thesis, we describe a set of experiments aimed at elucidating the behavior of two such two-dimensional systems: the quantum Hall effect, and the quantum spin Hall effect. The first experiment examines electronic behavior at the edge of a two-dimensional electron system formed in a GaAs/AlGaAs heterostructure, under the application of a strong perpendicular magnetic field. When the ratio between the number of electrons and flux quanta in the system is tuned near certain integer or fractional values, the electrons in the system can form states which are respectively known as the integer and fractional quantum Hall effects. These states are insulators in the bulk, but carry gapless excitations at the edge. Remarkably, in certain fractional quantum Hall states, it was predicted that even as charge is carried downstream along an edge, heat can be carried upstream in a neutral edge channel. By placing quantum dots along a quantum Hall edge, we are able to locally monitor the edge temperature. Using a quantum point contact, we can locally heat the edge and use the quantum dot thermometers to detect heat carried both downstream and upstream. We find that heat can be carried upstream when the edge contains structure related to the nu = 2/3 fractional quantum Hall state. We further find that this fractional edge physics can even be present when the bulk is tuned to the nu = 1integer quantum Hall state. Our experiments also demonstrate that the nature of this fractional reconstruction can be tuned by modifying the sharpness of the confining potential at the edge. In the second set of experiments, we focus on an exciting new two-dimensional system known as a quantum spin Hall insulator. Realized in quantum well heterostructures formed by layers of HgTe and HgCdTe, this material belongs to a set of recently discovered topological insulators. Like the quantum Hall effect, the quantum spin Hall effect is characterized by an insulating bulk and conducting edge states. However, the quantum spin Hall effect occurs in the absence of an external magnetic field, and contains a pair of counter propagating edge states which are the time-reversed partners of one another. It was recently predicted that a Josephson junction based around one of these edge states could host a new variety of excitation called a Majorana fermion. Majorana fermions are predicted to have non-Abelian braiding statistics, a property which holds promise as a robust basis for quantum information processing. In our experiments, we place a section of quantum spin Hall insulator between two superconducting leads, to form a Josephson junction. By measuring Fraunhofer interference, we are able to study the spatial distribution of supercurrent in the junction. In the quantum spin Hall regime, this supercurrent becomes confined to the topological edge states. In addition to providing a microscopic picture of these states, our measurement scheme generally provides a way to investigate the edge structure of any topological insulator. In further experiments, we tune the chemical potential into the conduction band of the HgTe system, and investigate the behavior of Fraunhofer interference as a magnetic field is applied parallel to the plane of the quantum well. By theoretically analyzing the interference in a parallel field, we find that Cooper pairs in the material acquire a tunable momentum that grows with the magnetic field strength. This finite pairing momentum leads to the appearance of triplet pair correlations at certain locations within the junction, which we are able to control with the external magnetic field. Our measurements and analysis also provide a method to obtain information about the Fermi surface properties and spin-orbit coupling in two-dimensional materials.

  17. Iridates and RuCl3 - from Heisenberg antiferromagnets to potential Kitaev spin-liquids

    NASA Astrophysics Data System (ADS)

    van den Brink, Jeroen

    The observed richness of topological states on the single-electron level prompts the question what kind of topological phases can develop in more strongly correlated, many-body electron systems. Correlation effects, in particular intra- and inter-orbital electron-electron interactions, are very substantial in 3 d transition-metal compounds such as the copper oxides, but the spin-orbit coupling (SOC) is weak. In 5 d transition-metal compounds such as iridates, the interesting situation arises that the SOC and Coulomb interactions meet on the same energy scale. The electronic structure of iridates thus depends on a strong competition between the electronic hopping amplitudes, local energy-level splittings, electron-electron interaction strengths, and the SOC of the Ir 5d electrons. The interplay of these ingredients offers the potential to stabilise relatively well-understood states such as a 2D Heisenberg-like antiferromagnet in Sr2IrO4, but in principle also far more exotic ones, such a topological Kitaev quantum spin liquid, in (hyper)honeycomb iridates. I will discuss the microscopic electronic structures of these iridates, their proximity to idealized Heisenberg and Kitaev models and our contributions to establishing the physical factors that appear to have preempted the realization of quantum spin liquid phases so far and include a discussion on the 4d transition metal chloride RuCl3. Supported by SFB 1143 of the Deutsche Forschungsgemeinschaft.

  18. Coherent Two-Dimensional Terahertz Magnetic Resonance Spectroscopy of Collective Spin Waves.

    PubMed

    Lu, Jian; Li, Xian; Hwang, Harold Y; Ofori-Okai, Benjamin K; Kurihara, Takayuki; Suemoto, Tohru; Nelson, Keith A

    2017-05-19

    We report a demonstration of two-dimensional (2D) terahertz (THz) magnetic resonance spectroscopy using the magnetic fields of two time-delayed THz pulses. We apply the methodology to directly reveal the nonlinear responses of collective spin waves (magnons) in a canted antiferromagnetic crystal. The 2D THz spectra show all of the third-order nonlinear magnon signals including magnon spin echoes, and 2-quantum signals that reveal pairwise correlations between magnons at the Brillouin zone center. We also observe second-order nonlinear magnon signals showing resonance-enhanced second-harmonic and difference-frequency generation. Numerical simulations of the spin dynamics reproduce all of the spectral features in excellent agreement with the experimental 2D THz spectra.

  19. μ+SR Investigation of the Shastry-Sutherland Compound SrCu2(BO3)2

    NASA Astrophysics Data System (ADS)

    Sassa, Y.; Wang, S.; Sugiyama, J.; Amato, A.; Rønnow, H. M.; Rüegg, C.; Månsson, M.

    In this study we have investigated the low-dimensional correlated spin system SrCu2(BO3)2 using ambient-pressure muon spin rotation/relaxation (μ+SR). The zero-field data are similar to previously published data, but in addition, they give an even clearer sign of the two low-temperature transitions (T1 ≈ 3 and T2 ≈ 7 K), which is fully consistent with inelastic neutron scattering (INS) measurements. Longitudinal field (LF) data clearly show that the copper spins are highly dynamic and a saturation of the low-temperature relaxation rate indicate that these are indeed two-dimensional (2D) quantum spin fluctuations.

  20. Magnetic-field-modulated resonant tunneling in ferromagnetic-insulator-nonmagnetic junctions.

    PubMed

    Song, Yang; Dery, Hanan

    2014-07-25

    We present a theory for resonance-tunneling magnetoresistance (MR) in ferromagnetic-insulator-nonmagnetic junctions. The theory sheds light on many of the recent electrical spin injection experiments, suggesting that this MR effect rather than spin accumulation in the nonmagnetic channel corresponds to the electrically detected signal. We quantify the dependence of the tunnel current on the magnetic field by quantum rate equations derived from the Anderson impurity model, with the important addition of impurity spin interactions. Considering the on-site Coulomb correlation, the MR effect is caused by competition between the field, spin interactions, and coupling to the magnetic lead. By extending the theory, we present a basis for operation of novel nanometer-size memories.

  1. Direct photonic coupling of a semiconductor quantum dot and a trapped ion.

    PubMed

    Meyer, H M; Stockill, R; Steiner, M; Le Gall, C; Matthiesen, C; Clarke, E; Ludwig, A; Reichel, J; Atatüre, M; Köhl, M

    2015-03-27

    Coupling individual quantum systems lies at the heart of building scalable quantum networks. Here, we report the first direct photonic coupling between a semiconductor quantum dot and a trapped ion and we demonstrate that single photons generated by a quantum dot controllably change the internal state of a Yb^{+} ion. We ameliorate the effect of the 60-fold mismatch of the radiative linewidths with coherent photon generation and a high-finesse fiber-based optical cavity enhancing the coupling between the single photon and the ion. The transfer of information presented here via the classical correlations between the σ_{z} projection of the quantum-dot spin and the internal state of the ion provides a promising step towards quantum-state transfer in a hybrid photonic network.

  2. Wide gap Chern Mott insulating phases achieved by design

    NASA Astrophysics Data System (ADS)

    Guo, Hongli; Gangopadhyay, Shruba; Köksal, Okan; Pentcheva, Rossitza; Pickett, Warren E.

    2017-12-01

    Quantum anomalous Hall insulators, which display robust boundary charge and spin currents categorized in terms of a bulk topological invariant known as the Chern number (Thouless et al Phys. Rev. Lett. 49, 405-408 (1982)), provide the quantum Hall anomalous effect without an applied magnetic field. Chern insulators are attracting interest both as a novel electronic phase and for their novel and potentially useful boundary charge and spin currents. Honeycomb lattice systems such as we discuss here, occupied by heavy transition-metal ions, have been proposed as Chern insulators, but finding a concrete example has been challenging due to an assortment of broken symmetry phases that thwart the topological character. Building on accumulated knowledge of the behavior of the 3d series, we tune spin-orbit and interaction strength together with strain to design two Chern insulator systems with bandgaps up to 130 meV and Chern numbers C = -1 and C = 2. We find, in this class, that a trade-off between larger spin-orbit coupling and strong interactions leads to a larger gap, whereas the stronger spin-orbit coupling correlates with the larger magnitude of the Hall conductivity. Symmetry lowering in the course of structural relaxation hampers obtaining quantum anomalous Hall character, as pointed out previously; there is only mild structural symmetry breaking of the bilayer in these robust Chern phases. Recent growth of insulating, magnetic phases in closely related materials with this orientation supports the likelihood that synthesis and exploitation will follow.

  3. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    NASA Astrophysics Data System (ADS)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave radiation. Here, the laser pulse merely defines the beginning of the microwave-induced coherent time evolution. This second mechanism appears the most consistent with current experimental observations.

  4. Spin filtering effect generated by the inter-subband spin-orbit coupling in the bilayer nanowire with the quantum point contact

    PubMed Central

    Wójcik, Paweł; Adamowski, Janusz

    2017-01-01

    The spin filtering effect in the bilayer nanowire with quantum point contact is investigated theoretically. We demonstrate the new mechanism of the spin filtering based on the lateral inter-subband spin-orbit coupling, which for the bilayer nanowires has been reported to be strong. The proposed spin filtering effect is explained as the joint effect of the Landau-Zener intersubband transitions caused by the hybridization of states with opposite spin (due to the lateral Rashba SO interaction) and the confinement of carriers in the quantum point contact region. PMID:28358141

  5. Noise-Resilient Quantum Computing with a Nitrogen-Vacancy Center and Nuclear Spins.

    PubMed

    Casanova, J; Wang, Z-Y; Plenio, M B

    2016-09-23

    Selective control of qubits in a quantum register for the purposes of quantum information processing represents a critical challenge for dense spin ensembles in solid-state systems. Here we present a protocol that achieves a complete set of selective electron-nuclear gates and single nuclear rotations in such an ensemble in diamond facilitated by a nearby nitrogen-vacancy (NV) center. The protocol suppresses internuclear interactions as well as unwanted coupling between the NV center and other spins of the ensemble to achieve quantum gate fidelities well exceeding 99%. Notably, our method can be applied to weakly coupled, distant spins representing a scalable procedure that exploits the exceptional properties of nuclear spins in diamond as robust quantum memories.

  6. Strong spin-photon coupling in silicon

    NASA Astrophysics Data System (ADS)

    Samkharadze, N.; Zheng, G.; Kalhor, N.; Brousse, D.; Sammak, A.; Mendes, U. C.; Blais, A.; Scappucci, G.; Vandersypen, L. M. K.

    2018-03-01

    Long coherence times of single spins in silicon quantum dots make these systems highly attractive for quantum computation, but how to scale up spin qubit systems remains an open question. As a first step to address this issue, we demonstrate the strong coupling of a single electron spin and a single microwave photon. The electron spin is trapped in a silicon double quantum dot, and the microwave photon is stored in an on-chip high-impedance superconducting resonator. The electric field component of the cavity photon couples directly to the charge dipole of the electron in the double dot, and indirectly to the electron spin, through a strong local magnetic field gradient from a nearby micromagnet. Our results provide a route to realizing large networks of quantum dot–based spin qubit registers.

  7. Spin liquid state in the disordered triangular lattice Sc 2Ga 2CuO 7 revealed by NMR

    DOE PAGES

    Khuntia, P.; Kumar, R.; Mahajan, A. V.; ...

    2016-04-18

    We present microscopic magnetic properties of a two-dimensional triangular lattice Sc 2Ga 2CuO 7, consisting of single and double triangular Cu planes. An antiferromagnetic (AFM) exchange interaction J/k B ≈ 35 K between Cu 2+ (S = 1/2) spins in the triangular biplane is obtained from the analysis of intrinsic magnetic susceptibility data. The intrinsic magnetic susceptibility, extracted from 71Ga NMR shift data, displays the presence of AFM short range spin correlations and remains finite down to 50 mK, suggesting a nonsinglet ground state. The nuclear spin-lattice relaxation rate (1/T 1) reveals a slowing down of Cu 2+ spin fluctuationsmore » with decreasing T down to 100 mK. Magnetic specific heat (C m) and 1/T 1 exhibit power law behavior at low temperatures, implying the gapless nature of the spin excitation spectrum. The absence of long range magnetic ordering down to ~J/700, nonzero spin susceptibility at low T, and the power law behavior of C m and 1/T 1 suggest a gapless quantum spin liquid (QSL) state. Our results demonstrate that persistent spin dynamics induced by frustration maintain a quantum-disordered state at T → 0 in this triangular lattice antiferromagnet. Furthermore, this suggests that the low energy modes are dominated by spinon excitations in the QSL state due to randomness engendered by disorder and frustration.« less

  8. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.

    PubMed

    Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D

    2015-11-01

    Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.

  9. Noninvasive measurement of dynamic correlation functions

    NASA Astrophysics Data System (ADS)

    Uhrich, Philipp; Castrignano, Salvatore; Uys, Hermann; Kastner, Michael

    2017-08-01

    The measurement of dynamic correlation functions of quantum systems is complicated by measurement backaction. To facilitate such measurements we introduce a protocol, based on weak ancilla-system couplings, that is applicable to arbitrary (pseudo)spin systems and arbitrary equilibrium or nonequilibrium initial states. Different choices of the coupling operator give access to the real and imaginary parts of the dynamic correlation function. This protocol reduces disturbances due to the early-time measurements to a minimum, and we quantify the deviation of the measured correlation functions from the theoretical, unitarily evolved ones. Implementations of the protocol in trapped ions and other experimental platforms are discussed. For spin-1 /2 models and single-site observables we prove that measurement backaction can be avoided altogether, allowing for the use of ancilla-free protocols.

  10. Out-of-time-ordered correlators in a quantum Ising chain

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Ju; Motrunich, Olexei I.

    2018-04-01

    Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a "shell-like" structure: After the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a t-1 power law at long time t . On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a "ball-like" structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law t-1 /4 for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a "ball-like" structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.

  11. Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance.

    PubMed

    Jiang, Min; Wu, Teng; Blanchard, John W; Feng, Guanru; Peng, Xinhua; Budker, Dmitry

    2018-06-01

    Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information-inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for 13 C with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics.

  12. Experimental benchmarking of quantum control in zero-field nuclear magnetic resonance

    PubMed Central

    Feng, Guanru

    2018-01-01

    Demonstration of coherent control and characterization of the control fidelity is important for the development of quantum architectures such as nuclear magnetic resonance (NMR). We introduce an experimental approach to realize universal quantum control, and benchmarking thereof, in zero-field NMR, an analog of conventional high-field NMR that features less-constrained spin dynamics. We design a composite pulse technique for both arbitrary one-spin rotations and a two-spin controlled-not (CNOT) gate in a heteronuclear two-spin system at zero field, which experimentally demonstrates universal quantum control in such a system. Moreover, using quantum information–inspired randomized benchmarking and partial quantum process tomography, we evaluate the quality of the control, achieving single-spin control for 13C with an average fidelity of 0.9960(2) and two-spin control via a CNOT gate with a fidelity of 0.9877(2). Our method can also be extended to more general multispin heteronuclear systems at zero field. The realization of universal quantum control in zero-field NMR is important for quantum state/coherence preparation, pulse sequence design, and is an essential step toward applications to materials science, chemical analysis, and fundamental physics. PMID:29922714

  13. Fully quantum-state resolved study of NO{sub 2} photodissociation. Correlated NO({sup 2}{Pi}{sub {Omega}}, {nu} = 0 J,A) + O({sup 3}P{sub j}) distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanov, A.; Bieler, C.R.; Reisler, H.

    1995-09-14

    Relative O({sup 3}P{sub j} = 2.1.0) spin-orbit populations correlated with specific NO[{sup 2}{Pi}{sub {Omega}} = {1/2}, 3/2; {nu} = 0; f; {Lambda} = {Pi}(A{prime}), {Pi}(A{double_prime})] product states were obtained following photolysis of NO{sub 2} at excess energies E{sup {+-}} = 390, 425, and 1054 cm{sup -1}. These fully quantum state-resolved measurements were carried out by recording spatial profiles of recoiling NO({sup 2}{Pi}{sub {Omega}}, J, {Lambda}) products using polarized radiation for photolysis and state-selective laser ionization detection. The relative O({sup 3}P{sub j}) populations correlated with each NO({sup 2}{Pi}{sub {Omega}}, J, {Lambda}) state show marked fluctuations at each excess energy as amore » function of rotational state and {Lambda}-doublet component. The relative populations also fluctuate as a function of excess energy. The O({sup 3}P{sub j}) spin-orbit population ratios, when averaged over all measurements, exhibit distributions that are colder than statistical, in agreement with previous results. In particular, we find that, on average, O({sup 3}P{sub 1}):O({sup 3}P{sub 2}) population ratios correlated with the ground NO({sup 2}{Pi}{sub {1/2}}) state are colder than the corresponding ratios correlated with the excited NO({sup 2}{Pi}{sub 3/2}) spin-orbit state. These results are in agreement with the state-specific calculations of Katigiri and Kato. 45 refs., 12 figs., 3 tabs.« less

  14. The many-body Wigner Monte Carlo method for time-dependent ab-initio quantum simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sellier, J.M., E-mail: jeanmichel.sellier@parallel.bas.bg; Dimov, I.

    2014-09-15

    The aim of ab-initio approaches is the simulation of many-body quantum systems from the first principles of quantum mechanics. These methods are traditionally based on the many-body Schrödinger equation which represents an incredible mathematical challenge. In this paper, we introduce the many-body Wigner Monte Carlo method in the context of distinguishable particles and in the absence of spin-dependent effects. Despite these restrictions, the method has several advantages. First of all, the Wigner formalism is intuitive, as it is based on the concept of a quasi-distribution function. Secondly, the Monte Carlo numerical approach allows scalability on parallel machines that is practicallymore » unachievable by means of other techniques based on finite difference or finite element methods. Finally, this method allows time-dependent ab-initio simulations of strongly correlated quantum systems. In order to validate our many-body Wigner Monte Carlo method, as a case study we simulate a relatively simple system consisting of two particles in several different situations. We first start from two non-interacting free Gaussian wave packets. We, then, proceed with the inclusion of an external potential barrier, and we conclude by simulating two entangled (i.e. correlated) particles. The results show how, in the case of negligible spin-dependent effects, the many-body Wigner Monte Carlo method provides an efficient and reliable tool to study the time-dependent evolution of quantum systems composed of distinguishable particles.« less

  15. Protecting solid-state spins from a strongly coupled environment

    NASA Astrophysics Data System (ADS)

    Chen, Mo; Calvin Sun, Won Kyu; Saha, Kasturi; Jaskula, Jean-Christophe; Cappellaro, Paola

    2018-06-01

    Quantum memories are critical for solid-state quantum computing devices and a good quantum memory requires both long storage time and fast read/write operations. A promising system is the nitrogen-vacancy (NV) center in diamond, where the NV electronic spin serves as the computing qubit and a nearby nuclear spin as the memory qubit. Previous works used remote, weakly coupled 13C nuclear spins, trading read/write speed for long storage time. Here we focus instead on the intrinsic strongly coupled 14N nuclear spin. We first quantitatively understand its decoherence mechanism, identifying as its source the electronic spin that acts as a quantum fluctuator. We then propose a scheme to protect the quantum memory from the fluctuating noise by applying dynamical decoupling on the environment itself. We demonstrate a factor of 3 enhancement of the storage time in a proof-of-principle experiment, showing the potential for a quantum memory that combines fast operation with long coherence time.

  16. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    NASA Astrophysics Data System (ADS)

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-03-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95+/-5% and have potential to serve as the basis of spin-logic and network implementations.

  17. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer

    PubMed Central

    Coles, R. J.; Price, D. M.; Dixon, J. E.; Royall, B.; Clarke, E.; Kok, P.; Skolnick, M. S.; Fox, A. M.; Makhonin, M. N.

    2016-01-01

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations. PMID:27029961

  18. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer.

    PubMed

    Coles, R J; Price, D M; Dixon, J E; Royall, B; Clarke, E; Kok, P; Skolnick, M S; Fox, A M; Makhonin, M N

    2016-03-31

    Scalable quantum technologies may be achieved by faithful conversion between matter qubits and photonic qubits in integrated circuit geometries. Within this context, quantum dots possess well-defined spin states (matter qubits), which couple efficiently to photons. By embedding them in nanophotonic waveguides, they provide a promising platform for quantum technology implementations. In this paper, we demonstrate that the naturally occurring electromagnetic field chirality that arises in nanobeam waveguides leads to unidirectional photon emission from quantum dot spin states, with resultant in-plane transfer of matter-qubit information. The chiral behaviour occurs despite the non-chiral geometry and material of the waveguides. Using dot registration techniques, we achieve a quantum emitter deterministically positioned at a chiral point and realize spin-path conversion by design. We further show that the chiral phenomena are much more tolerant to dot position than in standard photonic crystal waveguides, exhibit spin-path readout up to 95±5% and have potential to serve as the basis of spin-logic and network implementations.

  19. Topical review: spins and mechanics in diamond

    NASA Astrophysics Data System (ADS)

    Lee, Donghun; Lee, Kenneth W.; Cady, Jeffrey V.; Ovartchaiyapong, Preeti; Bleszynski Jayich, Ania C.

    2017-03-01

    There has been rapidly growing interest in hybrid quantum devices involving a solid-state spin and a macroscopic mechanical oscillator. Such hybrid devices create exciting opportunities to mediate interactions between disparate quantum bits (qubits) and to explore the quantum regime of macroscopic mechanical objects. In particular, a system consisting of the nitrogen-vacancy defect center (NV center) in diamond coupled to a high-quality-factor mechanical oscillator is an appealing candidate for such a hybrid quantum device, as it utilizes the highly coherent and versatile spin properties of the defect center. In this paper, we will review recent experimental progress on diamond-based hybrid quantum devices in which the spin and orbital dynamics of single defects are driven by the motion of a mechanical oscillator. In addition, we discuss prospective applications for this device, including long-range, phonon-mediated spin-spin interactions, and phonon cooling in the quantum regime. We conclude the review by evaluating the experimental limitations of current devices and identifying alternative device architectures that may reach the strong coupling regime.

  20. Quantum computational universality of the Cai-Miyake-Duer-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Tzu-Chieh; C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840; Raussendorf, Robert

    2011-10-15

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Duer, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. A 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain canmore » be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Duer-Briegel state.« less

  1. 4-spin plaquette singlet state in the Shastry-Sutherland compound SrCu2(BO3)2

    NASA Astrophysics Data System (ADS)

    Zayed, M. E.; Rüegg, Ch.; Larrea J., J.; Läuchli, A. M.; Panagopoulos, C.; Saxena, S. S.; Ellerby, M.; McMorrow, D. F.; Strässle, Th.; Klotz, S.; Hamel, G.; Sadykov, R. A.; Pomjakushin, V.; Boehm, M.; Jiménez-Ruiz, M.; Schneidewind, A.; Pomjakushina, E.; Stingaciu, M.; Conder, K.; Rønnow, H. M.

    2017-10-01

    The study of interacting spin systems is of fundamental importance for modern condensed-matter physics. On frustrated lattices, magnetic exchange interactions cannot be simultaneously satisfied, and often give rise to competing exotic ground states. The frustrated two-dimensional Shastry-Sutherland lattice realized by SrCu2(BO3)2 (refs ,) is an important test case for our understanding of quantum magnetism. It was constructed to have an exactly solvable 2-spin dimer singlet ground state within a certain range of exchange parameters and frustration. While the exact dimer state and the antiferromagnetic order at both ends of the phase diagram are well known, the ground state and spin correlations in the intermediate frustration range have been widely debated. We report here the first experimental identification of the conjectured plaquette singlet intermediate phase in SrCu2(BO3)2. It is observed by inelastic neutron scattering after pressure tuning to 21.5 kbar. This gapped singlet state leads to a transition to long-range antiferromagnetic order above 40 kbar, consistent with the existence of a deconfined quantum critical point.

  2. Dynamical time-reversal symmetry breaking and photo-induced chiral spin liquids in frustrated Mott insulators

    DOE PAGES

    Claassen, Martin; Jiang, Hong -Chen; Moritz, Brian; ...

    2017-10-30

    The search for quantum spin liquids in frustrated quantum magnets recently has enjoyed a surge of interest, with various candidate materials under intense scrutiny. However, an experimental confirmation of a gapped topological spin liquid remains an open question. Here, we show that circularly polarized light can provide a knob to drive frustrated Mott insulators into a chiral spin liquid, realizing an elusive quantum spin liquid with topological order. We find that the dynamics of a driven Kagome Mott insulator is well-captured by an effective Floquet spin model, with heating strongly suppressed, inducing a scalar spin chirality S i · (Smore » j × S k) term which dynamically breaks time-reversal while preserving SU(2) spin symmetry. We fingerprint the transient phase diagram and find a stable photo-induced chiral spin liquid near the equilibrium state. Furthermore, the results presented suggest employing dynamical symmetry breaking to engineer quantum spin liquids and access elusive phase transitions that are not readily accessible in equilibrium.« less

  3. Control of spin defects in wide-bandgap semiconductors for quantum technologies

    DOE PAGES

    Heremans, F. Joseph; Yale, Christopher G.; Awschalom, David D.

    2016-05-24

    Deep-level defects are usually considered undesirable in semiconductors as they typically interfere with the performance of present-day electronic and optoelectronic devices. However, the electronic spin states of certain atomic-scale defects have recently been shown to be promising quantum bits for quantum information processing as well as exquisite nanoscale sensors due to their local environmental sensitivity. In this review, we will discuss recent advances in quantum control protocols of several of these spin defects, the negatively charged nitrogen-vacancy (NV -) center in diamond and a variety of forms of the neutral divacancy (VV 0) complex in silicon carbide (SiC). These defectsmore » exhibit a spin-triplet ground state that can be controlled through a variety of techniques, several of which allow for room temperature operation. Microwave control has enabled sophisticated decoupling schemes to extend coherence times as well as nanoscale sensing of temperature along with magnetic and electric fields. On the other hand, photonic control of these spin states has provided initial steps toward integration into quantum networks, including entanglement, quantum state teleportation, and all-optical control. Electrical and mechanical control also suggest pathways to develop quantum transducers and quantum hybrid systems. In conclusion, the versatility of the control mechanisms demonstrated should facilitate the development of quantum technologies based on these spin defects.« less

  4. Correlation and nonlocality measures as indicators of quantum phase transitions in several critical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altintas, Ferdi, E-mail: ferdialtintas@ibu.edu.tr; Eryigit, Resul, E-mail: resul@ibu.edu.tr

    2012-12-15

    We have investigated the quantum phase transitions in the ground states of several critical systems, including transverse field Ising and XY models as well as XY with multiple spin interactions, XXZ and the collective system Lipkin-Meshkov-Glick models, by using different quantumness measures, such as entanglement of formation, quantum discord, as well as its classical counterpart, measurement-induced disturbance and the Clauser-Horne-Shimony-Holt-Bell function. Measurement-induced disturbance is found to detect the first and second order phase transitions present in these critical systems, while, surprisingly, it is found to fail to signal the infinite-order phase transition present in the XXZ model. Remarkably, the Clauser-Horne-Shimony-Holt-Bellmore » function is found to detect all the phase transitions, even when quantum and classical correlations are zero for the relevant ground state. - Highlights: Black-Right-Pointing-Pointer The ability of correlation measures to detect quantum phase transitions has been studied. Black-Right-Pointing-Pointer Measurement induced disturbance fails to detect the infinite order phase transition. Black-Right-Pointing-Pointer CHSH-Bell function detects all phase transitions even when the bipartite density matrix is uncorrelated.« less

  5. Input-output theory for spin-photon coupling in Si double quantum dots

    NASA Astrophysics Data System (ADS)

    Benito, M.; Mi, X.; Taylor, J. M.; Petta, J. R.; Burkard, Guido

    2017-12-01

    The interaction of qubits via microwave frequency photons enables long-distance qubit-qubit coupling and facilitates the realization of a large-scale quantum processor. However, qubits based on electron spins in semiconductor quantum dots have proven challenging to couple to microwave photons. In this theoretical work we show that a sizable coupling for a single electron spin is possible via spin-charge hybridization using a magnetic field gradient in a silicon double quantum dot. Based on parameters already shown in recent experiments, we predict optimal working points to achieve a coherent spin-photon coupling, an essential ingredient for the generation of long-range entanglement. Furthermore, we employ input-output theory to identify observable signatures of spin-photon coupling in the cavity output field, which may provide guidance to the experimental search for strong coupling in such spin-photon systems and opens the way to cavity-based readout of the spin qubit.

  6. Dynamical control of a quantum Kapitza pendulum in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We demonstrate dynamic stabilization of an unstable strongly interacting quantum many-body system by periodic manipulation of the phase of the collective states. The experiment employs a spin-1 atomic Bose condensate that has spin dynamics analogous to a non-rigid pendulum in the mean-field limit. The condensate spin is initialized to an unstable (hyperbolic) fixed point of the phase space, where subsequent free evolution gives rise to spin-nematic squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that manipulate the spin-nematic fluctuations and limit their growth. The range of pulse periods and phase shifts with which the condensate can be stabilized is measured and compares well with a linear stability analysis of the problem. C.D. Hamley, et al., ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  7. Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction.

    PubMed

    Vahedi, J; Ashouri, A; Mahdavifar, S

    2016-10-01

    Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.

  8. Resolving quanta of collective spin excitations in a millimeter-sized ferromagnet

    PubMed Central

    Lachance-Quirion, Dany; Tabuchi, Yutaka; Ishino, Seiichiro; Noguchi, Atsushi; Ishikawa, Toyofumi; Yamazaki, Rekishu; Nakamura, Yasunobu

    2017-01-01

    Combining different physical systems in hybrid quantum circuits opens up novel possibilities for quantum technologies. In quantum magnonics, quanta of collective excitation modes in a ferromagnet, called magnons, interact coherently with qubits to access quantum phenomena of magnonics. We use this architecture to probe the quanta of collective spin excitations in a millimeter-sized ferromagnetic crystal. More specifically, we resolve magnon number states through spectroscopic measurements of a superconducting qubit with the hybrid system in the strong dispersive regime. This enables us to detect a change in the magnetic moment of the ferromagnet equivalent to a single spin flipped among more than 1019 spins. Our demonstration highlights the strength of hybrid quantum systems to provide powerful tools for quantum sensing and quantum information processing. PMID:28695204

  9. Editorial: Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems

    NASA Astrophysics Data System (ADS)

    Cazalilla, M. A.; Rigol, M.

    2010-05-01

    The dynamics and thermalization of classical systems have been extensively studied in the past. However, the corresponding quantum phenomena remain, to a large extent, uncharted territory. Recent experiments with ultracold quantum gases have at last allowed exploration of the coherent dynamics of isolated quantum systems, as well as observation of non-equilibrium phenomena that challenge our current understanding of the dynamics of quantum many-body systems. These experiments have also posed many new questions. How can we control the dynamics to engineer new states of matter? Given that quantum dynamics is unitary, under which conditions can we expect observables of the system to reach equilibrium values that can be predicted by conventional statistical mechanics? And, how do the observables dynamically approach their statistical equilibrium values? Could the approach to equilibrium be hampered if the system is trapped in long-lived metastable states characterized, for example, by a certain distribution of topological defects? How does the dynamics depend on the way the system is perturbed, such as changing, as a function of time and at a given rate, a parameter across a quantum critical point? What if, conversely, after relaxing to a steady state, the observables cannot be described by the standard equilibrium ensembles of statistical mechanics? How would they depend on the initial conditions in addition to the other properties of the system, such as the existence of conserved quantities? The search for answers to questions like these is fundamental to a new research field that is only beginning to be explored, and to which researchers with different backgrounds, such as nuclear, atomic, and condensed-matter physics, as well as quantum optics, can make, and are making, important contributions. This body of knowledge has an immediate application to experiments in the field of ultracold atomic gases, but can also fundamentally change the way we approach and understand many-body quantum systems. This focus issue of New Journal Physics brings together both experimentalists and theoreticians working on these problems to provide a comprehensive picture of the state of the field. Focus on Dynamics and Thermalization in Isolated Quantum Many-Body Systems Contents Spin squeezing of high-spin, spatially extended quantum fields Jay D Sau, Sabrina R Leslie, Marvin L Cohen and Dan M Stamper-Kurn Thermodynamic entropy of a many-body energy eigenstate J M Deutsch Ground states and dynamics of population-imbalanced Fermi condensates in one dimension Masaki Tezuka and Masahito Ueda Relaxation dynamics in the gapped XXZ spin-1/2 chain Jorn Mossel and Jean-Sébastien Caux Canonical thermalization Peter Reimann Minimally entangled typical thermal state algorithms E M Stoudenmire and Steven R White Manipulation of the dynamics of many-body systems via quantum control methods Julie Dinerman and Lea F Santos Multimode analysis of non-classical correlations in double-well Bose-Einstein condensates Andrew J Ferris and Matthew J Davis Thermalization in a quasi-one-dimensional ultracold bosonic gas I E Mazets and J Schmiedmayer Two simple systems with cold atoms: quantum chaos tests and non-equilibrium dynamics Cavan Stone, Yassine Ait El Aoud, Vladimir A Yurovsky and Maxim Olshanii On the speed of fluctuations around thermodynamic equilibrium Noah Linden, Sandu Popescu, Anthony J Short and Andreas Winter A quantum central limit theorem for non-equilibrium systems: exact local relaxation of correlated states M Cramer and J Eisert Quantum quench dynamics of the sine-Gordon model in some solvable limits A Iucci and M A Cazalilla Nonequilibrium quantum dynamics of atomic dark solitons A D Martin and J Ruostekoski Quantum quenches in the anisotropic spin-1⁄2 Heisenberg chain: different approaches to many-body dynamics far from equilibrium Peter Barmettler, Matthias Punk, Vladimir Gritsev, Eugene Demler and Ehud Altman Crossover from adiabatic to sudden interaction quenches in the Hubbard model: prethermalization and non-equilibrium dynamics Michael Moeckel and Stefan Kehrein Quantum quenches in integrable field theories Davide Fioretto and Giuseppe Mussardo Dynamical delocalization of Majorana edge states by sweeping across a quantum critical point A Bermudez, L Amico and M A Martin-Delgado Thermometry with spin-dependent lattices D McKay and B DeMarco Near-adiabatic parameter changes in correlated systems: influence of the ramp protocol on the excitation energy Martin Eckstein and Marcus Kollar Sudden change of the thermal contact between two quantum systems J Restrepo and S Camalet Reflection of a Lieb-Liniger wave packet from the hard-wall potential D Jukić and H Buljan Probing interaction-induced ferromagnetism in optical superlattices J von Stecher, E Demler, M D Lukin and A M Rey Sudden interaction quench in the quantum sine-Gordon model Javier Sabio and Stefan Kehrein Dynamics of an inhomogeneous quantum phase transition Jacek Dziarmaga and Marek M Rams

  10. Suppression of Pauli Spin Blockade in Few Hole Laterally Gated Double Quantum Dots

    NASA Astrophysics Data System (ADS)

    Gaudreau, Louis; Bogan, Alex; Studenikin, Sergei; Korkusinski, Marek; Aers, Geof; Zawadzki, Piotr; Sachrajda, Andy; Tracy, Lisa; Reno, John; Hargett, Terry; National Research Council Team; Sandia Labs Team

    Hole spins have attracted increasing attention as candidates for qubits in quantum information applications. The p-type character of their wavefunction leads to smaller hyperfine interaction with the nuclei resulting in longer coherence times. Additionally, strong spin-orbit interaction allows for enhanced all-electrical manipulation of spin qubit states. Single hole spins have been electrically studied in InSb and Si nanowire quantum dots, however, electrostatically confined hole spins in a 2D hole gas have thus far been limited to the many hole regime. In this talk we will present a full description of the two-hole spin spectrum in a lateral GaAs/AlGaAs double quantum. High-bias magneto-transport spectroscopy reveals all four states of the spectrum (singlet and triplets) in both the (1,1) and (2,0) configurations, essential for spin readout based on Pauli spin blockade. We show that spin-flip tunneling between dots is as strong as spin conserving tunneling, a consequence of the strong spin-orbit interaction. This suppresses the Pauli spin blockade. Our results suggest that alternate techniques for single hole spin qubit readout need to be explored.

  11. Spin squeezing as an indicator of quantum chaos in the Dicke model.

    PubMed

    Song, Lijun; Yan, Dong; Ma, Jian; Wang, Xiaoguang

    2009-04-01

    We study spin squeezing, an intrinsic quantum property, in the Dicke model without the rotating-wave approximation. We show that the spin squeezing can reveal the underlying chaotic and regular structures in phase space given by a Poincaré section, namely, it acts as an indicator of quantum chaos. Spin squeezing vanishes after a very short time for an initial coherent state centered in a chaotic region, whereas it persists over a longer time for the coherent state centered in a regular region of the phase space. We also study the distribution of the mean spin directions when quantum dynamics takes place. Finally, we discuss relations among spin squeezing, bosonic quadrature squeezing, and two-qubit entanglement in the dynamical processes.

  12. Angle-resolved photoemission spectroscopy with quantum gas microscopes

    NASA Astrophysics Data System (ADS)

    Bohrdt, A.; Greif, D.; Demler, E.; Knap, M.; Grusdt, F.

    2018-03-01

    Quantum gas microscopes are a promising tool to study interacting quantum many-body systems and bridge the gap between theoretical models and real materials. So far, they were limited to measurements of instantaneous correlation functions of the form 〈O ̂(t ) 〉 , even though extensions to frequency-resolved response functions 〈O ̂(t ) O ̂(0 ) 〉 would provide important information about the elementary excitations in a many-body system. For example, single-particle spectral functions, which are usually measured using photoemission experiments in electron systems, contain direct information about fractionalization and the quasiparticle excitation spectrum. Here, we propose a measurement scheme to experimentally access the momentum and energy-resolved spectral function in a quantum gas microscope with currently available techniques. As an example for possible applications, we numerically calculate the spectrum of a single hole excitation in one-dimensional t -J models with isotropic and anisotropic antiferromagnetic couplings. A sharp asymmetry in the distribution of spectral weight appears when a hole is created in an isotropic Heisenberg spin chain. This effect slowly vanishes for anisotropic spin interactions and disappears completely in the case of pure Ising interactions. The asymmetry strongly depends on the total magnetization of the spin chain, which can be tuned in experiments with quantum gas microscopes. An intuitive picture for the observed behavior is provided by a slave-fermion mean-field theory. The key properties of the spectra are visible at currently accessible temperatures.

  13. Phase-Covariant Cloning and EPR Correlations in Entangled Macroscopic Quantum Systems

    NASA Astrophysics Data System (ADS)

    de Martini, Francesco; Sciarrino, Fabio

    2007-03-01

    Theoretical and experimental results on the Quantum Injected Optical Parametric Amplification (QI-OPA) of optical qubits in the high gain regime are reported. The large size of the gain parameter in the collinear configuration, g = 4.5, allows the generation of EPR nonlocally correlated bunches containing about 4000 photons. The entanglement of the related Schroedinger Cat-State (SCS) is demonstrated as well as the establishment of Phase-Covariant quantum cloning. The cloning ``fidelity'' has been found to match the theoretical results. According to the original 1935 definition of the SCS, the overall apparatus establishes for the first time the nonlocal correlations between a microcopic spin (qubit) and a high J angular momentum i.e. a mesoscopic multiparticle system close to the classical limit. The results of the first experimental realization of the Herbert proposal for superluminal communication via nonlocality will be presented.

  14. Polarization-polarization correlation measurement --- Experimental test of the PPCO methods

    NASA Astrophysics Data System (ADS)

    Droste, Ch.; Starosta, K.; Wierzchucka, A.; Morek, T.; Rohoziński, S. G.; Srebrny, J.; Wesolowski, E.; Bergstrem, M.; Herskind, B.

    1998-04-01

    A significant fraction of modern multidetector arrays used for "in-beam" gamma-ray spectroscopy consist of a detectors which are sensitive to linear polarization of gamma quanta. This yields the opportunity to carry out correlation measurements between the gamma rays registered in polarimeters to get information concerning spins and parities of excited nuclear states. The aim of the present work was to study the ability of the polarization- polarization correlation method (the PPCO method). The correlation between the linear polarization of one gamma quantum and the polarization of the second quantum emitted in a cascade from an oriented nucleus (due to a heavy ion reaction) was studied in detail. The appropriate formulae and methods of analysis are presented. The experimental test of the method was performed using the EUROGAM II array. The CLOVER detectors are the parts of the array used as polarimeters. The ^164Yb nucleus was produced via the ^138Ba(^30Si, 4n) reaction. It was found that the PPCO method together with the standard DCO analysis and the polarization- direction correlation method (PDCO) can be helpful for spin, parity and multipolarity assignments. The results suggest that the PPCO method can be applied to modern spectrometers in which a large number of detectors (e.g. CLOVER) are sensitive to polarization of gamma rays.

  15. Quantum Gibbs Samplers: The Commuting Case

    NASA Astrophysics Data System (ADS)

    Kastoryano, Michael J.; Brandão, Fernando G. S. L.

    2016-06-01

    We analyze the problem of preparing quantum Gibbs states of lattice spin Hamiltonians with local and commuting terms on a quantum computer and in nature. Our central result is an equivalence between the behavior of correlations in the Gibbs state and the mixing time of the semigroup which drives the system to thermal equilibrium (the Gibbs sampler). We introduce a framework for analyzing the correlation and mixing properties of quantum Gibbs states and quantum Gibbs samplers, which is rooted in the theory of non-commutative {mathbb{L}_p} spaces. We consider two distinct classes of Gibbs samplers, one of them being the well-studied Davies generator modelling the dynamics of a system due to weak-coupling with a large Markovian environment. We show that their spectral gap is independent of system size if, and only if, a certain strong form of clustering of correlations holds in the Gibbs state. Therefore every Gibbs state of a commuting Hamiltonian that satisfies clustering of correlations in this strong sense can be prepared efficiently on a quantum computer. As concrete applications of our formalism, we show that for every one-dimensional lattice system, or for systems in lattices of any dimension at temperatures above a certain threshold, the Gibbs samplers of commuting Hamiltonians are always gapped, giving an efficient way of preparing the associated Gibbs states on a quantum computer.

  16. Simple and Accurate Method for Central Spin Problems

    NASA Astrophysics Data System (ADS)

    Lindoy, Lachlan P.; Manolopoulos, David E.

    2018-06-01

    We describe a simple quantum mechanical method that can be used to obtain accurate numerical results over long timescales for the spin correlation tensor of an electron spin that is hyperfine coupled to a large number of nuclear spins. This method does not suffer from the statistical errors that accompany a Monte Carlo sampling of the exact eigenstates of the central spin Hamiltonian obtained from the algebraic Bethe ansatz, or from the growth of the truncation error with time in the time-dependent density matrix renormalization group (TDMRG) approach. As a result, it can be applied to larger central spin problems than the algebraic Bethe ansatz, and for longer times than the TDMRG algorithm. It is therefore an ideal method to use to solve central spin problems, and we expect that it will also prove useful for a variety of related problems that arise in a number of different research fields.

  17. Thermodynamic properties of the S =1 /2 twisted triangular spin tube

    NASA Astrophysics Data System (ADS)

    Ito, Takuya; Iino, Chihiro; Shibata, Naokazu

    2018-05-01

    Thermodynamic properties of the twisted three-leg spin tube under magnetic field are studied by the finite-T density-matrix renormalization group method. The specific heat, spin, and chiral susceptibilities of the infinite system are calculated for both the original and its low-energy effective models. The obtained results show that the presence of the chirality is observed as a clear peak in the specific heat at low temperature and the contribution of the chirality dominates the low-temperature part of the specific heat as the exchange coupling along the spin tube decreases. The peak structures in the specific heat, spin, and chiral susceptibilities are strongly modified near the quantum phase transition where the critical behaviors of the spin and chirality correlations change. These results confirm that the chirality plays a major role in characteristic low-energy behaviors of the frustrated spin systems.

  18. Symmetry-protected gapless Z2 spin liquids

    NASA Astrophysics Data System (ADS)

    Lu, Yuan-Ming

    2018-03-01

    Despite rapid progress in understanding gapped topological states, much less is known about gapless topological phases of matter, especially in strongly correlated electrons. In this work, we discuss a large class of robust gapless quantum spin liquids in frustrated magnets made of half-integer spins, which are described by gapless fermionic spinons coupled to dynamical Z2 gauge fields. Requiring U(1 ) spin conservation, time-reversal, and certain space-group symmetries, we show that certain spinon symmetry fractionalization class necessarily leads to a gapless spectrum. These gapless excitations are stable against any perturbations, as long as the required symmetries are preserved. Applying these gapless criteria to spin-1/2 systems on square, triangular, and kagome lattices, we show that all gapped symmetric Z2 spin liquids in Abrikosov-fermion representation can also be realized in Schwinger-boson representation. This leads to 64 gapped Z2 spin liquids on square lattice, and 8 gapped states on both kagome and triangular lattices.

  19. Transport spin dependent in nanostructures: Current and geometry effect of quantum dots in presence of spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Paredes-Gutiérrez, H.; Pérez-Merchancano, S. T.; Beltran-Rios, C. L.

    2017-12-01

    In this work, we study the quantum electron transport through a Quantum Dots Structure (QDs), with different geometries, embedded in a Quantum Well (QW). The behaviour of the current through the nanostructure (dot and well) is studied considering the orbital spin coupling of the electrons and the Rashba effect, by means of the second quantization theory and the standard model of Green’s functions. Our results show the behaviour of the current in the quantum system as a function of the electric field, presenting resonant states for specific values of both the external field and the spin polarization. Similarly, the behaviour of the current on the nanostructure changes when the geometry of the QD and the size of the same are modified as a function of the polarization of the electron spin and the potential of quantum confinement.

  20. Spin–cavity interactions between a quantum dot molecule and a photonic crystal cavity

    PubMed Central

    Vora, Patrick M.; Bracker, Allan S.; Carter, Samuel G.; Sweeney, Timothy M.; Kim, Mijin; Kim, Chul Soo; Yang, Lily; Brereton, Peter G.; Economou, Sophia E.; Gammon, Daniel

    2015-01-01

    The integration of InAs/GaAs quantum dots into nanophotonic cavities has led to impressive demonstrations of cavity quantum electrodynamics. However, these demonstrations are primarily based on two-level excitonic systems. Efforts to couple long-lived quantum dot electron spin states with a cavity are only now succeeding. Here we report a two-spin–cavity system, achieved by embedding an InAs quantum dot molecule within a photonic crystal cavity. With this system we obtain a spin singlet–triplet Λ-system where the ground-state spin splitting exceeds the cavity linewidth by an order of magnitude. This allows us to observe cavity-stimulated Raman emission that is highly spin-selective. Moreover, we demonstrate the first cases of cavity-enhanced optical nonlinearities in a solid-state Λ-system. This provides an all-optical, local method to control the spin exchange splitting. Incorporation of a highly engineerable quantum dot molecule into the photonic crystal architecture advances prospects for a quantum network. PMID:26184654

  1. Counting of fermions and spins in strongly correlated systems in and out of thermal equilibrium

    NASA Astrophysics Data System (ADS)

    Braungardt, Sibylle; Rodríguez, Mirta; Sen(de), Aditi; Sen, Ujjwal; Glauber, Roy J.; Lewenstein, Maciej

    2011-01-01

    Atom counting theory can be used to study the role of thermal noise in quantum phase transitions and to monitor the dynamics of a quantum system. We illustrate this for a strongly correlated fermionic system, which is equivalent to an anisotropic quantum XY chain in a transverse field and can be realized with cold fermionic atoms in an optical lattice. We analyze the counting statistics across the phase diagram in the presence of thermal fluctuations and during its thermalization when the system is coupled to a heat bath. At zero temperature, the quantum phase transition is reflected in the cumulants of the counting distribution. We find that the signatures of the crossover remain visible at low temperature and are obscured with increasing thermal fluctuations. We find that the same quantities may be used to scan the dynamics during the thermalization of the system.

  2. Micrometer-Scale Ballistic Transport of Electron Pairs in LaAlO_{3}/SrTiO_{3} Nanowires.

    PubMed

    Tomczyk, Michelle; Cheng, Guanglei; Lee, Hyungwoo; Lu, Shicheng; Annadi, Anil; Veazey, Joshua P; Huang, Mengchen; Irvin, Patrick; Ryu, Sangwoo; Eom, Chang-Beom; Levy, Jeremy

    2016-08-26

    High-mobility complex-oxide heterostructures and nanostructures offer new opportunities for extending the paradigm of quantum transport beyond the realm of traditional III-V or carbon-based materials. Recent quantum transport investigations with LaAlO_{3}/SrTiO_{3}-based quantum dots reveal the existence of a strongly correlated phase in which electrons form spin-singlet pairs without becoming superconducting. Here, we report evidence for the micrometer-scale ballistic transport of electron pairs in quasi-1D LaAlO_{3}/SrTiO_{3} nanowire cavities. In the paired phase, Fabry-Perot-like quantum interference is observed, in sync with conductance oscillations observed in the superconducting regime (at a zero magnetic field). Above a critical magnetic field B_{p}, the electron pairs unbind and the conductance oscillations shift with the magnetic field. These experimental observations extend the regime of ballistic electronic transport to strongly correlated phases.

  3. Spin interactions in InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Doty, M. F.; Ware, M. E.; Stinaff, E. A.; Scheibner, M.; Bracker, A. S.; Gammon, D.; Ponomarev, I. V.; Reinecke, T. L.; Korenev, V. L.

    2006-03-01

    Fine structure splittings in optical spectra of self-assembled InAs quantum dots (QDs) generally arise from spin interactions between particles confined in the dots. We present experimental studies of the fine structure that arises from multiple charges confined in a single dot [1] or in molecular orbitals of coupled pairs of dots. To probe the underlying spin interactions we inject particles with a known spin orientation (by using polarized light to perform photoluminescence excitation spectroscopy experiments) or use a magnetic field to orient and/or mix the spin states. We develop a model of the spin interactions that aids in the development of quantum information processing applications based on controllable interactions between spins confined to QDs. [1] Polarized Fine Structure in the Photoluminescence Excitation Spectrum of a Negatively Charged Quantum Dot, Phys. Rev. Lett. 95, 177403 (2005)

  4. Study on spin and optical polarization in a coupled InGaN/GaN quantum well and quantum dots structure.

    PubMed

    Yu, Jiadong; Wang, Lai; Di Yang; Zheng, Jiyuan; Xing, Yuchen; Hao, Zhibiao; Luo, Yi; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Wang, Jian; Li, Hongtao

    2016-10-19

    The spin and optical polarization based on a coupled InGaN/GaN quantum well (QW) and quantum dots (QDs) structure is investigated. In this structure, spin-electrons can be temporarily stored in QW, and spin injection from the QW into QDs via spin-conserved tunneling is enabled. Spin relaxation can be suppressed owing to the small energy difference between the initial state in the QW and the final states in the QDs. Photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements are carried out on optical spin-injection and -detection. Owing to the coupled structure, spin-conserved tunneling mechanism plays a significant role in preventing spin relaxation process. As a result, a higher circular polarization degree (CPD) (~49.1%) is achieved compared with conventional single layer of QDs structure. Moreover, spin relaxation time is also extended to about 2.43 ns due to the weaker state-filling effect. This coupled structure is believed an appropriate candidate for realization of spin-polarized light source.

  5. Quantum communication beyond the localization length in disordered spin chains.

    PubMed

    Allcock, Jonathan; Linden, Noah

    2009-03-20

    We study the effects of localization on quantum state transfer in spin chains. We show how to use quantum error correction and multiple parallel spin chains to send a qubit with high fidelity over arbitrary distances, in particular, distances much greater than the localization length of the chain.

  6. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less

  7. Controlled rephasing of single spin-waves in a quantum memory based on cold atoms

    NASA Astrophysics Data System (ADS)

    Farrera, Pau; Albrecht, Boris; Heinze, Georg; Cristiani, Matteo; de Riedmatten, Hugues; Quantum Photonics With Solids; Atoms Team

    2015-05-01

    Quantum memories for light allow a reversible transfer of quantum information between photons and long lived matter quantum bits. In atomic ensembles, this information is commonly stored in the form of single collective spin excitations (spin-waves). In this work we demonstrate that we can actively control the dephasing of the spin-waves created in a quantum memory based on a cold Rb87 atomic ensemble. The control is provided by an external magnetic field gradient, which induces an inhomogeneous broadening of the atomic hyperfine levels. We show that acting on this gradient allows to control the dephasing of individual spin-waves and to induce later a rephasing. The spin-waves are then mapped into single photons, and we demonstrate experimentally that the active rephasing preserves the sub-Poissonian statistics of the retrieved photons. Finally we show that this rephasing control enables the creation and storage of multiple spin-waves in different temporal modes, which can be selectively readout. This is an important step towards the implementation of a functional temporally multiplexed quantum memory for quantum repeaters. We acknowledge support from the ERC starting grant, the Spanish Ministry of Economy and Competitiveness, the Fondo Europeo de Desarrollo Regional, and the International PhD- fellowship program ``la Caixa''-Severo Ochoa @ICFO.

  8. Lifting SU(2) spin networks to projected spin networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dupuis, Maiete; Livine, Etera R.

    2010-09-15

    Projected spin network states are the canonical basis of quantum states of geometry for the recent EPRL-FK spinfoam models for quantum gravity introduced by Engle-Pereira-Rovelli-Livine and Freidel-Krasnov. They are functionals of both the Lorentz connection and the time-normal field. We analyze in detail the map from these projected spin networks to the standard SU(2) spin networks of loop quantum gravity. We show that this map is not one to one and that the corresponding ambiguity is parameterized by the Immirzi parameter. We conclude with a comparison of the scalar products between projected spin networks and SU(2) spin network states.

  9. Coherent Dynamics of a Hybrid Quantum Spin-Mechanical Oscillator System

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth William, III

    A fully functional quantum computer must contain at least two important components: a quantum memory for storing and manipulating quantum information and a quantum data bus to securely transfer information between quantum memories. Typically, a quantum memory is composed of a matter system, such as an atom or an electron spin, due to their prolonged quantum coherence. Alternatively, a quantum data bus is typically composed of some propagating degree of freedom, such as a photon, which can retain quantum information over long distances. Therefore, a quantum computer will likely be a hybrid quantum device, consisting of two or more disparate quantum systems. However, there must be a reliable and controllable quantum interface between the memory and bus in order to faithfully interconvert quantum information. The current engineering challenge for quantum computers is scaling the device to large numbers of controllable quantum systems, which will ultimately depend on the choice of the quantum elements and interfaces utilized in the device. In this thesis, we present and characterize a hybrid quantum device comprised of single nitrogen-vacancy (NV) centers embedded in a high quality factor diamond mechanical oscillator. The electron spin of the NV center is a leading candidate for the realization of a quantum memory due to its exceptional quantum coherence times. On the other hand, mechanical oscillators are highly sensitive to a wide variety of external forces, and have the potential to serve as a long-range quantum bus between quantum systems of disparate energy scales. These two elements are interfaced through crystal strain generated by vibrations of the mechanical oscillator. Importantly, a strain interface allows for a scalable architecture, and furthermore, opens the door to integration into a larger quantum network through coupling to an optical interface. There are a few important engineering challenges associated with this device. First, there have been no previous demonstrations of a strain-mediated spin-mechanical interface and hence the system is largely uncharacterized. Second, fabricating high quality diamond mechanical oscillators is difficult due to the robust and chemically inert nature of diamond. Finally, engineering highly coherent NV centers with a coherent optical interface in nanostructured diamond remains an outstanding challenge. In this thesis, we theoretically and experimentally address each of these challenges, and show that with future improvements, this device is suitable for future quantum-enabled applications. First, we theoretically and experimentally demonstrate a dynamic, strain-mediated coupling between the spin and orbital degrees of freedom of the NV center and the driven mechanical motion of a single-crystal diamond cantilever. We employ Ramsey interferometry to demonstrate coherent, mechanical driving of the NV spin evolution. Using this interferometry technique, we present the first demonstration of nanoscale strain imaging, and quantitatively characterize the previously unknown spin-strain coupling constants. Next, we use the driven motion of the cantilever to perform deterministic control of the frequency and polarization dependence of the optical transitions of the NV center. Importantly, this experiment constitutes the first demonstration of on-chip control of both the frequency and polarization state of a single photon produced by a quantum emitter. In the final experiment, we use mechanical driving to engineer a series of spin ``clock" states and demonstrate a significant increase in the spin coherence time of the NV center. We conclude this thesis with a theoretical discussion of prospective applications for this device, including generation of non-classical mechanical states and spin-spin entanglement, as well as an evaluation of the current limitations of our devices, including a possible avenues for improvement to reach the regime of strong spin-phonon coupling.

  10. Spin Hamiltonian Analysis of the SMM V15 Using High Field ESR

    NASA Astrophysics Data System (ADS)

    Martens, Mathew; van Tol, Hans; Bertaina, Sylvain; Barbara, Bernard; Muller, Achim; Chiorescu, Irinel

    2014-03-01

    We have studied molecular magnets using high field / high frequency Electron Spin Resonance. Such molecular structures contain many quantum spins linked by exchange interactions and consequently their energy structure is often complex and require a good understanding of the molecular spin Hamiltonian. In particular, we studied the V15 molecule, comprised of 15 spins 1/2 and a total spin 1/2, which is a system that recently showed quantum Rabi oscillations of its total quantum spin. This type of molecule is an essential system for advancing molecular structures into quantum computing. We used high frequency characterization techniques (of hundreds of GHz) to gain insight into the exchange anisotropy interactions, crystal field, and anti-symmetric interactions present in this system. We analyzed the data using a detailed numerical analysis of spin interactions and our findings regarding the V15 spin Hamiltonian will be discussed. Supported by the NSF Cooperative Agreement Grant No. DMR-0654118 and No. NHMFL UCGP 5059, NSF grant No. DMR-0645408.

  11. Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities.

    PubMed

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-01-13

    We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.

  12. Incoherent vs. coherent behavior in the normal state of copper oxide superconductors

    NASA Technical Reports Server (NTRS)

    Tesanovic, Zlatko

    1991-01-01

    The self-consistent quantum fluctuations around the mean-field Hartree-Fock state of the Hubbard model provide a very good description of the ground state and low temperature properties of a 2-D itinerant antiferromagnet. Very good agreement with numerical calculations and experimental data is obtained by including the one- and two-loop spin wave corrections to various physical quantities. In particular, the destruction of the long-range order above the Neel temperature can be understood as a spontaneous generation of a length-scale epsilon(T), which should be identified as the spin correlation length. For finite doping, the question of the Hartree-Fock starting point becomes a more complex one since an extra hole tends to self-trap in antiferromagnetic background. Such quantum defects in an underlying antiferromagnetic state can be spin-bags or vortex-like structures and tend to suppress the long-range order. If motion of the holes occurs on a time-scale shorter than the one associated with the motion of these quantum defects of a spin background, one obtains several important empirical features of the normal state of CuO superconductors like linear T-dependence of resistivity, the cusp in the tunneling density of states, etc. As opposed to a familiar Fermi-liquid behavior, the phenomenology of the above system is dominated by a large incoherent piece of a single hole propagator, resulting in many unusual normal state properties.

  13. Quantum criticality among entangled spin chains

    DOE PAGES

    Blanc, N.; Trinh, J.; Dong, L.; ...

    2017-12-11

    Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less

  14. Quantum criticality among entangled spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, N.; Trinh, J.; Dong, L.

    Here, an important challenge in magnetism is the unambiguous identification of a quantum spin liquid, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems wherein classical order is suppressed by a frustrating lattice, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at themore » quantum critical point, with little entropy available for quantum fluctuations. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K 2PbCu(NO 2) 6. Across the temperature–magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.« less

  15. Quantum criticality among entangled spin chains

    NASA Astrophysics Data System (ADS)

    Blanc, N.; Trinh, J.; Dong, L.; Bai, X.; Aczel, A. A.; Mourigal, M.; Balents, L.; Siegrist, T.; Ramirez, A. P.

    2018-03-01

    An important challenge in magnetism is the unambiguous identification of a quantum spin liquid1,2, of potential importance for quantum computing. In such a material, the magnetic spins should be fluctuating in the quantum regime, instead of frozen in a classical long-range-ordered state. While this requirement dictates systems3,4 wherein classical order is suppressed by a frustrating lattice5, an ideal system would allow tuning of quantum fluctuations by an external parameter. Conventional three-dimensional antiferromagnets can be tuned through a quantum critical point—a region of highly fluctuating spins—by an applied magnetic field. Such systems suffer from a weak specific-heat peak at the quantum critical point, with little entropy available for quantum fluctuations6. Here we study a different type of antiferromagnet, comprised of weakly coupled antiferromagnetic spin-1/2 chains as realized in the molecular salt K2PbCu(NO2)6. Across the temperature-magnetic field boundary between three-dimensional order and the paramagnetic phase, the specific heat exhibits a large peak whose magnitude approaches a value suggestive of the spinon Sommerfeld coefficient of isolated quantum spin chains. These results demonstrate an alternative approach for producing quantum matter via a magnetic-field-induced shift of entropy from one-dimensional short-range order to a three-dimensional quantum critical point.

  16. Coherent vs. incoherent pairing in 2D systems near magnetic instability

    NASA Astrophysics Data System (ADS)

    Abanov, Ar.; Chubukov, A. V.; Finkel'stein, A. M.

    2001-05-01

    We study the superconductivity in 2D fermionic systems near antiferromagnetic instability, assuming that the pairing is mediated by spin fluctuations. This pairing involves fully incoherent fermions and diffusive spin excitations. We show that the competition between fermionic incoherence and strong pairing interaction yields the pairing instability temperature Tins which increases and saturates as the magnetic correlation length ξ → ∞. We argue that in this quantum-critical regime the pairing problem is qualitatively different from the BCS one.

  17. Observation of zero-point quantum fluctuations of a single-molecule magnet through the relaxation of its nuclear spin bath.

    PubMed

    Morello, A; Millán, A; de Jongh, L J

    2014-03-21

    A single-molecule magnet placed in a magnetic field perpendicular to its anisotropy axis can be truncated to an effective two-level system, with easily tunable energy splitting. The quantum coherence of the molecular spin is largely determined by the dynamics of the surrounding nuclear spin bath. Here we report the measurement of the nuclear spin-lattice relaxation rate 1/T1n in a single crystal of the single-molecule magnet Mn12-ac, at T ≈ 30 mK in perpendicular fields B⊥ up to 9 T. The relaxation channel at B ≈ 0 is dominated by incoherent quantum tunneling of the Mn12-ac spin S, aided by the nuclear bath itself. However for B⊥>5 T we observe an increase of 1/T1n by several orders of magnitude up to the highest field, despite the fact that the molecular spin is in its quantum mechanical ground state. This striking observation is a consequence of the zero-point quantum fluctuations of S, which allow it to mediate the transfer of energy from the excited nuclear spin bath to the crystal lattice at much higher rates. Our experiment highlights the importance of quantum fluctuations in the interaction between an "effective two-level system" and its surrounding spin bath.

  18. Measurement of the spin temperature of optically cooled nuclei and GaAs hyperfine constants in GaAs/AlGaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Chekhovich, E. A.; Ulhaq, A.; Zallo, E.; Ding, F.; Schmidt, O. G.; Skolnick, M. S.

    2017-10-01

    Deep cooling of electron and nuclear spins is equivalent to achieving polarization degrees close to 100% and is a key requirement in solid-state quantum information technologies. While polarization of individual nuclear spins in diamond and SiC (ref. ) reaches 99% and beyond, it has been limited to 50-65% for the nuclei in quantum dots. Theoretical models have attributed this limit to formation of coherent `dark' nuclear spin states but experimental verification is lacking, especially due to the poor accuracy of polarization degree measurements. Here we measure the nuclear polarization in GaAs/AlGaAs quantum dots with high accuracy using a new approach enabled by manipulation of the nuclear spin states with radiofrequency pulses. Polarizations up to 80% are observed--the highest reported so far for optical cooling in quantum dots. This value is still not limited by nuclear coherence effects. Instead we find that optically cooled nuclei are well described within a classical spin temperature framework. Our findings unlock a route for further progress towards quantum dot electron spin qubits where deep cooling of the mesoscopic nuclear spin ensemble is used to achieve long qubit coherence. Moreover, GaAs hyperfine material constants are measured here experimentally for the first time.

  19. Cavity-Enhanced Optical Readout of a Single Solid-State Spin

    NASA Astrophysics Data System (ADS)

    Sun, Shuo; Kim, Hyochul; Solomon, Glenn S.; Waks, Edo

    2018-05-01

    We demonstrate optical readout of a single spin using cavity quantum electrodynamics. The spin is based on a single trapped electron in a quantum dot that has a poor branching ratio of 0.43. Selectively coupling one of the optical transitions of the quantum dot to the cavity mode results in a spin-dependent cavity reflectivity that enables spin readout by monitoring the reflected intensity of an incident optical field. Using this approach, we demonstrate spin-readout fidelity of 0.61. Achieving this fidelity using resonance fluorescence from a bare dot would require 43 times improvement in photon collection efficiency.

  20. Dynamic Stabilization of a Quantum Many-Body Spin System

    NASA Astrophysics Data System (ADS)

    Hoang, T. M.; Gerving, C. S.; Land, B. J.; Anquez, M.; Hamley, C. D.; Chapman, M. S.

    2013-08-01

    We demonstrate dynamic stabilization of a strongly interacting quantum spin system realized in a spin-1 atomic Bose-Einstein condensate. The spinor Bose-Einstein condensate is initialized to an unstable fixed point of the spin-nematic phase space, where subsequent free evolution gives rise to squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that rotate the spin-nematic many-body fluctuations and limit their growth. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is measured and compares well with a stability analysis.

  1. Spin relaxation in quantum dots due to electron exchange with leads.

    PubMed

    Vorontsov, A B; Vavilov, M G

    2008-11-28

    We calculate spin relaxation rates in lateral quantum dot systems due to electron exchange between dots and leads. Using rate equations, we develop a theoretical description of the experimentally observed electric current in the spin blockade regime of double quantum dots. A single expression fits the entire current profile and describes the structure of both the conduction peaks and the suppressed ("valley") region. Extrinsic rates calculated here have to be taken into account for accurate extraction of intrinsic relaxation rates due to the spin-orbit and hyperfine spin scattering mechanisms from spin blockade measurements.

  2. Entanglement distribution schemes employing coherent photon-to-spin conversion in semiconductor quantum dot circuits

    NASA Astrophysics Data System (ADS)

    Gaudreau, Louis; Bogan, Alex; Korkusinski, Marek; Studenikin, Sergei; Austing, D. Guy; Sachrajda, Andrew S.

    2017-09-01

    Long distance entanglement distribution is an important problem for quantum information technologies to solve. Current optical schemes are known to have fundamental limitations. A coherent photon-to-spin interface built with quantum dots (QDs) in a direct bandgap semiconductor can provide a solution for efficient entanglement distribution. QD circuits offer integrated spin processing for full Bell state measurement (BSM) analysis and spin quantum memory. Crucially the photo-generated spins can be heralded by non-destructive charge detection techniques. We review current schemes to transfer a polarization-encoded state or a time-bin-encoded state of a photon to the state of a spin in a QD. The spin may be that of an electron or that of a hole. We describe adaptations of the original schemes to employ heavy holes which have a number of attractive properties including a g-factor that is tunable to zero for QDs in an appropriately oriented external magnetic field. We also introduce simple throughput scaling models to demonstrate the potential performance advantage of full BSM capability in a QD scheme, even when the quantum memory is imperfect, over optical schemes relying on linear optical elements and ensemble quantum memories.

  3. Avalanche of entanglement and correlations at quantum phase transitions.

    PubMed

    Krutitsky, Konstantin V; Osterloh, Andreas; Schützhold, Ralf

    2017-06-16

    We study the ground-state entanglement in the quantum Ising model with nearest neighbor ferromagnetic coupling J and find a sequential increase of entanglement depth d with growing J. This entanglement avalanche starts with two-point entanglement, as measured by the concurrence, and continues via the three-tangle and four-tangle, until finally, deep in the ferromagnetic phase for J = ∞, arriving at a pure L-partite (GHZ type) entanglement of all L spins. Comparison with the two, three, and four-point correlations reveals a similar sequence and shows strong ties to the above entanglement measures for small J. However, we also find a partial inversion of the hierarchy, where the four-point correlation exceeds the three- and two-point correlations, well before the critical point is reached. Qualitatively similar behavior is also found for the Bose-Hubbard model, suggesting that this is a general feature of a quantum phase transition. This should be taken into account in the approximations starting from a mean-field limit.

  4. Analytical pair correlations in ideal quantum gases: temperature-dependent bunching and antibunching.

    PubMed

    Bosse, J; Pathak, K N; Singh, G S

    2011-10-01

    The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T

  5. Deep Neural Network Detects Quantum Phase Transition

    NASA Astrophysics Data System (ADS)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  6. Generation and control of Greenberger-Horne-Zeilinger entanglement in superconducting circuits.

    PubMed

    Wei, L F; Liu, Yu-xi; Nori, Franco

    2006-06-23

    Going beyond the entanglement of microscopic objects (such as photons, spins, and ions), here we propose an efficient approach to produce and control the quantum entanglement of three macroscopic coupled superconducting qubits. By conditionally rotating, one by one, selected Josephson-charge qubits, we show that their Greenberger-Horne-Zeilinger (GHZ) entangled states can be deterministically generated. The existence of GHZ correlations between these qubits could be experimentally demonstrated by effective single-qubit operations followed by high-fidelity single-shot readouts. The possibility of using the prepared GHZ correlations to test the macroscopic conflict between the noncommutativity of quantum mechanics and the commutativity of classical physics is also discussed.

  7. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble

    PubMed Central

    Klimov, Paul V.; Falk, Abram L.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.

    2015-01-01

    Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 103 identical registers in a 40-μm3 volume (with 0.95−0.07+0.05 fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. PMID:26702444

  8. Stabilization of the electron-nuclear spin orientation in quantum dots by the nuclear quadrupole interaction.

    PubMed

    Dzhioev, R I; Korenev, V L

    2007-07-20

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  9. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    NASA Astrophysics Data System (ADS)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.

  10. Quantum gap and spin-wave excitations in the Kitaev model on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Di Ciolo, Andrea; Jackeli, George

    2018-05-01

    We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model. The quantum fluctuations lift the subextensive degeneracy of the classical ground-state manifold by a quantum order-by-disorder mechanism. Nearest-neighbor chains remain decoupled and the surviving discrete degeneracy of the ground state is protected by a hidden model symmetry. We show how the four-spin interaction, emergent from the fluctuations, generates a spin gap shifting the nodal lines of the linear spin-wave spectrum to finite energies.

  11. A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%

    NASA Astrophysics Data System (ADS)

    Yoneda, Jun; Takeda, Kenta; Otsuka, Tomohiro; Nakajima, Takashi; Delbecq, Matthieu R.; Allison, Giles; Honda, Takumu; Kodera, Tetsuo; Oda, Shunri; Hoshi, Yusuke; Usami, Noritaka; Itoh, Kohei M.; Tarucha, Seigo

    2018-02-01

    The isolation of qubits from noise sources, such as surrounding nuclear spins and spin-electric susceptibility1-4, has enabled extensions of quantum coherence times in recent pivotal advances towards the concrete implementation of spin-based quantum computation. In fact, the possibility of achieving enhanced quantum coherence has been substantially doubted for nanostructures due to the characteristic high degree of background charge fluctuations5-7. Still, a sizeable spin-electric coupling will be needed in realistic multiple-qubit systems to address single-spin and spin-spin manipulations8-10. Here, we realize a single-electron spin qubit with an isotopically enriched phase coherence time (20 μs)11,12 and fast electrical control speed (up to 30 MHz) mediated by extrinsic spin-electric coupling. Using rapid spin rotations, we reveal that the free-evolution dephasing is caused by charge noise—rather than conventional magnetic noise—as highlighted by a 1/f spectrum extended over seven decades of frequency. The qubit exhibits superior performance with single-qubit gate fidelities exceeding 99.9% on average, offering a promising route to large-scale spin-qubit systems with fault-tolerant controllability.

  12. Spin-orbital quantum liquid on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Corboz, Philippe

    2013-03-01

    The symmetric Kugel-Khomskii can be seen as a minimal model describing the interactions between spin and orbital degrees of freedom in transition-metal oxides with orbital degeneracy, and it is equivalent to the SU(4) Heisenberg model of four-color fermionic atoms. We present simulation results for this model on various two-dimensional lattices obtained with infinite projected-entangled pair states (iPEPS), an efficient variational tensor-network ansatz for two dimensional wave functions in the thermodynamic limit. This approach can be seen as a two-dimensional generalization of matrix product states - the underlying ansatz of the density matrix renormalization group method. We find a rich variety of exotic phases: while on the square and checkerboard lattices the ground state exhibits dimer-Néel order and plaquette order, respectively, quantum fluctuations on the honeycomb lattice destroy any order, giving rise to a spin-orbital liquid. Our results are supported from flavor-wave theory and exact diagonalization. Furthermore, the properties of the spin-orbital liquid state on the honeycomb lattice are accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the ground state is an algebraic spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba3CuSb2O9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms. We acknowledge the financial support from the Swiss National Science Foundation.

  13. Correlated Electrons in Reduced Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonesteel, Nicholas E

    2015-01-31

    This report summarizes the work accomplished under the support of US DOE grant # DE-FG02-97ER45639, "Correlated Electrons in Reduced Dimensions." The underlying hypothesis of the research supported by this grant has been that studying the unique behavior of correlated electrons in reduced dimensions can lead to new ways of understanding how matter can order and how it can potentially be used. The systems under study have included i) fractional quantum Hall matter, which is realized when electrons are confined to two-dimensions and placed in a strong magnetic field at low temperature, ii) one-dimensional chains of spins and exotic quasiparticle excitationsmore » of topologically ordered matter, and iii) electrons confined in effectively ``zero-dimensional" semiconductor quantum dots.« less

  14. Vindication of Yb2Ti2O7 as a model exchange quantum spin ice.

    PubMed

    Applegate, R; Hayre, N R; Singh, R R P; Lin, T; Day, A G R; Gingras, M J P

    2012-08-31

    We use numerical linked-cluster expansions to compute the specific heat C(T) and entropy S(T) of a quantum spin ice Hamiltonian for Yb2Ti2O7 using anisotropic exchange interactions, recently determined from inelastic neutron scattering measurements, and find good agreement with experimental calorimetric data. This vindicates Yb2Ti2O7 as a model quantum spin ice. We find that in the perturbative weak quantum regime, such a system has a ferrimagnetic ordered ground state, with two peaks in C(T): a Schottky anomaly signaling the paramagnetic to spin ice crossover, followed at a lower temperature by a sharp peak accompanying a first-order phase transition to the ordered state. We suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the same physics. Spin excitations in this regime consist of weakly confined spinon-antispinon pairs. We anticipate that the conventional ground state with exotic quantum dynamics will prove a prevalent characteristic of many real quantum spin ice materials.

  15. Quantum computational universality of the Cai-Miyake-Dür-Briegel two-dimensional quantum state from Affleck-Kennedy-Lieb-Tasaki quasichains

    NASA Astrophysics Data System (ADS)

    Wei, Tzu-Chieh; Raussendorf, Robert; Kwek, Leong Chuan

    2011-10-01

    Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state, such as cluster states. Cai, Miyake, Dür, and Briegel recently constructed a ground state of a two-dimensional quantum magnet by combining multiple Affleck-Kennedy-Lieb-Tasaki quasichains of mixed spin-3/2 and spin-1/2 entities and by mapping pairs of neighboring spin-1/2 particles to individual spin-3/2 particles [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.052309 82, 052309 (2010)]. They showed that this state enables universal quantum computation by single-spin measurements. Here, we give an alternative understanding of how this state gives rise to universal measurement-based quantum computation: by local operations, each quasichain can be converted to a one-dimensional cluster state and entangling gates between two neighboring logical qubits can be implemented by single-spin measurements. We further argue that a two-dimensional cluster state can be distilled from the Cai-Miyake-Dür-Briegel state.

  16. Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.; Akimov, I. A.; Zaitsev, S. V.; Sapega, V. F.; Langer, L.; Yakovlev, D. R.; Danilov, Yu. A.; Bayer, M.

    2012-07-01

    Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.

  17. Dynamic spin polarization by orientation-dependent separation in a ferromagnet-semiconductor hybrid.

    PubMed

    Korenev, V L; Akimov, I A; Zaitsev, S V; Sapega, V F; Langer, L; Yakovlev, D R; Danilov, Yu A; Bayer, M

    2012-07-17

    Integration of magnetism into semiconductor electronics would facilitate an all-in-one-chip computer. Ferromagnet/bulk semiconductor hybrids have been, so far, mainly considered as key devices to read out the ferromagnetism by means of spin injection. Here we demonstrate that a Mn-based ferromagnetic layer acts as an orientation-dependent separator for carrier spins confined in a semiconductor quantum well that is set apart from the ferromagnet by a barrier only a few nanometers thick. By this spin-separation effect, a non-equilibrium electron-spin polarization is accumulated in the quantum well due to spin-dependent electron transfer to the ferromagnet. The significant advance of this hybrid design is that the excellent optical properties of the quantum well are maintained. This opens up the possibility of optical readout of the ferromagnet's magnetization and control of the non-equilibrium spin polarization in non-magnetic quantum wells.

  18. Quantum Spin Ice under a [111] Magnetic Field: From Pyrochlore to Kagome

    NASA Astrophysics Data System (ADS)

    Bojesen, Troels Arnfred; Onoda, Shigeki

    2017-12-01

    Quantum spin ice, modeled for magnetic rare-earth pyrochlores, has attracted great interest for hosting a U(1) quantum spin liquid, which involves spin-ice monopoles as gapped deconfined spinons, as well as gapless excitations analogous to photons. However, the global phase diagram under a [111] magnetic field remains open. Here we uncover by means of unbiased quantum Monte Carlo simulations that a supersolid of monopoles, showing both a superfluidity and a partial ionization, intervenes the kagome spin ice and a fully ionized monopole insulator, in contrast to classical spin ice where a direct discontinuous phase transition takes place. We also show that on cooling, kagome spin ice evolves towards a valence-bond solid similar to what appears in the associated kagome lattice model [S. V. Isakov et al., Phys. Rev. Lett. 97, 147202 (2006), 10.1103/PhysRevLett.97.147202]. Possible relevance to experiments is discussed.

  19. Towards photonic quantum simulation of ground states of frustrated Heisenberg spin systems

    PubMed Central

    Ma, Xiao-song; Dakić, Borivoje; Kropatschek, Sebastian; Naylor, William; Chan, Yang-hao; Gong, Zhe-xuan; Duan, Lu-ming; Zeilinger, Anton; Walther, Philip

    2014-01-01

    Photonic quantum simulators are promising candidates for providing insight into other small- to medium-sized quantum systems. Recent experiments have shown that photonic quantum systems have the advantage to exploit quantum interference for the quantum simulation of the ground state of Heisenberg spin systems. Here we experimentally characterize this quantum interference at a tuneable beam splitter and further investigate the measurement-induced interactions of a simulated four-spin system by comparing the entanglement dynamics using pairwise concurrence. We also study theoretically a four-site square lattice with next-nearest neighbor interactions and a six-site checkerboard lattice, which might be in reach of current technology. PMID:24394808

  20. SD-CAS: Spin Dynamics by Computer Algebra System.

    PubMed

    Filip, Xenia; Filip, Claudiu

    2010-11-01

    A computer algebra tool for describing the Liouville-space quantum evolution of nuclear 1/2-spins is introduced and implemented within a computational framework named Spin Dynamics by Computer Algebra System (SD-CAS). A distinctive feature compared with numerical and previous computer algebra approaches to solving spin dynamics problems results from the fact that no matrix representation for spin operators is used in SD-CAS, which determines a full symbolic character to the performed computations. Spin correlations are stored in SD-CAS as four-entry nested lists of which size increases linearly with the number of spins into the system and are easily mapped into analytical expressions in terms of spin operator products. For the so defined SD-CAS spin correlations a set of specialized functions and procedures is introduced that are essential for implementing basic spin algebra operations, such as the spin operator products, commutators, and scalar products. They provide results in an abstract algebraic form: specific procedures to quantitatively evaluate such symbolic expressions with respect to the involved spin interaction parameters and experimental conditions are also discussed. Although the main focus in the present work is on laying the foundation for spin dynamics symbolic computation in NMR based on a non-matrix formalism, practical aspects are also considered throughout the theoretical development process. In particular, specific SD-CAS routines have been implemented using the YACAS computer algebra package (http://yacas.sourceforge.net), and their functionality was demonstrated on a few illustrative examples. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Semiclassical dynamics of spin density waves

    NASA Astrophysics Data System (ADS)

    Chern, Gia-Wei; Barros, Kipton; Wang, Zhentao; Suwa, Hidemaro; Batista, Cristian D.

    2018-01-01

    We present a theoretical framework for equilibrium and nonequilibrium dynamical simulation of quantum states with spin-density-wave (SDW) order. Within a semiclassical adiabatic approximation that retains electron degrees of freedom, we demonstrate that the SDW order parameter obeys a generalized Landau-Lifshitz equation. With the aid of an enhanced kernel polynomial method, our linear-scaling quantum Landau-Lifshitz dynamics (QLLD) method enables dynamical SDW simulations with N ≃105 lattice sites. Our real-space formulation can be used to compute dynamical responses, such as the dynamical structure factor, of complex and even inhomogeneous SDW configurations at zero or finite temperatures. Applying the QLLD to study the relaxation of a noncoplanar topological SDW under the excitation of a short pulse, we further demonstrate the crucial role of spatial correlations and fluctuations in the SDW dynamics.

  2. Prediction of Spin-Polarization Effects in Quantum Wire Transport

    NASA Astrophysics Data System (ADS)

    Fasol, Gerhard; Sakaki, Hiroyuki

    1994-01-01

    We predict a new effect for transport in quantum wires: spontaneous spin polarization. Most work on transport in mesoscopic devices has assumed a model of non interacting, spin-free electrons. We introduce spin, electron pair scattering and microscopic crystal properties into the design of mesoscopic devices. The new spin polarization effect results from the fact that in a single mode quantum wire, electron and hole bands still have two spin subbands. In general, these two spin subbands are expected to be split even in zero magnetic field. At sufficiently low temperatures the electron pair scattering rates for one spin subband ( e.g., the spin-down) can be much larger than for the other spin subband. This effect can be used for an active spin polarizer device: hot electrons in one subband ( e.g., `spin up') pass with weak pair scattering, while electrons in the opposite subband ( e.g., `spin down'), have high probability of scattering into the `spin-up' subband, resulting in spin polarization of a hot electron beam.

  3. Room temperature spin diffusion in (110) GaAs/AlGaAs quantum wells

    PubMed Central

    2011-01-01

    Transient spin grating experiments are used to investigate the electron spin diffusion in intrinsic (110) GaAs/AlGaAs multiple quantum well at room temperature. The measured spin diffusion length of optically excited electrons is about 4 μm at low spin density. Increasing the carrier density yields both a decrease of the spin relaxation time and the spin diffusion coefficient Ds. PMID:21711662

  4. The birth of quantum networks: merging remote entanglement with local multi-qubit control

    NASA Astrophysics Data System (ADS)

    Hanson, Ronald

    The realization of a highly connected network of qubit registers is a central challenge for quantum information processing and long-distance quantum communication. Diamond spins associated with NV centers are promising building blocks for such a network: they combine a coherent spin-photon interface that has already enabled creation of spin-spin entanglement over 1km with a local register of robust and well-controlled nuclear spin qubits for information processing and error correction. We are now entering a new research stage in which we can exploit these features simultaneously and build multi-qubit networks. I will present our latest results towards the first of such experiments: entanglement distillation between remote quantum network nodes. Finally, I will discuss the challenges and opportunities ahead on the road to large-scale networks of qubit registers for quantum computation and communication.

  5. Catalytic homogeneous hydrogenation of compounds containing X --> O semipolar bonds (X = N, S, P) with para-hydrogen as a promising route for preparation of para-water.

    PubMed

    Ustynyuk, Yuri A; Gavrikov, Alexei V; Sergeyev, Nikolay M

    2006-11-28

    The quantum-chemical simulation (DFT, PBE, TZ2p basis set) of the mechanism of catalytic hydrogenation of compounds containing R(n)X --> O semipolar bonds (R(n)X = N(2), Me(2)S, C(5)H(5)N, Ph(3)P) on the Wilkinson catalyst (Ph(3)P)(3)RhCl with para-hydrogen showed that this process proceeds with retention of proton nuclear spin correlation, which enables a principal possibility to synthesize para-H(2)O, i.e. the nuclear spin isomer of water with antiparallel proton spins, using this route.

  6. Coherent coupling between Vanadyl Phthalocyanine spin ensemble and microwave photons: towards integration of molecular spin qubits into quantum circuits.

    PubMed

    Bonizzoni, C; Ghirri, A; Atzori, M; Sorace, L; Sessoli, R; Affronte, M

    2017-10-12

    Electron spins are ideal two-level systems that may couple with microwave photons so that, under specific conditions, coherent spin-photon states can be realized. This represents a fundamental step for the transfer and the manipulation of quantum information. Along with spin impurities in solids, molecular spins in concentrated phases have recently shown coherent dynamics under microwave stimuli. Here we show that it is possible to obtain high cooperativity regime between a molecular Vanadyl Phthalocyanine (VOPc) spin ensemble and a high quality factor superconducting YBa 2 Cu 3 O 7 (YBCO) coplanar resonator at 0.5 K. This demonstrates that molecular spin centers can be successfully integrated in hybrid quantum devices.

  7. High-fidelity cluster state generation for ultracold atoms in an optical lattice.

    PubMed

    Inaba, Kensuke; Tokunaga, Yuuki; Tamaki, Kiyoshi; Igeta, Kazuhiro; Yamashita, Makoto

    2014-03-21

    We propose a method for generating high-fidelity multipartite spin entanglement of ultracold atoms in an optical lattice in a short operation time with a scalable manner, which is suitable for measurement-based quantum computation. To perform the desired operations based on the perturbative spin-spin interactions, we propose to actively utilize the extra degrees of freedom (DOFs) usually neglected in the perturbative treatment but included in the Hubbard Hamiltonian of atoms, such as, (pseudo-)charge and orbital DOFs. Our method simultaneously achieves high fidelity, short operation time, and scalability by overcoming the following fundamental problem: enhancing the interaction strength for shortening the operation time breaks the perturbative condition of the interaction and inevitably induces unwanted correlations among the spin and extra DOFs.

  8. Phase-Tuned Entangled State Generation between Distant Spin Qubits.

    PubMed

    Stockill, R; Stanley, M J; Huthmacher, L; Clarke, E; Hugues, M; Miller, A J; Matthiesen, C; Le Gall, C; Atatüre, M

    2017-07-07

    Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ^{(+)}⟩ and |ψ^{(-)}⟩ states of 61.6±2.3% and a record-high entanglement generation rate of 7.3 kHz between distant qubits.

  9. Phase-Tuned Entangled State Generation between Distant Spin Qubits

    NASA Astrophysics Data System (ADS)

    Stockill, R.; Stanley, M. J.; Huthmacher, L.; Clarke, E.; Hugues, M.; Miller, A. J.; Matthiesen, C.; Le Gall, C.; Atatüre, M.

    2017-07-01

    Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ(+)⟩ and |ψ(-)⟩ states of 61.6 ±2.3 % and a record-high entanglement generation rate of 7.3 kHz between distant qubits.

  10. Coherent spin transfer between molecularly bridged quantum dots.

    PubMed

    Ouyang, Min; Awschalom, David D

    2003-08-22

    Femtosecond time-resolved Faraday rotation spectroscopy reveals the instantaneous transfer of spin coherence through conjugated molecular bridges spanning quantum dots of different size over a broad range of temperature. The room-temperature spin-transfer efficiency is approximately 20%, showing that conjugated molecules can be used not only as interconnections for the hierarchical assembly of functional networks but also as efficient spin channels. The results suggest that this class of structures may be useful as two-spin quantum devices operating at ambient temperatures and may offer promising opportunities for future versatile molecule-based spintronic technologies.

  11. Room-temperature storage of quantum entanglement using decoherence-free subspace in a solid-state spin system

    NASA Astrophysics Data System (ADS)

    Wang, F.; Huang, Y.-Y.; Zhang, Z.-Y.; Zu, C.; Hou, P.-Y.; Yuan, X.-X.; Wang, W.-B.; Zhang, W.-G.; He, L.; Chang, X.-Y.; Duan, L.-M.

    2017-10-01

    We experimentally demonstrate room-temperature storage of quantum entanglement using two nuclear spins weakly coupled to the electronic spin carried by a single nitrogen-vacancy center in diamond. We realize universal quantum gate control over the three-qubit spin system and produce entangled states in the decoherence-free subspace of the two nuclear spins. By injecting arbitrary collective noise, we demonstrate that the decoherence-free entangled state has coherence time longer than that of other entangled states by an order of magnitude in our experiment.

  12. Extraordinary SEAWs under influence of the spin-spin interaction and the quantum Bohm potential

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2018-06-01

    The separate spin evolution (SSE) of electrons causes the existence of the spin-electron acoustic wave. Extraordinary spin-electron acoustic waves (SEAWs) propagating perpendicular to the external magnetic field have a large contribution of the transverse electric field. Its spectrum has been studied in the quasi-classical limit at the consideration of the separate spin evolution. The spin-spin interaction and the quantum Bohm potential give contribution in the spectrum extraordinary SEAWs. This contribution is studied in this paper. Moreover, it is demonstrated that the spin-spin interaction leads to the existence of the extraordinary SEAWs if the SSE is neglected. It has been found that the SSE causes the instability of the extraordinary SEAW at the large wavelengths, but the quantum Bohm potential leads to the full stabilization of the spectrum.

  13. Direct Identification of Dilute Surface Spins on Al2 O3 : Origin of Flux Noise in Quantum Circuits

    NASA Astrophysics Data System (ADS)

    de Graaf, S. E.; Adamyan, A. A.; Lindström, T.; Erts, D.; Kubatkin, S. E.; Tzalenchuk, A. Ya.; Danilov, A. V.

    2017-02-01

    An on-chip electron spin resonance technique is applied to reveal the nature and origin of surface spins on Al2 O3 . We measure a spin density of 2.2 ×1 017 spins/m2 , attributed to physisorbed atomic hydrogen and S =1 /2 electron spin states on the surface. This is direct evidence for the nature of spins responsible for flux noise in quantum circuits, which has been an issue of interest for several decades. Our findings open up a new approach to the identification and controlled reduction of paramagnetic sources of noise and decoherence in superconducting quantum devices.

  14. Meissner mechanism for the spin supercurrent and interplay between quantum phase transition and spin transport in the frustrated Heisenberg model

    NASA Astrophysics Data System (ADS)

    Lima, Leonardo S.

    2018-04-01

    We have propose the Meissner mechanism for the spin supercurrent in quantum spin systems. Besides, we study the behavior of the AC spin conductivity in neighborhood of quantum phase transition in a frustrated spin model such as the antiferromagnet in the union jack lattice with single ion anisotropy at T = 0 . We investigate the spin conductivity for this model that presents exchange interactions J1 and J2 . Our results show a single peak for the conductivity with the height varying with the behavior of critical anisotropy Dc with J2 . We obtain the conductivity tending to zero in the limit ω → 0 .

  15. Effects of Structural and Electronic Disorder in Topological Insulator Sb2Te3 Thin Films

    NASA Astrophysics Data System (ADS)

    Korzhovska, Inna

    Topological quantum matter is a unique and potentially transformative protectorate against disorder-induced backscattering. The ultimate disorder limits to the topological state, however, are still not known - understanding these limits is critical to potential applications in the fields of spintronics and information processing. In topological insulators spin-orbit interaction and time-reversal-symmetry invariance guarantees - at least up to a certain disorder strength - that charge transport through 2D gapless Dirac surface states is robust against backscattering by non-magnetic disorder. Strong disorder may destroy topological protection and gap out Dirac surface states, although recent theories predict that under severe electronic disorder a quantized topological conductance might yet reemerge. Very strong electronic disorder, however, is not trivial to install and quantify, and topological matter under such conditions thus far has not been experimentally tested. This thesis addresses the behavior of three-dimensional (3D) topological insulator (TI) films in a wide range of structural and electronic disorder. We establish strong positional disorder in thin (20-50 nm) Sb2Te 3 films, free of extrinsic magnetic dopants. Sb 2Te3 is a known 2nd generation topological insulator in the low-disorder crystalline state. It is also a known phase-change material that undergoes insulator-to-metal transition with the concurrent orders of magnitude resistive drop, where a huge range of disorder could be controllably explored. In this work we show that even in the absence of magnetic dopants, disorder may induce spin correlations detrimental to the topological state. Chapter 1 contains a brief introduction to the topological matter and describes the role played by disorder. This is followed by theory considerations and a survey of prior experimental work. Next we describe the motivation for our experiments and explain the choice of the material. Chapter 2 describes deposition techniques used for material growth, including the parameters significance and effects on the material properties. Chapter 3 describes structural and electrical characterization techniques employed in the work. In Chapter 4-5 we discuss the experimental results. Sb2Te 3 films at extreme disorder, where spin correlations dominate the transport of charge, are discussed in Chapter 4. We employ transport measurements as our main tool to explore disorder-induced changes in the Sb2Te 3. In addition we directly detect disorder-induced spin response in thin Sb2Te3 films free of extrinsic magnetic dopants; it onsets at a surprisingly high temperature ( 200 K) and vanishes when disorder is reduced. Localized spins control the hopping (tunneling) transport through spin memory induced by the non-equilibrium charge currents. The observed spin-memory phenomenon emerges as negative magnetoresistance distinct from orbital quantum interference effects. The hopping mechanism and spin correlations dominate transport over an extensive disorder range. Spin correlations are eventually suppressed by the restoration of positional order in the (bulk) crystalline state, implying a disorder threshold to the topological state. As disorder is reduced the material undergoes structural and electronic transitions, which are discussed in Chapter 5. We obtain a number of characteristic attributes that change sharply at the structural and electronic transitions: localization length, dimensionality, and the nature of conductance. Structural transition is clearly seen in the changes in lattice vibrations tracked by Raman spectroscopy, which we use here as a metric of disorder. The significance of the disorder-induced localization transition is discussed. Next we investigate the effects of structural and electronic disorder on the bulk and surfaces in the crystalline state of Sb2Te3. The nontrivial topology of this strongly spin-orbit coupled material comes from the band inversion in the bulk. One of the key transport signatures of topological surfaces is weak antilocalization (WAL) correction to conductivity; it is associated with the topological pi Berry phase and should display a two-dimensional (2D) character. In our work, we establish the disorder level at which 2D WAL appears. The conduction at this threshold is one conduction quantum G0; it corresponds to the topological quantum channel. Finally, we summarize our key findings and discuss open questions and next steps toward the understanding of disorder-induced correlations in the spin and charge channels that can alter the emergent behaviors of the topological states.

  16. Characterizing and engineering tunable spin functionality inside indium arsenide/gallium arsenide quantum dot molecules

    NASA Astrophysics Data System (ADS)

    Liu, Weiwen

    The continual downsizing of the basic functional units used in the electronics industry has motivated the study of the quantum computation and related topics. To overcome the limitations of classical physics and engineering, some unique quantum mechanical features, especially entanglement and superpositions have begun to be considered as important properties for future bits. Including these quantum mechanical features is attractive because the ability to utilize quantum mechanics can dramatically enhance computational power. Among the various ways of constructing the basic building blocks for quantum computation, we are particularly interested in using spins inside epitaxially grown InAs/GaAs quantum dot molecules as quantum bits (qubits). The ability to design and engineer nanostructures with tailored quantum properties is critical to engineering quantum computers and other novel electro-optical devices and is one of the key challenges for scaling up new ideas for device application. In this thesis, we will focus on how the structure and composition of quantum dot molecules can be used to control spin properties and charge interactions. Tunable spin and charge properties can enable new, more scalable, methods of initializing and manipulating quantum information. In this thesis, we demonstrate one method to enable electric-field tunability of Zeeman splitting for a single electron spin inside a quantum dot molecules by using heterostructure engineering techniques to modify the barrier that separates quantum dots. We describe how these structural changes to the quantum dot molecules also change charge interactions and propose ways to use this effect to enable accurate measurement of coulomb interactions and possibly charge occupancy inside these complicated quantum dot molecules.

  17. Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots.

    PubMed

    Bracker, A S; Stinaff, E A; Gammon, D; Ware, M E; Tischler, J G; Shabaev, A; Efros, Al L; Park, D; Gershoni, D; Korenev, V L; Merkulov, I A

    2005-02-04

    We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.

  18. Optical Pumping of the Electronic and Nuclear Spin of Single Charge-Tunable Quantum Dots

    NASA Astrophysics Data System (ADS)

    Bracker, A. S.; Stinaff, E. A.; Gammon, D.; Ware, M. E.; Tischler, J. G.; Shabaev, A.; Efros, Al. L.; Park, D.; Gershoni, D.; Korenev, V. L.; Merkulov, I. A.

    2005-02-01

    We present a comprehensive examination of optical pumping of spins in individual GaAs quantum dots as we change the net charge from positive to neutral to negative with a charge-tunable heterostructure. Negative photoluminescence polarization memory is enhanced by optical pumping of ground state electron spins, which we prove with the first measurements of the Hanle effect on an individual quantum dot. We use the Overhauser effect in a high longitudinal magnetic field to demonstrate efficient optical pumping of nuclear spins for all three charge states of the quantum dot.

  19. Hybrid spin and valley quantum computing with singlet-triplet qubits.

    PubMed

    Rohling, Niklas; Russ, Maximilian; Burkard, Guido

    2014-10-24

    The valley degree of freedom in the electronic band structure of silicon, graphene, and other materials is often considered to be an obstacle for quantum computing (QC) based on electron spins in quantum dots. Here we show that control over the valley state opens new possibilities for quantum information processing. Combining qubits encoded in the singlet-triplet subspace of spin and valley states allows for universal QC using a universal two-qubit gate directly provided by the exchange interaction. We show how spin and valley qubits can be separated in order to allow for single-qubit rotations.

  20. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent

    NASA Astrophysics Data System (ADS)

    Vandersypen, L. M. K.; Bluhm, H.; Clarke, J. S.; Dzurak, A. S.; Ishihara, R.; Morello, A.; Reilly, D. J.; Schreiber, L. R.; Veldhorst, M.

    2017-09-01

    Semiconductor spins are one of the few qubit realizations that remain a serious candidate for the implementation of large-scale quantum circuits. Excellent scalability is often argued for spin qubits defined by lithography and controlled via electrical signals, based on the success of conventional semiconductor integrated circuits. However, the wiring and interconnect requirements for quantum circuits are completely different from those for classical circuits, as individual direct current, pulsed and in some cases microwave control signals need to be routed from external sources to every qubit. This is further complicated by the requirement that these spin qubits currently operate at temperatures below 100 mK. Here, we review several strategies that are considered to address this crucial challenge in scaling quantum circuits based on electron spin qubits. Key assets of spin qubits include the potential to operate at 1 to 4 K, the high density of quantum dots or donors combined with possibilities to space them apart as needed, the extremely long-spin coherence times, and the rich options for integration with classical electronics based on the same technology.

Top